WorldWideScience

Sample records for polarized light patterns

  1. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  2. Polarization patterns of the twilight sky

    Science.gov (United States)

    Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit

    2005-08-01

    Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.

  3. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  4. Sky light polarization detection with linear polarizer triplet in light field camera inspired by insect vision.

    Science.gov (United States)

    Zhang, Wenjing; Cao, Yu; Zhang, Xuanzhe; Liu, Zejin

    2015-10-20

    Stable information of a sky light polarization pattern can be used for navigation with various advantages such as better performance of anti-interference, no "error cumulative effect," and so on. But the existing method of sky light polarization measurement is weak in real-time performance or with a complex system. Inspired by the navigational capability of a Cataglyphis with its compound eyes, we introduce a new approach to acquire the all-sky image under different polarization directions with one camera and without a rotating polarizer, so as to detect the polarization pattern across the full sky in a single snapshot. Our system is based on a handheld light field camera with a wide-angle lens and a triplet linear polarizer placed over its aperture stop. Experimental results agree with the theoretical predictions. Not only real-time detection but simple and costless architecture demonstrates the superiority of the approach proposed in this paper.

  5. Design of a device for sky light polarization measurements.

    Science.gov (United States)

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  6. Do cephalopods communicate using polarized light reflections from their skin?

    Science.gov (United States)

    Mäthger, Lydia M; Shashar, Nadav; Hanlon, Roger T

    2009-07-01

    Cephalopods (squid, cuttlefish and octopus) are probably best known for their ability to change color and pattern for camouflage and communication. This is made possible by their complex skin, which contains pigmented chromatophore organs and structural light reflectors (iridophores and leucophores). Iridophores create colorful and linearly polarized reflective patterns. Equally interesting, the photoreceptors of cephalopod eyes are arranged in a way to give these animals the ability to detect the linear polarization of incoming light. The capacity to detect polarized light may have a variety of functions, such as prey detection, navigation, orientation and contrast enhancement. Because the skin of cephalopods can produce polarized reflective patterns, it has been postulated that cephalopods could communicate intraspecifically through this visual system. The term 'hidden' or 'private' communication channel has been given to this concept because many cephalopod predators may not be able to see their polarized reflective patterns. We review the evidence for polarization vision as well as polarization signaling in some cephalopod species and provide examples that tend to support the notion--currently unproven--that some cephalopods communicate using polarized light signals.

  7. Reflection of a polarized light cone

    Science.gov (United States)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  8. Polarization of sky light from a canopy atmosphere

    International Nuclear Information System (INIS)

    Hannay, J H

    2004-01-01

    Light from the clear sky is produced by the scattering of unpolarized sunlight by molecules of the atmosphere and is partially linearly polarized in the process. Singly scattered light, for instance, is fully polarized in viewing directions perpendicular to the sun direction and less and less so towards the parallel and antiparallel directions, where it is unpolarized. The true, multiple, scattering is much less tractable, but importantly different, changing the polarization pattern's topology by splitting the unpolarized directions into pairs. The underlying cause of this 'symmetry breaking' is that the atmosphere is 'wider' than it is deep. Simplifying as much as possible while retaining this feature leads to the caricature atmosphere analysed here: a flattened sheet atmosphere in the sky, a canopy. The multiple scattering is fully tractable and leads to a simple polarization pattern in the sky: the ellipses and hyperbolas of standard confocal ellipsoidal coordinates. The model realizes physically a mathematical pattern of polarization in terms of a complex function proposed by Berry, Dennis and Lee (2004 New J. Phys.6 162) as the simplest one which captures the topology

  9. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  10. Robust sky light polarization detection with an S-wave plate in a light field camera.

    Science.gov (United States)

    Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin

    2016-05-01

    The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.

  11. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes.

    Science.gov (United States)

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, GuanHua; Yam, ChiYung

    2016-07-21

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems.

  12. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass

    Directory of Open Access Journals (Sweden)

    Guoliang Han

    2017-11-01

    Full Text Available Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0 . 15 ∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.

  13. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    Science.gov (United States)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  14. Polarized light modulates light-dependent magnetic compass orientation in birds

    Science.gov (United States)

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  15. Reversible Shaping of Microwells by Polarized Light Irradiation

    Directory of Open Access Journals (Sweden)

    Federica Pirani

    2017-01-01

    Full Text Available In the last years, stimuli-responsive polymeric materials have attracted great interest, due to their low cost and ease of structuration over large areas combined with the possibility to actively manipulate their properties. In this work, we propose a polymeric pattern of soft-imprinted microwells containing azobenzene molecules. The shape of individual elements of the pattern can be controlled after fabrication by irradiation with properly polarized light. By taking advantage of the light responsivity of the azobenzene compound, we demonstrate the possibility to reversibly modulate a contraction-expansion of wells from an initial round shape to very narrow slits. We also show that the initial shape of the microconcavities can be restored by flipping the polarization by 90°. The possibility to reversibly control the final shape of individual elements of structured surfaces offers the opportunity to engineer surface properties dynamically, thus opening new perspectives for several applications.

  16. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light

    International Nuclear Information System (INIS)

    Varlamova, Olga; Costache, Florenta; Reif, Juergen; Bestehorn, Michael

    2006-01-01

    Surface ripples generation upon femtosecond laser ablation is attributed to self-organized structure formation from instability. We report that linear arrangements are observed not only for linearly polarized light but also for ablation with circularly polarized light. Long ordered chains of spherical nanoparticles, reminding of bead-strings are almost parallel but exhibit typical non-linear dynamics features such as bifurcations. In a first attempt to understand the self-assembly, we rely on models recently developed for the description of similar structures upon ion beam erosion and for the simulation of instabilities in thin liquid films. Our picture describes an unstable surface layer, non-uniformly eroded through Coulomb repulsion between individual positive charges

  17. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  18. Polarized light in optics and spectroscopy

    CERN Document Server

    Kliger, David S

    1990-01-01

    This comprehensive introduction to polarized light provides students and researchers with the background and the specialized knowledge needed to fully utilize polarized light. It provides a basic introduction to the interaction of light with matter for those unfamiliar with photochemistry and photophysics. An in-depth discussion of polarizing optics is also given. Different analytical techniques are introduced and compared and introductions to the use of polarized light in various forms of spectroscopy are provided.Key Features* Starts at a basic level and develops tools for resear

  19. Flying Drosophilamelanogaster maintain arbitrary but stable headings relative to the angle of polarized light.

    Science.gov (United States)

    Warren, Timothy L; Weir, Peter T; Dickinson, Michael H

    2018-05-11

    Animals must use external cues to maintain a straight course over long distances. In this study, we investigated how the fruit fly Drosophila melanogaster selects and maintains a flight heading relative to the axis of linearly polarized light, a visual cue produced by the atmospheric scattering of sunlight. To track flies' headings over extended periods, we used a flight simulator that coupled the angular velocity of dorsally presented polarized light to the stroke amplitude difference of the animals' wings. In the simulator, most flies actively maintained a stable heading relative to the axis of polarized light for the duration of 15 min flights. We found that individuals selected arbitrary, unpredictable headings relative to the polarization axis, which demonstrates that D . melanogaster can perform proportional navigation using a polarized light pattern. When flies flew in two consecutive bouts separated by a 5 min gap, the two flight headings were correlated, suggesting individuals retain a memory of their chosen heading. We found that adding a polarized light pattern to a light intensity gradient enhanced flies' orientation ability, suggesting D . melanogaster use a combination of cues to navigate. For both polarized light and intensity cues, flies' capacity to maintain a stable heading gradually increased over several minutes from the onset of flight. Our findings are consistent with a model in which each individual initially orients haphazardly but then settles on a heading which is maintained via a self-reinforcing process. This may be a general dispersal strategy for animals with no target destination. © 2018. Published by The Company of Biologists Ltd.

  20. Polarized light use in the nocturnal bull ant, Myrmecia midas.

    Science.gov (United States)

    Freas, Cody A; Narendra, Ajay; Lemesle, Corentin; Cheng, Ken

    2017-08-01

    Solitary foraging ants have a navigational toolkit, which includes the use of both terrestrial and celestial visual cues, allowing individuals to successfully pilot between food sources and their nest. One such celestial cue is the polarization pattern in the overhead sky. Here, we explore the use of polarized light during outbound and inbound journeys and with different home vectors in the nocturnal bull ant, Myrmecia midas . We tested foragers on both portions of the foraging trip by rotating the overhead polarization pattern by ±45°. Both outbound and inbound foragers responded to the polarized light change, but the extent to which they responded to the rotation varied. Outbound ants, both close to and further from the nest, compensated for the change in the overhead e-vector by about half of the manipulation, suggesting that outbound ants choose a compromise heading between the celestial and terrestrial compass cues. However, ants returning home compensated for the change in the e-vector by about half of the manipulation when the remaining home vector was short (1-2 m) and by more than half of the manipulation when the remaining vector was long (more than 4 m). We report these findings and discuss why weighting on polarization cues change in different contexts.

  1. Application of polarization information to a light-controlling-light technique.

    Science.gov (United States)

    Liang, J C; Wang, H C

    2017-09-15

    Nonlinear effects of photo-induced waveguides based on isomerization photochemistry are investigated. It is found that polarization information of the controlling light can be used to control the propagation of the signal light in all-optical waveguides, and an accurate and convenient light-controlling-light scheme is proposed, that is, controlling propagation of the signal light by synergic use of the intensity information and polarization information of the controlling light. The polarization dependence of optical nonlinearity is expected to enrich the connotation of the optical nonlinear effects and has theoretical significance and practical value.

  2. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  3. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Thorhauge, Morten

    2003-01-01

    We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3......D finite-difference-time-domain method. The simulated spectra are in excellent agreement with the experimental results, which show a propagation loss as low as 2.5±4 dB/mm around 1525 nm and bend losses at 2.9±0.2 dB for TM polarized light. We demonstrate a high coupling for TM polarized light...

  4. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature

    Science.gov (United States)

    Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-05-01

    We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

  5. Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation.

    Science.gov (United States)

    el Jundi, Basil; Smolka, Jochen; Baird, Emily; Byrne, Marcus J; Dacke, Marie

    2014-07-01

    To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure their efficient escape from the dung pile, beetles rely on a 'celestial compass' to move along a straight path. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light-intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90 deg. The beetles then changed their bearing close to the expected 90 deg. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. When the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. Therefore, we analyzed the use of the celestial light-intensity gradient for orientation. Artificial rotation of the intensity pattern by 180 deg caused beetles to orient in the opposite direction. This light-intensity cue was also found to be subordinate to the sun and could play a role in disambiguating the polarization signal, especially at low sun elevations. © 2014. Published by The Company of Biologists Ltd.

  6. Characterization of Partially Polarized Light Fields

    CERN Document Server

    Martínez-Herrero, Rosario; Piquero, Gemma

    2009-01-01

    Polarization involves the vectorial nature of light fields. In current applications of optical science, the electromagnetic description of light with its vector features has been shown to be essential: In practice, optical radiation also exhibits randomness and spatial non-uniformity of the polarization state. Moreover, propagation through photonic devices can alter the correlation properties of the light field, resulting in changes in polarization. All these vectorial properties have been gaining importance in recent years, and they are attracting increasing attention in the literature. This is the framework and the scope of the present book, which includes the authors’ own contributions to these issues.

  7. Coding and decoding in a point-to-point communication using the polarization of the light beam.

    Science.gov (United States)

    Kavehvash, Z; Massoumian, F

    2008-05-10

    A new technique for coding and decoding of optical signals through the use of polarization is described. In this technique the concept of coding is translated to polarization. In other words, coding is done in such a way that each code represents a unique polarization. This is done by implementing a binary pattern on a spatial light modulator in such a way that the reflected light has the required polarization. Decoding is done by the detection of the received beam's polarization. By linking the concept of coding to polarization we can use each of these concepts in measuring the other one, attaining some gains. In this paper the construction of a simple point-to-point communication where coding and decoding is done through polarization will be discussed.

  8. Navigation by light polarization in clear and turbid waters

    Science.gov (United States)

    Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav

    2011-01-01

    Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170

  9. Polarization Of Light In The Natural Environment

    Science.gov (United States)

    Coulson, Kinsell L.

    1990-01-01

    This paper provides a characterization of the fields of light polarization with which the optical designer or user of optical devices in the natural environment must be concerned. After a brief historical outline of the principal developments in polarization theory and observations during the last two centuries, the main emphasis is on the two primary processes responsible for the polarization of light in nature--scattering of light by particles of the atmosphere and reflection from soils, vegetation, snow, and water at the earth's surface. Finally, a seven minute film on polarization effects which can be seen in everyday surroundings will be shown. Scattering by atmospheric particles is responsible for high values of polarization in various atmospheric conditions and at certain scattering geometries. Such scattering particles include molecules of the atmospheric gases, aerosols of dust, haze, and air pollution, water droplets of fog and clouds, and the ice crystals of cirrus. It is seen that development of the theory of scattering by such particles has outstripped the measurements necessary for validation of the theory, a fact which points up the importance of symposia such as the present one. The reverse is true, however, for the polarizing properties of natural surfaces. Only in the case of still water is the theory of reflection adequate to characterize in a quantitative fashion the polarizing effects produced by the reflection of light from such natural surfaces. Polarization of light by reflection from vegetation is of prime importance in a remote sensing context, but much further work is needed to characterize vegetative reflectance for the purpose. The short film on polarization effects provides a good visualization technique and training aid for students interested in the field.

  10. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.

    Directory of Open Access Journals (Sweden)

    Denes Szaz

    Full Text Available Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.

  11. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.

    Science.gov (United States)

    Szaz, Denes; Horvath, Gabor; Barta, Andras; Robertson, Bruce A; Farkas, Alexandra; Egri, Adam; Tarjanyi, Nikolett; Racz, Gergely; Kriska, Gyorgy

    2015-01-01

    Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.

  12. Polarizing neutron by light-irradiated graphene

    International Nuclear Information System (INIS)

    Peng, Feng

    2015-01-01

    We study the spin orientation of the neutron scattered by light-irradiated graphene and calculate the average value of spin z-component of the neutron in terms of a generating functional technique. Our calculation results indicate that there is a remarkable neutron polarization effect when a neutron penetrates graphene irradiated by a circularly polarized light. We analyse the dynamical source of generating this effect from the aspect of photon-mediated interaction between the neutron spin and valley pseudospin. By comparing with the polarization induced by a magnetic field, we find that this polarization may be equivalent to the one led by a magnetic field of several hundred Teslas if the photon frequency is in the X-ray frequency range. This provides an approach of polarizing neutrons. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Polarization of light and Hopf fibration

    International Nuclear Information System (INIS)

    Jurco, B.

    1987-01-01

    A set of polarization states of quasi-monochromatic light is described geometrically in terms of the Hopf fibration. Several associated alternative polarization parametrizations are given explicitly, including the Stokes parameters. (author). 8 refs

  14. Potential Sources of Polarized Light from a Plant Canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  15. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2017-07-01

    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  16. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Christoph, E-mail: Christoph.Reich@tu-berlin.de; Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Feneberg, Martin; Goldhahn, Rüdiger [Institut für Experimentelle Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, Magdeburg 39106 (Germany); Rass, Jens; Kneissl, Michael [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany); Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  17. Polarized Light Sources for photocathode electron guns at SLAC

    International Nuclear Information System (INIS)

    Woods, M.; Frisch, J.; Witte, K.; Zolotorev, M.

    1992-12-01

    We describe current and future Polarized Light Sources at SLAC for use with photocathode electron guns to produce polarized electron beams. The SLAC experiments SLD and E142 are considered, and are used to define the required parameters for the Polarized Light Sources

  18. The copepod Calanus spp. (Calanidae) is repelled by polarized light

    Science.gov (United States)

    Lerner, Amit; Browman, Howard I.

    2016-10-01

    Both attraction and repulsion from linearly polarized light have been observed in zooplankton. A dichotomous choice experiment, consisting of plankton light traps deployed in natural waters at a depth of 30 m that projected either polarized or unpolarized light of the same intensity, was used to test the hypothesis that the North Atlantic copepod, Calanus spp., is linearly polarotactic. In addition, the transparency of these copepods, as they might be seen by polarization insensitive vs. sensitive visual systems, was measured. Calanus spp. exhibited negative polarotaxis with a preference ratio of 1.9:1. Their transparency decreased from 80% to 20% to 30% in the unpolarized, partially polarized, and electric (e-) vector orientation domains respectively - that is, these copepods would appear opaque and conspicuous to a polarization-sensitive viewer looking at them under conditions rich in polarized light. Since the only difference between the two plankton traps was the polarization cue, we conclude that Calanus spp. are polarization sensitive and exhibit negative polarotaxis at low light intensities (albeit well within the sensitivity range reported for copepods). We hypothesize that Calanus spp. can use polarization vision to reduce their risk of predation by polarization-sensitive predators and suggest that this be tested in future experiments.

  19. Polarized luminescence of nc-Si-SiO x nanostructures on silicon substrates with patterned surface

    Science.gov (United States)

    Michailovska, Katerina; Mynko, Viktor; Indutnyi, Ivan; Shepeliavyi, Petro

    2018-05-01

    Polarization characteristics and spectra of photoluminescence (PL) of nc-Si-SiO x structures formed on the patterned and plane c-Si substrates are studied. The interference lithography with vacuum chalcogenide photoresist and anisotropic wet etching are used to form a periodic relief (diffraction grating) on the surface of the substrates. The studied nc-Si-SiO x structures were produced by oblique-angle deposition of Si monoxide in vacuum and the subsequent high-temperature annealing. The linear polarization memory (PM) effect in PL of studied structure on plane substrate is manifested only after the treatment of the structures in HF and is explained by the presence of elongated Si nanoparticles in the SiO x nanocolumns. But the PL output from the nc-Si-SiO x structure on the patterned substrate depends on how this radiation is polarized with respect to the grating grooves and is much less dependent on the polarization of the exciting light. The measured reflection spectra of nc-Si-SiO x structure on the patterned c-Si substrate confirmed the influence of pattern on the extraction of polarized PL.

  20. Spatiotemporal polarization gradients in phase-bearing light

    International Nuclear Information System (INIS)

    Lembessis, V. E.; Babiker, M.

    2010-01-01

    It is shown how the interference of two circularly polarized laser beams endowed with orbital angular momentum can give rise to spatial and temporal polarization gradients, displaying axial as well as angular symmetry properties. Illustrations are given with reference to circularly polarized Laguerre-Gaussian beams as typical light beams carrying orbital angular momentum.

  1. The effects of polarized light therapy in pressure ulcer healing.

    Science.gov (United States)

    Durović, Aleksandar; Marić, Dragan; Brdareski, Zorica; Jevtić, Miodrag; Durdević, Slavisa

    2008-12-01

    Neglecting polarized light as an adjuvant therapy for pressure ulcers and methodology distinctions in the trials engaging polarized light are the reasons for many dilemmas and contradictions. The aim of this study was to establish the effects of polarized light therapy in pressure ulcer healing. This prospective randomized single-blind study involved 40 patients with stage I-III of pressure ulcer. The patients in the experimental group (E) were subjected, besides polarized light therapy, to standard wound cleaning and dressing. Standard wound cleaning and dressing were the only treatment used in the control group (C). A polarized light source was a Bioptron lamp. Polarized light therapy was applied for six min daily, five times a week, four weeks. The Pressure Ulcer Scale for Healing (PUSH) was used in the assessment of outcome. Statistic analysis included Mann Whitney Test, Fisher Exact Test, Wilcoxon Signed Rank test. There were significant differences between the groups at the end of the treatment regarding the surface of pressure ulcer (E: 10.80 +/- 19.18; C: 22,97 +/- 25,47; p = 0.0005), rank of pressure ulcer (E: 5.90 +/- 2.48; C: 8.6 +/- 1.05; p = 0.0005) and total PUSH score (E: 7.35 +/- 3.17; C: 11.85 +/- 2.35; p = 0,0003). The patients in the experimental group had significantly better values of the parameters monitored than the patients in the control group. After a four-week polarized light therapy 20 patients with stage I-III ulcer had significant improvement in pressure ulcer healing, so it could be useful to apply polarized light in the treatment of pressure ulcers.

  2. A note on polarized light from magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Capparelli, L.M.; Damiano, A.; Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Maiani, L. [CERN, Theory Department, Geneva (Switzerland)

    2017-11-15

    In a recent paper it is claimed that vacuum birefringence has been experimentally observed for the first time by measuring the degree of polarization of visible light from a magnetar candidate, a neutron star with a magnetic field presumably as large as B ∝ 10{sup 13} G. The role of such a strong magnetic field is twofold. First, the surface of the star emits, at each point, polarized light with linear polarization correlated with the orientation of the magnetic field. Depending on the relative orientation of the magnetic axis of the star with the direction to the distant observer, a certain degree of polarization should be visible. Second, the strong magnetic field in the vacuum surrounding the star could enhance the effective degree of polarization observed: vacuum birefringence. We compare experimental data and theoretical expectations concluding that the conditions to support a claim of strong evidence of vacuum birefringence effects are not met. (orig.)

  3. The effects of polarized light therapy in pressure ulcer healing

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2008-01-01

    Full Text Available Background/Aim. Neglecting polarized light as an adjuvant therapy for pressure ulcers and methodology distinctions in the trials engaging polarized light are the reasons for many dilemmas and contradictions. The aim of this study was to establish the effects of polarized light therapy in pressure ulcer healing. Methods. This prospective randomized single-blind study involved 40 patients with stage I-III of pressure ulcer. The patients in the experimental group (E were subjected, besides polarized light therapy, to standard wound cleaning and dressing. Standard wound cleaning and dressing were the only treatment used in the control group (C. A polarized light source was a Bioptron lamp. Polarized light therapy was applied for six min daily, five times a week, four weeks. The Pressure Ulcer Scale for Healing (PUSH was used in the assessment of outcome. Statistic analysis included Mann Whitney Test, Fisher Exact Test, Wilcoxon Signed Rank test. Results. There were significant differences between the groups at the end of the treatment regarding the surface of pressure ulcer (E: 10.80±19.18; C: 22,97±25,47; p = 0.0005, rank of pressure ulcer (E: 5.90±2.48; C: 8.6±1.05; p = 0.0005 and total PUSH score (E: 7.35±3.17; C: 11.85±2.35; p = 0,0003. The patients in the experimental group had significantly better values of the parameters monitored than the patients in the control group. Conclusion. After a four-week polarized light therapy 20 patients with stage I-III ulcer had significant improvement in pressure ulcer healing, so it could be useful to apply polarized light in the treatment of pressure ulcers.

  4. A high throughput liquid crystal light shutter for unpolarized light using polymer polarization gratings

    Science.gov (United States)

    Komanduri, Ravi K.; Lawler, Kris F.; Escuti, Michael J.

    2011-05-01

    We report on a broadband, diffractive, light shutter with the ability to modulate unpolarized light. This polarizer-free approach employs a conventional liquid crystal (LC) switch, combined with broadband Polarization Gratings (PGs) formed with polymer LC materials. The thin-film PGs act as diffractive polarizing beam-splitters, while the LC switch operates on both orthogonal polarization states simultaneously. As an initial experimental proof-of- concept for unpolarized light with +/-7° aperture, we utilize a commercial twisted-nematic LC switch and our own polymer PGs to achieve a peak transmittance of 80% and peak contrast ratio of 230:1. We characterize the optoelectronic performance, discuss the limitations, and evaluate its use in potential nonmechanical shutter applications (imaging and non-imaging).

  5. [Application of polarized light in purulent-septic surgery].

    Science.gov (United States)

    Desiateryk, V I; Mikhno, S P; Kryvyts'kyĭ, Iu M; Kostiuk, S O

    2002-09-01

    Influence of polarized light on general state and healing of wounds and trophic ulcers in 57 patients with obliterating atherosclerosis of lower extremities, chronic venous insufficiency of extremities, purulent postoperative complications, purulent-septic complications in patients with diabetes mellitus was analyzed. Main mechanisms of the polarized light action in "Bioptron" apparatus were enlighted, effective schemes of its usage were determined.

  6. Light-absorbent liquid immersion angled exposure for patterning 3D samples with vertical sidewalls

    International Nuclear Information System (INIS)

    Kumagai, Shinya; Kubo, Hironori; Sasaki, Minoru

    2017-01-01

    To make photolithography patterns on 3D samples, the angled (inclined) exposure technique has been used so far. However, technological issues have emerged in making photolithography patterns on the surface of trench structures. The surface of the trench structures can be covered with a photoresist film by spray-coating but the photoresist film deposited on the sidewalls and bottom of the trench is generally thin. The thin photoresist film deposited inside the trench has been easily overdosed. Moreover, irregular patterns have frequently been formed by the light reflected inside the trench. In this study, we have developed liquid immersion photolithography using a light-absorbent material. The light-reflection inside the trench was suppressed. Various patterns were transferred in the photoresist film deposited on the trench structures which had an aspect ratio of 0.74. Compared to immersion photolithography using pure water under p -polarization light control, the light-absorbent liquid immersion photolithography developed here patterned well the surfaces of the trench sidewalls and bottom. (paper)

  7. Electrically switchable photonic liquid crystal devices for routing of a polarized light wave

    Science.gov (United States)

    Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.

    2018-04-01

    The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.

  8. A Simplified, Low-Cost Method for Polarized Light Microscopy

    Science.gov (United States)

    Maude, Richard J.; Buapetch, Wanchana; Silamut, Kamolrat

    2009-01-01

    Malaria pigment is an intracellular inclusion body that appears in blood and tissue specimens on microscopic examination and can help in establishing the diagnosis of malaria. In simple light microscopy, it can be difficult to discern from cellular background and artifacts. It has long been known that if polarized light microscopy is used, malaria pigment can be much easier to distinguish. However, this technique is rarely used because of the need for a relatively costly polarization microscope. We describe a simple and economical technique to convert any standard light microscope suitable for examination of malaria films into a polarization microscope. PMID:19861611

  9. Polarized light improves cutaneous healing on diabetic rats

    Science.gov (United States)

    Ramalho, Luciana Maria Pedreira; Oliveira, Priscila Chagas; Marques, Aparecida Maria Cordeiro; Barbosa Pinheiro, Antonio L.

    2010-02-01

    The aim of this study was to evaluate the healing of 3rd degree burn on diabetic rats submitted or not to treatment with Polarized Light. Diabetes mellitus (Streptozotocin, 60mg/kg) was induced on 45 male Wistar albinus rats and a third degree burn (1.5× 1.5cm) was created in the dorsum of each animal under general anesthesia. After a regular quarantine period, the animals were randomly distributed into three groups as follows: G1: control (no treatment, n =15); G2: Polarized Light (λ=400-2000nm, 20J/cm2) and G3: Polarized Light (λ=400-2000nm, 40J/cm2). The phototherapy performed on group G2 was Polarized Light dose 20J/cm2 and G3 was Polarized Light dose 40J/cm2 (Bioptron®, λ400-2000 nm, 40mW; 2.4J/cm2 per minute; Φ +/- 5.5 cm; Bioptron AG, Monchaltorf, Switzerland). The phototherapy started immediately post-burning and was repeated daily until the day before the animal death. The energy was applied transcutaneously respecting the focal distance of 10cm as recommended by the manufacturer. The dose was 20 or 40J/cm2 (4min 15s or 8min.and 30s). At each time point chosen (7, 14, and 21 days post-burning) and following macroscopic examination, each animal was killed by an overdose of general anesthesia. Slides were stained with HE, Sirius Red, and CK AE1/AE3 antibody. Qualitative and semi-quantitative analyses were performed under light microscopy. The animals submitted to phototherapy (20J/cm2) showed significant differences on regards revascularization and epithelialization. The use of 20J/cm2 was effective on improving the healing of third degree buns on diabetic animals at both early and late stages of the repair.

  10. Detecting spin polarization of nano-crystalline manganese doped zinc oxide thin film using circular polarized light

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com

    2016-02-01

    The presence of spin polarization in Mn-doped ZnO thin film is very important for spintronic applications. Spin polarization was detected using simple method. This method depends on measuring the optical transmittance using circular polarized light in visible and near infra-red region. It was found that, there is a difference in the optical energy gap of the film for circular left and circular polarized light. For temperatures > 310 K the difference in energy gap is vanished. This result is confirmed by measuring the magnetic hysteresis of the film. This work introduces a promising method for measuring the ferromagnetism in diluted magnetic semiconductors. - Highlights: • Highly oriented c-axis of Mn-ZnO thin film doped with nitrogen is prepared. • The optical energy gap depends on the state of circularly polarized light. • The presence of spin polarization is confirmed using simple optical method. • Magnetic measurements are consistent with the results of the optical method.

  11. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface.

    Science.gov (United States)

    Teng, Tun-Chien; Tseng, Li-Wei

    2014-10-20

    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  12. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Directory of Open Access Journals (Sweden)

    Igal Berenshtein

    Full Text Available Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients. We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC, which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23, but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze, which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  13. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Science.gov (United States)

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  14. Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage

    Science.gov (United States)

    Hegedüs, Ramón; Barta, András; Bernáth, Balázs; Benno Meyer-Rochow, Victor; Horváth, Gábor

    2007-08-01

    Radiance, color, and polarization of the light in forests combine to create complex optical patterns. Earlier sporadic polarimetric studies in forests were limited by the narrow fields of view of the polarimeters used in such studies. Since polarization patterns in the entire upper hemisphere of the visual environment of forests could be important for forest-inhabiting animals that make use of linearly polarized light for orientation, we measured 180° field-of-view polarization distributions in Finnish forests. From a hot air balloon we also measured the polarization patterns of Hungarian grasslands lit by the rising sun. We found that the pattern of the angle of polarization α of sunlit grasslands and sunlit tree canopies was qualitatively the same as that of the sky. We show here that contrary to an earlier assumption, the α-pattern characteristic of the sky always remains visible underneath overhead vegetation, independently of the solar elevation and the sky conditions (clear or partly cloudy with visible sun's disc), provided the foliage is sunlit and not only when large patches of the clear sky are visible through the vegetation. Since the mirror symmetry axis of the α-pattern of the sunlit foliage is the solar-antisolar meridian, the azimuth direction of the sun, occluded by vegetation, can be assessed in forests from this polarization pattern. Possible consequences of this robust polarization feature of the optical environment in forests are briefly discussed with regard to polarization-based animal navigation.

  15. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  16. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  17. Cognition of normal pattern of myocardial polar map

    International Nuclear Information System (INIS)

    Fujisawa, Yasuo; Sasaki, Jiro; Kashima, Kenji; Matsumura, Yasushi; Yamamoto, Kazuhiro; Kodama, Kazuhisa

    1989-01-01

    When we diagnose the presence of ischemic heart disease by the diagrams of computer-generated polar map of exercised thallium images, the estimation of the presence of the deficit is not sufficient, because many normal subjects are considered as abnormal. The mean+2SD of defect severity index (DSI) of 118 normal subjects was 120, and we defined the patients with DSI≤120 as normal. But in 139 patients with their DSI≤120, 28 patients had significant coronary stenosis (>75%) and this means that false negative was 20%. We estimated the pattern of the deficit and found that in 109 of 111 subjects with normal coronary arteries, and 16 of 28 patients with ischemic heart disease, the patterns of the diagrams of polar map were patchy. This means that the diagram of the polar map show patchy pattern more frequently in normal subjects. In 125 patients whose diagrams of polar map were patchy, 16 patients with ischemic heart disease were included (false negative was 13%). We conclude that the estimation of DSI and the pattern of the diagram of polar map should be simultaneously considered and this makes the more accurate diagnosis possible. (author)

  18. Global positioning method based on polarized light compass system

    Science.gov (United States)

    Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong

    2018-05-01

    This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.

  19. Alteration in non-classicality of light on passing through a linear polarization beam splitter

    Science.gov (United States)

    Shukla, Namrata; Prakash, Ranjana

    2016-06-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  20. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    Science.gov (United States)

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  1. Simulation of erasure of photoinduced anisotropy by circularly polarized light

    DEFF Research Database (Denmark)

    Sajti, Sz.; Kerekes, Á.; Barabás, M.

    2001-01-01

    The temporal evolution of photoinduced birefringence is investigated on the basis of a model proposed by Pedersen and co-workers, This model is extended for the case of elliptically polarized light, and used to describe the erasure of photoinduced birefringence by circularly polarized light...

  2. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  3. Polarized light scattering as a probe for changes in chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Daniel Benjamin [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparing light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.

  4. Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light

    Science.gov (United States)

    Cai, Jianjun; Shen, Xueju; Lei, Ming

    2017-11-01

    We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.

  5. Polymer photovoltaic cells sensitive to the circular polarization ofl light

    NARCIS (Netherlands)

    Gilot, J.; Abbel, R.J.; Lakhwani, G.; Meijer, E.W.; Schenning, A.P.H.J.; Meskers, S.C.J.

    2009-01-01

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties

  6. Polarization vision in cuttlefish in a concealed communication channel?

    Science.gov (United States)

    Shashar; Rutledge; Cronin

    1996-01-01

    Polarization sensitivity is well documented in marine animals, but its function is not yet well understood. Of the cephalopods, squid and octopus are known to be sensitive to the orientation of polarization of incoming light. This sensitivity arises from the orthogonal orientation of neighboring photoreceptors. Electron microscopical examination of the retina of the cuttlefish Sepia officinalis L. revealed the same orthogonal structure, suggesting that cuttlefish are also sensitive to linearly polarized light. Viewing cuttlefish through an imaging polarized light analyzer revealed a prominent polarization pattern on the arms, around the eyes and on the forehead of the animals. The polarization pattern disappeared when individuals lay camouflaged on the bottom and also during extreme aggression display, attacks on prey, copulation and egg-laying behavior in females. In behavioral experiments, the responses of cuttlefish to their images reflected from a mirror changed when the polarization patterns of the reflected images were distorted. These results suggest that cuttlefish use polarization vision and display for intraspecific recognition and communication.

  7. Experimentally determined characteristics of the degree of polarization of backscattered light from polystyrene sphere suspensions

    International Nuclear Information System (INIS)

    Sun, Ping; Ma, Yongchao; Xu, Chengwei; Sun, Xiaochun; Liu, Wei

    2013-01-01

    The degree of polarization (DOP) can be used to characterize the polarization-maintaining ability of a beam of polarized light propagating through a turbid medium. Experiments on polystyrene (PST) sphere suspensions show that, the linearly polarized light propagating through the PST sphere suspension of Rayleigh scatterers has better polarization-maintaining ability, whereas the circularly polarized light propagating through the PST sphere suspension of Mie scatterers has better polarization-maintaining ability. Moreover, helicity flipping occurs to the circularly polarized light propagating in the extremely weak PST sphere suspensions or on the surface of suspensions. In addition, the DOP is dependent on the wavelength of incident light. The results can be helpful to image in turbid media by use of diffuse backscattered light. (paper)

  8. Can invertebrates see the e-vector of polarization as a separate modality of light?

    OpenAIRE

    Labhart, Thomas

    2016-01-01

    ABSTRACT The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a ...

  9. Haemozoin Detection in Mouse Liver Histology Using Simple Polarized Light Microscope

    Directory of Open Access Journals (Sweden)

    DWI RAMADHANI

    2014-03-01

    Full Text Available The presence of malarial pigment (haemozoin due to Plasmodium infection is a common histopathological effect in mouse liver. Previous research showed that by using a polarized light microscope, researchers were better able to detect haemozoin in mouse liver histology section. Thus, the aim of this research was to compare the haemozoin area observed by a conventional vs. simple polarized light microscope by using image processing analysis. A total of 40 images produced from both conventional light microscope and simple polarized light microscope were collected. All images were analyzed using ImageJ 1.47 software to measure the haemozoin areas. Our results showed that non birefringent haemozoin and birefringent haemozoin area was significantly different. This was because when using conventional light microscope the brown area that contained images of non birefringent haemozoin images also contained Kupffer cells which appeared as the same brown color as haemozoin. In contrast, haemozoin gave bright effect and can be easily differentiated with Kupffer cells in the birefringent haemozoin images. This study concluded that haemozoin detection in mouse liver histology using a simple polarized light microscope was more accurate compared to that of conventional light microscope.

  10. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  11. Control the polarization state of light with symmetry-broken metallic metastructures

    International Nuclear Information System (INIS)

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yuan-Sheng; Hu, Yu-Hui; Wang, Zheng-Han; Peng, Ru-Wen; Wang, Mu

    2015-01-01

    Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics

  12. Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique

    Science.gov (United States)

    Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan

    2018-06-01

    Circularly polarized light can be divided into two vertically linearly polarized light beams with  ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T  ‑  θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.

  13. Extinction of polarized light in ferrofluids with different magnetic particle concentrations

    International Nuclear Information System (INIS)

    Socoliuc, V.; Popescu, L.B.

    2012-01-01

    The magnetic field intensity and nanoparticle concentration dependence of the polarized light extinction in a ferrofluid made of magnetite particles stabilized with technical grade oleic acid dispersed in transformer oil was experimentally investigated. The magnetically induced optical anisotropy, i.e. the dichroism divided by concentration, was found to decrease with increasing sample concentration from 2% to 8%. The magnetically induced change in the optical extinction of light polarized at 54.74 o with respect to the magnetic field direction was found to be positive for the less concentrated sample (2%) and negative for the samples with 4% and 8% magnetic nanoparticle concentrations, the more negative the higher the concentration and field intensity. Based on the theoretically proven fact that the particle orientation mechanism has no effect on the extinction of light polarized at 54.74 o with respect to the field direction, we analyzed the experimental findings in the frames of the agglomeration and long-range pair correlations theories for the magnetically induced optical anisotropy in ferrofluids. We developed a theoretical model in the approximation of single scattering for the optical extinction coefficient of a ferrofluid with magnetically induced particle agglomeration. The model predicts the existence of a polarization independent component of the optical extinction coefficient that is experimentally measurable at 54.74 o polarization angle. The change in the optical extinction of light polarized at 54.74 o is positive if only the formation of straight n-particle chains is considered and may become negative in the hypothesis that the longer chains degenerate to more isotropic structures (polymer-like coils, globules or bundles of chains). The model for the influence on the light absorption of the long-range pair correlations, published elsewhere, predicts that the change in the optical extinction of light polarized at 54.74 o is always negative, the more

  14. Beyond conventional c-plane GaN-based light emitting diodes: A systematic exploration of LEDs on semi-polar orientations

    Science.gov (United States)

    Monavarian, Morteza

    Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the "Green Gap", is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the "quantum confined Stark effect") and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane. In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1100)-oriented (mo-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology

  15. The effect of polarized light on the organization of collagen secreted by fibroblasts.

    Science.gov (United States)

    Akilbekova, Dana; Boddupalli, Anuraag; Bratlie, Kaitlin M

    2018-04-01

    Recent studies have demonstrated the beneficial effect of low-power lasers and polarized light on wound healing, inflammation, and the treatment of rheumatologic and neurologic disorders. The overall effect of laser irradiation treatment is still controversial due to the lack of studies on the biochemical mechanisms and the optimal parameters for the incident light that should be chosen for particular applications. Here, we study how NIH/3T3 fibroblasts respond to irradiation with linearly polarized light at different polarization angles. In particular, we examined vascular endothelial growth factor (VEGF) secretion, differentiation to myofibroblasts, and collagen organization in response to 800 nm polarized light at 0°, 45°, 90°, and 135° with a power density of 40 mW/cm 2 for 6 min every day for 6 days. Additional experiments were conducted in which the polarization angle of the incident was changed every day to induce an isotropic distribution of collagen. The data presented here shows that polarized light can upregulate VEGF production, myofibroblast differentiation, and induce different collagen organization in response to different polarization angles of the incident beam. These results are encouraging and demonstrate possible methods for controlling cell response through the polarization angle of the laser light, which has potential for the treatment of wounds.

  16. Robust reflective ghost imaging against different partially polarized thermal light

    Science.gov (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  17. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    Science.gov (United States)

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  18. FEL polarization control studies on Dalian coherent light source

    International Nuclear Information System (INIS)

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  19. Sensing system with USB camera for experiments of polarization of the light

    Directory of Open Access Journals (Sweden)

    José Luís Fabris

    2017-08-01

    Full Text Available This work shows a sensor system for educational experiments, composed of a USB camera and a software developed and provided by the authors. The sensor system is suitable for the purpose of studying phenomena related to the polarization of the light. The system was tested in experiments performed to verify the Malus’ Law and the spectral efficiency of polarizers. Details of the experimental setup are shown. The camera captures the light in the visible spectral range from a LED that illuminates a white screen after passing through two polarizers. The software uses the image captured by the camera to provide the relative intensity of the light. With the use of two rotating H-sheet linear polarizers, a linear fitting of the Malus’s Law to the transmitted light intensity data resulted in correlation coefficients R larger than 0.9988. The efficiency of the polarizers in different visible spectral regions was verified with the aid of color filters added to the experimental setup. The system was also used to evaluate the intensity time stability of a white LED.

  20. Centralized light-source optical access network based on polarization multiplexing.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-03-01

    This paper presents and demonstrates a centralized light source optical access network based on optical polarization multiplexing technique. By using two optical sources emitting light orthogonally polarized in the Central Node for downstream and upstream operations, the Remote Node is kept source-free. EVM values below telecommunication standard requirements have been measured experimentally when bidirectional digital signals have been transmitted over 10 km of SMF employing subcarrier multiplexing technique in the electrical domain.

  1. Retrieving the polarization information for satellite-to-ground light communication

    International Nuclear Information System (INIS)

    Tao, Qiangqiang; Guo, Zhongyi; Xu, Qiang; Gao, Jun; Jiao, Weiyan; Wang, Xinshun; Qu, Shiliang

    2015-01-01

    In this paper, we have investigated the reconstruction of the polarization states (degree of polarization (DoP) and angle of polarization (AoP)) of the incident light which passed through a 10 km atmospheric medium between the satellite and the Earth. Here, we proposed a more practical atmospheric model in which the 10 km atmospheric medium is divided into ten layers to be appropriate for the Monte Carlo simulation algorithm. Based on this model, the polarization retrieve (PR) method can be used for reconstructing the initial polarization information effectively, and the simulated results demonstrate that the mean errors of the retrieved DoP and AoP are very close to zero. Moreover, the results also show that although the atmospheric medium system is fixed, the Mueller matrices for the downlink and uplink are completely different, which shows that the light transmissions in the two links are irreversible in the layered atmospheric medium system. (paper)

  2. Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals

    Directory of Open Access Journals (Sweden)

    Safaa Hassan

    2017-12-01

    Full Text Available Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions.

  3. [The possibility for using the phenomenon of polarized light interference in treating amblyopia].

    Science.gov (United States)

    Abramov, V G; Vakurina, A E; Kashchenko, T P; Pargina, N M

    1996-01-01

    A new method for treating amblyopia is proposed, making use of the phenomenon of polarized light interference. It helps act simultaneously on the brightness, contrast frequency, and color sensitivity in response to patterns. The method was used in the treatment of 36 children. In group 1 (n = 20) it was combined with the traditional methods. Such treatment was more effective than in controls treated routinely. Group 2 consisted of 16 children in whom previous therapy was of no avail. Visual function was improved in 7 of them.

  4. PHYSIOLOGICAL MECHANISMS OF POLARIZED LIGHT INFLUENCE ON PAIN

    OpenAIRE

    S. О. Gulyar; Z. А. Tamarova

    2016-01-01

    There are presented experimental evidences of BIOPTRON device polarized light influence on the acupuncture points and pain locus. It is proved that PILER-light can induce analgesia which depends on the choice of the application zone, exposure and nature of pain (tonic, acute or visceral). Analgesic response has systemic character and is accompanied by participation of opioidergic nociceptive system

  5. Propagation of polarized light through azobenzene polyester films

    DEFF Research Database (Denmark)

    Nedelchev, L; Matharu, A; Nikolova, Ludmila

    2002-01-01

    When elliptically polarized light of appropriate wavelength Corresponding to trans-cis-trans isomerisation process is incident on thin films of azobenzene polyesters, a helical structure is induced. We investigate the propagation of the exciting light beam (self-induced) as well as a probe light...... beam outside the absorption band through the polyester films. Investigations are carried out in one amorphous and one liquid crystalline polyester. We show that amorphous polyester after irradiation behaves like classical helical material....

  6. PHYSIOLOGICAL MECHANISMS OF POLARIZED LIGHT INFLUENCE ON PAIN

    Directory of Open Access Journals (Sweden)

    S. О. Gulyar

    2016-06-01

    Full Text Available There are presented experimental evidences of BIOPTRON device polarized light influence on the acupuncture points and pain locus. It is proved that PILER-light can induce analgesia which depends on the choice of the application zone, exposure and nature of pain (tonic, acute or visceral. Analgesic response has systemic character and is accompanied by participation of opioidergic nociceptive system

  7. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    Science.gov (United States)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  8. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  9. Can invertebrates see the e-vector of polarization as a separate modality of light?

    Science.gov (United States)

    Labhart, Thomas

    2016-12-15

    The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs. © 2016. Published by The Company of Biologists Ltd.

  10. Using Polarization features of visible light for automatic landmine detection

    NARCIS (Netherlands)

    Jong, W. de; Schavemaker, J.G.M.

    2007-01-01

    This chapter describes the usage of polarization features of visible light for automatic landmine detection. The first section gives an introduction to land-mine detection and the usage of camera systems. In section 2 detection concepts and methods that use polarization features are described.

  11. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  12. Central-moment description of polarization for quantum states of light

    DEFF Research Database (Denmark)

    Björk, G.; Söderholm, J.; Kim, Y.-S.

    2012-01-01

    We present a moment expansion for the systematic characterization of the polarization properties of quantum states of light. Specifically,we link the method to themeasurements of the Stokes operator in different directions on the Poincar´e sphere and provide a scheme for polarization tomography w...

  13. Haemozoin Detection in Mouse Liver Histology Using Simple Polarized Light Microscope

    OpenAIRE

    DWI RAMADHANI; SITI NURHAYATI; TUR RAHARDJO

    2014-01-01

    The presence of malarial pigment (haemozoin) due to Plasmodium infection is a common histopathological effect in mouse liver. Previous research showed that by using a polarized light microscope, researchers were better able to detect haemozoin in mouse liver histology section. Thus, the aim of this research was to compare the haemozoin area observed by a conventional vs. simple polarized light microscope by using image processing analysis. A total of 40 images produced from both conventional ...

  14. Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.

    Science.gov (United States)

    Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing

    2012-08-13

    Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

  15. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  16. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    Science.gov (United States)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  17. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.

  18. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    International Nuclear Information System (INIS)

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-01-01

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  19. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Superconducting Undulator with Variably Polarized Light

    CERN Document Server

    Hwang, Ching Shiang; Ching Fan, Tai; Li, W P; Lin, P H

    2004-01-01

    This study investigates planar in-vacuo superconducting undulators with periodic length of 5 cm (IVSU5) producing linearly and circularly polarized infrared rays or xrays source. The vertically wound racetrack coil is selected for the coil and pole fabrication of the IVSU5. When the up and down magnetic pole arrays with alternative directions rotated wires in the horizontal plane, a helical field radiates circularly polarized light in the electron storage ring, the free electron laser (FEL), and the energy recovery linac (ERL) facilities. Meanwhile, an un-rotated wire is constructed together with the rotated wire on the same undulator is used to switch the linear horizontal and vertical, the right- and left-circular polarization radiation. Given a periodic length of 5 cm and a gap of 23 mm, the maximum magnetic flux density in the helical undulator are Bz = 1.5 T and Bx = 0.5 T when the wires rotated by 20°. This article describes the main factors of the planar and helical undulator design for FEL and...

  1. Hyperchaotic Dynamics for Light Polarization in a Laser Diode

    Science.gov (United States)

    Bonatto, Cristian

    2018-04-01

    It is shown that a highly randomlike behavior of light polarization states in the output of a free-running laser diode, covering the whole Poincaré sphere, arises as a result from a fully deterministic nonlinear process, which is characterized by a hyperchaotic dynamics of two polarization modes nonlinearly coupled with a semiconductor medium, inside the optical cavity. A number of statistical distributions were found to describe the deterministic data of the low-dimensional nonlinear flow, such as lognormal distribution for the light intensity, Gaussian distributions for the electric field components and electron densities, Rice and Rayleigh distributions, and Weibull and negative exponential distributions, for the modulus and intensity of the orthogonal linear components of the electric field, respectively. The presented results could be relevant for the generation of single units of compact light source devices to be used in low-dimensional optical hyperchaos-based applications.

  2. Investigating circular patterns in linear polarization observations of Venus

    NARCIS (Netherlands)

    Mahapatra, G.; Stam, D.M.; Rossi, L.C.G.; Rodenhuis, M.; Snik, Frans; Keller, C.U.

    2017-01-01

    In this work, we analyse linear polarization data of the planet at a distance, obtained with the Extreme Polarimeter (ExPo) on the William Herschel Telescope
    on La Palma. These spatially resolved, high-accuracy polarization observations of Venus show faint circular patterns centered on the

  3. Irradiation Pattern Analysis for Designing Light Sources-Based on Light Emitting Diodes

    International Nuclear Information System (INIS)

    Rojas, E.; Stolik, S.; La Rosa, J. de; Valor, A.

    2016-01-01

    Nowadays it is possible to design light sources with a specific irradiation pattern for many applications. Light Emitting Diodes present features like high luminous efficiency, durability, reliability, flexibility, among others as the result of its rapid development. In this paper the analysis of the irradiation pattern of the light emitting diodes is presented. The approximation of these irradiation patterns to both, a Lambertian, as well as a Gaussian functions for the design of light sources is proposed. Finally, the obtained results and the functionality of bringing the irradiation pattern of the light emitting diodes to these functions are discussed. (Author)

  4. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  5. Simple model for polar cap convection patterns and generation of theta auroras

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1985-01-01

    The simple addition of a uniform interplanetary magnetic field and the Earth's dipole magnetic field is used to evaluate electric field convection patterns over the polar caps that result from solar wind flow across open geomagnetic field lines. This model is found to account for observed polar-cap convection patterns as a function of the interplanetary magnetic field components B/sub y/ and B/sub z/. In particular, the model offers an explanation for sunward and antisunward convection over the polar caps for B/sub z/>0. Observed field-aligned current patterns within the polar cap and observed auroral arcs across the polar cap are also explained by the model. In addition, the model gives several predictions concerning the polar cap that should be testable. Effects of solar wind pressure and magnetospheric currents on magnetospheric electric and magnetic fields are neglected. That observed polar cap features are reproduced suggests that the neglected effects do not modify the large-scale topology of magnetospheric electric and magnetic fields along open polar cap field lines. Of course, the neglected effects significantly modify the magnetic geometry, so that the results of this paper are not quantitatively realistic and many details may be incorrect. Nevertheless, the model provides a simple explanation for many qualitative features of polar cap convection

  6. Photoemission of Bi_{2}Se_{3} with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Directory of Open Access Journals (Sweden)

    J. Sánchez-Barriga

    2014-03-01

    Full Text Available Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50–70 eV with linear or circular polarization indeed probe the initial-state spin texture of Bi_{2}Se_{3} while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

  7. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    Science.gov (United States)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  8. Effect of light polarization on the efficiency of photodynamic therapy of basal cell carcinomas: an in vitro cellular study.

    Science.gov (United States)

    JalalKamali, M; Nematollahi-Mahani, S N; Shojaei, M; Shamsoddini, A; Arabpour, N

    2018-02-01

    In an in vitro study, the effect of light polarization on the efficiency of 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) of basal cell carcinoma (BCC) was investigated. Three states of light polarization (non-polarized, linearly polarized, and circularly polarized) were considered. Cells were exposed to green (532 pm 20 nm) irradiation from light emitting diodes. Cell survival was measured by the colorimetric assay (WST-1) and Trypan blue staining. The colorimetric assay showed a pronounced decrease in the cell viability (up to 30%) using polarized light compared to the non-polarized one in the wavelength region used. Similar results were obtained by the cell counting method (20-30% increase in cell death). The observed effect was dependent on the concentration of photosensitizer. The effect is more expressed in the case of linearly polarized light compared to the circularly polarized one. Results show that the use of polarized light increases the efficiency of in vitro ALA-PDT of BCC. Utilizing polarized light, it is possible to obtain the same effect from PDT by lower concentrations of photosensitizer. Additionally, the concentration dependency of PDT response and photo-bleaching is also reduced.

  9. Polarization switching and patterning in self-assembled peptide tubular structures

    Science.gov (United States)

    Bdikin, Igor; Bystrov, Vladimir; Delgadillo, Ivonne; Gracio, José; Kopyl, Svitlana; Wojtas, Maciej; Mishina, Elena; Sigov, Alexander; Kholkin, Andrei L.

    2012-04-01

    Self-assembled peptide nanotubes are unique nanoscale objects that have great potential for a multitude of applications, including biosensors, nanotemplates, tissue engineering, biosurfactants, etc. The discovery of strong piezoactivity and polar properties in aromatic dipeptides [A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010)] opened up a new perspective for their use as biocompatible nanoactuators, nanomotors, and molecular machines. Another, as yet unexplored functional property is the ability to switch polarization and create artificial polarization patterns useful in various electronic and optical applications. In this work, we demonstrate that diphenylalanine peptide nanotubes are indeed electrically switchable if annealed at a temperature of about 150 °C. The new orthorhombic antipolar structure that appears after annealing allows for the existence of a radial polarization component, which is directly probed by piezoresponse force microscopy (PFM) measurements. Observation of the relatively stable polarization patterns and hysteresis loops via PFM testifies to the local reorientation of molecular dipoles in the radial direction. The experimental results are complemented with rigorous molecular calculations and create a solid background of electric-field induced deformation of aromatic rings and corresponding polarization switching in this emergent material.

  10. Photo electron emission microscopy of polarity-patterned materials

    International Nuclear Information System (INIS)

    Yang, W-C; Rodriguez, B J; Gruverman, A; Nemanich, R J

    2005-01-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO 3 (LNO) single crystals and PbZrTiO 3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ∼4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ∼4.6 eV at the negative domain and ∼6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ∼300 deg. C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions

  11. Photo electron emission microscopy of polarity-patterned materials

    Science.gov (United States)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  12. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  13. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  14. A novel fibrous duct structure discovered in the brain meninges by using polarized light microscopy

    Science.gov (United States)

    Nam, Min-Ho; Jung, Sharon Jiyoon; Soh, Kwang-Sup; Lim, Jaekwan; Seo, Eunseok; Lim, Jun; Baek, Miok; Lee, Sang Joon

    2016-05-01

    We have previously reported the discovery of a novel fibrous structure (NFS) consisting of unidirectionally arranged collagen fibers in the spinal pia mater. Due to its unique structure, it was easily detected using polarized light microscopy. In the current study, we describe the discovery of a similar NFS in the brain meninges of rats by using polarized light microscopy. This NFS is located beneath the superior sagittal sinus. Initially, we systemically analyzed the polarization properties of the NFS. The change in the light intensity of the NFS, with respect to the polarization angle, was eight times greater than that of blood vessels, showing that the collagen fibers are oriented in a particular direction with almost perfect parallelism (0.99). The orientation angle of the polarization ellipse confirmed the orientation of the collagen fibers in the NFS. Histological studies further confirmed that the unidirectionally arranged collagen fibers were responsible for this distinct polarization property. Surprisingly, X-ray microtomography and 3D confocal imaging revealed that the NFS contains within it a duct structure, a putative primo vessel. In conclusion, we report a NFS in the brain meninges, detected by using polarized light microscopy, that provides space for a putative primo vessel, not a blood vessel.

  15. On-chip synthesis of circularly polarized emission of light with integrated photonic circuits.

    Science.gov (United States)

    He, Li; Li, Mo

    2014-05-01

    The helicity of circularly polarized (CP) light plays an important role in the light-matter interaction in magnetic and quantum material systems. Exploiting CP light in integrated photonic circuits could lead to on-chip integration of novel optical helicity-dependent devices for applications ranging from spintronics to quantum optics. In this Letter, we demonstrate a silicon photonic circuit coupled with a 2D grating emitter operating at a telecom wavelength to synthesize vertically emitting, CP light from a quasi-TE waveguide mode. Handedness of the emitted circular polarized light can be thermally controlled with an integrated microheater. The compact device footprint enables a small beam diameter, which is desirable for large-scale integration.

  16. Prediction Center (CPC) Polar Eurasia Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Polar-Eurasia teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated principal...

  17. New shapes of light-cone distributions of the transversely polarized ρ-mesons

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Mikhajlov, S.V.

    2000-01-01

    The leading twist light-cone distributions for transversely polarized ρ-, ρ ' - and b 1 mesons are reanalyzed in the framework of QCD sum rules with nonlocal condensates. Using different kinds of sum rules to obtain reliable predictions, we estimate the 2-, 4-, 6- and 8-th moments for transversely polarized ρ- and ρ ' -meson distributions and reestimate tensor couplings f ρ,ρ ' ,b 1 T . It is stressed that the results of standard sum rules also support our estimation of the second moment of the transversely polarized ρ-meson distribution. New models for light-cone distributions are briefly discussed. Our results are compared with those found by Ball and Braun (1996), and the latter is shown to be incomplete

  18. Vector wave diffraction pattern of slits masked by polarizing devices

    Indian Academy of Sciences (India)

    This calls for a systematic study of diffraction properties of different apertures using polarization-sensitive devices. In the present paper, we have studied the Fraunhofer diffraction pattern of slits masked by different kinds of polarizing devices which introduce a phase difference between the two orthogonal components of the ...

  19. Multiple scattering of elliptically polarized light in two-dimensional medium with large inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.

  20. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    Science.gov (United States)

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Switchable polarization rotation of visible light using a plasmonic metasurface

    Directory of Open Access Journals (Sweden)

    Stuart K. Earl

    2017-01-01

    Full Text Available A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.

  2. Injection and detection of a spin-polarized current in a light-emitting diode

    Science.gov (United States)

    Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W.

    1999-12-01

    The field of magnetoelectronics has been growing in practical importance in recent years. For example, devices that harness electronic spin-such as giant-magnetoresistive sensors and magnetoresistive memory cells-are now appearing on the market. In contrast, magnetoelectronic devices based on spin-polarized transport in semiconductors are at a much earlier stage of development, largely because of the lack of an efficient means of injecting spin-polarized charge. Much work has focused on the use of ferromagnetic metallic contacts, but it has proved exceedingly difficult to demonstrate polarized spin injection. More recently, two groups have reported successful spin injection from an NiFe contact, but the observed effects of the spin-polarized transport were quite small (resistance changes of less than 1%). Here we describe a different approach, in which the magnetic semiconductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve injection efficiencies of 90% spin-polarized current into a non-magnetic semiconductor device. The device used in this case is a GaAs/AlGaAs light-emitting diode, and spin polarization is confirmed by the circular polarization state of the emitted light.

  3. Myth polar light. Why sky bands, herring lightnings, and solar winds fascinate; Mythos Polarlicht. Warum Himmelsbaender, Heringsblitze und Sonnenwinde faszinieren

    Energy Technology Data Exchange (ETDEWEB)

    Hunnekuhl, Michael

    2014-07-01

    The actual state of knowledge of the polar-light research is in this illustrated volume as entertainingly as scientific-foundedly presented. The pecularities of pola lights beyond the polar-light zones as for instance in Germany are thematized and the conditions and periods, in which it there occurs, explained. Michael Hunnekuhl succeeds to mediate the fascination and emotion and simultaneously to explain the phenomena according to the latest state of science generally understandably. Which very old interpretations and descriptions are transmitted, which imaginations had men of polar lights long before the science could them explain? Hunnekuhl takes the reader along with into the world of legends and myths around the polar light. An experience report from the deeply snowed up wideness of Lapland lets everybody closely participate at a polar-light observation and feel the emotion, which it can fan. Above 70 polar-light pictures of high value and further explaining graphics show the continuously changing play of colors, supplement the explanations, and make the fascination comprehensible. Spectacular polar-light films from the international space station ISS, photographs from sun-observation satellites, as well as a polar-light film in real time are bound in the book via QR codes and make the time dimension and the dynamics of this fascinating natural spectacle alively comprehensible.

  4. Lateral refraction and reflection of light polarized lenses principle. Coplanar lens systems

    International Nuclear Information System (INIS)

    Miranda, L.

    2012-01-01

    Studying the behavior of the linearly polarized light to impact a lens and in the lens itself, resulted in the discovery of a physical principle of optics, not mentioned or used so far. This phenomenon is very useful in practice. Perhaps the manifestation of the phenomenon occurs in the plane perpendicular to the road or optical axis, is due the reason that was not seen before, but it has always been there when polarized light passes through a lens. Known and mastered the principle has been manipulated for better research results, using for the first time a planar lens system, which according to the placement of the lens allows for accurate lags between the light beams ar the exits the system. (Author)

  5. Nanomagnetic behavior of fullerene thin films in Earth magnetic field in dark and under polarization light influences.

    Science.gov (United States)

    Koruga, Djuro; Nikolić, Aleksandra; Mihajlović, Spomenko; Matija, Lidija

    2005-10-01

    In this paper magnetic fields intensity of C60 thin films of 60 nm and 100 nm thickness under the influence of polarization lights are presented. Two proton magnetometers were used for measurements. Significant change of magnetic field intensity in range from 2.5 nT to 12.3 nT is identified as a difference of dark and polarization lights of 60 nm and 100 nm thin films thickness, respectively. Specific power density of polarization light was 40 mW/cm2. Based on 200 measurement data average value of difference between magnetic intensity of C60 thin films, with 60 nm and 100 nm thickness, after influence of polarization light, were 3.9 nT and 9.9 nT respectively.

  6. Optical Polarization of Light from a Sorghum Canopy Measured Under Both a Clear and an Overcast Sky

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Biehl, Larry; Dahlgren, Robert

    2014-01-01

    Introduction: We tested the hypothesis that the optical polarization of the light reflected by a sorghum canopy is due to a Fresnel-type redirection, by sorghum leaf surfaces, of light from an unpolarized light source, the sun or overcast sky, toward the measuring sensor. If it can be shown that the source of the polarization of the light scattered by the sorghum canopy is a first surface, Fresnel-type reflection, then removing this surface reflected light from measurements of canopy reflectance presumably would allow better insight into the biochemical processes such as photosynthesis and metabolism that occur in the interiors of sorghum canopy leaves. Methods: We constructed a tower 5.9m tall in the center of a homogenous sorghum field. We equipped two Barnes MMR radiometers with polarization analyzers on the number 1, 3 and 7 Landsat TM wavelength bands. Positioning the radiometers atop the tower, we collected radiance data in 44 view directions on two days, one day with an overcast sky and the other, clear and sunlit. From the radiance data we calculated the linear polarization of the reflected light for each radiometer wavelength channel and view direction. Results and Discussion: Our experimental results support our hypothesis, showing that the amplitude of the linearly polarized portion of the light reflected by the sorghum canopy varied dramatically with view azimuth direction under a point source, the sun, but the amplitude varied little with view azimuth direction under the hemispherical source, the overcast sky. Under the clear sky, the angle of polarization depended upon the angle of incidence of the sunlight on the leaf, while under the overcast sky the angle of polarization depended upon the zenith view angle. These results support a polarized radiation transport model of the canopy that is based upon a first surface, Fresnel reflection from leaves in the sorghum canopy.

  7. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    Science.gov (United States)

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  8. Inward Greenfield FDI and Patterns of Job Polarization

    Directory of Open Access Journals (Sweden)

    Sara Amoroso

    2018-04-01

    Full Text Available The unprecedented growth in foreign direct investment in the last few decades has caused drastic changes in the labor markets of the host countries. The major part of FDI takes place in low-tech industries, where the wages and skills are low, or in high-tech, where they offer a wage premium for the highly skilled workers. This mechanism may increase the polarization of employment into high-wage and low-wage jobs, at the expense of middle-skill jobs. This paper looks at the effects of two types of FDI inflows, namely foreign investment in high-skill and low-skill activities, on job polarization. We match data on greenfield FDI aggregated by country and sector with data on employment by occupational skill to investigate the extent to which different types of greenfield FDI are responsible for skill polarization. Our results show that low-skill foreign investment shifts employment from high- to medium- and low-skill jobs, while skill-intensive FDI generally leads to skill upgrading. Only FDI in information and communication technology (ICT is associated with job polarization, but only when accounting for the plurality of job polarization patterns across European sectors.

  9. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  10. Three-dimensional polarization states of monochromatic light fields.

    Science.gov (United States)

    Azzam, R M A

    2011-11-01

    The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

  11. A novel autonomous real-time position method based on polarized light and geomagnetic field

    OpenAIRE

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen

    2015-01-01

    Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we...

  12. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  13. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    Science.gov (United States)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  14. The Polarization of Light and Malus' Law Using Smartphones

    Science.gov (United States)

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2017-01-01

    Originally an empirical law, nowadays Malus' law is seen as a key experiment to demonstrate the transverse nature of electromagnetic waves, as well as the intrinsic connection between optics and electromagnetism. In this work, a simple and inexpensive setup is proposed to quantitatively verify the nature of polarized light. A flat computer screen…

  15. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  16. Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalis L.).

    Science.gov (United States)

    Chiou, Tsyr-Huei; Mäthger, Lydia M; Hanlon, Roger T; Cronin, Thomas W

    2007-10-01

    On every arm of cuttlefish and squid there is a stripe of high-reflectance iridophores that reflects highly polarized light. Since cephalopods possess polarization vision, it has been hypothesized that these polarized stripes could serve an intraspecific communication function. We determined how polarization changes when these boneless arms move. By measuring the spectral and polarizing properties of the reflected light from samples at various angles of tilt and rotation, we found that the actual posture of the arm has little or no effect on partial polarization or the e-vector angle of the reflected light. However, when the illumination angle changed, the partial polarization of the reflected light also changed. The spectral reflections of the signals were also affected by the angle of illumination but not by the orientation of the sample. Electron microscope samples showed that these stripes are composed of several groups of multilayer platelets within the iridophores. The surface normal to each group is oriented at a different angle, which produces essentially constant reflection of polarized light over a range of viewing angles. These results demonstrate that cuttlefish and squid could send out reliable polarization signals to a receiver regardless of arm orientation.

  17. Reflection and transmission of polarized light by planetary atmospheres

    International Nuclear Information System (INIS)

    Rooij, W.A. de.

    1985-01-01

    In this thesis the reflection and transmission of sunlight by planetary atmospheres is studied, taking full account of the polarization of light. The atmospheres are treated as being locally plane-parallel, and are assumed to consist of a number of homogeneous layers, the lowest one being either a ground surface or a semi-infinite homogeneous layer. (Auth.)

  18. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae).

    Science.gov (United States)

    Kriska, György; Bernáth, Balázs; Farkas, Róbert; Horváth, Gábor

    2009-12-01

    With few exceptions insects whose larvae develop in freshwater possess positive polarotaxis, i.e., are attracted to sources of horizontally polarized light, because they detect water by means of the horizontal polarization of light reflected from the water surface. These insects can be deceived by artificial surfaces (e.g. oil lakes, asphalt roads, black plastic sheets, dark-coloured cars, black gravestones, dark glass surfaces, solar panels) reflecting highly and horizontally polarized light. Apart from the surface characteristics, the extent of such a 'polarized light pollution' depends on the illumination conditions, direction of view, and the threshold p* of polarization sensitivity of a given aquatic insect species. p* means the minimum degree of linear polarization p of reflected light that can elicit positive polarotaxis from a given insect species. Earlier there were no quantitative data on p* in aquatic insects. The aim of this work is to provide such data. Using imaging polarimetry in the red, green and blue parts of the spectrum, in multiple-choice field experiments we measured the threshold p* of ventral polarization sensitivity in mayflies, dragonflies and tabanid flies, the positive polarotaxis of which has been shown earlier. In the blue (450nm) spectral range, for example, we obtained the following thresholds: dragonflies: Enallagma cyathigerum (0%

  19. Multi-q pattern classification of polarization curves

    Science.gov (United States)

    Fabbri, Ricardo; Bastos, Ivan N.; Neto, Francisco D. Moura; Lopes, Francisco J. P.; Gonçalves, Wesley N.; Bruno, Odemir M.

    2014-02-01

    Several experimental measurements are expressed in the form of one-dimensional profiles, for which there is a scarcity of methodologies able to classify the pertinence of a given result to a specific group. The polarization curves that evaluate the corrosion kinetics of electrodes in corrosive media are applications where the behavior is chiefly analyzed from profiles. Polarization curves are indeed a classic method to determine the global kinetics of metallic electrodes, but the strong nonlinearity from different metals and alloys can overlap and the discrimination becomes a challenging problem. Moreover, even finding a typical curve from replicated tests requires subjective judgment. In this paper, we used the so-called multi-q approach based on the Tsallis statistics in a classification engine to separate the multiple polarization curve profiles of two stainless steels. We collected 48 experimental polarization curves in an aqueous chloride medium of two stainless steel types, with different resistance against localized corrosion. Multi-q pattern analysis was then carried out on a wide potential range, from cathodic up to anodic regions. An excellent classification rate was obtained, at a success rate of 90%, 80%, and 83% for low (cathodic), high (anodic), and both potential ranges, respectively, using only 2% of the original profile data. These results show the potential of the proposed approach towards efficient, robust, systematic and automatic classification of highly nonlinear profile curves.

  20. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.

    Science.gov (United States)

    Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo

    2018-05-15

    We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.

  1. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    Science.gov (United States)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  2. Direct Detection of Polarized, Scattered Light from Exoplanets

    Science.gov (United States)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  3. Surface magnetism studied by polarized light emission after He+ scattering

    NARCIS (Netherlands)

    Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R

    Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of

  4. Electronic-Optical Amplifier in the measurement of light polarization plane

    International Nuclear Information System (INIS)

    Miranda Diaz, Lazaro

    2009-01-01

    This paper analyzes the behavior of the output response of two electronic-optical amplifiers with constant amplitude and phase variable, in which photodiodes each them are arranged spatially 90th each other and both with their faces detection parallel to the axis of light transmission. Outward both amplifiers are going to a digital circuit that compares the fronts outputs to the front of the pulse signal that feeds the light source, to finally obtain the difference in time when fronts of light capture the photodiodes. This configuration permit to analyze the influence of the geometric arrangement of the system optical and understand the principle of why the diodes with their faces parallel to the axis of light transmission are capable of capturing variations of this, and even detect the rotation of the plane of light polarized. (Author)

  5. Trinary optical logic processors using shadow casting with polarized light

    Science.gov (United States)

    Ghosh, Amal K.; Basuray, A.

    1990-10-01

    An optical implementation is proposed of the modified trinary number (MTN) system (Datta et al., 1989) in which any binary number can have arithmetic operations performed on it in parallel without the need for carry and borrow steps. The present method extends the lensless shadow-casting technique of Tanida and Ichioka (1983, 1985). Three kinds of spatial coding are used for encoding the trinary input states, whereas in the decoding plane three states are identified by no light and light with two orthogonal states of polarization.

  6. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    Science.gov (United States)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  7. Multiangular hyperspectral investigation of polarized light in case 2 waters

    Science.gov (United States)

    Tonizzo, A.; Zhou, J.; Gilerson, A.; Chowdhary, J.; Gross, B.; Moshary, F.; Ahmed, S.

    2009-09-01

    The focus of this work is on the dependence of in situ hyperspectral and multiangular polarized data on the size distribution and refractive index of the suspended particles. Underwater polarization measurements were obtained using a polarimeter developed at the Optical Remote Sensing Laboratory of the City College of New York, NY. The degree of polarization (DOP) of the underwater light field in coastal environments was measured and the water-leaving polarized radiance was derived. In-water optical properties were also measured with an ac-9 (WET Labs). Absorption and attenuation spectra are then used to derive information on the dissolved and suspend components in the water medium which are used in a vector radiative transfer code which provides the upwelling radiance. The model was run for various values of the refractive index of mineral particles until the modeled DOP matched the measured one. The relationship between the intensity of the maximum of the DOP and both the refractive index of the mineral particles and the shapes of their size distributions is analyzed in detail.

  8. Substrate dependence of TM-polarized light emission characteristics of BAlGaN/AlN quantum wells

    Science.gov (United States)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-06-01

    To study the substrate dependence of light emission characteristics of transverse-magnetic (TM)-polarized light emitted from BAlGaN/AlN quantum wells (QWs) grown on GaN and AlN substrates were investigated theoretically. It is found that the topmost valence subband for QW structures grown on AlN substrate, is heavy hole state (HH1) while that for QW structures grown on GaN substrate is crystal-field split off light hole state (CL1), irrespective of the boron content. Since TM-polarized light emission is associated with the light hole state, the TM-polarized emission peak of BAlGaN/AlN QW structures grown on GaN substrate is expected to be much larger than that of the QW structure grown on AlN substrate. Also, both QW structures show that the spontaneous emission peak of BAlGaN/AlN QW structures would be improved with the inclusion of the boron. However, it rapidly begins to decrease when the boron content exceeds a critical value.

  9. Optical asymmetric cryptography based on elliptical polarized light linear truncation and a numerical reconstruction technique.

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng

    2014-06-20

    We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.

  10. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  11. Treatment of carpal tunnel syndrome with polarized polychromatic noncoherent light (Bioptron light): a preliminary, prospective, open clinical trial.

    Science.gov (United States)

    Stasinopoulos, D; Stasinopoulos, I; Johnson, M I

    2005-04-01

    Our aim was to assess the efficacy of polarized polychromatic noncoherent light (Bioptron light) in the treatment of idiopathic carpal tunnel syndrome. Carpal tunnel syndrome is the most common compression neuropathy, but no satisfactory conservative treatment is available at present. An uncontrolled experimental study was conducted in patients who visited our clinic from mid-2001 to mid-2002. A total of 25 patients (22 women and three men) with unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months participated in the study. The average age of the patients was 47.4 years and the average duration of patients' symptoms was 5.2 months. Polarized polychromatic noncoherent light (Bioptron light) was administered perpendicular to the carpal tunnel area. The irradiation time for each session was 6 min at an operating distance of 5-10 cm from the carpal tunnel area, three times weekly for 4 weeks. Outcome measures used were the participants' global assessments of nocturnal pain and paraesthesia, respectively, at 4 weeks and 6 months. At 4 weeks, two patients (8%) had no change in nocturnal pain, six (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and five (20%) were pain-free. At 6 months, three patients (12%) were slightly better in regard to nocturnal pain, 13 (52%) were much better regarding nocturnal pain, and nine patients (36%) were pain-free. At 4 weeks, four patients (16%) had no change in paraesthesia, five (20%) were slightly better, 13 patients (52%) were much better, and three patients (12%) were without paraesthesia. At 6 months, two patients (8%) had no change in paraesthesia, two (8%) were slightly better, 14 (56%) were much better, and seven (28%) were without paraesthesia. Nocturnal pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron light) treatment. Controlled

  12. Practical demonstration of the theory of the principle of reflection and refraction of light polarized lenses

    International Nuclear Information System (INIS)

    Miranda Diaz, L. J.

    2016-01-01

    Using an optical system comprising a light source to semiconductor, two collimating lenses, one rotating polarizer, two focusing lenses and an electronic circuit mounted amplifiers based on operational, two pulse outputs of variable width is obtained according to the orientation of the plane of polarized light incident on the lenses coplanar standing together with the electronic circuit inside the optoelectronic head. The difference between the width of both pulses is equivalent to the amount has rotated the plane of polarization and is calculated by the use and programming of a PIC and displayed on an alphanumeric LCD. the result of the measurements are shown performed well plates that you can see the change in the value on the LCD to rotate the polarizer. (Author)

  13. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  14. Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes

    Science.gov (United States)

    Berthier, S.; Boulenguez, J.; Bálint, Z.

    2007-01-01

    The scales of many Lepidoptera and the elytra of quite a number of Coleoptera possess specialized micro- and nano-structures that produce special polarization effects. They are constituted by concave multilayered cavities. This leads to two different effects: (1) interferential non-polarized coloration by reflection near normal incidence in the middle of the cavities and (2) polarized interferential colouration at lower wavelength after double reflection near the Brewster incidence at the periphery of the cavities. The macroscopic appearance resembles the “pointillist effect” with one of the component polarized while the other one is not. The first one can be extinguished with linear polarizer so that the colour is modified. In most insects, the structure is locally symmetric; hence, no macroscopic effects can be seen. In certain species, this symmetry is partly broken, and a slight effect can be observed. In the wing dorsal surface of the fascinating neotropical butterflies genus Suneve, perpendicular structures of two different kinds in size polarize the reflected light. The larger one is constituted by the convex cover scales whose apex falls perpendicularly on the bases of the following scales, creating long polarized valley (50 μm width) transversally running across the wing. The smaller one is constituted by the ridges of the scales (2 μm apart) that polarize light in the perpendicular direction. Adapted multilayered structures can be deposited onto banknotes to create anti-counterfeiting patterns as a further development of protection and security. Different effects can be produced by the use of such structures. (1) Changes of luminosity: A specific pattern will be constituted by two different areas: one with horizontal concave multilayered structures, and the other one with vertical structures. Under unpolarized light, the reflected spectra of these different areas are identical and no pattern appears. Under polarized light, i.e., through a linear

  15. THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanay; Sen, A. K. [Department of Physics Assam University, Silchar-788011, Assam (India)

    2016-12-10

    In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannot be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.

  16. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    Science.gov (United States)

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  17. Physical processes in azobenzene polymers on irradiation with polarized light

    DEFF Research Database (Denmark)

    Holme, N.C.R.; Nikolova, L.; Norris, T.B.

    1999-01-01

    Azobenzenes can serve as model compounds for the study of trans-cis isomerization in more complex molecules. We have performed time-resolved spectroscopy in solutions containing free azobenzene chromophores and diols with a view to obtaining the energy levels and lifetimes of the excited states....... A transition route based on experimental results for the theoretically calculated energy level scheme is proposed. Physical observations of surface relief in thin films of azobenzene polymers when irradiated with polarized light are reported. These include two beam polarization holographic observations...... and single beam transmission measurements through a mask, followed by atomic force microscope and profiler investigations. It is concluded that none of the prevalent theories can explain all the observed facts....

  18. Evaluation of the magnitude of EBT Gafchromic film polarization effects

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.

    2009-01-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a >99% plane polarized light source a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured O D for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 0 ± 7 0 (2 S D) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effects follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5 % per 5 0 is seen for an anticlockwise polarizer rotation where as the effect is 1.2 % per 5 0 for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 0 alignment error can cause an approximate 1 % error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of O D variation with a fully linear

  19. Evaluation of the magnitude of EBT Gafchromic film polarization effects.

    Science.gov (United States)

    Butson, M J; Cheung, T; Yu, P K N

    2009-03-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a > 99% plane polarized light source and a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured OD for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 degrees +/- 7 degrees (2 SD) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effect follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5% per 5 degrees is seen for an anticlockwise polarizer rotation where as the effect is 1.2% per 5 degrees for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 degree alignment error can cause an approximate 1% error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of OD variation

  20. Quantitative Light Fluorescence (QLF and Polarized White Light (PWL assessments of dental fluorosis in an epidemiological setting

    Directory of Open Access Journals (Sweden)

    Pretty Iain A

    2012-05-01

    Full Text Available Abstract Background To determine if a novel dual camera imaging system employing both polarized white light (PWL and quantitative light induced fluorescence imaging (QLF is appropriate for measuring enamel fluorosis in an epidemiological setting. The use of remote and objective scoring systems is of importance in fluorosis assessments due to the potential risk of examiner bias using clinical methods. Methods Subjects were recruited from a panel previously characterized for fluorosis and caries to ensure a range of fluorosis presentation. A total of 164 children, aged 11 years (±1.3 participated following consent. Each child was examined using the novel imaging system, a traditional digital SLR camera, and clinically using the Dean’s and Thylstrup and Fejerskov (TF Indices on the upper central and lateral incisors. Polarized white light and SLR images were scored for both Dean’s and TF indices by raters and fluorescence images were automatically scored using software. Results Data from 164 children were available with a good distribution of fluorosis severity. The automated software analysis of QLF images demonstrated significant correlations with the clinical examinations for both Dean’s and TF index. Agreement (measured by weighted Kappa’s between examiners scoring clinically, from polarized photographs and from SLR images ranged from 0.56 to 0.92. Conclusions The study suggests that the use of a digital imaging system to capture images for either automated software analysis, or remote assessment by raters is suitable for epidemiological work. The use of recorded images enables study archiving, assessment by multiple examiners, remote assessment and objectivity due to the blinding of subject status.

  1. Photonic Heterostructures with Properties of Ferroelectrics and Light Polarizers

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Draginda, Yu A [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-11-15

    The optical and electro-optical properties of a new type of photonic heterostructure composed of alternating ferroelectric molecular layers and optically anisotropic layers of another material are considered. A numerical simulation of the real prototype of this heterostructure, which can be prepared by the Langmuir-Blodgett method from layers of a ferroelectric copolymer (polyvinylidene fluoride trifluoroethylene) and an azo dye with photoinduced optical anisotropy, has been performed. It is shown that this heterostructure has pronounced polarization optical properties and yields a significant change in the polarization state of light at the photonic band edges in the ranges of the maximum density of photon states. The latter property can be used to obtain an enhanced electro-optic effect at small spectral shifts of the photonic band (the latter can be provided by the piezoelectric effect in ferroelectric layers).

  2. Light-assisted templated self assembly using photonic crystal slabs.

    Science.gov (United States)

    Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L

    2011-06-06

    We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

  3. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    International Nuclear Information System (INIS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing. -- Highlights: • Bicontinuous random medium were used for real snow microstructure modeling. • Photon tracing technique with polarization status tracking ability was applied. • SSA–albedo relationship of snow is close to that of sphere based medium. • Validation of albedo and BRDF showed good results. • Validation of polarized reflectance showed good agreement with experiment data

  4. Optical image encryption method based on incoherent imaging and polarized light encoding

    Science.gov (United States)

    Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C.

    2018-05-01

    We propose an incoherent encoding system for image encryption based on a polarized encoding method combined with an incoherent imaging. Incoherent imaging is the core component of this proposal, in which the incoherent point-spread function (PSF) of the imaging system serves as the main key to encode the input intensity distribution thanks to a convolution operation. An array of retarders and polarizers is placed on the input plane of the imaging structure to encrypt the polarized state of light based on Mueller polarization calculus. The proposal makes full use of randomness of polarization parameters and incoherent PSF so that a multidimensional key space is generated to deal with illegal attacks. Mueller polarization calculus and incoherent illumination of imaging structure ensure that only intensity information is manipulated. Another key advantage is that complicated processing and recording related to a complex-valued signal are avoided. The encoded information is just an intensity distribution, which is advantageous for data storage and transition because information expansion accompanying conventional encryption methods is also avoided. The decryption procedure can be performed digitally or using optoelectronic devices. Numerical simulation tests demonstrate the validity of the proposed scheme.

  5. Absorption of circularly polarized light by solids

    International Nuclear Information System (INIS)

    Jalbert, G.; Brandi, H.S.

    1984-03-01

    The multiphoton absorption rate of circularly polarized light, by direct gap crystals, was investigated following a non-perturbative scheme proposed by Jones and Reiss. It was possible to derive closed analytical solutions, for the N-photon transition rate, valid for all field strenghts of practical interest. The accuracy of the approximations introduced in deriving these results was determined comparing the numerical computations of the multiphoton transition rate ('exact') with the analytical solutions. Specific calculations are done for ZnS and GaAs in the presence of a Nd-laser. It is shown that this formalism leads to a total transition rate which has not the tunneling behavior previously discussed by several authors within similar contexts. (Author) [pt

  6. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  7. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  8. Treatment of Carpal Tunnel Syndrome in pregnancy with Polarized Polychromatic Non-coherent Light (Bioptron Light): A Preliminary, Prospective, Open Clinical Trial.

    Science.gov (United States)

    Dimitrios, Stasinopoulos; Stasinopoulos, Loannis

    2017-12-31

    The aim of this trial was to assess the efficacy of polarized polychromatic noncoherent light (Bioptron light) in the treatment of Carpal Tunnel Syndrome (CTS) in pregnancy. An uncontrolled experimental study was conducted in pregnant patients with CTS who visited our clinic from January 2006 to January 2010. Bioptron light (480-3400 nm; 95% polarization; 40 mW/cm 2 ; and 2.4 J/cm 2 ) was administered perpendicular to the carpal tunnel area. The irradiation time for each session was 6 min at an operating distance of 5-10 cm from the carpal tunnel area, twice each day, five days per week for 2 weeks. Pain and paraesthesia using a visual analogue scale (VAS) and finger pinch strength were evaluated at the end of treatment (week 2) and 1-month (week 6) after the end of treatment. The Student'sttest was used and p values Bioptron light is a reliable, safe, and effective treatment option in pregnant patients with CTS. Controlled clinical trials are needed to establish the absolute and relative effectiveness of this intervention.

  9. Understanding interference experiments with polarized light through photon trajectories

    International Nuclear Information System (INIS)

    Sanz, A.S.; Davidovic, M.; Bozic, M.; Miret-Artes, S.

    2010-01-01

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectories in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.

  10. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    Science.gov (United States)

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  11. Photon polarization tensor in the light front field theory at zero and finite temperatures

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan

    2012-01-01

    Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)

  12. arXiv Black hole superradiance and polarization-dependent bending of light

    CERN Document Server

    Plascencia, Alexis D.

    2018-04-27

    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.

  13. arXiv Black hole superradiance and polarization-dependent bending of light

    CERN Document Server

    Plascencia, Alexis D.

    2017-01-01

    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.

  14. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  15. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Boer, J.F. de; Milner, T.E.; Nelson, J.S.

    1999-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid media. To demonstrate the application of this technique we determined the birefringence and the optical axis in fibrous tissue (rodent muscle) and in vivo rodent skin. PS-OCT has potentially useful applications in biomedical optics by imaging simultaneously the structural properties of turbid biological materials and their effects on the polarization state of backscattered light. This method may also find applications in material science for investigation of polarization properties (e.g., birefringence) in opaque media such as ceramics and crystals. copyright 1999 Optical Society of America

  16. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  17. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.

    OpenAIRE

    Ding Zhaojun; Galván-Ampudia Carlos S; Demarsy Emilie; Langowski Lukasz; Kleine-Vehn Jürgen; Fan Yuanwei; Morita Miyo T; Tasaka Masao; Fankhauser Christian; Offringa Remko; Friml Jirí

    2011-01-01

    Phototropism is an adaptation response through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells resulting in changes in auxin distribution and d...

  18. Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396.

    Science.gov (United States)

    Das Gupta, Mainak; Nath, Utpal

    2015-10-01

    Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. © 2015 American Society of Plant Biologists. All rights reserved.

  19. Wave-vector and polarization dependence of conical refraction.

    Science.gov (United States)

    Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2013-02-25

    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.

  20. Study of polarization phenomena in Schottky CdTe diodes using infrared light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Goro, E-mail: gsato@astro.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Fukuyama, Taro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Watanabe, Shin; Ikeda, Hirokazu; Ohta, Masayuki; Ishikawa, Shin' nosuke [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Takahashi, Tadayuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiraki, Hiroyuki; Ohno, Ryoichi [ACRORAD Co., Ltd., 13-23 Suzaki, Uruma, Okinawa 904-2234 (Japan)

    2011-10-01

    Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.

  1. Impact of light polarization on photoluminescence intensity and quantum efficiency in AlGaN and AlInGaN layers

    Science.gov (United States)

    Netzel, C.; Knauer, A.; Weyers, M.

    2012-12-01

    We analyzed emission intensity, quantum efficiency, and emitted light polarization of c-plane AlGaN and AlInGaN layers (λ = 320-350 nm) by temperature dependent photoluminescence. Low indium content in AlInGaN structures causes a significant intensity increase by change of the polarization of the emitted light. Polarization changes from E ⊥ c to E ‖ c with increasing aluminum content. It switches back to E ⊥ c with the incorporation of indium. The polarization degree decreases with temperature. This temperature dependence can corrupt internal quantum efficiency determination by temperature dependent photoluminescence.

  2. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    Energy Technology Data Exchange (ETDEWEB)

    Courteille, C; Hollenstein, C; Dorier, J L; Gay, P; Schwarzenbach, W; Howling, A A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Bertran, E; Viera, G [Barcelona Univ., Dep. de de Fisica Aplicada I Electronica, Barcelona (Spain); Martins, R; Macarico, A [FCTUNL, Materials Science Dep., Monte de Caparica (Portugal)

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135{sup o} and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs.

  3. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    International Nuclear Information System (INIS)

    Courteille, C.; Hollenstein, C.; Dorier, J.L.; Gay, P.; Schwarzenbach, W.; Howling, A.A.; Bertran, E.; Viera, G.; Martins, R.; Macarico, A.

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 o and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs

  4. Photo-orientation of azobenzene side chain polymers parallel or perpendicular to the polarization of red HeNe light

    International Nuclear Information System (INIS)

    Kempe, Christian; Rutloh, Michael; Stumpe, Joachim

    2003-01-01

    The mechanism of the light-induced orientation process of azobenzene-containing polymers caused by irradiation with linearly polarized red light is investigated. This process is surprising because there is almost no absorption at 633 nm. Depending on the photochemical pre-treatment and the exposure time, the azobenzene moieties can undergo two different orientation processes resulting in either a parallel or a perpendicular orientation with respect to the electric field vector of the incident light. The fast orientation of the photochromic groups with their long axis in the direction of the light polarization requires a photochemical pre-treatment in which non-polarized UV light generates Z-isomers. Due to this procedure the film becomes 'photochemically activated' for the subsequent polarized irradiation with red light. But on continued exposure a second, much slower reorientation process occurs which establishes an orientation of the azobenzene groups perpendicular to the electric field vector. The fast mechanism is probably caused by an angle-selective photo-isomerization of the Z-isomers to the E-isomers, while the subsequent slow reorientation process is caused by the well-known conventional photo-orientation taking place via the accumulation of a number of photoselection steps and the rotational diffusion minimizing the absorbance of the E-isomer. This process occurs in the steady state but at this wavelength with a very small concentration of Z-isomers. The competing mechanisms take place in the same polymer film under almost identical irradiation conditions, differing only in the actual concentration of the Z-isomers

  5. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tanaka

    2013-05-01

    Full Text Available PIN-FORMED (PIN proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.

  6. Assessment of tissue viability by polarization spectroscopy

    Science.gov (United States)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  7. Honeybee navigation: critically examining the role of the polarization compass.

    Science.gov (United States)

    Evangelista, C; Kraft, P; Dacke, M; Labhart, T; Srinivasan, M V

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the 'waggle dance'. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it.

  8. Comparison of effects of Cyriax physiotherapy, a supervised exercise programme and polarized polychromatic non-coherent light (Bioptron light) for the treatment of lateral epicondylitis.

    Science.gov (United States)

    Stasinopoulos, Dimitrios; Stasinopoulos, Ioannis

    2006-01-01

    To compare the effectiveness of Cyriax physiotherapy, a supervised exercise programme, and polarized polychromatic non-coherent light (Bioptron light) in the treatment of lateral epicondylitis. Controlled clinical trial. Rheumatology and rehabilitation centre. This study was carried out with 75 patients who had lateral epicondylitis. They were allocated to three groups by sequential allocation. Group A (n = 25) was treated with Cyriax physiotherapy. A supervised exercise programme was given to group B (n = 25). Group C (n = 25) received polarized polychromatic non-coherent light (Bioptron light). All patients received three treatments per week for four weeks. Pain was evaluated using a visual analogue scale and function using a visual analogue scale and pain-free grip strength at the end of the four-week course of treatment (week 4), one month (week 8), three months (week 16) and six months (week 28) after the end of treatment. The supervised exercise programme produced the largest effect in the reduction of pain and in the improvement of function at the end of the treatment (PBioptron light) may be suitable.

  9. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  10. Linearly polarized light emission from InGaN/GaN quantum well structure with high indium composition.

    Science.gov (United States)

    Song, Hooyoung; Kim, Eun Kyu; Han, Il Ki; Lee, Sung-Ho; Hwang, Sung-Min

    2011-10-01

    We fabricated yellow (575 nm) emitting a-plane InGaN/GaN light emitting diode (LED). Microstructure and stress relaxation of the InGaN well layer were observed from the images of dark field transmission electron microscopy. The LED chip was operated at 3.7 V, 20 mA, and the polarization-free characteristic in nonpolar InGaN layer was confirmed from a small blue-shift of approximaely 1.7 nm with increase of current density. The high photoluminescence (PL) efficiency of 30.4% showed that this non-polar InGaN layer has a potential of application to green-red long wavelength light emitters. The PL polarization ratio at 290 K was 0.25 and the energy difference between two subbands was estimated to be 40.2 meV. The low values of polarization and energy difference were due to the stress relaxation of InGaN well layer.

  11. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  12. [Suppression of visceral pain by action of the low intensity polarized light on acupuncture antinociceptive points].

    Science.gov (United States)

    Lymans'kyĭ, Iu P; Tamarova, Z A; Huliar, S O

    2003-01-01

    In experiments on mice, statistically authentic weakening of visceral pain has been shown after an action of low intensity polarized light from a device Bioptron on antinociceptive acupuncture points (AP). Pain was caused by an intraperitoneal injection of 2% acetic acid (0.1 ml/10 g). The intensity of pain was judged on duration and frequency of painful behavioral reactions (writhing, licking of abdomen), as well as on duration of sleep, eating and motor activity. In animals which immediately after injections of acetic acid were exposed to polarized light of low intensity for 10 min, applied on any of antinociceptive APs (E-36, E-43, VC-8, RP-6), the duration of painful behavioral reaction was determined to be reduced, while that of non-painful one increased. The comparison of the total duration of the writhing at control and experimental mice showed that an activation of AP E-43 induced the greatest analgesic effect (76.5%), from AP VC-8 it was 76.3%, from RP-6--46.8%, and from E-36--41.4%. We have concluded that the effect of polarized light of low intensity on APs was a convenient non-pharmacological method of treating visceral pain.

  13. Contribution of spontaneous polarization and its fluctuations to refraction of light in ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Markovin, P.A.; Trepakov, Vladimír; Tagantsev, A. K.; Dejneka, Alexandr; Andreev, D. A.

    2016-01-01

    Roč. 58, č. 1 (2016), 134-139 ISSN 1063-7834 R&D Projects: GA ČR GA15-13778S Institutional support: RVO:68378271 Keywords : contribution * spontaneous polarization * fluctuations * refraction * light * ferroelectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.860, year: 2016

  14. Growth and characterization of semi-polar (11-22) GaN on patterned (113) Si substrates

    International Nuclear Information System (INIS)

    Bai, J; Yu, X; Gong, Y; Hou, Y N; Zhang, Y; Wang, T

    2015-01-01

    Patterned (113) Si substrates have been fabricated for the growth of (11-22) semi-polar GaN, which completely eliminates one of the great issues in the growth of semi-polar GaN on silicon substrates, ‘Ga melting-back’. Furthermore, unlike any other mask patterning approaches which normally lead to parallel grooves along a particular orientation, our approach is to form periodic square window patterns. As a result, crack-free semi-polar (11-22) GaN with a significant improvement in crystal quality has been achieved, in particular, basal stacking faults (BSFs) have been significantly reduced. The mechanism for the defect suppression has been investigated based on detailed transmission electron microscopy measurements. It has been found that the BSFs can be impeded effectively at an early growth stage due to the priority growth along the 〈0001〉 direction. The additional 〈1-100〉 lateral growth above the masks results in a further reduction in dislocation density. The significant reduction in BSFs has been confirmed by low temperature photoluminescence measurements. (paper)

  15. Perceiving polarization with the naked eye: characterization of human polarization sensitivity

    Science.gov (United States)

    Temple, Shelby E.; McGregor, Juliette E.; Miles, Camilla; Graham, Laura; Miller, Josie; Buck, Jordan; Scott-Samuel, Nicholas E.; Roberts, Nicholas W.

    2015-01-01

    Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance. We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration. PMID:26136441

  16. Spatiotemporal polarization modulation microscopy with a microretarder array

    Science.gov (United States)

    Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.

    2018-02-01

    A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.

  17. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    Science.gov (United States)

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  18. Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light

    Science.gov (United States)

    Libby, E.; Azofeifa, D. E.; Hernández-Jiménez, M.; Barboza-Aguilar, C.; Solís, A.; García-Aguilar, I.; Arce-Marenco, L.; Hernández, A.; Vargas, W. E.

    2014-08-01

    Measured reflection spectra from elytra of Chrysina aurigans scarabs are reported. They show a broad reflection band for wavelengths from 0.525 to 1.0 μm with a sequence of maxima and minima reflection values superimposed on a mean value of around 40% for the high reflection band. Different mechanisms contributing to the reflection spectra have been considered, with the dominant effect, reflection of left handed circularly polarized light, being produced by a laminated left handed twisted structure whose pitch changes with depth through the procuticle in a more complex way than that characterizing broad band circular polarizers based on cholesteric liquid crystals.

  19. Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light

    International Nuclear Information System (INIS)

    Libby, E; Azofeifa, D E; Hernández-Jiménez, M; García-Aguilar, I; Arce-Marenco, L; Hernández, A; Vargas, W E; Barboza-Aguilar, C; Solís, A

    2014-01-01

    Measured reflection spectra from elytra of Chrysina aurigans scarabs are reported. They show a broad reflection band for wavelengths from 0.525 to 1.0 μm with a sequence of maxima and minima reflection values superimposed on a mean value of around 40% for the high reflection band. Different mechanisms contributing to the reflection spectra have been considered, with the dominant effect, reflection of left handed circularly polarized light, being produced by a laminated left handed twisted structure whose pitch changes with depth through the procuticle in a more complex way than that characterizing broad band circular polarizers based on cholesteric liquid crystals. (fast track communication)

  20. Microstructural analysis of human white matter architecture using Polarized Light Imaging (PLI: Views from neuroanatomy

    Directory of Open Access Journals (Sweden)

    Hubertus eAxer

    2011-11-01

    Full Text Available To date, there are several methods for mapping connectivity, ranging from the macroscopic to molecular scales. However, it is difficult to integrate this multiply-scaled data into one concept. Polarized light imaging (PLI is a method to quantify fiber orientation in gross histological brain sections based on the birefringent properties of the myelin sheaths. The method is capable of imaging fiber orientation of larger-scale architectural patterns with higher detail than diffusion MRI of the human brain. PLI analyses light transmission through a gross histological section of a human brain under rotation of a polarization filter combination. Estimates of the angle of fiber direction and the angle of fiber inclination are automatically calculated at every point of the imaged section. Multiple sections can be assembled into a 3D volume. We describe the principles of PLI and present several studies of fiber anatomy in the human brain: 6 brainstems were serially sectioned, imaged with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented in the PLI datasets. PLI data from the internal capsule was related to results from confocal laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber architecture of the extreme capsule was compared to macroscopical dissection, which represents a method of larger scale anatomy. The microstructure of the anterior human cingulum bundle was analyzed in serial sections of 6 human brains. PLI can generate highly-resolved 3D datsets of fiber orientation of the human brain and has, therefore, a high comparability to diffusion MR. To get additional information regarding axon structure and density, PLI can also be combined with classical histological stains. It brings the directional aspects of diffusion MRI into the range of histology and may represent a promising tool to close the gap between larger scale diffusion orientation and microstructural histological analysis

  1. Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography

    Science.gov (United States)

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Hirn, Cornelia; Vass, Clemens; Hitzenberger, Christoph K.

    2010-01-01

    Purpose To analyze the physical origin of atypical scanning laser polarimetry (SLP) patterns. To compare polarization-sensitive optical coherence tomography (PS-OCT) scans to SLP images. To present a method to obtain pseudo-SLP images by PS-OCT that are free of atypical artifacts. Methods Forty-one eyes of healthy subjects, subjects with suspected glaucoma, and patients with glaucoma were imaged by SLP (GDx VCC) and a prototype spectral domain PS-OCT system. The PS-OCT system acquires three-dimensional (3D) datasets of intensity, retardation, and optic axis orientation simultaneously within 3 seconds. B-scans of intensity and retardation and en face maps of retinal nerve fiber layer (RNFL) retardation were derived from the 3D PS-OCT datasets. Results were compared with those obtained by SLP. Results Twenty-two eyes showed atypical retardation patterns, and 19 eyes showed normal patterns. From the 22 atypical eyes, 15 showed atypical patterns in both imaging modalities, five were atypical only in SLP images, and two were atypical only in PS-OCT images. In most (15 of 22) atypical cases, an increased penetration of the probing beam into the birefringent sclera was identified as the source of atypical patterns. In such cases, the artifacts could be eliminated in PS-OCT images by depth segmentation and exclusion of scleral signals. Conclusions PS-OCT provides deeper insight into the contribution of different fundus layers to SLP images. Increased light penetration into the sclera can distort SLP retardation patterns of the RNFL. PMID:19036999

  2. Celestial polarization patterns sufficient for Viking navigation with the naked eye: detectability of Haidinger's brushes on the sky versus meteorological conditions

    Science.gov (United States)

    Horváth, Gábor; Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András

    2017-02-01

    If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤ θ Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.

  3. Enhancing the Light-Extraction Efficiency of AlGaN Nanowires Ultraviolet Light-Emitting Diode by using Nitride/Air Distributed Bragg Reflector Nanogratings

    KAUST Repository

    Alias, Mohd Sharizal; Janjua, Bilal; Zhao, Chao; Priante, Davide; Alhamoud, Abdullah A.; Tangi, Malleswararao; Alanazi, Lafi M.; Alatawi, Abdullah A.; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    The performance and efficiency of AlGaN ultraviolet light-emitting diodes have been limited by the extremely low light-extraction efficiency (LEE) due to the intrinsic material properties of AlGaN. Here, to enhance the LEE of the device, we demonstrate an AlGaN nanowires light-emitting diode (NWs-LED) integrated with nitride/air Distributed Bragg Reflector (DBR) nanogratings. Compared to a control device (only mesa), the AlGaN NWs-LED with the nitride/air DBR nanogratings exhibit enhancement in the light output power and external quantum efficiency (EQE) by a factor of ∼1.67. The higher light output power and EQE are attributed mainly to the multiple reflectances laterally for the transverse magnetic (TM)-polarized light and scattering introduced by the nanogratings. To further understand the LEE enhancement, the electrical field distribution, extraction ratio and polar pattern of the AlGaN NWs-LED with and without the nitride/air DBR nanogratings were analyzed using the finite-difference-time-domain method. It was observed that the TM-field emission was confined and scattered upward whereas the polar pattern was intensified for the AlGaN NWs-LED with the nanogratings. Our approach to enhance the LEE via the nitride/air DBR nanogratings can provide a promising route for increasing the efficiency of AlGaN-based LEDs, also, to functioning as facet mirror for AlGaN-based laser diodes.

  4. Enhancing the Light-Extraction Efficiency of AlGaN Nanowires Ultraviolet Light-Emitting Diode by using Nitride/Air Distributed Bragg Reflector Nanogratings

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    The performance and efficiency of AlGaN ultraviolet light-emitting diodes have been limited by the extremely low light-extraction efficiency (LEE) due to the intrinsic material properties of AlGaN. Here, to enhance the LEE of the device, we demonstrate an AlGaN nanowires light-emitting diode (NWs-LED) integrated with nitride/air Distributed Bragg Reflector (DBR) nanogratings. Compared to a control device (only mesa), the AlGaN NWs-LED with the nitride/air DBR nanogratings exhibit enhancement in the light output power and external quantum efficiency (EQE) by a factor of ∼1.67. The higher light output power and EQE are attributed mainly to the multiple reflectances laterally for the transverse magnetic (TM)-polarized light and scattering introduced by the nanogratings. To further understand the LEE enhancement, the electrical field distribution, extraction ratio and polar pattern of the AlGaN NWs-LED with and without the nitride/air DBR nanogratings were analyzed using the finite-difference-time-domain method. It was observed that the TM-field emission was confined and scattered upward whereas the polar pattern was intensified for the AlGaN NWs-LED with the nanogratings. Our approach to enhance the LEE via the nitride/air DBR nanogratings can provide a promising route for increasing the efficiency of AlGaN-based LEDs, also, to functioning as facet mirror for AlGaN-based laser diodes.

  5. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.

  6. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light.

    Science.gov (United States)

    Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten

    2011-06-01

    A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.

  7. Interferometric characterization of the structured polarized light beam produced by the conical refraction phenomenon.

    Science.gov (United States)

    Peinado, Alba; Turpin, Alex; Iemmi, Claudio; Márquez, Andrés; Kalkandjiev, Todor K; Mompart, Jordi; Campos, Juan

    2015-07-13

    The interest on the conical refraction (CR) phenomenon in biaxial crystals has revived in the last years due to its prospective for generating structured polarized light beams, i.e. vector beams. While the intensity and the polarization structure of the CR beams are well known, an accurate experimental study of their phase structure has not been yet carried out. We investigate the phase structure of the CR rings by means of a Mach-Zehnder interferometer while applying the phase-shifting interferometric technique to measure the phase at the focal plane. In general the two beams interfering correspond to different states of polarization (SOP) which locally vary. To distinguish if there is an additional phase added to the geometrical one we have derived the appropriate theoretical expressions using the Jones matrix formalism. We demonstrate that the phase of the CR rings is equivalent to that one introduced by an azimuthally segmented polarizer with CR-like polarization distribution. Additionally, we obtain direct evidence that the Poggendorff dark ring is an annular singularity, with a π phase change between the inner and outer bright rings.

  8. Robust pattern decoding in shape-coded structured light

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  9. Model of the negative polarization of light of cosmic bodies deprived by atmospheres

    International Nuclear Information System (INIS)

    Shkuratov, Yu.G.

    1982-01-01

    The formulae are obtained describing the polarization of light scattered by planets deprived of atmospheres, for small phase angles (up to 30 deg). It is suggested that the negative polarization is due to a combination of the shadow effect with single and double noncoplanar Fresnel reflections from microfacets of particles. Theoretical calculations are compared with the experimental data obtained by Lio and Dollfus during Moon observation as well as Zellner and others during 324 Bamberga asteroid observation. In the case with the Moon the best agreement with the experiment is obtained when the actual part of the refractive index n=1.60 and for asteroid n=1.78

  10. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NARCIS (Netherlands)

    Turnhout, van M.C.; Kranenbarg, S.; Leeuwen, van J.L.

    2009-01-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and

  11. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  12. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Science.gov (United States)

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  13. Comparing the effects of exercise program and low-level laser therapy with exercise program and polarized polychromatic non-coherent light (bioptron light) on the treatment of lateral elbow tendinopathy.

    Science.gov (United States)

    Stasinopoulos, Dimitrios; Stasinopoulos, Ioannis; Pantelis, Manias; Stasinopoulou, Kalliopi

    2009-06-01

    The use of low-level laser therapy (LLLT) and polarized polychromatic non-coherent light as supplements to an exercise program has been recommended for the management of lateral elbow tendinopathy (LET). To investigate whether an exercise program supplemented with LLLT is more successful than an exercise program supplemented with polarized polychromatic non-coherent light in treating LET. Patients with unilateral LET for at least 4 wk were sequentially allocated to receive either an exercise program with LLLT or an exercise program with polarized polychromatic non-coherent light. The exercise program consisted of eccentric and static stretching exercises of wrist extensors. In the LLLT group a 904-nm Ga-As laser was used in continuous mode, and the power density was 130 mW/cm(2), and the dose was 0.585 J/point. In the group receiving polarized polychromatic non-coherent light the Bioptron 2 was used to administer the dose perpendicularly to the lateral epicondyle at three points at an operating distance of 5-10 cm for 6 min at each position. The outcome measures were pain and function and were evaluated at baseline, at the end of the treatment (week 4), and 3 mo after the end of treatment (week 16). Fifty patients met the inclusion criteria. At the end of treatment there was a decline in pain and a rise in function in both groups compared with baseline (p 0.0005 on the independent t-test). The results suggest that the combination of an exercise program with LLLT or polarized polychromatic non-coherent light is an adequate treatment for patients with LET. Further research to establish the relative and absolute effectiveness of such a treatment approach is needed.

  14. Near-IR Polarized Scattered Light Imagery of the DoAr 28 Transitional Disk

    Science.gov (United States)

    Rich, Evan A.; Wisiniewski, John P.; Mayama, Satoshi; Brandt, Timothy D.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Espaillat, Catherine; Serabyn, Eugene; Grady, Carol A.; hide

    2015-01-01

    We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0 double prime.10 (13 AU) out to 0double prime.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1 double prime.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 solar mass disk that has a partially depleted inner gap from the dust sublimation radius out to approximately 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.

  15. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard

  16. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    Science.gov (United States)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  17. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    International Nuclear Information System (INIS)

    Longhi, E C; Bencok, P; Dobrynin, A; Rial, E C M; Rose, A; Steadman, P; Thompson, C; Thomson, A; Wang, H

    2013-01-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  18. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  19. PolarTrack: Optical Outside-In Device Tracking that Exploits Display Polarization

    DEFF Research Database (Denmark)

    Rädle, Roman; Jetter, Hans-Christian; Fischer, Jonathan

    2018-01-01

    PolarTrack is a novel camera-based approach to detecting and tracking mobile devices inside the capture volume. In PolarTrack, a polarization filter continuously rotates in front of an off-the-shelf color camera, which causes the displays of observed devices to periodically blink in the camera feed....... The periodic blinking results from the physical characteristics of current displays, which shine polarized light either through an LC overlay to produce images or through a polarizer to reduce light reflections on OLED displays. PolarTrack runs a simple detection algorithm on the camera feed to segment...... displays and track their locations and orientations, which makes PolarTrack particularly suitable as a tracking system for cross-device interaction with mobile devices. Our evaluation of PolarTrack's tracking quality and comparison with state-of-the-art camera-based multi-device tracking showed a better...

  20. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  1. Optically Polarized Conduction-Band Electrons in Tungsten Observed by Spin-Polarized Photoemission

    DEFF Research Database (Denmark)

    Zürcher, P.; Meier, F.; Christensen, N. E.

    1979-01-01

    Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV......Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV...

  2. Low-frequency (0.7-7.4 mHz geomagnetic field fluctuations at high latitude: frequency dependence of the polarization pattern

    Directory of Open Access Journals (Sweden)

    L. Cafarella

    2001-06-01

    Full Text Available A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 mHz covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0°S geomagnetic latitude throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  3. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  4. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  5. Spectral properties of polarized light from semipolar grown InGaN quantum wells at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schade, L.; Schwarz, U.T. [Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Wernicke, T.; Ploch, S. [Institute of Solid State Physics, TU Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, TU Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany)

    2012-03-15

    The polarization dependent photoluminescence at low temperatures of strained semipolar and nonpolar InGaN quantum wells was studied as a function of the emission wavelength. We found for semipolar QWs that the maximum of the spectral resolved optical polarization is either red- or blue-shifted with respect to the maximum of the emission. In contrast, the nonpolar emission exhibits no clear maximum. We assign all effects to an inhomogeneous broadening of the emission caused by indium fluctuations and explain this behavior here in the light of the optical polarization switching. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  7. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    International Nuclear Information System (INIS)

    Bjoern Petersen, Steffen; Kold di Gennaro, Ane; Neves-Petersen, Maria Teresa; Skovsen, Esben; Parracino, Antonietta

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 μm) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

  8. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  9. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis

    NARCIS (Netherlands)

    Tejos, R.; Sauer, M.; Vanneste, S.; Palacios-Gomez, M.; Li, H.; Heilmann, M.; van Wijk, R.; Vermeer, J.E.M.; Heilmann, I.; Munnik, T.; Friml, J.

    2014-01-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the

  10. Collisional redistribution of circularly polarized light in barium perturbed by argon

    International Nuclear Information System (INIS)

    Alford, W.J.; Andersen, N.; Belsley, M.; Cooper, J.; Warrington, D.M.; Burnett, K.

    1984-01-01

    We have measured the orientation of the Ba 6p 1 P level produced by collision-induced excitation from the ground state by circularly polarized light. The detuning dependence of the far-wing excited state orientation can be interpreted in terms of reorientation of molecular orbitals which occur during the collision. Effects due to rotational coupling are seen to occure at large blue wing detunings. We have also determined the collisional rate for destruction of orientation by measuring the pressure dependence of the excited state orientation. (orig.)

  11. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sen; Zhang, Yan, E-mail: yzhang@mail.cnu.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Wang, Xinke [Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Kan, Qiang [State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Qu, Shiliang [Optoelectronics Department, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysis of chiral molecules in biology.

  12. Near-infrared light-responsive dynamic wrinkle patterns.

    Science.gov (United States)

    Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong

    2018-04-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.

  13. Electron and ion angular distributions in resonant dissociative photoionization of H{sub 2} and D{sub 2} using linearly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge; MartIn, Fernando [Departamento de Quimica C-9, Universidad Autonoma de Madrid, 28049 Madrid (Spain)], E-mail: fernando.martin@uam.es

    2009-04-15

    We have evaluated fully differential electron angular distributions in H{sub 2} and D{sub 2} dissociative photoionization by using linearly polarized light of 20, 27 and 33 eV. At 20 eV, the distributions exhibit simple p-wave patterns, which is the signature of direct ionization through the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) channel. At 27 eV, where the Q{sub 1} autoionizing states are populated, we observe a similar pattern, except when the molecule is oriented perpendicularly to the polarization direction and the energy of the ejected electron is small. In contrast, at 33 eV, autoionization from the Q{sub 1} and Q{sub 2} states leads to interferences between the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) and {sup 2}{sigma}{sub u}{sup +}(2p{sigma}{sub u}) ionization channels that result in a strong asymmetry of the electron angular distributions along the molecular axis. This asymmetry changes rapidly with the energy of the ejected electron. Electron angular distributions integrated over all possible molecular orientations or ion angular distributions integrated over electron emission angle show no reminiscence of the above phenomena, but the corresponding asymmetry parameters dramatically change with electron and ion energies in the region of autoionizing states.

  14. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  15. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    International Nuclear Information System (INIS)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T.; Iwai, K.; Katoh, Y.; Masuda, S.

    2017-01-01

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  16. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.; Obara, T. [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Iwai, K. [National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Katoh, Y. [Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Masuda, S., E-mail: k.kaneda@pparc.gp.tohoku.ac.jp [Institute for Space—Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2017-06-10

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

  17. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  18. Simulation of AZ-PN100 resist pattern fluctuation in X-ray lithography, including synchrotron beam polarization

    International Nuclear Information System (INIS)

    Scheckler, E.W.; Ogawa, Taro; Tanaka, Toshihiko; Takeda, Eiji; Oizumi, Hiroaki.

    1993-01-01

    A new simulation model for nanometer-scale pattern fluctuation in X-ray lithography is presented and applied to a study of AZ-PN100 negative chemical amplification resist. The exposure simulation considers polarized photons from a synchrotron radiation (SR) source. Monte Carlo simulation of Auger and photoelectron generation is followed by electron scattering simulation to determine the deposited energy distribution at the nanometer scale, including beam polarization effects. An acid-catalyst random walk model simulates the post-exposure bake (PEB) step. Fourier transform infrared (FTIR) spectroscopy and developed resist thickness measurements are used to fit PEB and rate models for AZ-PN100. A polymer removal model for development simulation predicts the macroscopic resist shape and pattern roughness. The simulated 3σ linewidth variation is in excess of 24 nm. Simulation also shows a detrimental effect if the beam polarization is perpendicular to the line. Simulation assuming a theoretical ideal exposure yields a 50 nm minimum line for standard process conditions. (author)

  19. Imaging and modeling of collagen architecture in living tissue with polarized light transfer (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang

    2016-03-01

    The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.

  20. Optical properties of polarization-dependent geometrical phase elements with partially polarized light

    International Nuclear Information System (INIS)

    Gorodetski, Y.; Biener, G.; Niv, A.; Kleiner, V.; Hasman, E.

    2005-01-01

    Full Text:The behavior of geometrical phase elements illuminated with partially polarized monochromatic beams is being theoretically as well as experimentally investigated. The element discussed in this paper is composed of wave plates with retardation and space-variant orientation angle. We found that a beam emerging from such an element comprises two polarization orders of right and left-handed circularly polarized states with conjugate geometrical phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the element. Apart from the two polarization orders, the emerging beam coherence polarization matrix comprises a matrix termed as the vectorial interference matrix. This matrix contains the information concerning the correlation between the two orthogonal circularly polarized portions of the incident beam. In this paper we measure this correlation by a simple interference experiment. Furthermore, we found that the equivalent mutual intensity of the emerging beam is being modulated according to the geometrical phase induced by the element. Other interesting phenomena along propagation will be discussed theoretically and experimentally demonstrated. We demonstrate experimentally our analysis by using a spherical geometrical phase element, which is realized by use of space-variant sub wavelength grating and illuminated with a CO 2 laser radiation of 10.6μm wavelength

  1. Radiochromic film and polarization effects

    International Nuclear Information System (INIS)

    Yu, P.K.N.; Cheung, T.; Butson, M.J.; Cancer Services, Wollongong, NSW; Inwood, D.

    2004-01-01

    Full text: A new high sensitivity radiochromic film has been tested for its polarization properties. Gafchromic HS film has been shown to produce a relatively small (less than 3%) variation in measured optical density measured at 660nm wavelength when the light source is fully linear polarized and the film is rotated through 360 deg angle. Similar variations are seen when the detector is linearly polarized. If both light source and detector is linearly polarised variations in measured optical density can reach 15% when the film is rotated through 360 deg angle. This seems to be due to a phase shift in polarised light caused by the radiochromic film resulting in the polarised light source becoming out of phase with the polarised detector. Gafchromic HS radiochromic film produces a minimal polarization response with varying angle of rotation however we recommend that a polarization test be performed on a densitometry system to establish the extent of its polarization properties before accuracy dosimetry is performed with radiochromic HS film. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  2. Characterization of the cell polarity gene crumbs during the early development and maintenance of the squid-vibrio light organ symbiosis.

    Science.gov (United States)

    Peyer, Suzanne M; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret J

    2017-11-01

    The protein Crumbs is a determinant of apical-basal cell polarity and plays a role in apoptosis of epithelial cells and their protection against photodamage. Using the squid-vibrio system, a model for development of symbiotic partnerships, we examined the modulation of the crumbs gene in host epithelial tissues during initiation and maintenance of the association. The extracellular luminous symbiont Vibrio fischeri colonizes the apical surfaces of polarized epithelia in deep crypts of the Euprymna scolopes light organ. During initial colonization each generation, symbiont harvesting is potentiated by the biochemical and biophysical activity of superficial ciliated epithelia, which are several cell layers from the crypt epithelia where the symbionts reside. Within hours of crypt colonization, the symbionts induce the cell death mediated regression of the remote superficial ciliated fields. However, the crypt cells directly interacting with the symbiont are protected from death. In the squid host, we characterized the gene and encoded protein during light organ morphogenesis and in response to symbiosis. Features of the protein sequence and structure, phylogenetic relationships, and localization patterns in the eye supported assignment of the squid protein to the Crumbs family. In situ hybridization revealed that the crumbs transcript shows opposite expression at the onset of symbiosis in the two different regions of the light organ: elevated levels in the superficial epithelia were attenuated whereas low levels in the crypt epithelia were turned up. Although a rhythmic association in which the host controls the symbiont population over the day-night cycle begins in the juvenile upon colonization, cycling of crumbs was evident only in the adult organ with peak expression coincident with maximum symbiont population and luminescence. Our results provide evidence that crumbs responds to symbiont cues that induce developmental apoptosis and to symbiont population

  3. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors

    International Nuclear Information System (INIS)

    Craig, E M; Dey, S; Mogilner, A

    2011-01-01

    We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.

  4. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  5. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    NARCIS (Netherlands)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were

  6. Comparison of two superconducting elliptical undulators for generating circularly polarized light

    Directory of Open Access Journals (Sweden)

    C. S. Hwang

    2004-09-01

    Full Text Available The potential use of two planar superconducting elliptical undulators—a vertically wound racetrack coil structure and a staggered array structure—to generate a circularly polarized hard x-ray source was investigated. The magnetic poles and wires of the up and down magnet arrays were rotated in alternating directions on the horizontal plane, an elliptical field is generated to provide circularly polarized light in the electron-storage ring and the energy-recovery linac accelerator. Rapid switching between right- and left-circularly polarized radiations is performed using two undulators with oppositely rotated wires and poles. Given a periodic length of 15 mm and a gap of 5 mm, the magnetic-flux densities in the elliptical undulator are B_{z}=1.2   T (B_{x}=0.6   T and B_{z}=0.35   T (B_{x}=0.15   T in the planar vertically wound racetrack coil and the staggered structure with poles rotated by 35° and 25°, respectively. In maximizing the merit of the flux and the width of the effective field region in the two superconducting elliptical undulators, the trade-off rotation angles of the coils and poles are 20° and 5°, for vertically wound racetrack coil and staggered undulators, respectively.

  7. Study of Jupiter polarization properties

    International Nuclear Information System (INIS)

    Bolkvadze, O.R.

    1980-01-01

    Investigations into polarization properties of the Jupiter reflected light were carried on at the Abastumani astrophysical observatory in 1967, 1968 and 1969 in the four spectral ranges: 4000, 4800, 5400 and 6600 A deg. Data on light polarization in different parts of the Jupiter visible disk are given. Curves of dependence of the planet light polarization degree on a phase angle are plotted. It is shown that in the central part of the visible planet disk the polarization degree is low. Atmosphere is in a stable state in this part of Jupiter. Mean radius of particles of a cloud layer is equal to 0.26μ, and optical thickness of overcloud atmosphere tau=0.05. Height of transition boundary of the cloud layer into overcloud gas atmosphere changes from year to year at the edges of the equatorial zone. Optical thickness of overcloud atmosphere changes also with changing height of a transient layer. The polar Jupiter regions possess a high degree of polarization which depends on a latitude. Polarization increases monotonously with the latitude and over polar regions accepts a maximum value [ru

  8. Low crosstalk waveguide intersections in honeycomb lattice photonic crystals for TM-polarized light

    International Nuclear Information System (INIS)

    Ma, P; Jäckel, H

    2011-01-01

    We present the design of a low crosstalk, high throughput waveguide intersection for transverse-magnetic-polarized light. The design is based on two orthogonal photonic crystal waveguides and a resonant photonic crystal cavity in honeycomb lattice geometry. The results of our numerical simulation validate the concept of the design and demonstrate a crosstalk smaller than 0.1% and throughput transmission of more than 80% for both orthogonal waveguide branches

  9. Quantitative analysis with advanced compensated polarized light microscopy on wavelength dependence of linear birefringence of single crystals causing arthritis

    Science.gov (United States)

    Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru

    2014-07-01

    To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.

  10. A Bionic Polarization Navigation Sensor and Its Calibration Method.

    Science.gov (United States)

    Zhao, Huijie; Xu, Wujian

    2016-08-03

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation.

  11. Prefabricated light-polymerizing plastic pattern for partial denture framework

    Directory of Open Access Journals (Sweden)

    Atsushi Takaichi

    2011-01-01

    Full Text Available Our aim is to report an application of a prefabricated light-polymerizing plastic pattern to construction of removable partial denture framework without the use of a refractory cast. A plastic pattern for the lingual bar was adapted on the master cast of a mandibular Kennedy class I partially edentulous patient. The pattern was polymerized in a light chamber. Cobalt-chromium wires were employed to minimize the potential distortion of the plastic framework. The framework was carefully removed from the master cast and invested with phosphate-bonded investment for the subsequent casting procedures. A retentive clasp was constructed using 19-gauge wrought wire and was welded to the framework by means of laser welding machine. An excellent fit of the framework in the patient′s mouth was observed in the try-in and the insertion of the denture. The result suggests that this method minimizes laboratory cost and time for partial denture construction.

  12. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  13. Tilted dipole model for bias-dependent photoluminescence pattern

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, Ichiro, E-mail: fujieda@se.ritsumei.ac.jp; Suzuki, Daisuke; Masuda, Taishi [Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu 525-8577 (Japan)

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  14. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    International Nuclear Information System (INIS)

    Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-01-01

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED

  15. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun [Department of Applied Physics, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nan Tzu Dist., 811 Kaohsiung, Taiwan (China); Leung, Benjamin; Han, Jung [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Yang, Fann-Wei [Department of Electronic Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Wang, Hsiang-Chen [Graduate Institute of Opto-Mechatronics and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chia-Yi, Taiwan (China)

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  16. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  17. [Polarized light microscopy for evaluation of oocytes as a prognostic factor in the evolution of a cycle in assisted reproduction].

    Science.gov (United States)

    González-Ortega, C; Cancino-Villarreal, P; Alonzo-Torres, V E; Martínez-Robles, I; Pérez-Peña, E; Gutiérrez-Gutiérrez, A M

    2016-04-01

    Identification of the best embryos to transfer is a key element for success in assisted reproduction. In the last decade, several morphological criteria of oocytes and embryos were evaluated with regard to their potential for predicting embryo viability. The introduction of polarization light microscopy systems has allowed the visualization of the meiotic spindle and the different layers of the zona pellucida in human oocytes on the basis of birefringence in a non-destructive way. Conflicting results have been reported regarding the predictive value in ICSI cycles. To assess the predictive ability of meiotic spindle and zona pellucida of human oocytes to implant by polarized microscopy in ICSI cycles. Prospective and observational clinical study. 903 oocytes from 94 ICSI cycles were analyzed with polarized microscopy. Meiotic spindle visualization and zona pellucida birefringence values by polarized microscopy were correlated with ICSI cycles results. Meiotic spindle visualization and birefringence values of zona pellucida decreased in a direct basis with increasing age. In patients aged over the 35 years, the percentage of a visible spindle and mean zona pellucida birefringence was lower than in younger patients. Fertilization rate were higher in oocytes with visible meiotic spindle (81.3% vs. 64%; p vs. 39%; p=0.01). Fertilization rate was higher in oocytes with positive values of birefringence (77.5 % vs. 68.5% p=0.005) with similar embryo quality. Conception cycles showed oocytes with higher mean value of zona birefringence and visible spindle vs. no-conception cycles (pPolarized light microscopy improves oocyte selection, which significantly impacts in the development of embryos with greater implantation potential. The use of polarized light microscopy with sperm selection methods, blastocyst culture and deferred embryo transfers will contribute to transfer fewer embryos without diminishing rates of live birth and single embryo transfer will be more feasible.

  18. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  19. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in [Nanobioimaging Laboratory, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-06-15

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  20. PolarHub: A Global Hub for Polar Data Discovery

    Science.gov (United States)

    Li, W.

    2014-12-01

    This paper reports the outcome of a NSF project in developing a large-scale web crawler PolarHub to discover automatically the distributed polar dataset in the format of OGC web services (OWS) in the cyberspace. PolarHub is a machine robot; its goal is to visit as many webpages as possible to find those containing information about polar OWS, extract this information and store it into the backend data repository. This is a very challenging task given huge data volume of webpages on the Web. Three unique features was introduced in PolarHub to make it distinctive from earlier crawler solutions: (1) a multi-task, multi-user, multi-thread support to the crawling tasks; (2) an extensive use of thread pool and Data Access Object (DAO) design patterns to separate persistent data storage and business logic to achieve high extendibility of the crawler tool; (3) a pattern-matching based customizable crawling algorithm to support discovery of multi-type geospatial web services; and (4) a universal and portable client-server communication mechanism combining a server-push and client pull strategies for enhanced asynchronous processing. A series of experiments were conducted to identify the impact of crawling parameters to the overall system performance. The geographical distribution pattern of all PolarHub identified services is also demonstrated. We expect this work to make a major contribution to the field of geospatial information retrieval and geospatial interoperability, to bridge the gap between data provider and data consumer, and to accelerate polar science by enhancing the accessibility and reusability of adequate polar data.

  1. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  2. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2012-03-01

    Full Text Available Silicon-based large-scale photonic integrated circuits are becoming important, due to the need for higher complexity and lower cost for optical transmitters, receivers and optical buffers. In this paper, passive technologies for large-scale photonic integrated circuits are described, including polarization handling, light non-reciprocity and loss reduction. The design rule for polarization beam splitters based on asymmetrical directional couplers is summarized and several novel designs for ultra-short polarization beam splitters are reviewed. A novel concept for realizing a polarization splitter–rotator is presented with a very simple fabrication process. Realization of silicon-based light non-reciprocity devices (e.g., optical isolator, which is very important for transmitters to avoid sensitivity to reflections, is also demonstrated with the help of magneto-optical material by the bonding technology. Low-loss waveguides are another important technology for large-scale photonic integrated circuits. Ultra-low loss optical waveguides are achieved by designing a Si3N4 core with a very high aspect ratio. The loss is reduced further to <0.1 dB m−1 with an improved fabrication process incorporating a high-quality thermal oxide upper cladding by means of wafer bonding. With the developed ultra-low loss Si3N4 optical waveguides, some devices are also demonstrated, including ultra-high-Q ring resonators, low-loss arrayed-waveguide grating (demultiplexers, and high-extinction-ratio polarizers.

  3. Dietary composition and spatial patterns of polar bear foraging on land in western Hudson Bay.

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2013-12-21

    Flexible foraging strategies, such as prey switching, omnivory and food mixing, are key to surviving in a labile and changing environment. Polar bears (Ursus maritimus) in western Hudson Bay are versatile predators that use all of these strategies as they seasonally exploit resources across trophic levels. Climate warming is reducing availability of their ice habitat, especially in spring when polar bears gain most of their annual fat reserves by consuming seal pups before coming ashore in summer. How polar bears combine these flexible foraging strategies to obtain and utilize terrestrial food will become increasingly important in compensating for energy deficits from lost seal hunting opportunities. We evaluated patterns in the composition of foods in scat to characterize the foraging behaviors that underpin the diet mixing and omnivory observed in polar bears on land in western Hudson Bay. Specifically, we measured diet richness, proportions of plant and animal foods, patterns in co-occurrence of foods, spatial composition and an index of temporal composition. Scats contained between 1 and 6 foods, with an average of 2.11 (SE = 0.04). Most scats (84.9%) contained at least one type of plant, but animals (35.4% of scats) and both plants and animals occurring together (34.4% of scats) were also common. Certain foods, such as Lyme grass seed heads (Leymus arenarius), berries and marine algae, were consumed in relatively higher proportions, sometimes to the exclusion of others, both where and when they occurred most abundantly. The predominance of localized vegetation in scats suggests little movement among habitat types between feeding sessions. Unlike the case for plants, no spatial patterns were found for animal remains, likely due the animals' more vagile and ubiquitous distribution. Our results suggest that polar bears are foraging opportunistically in a manner consistent with maximizing intake while minimizing energy expenditure associated with movement. The

  4. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    Science.gov (United States)

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. STUDY OF THE EFFECT OF ENDFACES POLISHING ANGLE FOR ANISOTROPIC WAVEGUIDES ON STATE CONVERSION OF LIGHT POLARIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Shulepov

    2016-05-01

    Full Text Available The paper deals with optical scheme for research of polarization state transformation at the junction of anisotropic waveguides. It consists of a light source, polarization controller, multifunctional integrated optical scheme (MIOS, single-mode fiber for input and output of optical radiation in MIOS and the polarization scanning Michelson interferometer. Optical radiation from the source of the plant comes through the polarization controller in one of the MIOS ports. Further, in one of the opposite ports the radiation is received by different fibers, polished at the angles of 19.5˚, 10.5˚ and 0˚. After that, the optical radiation gets into polarization Michelson interferometer. With that, the picture visibility is analyzed at different displacement of one arm upon which the value has been determined in the polarization conversion point connections. At the course of work it was obtained that the polarization state conversion at a splicing point rises with the slant angle deviation from its optimal value. Anisotropic waveguides splicing is one of the main tasks during fabrication of any fiber-optic sensor with integrated optical elements. The results of this work are of great interest for the wide range of specialists in the optical waveguides application field.

  6. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    International Nuclear Information System (INIS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-01-01

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  7. Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths....... Is is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realise imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical...

  8. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  9. A Si nanocube array polarizer

    Science.gov (United States)

    Chen, Linghua; Jiang, Yingjie; Xing, Li; Yao, Jun

    2017-10-01

    We have proposed a full dielectric (silicon) nanocube array polarizer based on a silicon dioxide substrate. Each polarization unit column includes a plurality of equal spaced polarization units. By optimizing the length, the width, the height of the polarization units and the center distance of adjacent polarization unit (x direction and y direction), an extinction ratio (ER) of higher than 25dB was obtained theoretically when the incident light wavelength is 1550nm. while for applications of most polarization optical elements, ER above 10dB is enough. With this condition, the polarizer we designed can work in a wide wavelength range from 1509.31nm to 1611.51nm. Compared with the previous polarizer, we have introduced a polarizer which is a full dielectric device, which solves the problems of low efficiency caused by Ohmic loss and weak coupling. Furthermore, compared with the existing optical polarizers, our polarizer has the advantages of thin thickness, small size, light weight, and low processing difficulty, which is in line with the future development trend of optical elements.

  10. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    Science.gov (United States)

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  11. Characteristics of InGaN-Based Light-Emitting Diodes on Patterned Sapphire Substrates with Various Pattern Heights

    Directory of Open Access Journals (Sweden)

    Sheng-Fu Yu

    2012-01-01

    Full Text Available The optical and electrical characteristics of InGaN-based blue light-emitting diodes (LEDs grown on patterned sapphire substrates (PSSs with different pattern heights and on planar sapphire by atmospheric-pressure metal-organic chemical vapor deposition were investigated. Compared with planar sapphire, it was found that the LED electroluminescence intensity is significantly enhanced on PSSs with pattern heights of 0.5 (21%, 1.1 (57%, 1.5 (81%, and 1.9 (91% μm at an injected current of 20 mA. The increased light intensity exhibits the same trend in a TracePro simulation. In addition, it was also found that the level of leakage current depends on the density of V-shape defects, which were measured by scanning electron microscopy.

  12. Ocular aberrations with ray tracing and Shack-Hartmann wave-front sensors: Does polarization play a role?

    Science.gov (United States)

    Marcos, Susana; Diaz-Santana, Luis; Llorente, Lourdes; Dainty, Chris

    2002-06-01

    Ocular aberrations were measured in 71 eyes by using two reflectometric aberrometers, employing laser ray tracing (LRT) (60 eyes) and a Shack-Hartmann wave-front sensor (S-H) (11 eyes). In both techniques a point source is imaged on the retina (through different pupil positions in the LRT or a single position in the S-H). The aberrations are estimated by measuring the deviations of the retinal spot from the reference as the pupil is sampled (in LRT) or the deviations of a wave front as it emerges from the eye by means of a lenslet array (in the S-H). In this paper we studied the effect of different polarization configurations in the aberration measurements, including linearly polarized light and circularly polarized light in the illuminating channel and sampling light in the crossed or parallel orientations. In addition, completely depolarized light in the imaging channel was obtained from retinal lipofuscin autofluorescence. The intensity distribution of the retinal spots as a function of entry (for LRT) or exit pupil (for S-H) depends on the polarization configuration. These intensity patterns show bright corners and a dark area at the pupil center for crossed polarization, an approximately Gaussian distribution for parallel polarization and a homogeneous distribution for the autofluorescence case. However, the measured aberrations are independent of the polarization states. These results indicate that the differences in retardation across the pupil imposed by corneal birefringence do not produce significant phase delays compared with those produced by aberrations, at least within the accuracy of these techniques. In addition, differences in the recorded aerial images due to changes in polarization do not affect the aberration measurements in these reflectometric aberrometers.

  13. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  14. Single photon detector with high polarization sensitivity.

    Science.gov (United States)

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  15. Generation of Light Scattering States in Cholesteric Liquid Crystals by Optically Controlled Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Timothy J. Bunning

    2013-03-01

    Full Text Available Circularly polarized light was previously employed to stimulate the reversible and reconfigurable writing of scattering states in cholesteric liquid crystal (CLC cells constructed with a photosensitive layer. Such dynamic photodriven responses have utility in remotely triggering changes in optical constructs responsive to optical stimulus and applications where complex spatial patterning is required. Writing of scattering regions required the handedness of incoming radiation to match the handedness of the CLC and the reflection bandwidth of the CLC to envelop the wavelength of the incoming radiation. In this paper, the mechanism of transforming the CLC into a light scattering state via the influence of light on the photosensitive alignment layer is detailed. Specifically, the effects of: (i the polarization state of light on the photosensitive alignment layer; (ii the exposure time; and (iii the incidence angle of radiation on domain formation are reported. The photogenerated light-scattering domains are shown to be similar in appearance between crossed polarizers to a defect structure that occurs at a CLC/air interface (i.e., a free CLC surface. This observation provides strong indication that exposure of the photosensitive alignment layer to the circularly polarized light of appropriate wavelength and handedness generates an out-of-plane orientation leading to a periodic distortion of the original planar structure.

  16. Delineating Spatial Patterns in Human Settlements Using VIIRS Nighttime Light Data: A Watershed-Based Partition Approach

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2018-03-01

    Full Text Available As an informative proxy measure for a range of urbanization and socioeconomic variables, satellite-derived nighttime light data have been widely used to investigate diverse anthropogenic activities in human settlements over time and space from the regional to the national scale. With a higher spatial resolution and fewer over-glow and saturation effects, nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS instrument with day/night band (DNB, which is on the Suomi National Polar-Orbiting Partnership satellite (Suomi-NPP, may further improve our understanding of spatiotemporal dynamics and socioeconomic activities, particularly at the local scale. Capturing and identifying spatial patterns in human settlements from VIIRS images, however, is still challenging due to the lack of spatially explicit texture characteristics, which are usually crucial for general image classification methods. In this study, we propose a watershed-based partition approach by combining a second order exponential decay model for the spatial delineation of human settlements with VIIRS-derived nighttime light images. Our method spatially partitions the human settlement into five different types of sub-regions: high, medium-high, medium, medium-low and low lighting areas with different degrees of human activity. This is primarily based on the local coverage of locally maximum radiance signals (watershed-based and the rank and magnitude of the nocturnal radiance signal across the whole region, as well as remotely sensed building density data and social media-derived human activity information. The comparison results for the relationship between sub-regions with various density nighttime brightness levels and human activities, as well as the densities of different types of interest points (POIs, show that our method can distinctly identify various degrees of human activity based on artificial nighttime radiance and ancillary data. Furthermore

  17. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong Sam Park

    2008-02-01

    Full Text Available This study is to develop a micromachining technology for a light guidepanel(LGP mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.

  18. Improved outcoupling of light in organic light emitting devices, utilizing a holographic DFB-structure

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany)]. E-mail: nils.reinke@physik.uni-augsburg.de; Fuhrmann, Thomas [Macromolecular Chemistry and Molecular Materials, University of Kassel (Germany); Perschke, Alexandra [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany); Franke, Hilmar [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany)

    2004-12-10

    In this work organic light emitting devices (OLEDs) were fabricated implementing gratings, in order to extract waveguided electroluminescence (EL). The gratings were recorded by exposing thin films of the molecular azo glass N, N'-bis (4-phenyl)-N, N'-bis [(4-phenylazo)-phenyl] benzidine (AZOPD) to holographic light patterns. The photopatterned AZOPD serves as hole transport material for devices with aluminum-tris(8-hydroxyquinoline) doped with 1% of 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (Alq{sub 3}:DCM) as emissive/electron transport layer. The corrugated devices showed enhanced emission in the forward direction. The emitted light is polarized preferably parallel to the grating lines. In addition, we have found a doubling in the total luminance with respect to the unstructured device.

  19. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  20. Polarized Uniform Linear Array System: Beam Radiation Pattern, Beamforming Diversity Order, and Channel Capacity

    Directory of Open Access Journals (Sweden)

    Xin Su

    2015-01-01

    Full Text Available There have been many studies regarding antenna polarization; however, there have been few publications on the analysis of the channel capacity for polarized antenna systems using the beamforming technique. According to Chung et al., the channel capacity is determined by the density of scatterers and the transmission power, which is obtained based on the assumption that scatterers are uniformly distributed on a 3D spherical scattering model. However, it contradicts the practical scenario, where scatterers may not be uniformly distributed under outdoor environment, and lacks the consideration of fading channel gain. In this study, we derive the channel capacity of polarized uniform linear array (PULA systems using the beamforming technique in a practical scattering environment. The results show that, for PULA systems, the channel capacity, which is boosted by beamforming diversity, can be determined using the channel gain, beam radiation pattern, and beamforming diversity order (BDO, where the BDO is dependent on the antenna characteristics and array configurations.

  1. Influence of refraction of p-polarized light on photoemission from metallic surface states

    International Nuclear Information System (INIS)

    Bagchi, A.; Barrera, R.G.

    1979-01-01

    The refraction of p-polarized light at a metal surface leads, under certain circumstances, to a large peak in the spatial distribution of the normal component of the electric field near the surface. The origin of this peak is explained both in terms of a classical correspondence and in terms of a theory based on the non-local dielectric response of the metal surface. The significance of the large magnitude and rapid variation of the surface electric field in exciting photoelectrons from surface states is discussed [pt

  2. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    Science.gov (United States)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  3. Diurnal Patterns of Direct Light Extinction in Two Tropical Forest Canopies

    Science.gov (United States)

    Cushman, K.; Silva, C. E.; Kellner, J. R.

    2016-12-01

    The extent to which net ecosystem production is light-limited in Neotropical forests is poorly understood. This is due in part to our limited knowledge of how light moves through complex canopies to different layers of leaves, and the extent to which structural changes in canopies modify the amount of light absorbed by the landscape to drive photosynthesis. Systematic diurnal changes in solar angle, leaf angle, and wind speed suggest that patterns of light attenuation change over the course of the day in tropical forests. In this study, we characterize the extinction of direct light through the canopies of two forests in Panama using high-resolution, three-dimensional measurements from a small footprint, discrete return airborne laser scanner mounted on the gondola of a canopy crane. We hypothesized that light penetrates deeper into canopies during the middle of the day because changes in leaf angle by light-saturated leaves temporarily reduce effective canopy leaf area, and because greater wind speeds increase sunflecks. Also, we hypothesized that rates of light extinction are greater in the wetter forest that receives less direct sunlight because light saturation in upper leaves is less prevalent. We collected laser measurements with resolution of approximately 5,000 points per square meter of ground every 90 minutes over the course of one day each at Parque Natural Metropolitano (1740 mm annual rainfall) and Parque Nacional San Lorenzo (3300 mm annual rainfall) during the dry season in April, 2016. Using a voxel-based approach, we compared the actual versus potential distance traveled by laser beams through each volume of the canopy. We fit an exponential model to quantify the rate of light extinction. We found that rates of light extinction vary spatially, temporally, and by site. These results indicate that variation in forest structure changes patterns of light attenuation through the canopy over multiple scales.

  4. Transfer of polarized light in planetary atmospheres basic concepts and practical methods

    CERN Document Server

    Hovenier, Joop W; Domke, Helmut

    2004-01-01

    The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...

  5. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Brondijk, J.J.; Li, X.; Akkerman, H.B.; Blom, P.W.M.; Boer, B. de [University of Groningen, Molecular Electronics, Zernike Institute for Advanced Materials, Groningen (Netherlands)

    2009-04-15

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only {proportional_to}1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly(p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays. (orig.)

  6. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    Science.gov (United States)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    2009-04-01

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.

  7. Patterns of Storage, Synthesis and Changing Light Levels Revealed by Carbon Isotope Microsampling within Eocene Metasequoia Tree Rings

    Science.gov (United States)

    Jahren, H.; Sternberg, L.

    2005-12-01

    Fossil tree rings from Axel Heiberg Island were microanalyzed for δ13C value in order to assess patterns of tree growth and carbon storage within the Middle Eocene (~45 Ma) Arctic paleoenvironment. Wood from four Metasequoia-type individuals was subsampled for analysis: each individual fossil consisted of between 4 and 10 large (~1 cm thick) consecutive tree rings. One of the fossils displayed an obvious concentric pattern, allowing for the determination of the direction of growth with isotopic pattern. Each ring was divided into ~1 mm thick subsamples, resulting in 5-10 δ13C value determinations per period of ring growth (i.e., growing season). All rings revealed a distinct pattern that was characteristic across growing seasons and across individual fossils. Early in the season, δ13C was at its highest value but descended systematically and sharply to its lowest value at the end of the growing season. Total decrease ranged between 3 and 5 ‰ over the course of each growing season. Identical patterns were observed in the δ13C value of alpha-cellulose isolated from each subsample, indicating that the trends observed did not represent changing levels of secondary metabolites, but rather a seasonal adjustment in the bulk source of carbon used during biosynthesis. Our results are consistent with the following annual pattern of wood synthesis 1.) complete dependence on the mobilization of stored carbon compounds early in the growing season; 2.) systematically increasing use of actively-acquired photosynthate during the growing season; 3.) complete reliance on active photosynthate by the end of the growing season. An additional and significant source of 13C discrimination is declining light levels late in the growing season, and likely contributes to the extreme pattern of δ13C decrease seen across each ring. Our results mimic those seen from modern broadleaf deciduous trees (Helle & Schlesser 2004), but differ from those seen in modern conifers (Barbour et al 2002

  8. Visualization of polarization state and its application in optics classroom teaching

    Science.gov (United States)

    Lei, Bing; Liu, Wei; Shi, Jianhua; Wang, Wei; Yao, Tianfu; Liu, Shugang

    2017-08-01

    Polarization of light and the related knowledge are key and difficult points in optical teaching, and they are difficult to be understood since they are very abstract concepts. To help students understand the polarization properties of light, some classroom demonstration experiments have been constructed by employing the optical source, polarizers, wave plates optical cage system and polarization axis finder (PAF). The PAF is a polarization indicating device with many linear polarizing components concentric circles, which can visualize the polarization axis's direction of linearly polarized light intuitively. With the help of these demonstration experiment systems, the conversion and difference between the linear polarized light and circularly polarized light have been observed directly by inserting or removing a quarter-wave plate. The rotation phenomenon of linearly polarized light's polarization axis when it propagates through an optical active medium has been observed and studied in experiment, and the strain distribution of some mounted and unmounted lenses have also been demonstrated and observed in experiment conveniently. Furthermore, some typical polarization targets, such as liquid crystal display (LCD), polarized dark glass and skylight, have been observed based on PAF, which is quite suitable to help students understand these targets' polarization properties and the related physical laws. Finally, these demonstration experimental systems have been employed in classroom teaching of our university in physical optics, optoelectronics and photoelectric detection courses, and they are very popular with teachers and students.

  9. Ellipsometry with randomly varying polarization states

    NARCIS (Netherlands)

    Liu, F.; Lee, C. J.; Chen, J. Q.; E. Louis,; van der Slot, P. J. M.; Boller, K. J.; F. Bijkerk,

    2012-01-01

    We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincar

  10. Early Birds by Light at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits

    NARCIS (Netherlands)

    de Jong, Maaike; Caro, Samuel P.; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E.

    2017-01-01

    Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits (Cyanistes caeruleus) exposed to similar intensities of

  11. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Gennaro, Ane Kold Di; Neves Petersen, Teresa

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demons......, with a fine structured interference pattern superimposed. (C) 2010 Optical Society of America...

  12. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  13. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    Science.gov (United States)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  14. Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light

    International Nuclear Information System (INIS)

    Pawar, Rajendra C.; Choi, Da-Hyun; Lee, Jai-Sung; Lee, Caroline S.

    2015-01-01

    We report the synthesis of copper-doped zinc oxide microstructures with a large amount of polar surfaces using a single-step facile chemical method by collecting powders of zinc oxide (ZnO) microstructures. It was found that rod-like morphology of ZnO transformed into disk and sphere-like structure with nanosheets. Hollow disk-like structures were formed due to the surface etching properties of Cl − ions in the copper chloride precursor. The photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) dyes was measured under irradiation with visible light using the structures as catalysts. The Cu-doped ZnO exhibited better photodegradation properties than did undoped ZnO. The enhanced performance is attributed to the existence of (001) polar surfaces, oxygen vacancies, and increased optical absorbance at visible wavelengths, which is consistent with the field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), room temperature photoluminescence (PL), and optical absorbance measurements. These favorable photocatalytic properties of the doped microstructures demonstrate their potential for use in wastewater treatment. - Graphical abstract: Graphical abstract shows the electron transfer mechanism under visible light for Cu-doped ZnO microstructures and the photocatalytic degradation of dye. - Highlights: • Cu induced microstructures of ZnO with polar surfaces. • Methylene blue degradation under visible light irradiation. • Room temperature ferromagnetism due to oxygen vacancies in ZnO. • 7% Cu–ZnO has highest photocatalytic activity

  15. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    Science.gov (United States)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  16. Identification of crystals in Hanford nuclear waste using polarized light microscopy

    International Nuclear Information System (INIS)

    Herting, D.L.

    1984-09-01

    The use of polarized light microscopy for identifying crystals encountered in Rockwell Hanford Operations chemical studies is described. Identifying characteristics and full-color photographs are presented for crystals commonly found in Hanford Site nuclear waste, including sodium nitrate, sodium nitrite, sodium aluminate, sodium phosphate, sodium fluoride, ammonium heptafluorozirconate, sodium sulfate, sodium carbonate, and ammonium nitrate. These characteristics are described in terms of birefringence, extinction position, interference figure, sign of elongation, optic sign, and crystal morphology. Background information on crystal optics is presented so that these traits can be understood by the nonmicroscopist. Detailed operational instructions are given so that the novice microscope user can make the proper adjustments of the instrument to search for and observe the identifying features of the crystals

  17. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  18. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    topics including growth and heteroepitaxy, bulk GaN substrates, theory and modelling, optical properties, laser diodes and LEDs as well as transport properties and electronics. Farrell et al review materials and growth issues for high-performance non- and semipolar light-emitting devices, and Scholz provides an overview of heteroepitaxial growth of semipolar GaN. Okada et al review growth mechanisms of non- and semipolar GaN layers on patterned sapphire substrates, and Vennéguès discusses defect reduction methods for heteroepitaxially grown non- and semipolar III-nitride films. Leung et al explain how kinetic Wulff plots can be used to design and control non-polar and semipolar GaN heteroepitaxy, and a contribution by Sawaki et al explores the impurity incorporation in (1-101) GaN grown on Si substrates. In the area of bulk crystal growth Kucharski et al review non- and semipolar GaN substrates by ammonothermal growth, and Chichibu et al discuss the challenges for epitaxial growth of InGaN on free-standing m-plane GaN substrates. Calculation of semipolar orientations for wurtzitic semiconductor heterostructures and their application to nitrides and oxides are reviewed by Bigenwald et al, and Ito et al present an ab initio approach to reconstruction, adsorption, and incorporation on GaN surfaces. Finally, the theoretical description of non-polar and semipolar nitride semiconductor quantum-well structures is presented by Ahn et al. In a discussion of the optical properties, Kisin et al discuss the effect of the quantum well population on the optical characteristics of polar, semipolar and non-polar III-nitride light emitters, and Jönen et al investigate the indium incorporation and optical properties of non- and semipolar GaInN QW structures. Wernicke et al explore the emission wavelength of polar, non-polar, and semipolar InGaN quantum wells and the incorporation of indium. In a contribution by Melo et al, the gain in polar and non-polar/semipolar gallium

  19. Optics. Observation of optical polarization Möbius strips.

    Science.gov (United States)

    Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W; Leuchs, Gerd

    2015-02-27

    Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"—or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication. Copyright © 2015, American Association for the Advancement of Science.

  20. Light-Directed Particle Patterning by Evaporative Optical Marangoni Assembly.

    Science.gov (United States)

    Varanakkottu, Subramanyan Namboodiri; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien

    2016-01-13

    Controlled particle deposition on surfaces is crucial for both exploiting collective properties of particles and their integration into devices. Most available methods depend on intrinsic properties of either the substrate or the particles to be deposited making them difficult to apply to complex, naturally occurring or industrial formulations. Here we describe a new strategy to pattern particles from an evaporating drop, regardless of inherent particle characteristics and suspension composition. We use light to generate Marangoni surface stresses resulting in flow patterns that accumulate particles at predefined positions. Using projected images, we generate a broad variety of complex patterns, including multiple spots, lines and letters. Strikingly, this method, which we call evaporative optical Marangoni assembly (eOMA), allows us to pattern particles regardless of their size or surface properties, in model suspensions as well as in complex, real-world formulations such as commercial coffee.

  1. Brewster-angle 50%-50% beam splitter for p-polarized infrared light using a high-index quarter-wave layer deposited on a low-index prism.

    Science.gov (United States)

    Azzam, R M A

    2017-08-10

    A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.

  2. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    Science.gov (United States)

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  3. The HIP 79977 debris disk in polarized light

    Science.gov (United States)

    Engler, N.; Schmid, H. M.; Thalmann, Ch.; Boccaletti, A.; Bazzon, A.; Baruffolo, A.; Beuzit, J. L.; Claudi, R.; Costille, A.; Desidera, S.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Ginski, C.; Gisler, D.; Girard, J. H.; Gratton, R.; Henning, T.; Hubin, N.; Janson, M.; Kasper, M.; Kral, Q.; Langlois, M.; Lagadec, E.; Ménard, F.; Meyer, M. R.; Milli, J.; Mouillet, D.; Olofsson, J.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S. P.; Roelfsema, R.; Salasnich, B.; Siebenmorgen, R.; Sissa, E.; Suarez, M.; Szulagyi, J.; Turatto, M.; Udry, S.; Wildi, F.

    2017-11-01

    Context. Debris disks are observed around 10 to 20% of FGK main-sequence stars as infrared excess emission. They are important signposts for the presence of colliding planetesimals and therefore provide important information about the evolution of planetary systems. Direct imaging of such disks reveals their geometric structure and constrains their dust-particle properties. Aims: We present observations of the known edge-on debris disk around HIP 79977 (HD 146897) taken with the ZIMPOL differential polarimeter of the SPHERE instrument. We measure the observed polarization signal and investigate the diagnostic potential of such data with model simulations. Methods: SPHERE-ZIMPOL polarimetric data of the 15 Myr-old F star HIP 79977 (Upper Sco, 123 pc) were taken in the Very Broad Band (VBB) filter (λc = 735 nm, Δλ = 290 nm) with a spatial resolution of about 25 mas. Imaging polarimetry efficiently suppresses the residual speckle noise from the AO system and provides a differential signal with relatively small systematic measuring uncertainties. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0.2'' (25 AU) and 1.6'' (200 AU). We perform model calculations for the polarized flux of an optically thin debris disk which are used to determine or constrain the disk parameters of HIP 79977. Results: We measure a polarized flux contrast ratio for the disk of (Fpol)disk/F∗ = (5.5 ± 0.9) × 10-4 in the VBB filter. The surface brightness of the polarized flux reaches a maximum of SBmax = 16.2 mag arcsec-2 at a separation of 0.2''-0.5'' along the disk spine with a maximum surface brightness contrast of 7.64 mag arcsec-2. The polarized flux has a minimum near the star 1''. This can be explained by a radial blow-out of small grains. The data are modelled as a circular dust belt with a well defined disk inclination I = 85( ± 1.5)° and a radius between r0 = 60 and 90 AU. The radial

  4. [A non-invasive glucose measurement method based on orthogonal twin-polarized light and its pilot experimental investigation].

    Science.gov (United States)

    Wang, Hong; Wu, Baoming; Liu, Ding

    2010-04-01

    In order to overcome the existing shortcomings of the non-invasive blood glucose polarized light measurement methods of optical heterodyne detection and direct detection, we present in this paper a new orthogonal twin-polarized light (OTPL) non-invasive blood glucose measurement method, which converts the micro-angle rotated by an optical active substance such as glucose to the energy difference of OTPL, amplifies the signals by the high-sensitivity lock-in amplifier made of relevant principle, controls Faraday coil current to compensate the changes in deflection angle caused by blood glucose, and makes use of the linear relationship between blood glucose concentration and Faraday coil current to calculate blood glucose concentration. In our comparative experiment using the data measured by LX-20 automatic biochemical analyzer as a standard, a 0.9777 correlation coefficient is obtained in glucose concentration experiment, and a 0.952 in serum experiment. The result shows that this method has higher detection sensitivity and accuracy and lays a foundation for the development of practical new type of non-invasive blood glucose tester for diabetic patients.

  5. Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2015-04-01

    Full Text Available We propose an initially transparent light shutter using polymer-networked liquid crystals with crossed patterned electrodes. The proposed light shutter is switchable between the transparent and opaque states, and it exhibits a fast response time and a low operating voltage. In the transparent state, the light shutter has high transmittance; in the opaque state, it can block the background image and provides black color. We expect that the proposed light shutter can be applied to see-through displays and smart windows.

  6. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  7. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    Science.gov (United States)

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  8. Versatile spin-polarized electron source

    Science.gov (United States)

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  9. Photocatalytic Surface Patterning of Cellulose using Diazonium Salts and Visible Light

    OpenAIRE

    Schroll, Peter; Fehl, Charlie; Dankesreiter, Stephan; König, Burkhard

    2013-01-01

    Coumarin-functionalized cellulose sheets were chemically modified using a visible light catalyzed “Photo-Meerwein” arylation. Use of a photomask to pattern the surface resulted in directly visible images.

  10. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  11. Diffractive optical devices produced by light-assisted trapping of nanoparticles.

    Science.gov (United States)

    Muñoz-Martínez, J F; Jubera, M; Matarrubia, J; García-Cabañes, A; Agulló-López, F; Carrascosa, M

    2016-01-15

    One- and two-dimensional diffractive optical devices have been fabricated by light-assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other nonphotovoltaic substrates, such as silica glass, has been also reported.

  12. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices.

    Science.gov (United States)

    Dorrer, C; Wei, S K-H; Leung, P; Vargas, M; Wegman, K; Boulé, J; Zhao, Z; Marshall, K L; Chen, S H

    2011-10-15

    Beam shaping of coherent laser beams is demonstrated using liquid crystal (LC) cells with optically patterned pixels. The twist angle of a nematic LC is locally set to either 0 or 90° by an alignment layer prepared via exposure to polarized UV light. The two distinct pixel types induce either no polarization rotation or a 90° polarization rotation, respectively, on a linearly polarized optical field. An LC device placed between polarizers functions as a binary transmission beam shaper with a highly improved damage threshold compared to metal beam shapers. Using a coumarin-based photoalignment layer, various devices have been fabricated and tested, with a measured single-shot nanosecond damage threshold higher than 30 J/cm2.

  13. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  14. Polar pattern formation in driven filament systems requires non-binary particle collisions

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2015-10-01

    From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

  15. Projecting light beams with 3D waveguide arrays

    Science.gov (United States)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  16. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    KAUST Repository

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  17. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  18. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization

    Science.gov (United States)

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

  19. Development of passive and active microprism arrays to change the radiation pattern of solid-state lighting

    International Nuclear Information System (INIS)

    Lee, Chih-Chun; Ting, Yi-Shuo; Fang, Weileun

    2012-01-01

    This study implements a compact solid-state lighting chip with changeable illumination map as well as radiation pattern. The lighting chip consists of a microprism array, light-emitting diode (LED) chip and Si carrier. The polydimethylsiloxane (PDMS) and polymer-dispersed liquid crystal (PDLC) layers are respectively employed to implement the passive and active microprism arrays. The specific radiation pattern can be defined by the shape of the passive PDMS-microprism. Moreover, by using the scattering and transmitting modes of the PDLC layer, the PDLC-microprism enables the changing of light shaping by applying voltage. Thus, the radiation pattern can be changed by the driving voltage on the PDLC layer, and the deformable and movable micro optical components are not required. This study has established the low-temperature fabrication and packaging processes to realize the lighting chip, and the damage of the PDMS and PDLC material is prevented. Typical dimensions of the PDMS lighting chip are 5 mm wide, 6 mm long and 1 mm thick, and The PDLC lighting chip is 550 µm thick. The measurement results show that the PDMS-microprism array can change the radiation pattern from a 70° half-maximum viewing angle to 52° and 40° half-maximum viewing angles on two orthogonal axes. In addition, the PDLC-microprism array can change the radiation pattern from 51° and 43° half-maximum viewing angles at 0 V (i.e. scattering mode) to 48° and 33° half-maximum viewing angles at 100 V (i.e. transmitting mode). (paper)

  20. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  1. Polarization dynamics and polarization time of random three-dimensional electromagnetic fields

    International Nuclear Information System (INIS)

    Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.

    2010-01-01

    We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.

  2. Topological insulator infrared pseudo-bolometer with polarization sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Peter Anand

    2017-10-25

    Topological insulators can be utilized in a new type of infrared photodetector that is intrinsically sensitive to the polarization of incident light and static magnetic fields. The detector isolates single topological insulator surfaces and allows light collection and exposure to static magnetic fields. The wavelength range of interest is between 750 nm and about 100 microns. This detector eliminates the need for external polarization selective optics. Polarization sensitive infrared photodetectors are useful for optoelectronics applications, such as light detection in environments with low visibility in the visible wavelength regime.

  3. How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics.

    Science.gov (United States)

    Blahó, Miklós; Egri, Ádám; Barta, András; Antoni, Györgyi; Kriska, György; Horváth, Gábor

    2012-10-26

    Horseflies (Diptera: Tabanidae) can cause severe problems for humans and livestock because of the continuous annoyance performed and the diseases vectored by the haematophagous females. Therefore, effective horsefly traps are in large demand, especially for stock-breeders. To catch horseflies, several kinds of traps have been developed, many of them attracting these insects visually with the aid of a black ball. The recently discovered positive polarotaxis (attraction to horizontally polarized light) in several horsefly species can be used to design traps that capture female and male horseflies. The aim of this work is to present the concept of such a trap based on two novel principles: (1) the visual target of the trap is a horizontal solar panel (photovoltaics) attracting polarotactic horseflies by means of the highly and horizontally polarized light reflected from the photovoltaic surface. (2) The horseflies trying to touch or land on the photovoltaic trap surface are perished by the mechanical hit of a wire rotated quickly with an electromotor supplied by the photovoltaics-produced electricity. Thus, the photovoltaics is bifunctional: its horizontally polarized reflected light signal attracts water-seeking, polarotactic horseflies, and it produces the electricity necessary to rotate the wire. We describe here the concept and design of this new horsefly trap, the effectiveness of which was demonstrated in field experiments. The advantages and disadvantages of the trap are discussed. Using imaging polarimetry, we measured the reflection-polarization characteristics of the photovoltaic trap surface demonstrating the optical reason for the polarotactic attractiveness to horseflies. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    OpenAIRE

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-01-01

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidi...

  5. Recovering a hidden polarization by ghost polarimetry.

    Science.gov (United States)

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-15

    By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.

  6. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition

    KAUST Repository

    Yan, Long

    2018-05-03

    Polarization-induced doping has been shown to be effective for wide-bandgap III-nitrides. In this work, we demonstrated a significantly enhanced hole concentration via linearly grading an N-polar AlxGa1-xN (x = 0–0.3) layer grown by metal-organic chemical vapor deposition. The hole concentration increased by ∼17 times compared to that of N-polar p-GaN at 300 K. The fitting results of temperature-dependent hole concentration indicated that the holes in the graded p-AlGaN layer comprised both polarization-induced and thermally activated ones. By optimizing the growth conditions, the hole concentration was further increased to 9.0 × 1017 cm−3 in the graded AlGaN layer. The N-polar blue-violet light-emitting device with the graded p-AlGaN shows stronger electroluminescence than the one with the conventional p-GaN. The study indicates the potential of the polarization doping technique in high-performance N-polar light-emitting devices.

  7. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition

    KAUST Repository

    Yan, Long; Zhang, Yuantao; Han, Xu; Deng, Gaoqiang; Li, Pengchong; Yu, Ye; Chen, Liang; Li, Xiaohang; Song, Junfeng

    2018-01-01

    Polarization-induced doping has been shown to be effective for wide-bandgap III-nitrides. In this work, we demonstrated a significantly enhanced hole concentration via linearly grading an N-polar AlxGa1-xN (x = 0–0.3) layer grown by metal-organic chemical vapor deposition. The hole concentration increased by ∼17 times compared to that of N-polar p-GaN at 300 K. The fitting results of temperature-dependent hole concentration indicated that the holes in the graded p-AlGaN layer comprised both polarization-induced and thermally activated ones. By optimizing the growth conditions, the hole concentration was further increased to 9.0 × 1017 cm−3 in the graded AlGaN layer. The N-polar blue-violet light-emitting device with the graded p-AlGaN shows stronger electroluminescence than the one with the conventional p-GaN. The study indicates the potential of the polarization doping technique in high-performance N-polar light-emitting devices.

  8. Calculated Hanle transmission and absorption spectra of the 87Rb D1 line with residual magnetic field for arbitrarily polarized light

    International Nuclear Information System (INIS)

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-01-01

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  9. Front lighted optical tooling method and apparatus

    International Nuclear Information System (INIS)

    Stone, W. J.

    1985-01-01

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature

  10. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  11. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon

    2017-03-13

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  12. Specular, diffuse and polarized imagery of an oat canopy

    Science.gov (United States)

    Vanderbilt, Vern C.; De Venecia, Kurt J.

    1988-01-01

    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  13. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  14. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    Science.gov (United States)

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology. © 2013 British Society for Neuroendocrinology.

  15. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement.

    Science.gov (United States)

    Van Delden, Jay S

    2003-07-15

    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  16. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  17. Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light

    International Nuclear Information System (INIS)

    Ting, Li; Li, Yu; Zhi-Xin, Lu; Gang, Song; Kai, Zhang

    2011-01-01

    The effects of various parameters including thickness and dielectric constants of substrates, shapes of nanoparticles, and polarization direction of incident light, on the extinction spectra of periodic gold nanoparticle arrays are investigated by the full-vectorial three-dimensional (3D) finite difference time domain (FDTD) method. The calculated results show that the substrate affects the extinction spectra by coupling the fields co-excited by the substrate and gold nanoparticles. Extinction spectra are influenced by the shapes of the nanoparticles, but there are no obvious changes in extinction spectra for similar shapes. The polarization direction of incident light has a great influence on the extinction spectra. The implications of these results are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  19. FREQUENCY REDISTRIBUTION OF POLARIZED LIGHT IN THE Λ-TYPE MULTI-TERM POLARIZED ATOM

    Energy Technology Data Exchange (ETDEWEB)

    Casini, R. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Sainz, R. Manso [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-06-20

    We study the effects of Rayleigh and Raman scattering on the formation of polarized spectral lines in a Λ-type multi-term atom. We fully take into account the partial redistribution of frequency and the presence of atomic polarization in the lower states of the atomic model. Problems that can be modeled with this formalism include, for example, the formation of the Ca ii H–K and IR triplet, the analogous system of Ba ii, and the Ly β –H α system of hydrogenic ions.

  20. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Energy Technology Data Exchange (ETDEWEB)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  1. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission.

    Science.gov (United States)

    Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua

    2018-05-09

    The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.

  2. Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments

    Science.gov (United States)

    Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2018-03-01

    We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.

  3. Polarised light in science and nature

    CERN Document Server

    Pye, J David

    2001-01-01

    We humans cannot see when light is polarized and this leads to unfortunate misapprehensions about this aspect of nature. Even scientists who should know better often assume that it is an obscure topic of specialized interest in only a few rather isolated areas. In fact, it is a universal feature of our world and most natural light is at least partially polarized. In the animal kingdom, insects and other animals exploit such natural polarization in some fascinating ways since they do not share this human deficiency and can both detect and analyze polarization. It may be our unfamiliarity with this aspect of light that also makes people think it is a difficult subject, yet the basis is extremely simple. When these misconceptions are overcome, the phenomena associated with polarization are found to be important throughout science and technology, from physics, astronomy, natural history, geology, chemistry, and several branches of engineering to crafts such as glass-blowing and jewelry. Polarized light also invol...

  4. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.

    Science.gov (United States)

    Qu, Yufu; Zou, Zhaofan

    2017-10-16

    Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel

  5. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Directory of Open Access Journals (Sweden)

    Lars Jäger

    2016-09-01

    Full Text Available Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl-N-phenylamino]-biphenyl (NPB with the polar electron transporting material tris-(8-hydroxyquinolate aluminum (Alq3. Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  6. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Science.gov (United States)

    Jäger, Lars; Schmidt, Tobias D.; Brütting, Wolfgang

    2016-09-01

    Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl)-N-phenylamino]-biphenyl (NPB) with the polar electron transporting material tris-(8-hydroxyquinolate) aluminum (Alq3). Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  7. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    Science.gov (United States)

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  8. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  9. Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites.

    Science.gov (United States)

    Coll, Mariona; Gomez, Andrés; Mas-Marza, Elena; Almora, Osbel; Garcia-Belmonte, Germà; Campoy-Quiles, Mariano; Bisquert, Juan

    2015-04-16

    We investigate the ferroelectric properties of photovoltaic methylammonium lead halide CH3NH3PbI3 perovskite using piezoelectric force microscopy (PFM) and macroscopic polarization methods. The electric polarization is clearly observed by amplitude and phase hysteresis loops. However, the polarization loop decreases as the frequency is lowered, persisting for a short time only, in the one second regime, indicating that CH3NH3PbI3 does not exhibit permanent polarization at room temperature. This result is confirmed by macroscopic polarization measurement based on a standard capacitive method. We have observed a strong increase of piezoelectric response under illumination, consistent with the previously reported giant photoinduced dielectric constant at low frequencies. We speculate that an intrinsic charge transfer photoinduced dipole in the perovskite cage may lie at the origin of this effect.

  10. Polar Pattern Formation in Driven Filament Systems Require Non-Binary Particle Collisions.

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A; Frey, Erwin; Bausch, Andreas R

    2015-10-01

    Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1-4]. The microscopic dynamics of constituents have been linked to the system's meso- or macroscopic behaviour in silico via the Boltzmann equation for propelled particles [5-10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data. We report here experimentally determined binary collision statistics by studying the recently introduced molecular system, the high density actomyosin motility assay [11-13]. We demonstrate that the alignment effect of the binary collision statistics is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, which indicates that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. The presented findings demonstrate that the unique properties of biological active matter systems require a description that goes well beyond a gas-like picture developed in the framework of kinetic theories.

  11. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    Science.gov (United States)

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  12. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam.

    Science.gov (United States)

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light-matter interaction.

  13. Investigation of the polarization state of dual APPLE-II undulators

    International Nuclear Information System (INIS)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S.; Sawhney, Kawal

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used

  14. Investigation of the polarization state of dual APPLE-II undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hand, Matthew; Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Dhesi, Sarnjeet S.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  15. Digital all-sky polarization imaging of partly cloudy skies.

    Science.gov (United States)

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  16. Molecular frame photoemission: a probe of electronic/nuclear photo-dynamics and polarization state of the ionizing light

    International Nuclear Information System (INIS)

    Veyrinas, Kevin

    2015-01-01

    This is thesis is dedicated to the study and the use of the remarkable properties of the molecular frame photoelectron angular distribution (MFPAD). This observable is a very sensitive probe of both the photoionization (PI) processes in small molecules, through the determination of the magnitudes and relative phases of the dipole matrix elements, and the polarization state of the ionizing light, which is entirely encoded in the MFPAD in terms of the Stokes parameters (s1, s2, s3). MFPAD measurements take advantage of dissociative photoionization (DPI) processes by combining an electron-ion 3D momentum spectroscopy technique with the use of different radiation facilities: SOLEIL synchrotron (DESIRS and PLEIADES beamlines) and the XUV PLFA beamline (SLIC, LIDyL Attophysics group, CEA Saclay) based on the interaction of a strong laser field with a gaseous target called high harmonic generation (HHG). The first part of the thesis is devoted to the complete characterization of the polarization state of an incoming radiation. In this context, an original 'molecular polarimetry' method is introduced and demonstrated by comparison with a VUV optical polarimeter available on the DESIRS beamline. Using this method to determine the full polarization ellipse of HHG radiation generated in different conditions on the XUV PLFA facility leads to original results that include the challenging disentanglement of the circular and unpolarized components of the studied radiation. The second part deals with the study of DPI of the H 2 , D 2 and HD molecules induced by circularly polarized light at resonance with the doubly excited states Q1 and Q2. In this energy region (30-35 eV) where direct ionization, autoionization and dissociation compete on a femtosecond timescale, the photonic excitation gives rise to complex ultrafast electronic and nuclear coupled dynamics. The remarkable asymmetries observed in the circular dichroism in the molecular frame, compared to quantum

  17. A comparison of the accuracy of patterns processed from an inlay casting wax, an auto-polymerized resin and a light-cured resin pattern material.

    Science.gov (United States)

    Rajagopal, Praveen; Chitre, Vidya; Aras, Meena A

    2012-01-01

    Traditionally, inlay casting waxes have been used to fabricate patterns for castings. Newer resin pattern materials offer greater rigidity and strength, allowing easier laboratory and intraoral adjustment without the fear of pattern damage. They also claim to possess a greater dimensional stability when compared to inlay wax. This study attempted to determine and compare the marginal accuracy of patterns fabricated from an inlay casting wax, an autopolymerized pattern resin and a light polymerized pattern resin on storage off the die for varying time intervals. Ten patterns each were fabricated from an inlay casting wax (GC Corp., Tokyo, Japan), an autopolymerized resin pattern material (Pattern resin, GC Corp, Tokyo, Japan) and a light-cured resin pattern material (Palavit GLC, Hereaus Kulzer GmbH, Germany). The completed patterns were stored off the die at room temperature. Marginal gaps were evaluated by reseating the patterns on their respective dies and observing it under a stereomicroscope at 1, 12, and 24 h intervals after pattern fabrication. The results revealed that the inlay wax showed a significantly greater marginal discrepancy at the 12 and 24 h intervals. The autopolymerized resin showed an initial (at 1 h) marginal discrepancy slightly greater than inlay wax, but showed a significantly less marginal gap (as compared to inlay wax) at the other two time intervals. The light-cured resin proved to be significantly more dimensionally stable, and showed minimal change during the storage period. The resin pattern materials studied, undergo a significantly less dimensional change than the inlay waxes on prolonged storage. They would possibly be a better alternative to inlay wax in situations requiring high precision or when delayed investment (more than 1 h) of patterns can be expected.

  18. Optical investigation of microscopic defect distribution in semi-polar (1-101 and 11-22) InGaN light-emitting diodes

    Science.gov (United States)

    Hafiz, Shopan; Andrade, Nicolas; Monavarian, Morteza; Izyumskaya, Natalia; Das, Saikat; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Near-field scanning optical microscopy was applied to investigate the spatial variations of extended defects and their effects on the optical quality for semi-polar (1-101) and (11-22) InGaN light emitting diodes (LEDs). (1-101) and (11-22) oriented InGaN LEDs emitting at 450-470 nm were grown on patterned Si (001) 7° offcut substrates and m-sapphire substrates by means of nano-epitaxial lateral overgrowth (ELO), respectively. For (1-101) structures, the photoluminescence (PL) at 85 K from the near surface c+ wings was found to be relatively uniform and strong across the sample. However, emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations (TDs) and basal plane stacking faults (BSFs) as revealed from the local PL spectra. In case of (11-22) LED structures, near-field PL intensity correlated with the surface features and the striations along the direction parallel to the c-axis projection exposed facets where the Indium content was higher as deduced from shift in the PL peak energy.

  19. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  20. Cyclotron spectra from inhomogeneous accretion columns. II. Polarization

    International Nuclear Information System (INIS)

    Wu, K.; Chanmugam, G.

    1989-01-01

    Circularly and linearly polarized radiation from inhomogeneous cyclotron emission regions with uniform magnetic field and temperature but different electron density profiles are studied. Calculations show that the inhomogeneous models generally produce larger polarization for low harmonics and smaller polarization for high harmonics compared to the homogeneous models. Polarization light curves for different inhomogeneous models with a wide variety of parameters are presented, providing handy theoretical results to compare with observations. The observed polarization light curves of ST LMi, EF Eri, and BL Hydri are fitted using an inhomogeneous model for the first time, and good fits are obtained, supporting the hypothesis that the cyclotron emission regions of AM Her systems have a complicated structure. 37 refs

  1. Integration of polarization and chromatic cues in the insect sky compass.

    Science.gov (United States)

    el Jundi, Basil; Pfeiffer, Keram; Heinze, Stanley; Homberg, Uwe

    2014-06-01

    Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.

  2. Collective behavior of light in vacuum

    Science.gov (United States)

    Briscese, Fabio

    2018-03-01

    Under the action of light-by-light scattering, light beams show collective behaviors in vacuum. For instance, in the case of two counterpropagating laser beams with specific initial helicity, the polarization of each beam oscillates periodically between the left and right helicity. Furthermore, the amplitudes and the corresponding intensities of each polarization propagate like waves. Such polarization waves might be observationally accessible in future laser experiments, in a physical regime complementary to those explored by particle accelerators.

  3. Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila.

    Science.gov (United States)

    Weir, Peter T; Henze, Miriam J; Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H

    2016-05-11

    Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called

  4. The near infrared polarization of NGC 7023

    International Nuclear Information System (INIS)

    Sellgren, K.

    1984-01-01

    NGC 7023 is a visual reflection nebula whose low optical depth at near infrared wavelengths suggests it may be well-suited to analysis of the near infrared scattering properties of dust. While processes other than scattered light dominate the near infrared emission of NGC 7023, a detectable scattered light component remains, as can be demonstrated by polarization measurements. Polarization at 2.2 μm has been detected at two positions in NGC 7023. The polarization angles at these two positions are perpendicular to the line between each nebular position and the star which illuminates the visual reflection nebulosity, indicating that the polarization mechanism is most likely the scattering of starlight from this star. (author)

  5. Users Polarization on Facebook and Youtube.

    Directory of Open Access Journals (Sweden)

    Alessandro Bessi

    Full Text Available Users online tend to select information that support and adhere their beliefs, and to form polarized groups sharing the same view-e.g. echo chambers. Algorithms for content promotion may favour this phenomenon, by accounting for users preferences and thus limiting the exposure to unsolicited contents. To shade light on this question, we perform a comparative study on how same contents (videos are consumed on different online social media-i.e. Facebook and YouTube-over a sample of 12M of users. Our findings show that content drives the emergence of echo chambers on both platforms. Moreover, we show that the users' commenting patterns are accurate predictors for the formation of echo-chambers.

  6. Users Polarization on Facebook and Youtube

    Science.gov (United States)

    Bessi, Alessandro; Zollo, Fabiana; Del Vicario, Michela; Puliga, Michelangelo; Scala, Antonio; Caldarelli, Guido; Uzzi, Brian; Quattrociocchi, Walter

    2016-01-01

    Users online tend to select information that support and adhere their beliefs, and to form polarized groups sharing the same view—e.g. echo chambers. Algorithms for content promotion may favour this phenomenon, by accounting for users preferences and thus limiting the exposure to unsolicited contents. To shade light on this question, we perform a comparative study on how same contents (videos) are consumed on different online social media—i.e. Facebook and YouTube—over a sample of 12M of users. Our findings show that content drives the emergence of echo chambers on both platforms. Moreover, we show that the users’ commenting patterns are accurate predictors for the formation of echo-chambers. PMID:27551783

  7. Study of excess carrier dynamics in polar, semi-polar, and non-polar (In,Ga)N epilayers and QWs

    Energy Technology Data Exchange (ETDEWEB)

    Aleksiejunas, R. [Institute of Applied Research, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Laser Research Center, Vilnius University, Sauletekio Ave. 10, 10222 Vilnius (Lithuania); Lubys, L.; Jarasiunas, K. [Institute of Applied Research, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Vengris, M. [Laser Research Center, Vilnius University, Sauletekio Ave. 10, 10222 Vilnius (Lithuania); Wernicke, T.; Hoffmann, V.; Netzel, C.; Knauer, A.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12498 Berlin (Germany); Kneissl, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12498 Berlin (Germany); Institute of Solid State Physics, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-15

    We studied carrier recombination and diffusion in GaN/sapphire templates, (In,Ga)N layers, and (In,Ga)N quantum well structures oriented along the polar [0001], semi-polar [11-22], and non-polar [11-20] orientations by means of light induced transient grating, differential transmission, and photoluminescence optical techniques. We show that the lifetime of excess carriers drops by orders of magnitude when changing the orientation from polar to non-polar, both in GaN templates and (In,Ga)N layers. We attribute the shorter lifetime to carrier trapping by extended structural defects that are more abundant in non-polar grown samples. In addition, we observe pronounced carrier localization effects in the semi- and non-polar layers. We show that thick (In,Ga)N layers inherit the properties of the GaN templates. However, the thin quantum well structures show a lower carrier trapping activity. So, a better electrical quality can be assumed as compared to the thick (In,Ga)N layers. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    Science.gov (United States)

    Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)

    2010-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  9. Active polarization imaging system based on optical heterodyne balanced receiver

    Science.gov (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  10. Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure

    DEFF Research Database (Denmark)

    Edberg, Jesper; Iandolo, Donata; Brooke, Robert

    2016-01-01

    to control the conductivity in the conjugated polymer poly(3,4-ethylenedioxythiophene):tosylate by more than six orders of magnitude in addition to producing high-resolution patterns and optical gradients. The mechanism behind the modulation in the polymerization kinetics by UV light irradiation as well...

  11. Detecting Super-Thin Clouds With Polarized Light

    Science.gov (United States)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  12. Polarization sensitive optical coherence tomography detection method

    International Nuclear Information System (INIS)

    Colston, B W; DaSilva, L B; Everett, M J; Featherstone, J D B; Fried, D; Ragadio, J N; Sathyam, U S.

    1999-01-01

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattering coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions

  13. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  14. Charge transport in non-polar and semi-polar III-V nitride heterostructures

    International Nuclear Information System (INIS)

    Konar, Aniruddha; Verma, Amit; Fang, Tian; Zhao, Pei; Jana, Raj; Jena, Debdeep

    2012-01-01

    Compared to the intense research focus on the optical properties, the transport properties in non-polar and semi-polar III-nitride semiconductors remain relatively unexplored to date. The purpose of this paper is to discuss charge-transport properties in non-polar and semi-polar orientations of GaN in a comparative fashion to what is known for transport in polar orientations. A comprehensive approach is adopted, starting from an investigation of the differences in the electronic bandstructure along different polar orientations of GaN. The polarization fields along various orientations are then discussed, followed by the low-field electron and hole mobilities. A number of scattering mechanisms that are specific to non-polar and semi-polar GaN heterostructures are identified, and their effects are evaluated. Many of these scattering mechanisms originate due to the coupling of polarization with disorder and defects in various incarnations depending on the crystal orientation. The effect of polarization orientation on carrier injection into quantum-well light-emitting diodes is discussed. This paper ends with a discussion of orientation-dependent high-field charge-transport properties including velocity saturation, instabilities and tunneling transport. Possible open problems and opportunities are also discussed. (paper)

  15. Full Alignment of Molecules Using Elliptically Polarized Light

    DEFF Research Database (Denmark)

    Larsen, Jakob Juul; Hald, Kasper; Seideman, Tamar

    When a molecule with an anisotropic polarizability is placed in a strong nonresonant laser field the interaction occurs through the induced dipole moment. The outcome is that the molecule experiences an angular dependent potential energy. It is now well established that a linearly polarized laser...... field can be used to align molecules along their axis of highest polarizability. Here we demonstrate, theoretically and experimentally, that an elliptically polarized laser field can be used to simultaneously force two axes of a molecule into alignment through the same mechanism. Due to the rigidity...

  16. Design of patterned sapphire substrates for GaN-based light-emitting diodes

    International Nuclear Information System (INIS)

    Wang Hai-Yan; Lin Zhi-Ting; Han Jing-Lei; Zhong Li-Yi; Li Guo-Qiang

    2015-01-01

    A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs’ luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs’ light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years. (topical review)

  17. Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong

    2017-09-19

    Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.

  18. Early Birds by Light at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits.

    Science.gov (United States)

    de Jong, Maaike; Caro, Samuel P; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E

    2017-08-01

    Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.

  19. A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

    Science.gov (United States)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-01-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.

  20. Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour

    International Nuclear Information System (INIS)

    Holmes, W R; Edelstein-Keshet, L; Carlsson, A E

    2012-01-01

    Patterns of waves, patches, and peaks of actin are observed experimentally in many living cells. Models of this phenomenon have been based on the interplay between filamentous actin (F-actin) and its nucleation promoting factors (NPFs) that activate the Arp2/3 complex. Here we present an alternative biologically-motivated model for F-actin-NPF interaction based on properties of GTPases acting as NPFs. GTPases (such as Cdc42, Rac) are known to promote actin nucleation, and to have active membrane-bound and inactive cytosolic forms. The model is a natural extension of a previous mathematical mini-model of small GTPases that generates static cell polarization. Like other modellers, we assume that F-actin negative feedback shapes the observed patterns by suppressing the trailing edge of NPF-generated wave-fronts, hence localizing the activity spatially. We find that our NPF-actin model generates a rich set of behaviours, spanning a transition from static polarization to single pulses, reflecting waves, wave trains, and oscillations localized at the cell edge. The model is developed with simplicity in mind to investigate the interaction between nucleation promoting factor kinetics and negative feedback. It explains distinct types of pattern initiation mechanisms, and identifies parameter regimes corresponding to distinct behaviours. We show that weak actin feedback yields static patterning, moderate feedback yields dynamical behaviour such as travelling waves, and strong feedback can lead to wave trains or total suppression of patterning. We use a recently introduced nonlinear bifurcation analysis to explore the parameter space of this model and predict its behaviour with simulations validating those results. (paper)

  1. Revealing the dark side of Portlandite Clusters in cement paste by circular polarization microscopy

    NARCIS (Netherlands)

    Copuroglu, O.

    2016-01-01

    Plane and crossed polarization are the two standard light modes in polarized light microscopy that are widely used to characterize crystalline and amorphous phases in cement-based materials. However, the use of the crossed polarized light mode has been found to be restrictive for studying

  2. Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures.

    Science.gov (United States)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-11-28

    Recent advances in nanofabrication techniques are opening new frontiers in holographic devices, with the capability to integrate various optical functions in a single device. However, while most efficient holograms are achieved in reflection-mode configurations, they are in general opaque because of the reflective substrate that must be used, and therefore, have limited applicability. Here, we present a semi-transparent, reflective computer-generated hologram that is circularly-polarization dependent, and reconstructs different wavefronts when viewed from different sides. The integrated functionality is realized using a single thin-film of liquid crystal with a self-organized helical structure that Bragg reflects circularly-polarized light over a certain band of wavelengths. Asymmetry depending on the viewing side is achieved by exploiting the limited penetration depth of light in the helical structure as well as the nature of liquid crystals to conform to different orientational patterns imprinted on the two substrates sandwiching the material. Also, because the operation wavelength is determined by the reflection band position, pseudo-color holograms can be made by simply stacking layers with different designs. The unique characteristics of this hologram may find applications in polarization-encoded security holograms and see-through holographic signage where different information need to be displayed depending on the viewing direction.

  3. A cryogenic optical feedthrough using polarization maintaining fibers.

    Science.gov (United States)

    Nelson, M J; Collins, C J; Speake, C C

    2016-03-01

    Polarization maintaining optical fibers can be used to transmit linearly polarized light over long distances but their use in cryogenic environments has been limited by their sensitivity to temperature changes and associated mechanical stress. We investigate experimentally how thermal stresses affect the polarization maintaining fibers and model the observations with Jones matrices. We describe the design, construction, and testing of a feedthrough and fiber termination assembly that uses polarization maintaining fiber to transmit light from a 633 nm HeNe laser at room temperature to a homodyne polarization-based interferometer in a cryogenic vacuum. We report on the efficiency of the polarization maintaining properties of the feedthrough assembly. We also report that, at cryogenic temperatures, the interferometer can achieve a sensitivity of 8 × 10(-10) rad/√Hz at 0.05 Hz using this feedthrough.

  4. Nanoimprint lithography of light trapping patterns in sol-gel coatings for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Heijna, M.; Loffler, J.; Van Aken, B.B.; Soppe, W.J. [ECN Solar Energy, Petten (Netherlands); Borg, H.; Peeters, P. [OM and T, Eindhoven (Netherlands)

    2008-04-15

    For thin-film silicon solar cells, light trapping schemes are of uppermost importance to harvest all available sunlight. Typically, randomly textured TCO front layers are used to scatter the light diffusively in p-i-n cells on glass. Here, we investigate methods to texture the back contact with both random and periodic textures, for use in n-i-p cells on opaque foil. We applied an electrically insulating SiOx-polymer coating on a stainless steel substrate, and textured this barrier layer by nanoimprint. On this barrier layer the back contact is deposited for further use in the solar cell stack. Replication of masters with various random and periodic patterns was tested, and, using scanning electron microscopy, replicas were found to compare well with the originals. Masters with U-grooves of various sub micrometer widths have been used to investigate the optimal dimensions of regular patterns for light trapping in the silicon layers. Angular reflection distributions were measured to evaluate the light scattering properties of both periodic and random patterns. Diffraction gratings show promising results in scattering the light to specific angles, enhancing the total internal reflection in the solar cell.

  5. Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns

    Energy Technology Data Exchange (ETDEWEB)

    Yadavalli, Nataraja Sekhar; Santer, Svetlana, E-mail: santer@uni-potsdam.de [Department of Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany); Saphiannikova, Marina [Leibniz Institute of Polymer Research Dresden, 01069 Dresden (Germany)

    2014-08-04

    In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the trans-cis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings.

  6. Multiple stable states of a periodically driven electron spin in a quantum dot using circularly polarized light

    Science.gov (United States)

    Korenev, V. L.

    2011-06-01

    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.

  7. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  8. Light-induced spin polarizations in quantum rings

    NARCIS (Netherlands)

    Joibari, F.K.; Blanter, Y.M.; Bauer, G.E.W.

    2014-01-01

    Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the principle by studying a simple generic model system, i.e., the

  9. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    International Nuclear Information System (INIS)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul; Cardwell, Andrew; Chilcote, Jeffrey; Draper, Zachary H.; Fitzgerald, Michael P.; Hung, Li-Wei; Goodsell, Stephen J.; Grady, Carol A.; Hartung, Markus; Hibon, Pascale

    2016-01-01

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging

  10. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  11. Monte Carlo method for polarized radiative transfer in gradient-index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2015-01-01

    Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated

  12. Investigation of the sensitivity of a cross-polarized light visualization system to detect subclinical erythema and dryness in women with vulvovaginitis.

    Science.gov (United States)

    Farage, Miranda A; Singh, Mukul; Ledger, William J

    2009-07-01

    An enhanced visualization technique using polarized light (Syris v600 enhanced visualization system; Syris Scientific LLC, Gray, ME) detects surface and subsurface ( approximately 1 mm depth) inflammation. We sought to compare the Syris v600 system with unaided visual inspection and colposcopy of the female genitalia. Erythema and dryness of the vulva, introitus, vagina, and cervix were visualized and scored by each method in patients with and without vulvitis. Subsurface visualization was more sensitive in detecting genital erythema and dryness at all sites whether or not symptoms were present. Subsurface inflammation of the introitus, vagina, and cervix only was detected uniquely in women with vulvar vestibulitis syndrome (VVS). A subset of women presenting with VVS exhibited subclinical inflammation of the vulva vestibule and vagina (designated VVS/lichen sclerosus subgroup). Enhanced visualization of the genital epithelial subsurface with cross-polarized light may assist in diagnosing subclinical inflammation in vulvar conditions heretofore characterized as sensory syndromes.

  13. Study on Brazil law type twinning in amethyst from Bahia (Brazil) by the X-ray topography and polarized light

    International Nuclear Information System (INIS)

    Baran, Z.

    1987-01-01

    Brazil law type twinning is very common in quartz. Generally is not observed in normal petrographic thin section but it is possible to study this kind of twinning under polarized light in thicker sections. X-ray topography will be another powerfull method to study and it was applied for the amethytst of the Mina Cabeluda of the state of Bahia. (author) [pt

  14. Digital polarization holography advancing geometrical phase optics.

    Science.gov (United States)

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  15. A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor

    Directory of Open Access Journals (Sweden)

    Yan-Qing Lu

    2011-02-01

    Full Text Available A transflective nano-wire grid polarizer is fabricated on a single mode fiber tip by focused ion beam machining. In contrast to conventional absorptive in-line polarizers, the wire grids reflect TE-mode, while transmitting TM-mode light so that no light power is discarded. A reflection contrast of 13.7 dB and a transmission contrast of 4.9 dB are achieved in the 1,550 nm telecom band using a 200-nm wire grid fiber polarizer. With the help of an optic circulator, the polarization states of both the transmissive and reflective lights in the fiber may be monitored simultaneously. A kind of robust fiber optic sensor is thus proposed that could withstand light power variations. To verify the idea, a fiber pressure sensor with the sensitivity of 0.24 rad/N is demonstrated. The corresponding stress-optic coefficient of the fiber is measured. In addition to pressure sensing, this technology could be applied in detecting any polarization state change induced by magnetic fields, electric currents and so on.

  16. Improving Light Extraction of Organic Light-Emitting Devices by Attaching Nanostructures with Self-Assembled Photonic Crystal Patterns

    Directory of Open Access Journals (Sweden)

    Kai-Yu Peng

    2014-01-01

    Full Text Available A single-monolayered hexagonal self-assembled photonic crystal (PC pattern fabricated onto polyethylene terephthalate (PET films by using simple nanosphere lithography (NSL method has been demonstrated in this research work. The patterned nanostructures acted as a scattering medium to extract the trapped photons from substrate mode of optical-electronic device for improving the overall external quantum efficiency of the organic light-emitting diodes (OLEDs. With an optimum latex concentration, the distribution of self-assembled polystyrene (PS nanosphere patterns on PET films can be easily controlled by adjusting the rotation speed of spin-coater. After attaching the PS nanosphere array brightness enhancement film (BEF sheet as a photonic crystal pattern onto the device, the luminous intensity of OLEDs in the normal viewing direction is 161% higher than the one without any BEF attachment. The electroluminescent (EL spectrum of OLEDs with PS patterned BEF attachment also showed minor color offset and superior color stabilization characteristics, and thus it possessed the potential applications in all kinds of display technology and solid-state optical-electronic devices.

  17. Analysis of the effect of polarization traps and shallow impurities on the interlevel light absorption of quantum dots

    Directory of Open Access Journals (Sweden)

    V.I. Boichuk

    2017-12-01

    Full Text Available A spherical quantum dot (QD heterosystem CdS/SiO2 has been studied. Each QD has a hydrogen-like impurity in its center. Besides that, it has been accounted that a polarization trap for electron exists at the interfaces due to the difference between the QD and matrix dielectric permittivity. It has been defined that for small QD radii there are surface electron states. For different radii, partial contributions of the surface states into the electron energy caused by the electron-ion and electron-polarization charges interaction have been defined. The linear light absorption coefficient of noninteracting QDs has been calculated taking into account the QD dispersion by the size. It is shown that the surface states can be observed into different ranges of an electromagnetic spectrum.

  18. Cosmic Microwave Background Polarization and Inflation

    Science.gov (United States)

    Chuss, David T.

    2011-01-01

    Measurements of the cosmic microwave background (CMB) offer a means to explore the universe at a very early epoch. Specifically, if the universe went through a brief period of exponential expansion called inflation as current data suggest, gravitational waves from this period would polarize the CMB in a specific pattern. At GSFC, we are currently working towards two experiments that work in concert to measure this polarization pattern in search of evidence for inflation. The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization at frequencies between 40 and 150 GHz from the Atacama Desert in Chile. The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment that will make similar measurements at frequencies between 200 and 600 GHz.

  19. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  20. The Energy Saving Potential of Occupancy-Based Lighting Control Strategies in Open-Plan Offices: The Influence of Occupancy Patterns

    Directory of Open Access Journals (Sweden)

    Christel de Bakker

    2017-12-01

    Full Text Available Occupancy-based lighting control strategies have been proven to be effective in diminishing offices’ energy consumption. These strategies have typically worked by controlling lighting at the room level but, recently, lighting systems have begun to be equipped with sensors on a more fine-grained level, enabling lighting control at the desk level. For some office cases, however, the savings gained using this strategy may not outweigh the costs and design efforts compared to room control. This is because, in some offices, individual occupancy patterns are similar, hence the difference in savings between desk and room control would be minimal. This study examined the influence of occupancy pattern variance within an office space on the relative energy savings of control strategies with different control zone sizes. We applied stochastic modeling to estimate the occupancy patterns, as this method can account for uncertainty. To validate our model, simulation results were compared to earlier studies and real measurements, which demonstrated that our simulations provided realistic occupancy patterns. Next, office cases varying in both job-function type distribution and office policy were investigated on energy savings potential to determine the influence of occupancy pattern variance. The relative energy savings potential of the different control strategies differed minimally for the test cases, suggesting that variations in individual occupancy patterns negligibly influence energy savings. In all cases, lighting control at the desk level showed a significantly higher energy savings potential than strategies with lower control zone granularity, suggesting that it is useful to implement occupancy-based lighting at the desk level in all office cases. This strategy should, thus, receive more attention from both researchers and lighting designers.

  1. Influences of optical elements on the polarization measurement

    International Nuclear Information System (INIS)

    Goto, M.; Hayakawa, M.; Atake, M.; Iwamae, A.

    2004-01-01

    An emission line of He I λ 667.8 nm is observed and the Large Helical Device (LHD) with a polarimeter, with which two linearly polarized components if the light from the same line of sight is simultaneously measured. The emission line exhibits splitting due to the normal Zeeman effect and the π and σ lights are respectively observed. The results indicate the polarization state of emission lines is different from our expectation. From two measurements, for the second of which the polarimeter is rotated 45 degrees form the first, the polarization ellipses of all the three polarized lights are determined. Some observations for a reversed magnetic field plasma operation, for different emission lines of different ions, and also for operation with some different magnetic field strengths suggest that the distortion state originates not in the atomic radiation itself or the plasma condition, but in the optical window at the observation port of the vacuum chamber. (author)

  2. Circular polarization memory in single Quantum Dots

    International Nuclear Information System (INIS)

    Khatsevich, S.; Poem, E.; Benny, Y.; Marderfeld, I.; Gershoni, D.; Badolato, A.; Petroff, P. M.

    2010-01-01

    Under quasi-resonant circularly polarized optical excitation, charged quantum dots may emit polarized light. We measured various transitions with either positive, negative or no circular-polarization memory. We explain these observations and quantitatively calculate the polarization spectrum. Our model use the full configuration-interaction method, including the electron-hole exchange interaction, for calculating the quantum dot's confined many-carrier states, along with one assumption regarding the spin relaxation of photoexcited carriers: Electrons maintain their initial spin polarization, while holes do not.

  3. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  4. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  5. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  6. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  7. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  8. Degrees of polarization for a quantum field

    International Nuclear Information System (INIS)

    Sanchez-Soto, L L; Soederholm, J; Yustas, E C; Klimov, A B; Bjoerk, G

    2006-01-01

    Unpolarized light is invariant with respect to any SU(2) polarization transformation. Since this fully characterizes the set of density matrices representing unpolarized states, we introduce the degree of polarization of a quantum state as its distance to the set of unpolarized states. We discuss different candidates of distance, and show that they induce fundamentally different degrees of polarization

  9. Dependence of extinction cross-section on incident polarization state and particle orientation

    International Nuclear Information System (INIS)

    Yang Ping; Wendisch, Manfred; Bi Lei; Kattawar, George; Mishchenko, Michael; Hu, Yongxiang

    2011-01-01

    This note reports on the effects of the polarization state of an incident quasi-monochromatic parallel beam of radiation and the orientation of a hexagonal ice particle with respect to the incident direction on the extinction process. When the incident beam is aligned with the six-fold rotational symmetry axis, the extinction is independent of the polarization state of the incident light. For other orientations, the extinction cross-section for linearly polarized light can be either larger or smaller than its counterpart for an unpolarized incident beam. Therefore, the attenuation of a quasi-monochromatic radiation beam by an ice cloud depends on the polarization state of the beam if ice crystals within the cloud are not randomly oriented. Furthermore, a case study of the extinction of light by a quartz particle is also presented to illustrate the dependence of the extinction cross-section on the polarization state of the incident light.

  10. Development and demonstration of optical polarization controller; Hikari henpa seigyo sochi no kaihatsu to jissho

    Energy Technology Data Exchange (ETDEWEB)

    Kurono, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-04-01

    If fiber transmission light can be controlled in a stabilized polarization state, realization of coherent optical communication is anticipated. In the case of adopting it to OPGW, however, it is necessary to compensate high speed polarization variation caused by lightning strike. But this was difficult in the conventional method. Accordingly, a high speed polarization control method was proposed which uses an electric effect of lithium niobate (LN) crystals. In the study, a polarization control unit was manufactured based on the method proposed and the performance was demonstrated. As a result of measuring output light with input light changed in every state of polarization, the object horizontal polarization component obtained a stabilized light intensity at {+-}0.1dB, and a light intensity of the component slipped out of the horizontal polarization was suppressed under -20dB. To cope with the polarization variation by lightning strike, it is necessary to make the control delay 10{mu}sec or below, and improvement in processing unit, etc. may make it possible since LN crystals respond below 1{mu}sec. High speed control of the infinitely continuing arbitrary polarization variation became possible. 14 refs., 19 figs.

  11. Polarized Light from the Sun: Unification of the Corona and Analysis of the Second Solar Spectrum — Further Implications of a Liquid Metallic Hydrogen Solar Model

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-07-01

    Full Text Available In order to account for the slight polarization of the continuum towards the limb, propo- nents of the Standard Solar Model (SSM must have recourse to electron or hydrogen- based scattering of light, as no other mechanism is possible in a gaseous Sun. Con- versely, acceptance that the solar body is comprised of condensed matter opens up new avenues in the analysis of this problem, even if the photospheric surface itself is viewed as incapable of emitting polarized light. Thus, the increased disk polarization, from the center to the limb, can be explained by invoking the scattering of light by the at- mosphere above the photosphere. The former is reminiscent of mechanisms which are known to account for the polarization of sunlight in the atmosphere of the Earth. Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM, molecules and small particles, not electrons or hydrogen atoms as required by the SSM, would primarily act as scattering agents in regions also partially comprised of condensed hy- drogen structures (CHS. In addition, the well-known polarization which characterizes the K-corona would become a sign of emission polarization from an anisotropic source, without the need for scattering. In the LMHSM, the K, F, and T- coronas can be viewed as emissive and reflective manifestations of a single corona l entity adopting a radially anisotropic structure, while slowly cooling with altitude above the photosphere. The presence of “dust particles”, advanced by proponents of the SSM, would no longer be required to explain the F and T-corona, as a single cooling structure would account for the properties of the K, F, and T coronas. At the same time, the polarized “Second Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral lines and an abundance of molecular lines, could be explained in the LMHSM, by first invoking interface polarization and coordination of these species with condensed matter

  12. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila.

    Science.gov (United States)

    Wernet, Mathias F; Velez, Mariel M; Clark, Damon A; Baumann-Klausener, Franziska; Brown, Julian R; Klovstad, Martha; Labhart, Thomas; Clandinin, Thomas R

    2012-01-10

    Linearly polarized light originates from atmospheric scattering or surface reflections and is perceived by insects, spiders, cephalopods, crustaceans, and some vertebrates. Thus, the neural basis underlying how this fundamental quality of light is detected is of broad interest. Morphologically unique, polarization-sensitive ommatidia exist in the dorsal periphery of many insect retinas, forming the dorsal rim area (DRA). However, much less is known about the retinal substrates of behavioral responses to polarized reflections. Drosophila exhibits polarotactic behavior, spontaneously aligning with the e-vector of linearly polarized light, when stimuli are presented either dorsally or ventrally. By combining behavioral experiments with genetic dissection and ultrastructural analyses, we show that distinct photoreceptors mediate the two behaviors: inner photoreceptors R7+R8 of DRA ommatidia are necessary and sufficient for dorsal polarotaxis, whereas ventral responses are mediated by combinations of outer and inner photoreceptors, both of which manifest previously unknown features that render them polarization sensitive. Drosophila uses separate retinal pathways for the detection of linearly polarized light emanating from the sky or from shiny surfaces. This work establishes a behavioral paradigm that will enable genetic dissection of the circuits underlying polarization vision. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. An elliptically-polarizing undulator with phase adjustable energy and polarization

    International Nuclear Information System (INIS)

    Lidia, S.

    1993-08-01

    The authors present a planar helical undulator designed to produce elliptically polarized light. Helical magnetic fields may be produced by a variety of undulators with four parallel cassettes of magnets. In their design, all cassettes are mounted in two planes on slides so that they may be moved parallel to the electron beam. This allows the undulator to produce x-rays of left- or right-handed elliptical or circular polarization as well as horizontal or vertical linear polarization. In model calculations, they have found that by sliding the top pair of rows with respect to the bottom pair, or the left pair with respect to the right pair, they retain the polarization setting but change the magnetic field strength, and hence the x-ray energy. This allows them to select both energy and polarization by independent phase adjustments alone, without changing the gap between the rows. Such a design may be simpler to construct than an adjustable gap machine. The authors present calculations that model its operation and its effects on an electron beam

  14. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  15. Analytical Solutions of Temporal Evolution of Populations in Optically-Pumped Atoms with Circularly Polarized Light

    Directory of Open Access Journals (Sweden)

    Heung-Ryoul Noh

    2016-03-01

    Full Text Available We present an analytical calculation of temporal evolution of populations for optically pumped atoms under the influence of weak, circularly polarized light. The differential equations for the populations of magnetic sublevels in the excited state, derived from rate equations, are expressed in the form of inhomogeneous second-order differential equations with constant coefficients. We present a general method of analytically solving these differential equations, and obtain explicit analytical forms of the populations of the ground state at the lowest order in the saturation parameter. The obtained populations can be used to calculate lineshapes in various laser spectroscopies, considering transit time relaxation.

  16. Polarization recovery through scattering media.

    Science.gov (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  17. Coherent active polarization control without loss

    Science.gov (United States)

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2017-11-01

    We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  18. Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size

    International Nuclear Information System (INIS)

    Matarrubia, J; García-Cabañes, A; Plaza, J L; Agulló-López, F; Carrascosa, M

    2014-01-01

    The role of light modulation m and particle size on the morphology and spatial resolution of nano-particle patterns obtained by photovoltaic tweezers on Fe : LiNbO 3 has been investigated. The impact of m when using spherical as well as non-spherical (anisotropic) nano-particles deposited on the sample surface has been elucidated. Light modulation is a key parameter determining the particle profile contrast that is optimum for spherical particles and high-m values (m ∼ 1). The minimum particle periodicities reachable are also investigated obtaining periodic patterns up to 3.5 µm. This is a value at least one order of magnitude shorter than those obtained in previous reported experiments. Results are successfully explained and discussed in light of the previous reported models for photorefraction including nonlinear carrier transport and dielectrophoretic trapping. From the results, a number of rules for particle patterning optimization are derived. (paper)

  19. Light-assisted, templated self-assembly of gold nanoparticle chains.

    Science.gov (United States)

    Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L

    2014-09-10

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.

  20. A novel iris patterns matching algorithm of weighted polar frequency correlation

    Science.gov (United States)

    Zhao, Weijie; Jiang, Linhua

    2014-11-01

    Iris recognition is recognized as one of the most accurate techniques for biometric authentication. In this paper, we present a novel correlation method - Weighted Polar Frequency Correlation(WPFC) - to match and evaluate two iris images, actually it can also be used for evaluating the similarity of any two images. The WPFC method is a novel matching and evaluating method for iris image matching, which is complete different from the conventional methods. For instance, the classical John Daugman's method of iris recognition uses 2D Gabor wavelets to extract features of iris image into a compact bit stream, and then matching two bit streams with hamming distance. Our new method is based on the correlation in the polar coordinate system in frequency domain with regulated weights. The new method is motivated by the observation that the pattern of iris that contains far more information for recognition is fine structure at high frequency other than the gross shapes of iris images. Therefore, we transform iris images into frequency domain and set different weights to frequencies. Then calculate the correlation of two iris images in frequency domain. We evaluate the iris images by summing the discrete correlation values with regulated weights, comparing the value with preset threshold to tell whether these two iris images are captured from the same person or not. Experiments are carried out on both CASIA database and self-obtained images. The results show that our method is functional and reliable. Our method provides a new prospect for iris recognition system.

  1. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  2. Optical anisotropy of polyimide and polymethacrylate containing photocrosslinkable chalcone group in the side chain under irradiation of a linearly polarized UV light

    CERN Document Server

    Choi, D H

    2002-01-01

    Photocrosslinkable soluble polyimide and polymethacrylate compound were synthesized for studying the optically induced anisotropy of the thin films. Chalcone group was introduced into the side chain unit of two polymers. We observed a photodimerization behavior between the double bonds in the chalcone group and an optical anisotropy of these materials by irradiation of a linearly polarized UV light (LPL). Optical anisotropy of the thin film was also investigated by using polarized UV absorption spectroscopy.The dynamic property of optical anisotropy in photoreactive polyimide was compared to that in polymethacrylate containing chalcone group in the side chain.

  3. Engaging Montana high school students in optical sciences with a polarization photo contest

    Science.gov (United States)

    Tauc, Martin Jan; Boger, James K.; Hohne, Andrew; Dahl, Laura M.; Nugent, Paul W.; Riesland, David W.; Moon, Benjamin; Baumbauer, Carol L.; Boese, Orrin; Shaw, Joseph A.; Nakagawa, Wataru

    2017-08-01

    Getting students interested in science, specifically in optics and photonics, is a worthwhile challenge. We developed and implemented an outreach campaign that sought to engage high school students in the science of polarized light. We traveled to Montana high schools and presented on the physics of light, the ways that it becomes polarized, how polarization is useful, and how to take pictures with linear polarizers to see polarization. Students took pictures that showed polarization in either a natural setting or a contrived scene. We visited 13 high schools, and presented live to approximately 450 students.

  4. Light effects in asymmetric vertically coupled InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Stavrou, V.N., E-mail: vstavrou@newton.physics.uiowa.edu

    2015-12-15

    In this paper, the dependence of circular light polarization on the size asymmetry of self-assembled coupled quantum dots (SACQDs) has been studied. The heterostructure consists of ellipsoidal shaped QDs made with InAs which are embedded in a wetting layer and are surrounded by GaAs. By considering fully spin-polarized carriers within the QD structure, the light polarization has been estimated along the plane of spin polarized electrons (or holes). Circularly polarized light strongly depends on the ratio related to the different QD volumes. In the case of elongated QDs, small interdot distance and large volume ratio, the light polarization observed along the plane (110) receives the largest value (∼90%). On the other hand, the polarization efficiency of the emitted light decreases as the QD elongation decreases and finally vanishes for axially symmetric QD caps.

  5. Some specific features of interaction between light and dislocations in cadmium sulfide

    International Nuclear Information System (INIS)

    Klassen, N.V.; Krasil'nikova, L.L.; Tabeev, Eh.F.

    1977-01-01

    The local spectroscopy of a plastically strained cadmium sulphide is used to study light focusing phenomenon caused by slip bands and light-guide effect of the bands. Such phenomena are strongly dependent on the wavelength and light polarization. The behaviour of the light in the vicinity of slip bands on polarization normal to the bands is adequately explained by photoelastic interaction of the light with dislocations entering into the bands. Explanation of the anomalous behaviour of the light being polarized parallel to the slip bands requires the use of a model taking into consideration the role of localized dislocation states excited by the light of this polarization

  6. Polarimetric imaging of retinal disease by polarization sensitive SLO

    Science.gov (United States)

    Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi

    2015-03-01

    Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.

  7. VIIRS-J1 Polarization Narrative

    Science.gov (United States)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith; Butler, James; Meister, Gerhard; Thome, Kurtis J.

    2015-01-01

    The VIS/NIR bands polarization sensitivity of Joint Polar Satellite Sensor 1 (JPSS1) Visible/Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5%, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4%, 4.4%, 3.1%, and 4.3%, respectively with a polarization characterization uncertainty of less than 0.3%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands was mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the instruments two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at Goddard and NIST and the use of NIST's T-SIRCUS for polarization testing and associated analyses and results.

  8. Patterns of Light Chasing the Spectrum from Aristotle to LEDs

    CERN Document Server

    Beeson, Steven

    2008-01-01

    Light is all around us – even when we do not see it. Our eyes do not detect the higher energy and shorter-than-visible-wavelength ultraviolet radiation, yet we know it is there from the sunburn we receive in Arizona. We know that window glass can block ultraviolet rays so we do not get a burn while driving with the windows rolled up. Our eyes do not detect the low-energy, long-wavelength infrared (IR) radiation but we know it exists from discussions of war applications and televised images of guided weapons targets. We also know about radio waves from the little boxes that talk to us and x-rays from the dentist's office. Patterns of Light, Chasing the Spectrum from Aristotle to LEDs, written by Steve Beeson and Jim Mayer starts with the visible – the straight path of light. It continues with chapters detailing reflection (mirrors, storefront windows) and refraction (eyeglasses, binoculars). Color is then introduced with the query "Why is the sky blue?" After answering that and other similar questions ("Wh...

  9. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    Science.gov (United States)

    2013-09-30

    by studying a homogeneous turbid medium. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative...polarization manipulation experiments revealed that polarization reflectance in Atlantic needlefish is controlled at the periphery (Fig 28). 6 19...with camouflage researchers on isopod and kelp crab camouflage against algae and seagrasses at several different west coast universities (Dierssen

  10. Linear polarizers based on oriented polymer blends

    NARCIS (Netherlands)

    Jagt, H.J.B.; Dirix, Y.J.L.; Hikmet, R.A.M.; Bastiaansen, C.W.M.

    1998-01-01

    Linear sheet polarizers based on the anisotropic scattering of light by drawn polymer blends are introduced here. The proper selection of materials and processing conditions for the production of large-area, flexible films of phase-segregated polymer blends suitable for polarization applications are

  11. Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography

    International Nuclear Information System (INIS)

    Huang, H.W.; Lin, C.H.; Huang, J.K.; Lee, K.Y.; Lin, C.F.; Yu, C.C.; Tsai, J.Y.; Hsueh, R.; Kuo, H.C.; Wang, S.C.

    2009-01-01

    In this paper, gallium-nitride (GaN)-based light-emitting diodes (LEDs) with nano-hole patterned sapphire (NHPSS) by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with NHPSS increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.33, and the wall-plug efficiency is 30% higher at 20 mA indicating that the LED with NHPSS had larger light extraction efficiency. In addition, by examining the radiation patterns, the LED with NHPSS shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.

  12. Optimization of s-Polarization Sensitivity in Apertureless Near-Field Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Yuika Saito

    2012-01-01

    Full Text Available It is a general belief in apertureless near-field microscopy that the so-called p-polarization configuration, where the incident light is polarized parallel to the axis of the probe, is advantageous to its counterpart, the s-polarization configuration, where the incident light is polarized perpendicular to the probe axis. While this is true for most samples under common near-field experimental conditions, there are samples which respond better to the s-polarization configuration due to their orientations. Indeed, there have been several reports that have discussed such samples. This leads us to an important requirement that the near-field experimental setup should be equipped with proper sensitivity for measurements with s-polarization configuration. This requires not only creation of effective s-polarized illumination at the near-field probe, but also proper enhancement of s-polarized light by the probe. In this paper, we have examined the s-polarization enhancement sensitivity of near-field probes by measuring and evaluating the near-field Rayleigh scattering images constructed by a variety of probes. We found that the s-polarization enhancement sensitivity strongly depends on the sharpness of the apex of near-field probes. We have discussed the efficient value of probe sharpness by considering a balance between the enhancement and the spatial resolution, both of which are essential requirements of apertureless near-field microscopy.

  13. Far field photoluminescence imaging of single AlGaN nanowire in the sub-wavelength scale using confinement of polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Sivadasan, A.K.; Dhara, Sandip [Nanomaterials and Sensors Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam (India); Sardar, Manas [Theoretical Studies Section, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-03-15

    Till now the nanoscale focusing and imaging in the sub-diffraction limit is achieved mainly with the help of plasmonic field enhancement by confining the light assisted with noble metal nanostructures. Using far field imaging technique, we have recorded polarized spectroscopic photoluminescence (PL) imaging of a single AlGaN nanowire (NW) of diameter ∝100 nm using confinement of polarized light. It is found that the PL from a single NW is influenced by the proximity to other NWs. The PL intensity is proportional to 1/(l x d), where l and d are the average NW length and separation between the NWs, respectively. We suggest that the proximity induced PL intensity enhancement can be understood by assuming the existence of reasonably long lived photons in the intervening space between the NWs. A nonzero non-equilibrium population of such photons may cause stimulated emission leading to the enhancement of PL emission with the intensity proportional to 1/(l x d). The enhancement of PL emission facilitates far field spectroscopic imaging of a single semiconductor AlGaN NW of sub-wavelength dimension. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  15. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Daimon, Hiroshi

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously. (author)

  16. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    Directory of Open Access Journals (Sweden)

    Schneider Andreas S

    2012-09-01

    Full Text Available Abstract Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM [Gilbert et al., Journal of the

  17. An optical investigation of dentinal discoloration due to commonly endodontic sealers, using the transmitted light polarizing microscopy and spectrophotometry.

    Science.gov (United States)

    Suciu, Ioana; Ionescu, Ecaterina; Dimitriu, Bogdan Alexandru; Bartok, Ruxandra Ioana; Moldoveanu, Georgiana Florentina; Gheorghiu, Irina Maria; Suciu, Ileana; Ciocîrdel, Mihai

    2016-01-01

    The aim of this study was to establish the degree of tooth crown staining by commonly used endodontic sealers. Crown discolorations by tooth canal sealers [AH Plus (Dentsply DeTrey Gmbh, Konstanz, Germany); Endofill (Produits Dentaires SA, Vevey, Switzerland); Apexit (Dentsply DeTrey Gmbh, Konstanz, Germany); and MTA Fillapex (Angelus, Londrina, Brazil)] were tested on extracted human premolars. The samples were divided into five groups of five samples each, after root canal sealing. Five teeth were used as control groups. The spectrophotometric method was performed in order to quantify in terms of color change of the coronal part (it was also recorded a track on how the color changes over time). For the microscopic study of the extracted dental specimens subjected to this study, polarized transmitted light microscopy was used. This method involves the development of special microscopic preparations, called "thin sections". In our case, the thin section was performed on 20 prepared and obturated recently extracted teeth. The degree of discoloration was determined after one week and three months using spectrophotometry and polarized light microscopy. All sealers usually cause some degree of discoloration on the cervical aspect of the crowns that increases in time. AH Plus and Endofill caused the greatest discoloration, followed by Apexit and MTA Fillapex.

  18. Polarization measurements of the Bok globule B361

    Energy Technology Data Exchange (ETDEWEB)

    Williams, I P; Vedi, K [Queen Mary Coll., London (UK); Griffiths, W K [Leeds Univ. (UK); Bhatt, H C; Kulkarni, P V; Ashok, N M [Physical Research Lab., Ahmedabad (India); Wallis, R E [Royal Greenwich Observatory, Hailsham (UK)

    1985-01-01

    The results of the first measurements of the polarization of light from background stars passing through B361 are described. Nearly all the stars show that the direction of the polarized light is approximately north-south. If the polarization is caused by aligned grains within the globule then a magnetic field of the order of 50-100 ..mu..G is required. Both polarimetry and photometry confirm that two of the stars studied are very distant background stars while three of these stars were found to be foreground stars. The analysis indicates that the globule is not further away than 650 pc, but can only establish an approximate upper limit.

  19. Coherent active polarization control without loss

    Directory of Open Access Journals (Sweden)

    Yuqian Ye

    2017-11-01

    Full Text Available We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  20. Analysis and manipulation of atomic and molecular collisions using laser light

    International Nuclear Information System (INIS)

    Grimpe, A.

    2006-01-01

    Optical collisions in a crossed beam experiment are examined for the atomic collision pairs LiHe, LiNe, NaNe. Differential cross sections are measured in order to probe the quality of quantum chemical calculated and spectroscopical determined molecular potentials. The linear polarization of the excitation laser is used to manipulate the contrast of the differential cross sections for NaNe. Using elliptical polarized light total control over the angular position and the contrast of the interference pattern is demonstrated. Differential cross sections for the collision pairs LiH 2 and LiD 2 show a pronounced oscillatory structure, which for the first time is observed for atom-molecule optical collisions. (orig.)

  1. Multiwavelength Polarization of Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Alice K.; Kalapotharakos, Constantinos [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron–positron pairs and γ -ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%–60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ -ray spectral components would indicate that CR is the γ -ray emission mechanism.

  2. Light scattering by microstructures in plastic nuclear track detector plane surfaces

    International Nuclear Information System (INIS)

    Wipasuramonton, O.

    1985-01-01

    The angular distributions of light elastically scattered by finite dielectric conical and cylindrical microstructures in plastic nuclear track detector plane surfaces have been measured. These microstructures are the chemically etched tracks of various nuclei, viz., protons, neutrons, 3 He, alphas, and 56 Fe. The base diameters of the structures are larger than twice the wavelength of the incident light. The results show the dependence of the scattering patterns on shape, size, orientation, and refractive index of the structures as well as the polarization of the incident light. It is also observed that in the single and independent scattering regime, the intensity at the intermediate angular region exhibits linear proportionality to the number of the microstructures per unit area. 84 refs., 96 figs., 4 tabs

  3. Polarization phenomena in electromagnetic interactions at intermediate energies

    International Nuclear Information System (INIS)

    Burkert, V.

    1990-01-01

    Recent results of polarization measurements in electromagnetic interactions at intermediate energies are discussed. Prospects of polarization experiments at the new CW electron accelerators, as well as on upgraded older machines are outlined. It is concluded that polarization experiments will play a very important role in the study of the structure of the nucleon and of light nuclei. 72 refs

  4. Applications of polarization speckle in skin cancer detection and monitoring

    Science.gov (United States)

    Lee, Tim K.; Tchvialeva, Lioudmila; Phillips, Jamie; Louie, Daniel C.; Zhao, Jianhua; Wang, Wei; Lui, Harvey; Kalia, Sunil

    2018-01-01

    Polarization speckle is a rapidly developed field. Unlike laser speckle, polarization speckle consists of stochastic interference patterns with spatially random polarizations, amplitudes and phases. We have been working in this exciting research field, developing techniques to generate polarization patterns from skin. We hypothesize that polarization speckle patterns could be used in biomedical applications, especially, for detecting and monitoring skin cancers, the most common neoplasmas for white populations around the world. This paper describes our effort in developing two polarization speckle devices. One of them captures the Stokes parameters So and S1 simultaneously, and another one captures all four Stokes parameters So, S1, S2, and S3 in one-shot, within milliseconds. Hence these two devices could be used in medical clinics and assessed skin conditions in-vivo. In order to validate our hypothesis, we conducted a series of three clinical studies. These are early pilot studies, and the results suggest that the devices have potential to detect and monitor skin cancers.

  5. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.

    Science.gov (United States)

    Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M

    2009-12-01

    We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.

  6. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  7. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  8. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    Energy Technology Data Exchange (ETDEWEB)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru; Nekrasov, E. S. [Institute of High Current Electronics SB RAS, IHCE SB RAS, Tomsk 634055 (Russian Federation)

    2016-03-15

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  9. Polarized vacuum ultraviolet and X-radiation

    International Nuclear Information System (INIS)

    Samson, J.A.R.

    1978-01-01

    The most intense source of polarized vacuum UV and X-radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarisation of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect on monochromators (i.e. diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. The author presents the first experimental evidence that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization. (Auth.)

  10. Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei

    Science.gov (United States)

    Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana

    2018-04-01

    New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.

  11. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.

    Science.gov (United States)

    Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean

    2009-10-01

    Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can

  12. Photobiomodulation with polarized light in the treatment of cutaneous and mucosal ulcerative lesions.

    Science.gov (United States)

    Aragona, S E; Grassi, F R; Nardi, G; Lotti, J; Mereghetti, G; Canavesi, E; Equizi, E; Puccio, A M; Lotti, T

    In recent decades, regenerative medicine has achieved an important evolution at both a conceptual level and scientific production, which explains the current and future possibilities of therapy and daily clinical practice. The main aim of regenerative medicine is the complex system of repair/regeneration. The current literature on the subject demonstrates the advantage of visible light therapy for skin injuries and diseases with the photobiomodulation in which light at low energy levels modulates intra- and extra-cellular photoreceptors by molecular and cellular processes that can stimulate both anti-inflammatory mechanisms and cell proliferative response. The irradiation effects are activated soon after exposure. The anti-inflammatory action on some classes of cytokines and cells (e.g. mast cells and macrophages) is completed with the stimulation of the nitric oxide production, which has an anti-inflammatory and vasodilation action, and gives analgesic relief. Our attention focused on photobiomodulator medical device emitting polarized light. 30 patients (19 women and 11 men) were enrolled in the present study. They were treated for chronic lesions using Bioptron® Light Therapy System device. Patients were initially subjected to Bioptron® light for 20 min after cleansing of the lesion. The operating protocol provides 24 sessions: twice per week for 12 weeks. Twenty patients have been studied for symptoms, histological samples and ulcer characteristics. After 2 months, a reduction of 50% of the lesions was recorded in 18 patients (60%), while in the remaining patients a slower healing was observed. The total wound healing was achieved after 3 months in 13 patients (43%). The examined parameters of the symptom were exudation, pain and signs of infection. Results at 1 and 3 months were, Exudation: at 1 month reduction and positive modulation was observed in 16 patients (53%) and in 25 patients at 3 months; Pain: (evaluated with Vas scale), decreased in 21 patients

  13. Unidirectional cross polarization rotator with enhanced broadband transparency by cascading twisted nanobars

    International Nuclear Information System (INIS)

    Wang, Ying-Hua; Shao, Jian; Li, Jie; Zhu, Ming-Jie; Li, Jiaqi; Dong, Zheng-Gao

    2016-01-01

    We demonstrate the optical activity for linear polarization by twisting cascading multilayer nanobars, for which the x- (y-)polarized light is significantly transformed to a y- (x-)polarized one with enhanced transmittance in a unidirectional manner, and the bandwidth can be broadened by increasing the cascading number of layers. The polarization conversion rate reaches nearly 100% with a maximum cross-polarization transmission coefficient larger than 0.95. This phenomenon is attributed to the chiral structural arrangement and anisotropic resonance of nanobars, which consequently leads to different cross-polarization conversions between forward and backward incident lights, and thus the unidirectional transmission with an extinction ratio up to 10 3 . These characteristics show application potential in optical nano-devices. (paper)

  14. Investigations of the polarization behavior of quantum cascade lasers by Stokes parameters.

    Science.gov (United States)

    Janassek, Patrick; Hartmann, Sébastien; Molitor, Andreas; Michel, Florian; Elsäßer, Wolfgang

    2016-01-15

    We experimentally investigate the full polarization behavior of mid-infrared emitting quantum cascade lasers (QCLs) in terms of measuring the complete Stokes parameters, instead of only projecting them on a linear polarization basis. We demonstrate that besides the pre-dominant linear TM polarization of the emitted light as governed by the selection rules of the intersubband transition, small non-TM contributions, e.g., circularly polarized light, are present reflecting the birefringent behavior of the semiconductor quantum well waveguide. Surprisingly unique is the persistence of these polarization properties well below laser threshold. These investigations give further insight into understanding, manipulating, and exploiting the polarization properties of QCLs, both from a laser point of view and with respect toward applications.

  15. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    Science.gov (United States)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  16. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  17. Third-order gap plasmon based metasurfaces for visible light

    DEFF Research Database (Denmark)

    Deshpande, Rucha Anil; Pors, Anders; Bozhevolnyi, Sergey I.

    2017-01-01

    with different dimensions, to operate as a polarization beam splitter for linearly polarized light. The fabricated polarization beam splitter is characterized using a super-continuum light source at normal light incidence and found to exhibit a polarization contrast ratio of up to 40 dB near the design...... of the performance of polarization beam splitters based on third-order GSP resonance as well as other potential applications of the suggested approach....... by an optically thick gold film are calculated for the operation wavelength of 633 nm. Exploiting the occurrence of the third-order GSP resonance for nanobricks having their lengths close to 300 nm, we design the phase-gradient metasurface, representing an array of (450 x 2250 nm2) supercells made of 5 nanobricks...

  18. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns

    International Nuclear Information System (INIS)

    Samson, Edward Carlo; Blanca, Carlo Mar

    2007-01-01

    We present a simple and cost-effective optical protocol to realize contrast-enhancement imaging (such as dark-field, optical-staining and oblique illumination microscopy) of transparent samples on a conventional widefield microscope using commercial multimedia projectors. The projector functions as both light source and mask generator implemented by creating slideshows of the filters projected along the illumination planes of the microscope. The projected optical masks spatially modulate the distribution of the incident light to selectively enhance structures within the sample according to spatial frequency thereby increasing the image contrast of translucent biological specimens. Any amplitude filter can be customized and dynamically controlled so that switching from one imaging modality to another involves a simple slide transition and can be executed at a keystroke with no physical filters and no moving optical parts. The method yields an image contrast of 89-96% comparable with standard enhancement techniques. The polarization properties of the projector are then utilized to discriminate birefringent and non-birefringent sites on the sample using single-shot, simultaneous polarization and optical-staining microscopy. In addition to dynamic pattern generation and polarization, the projector also provides high illumination power and spectral excitation selectivity through its red-green-blue (RGB) channels. We exploit this last property to explore the feasibility of using video projectors to selectively excite stained samples and perform fluorescence imaging in tandem with reflectance and polarization reflectance microscopy

  19. Observations of Near-Earth Asteroids in Polarized Light

    Science.gov (United States)

    Afanasiev, V. L.; Ipatov, A. V.

    2018-04-01

    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  20. Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics

    Science.gov (United States)

    Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles

    2018-05-01

    Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.

  1. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values....

  2. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  3. Linearly and circularly polarized laser photoinduced molecular order in azo dye doped polymer films

    Directory of Open Access Journals (Sweden)

    Saad Bendaoud

    2017-01-01

    Full Text Available Photo-induced behavior of Azo Disperse one (AZD1 doped Poly(Methyl MethAcrylate (PMMA using both linear and circular polarized light is studied. The anisotropy is not erased by the circular polarization light. The circular polarization light combined with relatively long lifetime of the cis state in azo dye doped polymers activate all transverse directions of the angular hole burning through the spot in the film inducing anisotropy. Under circular polarized light, there is no orientation perpendicularly to the helex described by the rotating electric field vector, trans molecules reorients in the propagation direction of the pump beam. The polarization state of the probe beam after propagation through the pumped spot depends strongly on the angle of incidence of both pump and probe beams on the input face. In the case where circular polarized pump and probe beams are under the same angle of incidence, the probe beam “sees” anisotropic film as if it is isotropic. Results of this work shows the possibility to reorient azobenzene-type molecules in two orthogonal directions using alternately linearly and circularly polarized beams.

  4. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.

    Science.gov (United States)

    Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali

    2018-04-12

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  5. Patterning of nanoparticulate transparent conductive ITO films using UV light irradiation and UV laser beam writing

    International Nuclear Information System (INIS)

    Solieman, A.; Moharram, A.H.; Aegerter, M.A.

    2010-01-01

    Indium tin oxide (ITO) thin film is one of the most widely used as transparent conductive electrodes in all forms of flat panel display (FPD) and microelectronic devices. Suspension of already crystalline conductive ITO nanoparticles fully dispersed in alcohol was spun, after modifying with coupling agent, on glass substrates. The low cost, simple and versatile traditional photolithography process without complication of the photoresist layer was used for patterning ITO films. Using of UV light irradiation through mask and direct UV laser beam writing resulted in an accurate linear, sharp edge and very smooth patterns. Irradiated ITO film showed a high transparency (∼85%) in the visible region. The electrical sheet resistance decrease with increasing time of exposure to UV light and UV laser. Only 5 min UV light irradiation is enough to decrease the electrical sheet resistance down to 5 kΩ□.

  6. Light-Emitting Pickles

    Science.gov (United States)

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  7. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  8. Topology and robustness in the Drosophila segment polarity network.

    Directory of Open Access Journals (Sweden)

    Nicholas T Ingolia

    2004-06-01

    Full Text Available A complex hierarchy of genetic interactions converts a single-celled Drosophila melanogaster egg into a multicellular embryo with 14 segments. Previously, von Dassow et al. reported that a mathematical model of the genetic interactions that defined the polarity of segments (the segment polarity network was robust (von Dassow et al. 2000. As quantitative information about the system was unavailable, parameters were sampled randomly. A surprisingly large fraction of these parameter sets allowed the model to maintain and elaborate on the segment polarity pattern. This robustness is due to the positive feedback of gene products on their own expression, which induces individual cells in a model segment to adopt different stable expression states (bistability corresponding to different cell types in the segment polarity pattern. A positive feedback loop will only yield multiple stable states when the parameters that describe it satisfy a particular inequality. By testing which random parameter sets satisfy these inequalities, I show that bistability is necessary to form the segment polarity pattern and serves as a strong predictor of which parameter sets will succeed in forming the pattern. Although the original model was robust to parameter variation, it could not reproduce the observed effects of cell division on the pattern of gene expression. I present a modified version that incorporates recent experimental evidence and does successfully mimic the consequences of cell division. The behavior of this modified model can also be understood in terms of bistability in positive feedback of gene expression. I discuss how this topological property of networks provides robust pattern formation and how large changes in parameters can change the specific pattern produced by a network.

  9. Polarization variablity among Wolf-Rayet stars. IV. A complete lack of circular polarization in the optical continuum

    International Nuclear Information System (INIS)

    Robert, C.; Moffat, A.F.J.

    1989-01-01

    Quasi-simultaneous blue and red, broadband optical monitoring in linear and circular polarization and in intensity has been carried out over an interval of three weeks for several Wolf-Rayet stars that show relatively large Delta P variations in linear polarization. No significant varying Delta V component of circular polarization is detected in any of these stars. The lower upper limit Delta V/Delta P implies that the intrinsic linearly polarized light which does vary cannot be produced by electrons gyrating in a magnetic field, unless they are ultrarelativistic - a rather unlikely situation. The low mean circular polarization typically observed is probably interstellar in origin. Lack of periodicity in the observed variations of linear polarization implies that even weak magnetic field loops are unlikely to be involved in confining pockets of wind plasma. The observed linear polarization variations are related mainly to electron scattering. 25 refs

  10. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  11. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  12. Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity

    Science.gov (United States)

    Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.

    2010-10-01

    The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.

  13. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wynberg, H.; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    The left and right lanterns of live larvae of the fireflies Photuris lucicrescens and P. versicolor emitted circularly polarized light of opposite sense. A possible mechanism is discussed. [on SciFinder (R)

  14. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  15. Variations in the polar cap area during intervals of substorm activity on 20-21 March 1990 deduced from AMIE convection patterns

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1996-09-01

    Full Text Available The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF, has been calculated during two intervals when the IMF had an approximately constant southward component (1100–2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990. The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday\\'s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday\\'s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between ~35RE and ~75RE downstream in the tail.

  16. The effect of polarized polychromatic noncoherent light (bioptron) therapy on patients with carpal tunnel syndrome.

    Science.gov (United States)

    Raeissadat, Seyed Ahmad; Rayegani, Seyed Mansoor; Rezaei, Sajad; Sedighipour, Leyla; Bahrami, Mohammad Hasan; Eliaspour, Dariush; Karimzadeh, Afshin

    2014-01-01

    To study the effects of Polarized Polychromatic Noncoherent Light (Bioptron) therapy on patients with carpal tunnel syndrome (CTS). This study was designed as a randomized clinical trial. Forty four patients with mild or moderate CTS (confirmed by clinical and electrodiagnostic studies) were assigned randomly into two groups (intervention and control goups). At the beginning of the study, both groups received wrist splinting for 8 weeks. Bioptron light was applied for the intervention group (eight sessions, for 3/weeks). Bioptron was applied perpendicularly to the wrist from a 10 centimeter sdistance. Pain severity and electrodiagnostic measurements were compared from before to 8 weeks after initiating each treatment. Eight weeks after starting the treatments, the mean of pain severity based on Visual Analogue Scale (VAS) scores decreased significantly in both groups. Median Sensory Nerve Action Potential (SNAP) latency decreased significantly in both groups. However, other electrophysiological findings (median Compound Motor Action Potential (CMAP) latency and amplitude, also SNAP amplitude) did not change after the therapy in both groups. There was no meaningful difference between two groups regarding the changes in the pain severity. Bioptron with the above mentioned parameters led to therapeutic effects equal to splinting alone in patients with carpal tunnel syndrome. However, applying Bioptron with different therapeutic protocols and light parameters other than used in this study, perhaps longer duration of therapy and long term assessment may reveal different results favoring Bioptron therapy.

  17. Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)

    NARCIS (Netherlands)

    Titulaer, M.; Spoelstra, K.; Lange, C.Y.M.J.G.; Visser, M.E.

    2012-01-01

    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick

  18. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  19. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  20. Self-collimating photonic crystal polarization beam splitter.

    Science.gov (United States)

    Zabelin, V; Dunbar, L A; Le Thomas, N; Houdré, R; Kotlyar, M V; O'Faolain, L; Krauss, T F

    2007-03-01

    We present theoretical and experimental results of a polarization splitter device that consists of a photonic crystal (PhC) slab, which exhibits a large reflection coefficient for TE and a high transmission coefficient for TM polarization. The slab is embedded in a PhC tile operating in the self-collimation mode. Embedding the polarization-discriminating slab in a PhC with identical lattice symmetry suppresses the in-plane diffraction losses at the PhC-non-PhC interface. The optimization of the PhC-non-PhC interface is thereby decoupled from the optimization of the polarizing function. Transmissions as high as 35% for TM- and 30% for TE-polarized light are reported.

  1. Apodised aperture using rotation of plane of polarization

    International Nuclear Information System (INIS)

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-01-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation

  2. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2016-09-07

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopic IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.

  3. Simulation of organ patterning on the floral meristem using a polar auxin transport model.

    Directory of Open Access Journals (Sweden)

    Simon van Mourik

    Full Text Available An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.

  4. Coherence and Polarization of Polarization Speckle Generated by Depolarizers and Their Changes through Complex ABCD Matrix

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.

    2015-01-01

    Recent research work on speckle patterns indicates a variation of the polarization state during propagation and its nonuniformly spatial distribution. The preliminary step for the investigation of this polarization speckle is the generation of the corresponding field. In this paper, a kind...... of special depolarizer: the random roughness birefringent screen (RRBS) is introduced to meet this requirement. The statistical properties of the field generated by the depolarizer is investigated and illustrated in terms of the 2x2 beam coherence and polarization matrix (BCPM) with the corresponding degree...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....

  5. Tight focusing of radially polarized circular Airy vortex beams

    Science.gov (United States)

    Chen, Musheng; Huang, Sujuan; Shao, Wei

    2017-11-01

    Tight focusing properties of radially polarized circular Airy vortex beams (CAVB) are studied numerically. The light field expressions for the focused fields are derived based on vectorial Debye theory. We also study the relationship between focal profiles, such as light intensity distribution, radius of focal spot and focal length, and the parameters of CAVB. Numerical results demonstrate that we can generate a radially polarized CAVB with super-long focal length, super-strong longitudinal intensity or subwavelength focused spot at the focal plane by properly choosing the parameters of incident light and high numerical aperture (NA) lens. These results have potential applications for optical trapping, optical storage and particle acceleration.

  6. Wide-band polarization controller for Si photonic integrated circuits.

    Science.gov (United States)

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  7. Polarization transfer in (d-vector,n-vector) reactions

    International Nuclear Information System (INIS)

    Walter, R.L.; Tornow, W.

    1986-01-01

    The status of the measurements and the role of polarization transfer coefficients for (d/sup →/,n/sup →/) reactions is reviewed. Emphasis is given to reactions, involving light-nuclei systems. The importance of (d/sup →/,n/sup →/) reactions as sources of polarized neutrons is pointed out

  8. Effects of Linear-Polarized Near-Infrared Light Irradiation on Chronic Pain

    Directory of Open Access Journals (Sweden)

    Dong Huang

    2012-01-01

    Full Text Available In order to study the efficacy of linear-polarized near-infrared light irradiation (LPNIR on relieving chronic pain in conjunction with nerve block (NB or local block (LB, a 3-week prospective, randomized, double-blind, controlled study was conducted to evaluate the pre- and post-therapy pain intensity. Visual analogue scales (VASs were measured in all patients before and 6 months after therapy visiting the pain clinic during the period of August 2007 to January 2008. A total of 52 patients with either shoulder periarthritis or myofascial pain syndrome or lateral epicondylitis were randomly assigned into two groups by drawing lots. Patients in Group I were treated with NB or LB plus LPNIR; Group II patients, for their part, were treated with the same procedures as in Group I, but not using LPNIR. In both groups, the pain intensity (VAS score decreased significantly immediately after therapy as compared to therapy. There was a significant difference between the test and control groups immediately after therapy (P<0.05, while no effect 6 months later. No side effects were observed. It is concluded that LPNIR is an effective and safe modality to treat various chronic pains, which has synergic effects with NB or LB.

  9. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  10. Personal history of nucleon polarization experiments

    International Nuclear Information System (INIS)

    Chamberlain, O.

    1984-09-01

    The history of nucleon scattering experiments is reviewed, starting with the observation of large proton polarizations in scattering from light elements such as carbon, and ending with the acceleration of polarized proton beams in high-energy synchrotrons. Special mention is made about significant contributions made by C.L. Oxley, L. Wolfenstein, R.D. Tripp, T. Ypsilantis, A. Abragam, M. Borghini, T. Niinikoski, Froissart, Stora, A.D. Krisch, and L.G. Ratner

  11. Development of atmospheric polarization LIDAR System

    International Nuclear Information System (INIS)

    Ghalumyan, A.S.; Ghazaryan, V.R.

    2016-01-01

    LIDAR (Light Detection And Ranging) system sensitive to the polarization of the backscattered signal is being developed in Yerevan Physics Institute. The system is designed primarily for remote sensing of the atmospheric electric fields. At present, the system is being tuned for measuring vertical atmospheric backscatter profiles of aerosols and hydrometeors, analyze the depolarization ratio of elastic backscattered laser beams and investigate the influence of external factors on the beam polarization. In this paper, we describe the complete LIDAR system – the laser transmitter, receiving telescope and the polarization separator. The data acquisition and processing techniques are also described. (author)

  12. Near field of an oscillating electric dipole and cross-polarization of a collimated beam of light: Two sides of the same coin

    Science.gov (United States)

    Aiello, Andrea; Ornigotti, Marco

    2014-09-01

    We address the question of whether there exists a hidden relationship between the near-field distribution generated by an oscillating electric dipole and the so-called cross-polarization of a collimated beam of light. We find that the answer is affirmative by showing that the complex field distributions occurring in both cases have a common physical origin: the requirement that the electromagnetic fields must be transverse.

  13. Polarization diversity scheme on spectral polarization coding optical code-division multiple-access network

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chang, Yao-Tang; Chen, Bo-Hau

    2010-12-01

    We present an experiment demonstrating the spectral-polarization coding optical code-division multiple-access system introduced with a nonideal state of polarization (SOP) matching conditions. In the proposed system, the encoding and double balanced-detection processes are implemented using a polarization-diversity scheme. Because of the quasiorthogonality of Hadamard codes combining with array waveguide grating routers and a polarization beam splitter, the proposed codec pair can encode-decode multiple code words of Hadamard code while retaining the ability for multiple-access interference cancellation. The experimental results demonstrate that when the system is maintained with an orthogonal SOP for each user, an effective reduction in the phase-induced intensity noise is obtained. The analytical SNR values are found to overstate the experimental results by around 2 dB when the received effective power is large. This is mainly limited by insertion losses of components and a nonflattened optical light source. Furthermore, the matching conditions can be improved by decreasing nonideal influences.

  14. SU-E-T-37: An Optical Investigation Into the Polarization and Scattering Effects Underlying the Artifacts of Radiochromic Film Dosimetry with Commercial Flatbed Scanners

    International Nuclear Information System (INIS)

    Schoenfeld, A; Poppinga, D; Poppe, B; Harder, D; Doerner, K

    2014-01-01

    Purpose: This study aims to investigate the optical properties of radiochromic EBT3 films on exposure to polarized incident light. Methods: An optical table setup was used to investigate the properties of exposed and unexposed EBT3 films. The films were placed with their long side horizontally and illuminated with polarized incident white light. The polarization of light with the electrical vector pointing vertically is referred to as 0°, accordingly horizontal orientation corresponds to 90°. The light transmission was measured depending on the polarization angle of the incident light and the polarization of a polarizer in front of the detector. Secondly, the scattering properties of exposed and unexposed films were measured by placing a plane convex lens behind the films and a screen in its focal plane. Thereby, the distribution of the scattering angles appears as an intensity map on the screen. The distributions of scattering angles caused by EBT3 films and by neutral density filters were compared. Results: EBT3 films show a strong dependence of the light transmission on the polarization of the incident light. With both polarizers parallel, a peak transmission was found at 90° orientation of the polarizers. With the rear polarizer at right angles with the front polarizer, peak transmissions were found at front polarizer orientations 45° and 135°. The scattering appears to be anisotropic with a preference direction parallel to the long side of the film. The portion of scattered light and the half value scattering angle both increase with the dose on the film. Conclusion: EBT3 films show dose dependent changes in polarized light transmission and anisotropic light scattering. These effects impair the light absorption measurements on exposed films performed with commercial flatbed scanners and are causing the well-known artifacts of radiochromic film dosimetry with flatbed scanners, the “orientation effect” and the “parabola effect”

  15. Adaptive polarization image fusion based on regional energy dynamic weighted average

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-qiang; PAN Quan; ZHANG Hong-cai

    2005-01-01

    According to the principle of polarization imaging and the relation between Stokes parameters and the degree of linear polarization, there are much redundant and complementary information in polarized images. Since man-made objects and natural objects can be easily distinguished in images of degree of linear polarization and images of Stokes parameters contain rich detailed information of the scene, the clutters in the images can be removed efficiently while the detailed information can be maintained by combining these images. An algorithm of adaptive polarization image fusion based on regional energy dynamic weighted average is proposed in this paper to combine these images. Through an experiment and simulations,most clutters are removed by this algorithm. The fusion method is used for different light conditions in simulation, and the influence of lighting conditions on the fusion results is analyzed.

  16. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  17. Influence of surface roughness on the elastic-light scattering patterns of micron-sized aerosol particles

    Science.gov (United States)

    Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.

    2010-04-01

    The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.

  18. Use of polarization to separate on-axis scattered and unscattered light in red blood cells

    Science.gov (United States)

    Sardar, Dhiraj K.; Nemati, Babak; Barrera, Frederick J.

    1991-06-01

    The separation of on-axis scattered and unscattered transmission through turbid media has been a difficult experimental task in recent years. This study suggests the use of a polarimeter to filter out the contribution of scattered light to the net on-axis transmission. Red blood cells (RBC) were used to produce the scattering effect. The scattering level was varied by: (1) altering the distance of the detector from the sample, (2) using erythrocytes from three different species, e.g., the dog, goat, and human, which are know to have different RBC sizes, and (3) allowing the RBCs from each species to shrink and swell osmotically. An He-Ne laser was used as the source of the radiation so that data were obtained at a wavelength in the spectral region used in oximetry and hemoglobinometry. In each case, the difference in the scattering cross sections obtained for each sample, with and without polarization filtering, gave us a measure of the filtered scattered light. The results obtained were in close agreement with the expected contribution of scattered radiation to the net axial transmission. This method may be used effectively for all studies involving measurements of on-axis transmission through turbid media, such as biological tissue.

  19. Circularly Polarized Light with Sense and Wavelengths To Regulate Azobenzene Supramolecular Chirality in Optofluidic Medium.

    Science.gov (United States)

    Wang, Laibing; Yin, Lu; Zhang, Wei; Zhu, Xiulin; Fujiki, Michiya

    2017-09-20

    Circularly polarized light (CPL) as a massless physical force causes absolute asymmetric photosynthesis, photodestruction, and photoresolution. CPL handedness has long been believed to be the determining factor in the resulting product's chirality. However, product chirality as a function of the CPL handedness, irradiation wavelength, and irradiation time has not yet been studied systematically. Herein, we investigate this topic using achiral polymethacrylate carrying achiral azobenzene as micrometer-size aggregates in an optofluidic medium with a tuned refractive index. Azobenzene chirality with a high degree of dissymmetry ratio (±1.3 × 10 -2 at 313 nm) was generated, inverted, and switched in multiple cycles by irradiation with monochromatic incoherent CPL (313, 365, 405, and 436 nm) for 20 s using a weak incoherent light source (≈ 30 μW·cm -2 ). Moreover, the optical activity was retained for over 1 week in the dark. Photoinduced chirality was swapped by the irradiating wavelength, regardless of whether the CPL sense was the same. This scenario is similar to the so-called Cotton effect, which was first described in 1895. The tandem choice of both CPL sense and its wavelength was crucial for azobenzene chirality. Our experimental proof and theoretical simulation should provide new insight into the chirality of CPL-controlled molecules, supramolecules, and polymers.

  20. Polarimetry and photometry of the AM Her polar

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Yu S; Shakhovskoj, N M

    1982-01-01

    The results of the polarization observations and photometry of AM Her obtained during 11 nights from April to September 1978 are presented. The observations were carried out in V spectral region with time resolution of about four minutes. The results of measurements are in agreement with previous observations. The polarization maximum, being mostly on the 1.3 % level, was rising up to 2 % only at an active state of the star. No correlation was found between rapid variations of light and linear polarization at an inactive state of the star. The phase dependence of mean polarization parameters is revealed. The displaced dipole magnetic field with different strength on the poles is assumed for the polar model to interpret the vector diagram of polarization.