WorldWideScience

Sample records for polarized uv-vis absorption

  1. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  2. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    Science.gov (United States)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effects of UV radiation on the UV-VIS absorption spectra of the EAGLE's medium components

    International Nuclear Information System (INIS)

    Bollmann, G.; Redmann, K.

    1990-01-01

    The impact of ultraviolet light on uv/vis absorption spectra of selected individual components of the cell breeding medium according to Eagle (MEM) was investigated. The strongest alterations of light absorption were detected in L-phenylalanin, L-tyrosin and L-tryptophane. Thus, the absorption behaviour of the Eagle (MEM) medium changed post radiationem may be attributed to spectrophotometric alterations of absorption in aromatic amino acids. The results are discussed with regard to the effect on the surface charge of erythrocytes. (author)

  4. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  5. Solvent Dependency of the UV-Vis Spectrum of Indenoisoquinolines: Role of Keto-Oxygens as Polarity Interaction Probes

    Science.gov (United States)

    Coletta, Andrea; Castelli, Silvia; Chillemi, Giovanni; Sanna, Nico; Cushman, Mark; Pommier, Yves; Desideri, Alessandro

    2013-01-01

    Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622) and two of its derivatives (NSC724998 and NSC725776) currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB. PMID:24086299

  6. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    Science.gov (United States)

    Marković, Svetlana; Tošović, Jelena

    2015-09-03

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  7. Uric acid detection using uv-vis spectrometer

    Science.gov (United States)

    Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.

    2017-10-01

    The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.

  8. Unexpected solvent effects on the UV/Vis absorption spectra of o-cresol in toluene and benzene: in contrast with non-aromatic solvents.

    Science.gov (United States)

    Zheng, Dong; Yuan, Xiang-Ai; Ma, Haibo; Li, Xiaoxiong; Wang, Xizhang; Liu, Ziteng; Ma, Jing

    2018-03-01

    Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o -cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o -cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o -cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260-280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o -cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o -cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively.

  9. Molecular dynamics simulation and TDDFT study of the structures and UV-vis absorption spectra of MCT-β-CD and its inclusion complexes.

    Science.gov (United States)

    Lu, Huijuan; Wang, Yujiao; Xie, Xiaomei; Chen, Feifei; Li, Wei

    2015-01-01

    In this research, the inclusion ratios and inclusion constants of MCT-β-CD/PERM and MCT-β-CD/CYPERM inclusion complexes were measured by UV-vis and fluorescence spectroscopy. The inclusion ratios are both 1:1, and the inclusion constants are 60 and 342.5 for MCT-β-CD/PERM and MCT-β-CD/CYPERM, respectively. The stabilities of inclusion complexes were investigated by MD simulation. MD shows that VDW energy plays a vital role in the stability of inclusion complex, and the destruction of inclusion complex is due to the increasing temperature. The UV-vis absorption spectra of MCT-β-CD and its inclusion complexes were studied by time-dependent density functional theory (TDDFT) method employing BLYP-D3, B3LYP-D3 and M06-2X-D3 functionals. BLYP-D3 well reproduces the UV-vis absorption spectrum and reveals that the absorption bands of MCT-β-CD mainly arise from n→π(∗) and n→σ(∗) transition, and those of inclusion complexes mainly arise from intramolecular charge transfer (ICT). ICT results in the shift of main absorption bands of MCT-β-CD. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    Science.gov (United States)

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  11. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    International Nuclear Information System (INIS)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years

  12. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    Science.gov (United States)

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. UV absorption by cerium oxide nanoparticles/epoxy composite thin films

    International Nuclear Information System (INIS)

    Dao, Ngoc Nhiem; Luu, Minh Dai; Nguyen, Quang Khuyen; Kim, Byung Sun

    2011-01-01

    Cerium oxide (CeO 2 ) nanoparticles have been used to modify properties of an epoxy matrix in order to improve the ultra-violet (UV) absorption property of epoxy thin films. The interdependence of mechanical properties, UV absorption property and the dispersed concentration of CeO 2 nanoparticles was investigated. Results showed that, by increasing the dispersed concentration of CeO 2 nanoparticles up to 3 wt%, tensile modulus increases while two other mechanical properties, namely tensile strength and elongation, decrease. The UV absorption peak and the absorption edges of the studied thin films were observed in the UV-Vis absorption spectra. By incorporating CeO 2 nanoparticles into the epoxy matrix, an absorption peak appears at around 318 nm in UV-Vis spectra with increasing CeO 2 concentration from 0.1 to 1.0 wt%. Scanning electron microscopy (SEM) images revealed that a good dispersion of nanoparticles in the epoxy matrix by an ultrasonic method was achieved

  14. From pirazoloquinolines to annulated azulene dyes: UV-VIS spectroscopy and quantum chemical study

    International Nuclear Information System (INIS)

    Gasiorski, P.; Danel, K.S.; Matusiewicz, M.; Uchacz, T.; Kityk, A.V.

    2010-01-01

    Paper reports UV-Vis absorption and photoluminescence spectra of 6-R derivatives (R=CH 3 , O-CH 3 , C(C 6 H 5 ) 3 , C 6 H 5 -N-C 10 H 7 ) of 4-(2-chlorophenyl)-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline, belonging to pyrazoloquinoline (PQ) family, likewise its regioisomeric products 10-R derivatives of 6-phenyl-6H-5,6,7-triazadibenzo[f,h]naphtho[3,2,1-cd]azulene representing cyclized seven-membered annulated azulene (AA) dyes. Cyclization of PQs into AAs is accompanied by a significant red shift of the first optical absorption band. This finding agrees with the results of quantum-chemical calculations performed by means of the semiempirical method PM3. As the solvent polarity rises all the dyes exhibit a blue shift of the first absorption band and a red shift of the fluorescence band. Such opposite trends in solvatochromic behavior have been reproduced within the semiempirical calculations in combination with the Lippert-Mataga dielectric polarization model. Depending on solvent polarity AA dyes emit light in the green, green-yellow or orange range of the visible spectrum what may be of interest for potential luminescent or electroluminescent applications.

  15. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Anatol'evich, Dikusar Evgenij; Yahyaei, Hooriye

    2017-06-01

    In the present work, the molecular structures of three new azomethine dyes: N-benzylidene-4-((E)-phenyldiazenyl)aniline (PAZB-1), 2-methoxy-4-(((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-2) and 2-methoxy-5-((E)-((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8) have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by PBE0/6-31 + G* level of theory. The electronic spectra of these azomethine dyes in a DMF solution was carried out by TDPBE0/6-31 + G* method. After quantum-chemical calculations three new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for Visible region of spectrum were developed. The main optical parameters of polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal conductivity of the PVA-films has been studied.

  16. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    Science.gov (United States)

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Solvatochromism and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by UV-vis absorption and laser-induced fluorescence measurements

    Science.gov (United States)

    Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.

    2008-12-01

    Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.

  18. Calibration curves for quantifying praseodymium by UV-VIS; Curvas de calibracion para cuantificar praseodimio por UV-VIS

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, R.; Lopez G, H.; Rojas H, A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: robertssd1199@yahoo.com.mx

    2007-07-01

    The UV-Vis spectroscopic technique was used to determine the absorption bands depending on the concentration from the praseodymium solutions at pH3. Those more appropriate were in the wavelength of 215 nm, for concentrations of 0.0001-0.026 M, of 481nm, 468 nm and 443 nm, for concentrations of 0.026-0.325 M, and of 589 nm, for concentrations of 0.026-0.65 M of the praseodymium. To these wavelengths the calibration curves were determined, which presented correlation coefficients between 0.9976 and 0.9999 except of the absorption of 589 nm that gave R{sup 2} = 0.9014. (Author)

  19. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    Science.gov (United States)

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  20. Evaluation of the release characteristics of covalently attached or electrostatically bound biocidal polymers utilizing SERS and UV-Vis absorption

    Directory of Open Access Journals (Sweden)

    G. N. Mathioudakis

    2016-09-01

    Full Text Available In this work, biocidal polymers with antimicrobial quaternized ammonium groups introduced in the polymer biocidal chains either through covalent attachment or electrostatic interaction have been separately incorporated in a poly (methyl methacrylate polymer matrix. The objective of present study was to highlight the release characteristics of biocidal polymers, primarily in saline but also in water ethanol solutions, utilizing UV-Vis absorption and Surface Enhanced Raman Scattering (SERS. It is shown that through the combination of UV-Vis and SERS techniques, upon the release process, it is possible the discrimination of the polymeric backbone and the electrostatically bound biocidal species. Moreover, it is found that electrostatically bound and covalently attached biocidal species show different SERS patterns. The long term aim is the development of antimicrobial polymeric materials containing both ionically bound and covalently attached quaternary ammonium thus achieving a dual functionality in a single component polymeric design.

  1. UV/Vis and NIR Light-Responsive Spiropyran Self-Assembled Monolayers

    NARCIS (Netherlands)

    Ivashenko, Oleksii; Herpt, Jochem T. van; Feringa, Ben L.; Rudolf, Petra; Browne, Wesley R.

    2013-01-01

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SEAS), and X-ray photoelectron spectroscopies (XPS). The SAMs

  2. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    Science.gov (United States)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  3. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  4. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  5. Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.

    Science.gov (United States)

    Bhattarai, Ajaya; Wilczura-Wachnik, H

    2014-01-30

    The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Applications of derivative UV/VIS spectroscopy in water analysis

    International Nuclear Information System (INIS)

    Hellmann, H.

    1994-01-01

    Derivative UV/VIS spectra offer new possibilities in determination and identification of trace substances in waters, suspended matter, and in sediments. Aromatics and their derivatives, such as alkyl-benzene-sulfonates, esters of phthalic acid, alkyl-phenol-oxethylates etc., but also non-aromatic substances with a π-bond can be identified. Compounds showing no absorption in the UV/VIS range can be detected by adding a suitable corectant, e.g. cationic detergents by means of disulfin-blue of BiJ 4 - . Normally, a clean-up is necessary. The recommended procedure is two- or multi-stage chromatography on adsorbing layers of silica gel or aluminium oxide. Thus, numerous substances can be identified and quantified at levels as low as 5 microgram. In some cases, it will be useful to supplement the method by fluorescent spectra of higher orders. (orig.) [de

  7. Calibration curves for quantifying praseodymium by UV-VIS

    International Nuclear Information System (INIS)

    Gonzalez M, R.; Lopez G, H.; Rojas H, A.

    2007-01-01

    The UV-Vis spectroscopic technique was used to determine the absorption bands depending on the concentration from the praseodymium solutions at pH3. Those more appropriate were in the wavelength of 215 nm, for concentrations of 0.0001-0.026 M, of 481nm, 468 nm and 443 nm, for concentrations of 0.026-0.325 M, and of 589 nm, for concentrations of 0.026-0.65 M of the praseodymium. To these wavelengths the calibration curves were determined, which presented correlation coefficients between 0.9976 and 0.9999 except of the absorption of 589 nm that gave R 2 = 0.9014. (Author)

  8. Probing the Behaviors of Gold Nanorods in Metastatic Breast Cancer Cells Based on UV-vis-NIR Absorption Spectroscopy

    Science.gov (United States)

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy. PMID:22384113

  9. UV-VIS absorption spectra of molten AgCl and AgBr and of their mixtures with group I and II halide salts

    Energy Technology Data Exchange (ETDEWEB)

    Greening, Giorgio G.W. [Technische Universitaet Darmstadt (Germany). Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie

    2015-07-01

    The UV-VIS absorption spectra of (Ag{sub 1-X}[Li-Cs, Ba]{sub X})Cl and of (Ag{sub 1-X}[Na, K, Cs]{sub X})Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  10. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    Science.gov (United States)

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  11. Enhancement of UV absorption behavior in Zn O-TiO2 composites

    International Nuclear Information System (INIS)

    Jimenez Reinosa, J.; Leret, P.; Alvarez-Docio, C. M.; Campo, A. del; Fernandez, J. F.

    2016-01-01

    The ultraviolet -visible, UV-vis, absorption edge behaviour of semiconductor oxides as TiO 2 and ZnO promotes their use as inorganic UV filters for sunscreens. In cosmetics, the use of nanoparticles is favoured because of their higher yield and lower whiteness. However, the particle size effect in the UV absorption is unclear. For this reason, the performances of nano and microsized TiO 2 and ZnO are evaluated in both the UV-vis spectroscopy and the Sun Protection Factor, SPF, value. In order to cover the UV range completely by using inorganic filters a new composite is attempted by dry nano dispersion methodology in which TiO 2 nanoparticles are dispersed onto ZnO microparticles. The new composite shows superior UV absorbing properties and ca. 60% SPF value due to a synergism between components that resulted in extended UV coverage and reduction of the total amount of nanoparticles required in the sunscreens. In addition, nanoparticles are effectively anchored onto microparticles avoiding the presence of free nanoparticles. (Author)

  12. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    International Nuclear Information System (INIS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-01-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10 –17 cm 2 molecule –1 was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  13. In situ UV-vis spectroelectrochemistry of poly(o-phenylenediamine-co-m-toluidine)

    International Nuclear Information System (INIS)

    Bilal, Salma; Holze, Rudolf

    2007-01-01

    Results of in situ UV-vis spectroelectrochemical studies of the electropolymerization of o-phenylenediamine (OPD), m-toluidine (MT) and the copolymerization of OPD with MT are reported. Electropolymerization was performed in aqueous acidic medium at a constant potential of E SCE = 1.0 V at an indium doped tin oxide (ITO) coated glass electrode. The course of homopolymerization was followed for MT and OPD solutions with various monomer concentrations. The spectral characteristics of the mixed solutions were studied at a constant concentration of MT and various concentrations of OPD in the comonomer feed. An absorption band at λ = 497 nm was assigned to the head-to-tail mixed dimer/oligomer resulting from the cross reaction between OPD and MT cation radicals. UV-vis spectra recorded during copolymerization show dependence of the growth of the band at λ = 497 nm on OPD concentration in the feed. At lower OPD feed concentration it appears as the major band in the corresponding spectra. The UV-vis spectra recorded for the copolymer films suggest the incorporation of both monomer units in the copolymer. The FT-IR spectra of the copolymers show the presence of phenazine type structures in the copolymer backbone

  14. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478

    Science.gov (United States)

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H. A.

    2016-07-01

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360 nm consisted of two partially overlapping bands at approximately 340 nm and 330 nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327 nm to 336 nm, while the lower energy absorption band demonstrated a change in peak position from 340 nm to 346 nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409 nm to 495 nm with the corresponding Stokes shift in the range of 64 nm to 155 nm (4536 cm- 1 to 9210 cm- 1). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo.

  15. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478.

    Science.gov (United States)

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2016-07-05

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360nm consisted of two partially overlapping bands at approximately 340nm and 330nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327nm to 336nm, while the lower energy absorption band demonstrated a change in peak position from 340nm to 346nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409nm to 495nm with the corresponding Stokes shift in the range of 64nm to 155nm (4536cm(-1) to 9210cm(-1)). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    Science.gov (United States)

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  17. Enhancement of UV absorption behavior in Zn O-TiO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Reinosa, J.; Leret, P.; Alvarez-Docio, C. M.; Campo, A. del; Fernandez, J. F.

    2016-05-01

    The ultraviolet -visible, UV-vis, absorption edge behaviour of semiconductor oxides as TiO{sub 2} and ZnO promotes their use as inorganic UV filters for sunscreens. In cosmetics, the use of nanoparticles is favoured because of their higher yield and lower whiteness. However, the particle size effect in the UV absorption is unclear. For this reason, the performances of nano and microsized TiO{sub 2} and ZnO are evaluated in both the UV-vis spectroscopy and the Sun Protection Factor, SPF, value. In order to cover the UV range completely by using inorganic filters a new composite is attempted by dry nano dispersion methodology in which TiO{sub 2} nanoparticles are dispersed onto ZnO microparticles. The new composite shows superior UV absorbing properties and ca. 60% SPF value due to a synergism between components that resulted in extended UV coverage and reduction of the total amount of nanoparticles required in the sunscreens. In addition, nanoparticles are effectively anchored onto microparticles avoiding the presence of free nanoparticles. (Author)

  18. Enhancement of UV absorption behavior in ZnO–TiO2 composites

    Directory of Open Access Journals (Sweden)

    Julián Jiménez Reinosa

    2016-03-01

    Full Text Available The ultraviolet–visible, UV–vis, absorption edge behaviour of semiconductor oxides as TiO2 and ZnO promotes their use as inorganic UV filters for sunscreens. In cosmetics, the use of nanoparticles is favoured because of their higher yield and lower whiteness. However, the particle size effect in the UV absorption is unclear. For this reason, the performances of nano and microsized TiO2 and ZnO are evaluated in both the UV–vis spectroscopy and the Sun Protection Factor, SPF, value. In order to cover the UV range completely by using inorganic filters a new composite is attempted by dry nanodispersion methodology in which TiO2 nanoparticles are dispersed onto ZnO microparticles. The new composite shows superior UV absorbing properties and ca. 60% SPF value due to a synergism between components that resulted in extended UV coverage and reduction of the total amount of nanoparticles required in the sunscreens. In addition, nanoparticles are effectively anchored onto microparticles avoiding the presence of free nanoparticles.

  19. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  20. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    Science.gov (United States)

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  1. Development and validation of a FIA/UV-vis method for pK(a) determination of oxime based acetylcholinesterase reactivators.

    Science.gov (United States)

    Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil

    2016-01-05

    Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties.

    Science.gov (United States)

    Shi, Kan; Chen, Gong; Pistolozzi, Marco; Xia, Fenggeng; Wu, Zhenqiang

    2016-09-01

    Monascus pigments, a mixture of azaphilones mainly composed of red, orange and yellow pigments, are usually prepared in aqueous ethanol and analysed by ultraviolet-visible (UV-Vis) spectroscopy. The pH of aqueous ethanol used during sample preparation and analysis has never been considered a key parameter to control; however, this study shows that the UV-Vis spectra and colour characteristics of the six major pigments are strongly influenced by the pH of the solvent employed. In addition, the increase of solvent pH results in a remarkable increase of the amination reaction of orange pigments with amino compounds, and at higher pH (≥ 6.0) a significant amount of orange pigment derivatives rapidly form. The consequent impact of these pH-sensitive properties on pigment analysis is further discussed. Based on the presented results, we propose that the sample preparation and analysis of Monascus pigments should be uniformly performed at low pH (≤ 2.5) to avoid variations of UV-Vis spectra and the creation of artefacts due to the occurrence of amination reactions, and ensure an accurate analysis that truly reflects pigment characteristics in the samples.

  3. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    Science.gov (United States)

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  4. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  5. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations.

    Science.gov (United States)

    Hemelsoet, Karen; Qian, Qingyun; De Meyer, Thierry; De Wispelaere, Kristof; De Sterck, Bart; Weckhuysen, Bert M; Waroquier, Michel; Van Speybroeck, Veronique

    2013-12-02

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Standardized UV-vis spectra as the foundation for a threshold-based, integrated photosafety evaluation.

    Science.gov (United States)

    Bauer, Daniel; Averett, Lacey A; De Smedt, Ann; Kleinman, Mark H; Muster, Wolfgang; Pettersen, Betty A; Robles, Catherine

    2014-02-01

    Phototoxicity is a relatively common phenomenon and is an adverse effect of some systemic drugs. The fundamental initial step of photochemical reactivity is absorption of a photon; however, little guidance has been provided thus far regarding how ultraviolet-visible (UV-vis) light absorption spectra may be used to inform testing strategies for investigational drugs. Here we report the results of an inter-laboratory study comparing the data from harmonized UV-vis light absorption spectra obtained in methanol with data from the in vitro 3T3 Neutral Red Uptake Phototoxicity Test. Six pharmaceutical companies submitted data according to predefined quality criteria for 76 compounds covering a wide range of chemical classes showing a diverse but "positive"-enhanced distribution of photo irritation factors (22%: PIF5). For compounds being formally positive (PIF value above 5) the lowest reported molar extinction coefficient (MEC) was 1700 L mol⁻¹ cm⁻¹ in methanol. However, the majority of these formally positive compounds showed MEC values being significantly higher (up to almost 40,000 L mol⁻¹ cm⁻¹). In conclusion, an MEC value of 1000 L mol⁻¹ cm⁻¹ may represent a reasonable and pragmatic threshold warranting further experimental photosafety evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E,E)-azomethines in colored stretched poly (vinyl alcohol) matrix

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Dikusar, Evgenij; Yahyaei, Hooriye; Kumar, Rakesh; Khaleghian, Mehrnoosh

    2018-04-01

    In the present work, the molecular structures of two new azomethine dyes: have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by B3LYP/6-31+G* level of theory. The electronic spectra of these azomethine dyes in a DMF solvent was carried out by using TD-B3LYP/6-31+G* method. After quantum-chemical calculations two new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for visible region of spectrum were developed. The main optical parameters of the polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal and electrical conductivity of the PVA-films have been studied and explained.

  8. Electrochromic characteristics of a nickel borate thin film investigated by in situ XAFS and UV/vis spectroscopy

    International Nuclear Information System (INIS)

    Yoshida, Masaaki; Iida, Tsuyoshi; Mineo, Takehiro

    2014-01-01

    The electrochromic transition of a nickel borate thin film between colorless and brown was examined by means of in situ XAFS and UV/vis spectroscopy. The XAFS spectra showed that the average valence state of the nickel species in the film changed from +2.1 to +3.8 following the application of an electrode potential. Additionally, a broad peak at 700 nm was observed during in situ UV/vis absorption measurements on the application of a positive potential. These results suggest that the nickel borate film reversibly forms a NiOOH structure with a domain size of several nanometers during the electrochromic reaction. (author)

  9. A UV-Vis photoacoustic spectrophotometer.

    Science.gov (United States)

    Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D

    2014-06-17

    A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.

  10. Uranium determination by UV-Vis spectrophotometry in organic matrix

    International Nuclear Information System (INIS)

    Iwaki, Leonardo E.O.; Silva, Ieda S.; Oliveira, Luis C.

    2013-01-01

    Concentrations of uranium in the process samples provide essential information required for nuclear process monitoring. A large number of techniques have been developed to allow uranium determination, but each technique possesses some advantages and disadvantages and cannot be applied without difficulty to all samples. The ultraviolet visible spectrophotometry (UV-Vis) is widely method used in analytical industrial processes due to its simplicity, rapidity, low costs, low generation of analytical waste, easy calibration and operation. In this study, we describe a simple and fast quantification method to determination of a high amount of uranium in organic phase (TBP/kerosene) using UV-Vis spectrophotometry. The process sample was analyzed in UV-Vis and compared with inductively coupled plasma optical emission spectrometry (ICP OES) showing similar results in both methods. The statistical tests (Student-t and Fischer) showed that the both techniques they are equivalent. (author)

  11. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  12. In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry

    Science.gov (United States)

    Hao Liu; J. Y. Zhu; X. S. Chai

    2011-01-01

    This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...

  13. Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix

    Directory of Open Access Journals (Sweden)

    G. David

    2013-07-01

    Full Text Available During transport by advection, atmospheric nonspherical particles, such as volcanic ash, desert dust or sea-salt particles experience several chemical and physical processes, leading to a complex vertical atmospheric layering at remote sites where intrusion episodes occur. In this paper, a new methodology is proposed to analyse this complex vertical layering in the case of a two/three-component particle external mixtures. This methodology relies on an analysis of the spectral and polarization properties of the light backscattered by atmospheric particles. It is based on combining a sensitive and accurate UV-VIS polarization lidar experiment with T-matrix numerical simulations and air mass back trajectories. The Lyon UV-VIS polarization lidar is used to efficiently partition the particle mixture into its nonspherical components, while the T-matrix method is used for simulating the backscattering and depolarization properties of nonspherical volcanic ash, desert dust and sea-salt particles. It is shown that the particle mixtures' depolarization ratio δ p differs from the nonspherical particles' depolarization ratio δns due to the presence of spherical particles in the mixture. Hence, after identifying a tracer for nonspherical particles, particle backscattering coefficients specific to each nonspherical component can be retrieved in a two-component external mixture. For three-component mixtures, the spectral properties of light must in addition be exploited by using a dual-wavelength polarization lidar. Hence, for the first time, in a three-component external mixture, the nonsphericity of each particle is taken into account in a so-called 2β + 2δ formalism. Applications of this new methodology are then demonstrated in two case studies carried out in Lyon, France, related to the mixing of Eyjafjallajökull volcanic ash with sulfate particles (case of a two-component mixture and to the mixing of dust with sea-salt and water-soluble particles

  14. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.

    Science.gov (United States)

    Patel, Manu U M; Dominko, Robert

    2014-08-01

    Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  16. Structural Identification of 19 Purified Isomers of the OPV Acceptor Material bisPCBM by 13C NMR and UV-Vis Absorption Spectroscopy and High-Performance Liquid Chromatography.

    Science.gov (United States)

    Liu, Tong; Abrahams, Isaac; Dennis, T John S

    2018-04-26

    The molecular structures of 19 purified isomers of bis-phenyl-C 62 -butyric acid methyl ester were identified by a combination of 13 C NMR and UV-vis absorption spectroscopies and high-performance liquid chromatography (HPLC) retention time analysis. All 19 isomers are dicyclopropafullerenes (none are homofullerenes). There were seven isomers with C 1 molecular point-group symmetry, four with C s , six with C 2 , one with C 2 v , and one with C 2 h symmetry. The C 2 h , C 2 v , and all five nonequatorial C 1 isomers were unambiguously assigned to their respective HPLC fractions. For the other 12 isomers, the 13 C NMR and UV-vis spectra placed them in six groups of two same-symmetry isomers. On the basis of the widely spaced HPLC retention times of the two isomers within each of these six groups, and the empirical inverse correlation between retention time and addend spacing, each isomer was assigned to its corresponding HPLC fraction. In addition, the missing trans-1 isomer was found, purified, and characterized.

  17. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    Science.gov (United States)

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  18. Effects of gamma radiation on commercial food packaging films--study of changes in UV/VIS spectra

    International Nuclear Information System (INIS)

    Moura, E.A.B.; Ortiz, A.V.; Wiebeck, H.; Paula, A.B.A.; Silva, A.L.A.; Silva, L.G.A.

    2004-01-01

    The effects of gamma irradiation doses up to 100 kGy on the optical properties of different commercial packaging films were studied in this paper. The packaging films analyzed were: polyethylene 'LDPE', amide 6-amide 6.6 copolymer 'PA6-PA6.6' and poly(ethylene terephthalate) 'PET'. An investigation on film samples before and after irradiation was performed by UV/VIS spectroscopy. The results showed that, in the absorption spectra of irradiated LDPE and PA6-PA6.6 films, a red-shift in the wavelength of the UV cutoff and a marked reduction in % transmittance (at low wavelengths) occur with increasing radiation dose. With respect to PET samples, no significant changes were observed in either light absorption or transmittance

  19. Mono- and bimetallic nanoparticles decorated KTaO3 photocatalysts with improved Vis and UV-Vis light activity

    Science.gov (United States)

    Krukowska, Anna; Trykowski, Grzegorz; Winiarski, Michal Jerzy; Klimczuk, Tomasz; Lisowski, Wojciech; Mikolajczyk, Alicja; Pinto, Henry P.; Zaleska-Medynska, Adriana

    2018-05-01

    Novel mono- and bimetallic nanoparticles (MNPs and BNPs) decorated surface of perovskite-type KTaO3 photocatalysts were successfully synthesized by hydrothermal reaction of KTaO3 followed by photodeposition of MNPs/BNPs. The effect of noble metal type (MNPs = Au, Ag, Pt, Pd, Rh, Ru or BNPs = Au/Pt, Ag/Pd, Rh/Ru), amount of metal precursor (0.5, 1.0, 1.5 or 2.0 wt%) as well as photoreduction method (simultaneous (both) or subsequent (seq) deposition of two metals) on the physicochemical and photocatalytic properties of MNPs- and BNPs-KTaO3 have been investigated. All as-prepared photocatalysts were subsequently characterized by UV-Vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) emission spectroscopy. The crystal structure was performed using visualization for electronic and structural analysis (VESTA). The photocatalytic activity under Vis light irradiation was estimated in phenol degradation in aqueous phase and toluene removal in gas phase, while under UV-Vis light irradiation was measured amount of H2 generation from formic acid solution. The absorption properties of O2 and H2O molecules on KTaO3(1 0 0) surface supported by Au or Au/Pt NPs was also investigated using density-functional theory (DFT). The experimental results show that, both MNPs-KTaO3 and BNPs-KTaO3 exhibit greatly enhanced pollutant decomposition efficiency under Vis light irradiation and highly improved H2 production under UV-Vis light irradiation compared with pristine KTaO3. MNPs deposition on KTaO3 surface effects by disperse metal particle size ranging from 11 nm (Ru NPs) to 112 nm (Au NPs). Simultaneous addition of Au/Pt precursors results in formation of agglomerated

  20. UV-vis spectral property of a multi-hydroxyl Schiff-base derivative and its colorimetric response to some special metal ions.

    Science.gov (United States)

    Xing, Lin; Zheng, Xiaoyu; Sun, Wenyu; Yuan, Hua; Hu, Lei; Yan, Zhengquan

    2018-06-05

    A multi-hydroxyl Schiff-base derivative, N-2'-hydroxyl-1'-naphthyl methylene-2-amino phenol (HNMAP), was synthesized and characterized by FTIR, 1 H NMR and UV-vis spectroscopy. It was noted to find there was great effect for solvent and pH on the UV-vis spectroscopy of HNMAP. Especially, some metal ions could make its UV-vis spectra changed regularly with different time-resolved effects. For example, a real-time and multi-wavelength response to Fe 2+ at 520 nm, 466 nm and 447 nm and a quite slow one about 26 min to Fe 3+ at 447 nm and 466 nm, respectively. Under the optimized conditions, the changes in the corresponding absorption intensities at above wavelengths were in proportion to c Fe 2+ or c Fe 3+ during respectively partitioned linear ranges, which realized to quantitatively detect Fe 2+ or Fe 3+ with a large linear range more than two orders of magnitude. A 1:1 complex mode for HNMAP-Fe 2+ and 1:2 for HNMAP-Fe 3+ were proposed from UV-vis spectral titration and Job's plot. HNMAP would be a potential sensor for colorimetric detection of Fe 2+ and Fe 3+ in practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. On the role of visible radiation in ozone profile retrieval from nadir UV/VIS satellite measurements: An experiment with neural network algorithms inverting SCIAMACHY data

    International Nuclear Information System (INIS)

    Sellitto, P.; Di Noia, A.; Del Frate, F.; Burini, A.; Casadio, S.; Solimini, D.

    2012-01-01

    Theoretical evidence has been given on the role of visible (VIS) radiation in enhancing the accuracy of ozone retrievals from satellite data, especially in the troposphere. However, at present, VIS is not being systematically used together with ultraviolet (UV) measurements, even when possible with one single instrument, e.g., the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY). Reasons mainly reside in the defective performance of optimal estimation and regularization algorithms caused by inaccurate modeling of VIS interaction with aerosols or clouds, as well as in inconsistent intercalibration between UV and VIS measurements. Here we intend to discuss the role of VIS radiation when it feeds a retrieval algorithm based on Neural Networks (NNs) that does not need a forward radiative transfer model and is robust with respect to calibration errors. The NN we designed was trained with a set of ozonesondes (OSs) data and tested over an independent set of OS measurements. We compared the ozone concentration profiles retrieved from UV-only with those retrieved from UV plus VIS nadir data taken by SCIAMACHY. We found that VIS radiation was able to yield more than 10% increase of accuracy and to substantially reduce biases of retrieved profiles at tropospheric levels.

  2. The Catalytic Conversion of Thiophenes over Large H-ZSM-5 Crystals: An X-Ray, UV/Vis, and Fluorescence Microspectroscopic Study

    NARCIS (Netherlands)

    Kox, M.H.F.; Mijovilovich, A.E.; S ättler, J.J.H.B.; Stavitski, I.; Weckhuysen, B.M.

    2013-01-01

    X-ray absorption, UV/Vis, and fluorescence microspectroscopy have been used to characterize the catalytic conversion of thiophene derivatives within the micropores of an individual H-ZSM-5 zeolite crystal. Space-resolved information into the Si/ Al ratios and sulfur content was provided by X-ray

  3. Identification of Intermediates in Zeolite-Catalyzed Reactions Using In-situ UV/Vis Micro- Spectroscopy and a Complementary Set of Molecular Simulations

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Qian, Q.|info:eu-repo/dai/nl/34138609X; De Meyer, T.; De Wispelaere, K.; De Sterck, B.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Waroquier, M.; Van Speybroeck, V.

    2013-01-01

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-toolefins (MTO) process. In situ UV/Vis microscopy

  4. Outlier detection in UV/Vis spectrophotometric data

    NARCIS (Netherlands)

    Lepot, M.J.; Aubin, Jean Baptiste; Clemens, F.H.L.R.; Mašić, Alma

    2017-01-01

    UV/Vis spectrophotometers have been used to monitor water quality since the early 2000s. Calibration of these devices requires sampling campaigns to elaborate relations between recorded spectra and measured concentrations. In order to build robust calibration data sets, several spectra must be

  5. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    Science.gov (United States)

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  6. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Science.gov (United States)

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  7. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Directory of Open Access Journals (Sweden)

    Weirong Zhao

    Full Text Available BACKGROUND PURPOSE: Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. METHODS: Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, UV-vis diffuse reflectance spectroscopy (DRS, photoluminescence spectroscopy (PL, and photoelectrochemical characterizations. RESULTS: DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2. This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. CONCLUSION: Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of

  8. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  9. The Structure of p-Aminobenzoic Acid in Water: Studies Combining UV-Vis, NEXAFS and RIXS Spectroscopies

    International Nuclear Information System (INIS)

    Gainar, A; Stevens, J S; Schroeder, S L M; Suljoti, E; Xiao, J; Golnak, R; Aziz, E F

    2016-01-01

    NEXAFS-RIXS and home laboratory-based UV-Vis absorption spectroscopy are combined to examine the speciation and electronic structure of para -aminobenzoic acid (PABA) in aqueous solution as a function of pH. DFT and TD-DFT electronic structure calculations reproduce the experimental trends and provide a correlation between the experimental HOMO↔LUMO gap as well as the electronic transitions between molecular orbitals in the non-ionic, anionic and cationic forms of PABA. (paper)

  10. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.

    Science.gov (United States)

    Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng

    2017-11-07

    A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spectral Estimation of UV-Vis Absorbance Time Series for Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas-Nossa

    2017-05-01

    Full Text Available Context: Signals recorded as multivariate time series by UV-Vis absorbance captors installed in urban sewer systems, can be non-stationary, yielding complications in the analysis of water quality monitoring. This work proposes to perform spectral estimation using the Box-Cox transformation and differentiation in order to obtain stationary multivariate time series in a wide sense. Additionally, Principal Component Analysis (PCA is applied to reduce their dimensionality. Method: Three different UV-Vis absorbance time series for different Colombian locations were studied: (i El-Salitre Wastewater Treatment Plant (WWTP in Bogotá; (ii Gibraltar Pumping Station (GPS in Bogotá; and (iii San-Fernando WWTP in Itagüí. Each UV-Vis absorbance time series had equal sample number (5705. The esti-mation of the spectral power density is obtained using the average of modified periodograms with rectangular window and an overlap of 50%, with the 20 most important harmonics from the Discrete Fourier Transform (DFT and Inverse Fast Fourier Transform (IFFT. Results: Absorbance time series dimensionality reduction using PCA, resulted in 6, 8 and 7 principal components for each study site respectively, altogether explaining more than 97% of their variability. Values of differences below 30% for the UV range were obtained for the three study sites, while for the visible range the maximum differences obtained were: (i 35% for El-Salitre WWTP; (ii 61% for GPS; and (iii 75% for San-Fernando WWTP. Conclusions: The Box-Cox transformation and the differentiation process applied to the UV-Vis absorbance time series for the study sites (El-Salitre, GPS and San-Fernando, allowed to reduce variance and to eliminate ten-dency of the time series. A pre-processing of UV-Vis absorbance time series is recommended to detect and remove outliers and then apply the proposed process for spectral estimation. Language: Spanish.

  12. LC-MS of Metmyoglobin at pH = 2: Separation and Characterization of Apomyoglobin and Heme by ESI-MS and UV-Vis

    Science.gov (United States)

    Stynes, Helen Cleary; Layo, Araceli; Smith, Richard W.

    2004-01-01

    The protein species of apomyoglobin (apoMb) and heme are freed and segregated from the aqueous protein solution of metmyoglobin by liquid chromatography, and are distinguished by UV-Vis absorption or electrospray ionization mass spectrometry (ESI-MS). This is an ingenious and effective approach to characterize apomyoglobin and heme, while students…

  13. Monolayer alignment on azobenzene surfaces during UV light irradiation: Analysis of optical polarized absorption measurement results and theoretical treatment

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2006-01-01

    The influence of the charge separation during the trans-cis conformational change on the surface of azobenzene 6Az10PVA monolayer on the polar liquid-crystal monolayer film, such as 4-n-pentyl-4 ' -cyanobiphenyl(5CB), is investigated. The effective anchoring energy (in the Rapini-Papolar form) is phenomenologically described in the framework of the molecular model, which takes into account the interaction between the surface polarization and surface electric field, for number of conformational states of the boundary surface. It is shown, using the experimental data for the voltage across the 6Az10PVA+5CB film, provided by the surface-potential technique, that the charge separation during the conformational changing, caused by the UV irradiation, may lead to changing of the surface alignment of liquid-crystalline molecules. The influence of the photoisomerization process on the orientational order parameter S 2 (t) using the optical polarized absorption measurement is also investigated

  14. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  15. Size-selective precipitation in colloidal semiconductor nanocrystals of CdTe and CdSe: a study by UV-VIS spectroscopy; Precipitacao seletiva de tamanhos em nanoparticulas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Energy Technology Data Exchange (ETDEWEB)

    Viol, Livia Cristina de Souza; Silva, Fernanda Oliveira; Ferreira, Diego Lourenconi; Alves, Jose Luiz Aarestrup; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.b [Universidade Federal de Sao Joao del Rei, MG (Brazil). Dept. de Ciencias Naturais

    2011-07-01

    The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well. (author)

  16. The Classification of Ground Roasted Decaffeinated Coffee Using UV-VIS Spectroscopy and SIMCA Method

    Science.gov (United States)

    Yulia, M.; Asnaning, A. R.; Suhandy, D.

    2018-05-01

    In this work, an investigation on the classification between decaffeinated and non- decaffeinated coffee samples using UV-VIS spectroscopy and SIMCA method was investigated. Total 200 samples of ground roasted coffee were used (100 samples for decaffeinated coffee and 100 samples for non-decaffeinated coffee). After extraction and dilution, the spectra of coffee samples solution were acquired using a UV-VIS spectrometer (Genesys™ 10S UV-VIS, Thermo Scientific, USA) in the range of 190-1100 nm. The multivariate analyses of the spectra were performed using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The SIMCA model showed that the classification between decaffeinated and non-decaffeinated coffee samples was detected with 100% sensitivity and specificity.

  17. Assessing Pearl Quality Using Reflectance UV-Vis Spectroscopy: Does the Same Donor Produce Consistent Pearl Quality?

    Directory of Open Access Journals (Sweden)

    Paul C. Southgate

    2010-09-01

    Full Text Available Two groups of commercial quality (“acceptable” pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected

  18. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    Science.gov (United States)

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  19. Sequential capillary electrophoresis analysis using optically gated sample injection and UV/vis detection.

    Science.gov (United States)

    Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li

    2015-10-01

    We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    Science.gov (United States)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  1. Determination of the electronic structure and UV-Vis absorption properties of (Na2-xCux)Ta4O11 from first-principle calculations

    KAUST Repository

    Harb, Moussab; Masih, Dilshad; Ould-Chikh, Samy; Sautet, Philippe; Basset, Jean-Marie; Takanabe, Kazuhiro

    2013-01-01

    the optical transitions in these materials using the screened coulomb hybrid (HSE06) exchange-correlation formalism. The calculated density of states showed excellent agreement with UV-vis diffuse reflectance spectra predicting a significant red

  2. UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.

    Science.gov (United States)

    Simone, Giuseppina; Perozziello, Gerardo

    2011-03-01

    Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.

  3. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation

    Science.gov (United States)

    Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin

    2018-05-01

    A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.

  4. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Science.gov (United States)

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  5. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    Science.gov (United States)

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  6. Robotic UV-Vis apparatus for long-term characterization of drug release from nanochannels

    International Nuclear Information System (INIS)

    Geninatti, T; Grattoni, A; Small, E

    2014-01-01

    Reliable monitoring of the kinetics of molecular release from drug delivery devices is crucial for their therapeutic success. Commercially available UV-Vis spectrophotometers provide reliable quantification of analyte concentrations directly correlated to the absorbance of fluids. However, they are not suitable for long-term measurements requiring high frequency of sampling from a large number of replicates and continuous fluid mixing, all of which are necessary for evaluation of drug delivery devices. To address this need, we developed a novel robotic apparatus serially connected to a commercial UV-Vis spectrophotometer. The robotic apparatus enables us to automatically and reliably acquire long-term data for up to 48 samples with high frequency of measurements and independent magnetic stirring. We equipped the robotic apparatus with independent connectors that allowed us to apply an electric potential to each sample for electrokinetic studies. The apparatus repeatability and accuracy was demonstrated in comparison to a commercial UV-Vis spectrophotometer. The system was successfully employed to characterize the diffusion kinetics of acetone and doxorubicin through nanochannel membranes (nDS) designed for long-term drug delivery. Dendritic fullerene 1 was used to show that the robotic apparatus routes the electric potential to nanochannel membranes enabling us to investigate the actively controlled release of molecules. Our results demonstrate that the robotic apparatus could widely broaden the range of applications of UV-Vis spectrophotometry, especially in the case of large sample processing and for long-term diffusive and electrokinetic studies in drug delivery. (technical design note)

  7. Instrumental Analysis in the High School Classroom: UV-Vis Spectroscopy

    Science.gov (United States)

    Erhardt, Walt

    2007-01-01

    Note is presented on the standard lab from a second year chemistry course. The lab "Determining which of the Seven FD&C Food-Approved Dyes are Used in Making Green Skittles", familiarizes students with the operation of the CHEM2000 UV-Vis spectrophorometer.

  8. A comparative UV-vis-diffuse reflectance study on the location and interaction of cerium ions in Al- and Zr-pillared montmorillonite clays

    International Nuclear Information System (INIS)

    Rao, G. Ranga; Mishra, Braja Gopal

    2005-01-01

    The environment, location and interaction of the Ce 3+ ions in the micropores of Al- and Zr-pillared clays have been studied by UV-vis-diffuse reflectance spectroscopy (UV-vis-DRS). The DRS spectra show that the chemical environment of the Ce 3+ ions in cerium exchanged clay is different from that of the Al- and Zr-pillared clays. The Al-Ce pillared clays (Al-Ce-PM) show four distinct absorption bands at 224, 263, 294 and 342 nm in the UV region which are attributed to 4f → 5d interconfigurational transitions of Ce 3+ ions associated with alumina pillars. The O 2- → Ce 3+ charge transfer band observed at 263 nm for Ce-exchanged and Al-Ce-PM clays is blue shifted by 10 nm for Ce-Zr-pillared clays (Ce-Zr-PM) due to fully hydrated Ce 3+ ions. The Ce 3+ ions are incorporated in the Al- and Zr-pillars possibly as AlCeO 3 and Ce x Zr 1-x O 2 particles upon heat treatment

  9. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption.

    Science.gov (United States)

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-09-05

    For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Suh, Mu Yeol; Park, Kyoung Kyun; Park, Yeong Jae; Kim, Won Ho

    2006-01-01

    The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with NH 2 OH · HCl, and oxidized to Pu(IV) and Pu(VI) with NaNO 2 and HCIO 4 , respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with NH 2 OH · HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 nm and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-V is absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  11. UV-Vis optoelectronic properties of α-SnWO4: A comparative experimental and density functional theory based study

    KAUST Repository

    Ziani, Ahmed

    2015-09-03

    We report a combined experimental and theoretical study on the optoelectronic properties of α-SnWO4 for UV-Vis excitation. The experimentally measured values for thin films were systematically compared with high-accuracy density functional theory and density functional perturbation theory using the HSE06 functional. The α-SnWO4 material shows an indirect bandgap of 1.52 eV with high absorption coefficient in the visible-light range (>2 × 105 cm−1). The results show relatively high dielectric constant (>30) and weak diffusion properties (large effective masses) of excited carriers.

  12. UV-VIS Spectroscopy Applied to Stratospheric Chemistry, Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Numerous observations and modeling have shown with a very high degree of certainty that the man-made emissions of chlorofluorocarbons (CFC) and halons are responsible for the Antarctica ozone hole. It is also evident that the ozone layer of the Northern Hemisphere has suffered a certain decline over the last 10-15 years, possibly because of CFC and halons. 20-30% of the observed reduction is ascribed to coupled chlorine and bromine chemistry via a catalytic cycle resulting in the net conversion of 2O{sub 3} to 3O{sub 2}. But the details are not fully understood. The author plans to assemble a UV-VIS spectrometer for measuring the species OClO and BrO and to compare and discuss measured diurnal variations of OClO and BrO with model calculations. The use of Differential Optical Absorption Spectroscopy (DOAS) is discussed and some results from late 1995 presented. 6 refs., 2 figs.

  13. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    Science.gov (United States)

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at R Ni-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  14. Využití UV/VIS spektrofotometrie pro stanovení diklofenaku

    Czech Academy of Sciences Publication Activity Database

    Čapka, Lukáš; Zlámalová Gargošová, H.; Vávrová, M.; Urbánková, L.

    2013-01-01

    Roč. 107, č. 7 (2013), s. 550-554 ISSN 0009-2770 Institutional support: RVO:68081715 Keywords : diclofenac * UV-VIS spectrophotometry * environment * fate * pharmaceutical residues Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.196, year: 2013

  15. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    Science.gov (United States)

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  16. UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations

    International Nuclear Information System (INIS)

    Amthor, Stephan; Noller, Bastian; Lambert, Christoph

    2005-01-01

    The one-electron oxidation potential of 10 triarylamines 1-10 with all permutations of chloro-, methoxy- and methyl-substituents in the three para-positions were determined by cyclic voltammetry. The half wave potential E 1/2 (I) of the first oxidation wave correlates linearly with the number of chloro- and methoxy-substituents. A high long-term stability of the first oxidation wave for all triarylamines was observed by multi-cycle thin-layer measurements. AM1-CISD derived values of the absorption energies are in good agreement with the experiments but differ strongly for the oscillator strengths as well as for neutral compounds 1-10 and their corresponding mono radical cations. The small solvent dependence of the experimental UV/Vis spectra in CH 2 Cl 2 and MeCN reflects a minor charge transfer (CT) character of the electronic transitions of neutral and cationic compounds

  17. Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates

    Science.gov (United States)

    Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.

    2011-05-01

    Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically

  18. In situ UV-Vis spectroscopy in gas-liquid-solid systems

    NARCIS (Netherlands)

    Stemmet, C.P.; Schouten, J.C.; Nijhuis, T.A.

    2010-01-01

    This paper presents the use of ultraviolet-visible spectroscopy (UV-Vis) spectroscopy in a slurry of particles, a packed bubble column, and a trickle bed to assess the changes in the state of an active component on the surface of the solid support. As a model system, insoluble pH indicators

  19. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    Science.gov (United States)

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  20. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers.

    Science.gov (United States)

    Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni

    2016-03-21

    The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).

  1. The effect of different propolis harvest methods on its lead contents determined by ET AAS and UV-visS

    Energy Technology Data Exchange (ETDEWEB)

    Sales, A. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina)]. E-mail: amsales@fbqf.unt.edu.ar; Alvarez, A. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina); Areal, M. Rodriguez [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Maldonado, L. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina); Marchisio, P. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Rodriguez, M. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Bedascarrasbure, E. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina)

    2006-10-11

    Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.

  2. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    Science.gov (United States)

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  3. Solvent effect in implicit/explicit model on FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra, linear, second- and third-nonlinear optical parameters of 2-(trifluoromethyl)benzoic acid: Experimental and computational study

    Science.gov (United States)

    Avcı, Davut; Altürk, Sümeyye; Tamer, Ömer; Kuşbazoğlu, Mustafa; Atalay, Yusuf

    2017-09-01

    FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra for 2-(trifluoromethyl)benzoic acid (2-TFMBA) were recorded. DFT//B3LYP/6-31++G(d,p) calculations were used to determine the optimized molecular geometry, vibrational frequencies, 1H, 13C and 19F GIAO-NMR chemical shifts of 2-TFMBA. The detailed assignments of vibrational frequencies were carried out on the basis of potential energy distribution (PED) by using VEDA program. TD-DFT/B3LYP/6-31++G(d,p) calculations with the PCM (polarizable continuum model) in ethanol and DMSO solvents based on implicit/explicit model and gas phase in the excited state were employed to investigate UV-vis absorption and fluorescence emission wavelengths. The UV-vis and emission spectra were given in ethanol and DMSO solvents, and the major contributions to the electronic transitions were obtained. In addition, the NLO parameters (β, γ and χ(3)) and frontier molecular orbital energies of 2-TFMBA were calculated by using B3LYP/6-31++G(d,p) level. The NLO parameters of 2-TFMBA were compared with that of para-Nitroaniline (pNA) and urea which are the typical NLO materials. The refractive index (n) is calculated by using the Lorentz-Lorenz equation to observe polarization behavior of 2-TFMBA in DMSO and ethanol solvents. In order to investigate intramolecular and hydrogen bonding interactions, NBO calculations were also performed by the same level. To sum up, considering the well-known biological role, photochemical properties of 2-TFMBA were discussed.

  4. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    Science.gov (United States)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  5. The Fly Sensitizing Pigment Enhances UV Spectral Sensitivity While Preventing Polarization-Induced Artifacts

    Directory of Open Access Journals (Sweden)

    Marko Ilić

    2018-02-01

    Full Text Available Microvillar photoreceptors are intrinsically capable of detecting the orientation of e-vector of linearly polarized light. They provide most invertebrates with an additional sensory channel to detect important features of their visual environment. However, polarization sensitivity (PS of photoreceptors may lead to the detection of polarization-induced false colors and intensity contrasts. Most insect photoreceptors are thus adapted to have minimal PS. Flies have twisted rhabdomeres with microvilli rotated along the length of the ommatidia to reduce PS. The additional UV-absorbing sensitizing pigment on their opsin minimizes PS in the ultraviolet. We recorded voltage from Drosophila photoreceptors R1–6 to measure the spectral dependence of PS and found that PS in the UV is invariably negligible but can be substantial above 400 nm. Using modeling, we demonstrate that in R1–6 without the sensitizing pigment, PS in the UV (PSUV would exceed PS in the visible part of the spectrum (PSVIS by a factor PSUV/PSVIS = 1.2–1.8, as lower absorption of Rh1 rhodopsin reduces self-screening. We use polarimetric imaging of objects relevant to fly polarization vision to show that their degree of polarization outdoors is highest in the short-wavelength part of the spectrum. Thus, under natural illumination, the sensitizing pigment in R1–6 renders even those cells with high PS in the visible part unsuitable for proper polarization vision. We assume that fly ventral polarization vision can be mediated by R7 alone, with R1–6 serving as an unpolarized reference channel.

  6. The Indigo Molecule Revisited Again: Assessment of the Minnesota Family of Density Functionals for the Prediction of Its Maximum Absorption Wavelengths in Various Solvents

    Directory of Open Access Journals (Sweden)

    Francisco Cervantes-Navarro

    2013-01-01

    Full Text Available The Minnesota family of density functionals (M05, M05-2X, M06, M06L, M06-2X, and M06-HF were evaluated for the calculation of the UV-Vis spectra of the indigo molecule in solvents of different polarities using time-dependent density functional theory (TD-DFT and the polarized continuum model (PCM. The maximum absorption wavelengths predicted for each functional were compared with the known experimental results.

  7. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    Science.gov (United States)

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  8. Diagnostic spectroscopic and computer-aided evaluation of malignancy from UV/VIS spectra of clear pleural effusions

    Science.gov (United States)

    Jevtić, Dubravka R.; Avramov Ivić, Milka L.; Reljin, Irini S.; Reljin, Branimir D.; Plavec, Goran I.; Petrović, Slobodan D.; Mijin, Dušan Ž.

    2014-06-01

    The automated, computer-aided method for differentiation and classification of malignant (M) from benign (B) cases, by analyzing the UV/VIS spectra of pleural effusions is described. It was shown that by two independent objective features, the maximum of Katz fractal dimension (KFDmax) and the area under normalized UV/VIS absorbance curve (Area), highly reliable M-B classification is possible. In the Area-KFDmax space M and B samples are linearly separable permitting thus the use of linear support vector machine as a classification tool. By analyzing 104 samples of UV/VIS spectra of pleural effusions (88 M and 16 B) collected from patients at the Clinic for Lung Diseases and Tuberculosis, Military Medical Academy in Belgrade, the accuracy of 95.45% for M cases and 100% for B cases are obtained by using the proposed method. It was shown that by applying some modifications, which are suggested in the paper, the accuracy of 100% for M cases can be reached.

  9. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing

    Science.gov (United States)

    Dekemper, Emmanuel; Fussen, Didier; Van Opstal, Bert; Vanhamel, Jurgen; Pieroux, Didier; Vanhellemont, Filip; Mateshvili, Nina; Franssens, Ghislain; Voloshinov, Vitaly; Janssen, Christof; Elandaloussi, Hadj

    2014-10-01

    Since the recent losses of several atmospheric instruments with good vertical sampling capabilities (SAGE II, SAGE III, GOMOS, SCIAMACHY,. . . ), the scientific community is left with very few sounders delivering concentration pro les of key atmospheric species for understanding atmospheric processes and monitoring the radiative balance of the Earth. The situation is so critical that at the horizon 2020, less than five such instruments will be on duty (most probably only 2 or 3), whereas their number topped at more than 15 in the years 2000. In parallel, recent inter-comparison exercises among the climate chemistry models (CCM) and instrument datasets have shown large differences in vertical distribution of constituents (SPARC CCMVal and Data Initiative), stressing the need for more vertically-resolved and accurate data at all latitudes. In this frame, the Belgian Institute for Space Aeronomy (IASB-BIRA) proposed a gap-filler small mission called ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere), which is currently in preliminary design phase (phase B according to ESA standards). Taking advantage of the good performances of the PROBA platform (PRoject for On-Board Autonomy) in terms of pointing precision and accuracy, on-board processing ressources, and agility, the ALTIUS concept relies on a hyperspectral imager observing limb-scattered radiance and solar/stellar occultations every orbit. The objective is twofold: the imaging feature allows to better assess the tangent height of the sounded air masses (through easier star tracker information validation by scene details recognition), while its spectral capabilities will be good enough to exploit the characteristic signatures of many molecular absorption cross-sections (O3, NO2, CH4, H2O, aerosols,...). The payload will be divided in three independent optical channels, associated to separated spectral ranges (UV: 250- 450 nm, VIS: 440-800 nm, NIR: 900-1800 nm). This approach also

  10. UV-Vis as quantification tool for solubilized lignin following a single-shot steam process.

    Science.gov (United States)

    Lee, Roland A; Bédard, Charles; Berberi, Véronique; Beauchet, Romain; Lavoie, Jean-Michel

    2013-09-01

    In this short communication, UV/Vis was used as an analytical tool for the quantification of lignin concentrations in aqueous mediums. A significant correlation was determined between absorbance and concentration of lignin in solution. For this study, lignin was produced from different types of biomasses (willow, aspen, softwood, canary grass and hemp) using steam processes. Quantification was performed at 212, 225, 237, 270, 280 and 287 nm. UV-Vis quantification of lignin was found suitable for different types of biomass making this a timesaving analytical system that could lead to uses as Process Analytical Tool (PAT) in biorefineries utilizing steam processes or comparable approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids

    Directory of Open Access Journals (Sweden)

    Emilia Tomaszewska

    2013-01-01

    Full Text Available Dynamic light scattering is a method that depends on the interaction of light with particles. This method can be used for measurements of narrow particle size distributions especially in the range of 2–500 nm. Sample polydispersity can distort the results, and we could not see the real populations of particles because big particles presented in the sample can screen smaller ones. Although the theory and mathematical basics of DLS technique are already well known, little has been done to determine its limits experimentally. The size and size distribution of artificially prepared polydisperse silver nanoparticles (NPs colloids were studied using dynamic light scattering (DLS and ultraviolet-visible (UV-Vis spectroscopy. Polydisperse colloids were prepared based on the mixture of chemically synthesized monodisperse colloids well characterized by atomic force microscopy (AFM, transmission electron microscopy (TEM, DLS, and UV-Vis spectroscopy. Analysis of the DLS results obtained for polydisperse colloids reveals that several percent of the volume content of bigger NPs could screen completely the presence of smaller ones. The presented results could be extremely important from nanoparticles metrology point of view and should help to understand experimental data especially for the one who works with DLS and/or UV-Vis only.

  13. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review.

    Science.gov (United States)

    Begum, Robina; Farooqi, Zahoor H; Naseem, Khalida; Ali, Faisal; Batool, Madeeha; Xiao, Jianliang; Irfan, Ahmad

    2018-11-02

    Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.

  14. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    Science.gov (United States)

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  15. Simultaneous Determination of Caffeine and Chlorogenic Acids in Green Coffee by UV/Vis Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Navarra

    2017-01-01

    Full Text Available A simple method for the simultaneous determination of caffeine and chlorogenic acids content in green coffee was reported. The method was based on the use of UV/Vis absorption. It is relevant that the quantification of both caffeine and chlorogenic acids was performed without their preliminary chemical separation despite their spectral overlap in the range 250–350 nm. Green coffee was extracted with 70% ethanol aqueous solution; then the solution was analyzed by spectroscopy. Quantitative determination was obtained analytically through deconvolution of the absorption spectrum and by applying the Lambert-Beer law. The bands used for the deconvolution were the absorption bands of both caffeine and chlorogenic acids standards. The molar extinction coefficients for caffeine and chlorogenic acid in ethanol solution at 70% were calculated by using the chemical standards; the estimated values were ε(272 nm=12159±97 M−1 cm−1 for caffeine and ε(330 nm=27025±190 M−1 cm−1 for chlorogenic acids molecules, respectively. The estimate of concentration values was in agreement with the one obtained by High Performance Liquid Chromatography quantification. The method is fast and simple and allows us to realize routine controls during the coffee production. In addition, it could be applied on roasted coffee and espresso coffee.

  16. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy.

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František

    2018-01-16

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.

  17. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František

    2018-01-01

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.

  18. Correlation between short-range order, optical properties and UV-absorption ability in tellurate glasses; Poster M7

    Energy Technology Data Exchange (ETDEWEB)

    Burger, H; Tews, W; Vogel, W; Kozhukharov, V [Jena Univ. (Germany)

    1989-01-01

    Tellurate glasses, with as second components Al[sub 2]O[sub 3], PbO, PbF[sub 2], PbCl[sub 2], PbBr[sub 2], PbSO[sub 4], ZnO, B[sub 2]O[sub 3], P[sub 2]O[sub 5], Li[sub 2]O, Na[sub 2]O, K[sub 2]O, MgO and BaO as well as some glasses from ternary TeO[sub 2]-P[sub 2]O[sub 5]-RO systems (R is Pb, Ba and Zn ions), have been investigated. Transmittance spectra in UV and VIS region of some selected glasses have been measured. A correlation between optical properties and UV absorption edge of the transmittance have been done. Using p[sup 31]-NMR spectroscopy the structural changes on short-range level order are studied. A strong influence on the refraction and dispersion values as well as UV-absorption ability of the glasses is established. For p[sup 31] -NMR spectroscopy investigations of crystalline phosphotellurites and related phosphotellurite glasses the TeO[sub 2]-P[sub 2]O[sub 5B]aO ternary system have been chosen. (author).

  19. Using UV-VIS spectrophotometry for determining ecotoxicity of selected non-steroidal anti-inflammatory drugs

    Czech Academy of Sciences Publication Activity Database

    Čapka, Lukáš; Zlámalová Gargošová, H.; Vávrová, M.

    2015-01-01

    Roč. 24, 12C (2015), s. 4758-4762 ISSN 1018-4619 Institutional support: RVO:68081715 Keywords : ecotoxicity * NSAIDs * UV-VIS spectrophotometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.372, year: 2015

  20. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    NARCIS (Netherlands)

    Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.

  1. Polarization holographic optical recording of a new photochromic diarylethene

    Science.gov (United States)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  2. UV-Vis spectroscopy with chemometric data treatment. An option for on-line control in nuclear industry

    International Nuclear Information System (INIS)

    Kirsanov, Dmitry; Legin, Andrey

    2017-01-01

    Chemometrics can be very useful for the classical field of UV-Vis determination of metals in aqueous solutions. A conventional approach consisting of using selective bands in a univariate mode is often not applicable to the real-world samples from e.g. hydrometallurgical processes, because of overlapping signals, light scattering on foreign particles, gas bubble formation, etc. And this is where chemometrics can do a good job. This paper overviews certain contributions to the field of multivariate data processing of UV-Vis spectra for seemingly simple case of metal detection in aqueous solutions. Special attention is given to applications in nuclear technology field. (author)

  3. Photodetachment and UV-Vis spectral properties of Cl2rad -·nHO clusters: Extrapolation to bulk

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2008-03-01

    Vertical detachment energy (VDE) and UV-Vis spectra of Cl2rad -·nHO clusters ( n = 1-11) are reported based on first principle electronic structure calculations. VDE of the hydrated clusters are calculated following second order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311++G(d,p) set of basis function. The excess electron in these hydrated clusters is mainly localized over the solute Cl atoms. A linear relationship is obtained for VDE vs. ( n + 2.6) -1/3 and bulk VDE of Cl2rad - aqueous solution is calculated as 10.61 eV at CCSD(T) level of theory. UV-Vis spectra of these hydrated clusters are calculated applying CI with single electron (CIS) excitation procedure. Simulated UV-Vis spectra of Cl2rad -·10HO cluster is noted to be in excellent agreement with the reported spectra of Cl2rad - (aq) system, λmax for Cl2rad -·11HO system is calculated to be red shifted though.

  4. Changes in UV absorption of sunscreens after UV irradiation

    Science.gov (United States)

    Tarras-Wahlberg, N.; Stenhagen, G.; Larkö, O.; Rosén, A.; Wennberg, A.-M.; Wennerström, O.

    2000-03-01

    In the present investigation we have studied the change in the absorption spectrum of some photoactive organic species in sunscreens after UVA and UVB irradiation in a dose normally encountered during a full day in the sun. The absorbance of 2-ethylhexyl 4-methoxycinnamate was reduced significantly, while 3-(4-methylbenzyliden)camphor seemed to be rather stable. The benzophenones studied seemed to be relatively stable. In the case of 4-tert.butyl-4´-methoxy-dibenzoylmethane there was a rapid decrease in the UVA absorption leading to unsatisfactory protection in the UVA region. 4-Isopropyl-dibenzoylmethane also lost most of its UV protective capacity after irradiation with UVA. UVB seemed to have a minor effect on all the samples. The present study including gas chromatography and mass spectrometry analysis indicates that some of the photoactive organic species commonly used today in sunscreens are unstable following UV irradiation.

  5. UV absorption and photoisomerization of p-methoxycinnamate grafted silicone.

    Science.gov (United States)

    Pattanaargson, Supason; Hongchinnagorn, Nantawan; Hirunsupachot, Piyawan; Sritana-anant, Yongsak

    2004-01-01

    p-Methoxycinnamate moieties, UV-B-absorptive chromophores of the widely used UV-B filter, 2-ethylhexyl p-methoxycinnamate (OMC), were grafted onto the 7 mol% amino functionalized silicone polymer through amide linkages. Comparing with OMC, the resulting poly [3-(p-methoxycinnamido)(propyl)(methyl)-dimethyl] siloxane copolymer (CAS) showed less E to Z isomerization when exposed to UV-B light. The absorption profiles of the product showed the maximum absorption wavelength to be similar to that of OMC but with less sensitivity to the type of solvent. Poly (methylhydrosiloxane) grafted with 10 mol% p-methoxycinnamoyl moieties was prepared through hydrosilylations of 2-propenyl-p-methoxycinnamate, in which the resulting copolymer showed similar results to those of CAS.

  6. Precipitação seletiva de tamanhos em nanopartículas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Directory of Open Access Journals (Sweden)

    Lívia Cristina de Souza Viol

    2011-01-01

    Full Text Available The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis. It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well.

  7. Prophyrin identification by 3rd derivative UV/VIS spectroscopy

    International Nuclear Information System (INIS)

    Freeman, D.H.; Saint Martin, D.C.; Boreham, C.J.

    1992-01-01

    This patent describes the Soret band wavelength of nickel and vanadyl porphyrins λ Soret, which identifies etic DPEP/di-DPEP, propano and butano structure types. The approach is based upon routine diode array uv/vis spectra taken to their 3rd derivative. an interpolated zero crossing gives λ max within 0.1 nm. Accordingly, reference spectral properties of 27 well characterized metalloporphyrins were determined. When λSoret, λα and λβ and molecular mass data were combined, each of the DPEP and di-DPEP nickel complexes were distinct. In addition, λSoret was able to classify nickel etioporphyrins according to the number of beta hydrogens. To illustrate the many possible applications, two substances were isolated by HPLC from a Messel Shale extract based on known HPLC C18 retentions. Comparison of wavelength and mass between isolated and reference counterparts showed precise agreement. Thus uv/vic spectroscopy helps to classify porphyrin structure, and to facilitate identification by matching to reference data

  8. Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer.

    Science.gov (United States)

    Chaudhary, Anshu; Singh, Anoop; Verma, Prabhakar Kumar

    2014-12-01

    A rapid and sensitive ultraviolet-visible (UV-VIS) spectroscopic method was developed for the estimation of pyrimidine derivative 6-Bromo-3-(6-(2,6-dichlorophenyl)-2-(morpolinomethylamino) pyrimidine4-yl) -2H-chromen-2-one (BT10M) in bulk form. Pyrimidine derivative was monitored at 275 nm with UV detection, and there is no interference of diluents at 275 nm. The method was found to be linear in the range of 50 to 150 μg/ml. The accuracy and precision were determined and validated statistically. The method was validated as a guideline. The results showed that the proposed method is suitable for the accurate, precise, and rapid determination of pyrimidine derivative. Graphical Abstract Method development and validation of potent pyrimidine derivative by UV spectroscopy.

  9. Molecular Structure of Phenytoin: NMR, UV-Vis and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Raluca Luchian

    2015-12-01

    Full Text Available Due to the presence of the carbonyl and imide groups in the structure of 5,5-diphenylhydantoin (DPH, the possibility for this compound to be involved in hydrogen bonding intermolecular interactions is obvious. Even though such interactions are presumably responsible for the mechanism of action of this drug, however, to the best of our knowledge, the self-hydrogen bonding interactions between the DPH monomers have not been addressed till now. Furthermore, studies reporting on the spectroscopic characteristics of this molecule are scarcely reported in the literature. Here we report on the possible dimers of DPH, investigated by quantum chemical calculations at B3LYP/6-31+G(2d,2p level of theory. Twelve unique DPH dimers were structurally optimized in gas-phase, as well as in ethanol and DMSO and then were used to compute the population-averaged UV-Vis and NMR spectra using Boltzmann statistics. UV-Vis and NMR techniques were employed to assess experimentally the spectroscopical response of this compound. DFT calculations are also used to investigate the structural transformations between the solid and liquid phase, as well as for describing the electronic transitions and for the assignment of NMR spectra of DPH.

  10. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.

    Science.gov (United States)

    Seegerer, Andreas; Nitschke, Philipp; Gschwind, Ruth M

    2018-06-18

    Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    International Nuclear Information System (INIS)

    Juliasih, N; Buchari; Noviandri, I

    2017-01-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 – 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room. (paper)

  12. Evaluation of electrochemical, UV/VIS and Raman spectroelectrochemical detection of Naratriptan with screen-printed electrodes.

    Science.gov (United States)

    Hernández, Carla Navarro; Martín-Yerga, Daniel; González-García, María Begoña; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-02-01

    Naratriptan, active pharmaceutical ingredient with antimigraine activity was electrochemically detected in untreated screen-printed carbon electrodes (SPCEs). Cyclic voltammetry and differential pulse voltammetry were used to carry out quantitative analysis of this molecule (in a Britton-Robinson buffer solution at pH 3.0) through its irreversible oxidation (diffusion controlled) at a potential of +0.75V (vs. Ag pseudoreference electrode). Naratriptan oxidation product is an indole based dimer with a yellowish colour (maximum absorption at 320nm) so UV-VIS spectroelectrochemistry technique was used for the very first time as an in situ characterization and quantification technique for this molecule. A reflection configuration approach allowed its measurement over the untreated carbon based electrode. Finally, time resolved Raman Spectroelectrochemistry is used as a powerful technique to carry out qualitative and quantitative analysis of Naratriptan. Electrochemically treated silver screen-printed electrodes are shown as easy to use and cost-effective SERS substrates for the analysis of Naratriptan. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    Science.gov (United States)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  14. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy.

    Science.gov (United States)

    Ehrenreich, Philipp; Birkhold, Susanne T; Zimmermann, Eugen; Hu, Hao; Kim, Kwang-Dae; Weickert, Jonas; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-09-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spectra. We demonstrate, with P3HT as model system, that thickness dependent reflection behavior can lead to misinterpretation of UV/Vis spectra within the H-aggregate model. Values for the exciton bandwidth can deviate by a factor of two for polymer thicknesses below 150 nm. In contrast, photoluminescence spectra are found to be a reliable basis for characterization of polymer aggregation due to their weaker dependence on the wavelength dependent refractive index of the polymer. We demonstrate this by studying the influence of surface characteristics on polymer aggregation for spin-coated thin-films that are commonly used in organic and hybrid solar cells.

  15. Validation of quantitative analysis method for triamcinolone in ternary complexes by UV-Vis spectrophotometry

    Directory of Open Access Journals (Sweden)

    GEORGE DARLOS A. AQUINO

    2011-06-01

    Full Text Available Triamcinolone (TRI, a drug widely used in the treatment of ocular inflammatory diseases, is practically insoluble in water, which limits its use in eye drops. Cyclodextrins (CDs have been used to increase the solubility or dissolution rate of drugs. The purpose of the present study was to validate a UV-Vis spectrophotometric method for quantitative analysis of TRI in inclusion complexes with beta-cyclodextrin (B-CD associated with triethanolamine (TEA (ternary complex. The proposed analytical method was validated with respect to the parameters established by the Brazilian regulatory National Agency of Sanitary Monitoring (ANVISA. The analytical measurements of absorbance were made at 242nm, at room temperature, in a 1-cm path-length cuvette. The precision and accuracy studies were performed at five concentration levels (4, 8, 12, 18 and 20μg.mL-1. The B-CD associated with TEA did not provoke any alteration in the photochemical behavior of TRI. The results for the measured analytical parameters showed the success of the method. The standard curve was linear (r2 > 0.999 in the concentration range from 2 to 24 μg.mL-1. The method achieved good precision levels in the inter-day (relative standard deviation-RSD <3.4% and reproducibility (RSD <3.8% tests. The accuracy was about 80% and the pH changes introduced in the robustness study did not reveal any relevant interference at any of the studied concentrations. The experimental results demonstrate a simple, rapid and affordable UV-Vis spectrophotometric method that could be applied to the quantitation of TRI in this ternary complex. Keywords: Validation. Triamcinolone. Beta-cyclodextrin. UV- Vis spectrophotometry. Ternary complexes. RESUMO Validação de método de análise quantitativa para a triancinolona a partir de complexo ternário por espectrofotometria de UV-Vis A triancinolona (TRI é um fármaco amplamente utilizado no tratamento de doenças inflamatórias do globo ocular e

  16. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies.

    Science.gov (United States)

    Ishigaki, Mika; Meksiarun, Phiranuphon; Kitahama, Yasutaka; Zhang, Leilei; Hashimoto, Hideki; Genkawa, Takuma; Ozaki, Yukihiro

    2017-08-31

    The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν 1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν 1 Raman band against the S 0 → S 2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.

  17. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    Science.gov (United States)

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  18. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    Science.gov (United States)

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  20. Light absorption of organic aerosol from pyrolysis of corn stalk

    Science.gov (United States)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  1. Optical anisotropy of polyimide and polymethacrylate containing photocrosslinkable chalcone group in the side chain under irradiation of a linearly polarized UV light

    CERN Document Server

    Choi, D H

    2002-01-01

    Photocrosslinkable soluble polyimide and polymethacrylate compound were synthesized for studying the optically induced anisotropy of the thin films. Chalcone group was introduced into the side chain unit of two polymers. We observed a photodimerization behavior between the double bonds in the chalcone group and an optical anisotropy of these materials by irradiation of a linearly polarized UV light (LPL). Optical anisotropy of the thin film was also investigated by using polarized UV absorption spectroscopy.The dynamic property of optical anisotropy in photoreactive polyimide was compared to that in polymethacrylate containing chalcone group in the side chain.

  2. Preparation of re-usable photocatalytic filter for degradation of Malachite Green dye under UV and vis-irradiation

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Sn 4+ doped and undoped nano-TiO 2 particles easily dispersed in water were synthesized without using organic solvent by hydrothermal process. Nanostructure-TiO 2 based thin films were prepared on flyswatter substrate, made with stainless steel, by dip-coating technique. The structure, surface and optical properties of the particles and thin films were characterized by element analysis and XRD, BET, SEM and UV/vis/NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that the coated flyswatter has a very high photocatalytic performance for the photodegradation of Malachite Green irradiated with UV and vis-lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces are hydrophilic, and the doping of transition metal ion efficiently improved the degradation performance of TiO 2 -coated flyswatter. The photocatalytic performances determined at both irradiation conditions were very good and were almost similar to each other for Sn 4+ doped TiO 2 -coated flyswatter and it can be repeatedly used with increasing photocatalytic activity compared to undoped TiO 2 -coated flyswatter

  3. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B. [Department of Physics, Technion (Israel); Brosch, Noah [The Wise Observatory and School of Physics and Astronomy, Tel Aviv University (Israel); Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University (Netherlands)

    2017-02-20

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  4. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    International Nuclear Information System (INIS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-01-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  5. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    Science.gov (United States)

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-05-09

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  6. ANALISA FLAVONOID DARI EKSTRAK ETANOL 96% KULIT BUAH OKRA MERAH (Abelmoschus esculentus L. Moench SECARA KROMATOGRAFI LAPIS TIPIS DAN SPEKTROFOTOMETRI UV-VIS

    Directory of Open Access Journals (Sweden)

    Nia Lisnawati

    2016-03-01

    Full Text Available Has done research on flavonoids Analysis of Ethanol Extract 96% Fruit Leather Red Okra In Thin Layer Chromatography and Spectrophotometer UV-Vis. The purpose of this study was to analyze the content of the fruit skin red okra (Abelmoschus esculentus L. Moench by using the method of thin layer chromatography (TLC under UV light and spectrophotometry UV-Vis. Reference standards used in this study is the Standard Solution Routine Quercetin. The results of the research that has been done by the method of thin layer chromatography obtained Rf values of 0.81 and produces the color orange. And the results of research conducted by spectrophotometry UV-Vis method obtained 333,117 mg.L-1 or 421,629 mg.kg-1 or 0,84339 %. The conclusion from this study is that the 96% ethanol extract of the fruit leather red okra (Abelmoschus esculentus L. Moench positive (+ contains flavonoids with levels of 0,84339 %.

  7. A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and Vis radiations.

    Science.gov (United States)

    Doná, Giovanna; Dagostin, João Luiz Andreoti; Takashina, Thiago Atsushi; de Castilhos, Fernanda; Igarashi-Mafra, Luciana

    2018-05-01

    Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO 2 . In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L -1 at pH 9 and 500 mg L -1 TiO 2 . The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (k app ) equal to 0.0505 min -1 and an initial reaction rate of 1.5641 mg (L min) -1 . Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.

  8. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.

    Science.gov (United States)

    Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco

    2017-05-01

    Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L * a * b * and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool

  9. Polarity dependent photoisomerization of ether substituted azodyes: Synthesis and photoswitching behavior.

    Science.gov (United States)

    Gan, Siew Mei; Pearl, Zynia Fernandes; Yuvaraj, A R; Lutfor, M R; Gurumurthy, Hegde

    2015-10-05

    Two new ether substituted azodyes were synthesized and characterized by different spectral analysis such as (1)H NMR, (13)C NMR, FTIR and UV/Vis. Synthesized compounds were used to study the photoisomerization phenomenon by using UV-Vis spectro-photometer. Interesting polarity dependent effect is observed for the first time on these materials. Trans-cis (E-Z) and cis-trans (Z-E) conversion occurred within 41 s and 445 min, respectively for both the compounds in solutions. Polarizing optical microscopy studies revealed that there is no liquid crystal phase for both the compounds. The dramatic variation in the optical property is speculated to be the polarity of the chemical species. These derivatives are useful to fabricate optical data storage devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2010-05-01

    Full Text Available Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS. While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations.

    For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength.

    However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs, but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling.

    We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as

  11. Fuzzy clustering evaluation of the discrimination power of UV-Vis and (±) ESI-MS detection system in individual or coupled RPLC for characterization of Ginkgo Biloba standardized extracts.

    Science.gov (United States)

    Medvedovici, Andrei; Albu, Florin; Naşcu-Briciu, Rodica Domnica; Sârbu, Costel

    2014-02-01

    Discrimination power evaluation of UV-Vis and (±) electrospray ionization/mass spectrometric techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromatography (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC). Seventeen batches of Ginkgo Biloba commercially available standardized extracts from seven manufacturers were measured during experiments. All extracts were within the criteria of the official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European Pharmacopoeia. UV-Vis and (±) ESI-MS spectra of the bulk standardized extracts in methanol were acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or the total ion current (TIC) produced through (±) ESI-MS analysis. FHC was applied to raw, centered and scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the extracts and to the batch to batch variability. The discrimination power increases with the increase of the intrinsic selectivity of the spectral technique being used: UV-Vis

  12. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  13. Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions

    International Nuclear Information System (INIS)

    Szymanska-Chargot, M.; Gruszecka, A.; Smolira, A.; Bederski, K.; Gluch, K.; Cytawa, J.; Michalak, L.

    2009-01-01

    The synthesis of silver nanoparticles via UV irradiation of AgNO 3 solutions was controlled by using UV-vis absorption spectra and TEM (transmission electron microscope) images. The UV-vis absorption method is good enough for the general control of synthesis process, and TEM images give us information about size of formed species. For investigated solutions of silver nitrate in ethanol and water, we observed formation of large nanoparticles (size about 100 nm) and nanorods (100 nm in length). Moreover, there was effort to confirm evidence of formation of these particles by using TOF mass spectrometer. Due to laser desorption/ionization process there is only evidence of small silver nanoparticles Ag x , x ≤ 4 (clusters), and variety of silver compounds Ag x N y O z (x ≤ 5, y ≤ 2, z ≤ 3).

  14. Study of interaction between ionic liquids and orange G in aqueous solution with UV-vis spectroscopy and conductivity meter.

    Science.gov (United States)

    Zha, Jin-Ping; Zhu, Meng-Ting; Qin, Li; Wang, Xin-Hong

    2018-05-05

    The interactions between Orange G (OG) with three kinds of ionic liquid surfactants (C 10 mimBF 4 , C 12 mimBF 4 , C 16 mimBF 4 ) and CTAB were studied with UV-Vis spectra and conductivity measurements. The systematic changes in UV-Vis spectra with an increase of carbon-chain length may be observed in presence of OG. They correspond to CMC of every system, respectively, and the CMCs of four systems have exhibit the decrease of CMCs compared to pure surfactant. The binding constants are calculated from the results of conductivity measurements in the order of C 16 mimBF 4 >CTAB>C 12 mimBF 4 >C 10 mimBF 4 . Furthermore, system behaviors presented significant association of complex formation and micelles formation, i.e. the change in UV-Vis spectra before and after the formation of micelles in mixed systems. In addition, Fourier-transform infrared (FT-IR) spectroscopy and 1 H NMR analysis further confirmed that the complexes are formed by hydrogen bond and van der Waal force. These findings could provide scientific guidance for extraction and separation of dyes. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Study of interaction between ionic liquids and orange G in aqueous solution with UV-vis spectroscopy and conductivity meter

    Science.gov (United States)

    Zha, Jin-Ping; Zhu, Meng-Ting; Qin, Li; Wang, Xin-Hong

    2018-05-01

    The interactions between Orange G (OG) with three kinds of ionic liquid surfactants (C10mimBF4, C12mimBF4, C16mimBF4) and CTAB were studied with UV-Vis spectra and conductivity measurements. The systematic changes in UV-Vis spectra with an increase of carbon-chain length may be observed in presence of OG. They correspond to CMC of every system, respectively, and the CMCs of four systems have exhibit the decrease of CMCs compared to pure surfactant. The binding constants are calculated from the results of conductivity measurements in the order of C16mimBF4 > CTAB > C12mimBF4 > C10mimBF4. Furthermore, system behaviors presented significant association of complex formation and micelles formation, i.e. the change in UV-Vis spectra before and after the formation of micelles in mixed systems. In addition, Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR analysis further confirmed that the complexes are formed by hydrogen bond and van der Waal force. These findings could provide scientific guidance for extraction and separation of dyes.

  16. Low-reflective wire-grid polarizers with absorptive interference overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motofumi [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Takada, Akio; Yamada, Takatoshi; Hayasaka, Takashi; Sasaki, Kouji; Takahashi, Eiji; Kumagai, Seiji, E-mail: m-snki@me.kyoto-u.ac.jp [Devices Technology Department, Devices Division, Sony Chemical and Information Device Corporation, 3-4-1 Sakuragi, Tagajyo, Miyagi 985-0842 (Japan)

    2010-04-30

    Wire-grid (WG) polarizers with low reflectivity for visible light have been successfully developed. We theoretically consider the optical properties of simple sandwich structures of absorptive layer/transparent layer (gap layer)/high-reflective mirrors and found that it is possible to develop an antireflection (AR) coating owing to the interference along with the absorption in the absorptive layer. A wide variety of materials can be used for AR coatings by tuning the thicknesses of both the absorptive and the gap layers. This AR concept has been applied to reduce the reflectance of WG polarizers of Al. FeSi{sub 2} as an absorptive layer has been deposited by the glancing angle deposition technique immediately on the top of Al wires covered with a thin SiO{sub 2} layer as a gap layer. For the optimum combination of the thicknesses of FeSi{sub 2} and SiO{sub 2}, the reflectance becomes lower than a few per cent, independent of the polarization, whereas the transmission polarization properties remain good. Because low-reflective (LR) WG polarizers are completely composed of inorganic materials, they are useful for applications requiring high-temperature durability such as liquid crystal projection displays.

  17. Redox equilibrium of U4+/U3+ in molten NaCl-2CsCl by UV-Vis spectrophotometry and cyclic voltammetry

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Shirai, Osamu; Yamana, Hajimu; Sato, Nobuaki

    2005-01-01

    In order to investigate the redox equilibrium of uranium ions in molten NaCl-2CsCl, UV-Vis absorption spectro-photometry measurements were performed for U 4+ and U 3+ in molten NaCl-2CsCl at 923 K under simultaneous electrolytic control of their ratio. Prominent absorption bands at 480 and 570 nm were assigned to U 3+ , and their molar absorptivities were determined to be 1,260±42 and 963±32 mol -1 ·l·cm -1 respectively. From the dependence of the rest potential of the melt on the spectrophotometrically determined ratio of [U 4+ ]/[U 3+ ], the standard redox potential of the couple U 4+ /U 3+ at 923 K was determined to be -1.481±0.004 V vs. Cl 2 /Cl - . Cyclic voltammetry measurements were carried out for the couple U 4+ /U 3+ , and the results agreed well with this standard redox potential value. By the results of cyclic voltammetry, a temperature dependence of the standard redox potential was found to be -2.094+6.639 x 10 -4 T (T=823-923K). (author)

  18. Clustering of germanium atoms in silica glass responsible for the 3.1 eV emission band studied by optical absorption and X-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Muto, Shunsuke; Yuliati, Leny; Yoshida, Hisao; Inada, Yasuhiro

    2009-01-01

    Correlation between the 3.1 eV emission band and local atomic configuration was systematically examined for Ge + implanted silica glass by UV-vis optical absorption spectroscopy and X-ray absorption fine structure (XAFS) analysis. The 2.7 eV emission band, commonly observed in defective silica, was replaced by the sharp and intense 3.1 eV emission band for the Ge + fluence > 2 x 10 16 cm -2 , in which UV-vis absorption spectra suggested clustering of Ge atoms with the size ∼1 nm. XAFS spectroscopy indicated that the Ge atoms were under coordinated with oxygen atoms nearly at a neutral valence state on average. The present results are consistent with the previous ESR study but imply that the small Ge clusters rather than the O=Ge: complexes (point defects) are responsible for the 3.1 eV emission band.

  19. ESTIMACIÓN DEL EXPONENTE DE HURST Y DIMENSIÓN FRACTAL PARA EL ANÁLISIS DE SERIES DE TIEMPO DE ABSORBANCIA UV-VIS

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas Nossa

    2014-01-01

    Full Text Available El objetivo de este trabajo es estimar el exponente o parámetro de Hurst y la dimensión fractal para el análisis de series de tiempo de espectrometría UV-Vis, utilizando el análisis de componentes principales PCA (Principal Component Analysis. El análisis se realiza para comprender si las series de tiempo de absorbancia UV-Vis son persistentes, anti-persistentes, determinísticas o si son ruido blanco. Se utilizaron tres diferentes series de tiempo de absorbancia UV-Vis para tres diferentes sitios de estudio: (i Planta de tratamiento de aguas residuales Salitre (PTAR en Bogotá; (ii Estación elevadora de Gibraltar en Bogotá (EEG; y (iii Planta de tratamiento de aguas residuales San Fernando (PTAR en Itagüí (sur de Medellín. Cada una de las series de tiempo tiene igual número de muestras (5705. Se redujo la dimensionalidad de los espectros de absorbancia, dada su alta correlación, con PCA y se utilizó para cada sitio de estudio la primera componente principal. Esta componente principal explicó entre el 82% al 94% de la variabilidad para los tres sitios de estudio. Se determinaron los exponentes de Hurst: (i 0.8 para PTAR Salitre; (ii 0.85 para EEG; y (iii 0.89 para PTAR San Fernando. A partir de los valores de los exponentes de Hurst se determinan las dimensiones fractales para las tres series de tiempo de absorbancia UV-Vis en los tres sitios de estudio y se obtiene en promedio una dimensión fractal de 1153. Las tres series de tiempo de absorbancia UV-Vis son persistentes y con alta auto-similitud, dado que el exponente de Hurst es mayor a 0.5.

  20. Coating of gold nanoparticles for medical application: UV-VIS

    Science.gov (United States)

    Martínez Espinosa, Juan Carlos; Ramírez, Nayem Amtanus Chequer; Funes Oliva, Luis Enrique; Córdova Fraga, Teodoro; Bernal Alvarado, Jesús; Reyes Pablo, Aldelmo; Núñez, Anita Rosa Elvira

    2014-11-01

    The use of nanostructured materials has gained strength in recent years in the biomedical area; new applications such as the detection of components in living cells have been used in pharmaceutical area, specifically to study the interaction of various antitumor drugs in living tissues, the detection of genes that are closely related to some type of cancer, as well as the detections of protein biomarkers for diseases also have been studied in various research laboratories around of the world. In this work, we characterize the variation of the absorbance of gold nanoparticles (GNPs) coated with different concentration of Bovine Serum Albumin (BSA) protein. We use GNPS of 60 nm of the trademark-TED PELLA, the BSA protein trademark of Sigma Aldrich and based on that proposed protocol by Chithrani et al., 2009 with purposes to obtain an alternative model to determine the optimal stability of the nanoparticles coated with the protein. The colloidal solutions were prepared with BSA at different concentrations (0.25, 0.5, 0.75 and 1% M/V), and were centrifuged at 15,000 rpm for 90 minutes (centrifuge Model Z383K) and a constant temperature of 25 °C. All the spectra sets were obtained within the range from 400 to 700 nm using an UV-VIS spectrophotometer (Thermo Scientific Model 51118650). The results showed a R2 of 0.99 for an exponential curve correlation between the concentration of BSA, and the absorbance measured. We found at higher concentrations of BSA, there is a decrease in the intensity of the absorption spectra in the plasmon resonance. This preliminary model obtained can be used in the stabilization of gold nanoparticles with different proteins of biomedical interest in future experiments and support for functionalization of GNPs with specific membrane markers.

  1. Ultraviolet/visible and Fourier transform infrared spectroscopic investigations of organic–inorganic hybrid layers for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Präfke, Christiane, E-mail: christiane.praefke@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany); Schulz, Ulrike, E-mail: ulrike.schulz@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Kaiser, Norbert, E-mail: norbert.kaiser@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Tünnermann, Andreas, E-mail: andreas.tuennermann@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany)

    2013-04-01

    A study of vacuum-deposited organic–inorganic hybrid coatings for ultraviolet (UV) protection of polycarbonate is presented. For this purpose, UV-absorbing organic molecules were embedded in a silica matrix by thermal co-evaporation. Typical UV absorbers, namely a benzotriazole, a hydroxyphenyltriazine, and a cyanoacrylate, were used as organic materials. The hybrid layers were investigated by means of ultraviolet/visible (UV/VIS) and Fourier transform infrared spectroscopy (FTIR) concerning their UV/VIS absorption properties and the influence of the silica network on the organic molecules. The porosity and silica–organic interactions are discussed with reference to the infrared spectra. UV irradiation experiments were carried out to demonstrate the UV protection ability of the hybrid layers. Hybrid layers containing the hydroxyphenyltriazine compound showed the best results. - Highlights: ► Vacuum deposited organic–inorganic UV protective coatings for polycarbonate ► Thermal co-evaporation of organic UV absorbing compounds with silica ► Matrix materials and the absorber concentration influence the absorption behavior. ► The coatings on PC show improved UV stability under artificial irradiation. ► The hydroxyphenyltriazine–silica layer shows best UV protection results.

  2. The UV-VIS spectrophotometry applied to color and stability study in colored mortars

    Directory of Open Access Journals (Sweden)

    Alejandre, F. J.

    1999-06-01

    Full Text Available In the field of methodologies for color studying, a research of it has been done on colored mortars by applying uv-vis spectrophotometry, instrumental technique which can be used for solid materials works, and previously applied to building materials study. Results obtained show that the mentioned technique permits to evaluate quantitatively and qualitatively colors in an easy and objective way, besides nowadays advantages of the instrumental analysis: digital color register, computerized data processing, and precision and exactness increment in chromatic comparisons.

    Dentro de las metodologías existentes para el estudio del color, se ha realizado una investigación del mismo en morteros coloreados por medio de la espectrofotometría UV-VIS, técnica instrumental que es adaptable al trabajo con materiales sólidos, y que ha sido aplicada anteriormente en el estudio de diversos materiales de construcción. Los resultados obtenidos muestran cómo la citada técnica permite además de evaluar cualitativamente y cuantitativamente los colores de forma sencilla y objetiva, el disponer de las ventajas que conlleva actualmente el análisis instrumental: registro digital del color, tratamiento informatizado de datos y aumento de precisión y exactitud en las comparaciones cromáticas.

  3. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    Science.gov (United States)

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  4. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy.

    Science.gov (United States)

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-10-09

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.

  5. Inline UV-Vis spectroscopy to monitor and optimize cleaning-in-place (CIP) of whey filtration plants

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander; Ottosen, Niels; van der Berg, Franciscus Winfried J.

    2017-01-01

    used for every day. We investigated the capability of inline UV-Vis spectroscopy to elucidate the dynamics of CIP of membrane filtration plants as a gateway to control and optimize the process. For this investigation aged membranes that had been used for industrial ultrafiltration of whey were...

  6. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Study of the reaction between Uranium(III) and Lanthanide oxide by using the UV-VIS spectrophotometer

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Choi, Kwang-Soon; Jee, Kwang-Yong

    2006-01-01

    Recently, ionic melts have become attractive reaction media in many fields. Molten salt based electrochemical processes have been proposed as a promising method for future nuclear programs and more specifically for spent fuel processing. Molten alkaline chloride based melts are considered as a promising reaction media. For this, it is interesting to understand the chemical nature of the actinides and lanthanides in high-temperature melt. Some spectroscopy provides essential information on the exact nature of f-block elements LiCl-KCl melt system. The knowledge on the basic chemical properties of these lanthanide oxides and U(III) in molten salt media is essential for developing suitable processes. However, few studies have been reported until now on the interaction between U metal and lanthanide oxides in LiCl-KCl melt. So, we studied the interaction between U(III) and Ln(III) by using the UV-VIS spectra. UV-vis spectrometry is a strong analytical technique for characterizing chemical species and their behavior in molten salt

  8. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    International Nuclear Information System (INIS)

    Xue, L.C.; Wu, L.Q.; Li, S.Q.; Li, Z.Z.; Tang, G.D.; Qi, W.H.; Ge, X.S.; Ding, L.L.

    2016-01-01

    It is very important to determine electron transition energies (E_t_r) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν)"2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E_t_r) between the anions and cations, Fe"2"+ and Fe"3"+ at the (A) and [B] sites and Ni"2"+ at the [B] sites for the (A)[B]_2O_4 spinel ferrite samples Co_xNi_0_._7_−_xFe_2_._3O_4 (0.0≤x≤0.3), Cr_xNi_0_._7Fe_2_._3_−_xO_4 (0.0≤x≤0.3) and Fe_3O_4. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  9. Colloidal silver nanoparticles prepared by UV-light induced citrate reduction technique for the quantitative detection of uric acid

    Science.gov (United States)

    Maity, Anupam; Panda, Sovan Kumar

    2018-04-01

    Reddish-yellow color colloid consisting of silver nanoparticles (Ag NPs) has been synthesized by reducing aqueous AgNO3 solution by photo-induced citrate reduction technique under UV light. As prepared colloid exhibits single and intense plasmonic absorption peak in the violet region of the visible spectra with the peak centered at 405 nm. The NPs are fine and spherical with diameter ranging from 5 to 10 nm. These colloidal NPs have been used for the quantitative detection of uric acid by UV-VIS spectroscopy. A linear red shifting of the characteristics Plasmonic absorption peak of Ag NPs is observed with uric acid concentration. Uric acid can be detected by UV-VIS spectroscopy down to 5 nM limit using the prepared colloid.

  10. Matrix Optical Absorption in UV-MALDI MS.

    Science.gov (United States)

    Robinson, Kenneth N; Steven, Rory T; Bunch, Josephine

    2018-03-01

    In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10 -17 cm -2 was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.

  11. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    International Nuclear Information System (INIS)

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-01-01

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products

  12. Application of UV-Vis spectrophotometric and chemiluminescent methods for the evaluation of the antioxidant action of curcumin

    Czech Academy of Sciences Publication Activity Database

    Stanchev, Stancho; Pencheva, I.; Konstantinov, S.; Obreshkova, D.; Hadjimitova, V.

    2012-01-01

    Roč. 77, č. 8 (2012), s. 1063-1069 ISSN 0352-5139 Institutional research plan: CEZ:AV0Z40550506 Keywords : curcumin * antioxidant * UV-Vis spectrophotometry * DNA complexation * chemiluminescence Subject RIV: CC - Organic Chemistry Impact factor: 0.912, year: 2012

  13. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Following the Formation of Active Co(III) Sites in Cobalt Substituted Aluminophosphates Catalysts by In-Situ Combined UV-VIS/XAFS/XRD Technique

    International Nuclear Information System (INIS)

    Sankar, Gopinathan; Fiddy, Steven; Harvey, Ian; Hayama, Shusaku; Bushnell-Wye, Graham; Beale, Andrew M.

    2007-01-01

    Cobalt substituted aluminophosphates, CoAlPO-34 (Chabazite structure) and DAF-8 (Phillipsite structure) were investigated by in situ combined XRD/EXAFS/UV-VIS technique. In-situ combined XRD, Co K-edge EXAFS and UV-Vis measurements carried out during the calcination process reveal that CoAlPO-34 containing 10 wt percent cobalt is stable and the cobalt ions are converted from Co(II) in the as synthesised form to Co(III); DAF-8 containing about 25 percent cobalt is not stable and does not show change in oxidation state

  15. TiO_2/WO_3 photoactive bilayers in the UV-Vis light region

    International Nuclear Information System (INIS)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Katsarakis, N.; Vamvakaki, M.

    2017-01-01

    In this work, photoactive bilayered films consisting of anatase TiO_2 and monoclinic WO_3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO_3 precursor solution, when deposited as an overlying layer on TiO_2 by two annealing steps (∝76% methylene blue decolorization in 300 min of irradiation versus ∝59% in the case of a bare TiO_2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO_2 films with WO_3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination. (orig.)

  16. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    Science.gov (United States)

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  17. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications

    Energy Technology Data Exchange (ETDEWEB)

    Alden, D. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Guo, W.; Kaess, F.; Bryan, I.; Reddy, P.; Hernandez-Balderrama, Luis H.; Franke, A.; Collazo, R.; Sitar, Z. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kirste, R.; Mita, S. [Adroit Materials, Inc., 2054 Kildaire Farm Rd., Suite 205, Cary, North Carolina 27518 (United States); Troha, T.; Zgonik, M. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Bagal, A.; Chang, C.-H. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Hoffmann, A. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2016-06-27

    Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with a root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.

  18. In situ ESR/UV-vis-NIR and ATR-FTIR spectroelectrochemical studies on the p-doping of copolymers of 3-methylthiophene and 3-hexylthiophene.

    Science.gov (United States)

    Cházaro-Ruiz, Luis F; Kellenberger, Andrea; Dunsch, Lothar

    2009-02-26

    A combined spectroelectrochemical study by ESR/UV-vis-NIR as well as FTIR spectroscopy on the influence of the copolymer composition on the stabilization of charges upon electrochemical p-doping is presented. As compared to the parent homopolymers 3-hexylthiophene (3-HeTh) and 3-methylthiophene (3-MeTh) which seems to be irregular, FTIR studies of the copolymer of both monomers (copMeHeTh) point to a regioregular structure. The in situ ESR and UV-vis-NIR spectroelectrochemistry at higher doping levels of the polymeric materials proves bipolarons and polaron pairs as stable charged states in poly(3-hexylthiophene) as well as the copolymer copMeHeTh. During the p-doping of poly(3-methylthiophene) bipolarons are the dominating species at higher doping levels. It is demonstrated that only the simultaneous use of both the ESR and the UV-vis-NIR spectroscopy enables the differentiation of polarons (paramagnetic) and polaron pairs (diamagnetic) in a conducting polymer.

  19. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  20. Photocatalytic performance of Sn-doped and undoped TiO2 nanostructured thin films under UV and vis-lights

    International Nuclear Information System (INIS)

    Arpac, E.; Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, Nadir; Sayilkan, H.

    2007-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without solvent at 200 deg. C in 1 h. Nanostructure-TiO 2 based thin films have been prepared on glass substrate by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, SEM, BET and UV-vis-NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that (a) hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, (b) the coated surfaces have nearly super-hydrophilic properties and (c) the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film

  1. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  2. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    International Nuclear Information System (INIS)

    Ok, S.

    2017-01-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [es

  3. Estimation of water quality by UV/Vis spectrometry in the framework of treated wastewater reuse.

    Science.gov (United States)

    Carré, Erwan; Pérot, Jean; Jauzein, Vincent; Lin, Liming; Lopez-Ferber, Miguel

    2017-07-01

    The aim of this study is to investigate the potential of ultraviolet/visible (UV/Vis) spectrometry as a complementary method for routine monitoring of reclaimed water production. Robustness of the models and compliance of their sensitivity with current quality limits are investigated. The following indicators are studied: total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and nitrate. Partial least squares regression (PLSR) is used to find linear correlations between absorbances and indicators of interest. Artificial samples are made by simulating a sludge leak on the wastewater treatment plant and added to the original dataset, then divided into calibration and prediction datasets. The models are built on the calibration set, and then tested on the prediction set. The best models are developed with: PLSR for COD (R pred 2 = 0.80), TSS (R pred 2 = 0.86) and turbidity (R pred 2 = 0.96), and with a simple linear regression from absorbance at 208 nm (R pred 2 = 0.95) for nitrate concentration. The input of artificial data significantly enhances the robustness of the models. The sensitivity of the UV/Vis spectrometry monitoring system developed is compatible with quality requirements of reclaimed water production processes.

  4. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    Science.gov (United States)

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  5. Influence of uranyl dibutylphosphate on the UV/VIS spectrophotometric online monitoring of uranium in tributylphosphate/hydrocarbon solvent

    International Nuclear Information System (INIS)

    Creech, E.T.; Rutenberg, A.C.; Smithwick, R.W.; Seals, R.D.

    1984-01-01

    In the uranium recovery process at the Y-12 Plant uranium is recovered from aqueous uranyl solutions by extraction into a solvent consisting of 30% tributylphosphate (TBP) and 70% hydrocarbon solvent. Within this process the uranium is continuously monitored by a UV/VIS absorbance measurement of the uranyl/tributylphosphate complex in the organic phase. The uranium is then further extracted from the organic phase to a final water phase. Dibutylphosphate (DBP), which is a decomposition product of TBP, builds up in the organic solvent. A very strong complex of uranyl/dibutylphosphate is formed which cannot be extracted into the aqueous phase. Prior to this work the uranyl/dibutylphosphate complex absorbance was assumed to be the same as the uranyl tributylphosphate complex. To determine the effect of the presence of uranyl/dibutylphosphate on the continuous UV/VIS monitor required (a) the purification of commercial dibutylphosphate, (b) the synthesis, and (c) the characterization of uranyl/dibutylphosphate

  6. The near-UV absorber OSSO and its isomers.

    Science.gov (United States)

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  7. Upper limits for absorption by water vapor in the near-UV

    International Nuclear Information System (INIS)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-01-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10 −26 cm 2 molecule −1 at our instrument resolution. For a typical, indicative slant column density of 4×10 23 cm 2 , we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths. - Highlights: • The absorption cross section of water vapor was studied from 325 to 420 nm. • The upper limit was 5×10 −26 cm 2 molecule −1 above 340 nm at 0.5 nm resolution. • Our result contradicts a recent report of appreciable absorption by water vapor.

  8. Styrene oligomerization as a molecular probe reaction for zeolite acidity: a UV-Vis spectroscopy and DFT study

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Pidko, E.A.; Groot, de J.M.; Stavitski, E.; Santen, van R.A.; Weckhuysen, B.M.

    2010-01-01

    A series of H-ZSM-5 crystallites with different framework Si/Al ratios was studied by analyzing the kinetics and reaction mechanism of the oligomerization of 4-fluorostyrene as molecular probe reaction for Brønsted acidity. The formation of carbocationic species was followed by UV-Vis spectroscopy.

  9. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis.

    Science.gov (United States)

    Sikder, Mithun; Lead, Jamie R; Chandler, G Thomas; Baalousha, Mohammed

    2018-03-15

    Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λ max ) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λ max ) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL -1 ) and in natural seawater at particle concentration of 100μgL -1 . These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP

  10. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    Science.gov (United States)

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure.

    Science.gov (United States)

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou

    2017-03-01

    ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.

  12. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  13. Ultrafast Infrared and UV-vis Studies of the Photochemistry of Methoxycarbonylphenyl Azides in Solution

    OpenAIRE

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S. V.; Hadad, Christopher M.; Platz, Matthew S.

    2012-01-01

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a) and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitre...

  14. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  15. The structural defects and UV-VIS spectral characterization of TiO2 particles doped in the lattice with Cr3+ cations

    International Nuclear Information System (INIS)

    Liu, Z.L.; Cui, Z.L.; Zhang, Z.K.

    2005-01-01

    Titania nanoparticles doped with Cr 3+ (2% relative to molar quantity of titania) were prepared and examined by EDS, HRTEM, XRD, and UV-VIS analysis. HRTEM images showed the detailed atomic arrays and vacancy defects of the doped Titania nanocrystals and revealed that the implanted Cr element existed in titania mainly as Cr 3+ ions which located at the lattice positions of Ti 4+ ions. Compared with pure titania, the UV-VIS spectra of the Cr 3+ doped titania show significantly increased absorbance in visible light region. This indicated that the presence of the Cr 3+ ions affected the lattice structure of titania nanocrystals and plays an reformative role in spectral feature of titania

  16. Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection.

    Science.gov (United States)

    Poorahong, Sujittra; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2013-01-01

    A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83-102% for this new method compared with 73-107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.

  17. UV-vis Imaging of Piroxicam Supersaturation, Precipitation, and Dissolution in a Flow-Through Setup.

    Science.gov (United States)

    Sun, Yu; Chapman, Alex; Larsen, Susan W; Jensen, Henrik; Petersen, Nickolaj J; Goodall, David M; Østergaard, Jesper

    2018-06-05

    Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation. In the present study, a multimodal approach integrating UV-vis imaging, light microscopy, and Raman spectroscopy was developed for characterization of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. A solution of piroxicam dissolved in 1-methyl-2-pyrrolidinone was injected into a flowing aqueous environment (pH 7.4), causing piroxicam to precipitate. Imaging at 405 and 280 nm monitored piroxicam concentration distributions during precipitation and revealed different supersaturation levels dependent on the initial concentration of the piroxicam solution. The combination with imaging at 525 nm, light microscopy, and Raman spectroscopy measurements demonstrated concentration-dependent precipitation and the formation, growth, and dissolution of individual particles. Results emphasize the importance of the specific hydrodynamic conditions on the piroxicam precipitation. The approach used may facilitate comprehensive understanding of drug precipitation and dissolution processes and may be developed further into a basic tool for formulation screening and development.

  18. Infrared and UV-visible absorption measurement at Syowa Station (abstract)

    OpenAIRE

    Murata,Isao; Kita,Kazuyuki; Iwagami,Naomoto; Ogawa ,Toshihiro

    1993-01-01

    Vertical column contents of some trace gases were observed by solar infrared and UV-visible absorption techniques at Syowa Station, to study the dynamics and chemistry of Antarctic ozone. HCl, HF, N_2O, OCS, CO and C_2H_6 column contents were measured by infrared absorption spectroscopy in the 3-5

  19. FORMULA ESTABLISHMENT OF COLORLESS Pb(II COMPLEX WITH N-BENZOYL-N-PHENYL HYDROXYLAMINE (BPA USING ATOMIC ABSORPTION SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Dhananjay B Sarode

    2012-02-01

    Full Text Available A new method for determination of stoichiometry of colorless complexes by using atomic absorption spectrophotometric technique in continuous variation method and slope ratio method was described here. This method can be used in same manner as that of mole ratio method and slope ratio method. In this method atomic absorption spectroscopy was used instead of UV-Vis spectrophotometry. Atomic absorption spectrophotometric technique is superior to UV-Vis spectrophotometry as it can be applied to colorless soluble complexes. Pb(II and n-benzoyl-n-phenyl hydroxylamine react to form colorless complex at pH 6.5, which can be easily determined by this method. It was found that Pb(II forms 1:2 complex with n-benzoyl-n-phenyl hydroxylamine and is quantitatively extracted back to aqueous solution for AAS analysis.

  20. Combined operando Raman/UV-Vis-NIR spectroscopy as a tool to study supported metal oxide catalysts at work

    NARCIS (Netherlands)

    Tinnemans, Stanislaus Josephus

    2006-01-01

    A novel set-up has been developed in which two complementary spectroscopic techniques, namely operando Raman and UV-Vis-NIR spectroscopy, are combined. With this set-up it is possible to characterize catalytic materials under reaction conditions (high temperature, normal pressure) and in this way on

  1. Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy

    Science.gov (United States)

    Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.

    2018-05-01

    This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.

  2. Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV-Vis Spectroscopy.

    Science.gov (United States)

    Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron

    2018-04-04

    Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

  3. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  4. Simultaneous FTIR/UV-Vis study of reactions over metallo-zeolites. Approach to quantitative in situ studies

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk; Jíša, Kamil; Jirglová, Hana; Bernauer, B.

    2007-01-01

    Roč. 126, 1-2 (2007), s. 73-80 ISSN 0920-5861 R&D Projects: GA AV ČR 1ET400400413; GA ČR GA104/06/1254; GA ČR GA203/05/2309 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallo-zeolites * FTIR/UV-Vis * adsorption * modeling * in-situ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.764, year: 2007

  5. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests.

    Science.gov (United States)

    Bolea, E; Jiménez-Lamana, J; Laborda, F; Abad-Álvaro, I; Bladé, C; Arola, L; Castillo, J R

    2014-03-07

    A methodology based on Asymmetric Flow Field-Flow Fractionation (AsFlFFF) coupled with UV-Vis absorption spectrometry and ICP mass spectrometry (ICPMS) has been developed and applied to the study of silver nanoparticles (AgNPs) and dissolved species of silver in culture media and cells used in cytotoxicity tests. The effect of a nano-silver based product (protein stabilized silver nanoparticles ca. 15 nm average diameter) on human hepatoma (HepG2) cell viability has been studied. UV-Vis absorption spectrometry provided information about the nature (organic vs. nanoparticle) of the eluted species, whereas the silver was monitored by ICPMS. A shift towards larger hydrodynamic diameters was observed in the AgNPs after a 24 hour incubation period in the culture medium, which suggests a "protein corona" effect. Silver(I) associated with proteins present in the culture medium has also been detected, as a consequence of the oxidation process experimented by the AgNPs. However, the Ag(I) released into the culture medium did not justify the toxicity levels observed. AgNPs associated with the cultured HepG2 cells were also identified by AsFlFFF, after applying a solubilisation process based on the use of tetramethylammonium hydroxide (TMAH) and Triton X-100. These results have been confirmed by transmission electronic microscopy (TEM) analysis of the fractions collected from the AsFlFFF. The effect of AgNPs on HepG2 cells has been compared to that caused by silver(I) as AgNO3 under the same conditions. The determination of the total content of silver in the cells confirms that a much larger mass of silver as AgNPs with respect to AgNO3 (16 to 1) is needed to observe a similar toxicity.

  6. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  7. P 8: Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by soft X-ray from a laser induced plasma source and/or UV-VIS laser

    International Nuclear Information System (INIS)

    Bruza, P.; Fidler, V.; Nikl, M.

    2010-01-01

    The design and use of a novel, table-top UV-VIS luminescence spectrometer with two excitation sources is described: a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of about 4 ns duration, and a conventional N 2 pulse laser excitation at 337 nm (or any other UV-VIS pulse laser excitation). The XUV plasma source generates photons of either quasi-monochromatic (N target, E = 430 eV) or wide (Ar target, E = 200 ∼ 600 eV) spectral range. A combination of both X-ray/XUV and UV-VIS excitation in one experimental apparatus allows to perform comparative luminescence spectra and kinetics measurements under the same experimental conditions. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of doped Ce 3+ ions was studied under XUV 430 eV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3,68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d transition of Ce 3+ is directly excited. Furthermore, LuAG:Ce single crystals and single crystalline films luminescence decay profiles are compared and discussed. (authors)

  8. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    Science.gov (United States)

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Q-mode curve resolution of UV-vis spectra for structural transformation studies of anthocyanins in acidic solutions

    International Nuclear Information System (INIS)

    Marco, Paulo Henrique; Scarminio, Ieda Spacino

    2007-01-01

    Chemometric analysis of ultraviolet-visible (UV-vis) spectra for pH values 1.0, 3.3, 5.3, and 6.9 was used to investigate the kinetics and the structural transformations of anthocyanins in extracts of calyces of hibiscus flowers of the Hibiscus acetosella Welw. ex Finicius for the first time. Six different species were detected: the quinoidal base (A), the flavylium cation (AH + ), the pseudobase or carbinol pseudobase (B), cis-chalcone (C C ), trans-chalcone (C t ), and ionized cis-chalcone (C C - ). Four equilibrium constant values were calculated using relative concentrations, hydration, pK h =2.60+/-0.01, tautomeric, K T =0.14+/-0.01, acid-base, pK a =4.24+/-0.04, and ionization of the cis-chalcone, pK C C =8.74+/-1.5x10 -2 . The calculated protonation rate of the tautomers is K H + =0.08+/-7.6x10 -3 . These constants are in excellent agreement with those measured previously in salt form. From a kinetic viewpoint, the situation encountered is interesting since the reported investigation is limited to visible light absorption in acid medium. These models have not been reported in the literature

  10. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    Science.gov (United States)

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.

  11. UV absorption reveals mycosporine-like amino acids (MAAs in Tatra mountain lake phytoplankton

    Directory of Open Access Journals (Sweden)

    Jerzy Dera

    2013-08-01

    Full Text Available Enhanced absorption of UV radiation, an effect characteristic of mycosporine-like amino acids (MAAs, is reported in samples of phytoplankton from six lakes in the Tatra Mountains National Park (Poland. It was demonstrated that the mass-specific UV absorption coefficients for the phytoplankton in these lakes increased with altitude above sea level. Based on a comparison with the phytoplankton of Alpine lakes, investigated earlier by other authors (cited in this paper, it may be inferred that the phytoplankton of Tatra mountain lakes produce MAAs, which protect plant cells from UV light, the intensity of which increases with altitude.

  12. Interference-Blind Microfluidic Sensor for Ascorbic Acid Determination by UV/vis Spectroscopy

    DEFF Research Database (Denmark)

    Bi, Hongyan; Oliveira Fernandes, Ana Carolina; Cardoso, Susana

    2016-01-01

    A microfluidic sensor is developed and targeted at specific ingredients determination in drug/food/beverage matrices. The surface of a serpentine polydimethylsiloxane (PDMS) microchannel is modified by enzyme via physisorption. When solutions containing target ingredients pass through...... the microfluidic channel, enzyme-catalyzed reaction occurs and only converts the target molecules to its products. The whole process is monitored by an end-channel UV/vis spectroscopic detection. Ascorbate oxidase and L-ascorbic acid (AA) are taken as enzyme-substrate model in this study to investigate......, specific, and accurate, and can be potentially used for fast quantification of ingredient in samples with complex matrix background. It is promising to be widely spread in food industry and quality control department...

  13. Investigating the Implementation of ZnO Nanoparticles as a Tunable UV Detector for Different Skin Types

    Science.gov (United States)

    Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra

    A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.

  14. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion.

    Science.gov (United States)

    Wesholowski, Jens; Prill, Sebastian; Berghaus, Andreas; Thommes, Markus

    2018-01-11

    Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.

  15. TiO{sub 2}/WO{sub 3} photoactive bilayers in the UV-Vis light region

    Energy Technology Data Exchange (ETDEWEB)

    Vasilaki, E. [University of Crete, Department of Chemistry, Heraklion, Crete (Greece); Technological Educational Institute of Crete, Center of Materials Technology and Photonics, School of Engineering, Heraklion, Crete (Greece); Vernardou, D. [Technological Educational Institute of Crete, Center of Materials Technology and Photonics, School of Engineering, Heraklion, Crete (Greece); Kenanakis, G.; Katsarakis, N. [Technological Educational Institute of Crete, Center of Materials Technology and Photonics, School of Engineering, Heraklion, Crete (Greece); Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Vassilika Vouton, P.O. Box 1385, Heraklion, Crete (Greece); Vamvakaki, M. [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Vassilika Vouton, P.O. Box 1385, Heraklion, Crete (Greece); University of Crete, Department of Materials Science and Technology, Heraklion, Crete (Greece)

    2017-04-15

    In this work, photoactive bilayered films consisting of anatase TiO{sub 2} and monoclinic WO{sub 3} were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO{sub 3} precursor solution, when deposited as an overlying layer on TiO{sub 2} by two annealing steps (∝76% methylene blue decolorization in 300 min of irradiation versus ∝59% in the case of a bare TiO{sub 2} film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO{sub 2} films with WO{sub 3} acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination. (orig.)

  16. Maceration of Extra Virgin Olive Oil with Common Aromatic Plants Using Ultrasound-Assisted Extraction: An UV-Vis Spectroscopic Investigation

    Directory of Open Access Journals (Sweden)

    Ozren Jović

    2018-01-01

    Full Text Available Rosemary (Rosmarinus officinalis, garden sage (Salvia officinalis, summer savory (Satureja hortensis, laurel (Laurus nobilis, and other aromatic plants were put in olive oil and exposed to ultrasounds for different duration. Filtrated oils were dissolved in cyclohexane, and UV-Vis measurements were carried out. Absorbance values corresponding to chlorophylls, carotenoids, flavonoids (370 nm, and polyphenols (around 300 nm were measured. In addition, for some samples, total phenols were determined using Folin-Denis reagent and compared with the similar maceration procedure in water solvent (instead of olive oil. Maceration without ultrasound in olive oil for each plant was also compared with ultrasound-assisted extraction. The results show that significant amount of aromatic content can be extracted in olive oil by applying ultrasounds for only few minutes, especially for Salvia officinalis powder. The use of UV-Vis measurements is simple but enough to examine the extent of phenol content extraction through such maceration procedure.

  17. Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Nanostructure Sn 4+ -doped TiO 2 based mono and double layer thin films, contain 50% solid ratio of TiO 2 in coating have been prepared on glass surfaces by spin-coating technique. Their photocatalytic performances were tested for degradation of Malachite Green dye in solution under UV and vis irradiation. Sn 4+ -doped nano-TiO 2 particle a doping ratio of about 5[Sn 4+ /Ti(OBu n ) 4 ; mol/mol%] has been synthesized by hydrotermal process at 225 deg. C. The structure, surface and optical properties of the thin films and/or the particles have been investigated by XRD, BET and UV/vis/NIR techniques. The results showed that the double layer coated glass surfaces have a very high photocatalytic performance than the other one under UV and vis lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water. The results also reveal that the coated surfaces have hydrophilic property

  18. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    Science.gov (United States)

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer

    Science.gov (United States)

    Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang

    2018-06-01

    A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.

  20. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics.

    Science.gov (United States)

    Gonçalves, Rhayanna P; Março, Paulo H; Valderrama, Patrícia

    2014-11-15

    Edible oils such as colza, corn, sunflower, soybean and olive were analysed by UV-Vis spectroscopy and Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS). When vegetable oils were heated at high temperatures (frying), oxidation products were formed which were harmful to human health in addition to degrading the antioxidants present, and this study aimed to evaluate tocopherol (one antioxidant present in oils) and the behaviour of oxidation products in edible oils. The MCR-ALS results showed that the degradation started at 110°C and 85°C, respectively, for sunflower and colza oils, while tocopherol concentration decreased and oxidation products increased starting at 70°C in olive oil. In soybean and corn oils, tocopherol concentration started to decrease and oxidation products increased at 50°C. The results suggested that sunflower, colza and olive oils offered more resistance to increasing temperatures, while soybean and corn oils were less resistant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H2SO4 solution: Weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui; Mu Guannan; Zhao Ning

    2008-01-01

    The synergism between rare earth cerium(IV) ion and vanillin (4-hydroxy-3-methoxy-benzaldehyde) on the corrosion of cold rolled steel (CRS) in 1.0 M H 2 SO 4 solution at five temperatures ranging from 20 to 60 deg. C was first studied by weight loss and potentiodynamic polarization methods. The inhibited solutions were analyzed by ultraviolet and visible spectrophotometer (UV-vis). The adsorbed film of CRS surface containing optimum doses of the blends Ce 4+ -vanillin was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the inhibition efficiency (IE) increased with the vanillin concentration. The adsorption of vanillin obeyed Temkin adsorption isotherm. Polarization curves showed that vanillin was a mixed-type inhibitor in sulfuric acid, while prominently inhibited the cathodic reaction. For the cerium(IV) ion, it had a negligible effect, and the maximum IE was only about 20%. However, incorporation of Ce 4+ with vanillin improved significantly the inhibition performance. The IE for Ce 4+ in combination with vanillin was higher than the summation of IE for single Ce 4+ and single vanillin, which was synergism in nature. A high inhibition efficiency, 98% was obtained by a mixture of 25-200 mg l -1 vanillin and 300-475 mg l -1 Ce 4+ . UV-vis showed that the new complex of Ce 4+ -vanillin was formed in 1.0 M H 2 SO 4 for Ce 4+ combination with vanillin. Polarization studies showed that the complex of Ce 4+ -vanillin acted as a mixed-type inhibitor, which drastically inhibits both anodic and cathodic reactions. FTIR and XPS revealed that a protective film formed in the presence of both vanillin and Ce 4+ was composed of cerium oxide and the complex of Ce 4+ -vanillin. The synergism between Ce 4+ and vanillin could also be evidenced by AFM images. Depending on the results, the synergism mechanism was discussed

  2. Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method

    Science.gov (United States)

    J.Y. Zhu; H.F Zhou; Chai X.S.; Donna Johannes; Richard Pope; Cristina Valls; M. Blanca Roncero

    2014-01-01

    An inter-laboratory comparison of a UV-Vis spectroscopic method (TAPPI T 282 om-13 “Hexeneuronic acid content of chemical pulp”) for hexeneuronic acid measurements was conducted using three eucalyptus kraft pulps. The pulp samples were produced in a laboratory at kappa numbers of approximately 14, 20, and 35. The hexeneuronic acid contents of the three pulps were...

  3. Synthesis and Characterization of CdS/TiO2-Montmorillonite Nanocomposite with Enhanced Visible-Light Absorption

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2014-01-01

    Full Text Available Sodium montmorillonite (MMT was chosen as the carrier; a serial of CdS/TiO2-MMT nanocomposites with enhanced visible-light absorption ability was prepared by hydrothermal synthesis method combination with semiconductor compound modification method. The samples are characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and ultraviolet visible (UV-Vis spectroscopy; the results showed that TiO2 and CdS nanoparticles were loaded on the surface of montmorillonite uniformly. N2 adsorption-desorption experiment showed that the specific surface area of TiO2/montmorillonite nanocomposite made by this method can reach 200 m2/g and pore-size distribution was from 4 to 6 nm; UV-Vis showed that the recombination of CdS and TiO2 enhanced visible-light absorption ability of samples of TiO2/montmorillonite and visible-light absorption ability increase with the increased of the adsorption of CdS.

  4. p Ka determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV-Vis spectrophotometric data

    Science.gov (United States)

    Batistela, Vagner Roberto; Pellosi, Diogo Silva; de Souza, Franciane Dutra; da Costa, Willian Ferreira; de Oliveira Santin, Silvana Maria; de Souza, Vagner Roberto; Caetano, Wilker; de Oliveira, Hueder Paulo Moisés; Scarminio, Ieda Spacino; Hioka, Noboru

    2011-09-01

    Xanthenes form to an important class of dyes which are widely used. Most of them present three acid-base groups: two phenolic sites and one carboxylic site. Therefore, the p Ka determination and the attribution of each group to the corresponding p Ka value is a very important feature. Attempts to obtain reliable p Ka through the potentiometry titration and the electronic absorption spectrophotometry using the first and second orders derivative failed. Due to the close p Ka values allied to strong UV-Vis spectral overlap, multivariate analysis, a powerful chemometric method, is applied in this work. The determination was performed for eosin Y, erythrosin B, and bengal rose B, and also for other synthesized derivatives such as 2-(3,6-dihydroxy-9-acridinyl) benzoic acid, 2,4,5,7-tetranitrofluorescein, eosin methyl ester, and erythrosin methyl ester in water. These last two compounds (esters) permitted to attribute the p Ka of the phenolic group, which is not easily recognizable for some investigated dyes. Besides the p Ka determination, the chemometry allowed for estimating the electronic spectrum of some prevalent protolytic species and the substituents effects evaluation.

  5. Optical absorption in SrC4H4O6·3H2O crystals

    International Nuclear Information System (INIS)

    Arora, S.K.; Patel, Vipul; Kothari, Anjana; Chudasama, Bhupendra

    2004-01-01

    Study of optical absorption in the gel-grown strontium tartrate trihydrate (STT) single crystals measured in UV-vis range at room temperature reveals transitions involving absorption and emission of phonons. Based on the theory of interband optical absorptions, the electronic transition near the fundamental absorption edge is analysed. Some feeble disorder in the crystal is conceived to be present. The analysis carried out hereunder leads to estimation of energy of the lattice phonons involved

  6. HREELS to identify electronic structures of organic thin films.

    Science.gov (United States)

    Oeter, D; Ziegler, C; Göpel, W

    1995-10-01

    The electronic structure of alpha-oligothiophene (alphanT) thin films has been investigated for increasing chain lengths of n= 4-8 thiophene units with high resolution electron energy loss spectroscopy (HREELS) in the specular reflection geometry at a primary energy of 15 eV. The great advantage of this technique in contrast to UV/VIS absorption spectroscopy results from the fact, that the impact scattering mechanism of HREELS makes it possible to also detect optically forbidden electronic transitions. On the other hand, the electrons used as probes in HREELS have a wavelength which is two orders of magnitudes smaller if compared to those of photons used in UV/VIS absorption spectroscopy. Therefore individual molecules are excited by HREELS independent from each other and hence the excitation of collective excitons is not possible. As a result, information about the orientation of the molecules cannot be achieved with HREELS, which, however, is possible in polarization-dependent UV/VIS spectroscopy.

  7. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Science.gov (United States)

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Oligophenylenevinylenes in spatially confined nanochannels: Monitoring intermolecular interactions by UV/Vis and Raman spectroscopy

    DEFF Research Database (Denmark)

    Aloshyna, Mariya; Medina, Begona Milian; Poulsen, Lars

    2008-01-01

    -guest interactions are elucidated by UV/Vis and Raman spectroscopy. The impact of the local environment of the chromophore on the optical and photophysical properties is discussed in light of quantum-chemical calculations. In stark contrast to thin films where preferential side-by-side orientation leads to quenching...... of photoluminescence (PL) via non-emissive traps, the ICs are found to be attractive materials for opto-electronic applications: they offer high chromophore concentrations, but at the same time behave as quasi-isolated entities of tightly packed, well-oriented objects with high PL quantum yields and the possibility...

  9. UV/VIS spektrofotometrie a možnosti jejího využití v rámci vzdělávání učitelů chemie

    OpenAIRE

    Hejsková, Veronika

    2016-01-01

    This master's thesis discusses the use of UV/VIS spectrophotometry in chemistry teacher education. Optical methods principles are described in theoretical part of the thesis, and. the main part is dedicated to UV-VIS spectrophotometry. Tasks for quantifying and qualifying substances determination are described in experimental part. Educational tasks are described in a way so that chemistry teachers could use for instructions.

  10. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.

    Science.gov (United States)

    Dankowska, A; Domagała, A; Kowalewski, W

    2017-09-01

    The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Color change of tourmaline by heat treatment and electron beam irradiation: UV-Visible, EPR, and Mid-IR spectroscopic analyses

    Science.gov (United States)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    The color of pink tourmaline gemstone changed to colorless when heating at temperature of 600 °C in air. This colorless tourmaline recovered its pink color when irradiated with an electron beam (e-beam) of 800 kGy. The origin of the color change was investigated in three types of tourmaline gemstones, two pink are from Afghanistan and one green are from Nigeria, by using Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and Energy Dispersive X-ray Fluorescence (EDXRF). The UV-Vis absorption spectrum of the pink tourmaline with higher Mn concentration (T2, 0.24 wt%) showed characteristic absorption peaks originating from the Mn3+ color center: two absorption bands centered at wavelength of 396 and 520 nm, respectively. Both absorption bands disappeared when heated in air at 600 °C and then reappeared when irradiated with an e-beam at 800 kGy. EPR T2 spectra showed that the color change was related to the valence change of Mn3+ to Mn2+ and vice versa. The pink tourmaline of lower MnO content (T1, 0.08 wt%) also became colorless when heated, but the color was not recovered when the gemstone underwent e-beam irradiation. Instead, a yellow color was obtained. UV-Vis and FTIR spectra indicated that this yellow color originated from a decomposition of the hydroxyl group (-OH) into O- and Ho by the e-beam irradiation. Green tourmaline did not show any color change with either heat treatment or e-beam irradiation.

  12. Q-mode curve resolution of UV-vis spectra for structural transformation studies of anthocyanins in acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Marco, Paulo Henrique [Laboratorio de Quimiometria em Ciencias Naturais, Departamento de Quimica, Universidade Estadual de Londrina, Caixa Postal 6001, CEP 86051-970 Londrina, Parana (Brazil); Scarminio, Ieda Spacino [Laboratorio de Quimiometria em Ciencias Naturais, Departamento de Quimica, Universidade Estadual de Londrina, Caixa Postal 6001, CEP 86051-970 Londrina, Parana (Brazil)]. E-mail: ieda@qui.uel.br

    2007-01-30

    Chemometric analysis of ultraviolet-visible (UV-vis) spectra for pH values 1.0, 3.3, 5.3, and 6.9 was used to investigate the kinetics and the structural transformations of anthocyanins in extracts of calyces of hibiscus flowers of the Hibiscus acetosella Welw. ex Finicius for the first time. Six different species were detected: the quinoidal base (A), the flavylium cation (AH{sup +}), the pseudobase or carbinol pseudobase (B), cis-chalcone (C{sub C}), trans-chalcone (C{sub t}), and ionized cis-chalcone (C{sub C}{sup -}). Four equilibrium constant values were calculated using relative concentrations, hydration, pK{sub h}=2.60+/-0.01, tautomeric, K{sub T}=0.14+/-0.01, acid-base, pK{sub a}=4.24+/-0.04, and ionization of the cis-chalcone, pK{sub C{sub C}}=8.74+/-1.5x10{sup -2}. The calculated protonation rate of the tautomers is K{sub H{sup +}}=0.08+/-7.6x10{sup -3}. These constants are in excellent agreement with those measured previously in salt form. From a kinetic viewpoint, the situation encountered is interesting since the reported investigation is limited to visible light absorption in acid medium. These models have not been reported in the literature.

  13. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    Science.gov (United States)

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-04

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. Between 25000 and 35000 cm(-1), the low-temperature MCD spectra are dominated by two very intense, oppositely signed pseudo-A terms, referred to as "double pseudo-A terms", which change their signs within the [Mn(acen)X] series dependent on the axial ligand X. Based on molecular orbital (MO) and symmetry considerations, these features are assigned to π(n.b.)(s, a) → yz, z(2) ligand-to-metal charge transfer transitions. The individual MCD signs are directly determined from the calculated MOs of the [Mn(acen)X] complexes. The observed sign change is explained by an inversion of symmetry among the π(n.b.)(s, a) donor orbitals which leads to an interchange of the positive and negative pseudo-A terms constituting the "double pseudo-A term".

  14. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    International Nuclear Information System (INIS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-01-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures

  15. Hydrogen bond controlled adduct formation of meso-tetra(4-sulfonatophenyl)porphyrin with protic acids: a UV-vis spectroscopic study.

    Science.gov (United States)

    Zakavi, Saeed; Rahiminezhad, Hajar; Alizadeh, Robabeh

    2010-12-01

    Interaction of meso-tetra(4-sulfonatophenyl)porphyrin (H2tppS4) with weak and strong protic acid have been studied by UV-vis spectroscopy in water, dichloromethane and methanol. Different shifts of the Soret and Q(0,0) bands in the three solvents, the aggregation of diprotonated species and the stability of porphyrin-acid adducts in the solution, may be explained by the inter- and intramolecular hydrogen bonds. Whilst, the addition of excess amounts of tetra-n-butylammonium chloride to H2tppS4(Cl)2 in dichloromethane has little to no effect on the UV-vis spectrum of the dication, gradual addition of tetra-n-butylammonium hydrogen sulfate to the dichloromethane solution of H2tppS4(H2SO4)2 leads to the degradation of adducts and the release of porphryin. The results of this study clearly show the crucial role played by hydrogen bonds between the porphyrin diprotonated species and the counter ion in the stability of porphyrin diacids in solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices.

    Science.gov (United States)

    Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  17. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices

    Science.gov (United States)

    Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  18. [Effect of Charge-Transfer Complex on Ultraviolet-Visible (UV-Vis) Absorption Property of Chromophoric Dissolved Organic Matter (CDOM) in Waters of Typical Water-Level Fluctuation Zones of the Three Gorges Reservoir Areas].

    Science.gov (United States)

    Jiang, Tao; Liang, Jian; Zhang, Mu-xue; Wang, Ding-yong; Wei, Shi-qiang; Lu, Song

    2016-02-15

    As an important fraction of dissolved organic matter (DOM), chromophoric dissolved organic matter (CDOM) plays a key role in decision of the optical properties and photogeochemistry of DOM, and further affects pollutant fate and global carbon cycle. These optical properties are ascribed to two chromophoric systems including superposition of individual chromophores and charge-transfer (CT) complexation between electron donor (e.g., phenols and indoles) and acceptor (e.g., quinones and other oxidized aromatics) in DOM structures. Thus in this study, based on the "double-chromophoric system" model, DOM samples from four typical water-level fluctuation zones of Three Gorges Reservoir (TGR) areas were selected, to investigate the effect and contribution of charge-transfer complex to ultraviolet-visible (UV-Vis) absorption property of CDOM. Using NaBH, reduction method, original featureless absorption curve was classified into two independent curves caused by individual chromophoric group, which were derived from a simple superposition of independent chromophore and charge-transfer complex, respectively. Also, the changes in curve properties and specific parameters before and after NaBH4 reduction were compared. The results showed that in all DOM samples from the four sites of TGR, more than 35% of absorption was attributed from CT complex. Shibaozhai of Zhongxian and Zhenxi of Fuling showed the highest proportion ( > 50%). It suggested that the role of CT complex in CDOM property could not be neglected. After removal of CT complex, absorption curve showed blue-shift and CDOM concentration [a (355)] decreased significantly. Meanwhile, because of deforming of bonds by reduction, DOM structures became more dispersive and the molecular size was decreased, resulting in the lower spectral slope (S) observed, which evidentially supported that the supermolecular association structure of DOM was self-assembled through CT complex. Meanwhile, deceasing hydrophobic components led

  19. Detection of Outliers and Imputing of Missing Values for Water Quality UV-VIS Absorbance Time Series

    OpenAIRE

    Plazas-Nossa, Leonardo; Ávila Angulo, Miguel Antonio; Torres, Andrés

    2017-01-01

    Context:The UV-Vis absorbance collection using online optical captors for water quality detection may yield outliers and/or missing values. Therefore, pre-processing to correct these anomalies is required to improve the analysis of monitoring data. The aim of this study is to propose a method to detect outliers as well as to fill-in the gaps in time series. Method:Outliers are detected using Winsorising procedure and the application of the Discrete Fourier Transform (DFT) and the Inverse of F...

  20. Modified Fe3O4- hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems

    Science.gov (United States)

    Valizadeh, S.; Rasoulifard, M. H.; Dorraji, M. S. Seyed

    2014-11-01

    The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag3PO4 formation. Apparent reaction rate constant (Kapp) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H2O2, Co-M-HAP(II)/H2O2 and M-HAP (I)/UV systems, respectively.

  1. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2.

    Science.gov (United States)

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N; Stansbury, Jeffery; Sikes, Hadley D

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O 2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O 2 . Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O 2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O 2 in eosin-mediated initiation aids the design of O 2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing.

  2. Charged states of alpha,omega-dicyano beta, beta' - dibutylquaterthiophene as studied by in situ ESR UV-Vis NIR spectroelectrochemistry

    Czech Academy of Sciences Publication Activity Database

    Haubner, K.; Tarábek, Ján; Ziegs, F.; Lukeš, V.; Jaehne, E.; Dunsch, L.

    2010-01-01

    Roč. 114, č. 43 (2010), s. 11545-11551 ISSN 1089-5639 Grant - others:GA ČR(CZ) GC203/07/J067 Program:GC Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclic voltammetry * ESR/UV-Vis NIR spectrometry * spectroelectrochemistry * thiophene oligomer * dimerisation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.732, year: 2010

  3. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    Science.gov (United States)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  4. Study of PVDF/Graphene oxide nanocomposites by UV-Vis analysis

    International Nuclear Information System (INIS)

    Pereira, Juliana V.

    2013-01-01

    In this work we have prepared nanocomposites made by mixing Poly (vinylidene fluoride) [PVDF] and grapheme oxide nanosheets (GO) aiming to find dosimetric properties for applications in high dose dosimetry. Graphene Oxides (GO) nanosheets were synthesized by the Hummers method, using graphite supplied by Aldrich as the starting material. Nanocomposites were produced by mixing solved PDVF in DMAc with GO dispersed in an aqueous solution by sonication. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h), with doses ranging from 50 to 1,000 kGy. The UV-Vis and spectrophotometry have been used to monitor the appearing of C=C conjugated bonds and radio-oxidation of carbon (C=O). The PVDF/OG nanocomposites prepared with 1.88 at.% of OG presented the best dosimetric properties. In this material, UVVis spectrometry has revealed that the absorbance intensities at 250 nm can be used for high dosimetry purposes for gamma doses ranging from 100 to 750 kGy. In this range, it is possible to observe a linear relationship between Abs and Dose. (author)

  5. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    Science.gov (United States)

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  6. Comparison of carrier transport mechanism under UV/Vis illumination in an AZO photodetector and an AZO/p-Si heterojunction photodiode produced by spray pyrolysis

    International Nuclear Information System (INIS)

    Shasti, M.; Mortezaali, A.; Dariani, R. S.

    2015-01-01

    In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Si photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism

  7. Comparison of carrier transport mechanism under UV/Vis illumination in an AZO photodetector and an AZO/p-Si heterojunction photodiode produced by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shasti, M.; Mortezaali, A., E-mail: mortezaali@alzahra.ac.ir; Dariani, R. S. [Department of Physics, Alzahra University, Tehran 1993893973 (Iran, Islamic Republic of)

    2015-01-14

    In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Si photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.

  8. Characterization of a new Tc (V) - glucosazine complex by UV - VIS and IR spectroscopy

    International Nuclear Information System (INIS)

    Ganzerli Valentini, M.T.; Stella, R.; Maggi, L.

    1989-01-01

    A new radiopharmaceutical is proposed for brain and heart functional and radiodiagnostic studies. A Tc complex containing the glucose molecule and chelating groups that do not alter the basic chemical features of the molecule has been prepared. The ligand is formed by the combination of one hydrazine molecule with two sugar molecules and is the first product of the D-glucose-hydrazine reaction that in aqueous basic medium may proceed up to hydrazone and in acid medium up to osazone. These transformations are observed at pH>5 through the UV absorption peaks at 274 and 224 nm, and at pH 1 . UV absorption spectra of the complex, dissolved in water as well as in acetonitrile, have been recorded: the characteristic single peak at 274 nm and at 276 nm respectively for the two solvents is unaffected by the presence of free ligand, due to the quasi null absorption in this spectral region. Molar extinction coefficient is found equal to 20850 L.mol 1 .cm 1 in solutions whose Tc concentration was in the range 2x10 5 -5x10 4 M and the ligand 10 2 - 10 1 M. The IR absorption spectrum has a C=N stretching band at 1620 cm 1 which means that the acyclic form of the azine is predominant; other large and strong bands refer to OH stretching at 3300 cm 1 , to C-O stretching at 1020 cm 1 and to C-N stretching (typical of the cyclic form) at 1080 cm 1 . (author)

  9. Molecular Stirrers in Action

    NARCIS (Netherlands)

    Chen, Jiawen; Kistemaker, Jos C. M.; Robertus, Jort; Feringa, Ben L.

    2014-01-01

    A series of first-generation light-driven molecular motors with rigid substituents of varying length was synthesized to act as "molecular stirrers". Their rotary motion was studied by H-1 NMR and UV-vis absorption spectroscopy in a variety of solvents with different polarity and viscosity.

  10. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data.

    Science.gov (United States)

    Tomazzoli, Maíra M; Pai Neto, Remi D; Moresco, Rodolfo; Westphal, Larissa; Zeggio, Amelia R S; Specht, Leandro; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-12-01

    Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plant's resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( λ= 280-400 ηm), suggesting that besides the biological activities of those

  11. Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber

    International Nuclear Information System (INIS)

    Tortech, B.; Ouerdane, Y.; Boukenter, A.; Meunier, J. P.; Girard, S.; Van Uffelen, M.; Berghmans, F.; Regnier, E.; Berghmans, F.; Thienpont, H.

    2009-01-01

    Near UV-visible absorption coefficients of an erbium-doped optical fiber were investigated through an original technique based on a transverse cw UV-laser irradiation operating at 244 nm. Such irradiation leads to the generation of a quite intense guided luminescence signal in near UV spectral range. This photoluminescence probe source combined with a longitudinal translation of the fiber sample (at a constant velocity) along the UV-laser irradiation, presents several major advantages: (i) we bypass and avoid the procedures classically used to study the radiation induced attenuation which are not adapted to our case mainly because the samples present a very strong absorption with significant difficulties due to the injection of adequate UV-light levels in a small fiber diameter: (ii) the influence of the laser irradiation on the host matrix of the optical fiber is directly correlated to the evolution of the generated photoluminescence signal and (iii) in our experimental conditions, short fiber sample lengths (typically 20-30 cm) suffice to determine the associated absorption coefficients over the entire studied spectral domain. The generated photoluminescence signal is also used to characterize the absorption of the erbium ions in the same wavelength range with no cut-back method needed. (authors)

  12. Quality control of test iodine in urine by spectrophotometry UV-Vis

    Science.gov (United States)

    Huda, Thorikul; Nafisah, Durotun; Kumorowulan, Suryati; Lestari, Sri

    2017-12-01

    A quality control of iodine test in with UV-Vis spectrophotometry has been done. The purpose of this research is to find out whether the test results of samples conducted by Clinical Office of Research and Development Of GAKI (BP2GAKI) laboratory are still controlled, feasible and reliable, and still consistent over time, as indicated by the control chart. Quality control parameters are linearity, precision, accuracy, limit of detection, and limit of quantification. Based on the quality control that has been done, obtained linearity (r)= -0.9974, the detection limit and the limit of quantitation are respectively 2.26 µg/L and 7.54 µg/L, while the accuracy is calculated by %recovery and precision with value % RSD are 97.4161% and 1.7136% respectively. The quality control of iodine test in urine using the control chart shows excellent or stable results for 30 days and no variation of the results is very different for each day.

  13. Absorption of uv-radiation by Chibro trademark -Uvelin eye drops

    International Nuclear Information System (INIS)

    Schreder, J.G.; Blumthaler, M.; Daxer, A.; Ettl, A.

    1998-01-01

    The preparation Chibro trademark -Uvelin is recommended against both solar and artificial uv-radiation. At wavelengths greater than 290 nm and at an effective layer thickness of 10 μm measurements with a high resolution doublemonochromator showed a transmission larger than 90%. The solar spectrum is characterised by almost no irradiance on the earth's surface for wavelengths smaller than 290 nm due to absorption in the atmospheric ozon layer. Therefore, no significant protective effect of the eye-drops against keratitis and cataract under solar exposure can be expected. A significantly better sagging of the radiation of artificial UV-sources with a high amount of UV-C is reached. The recommended application as chemical protective goggles in this spectral range is not permissible. (orig.) [de

  14. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  15. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity.

    Science.gov (United States)

    Basu Ray, Gargi; Chakraborty, Indranil; Moulik, Satya P

    2006-02-01

    The critical micellar concentration (cmc) of both ionic and non-ionic surfactants can be conveniently determined from the measurements of UV absorption of pyrene in surfactant solution. The results on a number of surfactants have agreed with that realized from pyrene fluorescence measurements as well as that obtained following conductometric, tensiometric and calorimetric methods. The absorbance vs [surfactant] profiles for all the major UV spectral peaks of pyrene have been found to be sigmoidal in nature which were analyzed according to Sigmoidal-Boltzmann equation (SBE) to evaluate the cmcs of the studied surfactants. The difference between the initial and the final asymptotes (a(i) and a(f), respectively) of the sigmoidal profile, Delta a = (a(f)-a(i)) and the slope of the sigmoid, S(sig) have been observed to depend on the type of the surfactant. The Delta a has shown a linear correlation with the ratio of the fluorescence intensities of the first and the third vibronic peaks, I1/I3 of pyrene which is considered as a measure of the environmental polarity (herein micellar interior) of the probe (pyrene). Thus, Delta a values have the prospect for use as another index for the estimation of polarity of micellar interior.

  16. Studies on solvatochromic behavior of some monoazo derivatives using electronic absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Sidir, Isa; Tasal, Erol; Guelseven, Yadigar [Department of Physics, Faculty of Arts and Sciences, Eskisehir Osmangazi University, 26480 Eskisehir (Turkey); Guengoer, Tayyar [Department of Physics, Faculty of Arts and Sciences, Akdeniz University, Antalya (Turkey); Berber, Halil [Department of Chemistry, Faculty of Sciences, Anadolu University, Eskisehir (Turkey); Oegretir, Cemil [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2009-06-15

    The electronic absorption spectra of 2',4'-dihydroxy-2-methoxyazobenzene and 4,2',4'-trihydroxyazobenzene molecules have been investigated in solvents with different polarities. The solvent dependent UV-vis spectral shifts, {nu}{sub max}, were analysed using some physical parameters such as refractive index, dielectric constant, Kamlet-Taft parameters, {alpha} (hydrogen bond donating ability) and {beta} (hydrogen bond accepting ability). The electronic transitions are assigned and the solvent induced spectral shifts have been analysed in relation to different solute-solvent interaction mechanisms using linear regression analysis. The results of fitting coefficients obtained from the analysis helped us to estimate the contribution of each type of interaction to the spectral shift in the molecule under consideration. It is concluded that the electronic character of the chemical nature of the solvent and the electronic character of substituents are the important factor for the observed solvatochromism. (author)

  17. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    Science.gov (United States)

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  18. Transmission of UV-irradiance into nectarine fruit

    International Nuclear Information System (INIS)

    Blanke, M.M.

    1996-01-01

    With the global depletion of the ozone layer, leaves and fruits are increasingly exposed to UV-irradiance on the tree. Some fruits are additionally exposed postharvest to artificial germicidal W-irradiance, leading to a cumulative effect. This paper examines the transmission of UV-light (200-400 nm) by the peel of ripe nectarine fruit using UV/VIS spectrophotometry to aid understanding of UV-effects and assess the sensitivity of the peel to UV wavelengths. Yellow peel of nectarine fruit transmitted less than 0.1 % in the UV-C range of 220 to 280 nm. With longer wavelenghts, UV-light transmission increased slowly from 0.4 % at 284 nm to 1.6 % at 320 nm and, in the UV-A region, progressively from 1.9 % at 330 nm to a maximum of 13 % of incident irradiance at 400 nm. Red peel of nectarine fruit transmitted less than 0.1 % of UV-C and UV-B light, but up to 0.9 % of incident UV-A light at 400 nm. Conversely, UV-absorption of nectarine peel decreased with longer wavelengths. Hence, fruit parenchyma is more affected by UV-irradiance at wavelengths above ca. 280 nm and underneath yellow than underneath red peel

  19. Luminescence and optical absorption determination in porous silicon

    International Nuclear Information System (INIS)

    Nogal, U.; Calderon, A.; Marin, E.; Rojas T, J. B.; Juarez, A. G.

    2012-10-01

    We applied the photoacoustic spectroscopy technique in order to obtain the optical absorption spectrum in porous silicon samples prepared by electrochemical anodic etching on n-type, phosphorous doped, (100)-oriented crystal-line silicon wafer with thickness of 300 μm and 1-5 ωcm resistivity. The porous layers were prepared with etching times of 13, 20, 30, 40 and 60 minutes. Also, we realized a comparison among the optical absorption spectrum with the photoluminescence and photo reflectance ones, both obtained at room temperature. Our results show that the absorption spectrum of the samples of porous silicon depends notably of the etching time an it consist of two distinguishable absorption bands, one in the Vis region and the other one in the UV region. (Author)

  20. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  1. Polarization control method for UV writing of advanced bragg gratings

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2002-01-01

    We report the application of the polarization control method for the UV writing of advanced fiber Bragg gratings (FBG). We demonstrate the strength of the new method for different apodization profiles, including the Sinc-profile and two designs for dispersion-free square filters. The method has...

  2. The electrochemical oxidation of sulfite on gold: UV-Vis reflectance spectroscopy at a rotating disk electrode

    International Nuclear Information System (INIS)

    Tolmachev, Yuriy V.; Scherson, Daniel A.

    2004-01-01

    Certain aspects of the electrochemical oxidation of sulfite in buffered, mildly acidic aqueous solutions (pH 5.23) have been examined using in situ near normal incidence UV-Vis reflectance spectroscopy (NNI-UVRS) at a Au rotating disk electrode (RDE). The dependence of the limiting current, i lim , on the rotation rate of the RDE was found to display classical Levich behavior up to potentials well within the range in which Au forms a surface oxide in the neat (sulfite-free) supporting electrolyte. However, simultaneous in situ NNI-UVRS measurements performed at λ=500 nm during sulfite oxidation failed to show any evidence for the presence of oxide on the Au surface within that entire potential range. Polarization of the Au RDE at more positive potentials led to a sudden drop in i lim , ca. an order of magnitude, which correlated with an abrupt decrease in the intensity of the reflected light, consistent with formation of (one or more forms of) Au oxide on the surface. On the basis of these and other observations a model has been proposed in which sulfite reacts chemically with adsorbed oxygen on the surface (oxygen atom transfer) in the region that precedes partial inhibition. As the potential is increased, adsorbed oxygen undergoes Au-O place exchange forming two-dimensional nuclei on the surface, which undergo rapid (autocatalytic) growth, covering an area large enough to block significantly sulfite oxidation

  3. Use of UV absorption for identifying subspecies of Artemisia tridentata

    International Nuclear Information System (INIS)

    Spomer, G.G.; Henderson, D.M.

    1988-01-01

    Use of UV absorption spectra for identifying subspecies of Artemisia tridentata Nutt. was investigated by analyzing the relative optical densities of alcohol extracts from herbarium and fresh plant material at 240 nm, 250 nm, and 265 nm. In all but 1 comparison, mean relative optical densities were significantly different (p=0.95) between subspecies, but intraplant and intrasubspecies variation and overlap was found to be too large to permit use of UV absorbance alone for identifying individual specimens. These results held whether dry or fresh leaves were extracted, or whether methanol or ethanol was used as the extracting solvent. (author)

  4. Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies

    International Nuclear Information System (INIS)

    Zvezdanovic, Jelena; Cvetic, Tijana; Veljovic-Jovanovic, Sonja; Markovic, Dejan

    2009-01-01

    Chlorophyll bleaching by UV-irradiation has been studied by absorbance and fluorescence spectroscopy in extracts containing mixtures of photosynthetic pigments, in acetone and n-hexane solutions, and in aqueous thylakoid suspensions. Chlorophyll undergoes destruction (bleaching) accompanied by fluorescent transient formation obeying first-order kinetics. The bleaching is governed by UV-photon energy input, as well as by different chlorophyll molecular organizations in solvents of different polarities (in vitro), and in thylakoids (in situ). UV-C-induced bleaching of chlorophylls in thylakoids is probably caused by different mechanisms compared to UV-A- and UV-B-induced bleaching

  5. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    Science.gov (United States)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  6. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-29

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  7. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  8. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL

    2004-01-01

    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increased...

  9. UV laser long-path absorption spectroscopy

    Science.gov (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  10. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  11. Determination of the electronic structure and UV-Vis absorption properties of (Na2-xCux)Ta4O11 from first-principle calculations

    KAUST Repository

    Harb, Moussab

    2013-08-29

    Density functional theory (DFT) and density functional perturbation theory (DFPT) were applied to study the structural, electronic, and optical properties of a (Na2-xCux)Ta4O11 solid solution to accurately calculate the band gap and to predict the optical transitions in these materials using the screened coulomb hybrid (HSE06) exchange-correlation formalism. The calculated density of states showed excellent agreement with UV-vis diffuse reflectance spectra predicting a significant red-shift of the band gap from 4.58 eV (calculated 4.94 eV) to 2.76 eV (calculated 2.60 eV) as copper content increased from 0 to 83.3%. The band gap narrowing in these materials, compared to Na2Ta4O11, results from the incorporation of new occupied electronic states, which are strongly localized on the Cu 3d orbitals, and is located within 2.16-2.34 eV just above the valence band of Na2Ta4O11. These new occupied states, however, possess an electronic character localized on Cu, which makes hole mobility limited in the semiconductor. © 2013 American Chemical Society.

  12. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  13. Determination of Uranium In UO2 And U3O8 Powder Using UV-VIS Spectrophotometry

    International Nuclear Information System (INIS)

    Natalia Adventini; Diah Dwiana Lestiani; Muhayatun; Endah Damastuti

    2009-01-01

    Lab. TAR PTNBR BATAN - Bandung has been accredited by National Accreditation Committee on May 2 nd , 2006 as a test laboratory with number LP-311-ID, has to maintain its laboratory performance by participating in a proficiency test. In this activity, the determination of uranium in 2 samples of UO 2 with A1 and A2 codes and other 2 samples of U 3 O 8 with B1 and B2 codes using UV-Vis spectrophotometry was carried out. Colouring method was used by reacting thiocyanate ion with the uranyl ion in acidic solution to develop a stable yellow colour of uranyl thiocyanate complex solution and measured at wavelength of 380 nm. The result gave that concentration of uranium in A1, A2, B1 and B2 samples were 77.95; 75.29; 64.58 and 63.69% respectively. The Z-score value for A samples was - 1.99, meanwhile for B samples the Z score value of between laboratory was −1.29 with intra laboratory was -1,09. It meant that Z-score values for both samples were in good category. From this result, it showed that UV-Vis spectrophotometry is one of the several methods that can be used to determine uranium in UO 2 and U 3 O 8 powder. The Lab. TAR’s proficiency test for determination of uranium in UO 2 and U 3 O 8 gave a good result and it was hoped to support BATAN's program in the nuclear fuel field. (author)

  14. Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends

    Science.gov (United States)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Pujari, P. K.; Poojary, Boja; Somashekar, R.

    2014-10-01

    Poly(vinyl alcohol) (PVA)/Sodium alginate (NaAlg) blend films with 60:40 wt% were prepared by solution casting method and subjected to UV irradiation for different intervals of time. The optical, mechanical and morphological properties of the blend films were modified after UV irradiation. The FTIR and FT-Raman results show the chemical interaction between PVA and NaAlg. The UV-vis absorption peak at 278 nm shifts slightly towards longer wavelength and the absorption increases with irradiation time, indicate the increase in crosslinking network. The XRD results show an increase in amorphous nature with increase in UV irradiation time. The DSC/TGA results show a single glass transition temperature (Tg), which confirm that the blends are completely miscible and thermally stable up to 250 °C. The Young's modulus, tensile strength and stiffness of the blend films increase with increase in UV irradiation time. The SEM images confirm that the surface of 48 h UV irradiated PVA:NaAlg blend is more photo-resistant than unirradiated blend.

  15. Towards a NNORSY Ozone Profile ECV from European Nadir UV/VIS Measurements

    Science.gov (United States)

    Felder, Martin; Kaifel, Anton; Huckle, Roger

    2010-12-01

    The Neural Network Ozone Retrieval System (NNORSY) has been adapted and applied to several different satellite instruments, including the backscatter UV/VIS instruments ERS2-GOME, SCIAMACHY and METOP-GOME-2. The retrieved long term ozone field hence spans the years 1995 till now. To provide target data for training the neural networks, the lower parts of the atmosphere are sampled by ozone sondes from the WOUDC and SHADOZ data archives. Higher altitudes are covered by a variety of limb-sounding instruments, including the SAGE and POAM series, HALOE, ACE-FTS and AURA-MLS. In this paper, we show ozone profile time series over the entire time range to demonstrate the "out-of-the-box" consistency and homogeneity of our data across the three different nadir sounders, i.e. without any kind of tuning applied. These features of Essential Climate Variable (ECV) datasets [1] also lie at the heart of the recently announced ESA Climate Change Initiative, to which we hope to contribute in the near future.

  16. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H{sub 2}SO{sub 4} solution: Weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches

    Energy Technology Data Exchange (ETDEWEB)

    Li Xianghong [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)], E-mail: xianghong-li@163.com; Deng Shuduan [Department of Wood Science and Technology, Southwest Forestry University, Kunming 650224 (China); Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China); Mu Guannan [Department of Chemistry, Yunnan University, Kunming 650091 (China); Zhao Ning [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)

    2008-06-30

    The synergism between rare earth cerium(IV) ion and vanillin (4-hydroxy-3-methoxy-benzaldehyde) on the corrosion of cold rolled steel (CRS) in 1.0 M H{sub 2}SO{sub 4} solution at five temperatures ranging from 20 to 60 deg. C was first studied by weight loss and potentiodynamic polarization methods. The inhibited solutions were analyzed by ultraviolet and visible spectrophotometer (UV-vis). The adsorbed film of CRS surface containing optimum doses of the blends Ce{sup 4+}-vanillin was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the inhibition efficiency (IE) increased with the vanillin concentration. The adsorption of vanillin obeyed Temkin adsorption isotherm. Polarization curves showed that vanillin was a mixed-type inhibitor in sulfuric acid, while prominently inhibited the cathodic reaction. For the cerium(IV) ion, it had a negligible effect, and the maximum IE was only about 20%. However, incorporation of Ce{sup 4+} with vanillin improved significantly the inhibition performance. The IE for Ce{sup 4+} in combination with vanillin was higher than the summation of IE for single Ce{sup 4+} and single vanillin, which was synergism in nature. A high inhibition efficiency, 98% was obtained by a mixture of 25-200 mg l{sup -1} vanillin and 300-475 mg l{sup -1} Ce{sup 4+}. UV-vis showed that the new complex of Ce{sup 4+}-vanillin was formed in 1.0 M H{sub 2}SO{sub 4} for Ce{sup 4+} combination with vanillin. Polarization studies showed that the complex of Ce{sup 4+}-vanillin acted as a mixed-type inhibitor, which drastically inhibits both anodic and cathodic reactions. FTIR and XPS revealed that a protective film formed in the presence of both vanillin and Ce{sup 4+} was composed of cerium oxide and the complex of Ce{sup 4+}-vanillin. The synergism between Ce{sup 4+} and vanillin could also be evidenced

  17. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and (1)H NMR techniques.

    Science.gov (United States)

    Rodríguez, Francisco J; Schlenger, Patrick; García-Valverde, María

    2016-01-15

    The main objective of this work is to conduct a comprehensive structural characterization of humic substances using the following experimental techniques: FTIR, 1H NMR and several UV–Vis parameters (Specific UV Absorbance at 254 nm or SUVA254, SUVA280, A400, the absorbance ratios A210/254, A250/365, A254/203, A254/436, A265/465, A270/400, A280/350, A465/665, the Absorbance Slope Index (ASI), the spectral slopes S275–295, S350–400 and the slope ratio SR). These UV–Vis parameters have also been correlated with key properties of humic substances such as aromaticity, molecular weight (MW) and trihalomethane formation potential (THMFP). An additional objective of this work is also to evaluate the usefulness of these techniques to monitor structural changes in humic substances produced by the ozonation treatment. Four humic substances were studied in this work: three of them were provided by the International Humic Substances Society (Suwannee River Fulvic Acid Standard: SRFA, Suwannee River Humic Acid Standard: SRHA and Nordic Reservoir Fulvic Acid Reference: NLFA) and the other one was a terrestrial humic acid widely used as a surrogate for aquatic humic substances in various studies (Aldrich Humic Acid: AHA). The UV–Vis parameters showing the best correlations with aromaticity in this study were SUVA254, SUVA280, A280/A350 ratio and A250/A364 ratio. The best correlations with molecular weight were for SUVA254, SUVA280 and A280/A350 ratio. Finally, in the case of the THMFP it was STHMFP-per mol HS the parameter showing good correlations with most of the UV–Vis parameters studied (especially with A280/A350 ratio, A265/A465 ratio and A270/A400 ratio) whereas STHMFP-per mg C showed poor correlations in most cases. On the whole, the UV–Vis parameter showing the best results was A280/A350 ratio as it showed excellent correlations for the three properties studied (aromaticity, MW and THMFP). A decrease in aromaticity following ozonation of humic substances can

  18. Preparation of perovskite type titanium-bearing blast furnace slag photocatalyst doped with sulphate and investigation on reduction Cr(VI) using UV-vis light

    International Nuclear Information System (INIS)

    Lei, X.F.; Xue, X.X.

    2008-01-01

    Perovskite type titanium-bearing blast furnace slag (TBBFS) and sulphate-modified titanium-bearing blast furnace slag (SO 4 2- /TBBFS) photocatalysts were prepared by the high-energy ball milling method at different calcination temperature. The photocatalysts were characterized by XRD, FTIR, UV-vis diffuse reflectance spectra and SEM measurements. The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI) under UV-vis light irradiation. For the photocatalytic reduction of Cr(VI), the photocatalytic activities of TBBFS catalysts were found to be strongly dependent of the calcination temperature and TBBFS calcined at 700 deg. C showed a higher photocatalytic activity compared to other TBBFS catalysts. In contrast, sulphation of TBBFS improved the photocatalytic activities of SO 4 2- /TBBFS catalysts. At low calcination temperature, the photocatalytic activities of SO 4 2- /TBBFS catalysts were markedly higher than TBBFS prepared under high calcination temperature, suggesting that the presence of surface SO 4 2- favored the photocatalytic reduction of Cr(VI)

  19. XRF and UV-Vis-NIR analyses of medieval wall paintings of al-Qarawiyyin Mosque (Morocco)

    Science.gov (United States)

    Fikri, I.; El Amraoui, M.; Haddad, M.; Ettahiri, A. S.; Bellot-Gurlet, L.; Falguères, C.; Lebon, M.; Nespoulet, R.; Ait Lyazidi, S.; Bejjit, L.

    2018-05-01

    Medieval wall painting fragments, taken at the medieval Mosque of al-Qarawiyyin in Fez, have been investigated by means of X-ray fluorescence and UV-Vis-NIR diffuse reflectance spectroscopies. The analyses permitted to determine the palette of pigments used by craftsmen of the time. Hematite or red ochre were used to obtain red brown colours, calcite for white, copper-based pigments for blue and blue-grey shades while a mixture of cinnabar, lead-based pigments and hematite was adopted to make red-orange colours. Furthermore, the analysis of mortars (external layer and plaster) on these wall painting samples revealed that they are composed mainly by calcite and sometimes by additional compounds such as quartz and gypsum.

  20. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.

    Science.gov (United States)

    Wang, Yong; Ni, Yongnian

    2014-02-01

    Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM. © 2013 Published by Elsevier B.V.

  1. In situ high-frequency UV-Vis spectrometer probes for investigating runoff processes and end member stability.

    Science.gov (United States)

    Schwab, Michael; Weiler, Markus; Pfister, Laurent; Klaus, Julian

    2014-05-01

    In recent years, several limitations as to the application of end member mixing analysis with isotope and geochemical tracers have been revealed: unstable end member solutions, inputs varying in space and time, and unrealistic mixing assumptions. In addition, the necessary high-frequency sampling using conventional methods is time and resources consuming, and hence most sampling rates are not suitable for capturing the response times of the majority of observed headwater catchments. However, high-frequency observations are considered fundamental for gaining new insights into hydrological systems. In our study, we have used two portable, in situ, high-frequency UV-Vis spectrometers (spectro::lyser; scan Messtechnik GmbH) to investigate the variability of several signatures in streamflow and end member stability. The spectro::lyser measures TOC, DOC, nitrate and the light absorption spectrum from 220 to 720 nm with 2.5 nm increment. The Weierbach catchment (0.45 km2) in the Attert basin (297 km2) in Luxemburg is a small headwater research catchment (operated by the CRP Gabriel Lippmann), which is completely forested and underlain by schist bedrock. The catchment is equipped with a dense network of hydrological instruments and for this study, the outlet of the Weierbach catchment was equipped with one spectro::lyser, permanently sensing stream water at a 15 minutes time step over several months. Hydrometric and meteorologic data was compared with the high-frequency spectro::lyser time series of TOC, DOC, nitrate and the light absorption spectrum, to get a first insight into the behaviour of the catchment under different environmental conditions. As a preliminary step for a successful end member mixing analysis, the stability of rainfall, soil water, and groundwater was tested with one spectro::lyser, both temporally and spatially. Thereby, we focused on the investigation of changes and patterns of the light absorption spectrum of the different end members and the

  2. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    International Nuclear Information System (INIS)

    Tseplin, E.E.; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G.

    2009-01-01

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  4. Kinetic study on UV-absorber photodegradation under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bubev, Emil, E-mail: ebubev@my.uctm.edu [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria); Georgiev, Anton [University of Chemical Technology and Metallurgy, Department of Organic Chemistry (Bulgaria); Machkova, Maria [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria)

    2016-09-12

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV–vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  5. Four Brazilian Maytenus salicifolia Reissek (Celastraceae groups studied by TLC and UV/Vis spectrophotometry

    Directory of Open Access Journals (Sweden)

    Frederico N. Valladão

    Full Text Available The great variety of angiosperms shows the need to development of botanical classification systems supported by phytochemistry, biochemistry and others. Recently, techniques of analysis used for the isolation and characterization of secondary metabolites have been employed as auxiliary quick and efficient methods for the identification and classification of plant species. M. salicifolia is popularly known in Brazil, as "small coffee" and decoct obtained from its fresh leaves is topically used to alleviate itches and other skins allergic symptoms. This work presents the use of TLC and UV/Vis spectrophotomety processes to be applied like an auxiliary method in botanical taxonomy. The results demonstrate that this process can be used in differentiation of the same genera species, and in the selection of chemical variations between individuals of the same species.

  6. Modified Fe3O4- hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems

    International Nuclear Information System (INIS)

    Valizadeh, S.; Rasoulifard, M.H.; Dorraji, M.S. Seyed

    2014-01-01

    Graphical abstract: - Highlights: • Photocatalytic degradation of dye by Ag modified HAP under visible light. • Study of Fenton like degradation of dye by transition metal ions modified HAP. • Comparison of catalytic systems according to Langmuir-Hinshelwood kinetic expression. - Abstract: The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag 3 PO 4 formation. Apparent reaction rate constant (K app ) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H 2 O 2 , Co-M-HAP(II)/H 2 O 2 and M-HAP (I)/UV systems, respectively

  7. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy

    Science.gov (United States)

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-01

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2 kV and a power supply system equipped with 25/50 μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp3/sp2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp3/sp2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed.

  8. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy.

    Science.gov (United States)

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-05

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2kV and a power supply system equipped with 25/50μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp 3 /sp 2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp 3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp 3 /sp 2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp 3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    Science.gov (United States)

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. XRD and spectral dataset of the UV-A stable nanotubes of 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine.

    Science.gov (United States)

    Govindhan, R; Karthikeyan, B

    2017-10-01

    The data presented in this article are related to the research entitled of UV-A stable nanotubes. The nanotubes have been prepared from 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine (BTTP). XRD data reveals the size of the nanotubes. As-synthesized nanotubes (BTTPNTs) are characterized by UV-vis optical absorption studies [1] and photo physical degradation kinetics. The resulted dataset is made available to enable critical or extended analyzes of the BTTPNTs as an excellent light resistive materials.

  11. Adsorption characteristics of Au nanoparticles onto poly(4-vinylpyridine) surface revealed by QCM, AFM, UV/vis, and Raman scattering spectroscopy.

    Science.gov (United States)

    Kim, Kwan; Ryoo, Hyunwoo; Lee, Yoon Mi; Shin, Kuan Soo

    2010-02-15

    In this work, we report that the adsorption and aggregation processes of Au nanoparticles on a polymer surface can be monitored by means of surface-enhanced Raman scattering (SERS) spectroscopy. Specifically, we were able to analyze the adsorption process of citrate-stabilized Au nanoparticles onto a film of poly(4-vinylpyridine) (P4VP) by taking a series of SERS spectra, during the self-assembly of Au nanoparticles onto the polymer film. In order to better analyze the SERS spectra, we separately conducted quartz crystal microbalance (QCM), UV/vis spectroscopy, and atomic force microscope (AFM) measurements. The adsorption kinetics revealed by QCM under the in situ conditions was in fair agreement with that determined by the ex situ AFM measurement. The number of Au nanoparticles adsorbed on P4VP increased almost linearly with time: 265 Au nanoparticles per 1microm(2) were adsorbed on the P4VP film after 6h of immersion. The SERS signal measured in the ex situ condition showed a more rapid increase than that of QCM; however, its increasing pattern was quite similar to that of UV/vis absorbance at longer wavelengths, suggesting that Au nanoparticles actually became agglomerated on P4VP. Copyright 2009 Elsevier Inc. All rights reserved.

  12. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    Science.gov (United States)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  13. Defects in UV-vis-NIR reflectance spectra as method for forgery detections in writing documents

    Energy Technology Data Exchange (ETDEWEB)

    Somma, F; Aloe, P; Schirripa Spagnolo, G

    2010-11-01

    Documents have taken up a very important place in our society. Frauds committed in connection with documents are not at all uncommon, and, in fact, represent a very large domain of the forensic science called 'questioned documents'. In the field of forensic examination of questioned documents, the legitimacy of an ink entry is often an essential question. A common type of forgery consists in materially altering an existing writing or adding a new writing. These changes can be characterized by means of optical spectroscopy. The aim of this work is to perform the UV-vis-NIR reflectance spectrophotometry to analyze a range of blue and black commercial ballpoint pens, in order to investigate the discriminating abilities of the different inks found on the same document.

  14. Bonding of Co Ions in ZSM-5, Ferrierite, and Mordenite: An X-ray Absorption, UV-Vis and IR Study

    Czech Academy of Sciences Publication Activity Database

    Drozdová, L.; Prins, R.; Dědeček, Jiří; Sobalík, Zdeněk; Wichterlová, Blanka

    2002-01-01

    Roč. 106, č. 9 (2002), s. 2240-2248 ISSN 1089-5647 R&D Projects: GA ČR GA104/00/0640 Institutional research plan: CEZ:AV0Z4040901 Keywords : ZSM-5 * Co(II)ions * Vis spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.611, year: 2002

  15. A CCD-based system for the detection of DNA in electrophoresis gels by UV absorption

    International Nuclear Information System (INIS)

    Mahon, A.R.; MacDonald, J.H.; Mainwood, A.; Ott, R.J.

    1999-01-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards. (author)

  16. Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy storage.

    Science.gov (United States)

    Gray, Victor; Lennartson, Anders; Ratanalert, Phasin; Börjesson, Karl; Moth-Poulsen, Kasper

    2014-05-25

    Red-shifting the absorption of norbornadienes (NBDs), into the visible region, enables the photo-isomerization of NBDs to quadricyclanes (QCs) to be driven by sunlight. This is necessary in order to utilize the NBD-QC system for molecular solar thermal (MOST) energy storage. Reported here is a study on five diaryl-substituted norbornadienes. The introduced aryl-groups induce a significant red-shift of the UV/vis absorption spectrum of the norbornadienes, and device experiments using a solar-simulator set-up demonstrate the potential use of these compounds for MOST energy storage.

  17. Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Sener, S.; Arpac, E.; Sayilkan, H.

    2008-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without acid catalyst at 225 deg. C in 1 h. Nanostructure-TiO 2 based thin films, contain at different solid ratio of TiO 2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics

  18. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils; Detección de la adulteración de aceite de oliva mediante relaxometría magnética nuclear de campo bajo y espectroscopía UV-Vis sobre mezcla de aceite de oliva con diversos aceites comestibles.

    Energy Technology Data Exchange (ETDEWEB)

    Ok, S.

    2017-07-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [Spanish] La adulteración del aceite de oliva con sustituyentes menos saludables es una amenaza para la salud pública. En este trabajo, la detección de la adulteración del aceite de oliva se demuestra utilizando tanto relaxometría magnética nuclear de campo bajo (LF) de protones (1H) (RMN) y espectroscopía visible y ultra-violeta (UV). Tres muestras de aceites de oliva con diferentes contenidos en oleico se mezclaron con aceites de almendra, ricino, maíz y sésamo con tres relaciones volumétricas. Además, el de arbequina de California se mezcló con cánola, lino, semilla de uva, cacahuete, soja y aceites de girasol con tres relaciones volumétricas. Las curvas de

  19. Determination of mixture valence plutonium and multicomponent by computer resolution analysis of absorption spectrum (UV/VIS/NIR) (CRAAS)

    International Nuclear Information System (INIS)

    Zhuang Weixin; Ye Guoan; Huang Lifeng; Sun Hongfang; Zhao Yanju

    1996-09-01

    A spectrophotometry has been developed which can directly determine a multi-component sample by spectrophotometry without any chemical separation. CRAAS (Computer Resolution Analysis of Absorption Spectrum) has been reported. It is different from the previous spectrophotometry depending on only one or several special absorption peak. The CRAAS deals with the whole region of absorption spectrum by mathematical statistics. So CRAAS has higher accuracy, stronger power and very high resolution. The trouble comes from overlap of different spectrum in each other has been solved because CRAAS depends on the whole spectrum. As long as two spectra have different shape, their concentrations can be determined even their special absorption peaks are seriously overlapped. The accuracy is about +-5%. (2 refs., 7 figs., 8 tabs.)

  20. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  1. The translucency of dental composites investigated by UV-VIS spectroscopy

    International Nuclear Information System (INIS)

    Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M.

    2013-01-01

    Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, Restacril RO and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, Restacril RO and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample

  2. The translucency of dental composites investigated by UV-VIS spectroscopy

    Science.gov (United States)

    Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M.

    2013-11-01

    Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, RestacrilRO and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, RestacrilRO and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.

  3. Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation

    Science.gov (United States)

    Varghese, Babu; Bonito, Valentina; Turco, Simona; Verhagen, Rieko

    2016-03-01

    Laser induced optical breakdown (LIOB) is a non-linear absorption process leading to plasma formation at locations where the threshold irradiance for breakdown is surpassed. In this paper we experimentally demonstrate the influence of polarization and absorption on laser induced breakdown threshold in transparent, absorbing and scattering phantoms made from water suspensions of polystyrene microspheres. We demonstrate that radially polarized light yields a lower irradiance threshold for creating optical breakdown compared to linearly polarized light. We also demonstrate that the thermal initiation pathway used for generating seed electrons results in a lower irradiance threshold compared to multiphoton initiation pathway used for optical breakdown.

  4. Stratospheric minor species vertical distributions during polar winter by balloon borne UV-Vis spectrometry

    Science.gov (United States)

    Pommereau, J. P.; Piquard, J.

    1994-01-01

    A light, relatively cheap and easy to operate balloonborne UV-visible spectrometer was designed for investigating ozone photochemistry in the Arctic winter. The instrument was flown 11 times during the European Arctic Stratospheric Ozone Experiment (EASOE) in winter 1991-92 in Northern Scandinavia. The first simultaneous measurements of vertical distributions of aerosols, PSC's, O3, NO2 and OClO inside the vortex during flight no. 6 on 16 January, in cold conditions are reported, which show that nitrogen oxides were almost absent (lower than 100 ppt) in the stratosphere below 22 km, while a layer of relatively large OClO concentration (15 ppt) was present at the altitude of the minimum temperature.

  5. Effects of UV light and chromium ions on wood flavonoids

    International Nuclear Information System (INIS)

    Molnárné Hamvas, L.; Németh, K.; Stipta, J.

    2003-01-01

    The individual and simultaneous effect of UV light and chromium ions was investigated by spectrophotometric methods on inert surfaces impregnated with quercetin or robinetin. The UV-VIS spectra of the silica gel plates impregnated with these flavonoids were modified characteristically after irradiating ultraviolet light. Even a half an hour of irradiation has caused irreversible changes in the molecule structure. A certain chemical - presumably complexation - was concluded from the change of spectral bands assigned to flavonoids when impregnated with chromic ions. Hexavalent chromium caused more complex changes in the absorption spectra. The differences in the spectra could indicate either the oxidation and decomposition of flavonoids, or some kind of coordination process and the reduction of hexavalent chromium. The simultaneous application of UV light and chromium ions caused more pronounced effects. The complexation process between chromium(III) and flavonoid was completed

  6. DUVAS (derivative uv-absorption spectrometer): instrument description and operating manual

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Dougherty, J.M.; Metcalfe, C.E.

    1980-11-01

    DUVAS is a real-time, field-portable spectrometer capable of monitoring a variety of aromatic organic vapors and inorganic gases at sub-ppM concentrations. The instrument is a prototype, microcomputer-controlled, derivative ultraviolet (UV) absorption spectrometer (DUVAS) developed primarily for area monitoring at coal conversion facilities, although other important occupational and environmental monitoring applications for compounds such as SO 2 , NO/sub x/, NH 3 , and HCHO are also being pursued

  7. Using UHPLC and UV-vis Fingerprint Method to Evaluate Substitutes for Swertia mileensis: An Endangered Medicinal Plant.

    Science.gov (United States)

    Li, Jie; Zhang, Ji; Jin, Hang; Wang, Yuan-Zhong; Huang, Heng-Yu

    2017-01-01

    exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide.

  8. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    Science.gov (United States)

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  9. Analysis of Fe species in zeolites by UV-VIS-NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Kreibich, Viktor; Dědeček, Jiří; Grygar, Tomáš; Wichterlová, Blanka; Sobalík, Zdeněk; Martens, J. A.; Brosius, R.; Tokarová, V.

    2005-01-01

    Roč. 80, 1-3 (2005), s. 279-289 ISSN 1387-1811 R&D Projects: GA MŠk OC D15.20 Grant - others:European Union(XE) G5RD-CT-2001-00595 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fe-zeolites * UV-VIS spectra * IR spectra * voltammetry * Fe complexes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.355, year: 2005

  10. Optical absorption analysis on diamond crystals modified by H2+ implantation and subsequent annealing

    International Nuclear Information System (INIS)

    Ma, Z.Q.; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Takeshita, Hidefumi; Goppelt-Langer, P.C.

    1995-01-01

    The optical absorption analysis on synthetic diamond irradiated by molecular hydrogen ions (H 2 + ) with 40 keV, 10 15 -10 17 H/cm 2 , at 100 K, showed that the absorption coefficient (α) of modified layer in UV-VIS range was increased with the implanted dose and decreased with thermal annealing. While its relative optical band gap (E r,opt ) was decreased with ion fluence and proportional to the annealing temperature. The possible microstructure of atomic coordination for as-implanted and subsequent annealing samples was discussed tentatively. In addition the optical inhomogeneity of the type Ib diamond has been revealed by absorption topograph at λ=430 nm. (author)

  11. CdS/ZnS core-shell nanocrystal photosensitizers for visible to UV upconversion.

    Science.gov (United States)

    Gray, Victor; Xia, Pan; Huang, Zhiyuan; Moses, Emily; Fast, Alexander; Fishman, Dmitry A; Vullev, Valentine I; Abrahamsson, Maria; Moth-Poulsen, Kasper; Lee Tang, Ming

    2017-08-01

    Herein we report the first example of nanocrystal (NC) sensitized triplet-triplet annihilation based photon upconversion from the visible to ultraviolet (vis-to-UV). Many photocatalyzed reactions, such as water splitting, require UV photons in order to function efficiently. Upconversion is one possible means of extending the usable range of photons into the visible. Vis-to-UV upconversion is achieved with CdS/ZnS core-shell NCs as the sensitizer and 2,5-diphenyloxazole (PPO) as annihilator and emitter. The ZnS shell was crucial in order to achieve any appreciable upconversion. From time resolved photoluminescence and transient absorption measurements we conclude that the ZnS shell affects the NC and triplet energy transfer (TET) from NC to PPO in two distinct ways. Upon ZnS growth the surface traps are passivated thus increasing the TET. The shell, however, also acts as a tunneling barrier for TET, reducing the efficiency. This leads to an optimal shell thickness where the upconversion quantum yield ( Φ ' UC ) is maximized. Here the maximum Φ ' UC was determined to be 5.2 ± 0.5% for 4 monolayers of ZnS shell on CdS NCs.

  12. UV-vis-NIR and EPR characterisation of the redox series [MQ3]2+,+,0,−,2−, M = Ru or Os, and Q = o-quinone derivative

    Czech Academy of Sciences Publication Activity Database

    Das, A. K.; Hübner, R.; Sarkar, B.; Fiedler, Jan; Záliš, Stanislav; Lahiri, G. K.; Kaim, W.

    2012-01-01

    Roč. 41, č. 29 (2012), s. 8913-8921 ISSN 1477-9226 R&D Projects: GA MŠk LD11086 Institutional support: RVO:61388955 Keywords : physical chemistry * EPR spectroscopy * UV-vis-NIR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.806, year: 2012

  13. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  14. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    Science.gov (United States)

    Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter

    2010-01-01

    Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW−1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. PMID:20161974

  15. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    Directory of Open Access Journals (Sweden)

    Donat-Peter Häder

    2010-01-01

    Full Text Available Mycosporine-like amino acids (MAAs and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW-1, concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm. The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm and UV-B (280–320 nm range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments.

  16. Effect of Molecular Guest Binding on the d-d Transitions of Ni2+ of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    Science.gov (United States)

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-12-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  17. UV-vis in situ spectrometry data mining through linear and non linear analysis methods

    Directory of Open Access Journals (Sweden)

    Liliana López-Kleine

    2014-01-01

    Full Text Available Los espectrómetros UV-visibles son captores que registran la absorbancia de luz emitida por partículas suspendidas en el agua a diferentes longitudes de onda y proporcionan mediciones en continuo, las cuales pueden ser interpretadas como concentraciones de parámetros comúnmente usados para evaluar el estado físico-químico de cuerpos de agua. Parámetros clásicos usados para detectar la presencia de contaminación en el agua son los sólidos suspendidos totales (TSS y la demanda química de oxígeno (CDO. Métodos de análisis flexibles y eficientes son necesarios para extraer información útil para fines de gestión y monitoreo a partir de los datos multivariados que proporcionan los captores. Se han usado métodos de calibración de tipo regresión parcial por mínimos cuadrados parciales (PLS. Varios autores han demostrado la necesidad de realizar la calibración para cada tipo de datos y cada cuerpo de agua, así como explorar métodos de análisis lineales y no lineales para el análisis de datos UV-visible y para determinar su relación con parámetros clásicos. En este trabajo se aplican métodos de análisis multivariado lineales y no lineales para la minería de datos UV-vis de alta dimensión, los cuales resultan útiles para la identificación de relaciones entre parámetros y longitudes de onda, la detección de muestras atípicas, así como la detección de estructuras no lineales en los datos.

  18. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2017-07-01

    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  19. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    Science.gov (United States)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  20. Reduction of cross-polarized reflection to enhance dual-band absorption

    Science.gov (United States)

    Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay

    2016-11-01

    In this paper, cross-polarized reflection from a periodic array of metal-dielectric-metal resonator units is reduced to improve its absorbing performance. Through this simple and typical example, it is shown that some reported absorbers are actually poor absorbers but efficient polarization converters, when the cross-polarized reflection is considered. Using a frequency selective surface, sandwiched between the top layer and the ground plane, the cross-polarized reflection is reduced by 7.2 dB at 5.672 GHz and 8.5 dB at 9.56 GHz, while negligibly affecting the co-polarized reflection reduction performance. The polarization conversion ratio is reduced from 90. 74% to 34.12% and 98.51% to 27.2% and total absorption is improved up to 80% from 26% and 21% around the two resonant frequencies. The reflection characteristics of the proposed absorber are quantitatively analyzed using interference theory, where the near field coupling of the resonant geometries and ground is taken into account. Measurement results show good agreement with both the numerically simulated and theoretical results.

  1. UV-cured polymeric films containing ZnO and silver nanoparticles with UV–vis light-assisted photocatalytic activity

    International Nuclear Information System (INIS)

    Podasca, Viorica E.; Buruiana, Tinca; Buruiana, Emil C.

    2016-01-01

    Highlights: • Synthesis of photopolymerized films containing ZnO and/or Ag NPs is reported. • Photopolymerization of the acrylic monomers occurred with conversions of 57–90%. • XRD, EDX, and TEM analyses proved the uniform distribution of NPs in the matrix. • MB was photodegradated using the hybrid films under UV–vis irradiation. - Abstract: Hybrid polymer composites incorporating preformed ZnO alone or its mixture with Ag nanoparticles created during UV irradiation of some urethane acrylic monomers including trietoxysilylpropyl carbamoyloxyethyl methacrylate were synthesized and characterized by spectroscopic ("1H ("1"3C) NMR, FTIR, UV–vis, fluorescence, X-ray diffraction) and microscopic (AFM, ESEM/EDX, TEM) techniques. The results confirmed that the double bond conversion measured through FTIR spectroscopy varied in the range of 57–90% (after 60 s of irradiation), exhibiting formulation composition dependence. In the crosslinked polymer networks the existence of individual nanoparticles with primarily spherical shape and sizes between 5 and 15 nm for ZnO, and around 3 nm for in situ photogenerated silver nanoparticles was evidenced. Additionally, the photocatalytic effect of the photopolymerized hybrid films was investigated by determining the decomposition rate of the methylene blue (MB) in ethanol (over 90%) under UV (2.7 × 10"−"2 s"−"1) and visible irradiation (2.9 × 10"−"2 min"−"1). It was found that the composite films containing a higher amount of ZnO-Ag nanoparticles placed in water induced the photodecomposition of MB (∼87% after 100 min of visible irradiation; k = 2.1 × 10"−"2 min"−"1). The good efficiency of the NPs from these polymer films make them attractive for applications in photocatalysis of organic dye molecules.

  2. UV-cured polymeric films containing ZnO and silver nanoparticles with UV–vis light-assisted photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Podasca, Viorica E.; Buruiana, Tinca; Buruiana, Emil C., E-mail: emilbur@icmpp.ro

    2016-07-30

    Highlights: • Synthesis of photopolymerized films containing ZnO and/or Ag NPs is reported. • Photopolymerization of the acrylic monomers occurred with conversions of 57–90%. • XRD, EDX, and TEM analyses proved the uniform distribution of NPs in the matrix. • MB was photodegradated using the hybrid films under UV–vis irradiation. - Abstract: Hybrid polymer composites incorporating preformed ZnO alone or its mixture with Ag nanoparticles created during UV irradiation of some urethane acrylic monomers including trietoxysilylpropyl carbamoyloxyethyl methacrylate were synthesized and characterized by spectroscopic ({sup 1}H ({sup 13}C) NMR, FTIR, UV–vis, fluorescence, X-ray diffraction) and microscopic (AFM, ESEM/EDX, TEM) techniques. The results confirmed that the double bond conversion measured through FTIR spectroscopy varied in the range of 57–90% (after 60 s of irradiation), exhibiting formulation composition dependence. In the crosslinked polymer networks the existence of individual nanoparticles with primarily spherical shape and sizes between 5 and 15 nm for ZnO, and around 3 nm for in situ photogenerated silver nanoparticles was evidenced. Additionally, the photocatalytic effect of the photopolymerized hybrid films was investigated by determining the decomposition rate of the methylene blue (MB) in ethanol (over 90%) under UV (2.7 × 10{sup −2} s{sup −1}) and visible irradiation (2.9 × 10{sup −2} min{sup −1}). It was found that the composite films containing a higher amount of ZnO-Ag nanoparticles placed in water induced the photodecomposition of MB (∼87% after 100 min of visible irradiation; k = 2.1 × 10{sup −2} min{sup −1}). The good efficiency of the NPs from these polymer films make them attractive for applications in photocatalysis of organic dye molecules.

  3. Modified Fe{sub 3}O{sub 4}- hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, S., E-mail: valizadehsolmaz@yahoo.com; Rasoulifard, M.H., E-mail: m_h_rasoulifard@znu.ac.ir; Dorraji, M.S. Seyed, E-mail: dorraji@znu.ac.ir

    2014-11-15

    Graphical abstract: - Highlights: • Photocatalytic degradation of dye by Ag modified HAP under visible light. • Study of Fenton like degradation of dye by transition metal ions modified HAP. • Comparison of catalytic systems according to Langmuir-Hinshelwood kinetic expression. - Abstract: The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag{sub 3}PO{sub 4} formation. Apparent reaction rate constant (K{sub app}) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H{sub 2}O{sub 2}, Co-M-HAP(II)/H{sub 2}O{sub 2} and M-HAP (I)/UV systems, respectively.

  4. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype.

    Science.gov (United States)

    Yu, Lei

    2017-06-26

    A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.

  5. UV-VIS-spectroscopical investigations of the green solutions of nitrogen triiodide-1-pyridine in pyridine

    International Nuclear Information System (INIS)

    Kerbachi, R.; Minkwitz, R.; Engelhardt, U.

    1984-01-01

    Solid, crystalline nitrogen triiodide-1-pyridine has a polymeric structure similar to that of nitrogen triiodide-1-ammonia consisting of NI 4 tetrahedra linked to chains by common vertices. The solubility of both compounds in liquid ammonia is accomplished by a degradation of the chains involving protolysis equilibria with monoiodamine. UV-VIS-spectra of the green solutions of NI 3 pyridine in the aprotic solvent pyridine between -30 and -16 0 C and Raman-spectra of these solutions at -30 0 C or quenched with liquid nitrogen at -196 0 C show, that the chains are retained here at least to some extent. The solutions are instable even at low temperatures and decompose in a first order reaction yielding nitrogen and iodine. The halflife period at -16 0 C is 5 hours, at -30 0 C 20 hours. (author)

  6. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W

    2014-01-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate...... in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved....... Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing....

  7. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    Science.gov (United States)

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  8. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    Science.gov (United States)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  9. Synthesis and XRD, FT-IR vibrational, UV-vis, and nonlinear optical exploration of novel tetra substituted imidazole derivatives: A synergistic experimental-computational analysis

    Science.gov (United States)

    Ahmad, Muhammad Saeed; Khalid, Muhammad; Shaheen, Muhammad Ashraf; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo; Shad, Hazoor Ahmad

    2018-04-01

    Heterocyclic compounds have potential applications in many fields of life. We synthesized novel tetra substituted imidazoles by four-component condensation of benzil, substituted aldehydes, substituted anilines and ammonium acetate as a source of ammonia and acetic acid as the solvent. Their chemical structures were resolved through X-ray crystallographic and spectroscopic (Fourier transform IR and UV-vis) techniques. In addition to experimental analysis, density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level were performed on 4-bromo-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (1), 4-bromo-2-(1-(1-naphthalen-yl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (2), and 2-(1-(2-chlorophenyl)-4,5-diphenyl-1-H-imidazole-2-yl)-6-methoxyphenol (3) to obtain the optimized geometry and spectroscopic (Fourier transform IR and UV-vis) and non-linear optical properties. Frontier molecular orbital analysis was performed at the Hartee-Fock/6-311+g(d,p) and DFT/B3LYP/6-311+G(d,p) levels of theory. Natural bond orbital (NBO) and UV-vis spectral analyses were performed at the M06-2X/6-31+G(d,p) and time-dependent DFT/B3LYP/6-311+G(d,p) levels, respectively. Overall, the DFT findings show good agreement with the experimental data. The hyper conjugative interaction network, which is responsible for the stability of compounds 1, 2 and 3 was explored by the NBO approach. The global reactivity parameters were explored with use of the energy of the frontier molecular orbitals. DFT calculations predict the first-order hyperpolarizabilities of compounds 1, 2 and 3 are 294.89 × 10-30, 219.45 × 10-30 and 146.77 × 10-30 esu, respectively. A two-state model was used to describe the non-linear optical properties of the compounds investigated.

  10. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...... response function, the near K-edge x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment. Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies in transition energies due to incomplete treatment...

  11. Radiation degradation of waste waters. Reverse phase-high performance liquid chromatography and multicomponent UV-VIS analysis of gamma-irradiated aqueous solutions of nitrobenzene Pt.1

    International Nuclear Information System (INIS)

    Kuruc, J.; Sahoo, M.K.; Locaj, J.; Hutta, M.

    1994-01-01

    Saturated aqueous solutions of nitrobenzene (in water, 0.1M nitric acid and 0.1M potassium hydroxide) were irradiated with 60 Co γ-rays in deaerated condition. Radiolytic products were analyzed using reverse phase-high performance liquid chromatography (RP-HPLC) and multicomponent UV-VIS spectrometry. With the aid of RP-HPLC retention times of the radiolytic products were found to be identical with those of isomeric nitrophenols, aminophenols and dinitrophenols. According to the primary information obtained from RP-HPLC and literature, we have chosen ten standards and eleven wavelengths for multicomponent UV-VIS analysis (linear multiparametric regression analysis) and the concentrations of nitrobenzene, nitrophenols, aminophenols and dinitrophenols in water, HNO 3 and KOH solutions were calculated. G-values (molecules/100 eV) of the radiolytic products and decomposition of nitrobenzene in aqueous solutions G(-nitrobenzene) were calculated from the dependence of their concentrations with dose. Ph has relatively little influence on the decrease of concentration of nitrobenzene, but has strong influence on the product composition. (author) 7 refs.; 5 figs.; 5 tabs

  12. Detection of Outliers and Imputing of Missing Values for Water Quality UV-VIS Absorbance Time Series

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas-Nossa

    2017-01-01

    Full Text Available Context: The UV-Vis absorbance collection using online optical captors for water quality detection may yield outliers and/or missing values. Therefore, data pre-processing is a necessary pre-requisite to monitoring data processing. Thus, the aim of this study is to propose a method that detects and removes outliers as well as fills gaps in time series. Method: Outliers are detected using Winsorising procedure and the application of the Discrete Fourier Transform (DFT and the Inverse of Fast Fourier Transform (IFFT to complete the time series. Together, these tools were used to analyse a case study comprising three sites in Colombia ((i Bogotá D.C. Salitre-WWTP (Waste Water Treatment Plant, influent; (ii Bogotá D.C. Gibraltar Pumping Station (GPS; and, (iii Itagüí, San Fernando-WWTP, influent (Medellín metropolitan area analysed via UV-Vis (Ultraviolet and Visible spectra. Results: Outlier detection with the proposed method obtained promising results when window parameter values are small and self-similar, despite that the three time series exhibited different sizes and behaviours. The DFT allowed to process different length gaps having missing values. To assess the validity of the proposed method, continuous subsets (a section of the absorbance time series without outlier or missing values were removed from the original time series obtaining an average 12% error rate in the three testing time series. Conclusions: The application of the DFT and the IFFT, using the 10% most important harmonics of useful values, can be useful for its later use in different applications, specifically for time series of water quality and quantity in urban sewer systems. One potential application would be the analysis of dry weather interesting to rain events, a feat achieved by detecting values that correspond to unusual behaviour in a time series. Additionally, the result hints at the potential of the method in correcting other hydrologic time series.

  13. Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination.

    Science.gov (United States)

    Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei

    2012-01-01

    In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.

  14. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem.

    Science.gov (United States)

    Vaudour, Emmanuelle; Cerovic, Zoran G; Ebengo, Dav M; Latouche, Gwendal

    2018-04-10

    For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, N tot , CaCO₃, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca 2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K⁺, Na⁺, Mg 2+ , coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, N tot , CaCO₃, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field.

  15. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem

    Directory of Open Access Journals (Sweden)

    Emmanuelle Vaudour

    2018-04-01

    Full Text Available For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, Ntot, CaCO3, iron, fine particle-sizes (clay, fine silt, fine sand, CEC, pH and exchangeable Ca2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K+, Na+, Mg2+, coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75. Predictions of SOC, Ntot, CaCO3, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68 when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field.

  16. Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media

    International Nuclear Information System (INIS)

    Kuladeep, Rajamudili; Jyothi, L.; Narayana Rao, D.; Prakash, P.; Mayank Shekhar, S.; Durga Prasad, M.

    2013-01-01

    In this communication, we carried out the systematic investigation of nonlinear absorption and scattering properties of Aluminium nanoparticles (Al NPs) in various polar and non-polar solvents. Al NPs were synthesized with pulsed Nd:YAG laser operated at 1064 nm by ablating Al target in polar and non-polar liquid environment like chloroform, chlorobenzene, toluene, benzene, and carbon tetrachloride. Synthesized Al NPs colloids of various solvents differ in appearance and UV-Vis extinction spectra exhibit absorption in the UV region. The characterization of Al NPs performed by Transmission electron microscopy (TEM) studies reveal that NPs are made up of a well crystallized Al inner part (bright zone) embedded with an amorphous metal Al shell (dark region). Growth, aggregation, and precipitation mechanisms which influence the optical properties and stability of NPs are found to be related to the dipole moment of the surrounding liquid environment. The nonlinear absorption and scattering studies are performed by open aperture Z-scan technique with 532 nm under nanosecond pulse excitation. The Z-scan measurements are fitted theoretically to estimate both two-photon absorption (TPA) and nonlinear scattering (NLS) coefficients. In polar solvents like chlorobenzene, chloroform synthesized Al NPs exhibited higher TPA, NLS coefficient values, and lower optical limiting threshold values in comparison with partially polar solvent like toluene and non-polar solvents like benzene and carbontetrachloride. These results indicate the potential use of Al NPs as a versatile optical limiting material

  17. Cost Effective Process Monitoring using UV-VIS-NIR Spectroscopy

    International Nuclear Information System (INIS)

    Cipiti, B.; McDaniel, M.; Bryan, S.; Pratt, S.

    2015-01-01

    UV-VIS-NIR Spectroscopy is a simple and inexpensive measurement technology which has been proposed for process monitoring applications at reprocessing plants. The purpose of this work was to examine if spectroscopy could replace more costly analytical measurements to reduce the safeguards burden to the operator or inspector. Recognizing that the higher measurement uncertainty of spectroscopy makes it unsuited for the accountability tanks, the approach instead was to focus on replacing mass spectrometry for random samples that are taken in a plant. The Interim Inventory Verification and Short Inventory Verification (IIV/SIV) at the Rokkasho Reprocessing Plant utilize random sampling of internal process vessels and laboratory measurement using Isotope Dilution Mass Spectrometry (IDMS) to account for plutonium on a timely basis. These measurements are time-consuming, and the low uncertainty may not always be required. For this work, modelling was used to examine if spectroscopy could be used without adversely affecting the safeguards of the plant. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, was utilized to examine the replacement of IDMS measurements with spectroscopy. Modeling results showed that complete replacement of IDMS with spectroscopy lowered the detection probability for diversion by an unacceptable amount. However, partial replacement (only for samples from vessels with low plutonium content) did not adversely affect the detection probability. This partial replacement covers roughly half of the twenty or so sampling points used for the IIV/SIVA cost-benefit analysis was completed to determine the cost savings that this approach can provide based on lower equipment costs, maintenance, and reduction of analysts' time. This work envisions working with the existing sampling system and performing the spectroscopic measurements in the analytical laboratory, but future work could examine incorporating

  18. UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites

    Science.gov (United States)

    Mavengere, Shielah; Kim, Jung-Sik

    2018-06-01

    In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.

  19. Discrimination of whisky brands and counterfeit identification by UV-Vis spectroscopy and multivariate data analysis.

    Science.gov (United States)

    Martins, Angélica Rocha; Talhavini, Márcio; Vieira, Maurício Leite; Zacca, Jorge Jardim; Braga, Jez Willian Batista

    2017-08-15

    The discrimination of whisky brands and counterfeit identification were performed by UV-Vis spectroscopy combined with partial least squares for discriminant analysis (PLS-DA). In the proposed method all spectra were obtained with no sample preparation. The discrimination models were built with the employment of seven whisky brands: Red Label, Black Label, White Horse, Chivas Regal (12years), Ballantine's Finest, Old Parr and Natu Nobilis. The method was validated with an independent test set of authentic samples belonging to the seven selected brands and another eleven brands not included in the training samples. Furthermore, seventy-three counterfeit samples were also used to validate the method. Results showed correct classification rates for genuine and false samples over 98.6% and 93.1%, respectively, indicating that the method can be helpful for the forensic analysis of whisky samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy.

    Science.gov (United States)

    Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M

    2018-03-02

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV-vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV-vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c -axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV-vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  1. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    Science.gov (United States)

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Free radicals in irradiated unstabilized polypropylene, as seen by diffuse reflection absorption-spectrophotometry

    International Nuclear Information System (INIS)

    Zagorski, Z.P.; Rafalski, A.

    1998-01-01

    The introduction of UV-Vis absorption spectrophotometry to the study of radiation chemistry of polymers has opened the possibility to investigate even very opaque samples. The virgin powder polypropylene, as obtained from the industrial production line, shows after irradiation unstable products of radiolysis. Until now they were investigated mainly by EPR method. Optical absorption spectra (by diffuse reflection spectrophotometry) contribute to better identification and study of changes in time, temperature and diffusion of reactive gases. Studying the formation of stable compounds, which do not produce EPR signal, we are able to examine these species on the basis of their electronic spectra. The most important results concern the peroxides in irradiated polypropylene

  3. A combined Surface Enhanced Raman Spectroscopy (SERS)/UV-vis approach for the investigation of dye content in commercial felt tip pens inks.

    Science.gov (United States)

    Saviello, Daniela; Trabace, Maddalena; Alyami, Abeer; Mirabile, Antonio; Giorgi, Rodorico; Baglioni, Piero; Iacopino, Daniela

    2018-05-01

    The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Bodipy–C60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer† †Electronic supplementary information (ESI) available: Syntheses, structure characterization data, and UV/vis absorption and emission spectra. See DOI: 10.1039/c4sc03865g

    Science.gov (United States)

    Guo, Song; Xu, Liang; Xu, Kejing; Küçüköz, Betül; Karatay, Ahmet; Yaglioglu, Halime Gul; Hayvali, Mustafa; Elmali, Ayhan

    2015-01-01

    Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives (B-1, B-2 and B-3, which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C60 was used as the complementary hydrogen bonding module (C-1), in which the C60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references (B-1-Me, B-2-Me and B-3-Me), which are unable to form strong H-bonds with C-1. Triple H-bonds are formed between each Bodipy antenna (B-1, B-2 and B-3) and the C60 module (C-1). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C60 module (for assembly B-1·C-1), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1). Intra-assembly forward–backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet–triplet annihilation upconversion. PMID:29218142

  5. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra.

    Science.gov (United States)

    He, Anqi; Kang, Xiaoyan; Xu, Yizhuang; Noda, Isao; Ozaki, Yukihiro; Wu, Jinguang

    2017-10-05

    The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420nm, 420nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD. Copyright © 2017. Published by Elsevier B.V.

  6. Effect of the nickel precursor on the impregnation and drying of γ-Al2O3 catalyst bodies: a UV-vis and IR micro-spectroscopic study

    NARCIS (Netherlands)

    Espinosa Alonso, L.; de Jong, K.P.; Weckhuysen, B.M.

    2008-01-01

    The elemental preparation steps of impregnation and drying of Ni/g-Al2O3 catalyst bodies have been studied by combining UV-vis and IR microspectroscopy. The influence of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes (with en ) ethylenediamine and x ) 0-3) has been

  7. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    Science.gov (United States)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  8. Compact, integrable, and long life time Raman multiline UV-Vis source based on hypocycloid core Kagome HC-PCF

    Science.gov (United States)

    Chafer, M.; Lekiefs, Q.; Gorse, A.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F.

    2017-02-01

    Raman-gas filled HC-PCF has proved to be an outstanding Raman-convertor, as illustrated by the generation of more than 5 octaves wide Raman comb using a hydrogen-filled Kagome HC-PCF pumped with high power picosecond-laser, or the generation of multiline Raman-source in the UV-Vis using a very compact system pumped with micro-chip laser. Whilst these demonstrations are promising, a principal challenge for the industrialization of such a Raman source is its lifetime as the H2 diffusion through silica is high enough to leak out from the fiber within only a few months. Here, we report on a HC-PCF based Raman multiline source with a very long life-span. The system consists of hydrogen filled ultra-low loss HC-PCF contained in highly sealed box, coined CombBox, and pumped with a 532 nm micro-chip laser. This combination is a turnkey multiline Raman-source with a "shoe box" size. The CombBox is a robust and compact component that can be integrated and pumped with any common pulsed laser. When pumped with a 32 mW average power and 1 ns frequency-doubled Nd:Yag microchip laser, this Raman-source generates 24 lines spanning from 355 to 745 nm, and a peak power density per line of 260 mW/nm for the strongest lines. Both the output power and the spectrum remained constant over its monitoring duration of more than six months. The spectrum of this multiline laser superimposes with no less than 17 absorption peaks of fluorescent dyes from the Alexa Fluor family used as biological markers.

  9. Nonlinear Absorptions of CdSeTe Quantum Dots under Ultrafast Laser Radiation

    Directory of Open Access Journals (Sweden)

    Zhijun Chai

    2016-01-01

    Full Text Available The oil-soluble alloyed CdSeTe quantum dots (QDs are prepared by the electrostatic method. The basic properties of synthesized CdSeTe QDs are characterized by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscope. The off-resonant nonlinear optical properties of CdSeTe QDs are studied by femtosecond Z-scan at 1 kHz (low-repetition rate and 84 MHz (high-repetition rate. Nonlinear absorption coefficients are calculated under different femtosecond laser excitations. Due to the long luminescent lifetime of CdSeTe QDs, under the conditions of high-repetition rate, for open-aperture curve, heat accumulation and bleaching of ground state are responsible for the decrease of two-photon absorption (TPA coefficient.

  10. Detection of biologically important anions in aqueous media by dicationic azaborines bearing ammonio or phosphonio groups.

    Science.gov (United States)

    Agou, Tomohiro; Sekine, Masaki; Kobayashi, Junji; Kawashima, Takayuki

    2009-01-01

    New cationic triarylboranes bearing ammonio or phosphonio groups on the periphery were synthesized from a common intermediate, a dibromodibenzoazaborine. These cationic molecules are soluble in highly polar organic solvents as well as water, and they exhibit strong light absorption and photoluminescence emission in water. Complexation of the cationic azaborines with fluoride and cyanide ions in aqueous media proceeded and could be monitored by NMR, UV/Vis, and fluorescence spectroscopy.

  11. Characteristics and performance of the Sunna high dose dosemeter using green photoluminescence and UV absorption readout methods

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.D.; Murphy, M.K.; Tinker, M.R.; Kovacs, A.; McLaughlin, W

    2002-07-01

    Growth in the use of ionising radiation for medical sterilisation and the potential for wide-scale international food irradiation have created the need for robust, mass-producible, inexpensive, and highly accurate radiation dosemeters. The Sunna dosemeter, lithium fluoride injection-moulded in a polyethylene matrix, can be read out using either green photoluminescence or ultraviolet (UV) absorption. The Sunna dosemeter can be mass-produced inexpensively with high precision. Both the photoluminescent and the UV absorption reader are simple and inexpensive. Both methods of analysis display negligible humidity effects, minimal dose rate dependence, acceptable post-irradiation effects, and permit measurements with a precision of nearly 1% 1s. The UV method shows negligible irradiation temperature effects from -30 deg. C to +60 deg. C. The photoluminescence method shows negligible irradiation temperature effects above room temperature for sterilisation dose levels and above. The dosimetry characteristics of these two readout methods are presented along with performance data in commercial sterilisation facilities. (author)

  12. Polarization dependence of two-photon absorption coefficient and nonlinear susceptibility tensor in InP

    International Nuclear Information System (INIS)

    Matsusue, Toshio; Bando, Hiroyuki; Fujita, Shoichi; Takayama, Yusuke

    2011-01-01

    Two-photon absorption (TPA) effect in (001) InP is investigated using fs laser. Its dependences on wavelength and polarization are clarified by single and double beam methods with linearly polarized lights. Characteristic features are revealed and discussed with scaling law, crystal bonding and mutual relation of polarizations for double beams. The results are successfully analyzed on the basis of the third-order susceptibility tensor for comprehensive understanding of TPA effect at any polarization geometry. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation.

    Science.gov (United States)

    Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2017-05-01

    Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.

  14. Enhanced UV Absorption in Carbonaceous Aerosols during MILAGRO and Identification of Potential Organic Contributors.

    Science.gov (United States)

    Mangu, A.; Kelley, K. L.; Marchany-Rivera, A.; Kilaparty, S.; Gunawan, G.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) during the month of March, 2006 by using a 7- channel aethalometer (Thermo-Anderson). These measurements, obtained at 370, 470, 520, 590, 660, 880, and 950 nm at a 5 minute time resolution, showed an enhanced absorption in the UV over that expected from carbon soot alone. Samples of fine atmospheric aerosols (less than 0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. The samples were collected on quartz fiber filters with high volume impactor samplers. The samples have been characterized for total carbon content (stable isotope ratio mass spectroscopy) and natural radionuclide tracers (210Pb, 210Po, 210Bi, 7Be, 13C, 14C, 40K, 15N). Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV-visible spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples (1). The continuous spectra also show an enhanced UV absorption over that expected from carbon soot and the general profiles are quite similar to those observed for humic and fulvic acids found as colloidal materials in surface and groundwaters (2), indicating the presence of humic-like substances (HULIS) in the fine aerosols. The spectra also show evidence of narrow band absorbers below 400 nm typical of polycyclic aromatics (PAH) and nitrated aromatic compounds. Spectra were also obtained on NIST standard diesel soot (SRM 2975), NIST standard air particulate matter (SRM 8785

  15. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer

    Science.gov (United States)

    Almeida, Michell O.; Barros, Daiane A. S.; Araujo, Sheila C.; Faria, Sergio H. D. M.; Maltarollo, Vinicius G.; Honorio, Kathia M.

    2017-09-01

    Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89 nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89 eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O15 (donor NBO) and BD* (π) N1-H10 (acceptor NBO), being that the value of this interaction is 7.72 kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment.

  16. UV absorption spectra and kinetics for alkyl and alkyl peroxy radicals originating from di-tert-butyl ether

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Langer, S.

    1995-01-01

    Alkyl, (CH3)(3)COC(CH3)(2)CH2, and alkyl peroxy, (CH3)(3)COC(CH3)(2)CH2O2, radicals from di-tert-butyl ether (DTBE), have been studied in the gas phase at 296 K. A pulse radiolysis UV absorption technique was used to measure the spectra and kinetics. Absorption cross sections were quantified over...

  17. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu 5Ta11O30 materials

    KAUST Repository

    Harb, Moussab

    2014-01-01

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu 5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta 11O30. It is confirmed that the Cu(i)-based multi-metal oxides possess a strong contribution of filled Cu(i) states in the valence band and of empty d0 metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications. © the Partner Organisations 2014.

  18. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters.

    Science.gov (United States)

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-05

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Quantum chemical investigations on the molecular structure, FTIR, UV-Vis and HOMO-LUMO analysis of 15-16-epoxy-7b, 9a dihydroxylabdane 13(16), 14-dien-6-one

    Science.gov (United States)

    Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal

    2018-05-01

    The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.

  20. Synthesis and Characterization of CdS/TiO2-Montmorillonite Nanocomposite with Enhanced Visible-Light Absorption

    OpenAIRE

    Feng-shan Zhou; Dai-mei Chen; Bao-lin Cui; Wei-heng Wang

    2014-01-01

    Sodium montmorillonite (MMT) was chosen as the carrier; a serial of CdS/TiO2-MMT nanocomposites with enhanced visible-light absorption ability was prepared by hydrothermal synthesis method combination with semiconductor compound modification method. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy; the results showed that TiO2 and CdS nanoparticles were loaded on the surface of montmorillonite unifo...

  1. Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2004-04-01

    Full Text Available Polar cap absorption (PCA events recorded during November 2001 are investigated by observations of ionospheric absorption of a 30MHz riometer installed at Terra Nova Bay (Antarctica, and of solar proton flux, monitored by the NOAA-GOES8 satellite in geo-synchronous orbit. During this period three solar proton events (SPE on 4, 19 and 23 November occurred. Two of these are among the dozen most intense events since 1954 and during the current solar cycle (23rd, the event of 4 November shows the greatest proton flux at energies >10MeV. Many factors contribute to the peak intensity of the two SPE biggest events, one is the Coronal Mass Ejection (CME speed, other factors are the ambient population of SPE and the shock front due to the CME. During these events absorption peaks of several dB (~20dB are observed at Terra Nova Bay, tens of minutes after the impact of fast halo CMEs on the geomagnetic field.

    Results of a cross-correlation analysis show that the first hour of absorption is mainly produced by 84–500MeV protons in the case of the 4 November event and by 15–44MeV protons for the event of 23 November, whereas in the entire event the contribution to the absorption is due chiefly to 4.2–82MeV (4 November and by 4.2–14.5MeV (23 November. Good agreement is generally obtained between observed and calculated absorption by the empirical flux-absorption relationship for threshold energy E0=10MeV. From the residuals one can argue that other factors (e.g. X-ray increases and geomagnetic disturbances can contribute to the ionospheric absorption.

    Key words. Ionosphere (Polar Ionosphere, Particle precipitation – Solar physics (Flares and mass ejections

  2. Simultaneous Preconcentration and Determination of Brilliant Blue and Sunset Yellow in Foodstuffs by Solid-Phase Extraction Combined UV-Vis Spectrophotometry.

    Science.gov (United States)

    Bişgin, Abdullah Taner

    2018-05-29

    Background: Brilliant Blue and Sunset Yellow, two highly water-soluble synthetic food dyes, are the most popular food dyes used and consumed. Although they are not highly toxic, some health problems can be observed when excessive amounts of food products containing these dyes are consumed. Objectives: The aim of the study was to develop a simultaneous UV-Vis combined solid-phase extraction method, based on the adsorption onto Amberlite XAD-8 resin, for determination of Brilliant Blue and Sunset Yellow dyes. Methods: Sample solution was poured into the reservoir of the column and permitted to gravitationally pass through the column at 2 mL/min flow rate. Adsorbed dyes were eluted to 5 mL of final volume with 1 mol/L HNO₃ in ethanol solution by applying a 2 mL/min flow rate. Dye concentrations of the solution were determined at 483 and 630 nm for Sunset Yellow and Brilliant Blue, respectively. Results: The detection limits of the method for Brilliant Blue and Sunset Yellow were determined as 0.13 and 0.66 ng/mL, respectively. Preconcentration factor was 80. Brilliant Blue contents of real food samples were found to be between 11 and 240 μg/g. Sunset Yellow concentrations of foodstuffs were determined to be between 19 and 331 μg/g. Conclusions: Economical, effective, and simple simultaneous determination of Brilliant Blue and Sunset Yellow was achieved by using a solid-phase extraction combined UV-Vis spectrometry method. Highlights: The method is applicable and suitable for routine analysis in quality control laboratories without the need for expert personnel and high operational costs because the instrumentation is simple and inexpensive.

  3. Absorption of circularly polarized light by solids

    International Nuclear Information System (INIS)

    Jalbert, G.; Brandi, H.S.

    1984-03-01

    The multiphoton absorption rate of circularly polarized light, by direct gap crystals, was investigated following a non-perturbative scheme proposed by Jones and Reiss. It was possible to derive closed analytical solutions, for the N-photon transition rate, valid for all field strenghts of practical interest. The accuracy of the approximations introduced in deriving these results was determined comparing the numerical computations of the multiphoton transition rate ('exact') with the analytical solutions. Specific calculations are done for ZnS and GaAs in the presence of a Nd-laser. It is shown that this formalism leads to a total transition rate which has not the tunneling behavior previously discussed by several authors within similar contexts. (Author) [pt

  4. A novel multiplex absorption spectrometer for time-resolved studies

    Science.gov (United States)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  5. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    Science.gov (United States)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  6. From single-site tantalum complexes to nanoparticles of TaxNy and TaOxNy supported on silica: elucidation of synthesis chemistry by dynamic nuclear polarization surface enhanced NMR spectroscopy and X-ray absorption spectroscopy

    KAUST Repository

    Mohandas, Janet Chakkamadathil

    2017-06-08

    Air-stable catalysts consisting of tantalum nitride nanoparticles represented as a mixture of TaxNy and TaOxNy with diameters in the range of 0.5 to 3 nm supported on highly dehydroxylated silica were synthesized from TaMe5 (Me = methyl) and dimeric Ta-2(OMe)(10) with guidance by the principles of surface organometallic chemistry (SOMC). Characterization of the supported precursors and the supported nanoparticles formed from them was carried out by IR, NMR, UV-Vis, extended X-ray absorption fine structure, and X-ray photoelectron spectroscopies complemented with XRD and high-resolution TEM, with dynamic nuclear polarization surface enhanced NMR spectroscopy being especially helpful by providing enhanced intensities of the signals of H-1, C-13, Si-29, and N-15 at their natural abundances. The characterization data provide details of the synthesis chemistry, including evidence of (a) O-2 insertion into Ta-CH3 species on the support and (b) a binuclear to mononuclear transformation of species formed from Ta-2(OMe)(10) on the support. A catalytic test reaction, cyclooctene epoxidation, was used to probe the supported nanoparticles, with 30% H2O2 serving as the oxidant. The catalysts gave selectivities up to 98% for the epoxide at conversions as high as 99% with a 3.4 wt% loading of Ta present as TaxNy/TaOxNy.

  7. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  8. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    International Nuclear Information System (INIS)

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P.

    2013-01-01

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) ≈35°. We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14.°3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus

  9. Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy.

    Science.gov (United States)

    Tetgure, Sandesh R; Borse, Amulrao U; Sankapal, Babasaheb R; Garole, Vaman J; Garole, Dipak J

    2015-04-01

    Simple and eco-friendly biosynthesis approach was developed to synthesize silver nanoparticles (SNPs) and gold nanoparticles (GNPs) using Ficus racemosa latex as reducing agent. The presence of sunlight is utilized with latex and achieved the nanoparticles whose average size was in the range of 50-120 nm for SNPs and 20-50 nm for GNPs. The synthesized nanoparticles were characterized by UV/Visible absorption spectroscopy, X-ray diffraction, and field emission-scanning electron microscopy techniques toget understand the obtained nanoparticles. The pH-dependent binding studies of SNPs and GNPs with four amino acids, namely L-lysine, L-arginine, L-glutamine and glycin have been reported.

  10. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    Science.gov (United States)

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  11. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    Science.gov (United States)

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  12. Study of Interaction between Cadmium and Bovine Serum Albumin with UV-Vis Spectrocopy Approach

    Science.gov (United States)

    Suhartono, E.; Thalib, I.; Aflanie, I.; Noor, Z.; Idroes, R.

    2018-05-01

    This study aims to explain the interaction of cadmium (Cd) with serum albumin through visible light (UV-Vis) spectroscopy approach. This study is an in vitro experimental study using Cd with several concentrations and Bovine Serum Albumin (BSA). Each solution was then incubated for 10 min at 37°C, and measured the absorbance at 220-300 nm. The absorbance data is then presented in graphical form. From the graph, a linear equation will appear to calculate the value of metal binding constants (K) to proteins. Also, in this present study we analsyed the ratio between A220 and A220 to identify changes in the protein region especially tyrosine and peptide bonds. The results show that the addition of Cd in different concentrations could increase the absorbance with a constant value (K) = 1.634. Based on the result, it seems the addition of Cd in different concentrations will lead the reaction to form BSA-Cd. Also, the result shows that the ration of A220/A280 were decreased with the increasing of Cd concentration. In conclusion, the addition of Cd could interact and changes the protein structure in BSA.

  13. p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties.

    Science.gov (United States)

    Ghosh, Tanwistha; Gopal, Anesh; Saeki, Akinori; Seki, Shu; Nair, Vijayakumar C

    2015-04-28

    Molecular and supramolecular properties play key roles in the optoelectronic properties and photovoltaic performances of organic materials. In the present work, we show how small changes in the molecular structure affect such properties, which in turn control the intrinsic and fundamental properties such as the p/n-polarity of organic semiconductors in bulk-heterojunction solar cells. Herein, we designed and synthesized two acceptor-donor-acceptor type semiconducting thiophene oligomers end-functionalized with oxazolone/isoxazolone derivatives (OT1 and OT2 respectively). The HOMO-LUMO energy levels of both derivatives were found to be positioned in such a way that they can act as electron acceptors to P3HT and electron donors to PCBM. However, OT1 functions as a donor (with PCBM) and OT2 as an acceptor (with P3HT) in BHJ photovoltaic cells, and their reverse roles results in either no or poor performance of the cells. Detailed studies using UV-vis absorption and fluorescence spectroscopy, time-correlated single photon counting, UV-photoelectron spectroscopy, density functional theory calculations, X-ray diffraction, and thermal gravimetric analysis proved that both molecular and supramolecular properties contributed equally but in a contrasting manner to the abovementioned observation. The obtained results were further validated by flash-photolysis time-resolved microwave conductivity studies which showed an excellent correlation between the structure, property, and device performances of the materials.

  14. Interfacial Shear Strength Evaluation of Pinewood Residue/High-Density Polyethylene Composites Exposed to UV Radiation and Moisture Absorption-Desorption Cycles

    Directory of Open Access Journals (Sweden)

    Soledad C. Pech-Cohuo

    2016-03-01

    Full Text Available In outdoor applications, the mechanical performance of wood-plastic composites (WPCs is affected by UV radiation, facilitating moisture intake and damaging the wood-polymer interfacial region. The purpose of this study was to evaluate the effect of moisture absorption-desorption cycles (MADCs, and the exposure to UV radiation on the interfacial shear strength (IFSS of WPCs with 40% pinewood residue and 60% high-density polyethylene. One of the WPCs incorporated 5% coupling agent (CA with respect to wood content. The IFSS was evaluated following the Iosipescu test method. The specimens were exposed to UV radiation using an accelerated weathering test device and subsequently subjected to four MADCs. Characterization was also performed by scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FTIR. The absorption and desorption of moisture was slower in non-UV-irradiated WPCs, particularly in those with the CA. The UV radiation did not significantly contribute to the loss of the IFSS. Statistically, the CA had a favorable effect on the IFSS. Exposure of the samples to MADCs contributed to reduce the IFSS. The FTIR showed lignin degradation and the occurrence of hydrolysis reactions after exposure to MADCs. SEM confirmed that UV radiation did not significantly affect the IFSS.

  15. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    Science.gov (United States)

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Green synthesis of silver nanoparticles using Arbutus andrachne ...

    African Journals Online (AJOL)

    spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) .... The UV-vis spectrum exhibited an absorption band at around 444 nm, .... hydroxyl groups in A. andrachne. Moreover, the. FT-IR ...

  17. UV spectrophotometry of the Metronidazole

    Directory of Open Access Journals (Sweden)

    O. I. Panasenko

    2013-10-01

    Full Text Available Objective. The purpose of this research was to study the UV spectrum of Metronidazole in different polarity solvents (water, 95 % ethanol, 0,1 M sodium hydroxide, 0,1 M hydrochloric acid and 5 M sulfuric acid solution, to establish the relationship between chemical structure of the analyzed compounds and the nature of their electronic spectrum. In addition, a detailed study of the ultraviolet spectra of Metronidazole in different solutions enables to select the optimal wavelength and a thinner design for Metronidazole in substance and dosage forms. Materials and methods. Spectrophotometer SPECORD 200-222U214 has been used for study of the UV spectra of Metronidazole, the quantitative methods were used. Measuring of the absorption of Metronidazole solutions has been carried out in quartz cuvettes with a layer thickness of 10 mm. Due to the fact that the test material shows selective absorption in the ultraviolet spectra, model compounds were studied at a concentration of 1 mg%. Study of electronic spectra was performed in the range of 200 to 400 nm, and the curve has been constructed in coordinates A = f (λ. It has been used water, 95% ethanol, 0,1 M NaOH, 0,1 M HCl and 5 M H2SO4 as solvents. The content of Metronidazole in substance and dosage forms calculated with the equations according to SPU. The results. Study of the UV spectra of Metronidazole and its model compounds showed that in short-wave part of spectrum due to absorption and excitation electrons of imidazole ring were transferred, and in long-wave – conjugation chromophore imidazole cycle and nitro group as electron acceptor occurred. Analysis of the UV spectra of Metronidazole enables to determine a maximum of the analytical quantification of the medicine. Conclusions. Metronidazole UV spectra in water, 95% ethanol, 0,1 M solution of NaOH, 0,1 M solution of HCl and 5 M solution of H2SO4 have been studied. Metronidazole UV spectra are characterized by two absorption bands in the

  18. Detection of an ylide intermediate in the electrochemically-induced Stevens rearrangement of an ammonium salt by in situ UV–vis spectroelectrochemistry

    International Nuclear Information System (INIS)

    Capobianco, Amedeo; Caruso, Tonino; Palombi, Laura; Peluso, Andrea

    2013-01-01

    Highlights: ► Mechanistic insights of the electro-induced Stevens rearrangement are provided. ► The reduction of PhCOCH 2 N + (CH 3 ) 2 CH 2 Ph is ascribed to a one-electron transfer process. ► An electrogenerated ammonium ylide has been detected by UV-spectroelectrochemistry. -- Abstract: The electrochemically-induced Stevens rearrangement of 2-(benzyldimethyl)ammonium acetophenone has been investigated by in situ UV–vis spectroelectrochemistry. Voltammetric analysis and absorption spectra recorded during the potentiostatic reduction indicate that the reaction proceeds via a one-electron transfer with a Platinum cathode and generation of an ammonium ylide intermediate

  19. Submersible UV-Vis spectroscopy for quantifying streamwater organic carbon dynamics: implementation and challenges before and after forest harvest in a headwater stream.

    Science.gov (United States)

    Jollymore, Ashlee; Johnson, Mark S; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  20. Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream

    Directory of Open Access Journals (Sweden)

    Iain Hawthorne

    2012-03-01

    Full Text Available Organic material, including total and dissolved organic carbon (DOC, is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada. Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps. DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  1. A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a.

    Science.gov (United States)

    Barone, Vincenzo; Biczysko, Malgorzata; Borkowska-Panek, Monika; Bloino, Julien

    2014-10-20

    The subtle interplay of several different effects means that the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics is a challenging task. In this context, theoretical studies can be helpful, and as such, computational spectroscopy is rapidly evolving from a highly specialized research field toward a versatile and widespread tool. However, in the case of electronic spectra (e.g. UV/Vis, circular dichroism, photoelectron, and X-ray spectra), the most commonly used methods still rely on the computation of vertical excitation energies, which are further convoluted to simulate line shapes. Such treatment completely neglects the influence of nuclear motions, despite the well-recognized notion that a proper account of vibronic effects is often mandatory to correctly interpret experimental findings. Development and validation of improved models rooted into density functional theory (DFT) and its time-dependent extension (TD-DFT) is of course instrumental for the optimal balance between reliability and favorable scaling with the number of electrons. However, the implementation of easy-to-use and effective procedures to simulate vibrationally resolved electronic spectra, and their availability to a wide community of users, is at least equally important for reliable simulations of spectral line shapes for compounds of biological and technological interest. Here, such an approach has been applied to the study of the UV/Vis spectra of chlorophyll a. The results show that properly tailored approaches are feasible for state-of-the-art computational spectroscopy studies, and allow, with affordable computational resources, vibrational and environmental effects on the spectral line shapes to be taken into account for large systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-Vis spectrometry

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Dryahina, Kseniya; Španěl, Patrik; Kyncl, M.; Civiš, Svatopluk

    2010-01-01

    Roč. 135, č. 5 (2010), s. 1106-1114 ISSN 0003-2654 R&D Projects: GA AV ČR IAAX00100903; GA ČR GA202/09/0800 Institutional research plan: CEZ:AV0Z40400503 Keywords : hexogen * UV-vis spectrometry * mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.913, year: 2010

  3. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.

    Science.gov (United States)

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Sub-band-gap absorption in Ga2O3

    Science.gov (United States)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  5. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer.

    Science.gov (United States)

    Almeida, Michell O; Barros, Daiane A S; Araujo, Sheila C; Faria, Sergio H D M; Maltarollo, Vinicius G; Honorio, Kathia M

    2017-09-05

    Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O 15 (donor NBO) and BD* (π) N 1 -H 10 (acceptor NBO), being that the value of this interaction is 7.72kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Absorption of UV-B to blue light radiation by leaf cuticles of selected crop plants

    International Nuclear Information System (INIS)

    Baur, P.; Stulle, K.; Schönherr, J.; Uhlig, B.

    1998-01-01

    Plants have protective pigments absorbing destructive shortwave radiation. These pigments have been found in the epidermis and mesophyll of leaves. We studied the absorption characteristics of the leaf cuticle, the outermost part of the epidermis that is directly exposed to radiation. Adaxial leaf cuticles of apple, pear, sour cherry, strawberry, cauliflower, sugarbeet, and 13 other plant species were tested. The UV-B absorption was highest in Citrus aurantium and Citrus maxima (<3 % transmittance) and lowest in sugarbeet and peach (>64 % transmittance). The absorption maxima are at wavelenghts below 320 nm. Significant absorption was also determined at 500 nm, which correlated with cuticle thickness of the plant species (r(2)=0.72). The absorption in the range of 250 to 350 nm is caused by pigments with a high extinction coefficient. This absorption is species dependent and the patterns were designated to three different types. The highest absorption was found in evergreen species. The extraction of cuticular waxes had little effect on absorption. The specific absorption of shortwave radiation by plant cuticles is probably caused by pigments covalently bound to cut in. It is known for some plant species that cuticles can contain the phenolics p-coumaric acid, ferulic acid, and vanillic acid. Mixtures of these phenolics had spectra similar to cuticles. For most species absorption of shortwave radiation by the cuticle alone does not give complete protection

  7. The possibility of using plastic detectors CR-39 as UV dosimeters

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.; Sawaf, A.A.

    2004-01-01

    The effects of solar ultraviolet (SUV) and ultraviolet type A (UVA) produced by a solar UV simulator on CR-39 detectors were studied. This was done using three techniques: 1 - Alpha tracks diameters and tracks densities, 2 - UV-Vis spectrometry and 3 - FTIR spectrometry. The detectors were divided into two groups, the first was exposed to UV and then to alpha particles, the second group was exposed to alpha particles first and then to UV. The results showed that the effect of UVA on CR-39 was not clear using the three techniques. While, the effect of SUV was clear when using UV-Vis and FTIR spectrometric, and not clear when using track parameters. (author)

  8. The possibility of using plastic detectors CR-39 as UV dosimeters

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.; Sawaf, A.A.

    2002-01-01

    The effects of solar ultraviolet (SUV) and ultraviolet type A (UVA) produced by a solar UV simulator on CR-39 detectors were studied. This was done using three techniques: 1 - Alpha tracks diameters and tracks densities, 2 - UV-Vis spectrometry and 3 - FTIR spectrometry. The detectors were divided into two groups, the first was exposed to UV and then to alpha particles, the second group was exposed to alpha particles first and then to UV. The results showed that the effect of UVA on CR-39 was not clear using the three techniques. While, the effect of SUV was clear when using UV-Vis and FTIR spectrometric, and not clear when using track parameters

  9. UV absorption coefficients of Y2(1-x-y)Gd2xEu2yO3 phosphors

    International Nuclear Information System (INIS)

    Ling, M.; Yocom, P.W.; Soules, T.F.

    1990-01-01

    The ability of a phosphor to absorb 254 nm excitation is important in the development of phosphors for fluorescent lamps. Recently the optical properties of phosphor coating were modeled using ray tracing Monte-Carlo techniques. These calculations provided a relationship between absorptance measured on a semi-infinite plaque at a given wavelength and the product of the absorption coefficient of the phosphor and its particle diameter. The purpose of this work is to provide experimental data for comparison with the calculated data, to demonstrate a technique for obtaining absorption coefficients and to provide UV absorption coefficients obtained in this way for important yttrium oxide europium red-emitting phosphors

  10. Headspace single-drop microextraction coupled to microvolume UV-vis spectrophotometry for iodine determination

    International Nuclear Information System (INIS)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Headspace single-drop microextraction has been combined with microvolume UV-vis spectrophotometry for iodine determination. Matrix separation and preconcentration of iodide following in situ volatile iodine generation and extraction into a microdrop of N,N'-dimethylformamide is performed. An exhaustive characterization of the microextraction system and the experimental variables affecting iodine generation from iodide was carried out. The procedure employed consisted of exposing 2.5 μL of N,N'-dimethylformamide to the headspace of a 10 mL acidic (H 2 SO 4 2 mol L -1 ) aqueous solution containing 1.7 mol L -1 Na 2 SO 4 for 7 min. Addition of 1 mL of H 2 O 2 1 mol L -1 for in situ iodine generation was performed. The limit of detection was determined as 0.69 μg L -1 . The repeatability, expressed as relative standard deviation, was 4.7% (n = 6). The calibration working range was from 5 to 200 μg L -1 (r 2 = 0.9991). The large preconcentration factor obtained, ca. 623 in only 7 min, compensate for the 10-fold loss in sensitivity caused by the decreased optical path, which results in improved detection limits as compared to spectrophotometric measurements carried out with conventional sample cells. The method was successfully applied to the determination of iodine in water, pharmaceutical and food samples

  11. UV spectroscopy including ISM line absorption: of the exciting star of Abell 35

    Science.gov (United States)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.

  12. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    Science.gov (United States)

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  13. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    Science.gov (United States)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  14. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.

    1981-09-01

    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  15. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations...

  16. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks

    Science.gov (United States)

    Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.

    2018-05-01

    Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.

  17. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    Science.gov (United States)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  18. Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visible, surface-enhanced Raman scattering spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Li Xiaoling; Xu Weiqing; Jia Huiying; Wang Xu; Zhao Bing; Li Bofu; Ozaki, Yukihiro

    2005-01-01

    Water-induced changes in the morphology and optical properties of an ultrathin Ag film (3 nm thickness) have been studied by use of ultraviolet-visible (UV-Vis) spectroscopy, atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy. A confocal micrograph shows that infinite regular Ag rings with almost uniform size (4 μm) emerge on the film surface after the ultrathin Ag film was immersed into water. The AFM measurement further confirms that the Ag rings consist of some metal holes with pillared edges. The UV-Vis spectrum shows that an absorption band at 486 nm of the Ag film after the immersion in water (I-Ag film) blue shifts by 66 nm with a significant decrease in absorbance, which is attributed to the macroscopic loss of some Ag atoms and the change in the morphology of the Ag film. The polarized UV-Vis spectra show that a band at 421 nm due to the normal component of the plasmon oscillation blue shifts after immersing the ultrathin Ag film into water. This band is found to be strongly angle-dependent for p-polarized light, indicating that the optical properties of the ultrathin Ag film are changed. The I-Ag film is SERS-active, and the SERS enhancement depends on different active sites on the film surface. Furthermore, it seems that the orientation of an adsorbate is related to the morphology of the I-Ag film

  19. Characterization of phenolics by LC-UV/vis, LC-MS/MS and sugars by GC in Melicoccus bijugatus Jacq. 'Montgomery' fruits.

    Science.gov (United States)

    Bystrom, Laura M; Lewis, Betty A; Brown, Dan L; Rodriguez, Eloy; Obendorf, Ralph L

    2008-12-15

    Fruits of the native South American tree Melicoccus bijugatus Jacq. (Sapindaceae) are consumed for both dietary and medicinal purposes, but limited information is available about the phytochemistry and health value of M. bijugatus fruits. Fruit tissues of the Florida Montgomery cultivar were assessed for sugars, using gas chromatography, and for total phenolics, using UV spectroscopy. Reverse phase high performance liquid chromatography (HPLC) fingerprints of crude methanolic pulp, embryo and seed coat extracts were obtained at 280 nm. Phenolics were characterised by both HPLC UV/vis analysis and HPLC electrospray ionization tandem mass spectrometry. Major sugars detected in the pulp and embryo extracts were sucrose, followed by glucose and fructose. The glucose:fructose ratio was 1:1 in the pulp and 0.1:1 in the embryo. Total phenolic concentrations of the fruit tissues were in the order: seed coat > embryo > pulp. Phenolic acids were identified mostly in pulp tissues. Phenolic acids, flavonoids, procyanidins and catechins were identified in embryo tissues, and higher molecular weight procyanidins were identified in seed coat tissues. This study provides new information about the phytochemistry and the potential health value of the Montgomery cultivar M. bijugatus fruit tissues.

  20. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Laishun Shi

    2012-01-01

    Full Text Available In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  1. Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy

    Science.gov (United States)

    Izenberg, N. R.; Denevi, B. W.

    2018-05-01

    We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?

  2. Optical spectra of Zn{sub 1-x}Be{sub x}Te mixed crystals determined by IR-VIS-UV ellipsometry and photoluminescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wronkowska, A.A., E-mail: aleksandra.wronkowska@utp.edu.p [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland); Arwin, H. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden); Firszt, F.; Legowski, S. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5, PL-87100 Torun (Poland); Wronkowski, A.; Skowronski, L. [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland)

    2011-02-28

    Spectroscopic ellipsometry in the photon energy range from 0.04 eV to 6.50 eV is used for investigation of the optical response of Zn{sub 1-x}Be{sub x}Te crystals grown by a high-pressure Bridgman method in the composition range x {<=} 0.12. Infrared spectra display absorption bands centred between 411 cm{sup -1} and 420 cm{sup -1} associated with BeTe-type optical phonon modes. The positions of the transverse-optical and longitudinal-optical phonon modes have been found by modelling the line shape of the complex dielectric functions, {epsilon}-tilde and Im(-{epsilon}-tilde{sup -1}), using a classical damped Lorentzian oscillator approach. Ellipsometric measurements in the VIS-UV range allow determination of the fundamental energy-gap (E{sub 0}) and the higher threshold energies (E{sub 1}, E{sub 1} + {Delta}{sub 1}, E{sub 2}) originating from the band edge and spin-orbit splitting critical points. We have found that the Be content x = 0.12 causes an increase of the fundamental energy gap about 0.15 eV at room temperature when compared to the E{sub 0} = 2.23 eV of ZnTe crystal at the same temperature. Photoluminescence spectra were measured in the temperature range from 30 K to room temperature. Luminescence at temperature T > 200 K is very weak. The peak positions of the exciton emission lines agree well with the E{sub 0} band-gaps derived from ellipsometric data if corrected for their temperature dependence.

  3. Evaluation of UV-permeability and photo-oxidisability of organic ultraviolet radiation-absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Neng; Chen, Yuhe, E-mail: yuhec@sina.com; Bao, Yongjie; Zhang, Zeqian; Wu, Zaixing; Chen, Zhangmin

    2015-03-30

    Highlights: • We investigate organic UV radiation-absorbing coatings for use on bamboo surfaces. • The size of glass exactly inserted into sample cell of UV-Vis spectrophotometer. • A model was made to predict UV absorption of coatings. • We examine carbonyl groups change of coatings after ageing. • Two formulations which could effectively protect coating were obtained. - Abstract: Enhancing the durability of the coatings used on bamboo products is essential for increasing their use in outdoor environments. In this study, we investigated organic UV radiation-absorbing coatings for use on bamboo surfaces. The degree of resistance of the coatings, which contained 2-(2-hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chlorinated benzotriazole (BTZ-1), to UV radiation degradation was determined through spectroscopic analysis. The critical BTZ-1 loading amount was determined by analysing the spectroscopic data. Fourier transform infrared spectroscopy was used to elucidate the relationship between the degree of photooxidation of the coatings and their BTZ-1 concentration. The experimental results showed that the coatings provided a high degree of shielding from UV radiation. The critical loading amount was determined to be 1.82 ± 0.05 g BTZ-1/m{sup 2}. The coatings formed using the formulations that contained 3 and 5 wt% BTZ-1 exhibited the lowest degree of photooxidation after exposure to UV radiation.

  4. Intersubband absorption in annealed InAs/GaAs quantum dots: a case for polarization-sensitive infrared detection

    International Nuclear Information System (INIS)

    Chakrabarti, S; Bhattacharya, P; Stiff-Roberts, A D; Lin, Y Y; Singh, J; Lei, Y; Browning, N

    2003-01-01

    We have studied the characteristics of intersubband absorption of polarized infrared (IR) radiation in as-grown and annealed self-organized InAs/GaAs quantum dots. It is observed that with the increase of annealing time and temperature, the dots tend to flatten and behave more like quantum wells. As a result, their sensitivity to TE (in-plane)-polarized light decreases and that to TM (out-of-plane)-polarized light increases. The effect could be utilized for the realization of polarization-sensitive IR detectors

  5. The molecular chaperone function of α-crystallin is impaired by UV photolysis

    International Nuclear Information System (INIS)

    Borkman, R.F.; McLaughlin, J.

    1995-01-01

    Buffer solutions of the lens protein γ-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63 o C or to UV radiation at 308 nm. When α-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of α-crystallin. Hence, normal α-crystallin functioned as a ''molecular chaperone,'' providing protection against both UV and heat-induced protein aggregation. When α-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doss. (author)

  6. X-ray/UV Observing Campaign on the Mrk 279 AGN Outflow: A Global Fitting Analysis of the UV Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gabel, J.

    2005-03-17

    We present an analysis of the intrinsic UV absorption in the Seyfert 1 galaxy Mrk 279 based on simultaneous long observations with the ''Hubble Space Telescope'' (41 ks) and the ''Far Ultraviolet Spectroscopic Explorer'' (91 ks). To extract the line-of-sight covering factors and ionic column densities, we separately fit two groups of absorption lines: the Lyman series and the CNO lithium-like doublets. For the CNO doublets we assume that all three ions share the same covering factors. The fitting method applied here overcomes some limitations of the traditional method using individual doublet pairs; it allows for the treatment of more complex, physically realistic scenarios for the absorption-emission geometry and eliminates systematic errors that we show are introduced by spectral noise. We derive velocity-dependent solutions based on two models of geometrical covering--a single covering factor for all background emission sources, and separate covering factors for the continuum and emission lines. Although both models give good statistical fits to the observed absorption, we favor the model with two covering factors because: (a) the best-fit covering factors for both emission sources are similar for the independent Lyman series and CNO doublet fits; (b) the fits are consistent with full coverage of the continuum source and partial coverage of the emission lines by the absorbers, as expected from the relative sizes of the nuclear emission components; and (c) it provides a natural explanation for variability in the Lya absorption detected in an earlier epoch. We also explore physical and geometrical constraints on the outflow from these results.

  7. Evaluation of clinoptilolite for removal of ammoniacal nitrogen produced in aquaculture by Neutron activation analysis and UV-VIS spectrophotometry

    International Nuclear Information System (INIS)

    Bibiano C, L.; Iturbe G, J.L.; Lopez M, B.E.; Martinez M, V.

    1997-01-01

    In fish culture system, ammonia is excreted in the water as a metabolic by-product. In this work, sorption properties of clinoptilolite were determined and it was applied in culture of the rainbow trout Oncorhynchus mykiss for the removal of the ammoniacal nitrogen. The original clinoptilolite was treated with 1N NaCl solution from 24 to 192 h, for exchange NH 4 ions produced in fish culture. The content of Na in the clinoptilolite was determined by neutron activation analysis. The ammonium ion content in the exchange was analysed by UV-VIS spectrophotometry. Maximum uptake of sodium was reached between 24 and 48 hours at neutral pH with granules of the clinoptilolite from 14 to 24 mesh size. The adsorption capacity was from 3.28 to 6.8 mg of ammonium per gram of clinoptilolite. (Author)

  8. Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites

    Directory of Open Access Journals (Sweden)

    Philipp Marx

    2017-05-01

    Full Text Available Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i the surface functionalization of the nanoparticles and (ii the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The β relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature. Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC breakdown strength of all specimens was in the range of 30 to 35 kV·mm−1. In direct current (DC breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm−1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm−1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

  9. Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)

    Science.gov (United States)

    Tyutyundzhiev, N.; Angelov, Ch; Lovchinov, K.; Nitchev, Hr; Petrov, M.; Arsov, T.

    2018-03-01

    Studies of and modeling the impact of natural UV irradiation on the human population are of significant importance for human activity and economics. The sharp increase of environmental problems – extraordinary temperature changes, solar irradiation abnormalities, icy rains – raises the question of developing novel means of assessing and predicting potential UV effects. In this paper, we discuss new UV irradiation modeling based on recent real-time measurements at Moussala Basic Environmental Observatory (BEO) on Moussala Peak (2925 m ASL) in Rila Mountain, Bulgaria, and highlight the development and initial validation of portable embedded devices for UV-A, UV-B monitoring using open-source software architecture, narrow bandpass UV sensors, and the popular Arduino controllers. Despite the high temporal resolution of the VIS and UV irradiation measurements, the results obtained reveal the need of new assumptions in order to minimize the discrepancy with available databases.

  10. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.

    Science.gov (United States)

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2018-02-20

    For poly (lactide-co-glycolide acid) (PLGA)-based in situ forming implants, the rate of implant formation plays an important role in determining the overall drug release kinetics. Currently, in vitro techniques capable of characterizing the processes of drug release and implant formation at the same time are not available. A hydrogel-based in vitro experimental setup was recently developed requiring only microliter of formulation and forming a closed system potentially suitable for interfacing with various spectroscopic techniques. The aim of the present proof-of-concept study was to investigate the feasibility of concomitant UV imaging, Vis imaging and light microscopy for detailed characterization of the behavior of in situ forming PLGA implants in the hydrogel matrix mimicking the subcutis. The model compounds, piroxicam and α-lactalbumin were added to PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin solutions. Upon bringing the PLGA-solvent-compound pre-formulation in contact with the hydrogel, Vis imaging and light microscopy were applied to visualize the depot formation and UV imaging was used to quantify drug transport in the hydrogel. As compared to piroxicam, the α-lactalbumin invoked an acceleration of phase separation and an increase of implant size. α-Lactalbumin was released faster from the PLGA-1-methyl-2-pyrrolidinone system than the PLGA-triacetin system opposite to the piroxicam release pattern. A linear relationship between the rate of implant formation and initial compound release within the first 4h was established for the PLGA-NMP systems. This implies that phase separation may be one of the controlling factors in drug release. The rate of implant formation may be an important parameter for predicting and tailoring drug release. The approach combining UV imaging, Vis imaging and light microscopy may facilitate understanding of release processes and holds potential for becoming a useful tool in formulation development of in situ forming

  11. The effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst. II. UV-Vis diffuse reflectance spectra of surface compounds after irradiation

    International Nuclear Information System (INIS)

    Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.

    1993-01-01

    Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs

  12. Characterization of pigment/binder - systems in arts via FTIR and UV/Vis/NIR - spectroscopy with special consideration of nondestructive methods

    International Nuclear Information System (INIS)

    Vetter, W.A.

    2014-01-01

    The main focus of this doctoral thesis is on the non-destructive analysis of art objects by using compound specific reflection-UV/Vis/NIR and reflection-FTIR spectroscopy. Based on commercially available instruments, measuring systems have been designed and built to meet the specific requirements of material analysis in the field of art. These systems have been utilized to analyse different types of art objects (watercolour paintings, easel paintings, contemporary graphic art objects) in order to identify the materials used by the artists. Furthermore, two new procedures are presented which allow to build up adequate reference databases from only minimal sample amounts of original watercolour materials of the 19th century. This is a crucial point as both methods require references for the identification of the materials. The results obtained demonstrate that UV/Vis/NIR and FTIR spectroscopy in reflection mode enable the non-destructive identification of a variety of both, organic and inorganic materials, particularly in combination with element specific XRF (X-ray fluorescence analysis) and thus are valuable tools for the analysis of cultural heritage objects. Furthermore, the results have shown that a comparison of the complementary methods strongly facilitated the evaluation of spectra obtained by the particular analytical techniques and hence reliable results could be obtained in many cases. As expected, several frequently used pigments e.g. carbon based blacks, earth pigments and lake pigments could not be identified unambiguously due to methodical limitations. Therefore, the use of additional complementary methods such as Raman spectroscopy and X-ray diffraction (XRD) would be highly desirable. Except a few examples, the characteristics of the radiation used for the investigations did not allow to draw conclusions about the distribution of materials in multilayer structures. For this reason, it still remains necessary to analyse cross-sections of samples for a

  13. The study of UV-spectra of the sodium (3-oxo-3,4-dihydro-2H-[1,2,4]triazino[4,3-c]quinazolin-4-ylacetate

    Directory of Open Access Journals (Sweden)

    О. V. Kryvoshey

    2016-04-01

    Full Text Available Despite the potential of [1,2,4]triazino[4,3-c]quinazoline derivatives as promising bioactive compounds, their electronic spectra has not been studied. Present manuscript is aimed to the estimation of relationships of molecules structure with the nature of their UV-spectra and identifying spectral patterns of pharmacophore that determines the pharmacological activity of the substance. Mentioned information undoubtedly contributes to the development of the theory of the purposeful synthesis of organic compounds. Methods and results. UV-spectra of sodium (3-oxo-3,4-dihydro-2H-[1,2,4]triazino[4,3-c]quinazolin-4-ylacetate in different polarity solvents have been studied. It allowed to identify types of electron transitions, which were responsible of emergence of the observed absorption bands. Conclusions. It was found that the UV-spectra of the studied compounds in solvents with different polarity were characterized by three absorption bands in the range 190–227 nm, 260–284 nm and 328–348 nm. According to Braude classification the first absorption band should be classified as 1La, the second – as 1Lb, and the third band is due to p-π- conjugation in the molecule of the whole molecule structure.

  14. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  15. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    Science.gov (United States)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  16. A combined experimental (IR, Raman and UV-Vis) and quantum chemical study of canadine

    Science.gov (United States)

    Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Ayala, A. P.

    2018-02-01

    Plant based natural products cover a major sector of the medicinal field, as such focus on plant research has been increased all over the world. As an attempt to aid that research, we have performed structural and spectroscopic analysis of a natural product, an alkaloid: canadine. Both ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP using 6-311 ++G(d,p) basis set were used for the calculations. The calculated vibrational frequencies were scaled and compared with the experimental infrared and Raman spectra. The complete vibrational assignments were made using potential energy distribution. The structure-activity relation has also been interpreted by mapping electrostatic potential surface and evaluating the reactivity descriptors, which are valuable information for quality control of medicines and drug-receptor interactions. Natural bond orbital analysis has also been performed to understand the stability and hyperconjugative interactions of the molecule. Furthermore, UV-Vis spectra have been recorded in an ethanol solvent (EtOH) and the electronic property has been analyzed employing TD-DFT for both gaseous and solvent phase. The HOMO and LUMO calculation with their energy gap show that charge transfer occurs within the molecule. Additionally, the nonlinear optical properties of the title compound have been interpreted that predicts it's the best candidate for the NLO materials.

  17. Effect of R.F. Power to the Structural Properties of ZnO Thin Films Deposited by Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sin, N.D.M.; Rusop, M.

    2011-01-01

    The effect of RF power variation (100 watt∼400 watt ) on the zinc oxide (ZnO) thin films electrical, optical and structural properties were examined using current voltage (I-V) measurement, UV-Vis-NIR spectrophotometer, x-ray diffraction (XRD) and atomic force microscope (AFM). ZnO thin films were prepared at room temperature in pure argon atmosphere by a RF magnetron sputtering using ZnO target. The resistivity of thin film show the lowest at 300 watt. The absorption coefficient spectra obtained from UV-Vis-NIR spectrophotometer measurement show all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties using UV-VIS spectrophotometer (JASCO 670) . Highly oriented ZnO thin films [002] direction were obtained by using Rigaku Ultima IV. (author)

  18. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    Science.gov (United States)

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.

  19. Polycrystalline diamond film UV detectors for excimer lasers

    International Nuclear Information System (INIS)

    Ralchenko, V G; Savel'ev, A V; Konov, Vitalii I; Mazzeo, G; Spaziani, F; Conte, G; Polyakov, V I

    2006-01-01

    Photoresistive metal-semiconductor-metal detectors based on polycrystalline diamond films are fabricated for recording cw and pulsed UV radiation. The detectors have a high spectral selectivity (the UV-to-VIS response ratio is ∼10 5 ) and a temporal resolution of the order of 10 9 s. 'Solar-blind' photostable diamond detectors are promising for applications in UV lithography, laser micromachining, medicine, and space research. (letters)

  20. Hγ Line Spectrum of Intermediate Polars

    Directory of Open Access Journals (Sweden)

    Yonggi Kim

    1998-06-01

    Full Text Available Kim & Beuermann (1995, 1996 have developed a model for the propagation of X-rays from the accreting white dwarf through the infalling material and the re-emission of the energy deposited by photo-absorption in the optical (and UV spectral range. By using this model, we calculate the profiles of the Hγ emission-line spectrum of intermediate polars. Photoabsorption of X-rays by the infalling material is the dominant process in forming the observed energy-dependent rotational modulation of the X-ray flux. X-ray and optical modulations are sensitive to model parameters in different ways. In principle, these dependencies allow us to obtain improved insight into the accretion geometry of the intermediate polars. We present results of our calculations and compare them with the Hβ line spectrum (Kim & Beuermann 1996.

  1. The application of UV LEDs for differential optical absorption spectroscopy

    Science.gov (United States)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2018-04-01

    Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.

  2. Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS

    Science.gov (United States)

    Scapin, Marcos A.; Duarte, Celina L.; Bustillos, José Oscar W. V.; Sato, Ivone M.

    2009-07-01

    The hydrocarbons degradation by gamma irradiation of the waste automotive lubricating oil at different absorbed doses has was investigated. The waste automotive oil in a Brazilian oil recycling company was collected. This sample was fractioned and 50% and 70% (v/v) Milli-Q water were added. Each sample was irradiated with 100, 200 and 500 kGy doses using a gamma source Co-60—GAMMACELL type, with 5×10 3 Ci total activity. Gas chromatography-mass spectrometry (GC/MS) was used to identify degraded organic compounds. The mass spectra were analyzed using the mass spectral library from NIST, installed in the spectrometer. The sample irradiated at 500 kGy dose with 70% (v/v) Milli-Q water addition formed eight degradation products, namely diethanolmethylamine (C 5H 13NO), diethyldiethylene glycol (C 8H 18O 3), 1-octyn-3-ol, 4-ethyl (C 10H 18O) and 1.4-pentanediamine, N1, N1-diethyl (C 9H 22N 2). The color changing of the waste lubricating oil, for different absorbed doses, was determined by UV/VIS spectrophotometer. The related sample showed the lowest absorbance value evidencing the formation of 2-ethoxyethyl ether (C 8H 18O 3) compound.

  3. UV-VIS and photoluminescence spectroscopy for nanomaterials characterization

    CERN Document Server

    2013-01-01

    Second volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about UV-visible and photoluminescence spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry in the related fields.

  4. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations

    KAUST Repository

    Harb, Moussab

    2011-10-06

    Extension of the absorption properties of TiO2 photocatalytic materials to the visible part of the solar spectrum is of major importance for energy and cleaning up applications. We carry out a systematic study of the N-doped anatase TiO2 material using spin-polarized density functional theory (DFT) and the range-separated hybrid HSE06 functional. The thermodynamic stability of competitive N-doped TiO2 structural configurations is studied as a function of the oxygen chemical potential and of various chemical doping agents: N2, (N2 + H2), NH3, N2H4. We show that the diamagnetic TiO (2-3x)N2x system corresponding to a separated substitutional N species (with 2-4% N impurities) and formation of one-half concentration of O vacancies (1-2 atom %) is an optimal configuration thermodynamically favored by NH3, N2H4, and (N2 + H2) chemical doping agents presenting a dual nitrating-reducing character. The simulated UV-vis absorption spectra using the perturbation theory (DFPT) approach demonstrates unambiguously that the diamagnetic TiO(2-3x)N2x system exhibits the enhanced optical absorption in N-doped TiO2 under visible-light irradiation. Electronic analysis further reveals a band gap narrowing of 0.6 eV induced by delocalized impurity states located at the top of the valence band of TiO 2. A fruitful comparison with experimental data is furnished. © 2011 American Chemical Society.

  5. Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea

    Science.gov (United States)

    Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Li, Zhanqing; Kim, Jhoon; Koo, Ja-Ho; Go, Sujung; Irie, Hitoshi; Labow, Gordon; Eck, Thomas F.; Holben, Brent N.; Herman, Jay; Loughman, Robert P.; Spinei, Elena; Lee, Seoung Soo; Khatri, Pradeep; Campanelli, Monica

    2018-04-01

    Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI) and future (e.g., TROPOMI, TEMPO, GEMS, and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR, and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nm) through VIS to NIR wavelengths (870 nm).

  6. Underresolved absorption spectroscopy of OH radicals in flames using broadband UV LEDs

    Science.gov (United States)

    White, Logan; Gamba, Mirko

    2018-04-01

    A broadband absorption spectroscopy diagnostic based on underresolution of the spectral absorption lines is evaluated for the inference of species mole fraction and temperature in combustion systems from spectral fitting. The approach uses spectrally broadband UV light emitting diodes and leverages low resolution, small form factor spectrometers. Through this combination, the method can be used to develop high precision measurement sensors. The challenges of underresolved spectroscopy are explored and addressed using spectral derivative fitting, which is found to generate measurements with high precision and accuracy. The diagnostic is demonstrated with experimental measurements of gas temperature and OH mole fraction in atmospheric air/methane premixed laminar flat flames. Measurements exhibit high precision, good agreement with 1-D flame simulations, and high repeatability. A newly developed model of uncertainty in underresolved spectroscopy is applied to estimate two-dimensional confidence regions for the measurements. The results of the uncertainty analysis indicate that the errors in the outputs of the spectral fitting procedure are correlated. The implications of the correlation between uncertainties for measurement interpretation are discussed.

  7. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    Science.gov (United States)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; hide

    2012-01-01

    general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

  8. Optical absorption and electrical properties of MPc (M =Fe, Cu, Zn)-TCNQ interfaces for optoelectronic applications

    Science.gov (United States)

    Sánchez Vergara, M. E.; Medrano Gallardo, D.; Vera Estrada, I. L.; Jiménez Sandoval, O.

    2018-04-01

    This research is related to the growth and characterization of doped molecular semiconductor metallophthalocyanine-tetracyanoquinodimethane (MPc-TCNQ) films, with M = Fe, Zn, Cu. FT-IR and Raman spectroscopies were employed to study the chemical interactions taking place in the MPc-TCNQ films. XRD was carried out to determine the crystalline structure present in the samples, due to the facility of the MPcs to be in alpha and/or beta phases. The thin films were analized by SEM and UV-vis spectroscopy in order to study their morphological and optical properties. The absorption spectra recorded in the UV-Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The absorption coefficient (α) and photon energy (hν) were calculated from the UV-vis spectra, to in turn determine the optic activation energy in each film and its semiconductor behavior. The values obtained for direct transitions due to the crystallinity of the films were: 1.2, 1.4 and 2 eV for FePc-TCNQ (MMFe), ZnPc-TCNQ (MMZn) and CuPc-TCNQ (MMCu), respectively. Additionally, I-V characteristics have been obtained from fabricated glass/ITO/MM/Ag devices using ohmic contacts both after annealing. The electrical properties of the devices, e.g. carrier mobility and concentration of thermally generated holes, were extracted from the J-V characteristics. The results show that the conduction process is ohmic for the MMZn and MMCu devices, at low voltages, while at high voltages, a space-charge-limited conduction (SCLC) is present. The effect of temperature on conductivity was also measured in these samples and the lower thermal activation energy calculated was 0.37 eV for MMZn. Moreover, it was found that the temperature-dependent electric current is always higher for the MMZn device and suggests a semiconductor-like behavior with an important conductivity of the order of 103 S cm-1. Anyhow, in terms not only of electric properties, but also of optic behavior, the results suggest that

  9. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR...

  10. UV Coatings, Polarization, and Coronagraphy

    Science.gov (United States)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  11. Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV-vis irradiation: Efficacy, kinetics and mechanism.

    Science.gov (United States)

    Ding, Jiafeng; Long, Gaoyuan; Luo, Yang; Sun, Runze; Chen, Mengxia; Li, Yajun; Zhou, Yanfang; Xu, Xinhua; Zhao, Weirong

    2018-05-09

    Polychlorinated dibenzo-p-dioxins (PCDDs), as a group of notorious anthropogenic environmental toxicants, are arguably ubiquitous in nature. In this study, we investigated the photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin (2-CDD) over Pd/g-C 3 N 4 catalysts under UV-vis irradiation. The g-C 3 N 4 and a series of Pd/g-C 3 N 4 catalysts were prepared by thermal polymerization and mechanical mixing-illumination method and characterized by XRD, TEM, BET, SEM and UV-vis DRS analyses. Among all the samples, the Pd/g-C 3 N 4 (5 wt%) yielded the optimal dechlorination activity with a total 2-CDD conversion of 54% within 4 h, and 76% of those converted 2-CDD were evolved to dibenzo-p-dioxin (DD). The kinetics of dechlorination could be described as pseudo-first-order decay model (R 2  > 0.84). Corresponding rate constants (k) increased from 0.052 to 0.17 h -1 with Pd contents up to 5 wt% and decreased to 0.13 h -1 with a 10 wt% of Pd. The enhanced activities originated from the surface plasmonic resonance (SPR) effect of Pd nanoparticles and the formation of Schottky barrier between Pd and g-C 3 N 4 , which extend the spectrum responsive range and suppress the charge recombination of g-C 3 N 4 . This is the first report on the photocatalytic reductive removal of PCDDs and may provide a new approach for PCDDs pollution control. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Circularly polarized luminescence of syndiotactic polystyrene

    Science.gov (United States)

    Rizzo, Paola; Abbate, Sergio; Longhi, Giovanna; Guerra, Gaetano

    2017-11-01

    Syndiotactic polystyrene (s-PS) films, when crystallized from the amorphous state by temporary sorption of non-racemic guest molecules (like carvone) not only exhibit unusually high optical activity, both in the UV-Visible and Infrared ranges, but also present circularly polarized luminescence (CPL) with high dissymmetry ratios (g = ΔI/I values in the range 0.02-0.03). Experimental evidences provide support, rather than to the usual molecular circular dichroism, to a supramolecular chiral optical response being extrinsic to the site of photon absorption and emission, possibly associated with a helical morphology of s-PS crystallites.

  13. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    Science.gov (United States)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  14. Real-Time Quantitative Operando Raman Spectroscopy of a CrOx/Al2O3 Propane Dehydrogenation Catalyst in a Pilot-Scale Reactor

    NARCIS (Netherlands)

    Sattler, Jesper J. H. B.; Mens, Ad M.; Weckhuysen, Bert M.

    2014-01-01

    Combined operando UV/vis-Raman spectroscopy has been used to study the deactivation of CrOx/Al2O3 catalyst extrudates in a pilot scale propane dehydrogenation reactor. For this purpose, UV/vis and Raman optical fiber probes have been designed, constructed and tested. The light absorption measured by

  15. 15-00474_SI_NP.doc

    Indian Academy of Sciences (India)

    The dynamic light scattering measurement for the nanoparticle obtained after 24 h of the reaction. Figure S4. UV-vis absorption spectrum of the nanoparticles ... Figure S10. UV-vis spectrum obtained for the supernatant. Nanoparticle was centrifuged in an ultra-centrifuge and the supernatant was used in the measurement.

  16. Study on coordination characteristics of neptunium and uranium ions in calcium nitrate hydrate melt by Raman spectrometry and UV/Vis/NIR spectrometry

    International Nuclear Information System (INIS)

    Fujii, T; Okude, G; Uehara, A; Yamana, H

    2010-01-01

    Extraction behavior of neptunium (Np) by tri-n-butyl phosphate from calcium nitrate hydrate melt was investigated. Distribution ratio of Np was found to increase with the decrease of water content. Adding nitric acid into the system resulted in an increase of the distribution ratio. In order to understand the extraction trends, Np species in the hydrate melt were analyzed by Raman spectrometry and UV/Vis/NIR spectrometry. Major fraction was assigned to be NpO 2 2+ of Np(VI) and small fraction to be NpO 2 + of Np(V). A shift of the v 1 symmetric vibrational frequency of NpO 2 2+ in nitrate media was found in Raman spectra. This suggests a coordination circumstance change of NpO 2 2+ .

  17. From single-site tantalum complexes to nanoparticles of Ta x N y and TaO x N y supported on silica: elucidation of synthesis chemistry by dynamic nuclear polarization surface enhanced NMR spectroscopy and X-ray absorption spectroscopy.

    Science.gov (United States)

    Mohandas, Janet C; Abou-Hamad, Edy; Callens, Emmanuel; Samantaray, Manoja K; Gajan, David; Gurinov, Andrei; Ma, Tao; Ould-Chikh, Samy; Hoffman, Adam S; Gates, Bruce C; Basset, Jean-Marie

    2017-08-01

    Air-stable catalysts consisting of tantalum nitride nanoparticles represented as a mixture of Ta x N y and TaO x N y with diameters in the range of 0.5 to 3 nm supported on highly dehydroxylated silica were synthesized from TaMe 5 (Me = methyl) and dimeric Ta 2 (OMe) 10 with guidance by the principles of surface organometallic chemistry (SOMC). Characterization of the supported precursors and the supported nanoparticles formed from them was carried out by IR, NMR, UV-Vis, extended X-ray absorption fine structure, and X-ray photoelectron spectroscopies complemented with XRD and high-resolution TEM, with dynamic nuclear polarization surface enhanced NMR spectroscopy being especially helpful by providing enhanced intensities of the signals of 1 H, 13 C, 29 Si, and 15 N at their natural abundances. The characterization data provide details of the synthesis chemistry, including evidence of (a) O 2 insertion into Ta-CH 3 species on the support and (b) a binuclear to mononuclear transformation of species formed from Ta 2 (OMe) 10 on the support. A catalytic test reaction, cyclooctene epoxidation, was used to probe the supported nanoparticles, with 30% H 2 O 2 serving as the oxidant. The catalysts gave selectivities up to 98% for the epoxide at conversions as high as 99% with a 3.4 wt% loading of Ta present as Ta x N y /TaO x N y .

  18. Calculated Hanle transmission and absorption spectra of the 87Rb D1 line with residual magnetic field for arbitrarily polarized light

    International Nuclear Information System (INIS)

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-01-01

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  19. Retrieval of Vertical Aerosol and Trace Gas Distributions from Polarization Sensitive Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    Science.gov (United States)

    Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich

    2017-04-01

    An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.

  20. Theoretical Calculation of the Uv-Vis Spectral Band Locations of Pahs with Unknown Syntheses Procedures and Prospective Carcinogenic Activity

    Science.gov (United States)

    Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara

    2017-06-01

    Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.

  1. An insight into the complexation of trivalent americium vis-a-vis lanthanides with bis(1,2,4-triazinyl)bipyridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Arunasis; Mohapatra, Manoj; Mohapatra, Prasanta K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Gadly, Trilochan; Ghosh, Sunil K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Bioorganic Div.; Manna, Debashree; Ghanty, Tapan K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Theoretical Chemistry Section; Rawat, Neetika; Tomar, Bhupendra S. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radioanalytical Chemistry Div.

    2017-01-26

    Complexation of Am{sup 3+} and Ln{sup 3+} (La{sup 3+}, Eu{sup 3+}, and Er{sup 3+}) with two bis(1,2,4-triazinyl)bipyridine (C{sub 2}BTBP, C{sub 5}BTBP) derivatives has been studied in acetonitrile medium with use of various experimental techniques such as electrospray ionization mass spectrometry (ESI-MS), time-resolved fluorescence spectroscopy (TRFS), UV/Vis spectrophotometry, and solution calorimetry. Metal-ligand stoichiometries and conditional stability constants of these complexes were determined. To the best of our knowledge, this is the first report on the complexation of Am{sup 3+} with any of the BTBP derivatives with use of UV/Vis spectrophotometric titration to determine the conditional stability constants. Density functional theory (DFT) calculations are carried out on the An{sup 3+} (U{sup 3+} and Am{sup 3+}) and Ln{sup 3+} (La{sup 3+}, Nd{sup 3+}, Eu{sup 3+}, Er{sup 3+}, and Lu{sup 3+}) complexes of BTBP in order to understand the difference between the bonding in actinide and lanthanide complexes. The results indicate a stronger covalent interaction in the An-N bonds as compared to the Ln-N bonds, which leads to an actinide selectivity of this class of ligands. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Electroluminescence of colloidal ZnSe quantum dots

    International Nuclear Information System (INIS)

    Dey, S.C.; Nath, S.S.

    2011-01-01

    The article reports a green chemical synthesis of colloidal ZnSe quantum dots at a moderate temperature. The prepared colloid sample is characterised by UV-vis absorption spectroscopy and transmission electron microscopy. UV-vis spectroscopy reveals as-expected blue-shift with strong absorption edge at 400 nm and micrographs show a non-uniform size distribution of ZnSe quantum dots in the range 1-4 nm. Further, photoluminescence and electroluminescence spectroscopies are carried out to study optical emission. Each of the spectroscopies reveals two emission peaks, indicating band-to-band transition and defect related transition. From the luminescence studies, it can be inferred that the recombination of electrons and holes resulting from interband transition causes violet emission and the recombination of a photon generated hole with a charged state of Zn-vacancy gives blue emission. Meanwhile electroluminescence study suggests the application of ZnSe quantum dots as an efficient light emitting device with the advantage of colour tuning (violet-blue-violet). - Highlights: → Synthesis of ZnSe quantum dots by a green chemical route. → Characterisation: UV-vis absorption spectroscopy and transmission electron microscopy. → Analysis of UV-vis absorption spectrum and transmission electron micrographs. → Study of electro-optical properties by photoluminescence and electroluminescence. → Conclusion: ZnSe quantum dots can be used as LED with dual colour emission.

  3. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    Energy Technology Data Exchange (ETDEWEB)

    Heera, Pawan, E-mail: sramanb70@mailcity.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Govt. College Amb, Himachal Pradesh, INDIA,177203 (India); Kumar, Anup, E-mail: kumar.anup.sml@gmail.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Physics Department, Govt. College, Kullu, H. P., INDIA, 175101 (India); Sharma, Raman, E-mail: pawanheera@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India)

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  4. Antioxidant responses in the polar marine sea-ice amphipod Gammarus wilkitzkii to natural and experimentally increased UV levels

    International Nuclear Information System (INIS)

    Krapp, Rupert H.; Bassinet, Thievery; Berge, Jorgen; Pampanin, Daniela M.; Camus, Lionel

    2009-01-01

    Polar marine surface waters are characterized by high levels of dissolved oxygen, seasonally intense UV irradiance and high levels of dissolved organic carbon. Therefore, the Arctic sea-ice habitat is regarded as a strongly pro-oxidant environment, even though its significant ice cover protects the ice-associated (=sympagic) fauna from direct irradiation to a large extent. In order to investigate the level of resistance to oxyradical stress, we sampled the sympagic amphipod species Gammarus wilkitzkii during both winter and summer conditions, as well as exposed specimens to simulated levels of near-natural and elevated levels of UV irradiation. Results showed that this amphipod species possessed a much stronger antioxidant capacity during summer than during winter. Also, the experimental UV exposure showed a depletion in antioxidant defences, indicating a negative effect of UV exposure on the total oxyradical scavenging capacity. Another sympagic organism, Onisimus nanseni, was sampled during summer conditions. When compared to G. wilkitzkii, the species showed even higher antioxidant scavenging capacity.

  5. Development of UV absorbing PET through Electron Irradiation

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Lee, Na Eun; Lim, Hyung San; Park, Yang Jeong; Cho, Sung Oh

    2017-01-01

    Experiment to increase UV absorbance through electron beam irradiation on PET was performed. Moreover, surface hardness and roughness of each sample were observed to find the key factor increasing UV absorbance. PET sheets were irradiated with an electron beam at various fluences. The irradiated samples, as well as pristine sample, were subjected to UV-visible spectral study(UV-Vis), pencil hardness test, and scanning electron microscopy(SEM) experiment. In this study, PET samples irradiated at several conditions were analyzed through various measurements. UV absorbance-another meaning of transmittance in this study- of irradiated PET sample increased compared with pristine sample as fluence was increased in UV-Visible spectroscopy experiment.

  6. X-ray crystallographic study of 3-Oxo-2-{[4-(thiazol-2-ylsulfamoyl)-phenyl]-hydrazono}-butyric acid ethyl ester and its application in the solvent assisted naked eye sensing of Hg(II)

    Science.gov (United States)

    Upadhyay, K. K.; Upadhyay, Shalini; Kumar, Kamlesh; Prasad, Rajendra

    2009-06-01

    The 3-Oxo-2-{[4-(thiazol-2-ylsulfamoyl)-phenyl]-hydrazono}-butyric acid ethyl ester (OSPBE) was studied through single crystal structure analysis revealing some interesting supramolecular architectural patterns. The N(3)-N(4) bond length of OSPBE was found to be 1.36 Å matching well with reported N-N bond length in the literature and hence clearly proved that it is the keto form of OSPBE which is stable. Full structural optimization of OSPBE using density functional theory (DFT) at the HCTH407/6-31G ∗∗ level also proved that the keto form of OSPBE is stable. The UV-Vis absorption peaks for OSPBE predicted by the time dependent DFT at B3LYP/6-311G ∗∗ level matched quite well with the experimentally observed UV-Vis bands for OSPBE. The OSPBE was successfully tested as the naked eye sensor for Hg(II) as its chloride salt at the millimolar level in dimethylsulfoxide. A color change from red orange to olive green was observed on addition of 1.0 equiv. of Hg(II) to the 1.0 × 10 -3 M DMSO solution of the chemosensor. The role of DMSO in the sensing process appears to be the crucial one because the intramolecular charge transfer (ICT) band of OSPBE in DMSO observed at 489 nm did not appear in the UV-Vis spectrum of OSPBE in nujol. The UV-Vis and 1H NMR titrations revealed that formation of six membered 1:1 chelate between OSPBE and Hg(II) along with reversible supramolecular association of DMSO with NH at N-2 position in OSPBE may be responsible for its Hg(II) sensing. No sensing for other d 10 metal ions like Zn(II) and Cd(II) were observed with OSPBE under similar conditions. Besides DMSO, some other polar aprotic solvents like DMF and acetone having X dbnd O (where X = C) also produced similar type of color change on the addition of 1.0 equiv. of Hg(II) to their respective 1.0 × 10 -3 M OSPBE solutions. Nevertheless, polar aprotic solvent like acetonitrile not having X dbnd O or non-polar aprotic solvent like chloroform no color change was observed under

  7. UV-blocking potential of oils and juices.

    Science.gov (United States)

    Gause, S; Chauhan, A

    2016-08-01

    Sunscreens are commonly used to protect the body from damage caused by UV light. Some components of organic sunscreens have been shown to pass through the skin during wear which could raise toxicity concerns for these compounds. This study explores the potential for oils and fruit and vegetable juices to be substitutes for these compounds. The absorptivity of various oils (canola oil, citronella oil, coconut oil, olive oil, soya bean oil, vitamin E, as well as aloe vera) and fruit and vegetable juices (acerola, beet, grape, orange carrot, purple carrot and raspberry) was measured in vitro. The mean absorptivity was compared with FDA-approved UV absorbers to gauge the potential of the natural products. The most promising candidates were incorporated into formulations, and the UV transmittance of a 20-μm-thick film of the formulation was measured. The formulations were also imaged by light microscopy and scanning electron microscopy. The absorptivity of oils was at least two orders of magnitude lower compared to the commercial UV blockers. The fruit juice powders were more effective at UV blocking but still showed an order of magnitude lower absorptivity compared to commercial UV blockers. The UV blocking from most natural oils is insufficient to obtain a significant UV protection. Formulations containing 50wt% purple carrot showed good UV-blocking capabilities and represent a promising ingredient for sunscreen and cosmetic applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.

    Science.gov (United States)

    Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia

    2011-05-03

    Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.

  9. Water absorption in PEEK and PEI matrices. Contribution to the understanding of water-polar group interactions

    Science.gov (United States)

    Courvoisier, E.; Bicaba, Y.; Colin, X.

    2016-05-01

    The water absorption in two aromatic linear polymers (PEEK and PEI) was studied between 10% and 90% RH at 30, 50 and 70°C. It was found that these polymers display classical Henry and Fick's behaviors. Moreover, they have very close values of equilibrium water concentration C∞ and water diffusivity D presumably because their respective polar groups establish molecular interactions of the same nature with water. This assumption was checked from a literature compilation of values of C∞ and D for a large variety of linear and tridimensional polymers containing a single type of polar group. It was then evidenced that almost all types of carbonyl group (in particular, those belonging to imides, amides and ketones) have the same molar contribution to water absorption, except those belonging to esters which are much less hydrophilic. Furthermore, hydroxyl and sulfone groups are much more hydrophilic than carbonyl groups so that their molar contribution is located on another master curve. On this basis, semi-empirical structure/water transport property relationships were proposed. It was found that C∞ increases exponentially with the concentration of polar groups (presumably because water is doubly bonded), but also with the intensity of their molecular interactions with water. In contrast, D is inversely proportional to C∞, which means that polar group-water interactions slow down the rate of water diffusion.

  10. Optoelectronic properties of a novel fluorene derivative for organic light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Junsheng; Lou, Shuangling; Qian, Jincheng; Jiang, Yadong [University of Electronic Science and Technology of China (UESTC), State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu (China); Zhang, Qing [Shanghai Jiaotong University, Department of Polymer Science, School of Chemistry and Chemical Technology, Shanghai (China)

    2009-03-15

    We report the optoelectronic properties of a novel fluorene derivative of 6,6'-(9H-fluoren-9,9-diyl)bis(2,3-bis (9,9-dihexyl-9H-fluoren-2-yl)quinoxaline) (BFLBBFLYQ) used for organic light-emitting diode. UV-Vis absorption, photoluminescence (PL) and electroluminescence (EL) spectra of BFLBBFLYQ and the blend doped with N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-1,1'-biphenyl-4,4'-di- amine (TPD) in solid state and in solution were investigated. The results showed that BFLBBFLYQ had a PL peak at 451 nm in solid and solution states and an EL peak at 483 nm with a broad emission band, resulting from fluorenone defects. Exciplex emission was observed in BFLBBFLYQ-TPD blend solid state with a green emission peaking at 530 nm. Also the blend in solution showed solvatochromism in polarity solvent upon UV irradiation. A new absorption band appeared at around 470 nm of BFLBBFLYQ-TPD blend in chloroform solution, and disappeared when diluted in absorption spectrum. Meanwhile, a low energy emission band from 530 to 580 nm appeared and increased with material concentration and UV irradiation time. (orig.)

  11. Feasibility of UV-VIS-Fluorescence spectroscopy combined with pattern recognition techniques to authenticate a new category of plant food supplements.

    Science.gov (United States)

    Boggia, Raffaella; Turrini, Federica; Anselmo, Marco; Zunin, Paola; Donno, Dario; Beccaro, Gabriele L

    2017-07-01

    Bud extracts, named also "gemmoderivatives", are a new category of natural products, obtained macerating meristematic fresh tissues of trees and plants. In the European Community these botanical remedies are classified as plant food supplements. Nowadays these products are still poorly studied, even if they are widely used and commercialized. Several analytical tools for the quality control of these very expensive supplements are urgently needed in order to avoid mislabelling and frauds. In fact, besides the usual quality controls common to the other botanical dietary supplements, these extracts should be checked in order to quickly detect if the cheaper adult parts of the plants are deceptively used in place of the corresponding buds whose harvest-period and production are extremely limited. This study aims to provide a screening analytical method based on UV-VIS-Fluorescence spectroscopy coupled to multivariate analysis for a rapid, inexpensive and non-destructive quality control of these products.

  12. Influence of UV-Irradiation on Latent Tracks in Polyethylene Terephthalate Films

    International Nuclear Information System (INIS)

    Wen Qi; Wang Peng-Fei; Ling Yun; Wang Mao; Yan Dong-Xiao; Wang Yu-Gang; Cao Xing-Zhong; Wang Bao-Yi

    2016-01-01

    Polyethylene terephthalate (PET) films in thickness of 12 μm are irradiated by Xe and Au ions at the energies of 9.5 and 11.4MeV/u and with the ion fluence from 5 × 10"9 cm"−"2 to 1 × 10"1"1 cm"−"2. After irradiation, ultra-violet lights are used to illuminate the samples with latent tracks at the wavelength of 365 nm with flux density of 4.2 mW/cm"−"2. UV-irradiation effects on tracked PET are investigated by the UV-vis spectrum and positron annihilation lifetime spectroscopy (PALS). It is found that carbonaceous clusters in PET films are generated by ion irradiation and decomposed with UV illumination by calculating the optical energy band gap E_g in the UV-vis spectrum. The free volumes behave differently in track and bulk after UV illumination. In our experiment, the PALS results show an increase in radius and density of free volume in tracked PET films after UV treatment, which indicates an expansion in radius of latent tracks. (paper)

  13. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    Science.gov (United States)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  14. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection.

    Science.gov (United States)

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A

    2018-02-06

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume-that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.

  15. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection

    Directory of Open Access Journals (Sweden)

    Mona Nissen

    2018-02-01

    Full Text Available Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX and sodium salicylate (SS, were detectable down to 0.1 µM (26 ppb and 0.4 µM (64 ppb, respectively, with the potential to reach significantly lower detection limits for further device integration.

  16. Application of synchrotron-radiation soft x-ray spectroscopy for food analysis. Oxidation of the Japanese traditional sweets 'Karinto'

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji; Kamamoto, Keishi; Nozawa, Jiro; Amano, Osamu; Gullikson, Eric M.

    2008-01-01

    To establish synchrotron-radiation soft X-ray spectroscopy as a reliable method for food analysis, we measured the X-ray absorption spectra of Japanese traditional sweets 'Karinto' and monitored the oxidation process. We prepared oxidized Karinto samples; The oxidation conditions such as UV/Vis-irradiation/shading and air/nitrogen-atmosphere were controlled for nine months at room temperature. The soft X-ray absorption spectra (XAS) of Karinto samples were measured in the beamline BL-6.3.2 at the Advanced Light Source (ALS). The XAS of the Karinto samples oxidized with UV/Vis-irradiation in air show that the relative peak intensity ratio, π*/σ*, of the nine-month-oxidized sample clearly increases relative to the initial sample. This demonstrates that Karinto can be oxidized with UV/Vis-irradiation. (author)

  17. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy.

    Science.gov (United States)

    Goetze, Joris; Meirer, Florian; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Ruiz-Martínez, Javier; Weckhuysen, Bert M

    2017-06-02

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.

  18. Computational Photophysics in the Presence of an Environment

    Science.gov (United States)

    Nogueira, Juan J.; González, Leticia

    2018-04-01

    Most processes triggered by ultraviolet (UV) or visible (vis) light in nature take place in complex biological environments. The first step in these photophysical events is the excitation of the absorbing system or chromophore to an electronically excited state. Such an excitation can be monitored by the UV-vis absorption spectrum. A precise calculation of the UV-vis spectrum of a chromophore embedded in an environment is a challenging task that requires the consideration of several ingredients, besides an accurate electronic-structure method for the excited states. Two of the most important are an appropriate description of the interactions between the chromophore and the environment and accounting for the vibrational motion of the whole system. In this contribution, we review the most common theoretical methodologies to describe the environment (including quantum mechanics/continuum and quantum mechanics/molecular mechanics models) and to account for vibrational sampling (including Wigner sampling and molecular dynamics). Further, we illustrate in a series of examples how the lack of these ingredients can lead to a wrong interpretation of the electronic features behind the UV-vis absorption spectrum.

  19. Photocatalytic properties of Au-deposited mesoporous SiO_2–TiO_2 photocatalyst under simultaneous irradiation of UV and visible light

    International Nuclear Information System (INIS)

    Okuno, T.; Kawamura, G.; Muto, H.; Matsuda, A.

    2016-01-01

    Mesoporous SiO_2 templates deposited TiO_2 nanocrystals are synthesized via a sol–gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO_2–TiO_2). The photocatalytic characteristics of Au/SiO_2–TiO_2 are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO_2–TiO_2 under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO_2–TiO_2 shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV and Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination. - Graphical abstract: This graphic shows the possible charge behavior in Au/SiO_2–TiO_2 under independent light irradiation of ultraviolet and visible light irradiation. Both reactions under independent UV and Vis light irradiation occurred in parallel when Au/SiO_2–TiO_2 photocatalyst was illuminated UV and Vis light simultaneously, and then photocatalytic activity is improved by simultaneous irradiation. - Highlights: • Au nanoparticles were deposited in mesoporous SiO_2–TiO_2 by a photodeposition method. • Photocatalytic activity under UV and Vis light was enhanced by deposition of Au. • Photocatalytic activity of Au/SiO_2–TiO_2 was improved by simultaneous irradiation.

  20. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  1. Photoacoustic study of curing time by UV laser radiation of a photoresin with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Pincel, P. Vieyra [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Jiménez-Pérez, J.L., E-mail: jimenezp@fis.cinvestav.mx [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Cruz-Orea, A. [Departamento de Física, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México, D.F. (Mexico); Correa-Pacheco, Z.N. [Instituto Politécnico Nacional-Centro de Desarrollo de Productos Bióticos (CEPROBI). Carr. Yautepec–Jojutla, km 6. San Isidro, C.P. 62730 Yautepec, Morelos (Mexico); Rosas, J. Hernández [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico)

    2015-04-20

    Highlights: • The curing of a resin in the presence of a UV laser radiation was studied. • Open photoacoustic cell technique was used to characterize the curing of the resin. • The curing of the resin as a function of time was studied. • A parabolic behavior of the resin thickness, as a function of time was observed. • UV–vis and FTIR spectroscopy were employed to characterize the resin. - Abstract: This paper deals with the study of the cure of a resin in the presence of a UV laser radiation used as the excitation source, operated at λ = 405 nm, with an output power of 20 mW. The open photoacoustic cell (OPC) technique was used to study the curing of the resins as a function of time. The curing characteristic time values were τ = 10.43, 20.99, 30.18, 45.84, 67.59 and 89.55 s for the resin thicknesses of 1000, 2000, 3000, 4000, 5000 and 6000 μm, respectively. A parabolic behavior of the resin thickness, as a function of the curing characteristic time, was obtained. UV–vis spectroscopy and infrared Fourier transform spectroscopy (FTIR) techniques were employed to characterize the resin in order to study the optical absorption and the chemical bonds, respectively. Our work has applications in the manufacture of 3D printing parts for applications, among others, in medicine.

  2. Photoacoustic study of curing time by UV laser radiation of a photoresin with different thickness

    International Nuclear Information System (INIS)

    Pincel, P. Vieyra; Jiménez-Pérez, J.L.; Cruz-Orea, A.; Correa-Pacheco, Z.N.; Rosas, J. Hernández

    2015-01-01

    Highlights: • The curing of a resin in the presence of a UV laser radiation was studied. • Open photoacoustic cell technique was used to characterize the curing of the resin. • The curing of the resin as a function of time was studied. • A parabolic behavior of the resin thickness, as a function of time was observed. • UV–vis and FTIR spectroscopy were employed to characterize the resin. - Abstract: This paper deals with the study of the cure of a resin in the presence of a UV laser radiation used as the excitation source, operated at λ = 405 nm, with an output power of 20 mW. The open photoacoustic cell (OPC) technique was used to study the curing of the resins as a function of time. The curing characteristic time values were τ = 10.43, 20.99, 30.18, 45.84, 67.59 and 89.55 s for the resin thicknesses of 1000, 2000, 3000, 4000, 5000 and 6000 μm, respectively. A parabolic behavior of the resin thickness, as a function of the curing characteristic time, was obtained. UV–vis spectroscopy and infrared Fourier transform spectroscopy (FTIR) techniques were employed to characterize the resin in order to study the optical absorption and the chemical bonds, respectively. Our work has applications in the manufacture of 3D printing parts for applications, among others, in medicine

  3. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    Science.gov (United States)

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  4. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    Science.gov (United States)

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  5. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue.

    Science.gov (United States)

    Gupta, Deepak; Varghese Gupta, Sheeba; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2013-02-04

    Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) 30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and showed that the l-valyl prodrug (P(app) = 1.7 × 10(-6) cm/s) has the potential to be rapidly transported across the epithelial cell apical membrane. Significantly, only the parent drug (GOCarb) appeared in the basolateral

  6. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    Science.gov (United States)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  7. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  8. Robust Ultraviolet-Visible (UV-Vis) Partial Least-Squares (PLS) Models for Tannin Quantification in Red Wine.

    Science.gov (United States)

    Aleixandre-Tudo, José Luis; Nieuwoudt, Helené; Aleixandre, José Luis; Du Toit, Wessel J

    2015-02-04

    The validation of ultraviolet-visible (UV-vis) spectroscopy combined with partial least-squares (PLS) regression to quantify red wine tannins is reported. The methylcellulose precipitable (MCP) tannin assay and the bovine serum albumin (BSA) tannin assay were used as reference methods. To take the high variability of wine tannins into account when the calibration models were built, a diverse data set was collected from samples of South African red wines that consisted of 18 different cultivars, from regions spanning the wine grape-growing areas of South Africa with their various sites, climates, and soils, ranging in vintage from 2000 to 2012. A total of 240 wine samples were analyzed, and these were divided into a calibration set (n = 120) and a validation set (n = 120) to evaluate the predictive ability of the models. To test the robustness of the PLS calibration models, the predictive ability of the classifying variables cultivar, vintage year, and experimental versus commercial wines was also tested. In general, the statistics obtained when BSA was used as a reference method were slightly better than those obtained with MCP. Despite this, the MCP tannin assay should also be considered as a valid reference method for developing PLS calibrations. The best calibration statistics for the prediction of new samples were coefficient of correlation (R 2 val) = 0.89, root mean standard error of prediction (RMSEP) = 0.16, and residual predictive deviation (RPD) = 3.49 for MCP and R 2 val = 0.93, RMSEP = 0.08, and RPD = 4.07 for BSA, when only the UV region (260-310 nm) was selected, which also led to a faster analysis time. In addition, a difference in the results obtained when the predictive ability of the classifying variables vintage, cultivar, or commercial versus experimental wines was studied suggests that tannin composition is highly affected by many factors. This study also discusses the correlations in tannin values between the methylcellulose and protein

  9. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Directory of Open Access Journals (Sweden)

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  10. Laccase-Catalyzed Synthesis of Low-Molecular-Weight Lignin-Like Oligomers and their Application as UV-Blocking Materials.

    Science.gov (United States)

    Lim, Jieyan; Sana, Barindra; Krishnan, Ranganathan; Seayad, Jayasree; Ghadessy, Farid J; Jana, Satyasankar; Ramalingam, Balamurugan

    2018-02-02

    The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (M n ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m -1  cm -1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Sai; Shen, Yong, E-mail: shenyong@sues.edu.cn; Xu, Li-Hui; Wang, Li-Ming; Xing, Ya-Jun

    2016-07-25

    The flower-like CuS with hierarchical structures were synthesized by a solvothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, UV–vis optical absorption spectroscopy and thermogravimetric analysis (TGA) and ultraviolet transmittance analyzer labsphere were used to characterize the as-prepared products. The results of photocatalytic degradation of Methylene blue (MB) demonstrated that the as-prepared flower-like CuS possessed high photocatalytic performance in UV and visible range and its band gap was 1.45 eV. The degradation rate of MB by CuS with the absence of H{sub 2}O{sub 2} was 98.23% and 100% under xenon lamp and Mercury tungsten blended lamp for 30 min, respectively. And a new approach for ultraviolet (UV) protection of cotton fabrics treated by flower-like CuS microspheres was innovatively investigated and the results showed that flower-like CuS was a good UV resistant material. - Highlights: • The flower-like CuS was prepared via solvothermal method. • The as-prepared CuS showed better photodegradation of MB solution under visible region. • The cotton fabric treated by the obtained flower-like CuS was proved to have a potential application in anti-UV field.

  12. Chromatographic separation and spectro-analytical characterization of a natural African mineral dye

    Directory of Open Access Journals (Sweden)

    G.B. Adebayo

    2007-08-01

    Full Text Available Chromatographic fractionation and spectroscopic characterization of a natural African mineral dye have been carried out. The chromatographic separation of the dyes made use of column and thin layer chromatographic techniques. Some physicochemical properties of the dye including solubility in polar and non-polar solvents, pH, ash and organic contents were determined. The spectro-analytical techniques used for characterization included energy dispersive X-ray fluorescence (EDXRF, X-ray diffractometry (XRD, Optical microscopy, infrared (IR and UV-VIS spectroscopy. Four different fractions having colours yellow, grey, orange and purple were obtained from the chromatographic separation. All the fractions were found to contain aromatic nucleus based on IR and UV-VIS spectroscopic data. Other functional groups detected are Ar-NH2, -CONH2, C=C, C-C and metal-carbon chelate rings. The presence of aromatic amine in the dye provides strong evidence for its use as hair dye. The dye was found to be soluble in both aqueous and non-aqueous solvents. The pH of the dye's aqueous solution was found to be 8.6, and the ash and organic content of the raw dye were 49 % and 51 % respectively. The XRF revealed that the dye contains twenty elements with concentrations ranging from major to ultra-trace levels. The XRD also showed that the sample contains about forty-six mineral phases which include both inorganic and organic components. The maximum absorption wavelength (λmax in UV-VIS of the aqueous solution was found to be 464 nm. The optical microscopic investigation gave indication that the dyes are likely to be of the marine origin.

  13. Deep UV to NIR Space Telescopes and Exoplanet Coronagraphs: A Trade Study on Throughput, Polarization, Mirror Coating Options and Requirements

    Science.gov (United States)

    Balasubramanian, Kunjithapatham; Shaklan, Stuart; Give'on, Amir; Cady, Eric; Marchen, Luis

    2011-01-01

    The NASA Exoplanet program and the Cosmic Origins program are exploring technical options to combine the visible to NIR performance requirements of a space coronagraph with the general astrophysics requirements of a space telescope covering the deep UV spectrum. Are there compatible options in terms of mirror coatings and telescope architecture to satisfy both goals? In this paper, we address some of the main concerns, particularly relating to polarization in the visible and throughput in the UV. Telescope architectures employing different coating options compatible with current technology are considered in this trade study.

  14. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    Science.gov (United States)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  15. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  16. Molar absorptivities of 2,4-D, cymoxanil, fenpropidin, isoproturon and pyrimethanil in aqueous solution in the near-UV

    Science.gov (United States)

    Feigenbrugel, Valérie; Le Calvé, Stéphane; Mirabel, Philippe

    2006-01-01

    The absorption spectra of five pesticides, namely 2,4-dichloro-phenoxy acetic acid (2,4-D), cymoxanil, fenpropidin, isoproturon and pyrimethanil, have been measured in aqueous solution using a set-up consisting of two parallel absorption cells coupled to a CCD detector. The absolute values of their molar absorptivity coefficients ɛ were determined in the wavelength-range 240-344 nm with a deuterium-lamp at room temperature (298 ± 2 K). Using the Beer-Lambert law, values of ɛ were also determined at 253.7 nm with a Hg-Lamp: ɛ = 145 ± 14 for 2,4-D, ɛ = 7940 ± 920 for cymoxanil, ɛ = 196 ± 14 for fenpropidin, ɛ = 7330 ± 880 for isoproturon, ɛ = 13200 ± 1400 for pyrimethanil (in units of M-1 cm-1). The quoted errors correspond to 2σ obtained from the least square fit analysis and the estimated systematic error of 5% due to the uncertainties in aqueous concentrations. For all the studied compounds, the absorbances measured were lower than 2.3 and did not exhibit any deviation from the Beer-Lambert's law. Our experimental data are discussed and compared to UV spectra of similar molecules when such data were available in the literature. Based on their UV spectra and the calculated fractions of these pesticides in the aqueous phase, their direct photolysis under sunlight environment could occur, except may be for fenpropidin, either in water surfaces or in aqueous droplets contained in the atmospheric clouds.

  17. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    DEFF Research Database (Denmark)

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...

  18. Quantitative analysis of trivalent uranium and lanthanides in a molten chloride by absorption spectrophotometry

    International Nuclear Information System (INIS)

    Toshiyuki Fujii; Akihiro Uehara; Hajimu Yamana

    2013-01-01

    As an analytical application for pyrochemical reprocessing using molten salts, quantitative analysis of uranium and lanthanides by UV/Vis/NIR absorption spectrophotometry was performed. Electronic absorption spectra of LiCl-KCl eutectic at 773 K including trivalent uranium and eight rare earth elements (Y, La, Ce, Pr, Nd, Sm, Eu, and Gd as fission product elements) were measured in the wavenumber region of 4,500-33,000 cm -1 . The composition of the solutes was simulated for a reductive extraction condition in a pyroreprocessing process for spent nuclear fuels, that is, about 2 wt% U and 0.1-2 wt% rare earth elements. Since U(III) possesses strong absorption bands due to f-d transitions, an optical quartz cell with short light path length of 1 mm was adopted in the analysis. The quantitative analysis of trivalent U, Nd, Pr, and Sm was possible with their f-f transition intensities in the NIR region. The analytical results agree with the prepared concentrations within 2σ experimental uncertainties. (author)

  19. Stratospheric OClO and NO2 measured by groundbased UV/Vis-spectroscopy in Greenland in January and February 1990 and 1991

    Science.gov (United States)

    Roth, A.; Perner, D.

    1994-01-01

    Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.

  20. Application of a UV-Vis submersible probe for capturing changes in DOC concentrations across a mire complex during the snowmelt and summer periods

    Science.gov (United States)

    Avagyan, Armine; Runkle, Benjamin; Kutzbach, Lars

    2013-04-01

    An accurate quantification of dissolved organic carbon (DOC) is crucial for understanding changes in water resources under the influence of climate, land use and urbanization. However, the conventionally used methods do not allow high frequency in situ analyses in remote or hostile environments (e.g., industrial wastewater or during environmental high-flow events, such as snowmelt or floods). In particular, missing measurements during the snowmelt period in landscapes of the boreal region can lead to significant miscalculations in regional carbon budgets. Therefore, the aim of the study was to test the performance of a portable, submersible UV-Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Austria) during the snowmelt period in a boreal mire-forest catchment, and to provide a conceptual understanding of the spatial and temporal dynamics of DOC concentrations during and after snowmelt. During 2011, water samples were collected from the near-pristine Ust-Pojeg mire complex in northwestern Russia (61° 56'N, 50° 13'E). Sampling started during the spring snowmelt period and continued until late fall. The mire presented a mosaic of different landscape units. The mire consisted of minerogeous (fen), ombrogenous (bog), and transitional forest-mire (lagg) zones. Water samples were taken from the surface across the mire (22 points at 50-m intervals). DOC concentrations were analyzed directly at the study site using a portable, submersible UV-Vis spectrophotometer, which uses high-resolution absorbance measurements over the wavelength range 200-742.5 nm at 2.5-nm intervals as a proxy for DOC content. Because the DOC composition of fluids varies by site, a local calibration replaced the default settings of the spectro::lyser (Global Calibration) to enhance the accuracy of the measurements. To evaluate the local calibration and correct for drift, the same samples (n = 157) were additionally analyzed using the wet persulfate oxidation method (O

  1. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    Science.gov (United States)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. SYNTHESIS AND CHARACTERIZATION OF CdSe COLLOIDAL QUANTUM DOTS IN ORGANIC SOLVENT

    Directory of Open Access Journals (Sweden)

    Ion Geru

    2014-06-01

    Full Text Available In this paper we present experimental results on preparation and characterization of colloidal CdSe quantum dots in organic solvent. CdSe QDs were synthesized following a modified literature method. CdSe QDs were isolated by adding acetone to the cooled solution followed by centrifugation. CdSe QDs have been characterized by UV-Vis absorption and photoluminescent (PL spectroscopy. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28-2.92 nm which is in good agreement with PL measurements.

  3. Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid-Liquid Microextraction Coupled with UV-Vis Spectrophotometry.

    Science.gov (United States)

    Nejad, Mina Ghasemi; Faraji, Hakim; Moghimi, Ali

    2017-04-01

    In this study, AA-DLLME combined with UV-Vis spectrophotometry was developed for pre-concentration, microextraction and determination of lead in aqueous samples. Optimization of the independent variables was carried out according to chemometric methods in three steps. According to the screening and optimization study, 86 μL of 1-undecanol (extracting solvent), 12 times syringe pumps, pH 2.0, 0.00% of salt and 0.1% DDTP (chelating agent) were chosen as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R = 0.9994, and linearity range was 0.01-100 µg mL -1 . LOD and LOQ were 3.4 and 11.6 ng mL -1 , respectively. The method was applied for analysis of real water samples, such as tap, mineral, river and waste water.

  4. Membrane lipid peroxidation by UV-A: Mechanism and implications

    International Nuclear Information System (INIS)

    Bose, B.; Agarwal, S.; Chatterjee, S.N.

    1990-01-01

    UV-A produced a dose-dependent linear increase of lipid peroxidation in liposomal membrane, as detected by the assay of (i) conjugated dienes, (ii) lipid hydroperoxides, (iii) malondialdehydes (MDA), and (iv) the fluorescent adducts formed by the reaction of MDA with glycine and also a linear dose-dependent increase of [ 14 C]glucose efflux from the liposomes. UV-A-induced MDA production could not be inhibited by any significant degree by sodium formate, dimethyl sulfoxide, EDTA, or superoxide dismutase but was very significantly inhibited by butylated hydroxytoluene, alpha-tocopherol, sodium azide, L-histidine, dimethylfuran, and beta-carotene. MDA formation increased with an increase in the D 2 O content in water, leading to a maximal amount of nearly 50% enhancement of lipid peroxidation in 100% D 2 O vis-a-vis water used as dispersion medium. The experimental findings indicate the involvement of singlet oxygen as the initiator of the UV-A-induced lipid peroxidation

  5. Structure and spectroscopic study of aqueous Fe(III)-As(V) complexes using UV-Vis, XAS and DFT-TDDFT.

    Science.gov (United States)

    Chai, Liyuan; Yang, Jinqin; Zhang, Ning; Wu, Pin-Jiun; Li, Qingzhu; Wang, Qingwei; Liu, Hui; Yi, Haibo

    2017-09-01

    Aqueous complexes between ferric (Fe(III)) and arsenate (As(V)) are indispensable for understanding the mobility of arsenic (As) in Fe(III)-As(V)-rich systems. In this study, aqueous Fe(III)-As(V) complexes, FeH 2 AsO 4 2+ and FeHAsO 4 + , were postulated based on the qualitative analysis of UV-Vis spectra in both Fe(III)-As(V)-HClO 4 and Fe(III)-As(V)-H 2 SO 4 systems. Subsequently, monodentate structures were evidenced by Fe K-edge EXAFS and modeled as [FeH 2 AsO 4 (H 2 O) 5 ] 2+ and [FeHAsO 4 (H 2 O) 5 ] + by DFT. The feature band at ∼280 nm was verified as electron excitation chiefly from Fe-As-bridged O atoms to d-orbital of Fe in [FeH 2 AsO 4 (H 2 O) 5 ] 2+ and [FeHAsO 4 (H 2 O) 5 ] + . The structural and spectral information of Fe(III)-As(V) complexes will enable future speciation analysis in Fe(III)-As(V)-rich system. Copyright © 2017. Published by Elsevier Ltd.

  6. Preparation of catalytically active, covalent α-polylysine-enzyme conjugates via UV/vis-quantifiable bis-aryl hydrazone bond formation.

    Science.gov (United States)

    Grotzky, Andrea; Manaka, Yuichi; Kojima, Taisuke; Walde, Peter

    2011-01-10

    Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.

  7. Evaluation of the acidity constants of the 4-hidroxy-5-6salicylideneamino9-2-7-naphthalenedisulfonic acid (Azomethine-H) using UV?vis spectrophotometry

    Science.gov (United States)

    Alarcón-Angeles, G.; Corona-Avendaño, S.; Rojas-Hernández, A.; Romero-Romo, M. A.; Ramírez-Silva, M. T.

    2005-01-01

    The time stability of the azomethine-H species was determined not to be better than 10 min in the absence of oxygen and light, however under phosphate buffered conditions the azomethine-H species remained stable for longer periods, as indicated by the spectrophotometric behaviour. Nevertheless, the analysis time still exceeded the stability allowance. Therefore, the determination of the acidity constants of the Azomethine-H species was studied by means of UV-vis spectrophotometry in buffered media by means of the point-by-point analysis and data processing with SQUAD to refine the resulting constants, which were: p Ka1=3.39, p Ka2 7.36 and p Ka3 8.73. The latter were associated to the corresponding acid-base equilibria of the amine and hydroxy groups constituting the molecule.

  8. Absorption of ultraviolet radiation by antarctic phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, M.; Mitchell, B.G. (Univ. of California-San Diego, La Jolla (United States))

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  9. Low Dark-Current, High Current-Gain of PVK/ZnO Nanoparticles Composite-Based UV Photodetector by PN-Heterojunction Control.

    Science.gov (United States)

    Lee, Sang-Won; Cha, Seung-Hwan; Choi, Kyung-Jae; Kang, Byoung-Ho; Lee, Jae-Sung; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Gopalan, Sai-Anand; Kwon, Dae-Hyuk; Kang, Shin-Won

    2016-01-07

    We propose a solution-processable ultraviolet (UV) photodetector with a pn-heterojunction hybrid photoactive layer (HPL) that is composed of poly-n-vinylcarbazole (PVK) as a p-type polymer and ZnO nanoparticles (NPs) as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL) spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 10³ higher than that of the dark current.

  10. Low Dark-Current, High Current-Gain of PVK/ZnO Nanoparticles Composite-Based UV Photodetector by PN-Heterojunction Control

    Directory of Open Access Journals (Sweden)

    Sang-Won Lee

    2016-01-01

    Full Text Available We propose a solution-processable ultraviolet (UV photodetector with a pn-heterojunction hybrid photoactive layer (HPL that is composed of poly-n-vinylcarbazole (PVK as a p-type polymer and ZnO nanoparticles (NPs as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 103 higher than that of the dark current.

  11. Optically induced anisotropy in photo responsive sol-gel matrix bearing a silylated disperse red 1

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Cho, Kang Jin; Cha, Young Kwan; Oh, Sang Joon

    2000-01-01

    We synthesized the simple triethoxysilanes (SGDR1) bearing a disperse red 1 for thin film fabrication. The thin films were prepared using the solution of SGDR1 after hydrolysis and condensation. The films were annealed at two different temperatures such as 150.deg.C and 200.deg.C. Trans-to-cis photoisomerization was observed under the exposure of 532 nm light with UV-Vis absorption spectroscopy. The kinetic study of photoisomerization was performed in the film. Reorientation of the polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The effect of aggregation of the chromophores and annealing of the silicon oxide in the matrix were studied on the dynamic properties of isomerization and induced birefringence

  12. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    Science.gov (United States)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  13. Spectral information (gas, liquid and solid phase from EUV-VUV-UV-Vis-NIR) and related data (e.g. information concerning publications on quantum yield studies or photolysis studies) from published papers

    Science.gov (United States)

    Noelle, A.; Hartmann, G. K.; Martin-Torres, F. J.

    2010-05-01

    The science-softCon "UV/Vis+ Spectra Data Base" is a non-profit project established in August 2000 and is operated in accordance to the "Open Access" definitions and regulations of the CSPR Assessment Panel on Scientific Data and Information (International Council for Science, 2004, HYPERLINK "http://www.science-softcon.de/spectra/cspr.pdf" ICSU Report of the CSPR Assessment Panel on Data and Information; ISBN 0-930357-60-4). The on-line database contains currently about 5600 spectra (from low to very high resolution, at different temperatures and pressures) and datasheets (metadata) of about 850 substances. Additional spectra/datasheets will be added continuously. In addition more than 250 links to on-line free available original publications are provided. The interdisciplinary of this photochemistry database provides a good interaction between different research areas. So, this database is an excellent tool for scientists who investigate on different fields such as atmospheric chemistry, astrophysics, agriculture, analytical chemistry, environmental chemistry, medicine, remote sensing, etc. To ensure the high quality standard of the fast growing UV/Vis+ Spectra Data Base an international "Scientific Advisory Group" (SAG) has been established in 2004. Because of the importance of maintenance of the database the support of the scientific community is crucial. Therefore we would like to encourage all scientists to support this data compilation project thru the provision of new or missing spectral data and information.

  14. Structural determination of individual chemical species in a mixed system by iterative transformation factor analysis-based X-ray absorption spectroscopy combined with UV-visible absorption and quantum chemical calculation.

    Science.gov (United States)

    Ikeda, Atsushi; Hennig, Christoph; Rossberg, André; Tsushima, Satoru; Scheinost, Andreas C; Bernhard, Gert

    2008-02-15

    A multitechnique approach using extended X-ray absorption fine structure (EXAFS) spectroscopy based on iterative transformation factor analysis (ITFA), UV-visible absorption spectroscopy, and density functional theory (DFT) calculations has been performed in order to investigate the speciation of uranium(VI) nitrate species in acetonitrile and to identify the complex structure of individual species in the system. UV-visible spectral titration suggests that there are four different species in the system, that is, pure solvated species, mono-, di-, and trinitrate species. The pure EXAFS spectra of these individual species are extracted by ITFA from the measured spectral mixtures on the basis of the speciation distribution profile calculated from the UV-visible data. Data analysis of the extracted EXAFS spectra, with the help of DFT calculations, reveals the most probable complex structures of the individual species. The pure solvated species corresponds to a uranyl hydrate complex with an equatorial coordination number (CNeq) of 5, [UO2(H2O)5]2+. Nitrate ions tend to coordinate to the uranyl(VI) ion in a bidentate fashion rather than a unidentate one in acetonitrile for all the nitrate species. The mononitrate species forms the complex of [UO2(H2O)3NO3]+ with a CNeq value of 5, while the di- and trinitrate species have a CNeq value of 6, corresponding to [UO2(H2O)2(NO3)2]0 (D2h) and [UO2(NO3)3]- (D3h), respectively.

  15. Dansyl - Substituted Aza Crown Ethers: Complexation with Alkali, Alkaline Earth Metal Ions and Ammonium

    Science.gov (United States)

    Deiab, Shihab; Archibong, Edikan; Tasheva, Donka; Mochona, Bereket; Gangapuram, Madhavi; Redda, Kinfe

    2011-01-01

    The present study investigates the binding properties of four dansyl substituted aza-crown ethers with alkali, alkaline earth metal ions and ammonium. The influence of the solvent polarity and protonation on the photophysical properties of the compounds was studied by UV/Vis and fluorescence methods. The host species caused only slight changes on the absorption spectra of the ligands. The fluorescence changes were more pronounced and concentration dependent thus allowing to calculate the binding constants of the process. The most stable complex under our working conditions was the one between Ba2+ and DNS18C6. PMID:21738561

  16. Organic Aerosols in the Presence of CO{sub 2} in the Early Earth and Exoplanets: UV–Vis Refractive Indices of Oxidized Tholins

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, Lisseth; Carrasco, Nathalie; Vettier, Ludovic [LATMOS, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, 11 blvd d’Alembert, F-78280 Guyancourt (France); Broch, Laurent [LCP-A2MC, Institut Jean Barriol, Université de Lorraine, Metz (France); Fleury, Benjamin, E-mail: lisseth.gavilan@latmos.ipsl.fr [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2017-10-10

    In this experimental study we investigate the role of atmospheric CO{sub 2} on the optical properties of organic photochemical aerosols. To this end, we add CO{sub 2} to a N{sub 2}:CH{sub 4} gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO{sub 2}/CH{sub 4} ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc–Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV–visible (270–600 nm). All samples present a significant absorption band in the UV. According to the Tauc–Lorentz model, as the CO{sub 2}/CH{sub 4} ratio is quadrupled, the position of the UV band is shifted from ∼177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV–vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.

  17. Synthesis of CdSe-TiO_2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

    International Nuclear Information System (INIS)

    Lim, Chang Sung; Chen, Ming Liang; Oh, Won Chun

    2011-01-01

    In this study, CdSe-TiO_2 photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe- TiO_2 photocatalyst exhibited much higher photocatalytic activity than TiO_2 both under irradiation of UV light as well as visible light

  18. Quantification of naphazoline nitrate by UV-spectrophoto-metry

    Directory of Open Access Journals (Sweden)

    O. I. Panasenko

    2013-12-01

    Full Text Available One of the main tasks of pharmaceutical chemistry – medical drugs study. Spectrophotometry is widely used in studying of the structure and composition (complexes, dyes, analytical reagents, etc. of various compounds. It widely used for qualitative and quantitative determination of substances (determination of elements traces in metals, alloys, technical facilities. The dependence between substance structure and its electronic spectrum is being studied by many researchers till nowadays. The aim of this work was to highlight the issues of naphazoline quantify definition techniques by the UV-spectrophotometry. According to the existing methods of quality control (MQC, naphazoline nitrate is a substance quantitatively determined by acid-base titration among a mixture of anhydrous acetic acid and acetic anhydride. Titration is carried out with a solution of 0,1 M perchloric acid (indicator - crystal violet. To check the quality of nasal drops nafazoline nitrate MQC is recommended UV-spectrophotometry: drug is dissolved in boric acid solution (20 g/l as the reference solution used solution pharmacopoeia standard sample substance nafazoline nitrate. The character of UV-spectra of the nafazoline nitrate in solvents of different polarity (water, 95% ethanol, 0,1 M NaOH, 0,1 M HCl, 5M H2SO4, was defined and studied. Standard sample of nafazoline nitrate was obtained from the State Enterprise "Scientific and Expert Pharmacopoeia Centre Ukraine". In order to study UV-spectra nafazoline nitrate spectrophotometer SPECORD 200-222U214 (Germany was used. UV-spectrum of nafazoline nitrate in water and 95% ethanol are characterized by two maxima at 270 and 280 nm. Absorption band of nafazoline nitrate in 0, 1 M sodium hydroxide has two maxima at 271 and 280 nm, and in 0, 1 M solution of hydrochloric acid and 5 M solution of sulfuric acid maxima coincide with the maxima spectrum of the drug in water, 95% ethanol. In order to avoid errors associated with

  19. Supramolecular fullerene/porphyrin charge transfer interaction studied by absorption spectrophotometric method

    Science.gov (United States)

    Mukherjee, Partha; Bhattacharya (Banerjee), Shrabanti; Nayak, Sandip K.; Chattopadhyay, Subrata; Bhattacharya, Sumanta

    2009-06-01

    A detailed UV-Vis spectrometric and thermodynamic studies were done to look insight into the nature of molecular interactions of the electron donor-acceptor complexes of C60 and C70 with 5,10,15,20-tetrakis(octadecyloxyphenyl)-21H,23H-porphyrin (1) in chloroform and toluene. Charge transfer (CT) absorption bands were located in the visible region and vertical ionization potential of 1 was determined utilizing CT transition energy. Low values of oscillator and transition dipole strengths suggested that the complexes were almost of neutral character in ground states. The high binding constant value for the C70-1 complex indicated high selectivity of 1 molecule towards C70. Experimental as well as theoretically determined of enthalpies of formation value substantiated the trend in K values for fullerene-1 complexes.

  20. Determinação do teor de sílica em madeira por espectroscopia de absorção atômica de chama versus espectroscopia no ultravioleta-visível.

    Directory of Open Access Journals (Sweden)

    Laécio Carneiro Rodrigues

    2009-10-01

    Full Text Available Normal 0 21 MicrosoftInternetExplorer4 O presente trabalho teve como objetivo comparar o desempenho de duas técnicas analíticas, espectroscopia de absorção atômica de chama (FAAS e espectroscopia no ultravioleta-visível (UV-VIS, na determinação do teor de sílica em materiais lignocelulósicos. Os métodos foram testados em amostras de madeira de três árvores de Apuleia leiocarpa (Vog. Macbride. Os resultados mostraram que ambas as técnicas apresentam bons resultados, no entanto, a FAAS apresenta melhor precisão, rapidez e simplicidade operacional. Entretanto, a aplicação da espectroscopia UV-VIS é justificada pelo fato de os custos de aquisição e manutenção de um espectrofotômetro UV-VIS serem muito inferiores àqueles de um espectrômetro de absorção atômica. O uso da técnica FAAS deve ser preferido apenas quando os teores de sílica a serem determinados forem muito baixos, tendo em vista que a espectroscopia UV-VIS, nesses casos, não apresenta boa precisão.