WorldWideScience

Sample records for polarized cell monolayer

  1. Secretion of endogenous and exogenous proteins from polarized MDCK cell monolayers.

    Science.gov (United States)

    Gottlieb, T A; Beaudry, G; Rizzolo, L; Colman, A; Rindler, M; Adesnik, M; Sabatini, D D

    1986-04-01

    Confluent monolayers of MDCK (Madin-Darby canine kidney) cells provide a widely used system to study the biogenesis of epithelial cell polarity. We now report that these cells are also capable of the vectorial constitutive secretion of a major endogenous product, a glycoprotein of 81 kDa, which is released into the medium from the apical surface within 30 min of its synthesis. This release represents a bona fide exocytotic secretory process and is not the result of proteolytic cleavage of a plasma membrane-associated precursor since, in cells treated with chloroquine, a protein indistinguishable from the mature secretory product accumulated intracellularly. In contrast to the vectorial secretion of the endogenous product, a variety of exogenous exocrine and endocrine proteins synthesized in MDCK cells transfected with the corresponding genes were secreted from both the apical and basolateral surfaces. These included proteins such as rat growth hormone, chicken oviduct lysozyme, bovine gastric prochymosin, and rat salivary gland alpha 2u-globulin, which in their cells of origin are secreted via a regulated pathway, as well as the liver form of the alpha 2u-globulin and the immunoglobulin kappa chain, which are normally released constitutively. These results demonstrate the existence of secretory pathways that lead to both surfaces of MDCK cells and are accessible to the foreign secretory products. They are consistent with the operation of a sorting mechanism in which the polarized secretion of the endogenous product is effected through the recognition of signals that prevent its random distribution within the fluid phase in the cellular endomembrane system.

  2. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

    Directory of Open Access Journals (Sweden)

    Boris V. Stanzel

    2014-01-01

    Full Text Available Transplantation of the retinal pigment epithelium (RPE is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC and induced pluripotent stem cell (iPSC-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies.

  3. A Route to Permanent Valley Polarization in Monolayer MoS2

    KAUST Repository

    Singh, Nirpendra

    2016-10-24

    Realization of permanent valley polarization in Cr-doped monolayer MoS2 is found to be unfeasible because of extended moment formation. Introduction of an additional hole is suggested as a viable solution. V-doped monolayer MoS2 is demonstrated to sustain permanent valley polarization and therefore can serve as a prototype material for valleytronics.

  4. Magnetic field induced polarization enhancement in monolayers of tungsten dichalcogenides: effects of temperature

    Science.gov (United States)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Molas, M. R.; Nogajewski, K.; Faugeras, C.; Potemski, M.; Kossacki, P.

    2018-01-01

    Optical orientation of localized/bound excitons is shown to be effectively enhanced by the application of magnetic fields as low as 20 mT in monolayer WS2. At low temperatures, the evolution of the polarization degree of different emission lines of monolayer WS2 with increasing magnetic fields is analyzed and compared to similar results obtained on a WSe2 monolayer. We study the temperature dependence of this effect up to T=60 K for both materials, focusing on the dynamics of the valley pseudospin relaxation. A rate equation model is used to analyze our data and from the analysis of the width of the polarization dip in magnetic field we conclude that the competition between the dark exciton pseudospin relaxation and the decay of the dark exciton population into the localized states are rather different in these two materials which are representative of the two extreme cases for the ratio of relaxation rate and depolarization rate.

  5. An oscillating dynamic model of collective cells in a monolayer

    Science.gov (United States)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  6. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  7. Superior Valley Polarization and Coherence of 2 s Excitons in Monolayer WSe2

    Science.gov (United States)

    Chen, Shao-Yu; Goldstein, Thomas; Tong, Jiayue; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jun

    2018-01-01

    We report the experimental observation of 2 s exciton radiative emission from monolayer tungsten diselenide, enabled by hexagonal boron nitride protected high-quality samples. The 2 s luminescence is highly robust and persists up to 150 K, offering a new quantum entity for manipulating the valley degree of freedom. Remarkably, the 2 s exciton displays superior valley polarization and coherence than 1 s under similar experimental conditions. This observation provides evidence that the Coulomb-exchange-interaction-driven valley-depolarization process, the Maialle-Silva-Sham mechanism, plays an important role in valley excitons of monolayer transition metal dichalcogenides.

  8. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show......We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...

  9. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  10. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    Science.gov (United States)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  11. Elastic properties of cells in the context of confluent cell monolayers: impact of tension and surface area regulation

    OpenAIRE

    Pietuch, Anna; Brückner, Bastian Rouven; Fine, Tamir; Mey, Ingo; Janshoff, Andreas

    2013-01-01

    Epithelial cells usually form a dense continuous cobblestone-like sheet that is frequently exposed to a variety of mechanical challenges encompassing osmotic stress and external forces. The response to external forces was investigated and the question of how individual polar epithelial cells organized in confluent monolayers respond to pharmaceutical stimuli targeting the key players of cellular mechanics was answered. In particular, we ask how epithelial cells respond to changes ...

  12. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  13. Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction

    Science.gov (United States)

    Qiu, Xuejun; Lv, Qiang; Cao, Zhenzhou

    2018-05-01

    In this work, we have theoretically investigated the influence of velocity barrier on the spin-valley polarized transport in monolayer (ML) WSe2 junction with a large spin-orbit coupling (SOC). Both the spin-valley resolved transmission probabilities and conductance are strong dependent on the velocity barrier, as the velocity barrier decreases to 0.06, a spin-valley polarization of exceeding 90% is observed, which is distinct from the ML MoS2 owing to incommensurable SOC. In addition, the spin-valley polarization is further increased above 95% in a ML WSe2 superlattice, in particular, it's found many extraordinary velocity barrier-dependent transport gaps for multiple barrier due to evanescent tunneling. Our results may open an avenue for the velocity barrier-controlled high-efficiency spin and valley polarizations in ML WSe2-based electronic devices.

  14. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  15. Optically initialized robust valley-polarized holes in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2015-11-25

    A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (~10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.

  16. EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer.

    Science.gov (United States)

    Simovitch, Michal; Sason, Hagit; Cohen, Shulamit; Zahavi, Eitan Erez; Melamed-Book, Naomi; Weiss, Aryeh; Aroeti, Benjamin; Rosenshine, Ilan

    2010-04-01

    Enterohaemorrhagic Escherichia coli and enteropathogenic E. coli are enteropathogens characterized by their ability to induce the host cell to form actin-rich structures, termed pedestals. A type III secretion system, through which the pathogens deliver effector proteins into infected host cells, is essential for their virulence and pedestal formation. Enterohaemorrhagic E. coli encodes two similar effectors, EspM1 and EspM2, which activate the RhoA signalling pathway and induce the formation of stress fibres upon infection of host cells. We confirm these observations and in addition show that EspM inhibits the formation of actin pedestals. Moreover, we show that translocation of EspM into polarized epithelial cells induces dramatic changes in the tight junction localization and in the morphology and architecture of infected polarized monolayers. These changes are manifested by altered localization of the tight junctions and 'bulging out' morphology of the cells. Surprisingly, despite the dramatic changes in their architecture, the cells remain alive and the epithelial monolayer maintains a normal barrier function. Taken together, our results show that the EspM effectors inhibit pedestal formation and induce tight junction mislocalization as well as dramatic changes in the architecture of the polarized monolayer.

  17. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  18. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. © 2014. Published by The Company of Biologists Ltd.

  19. Microculture system for studying monolayers of functional beta-cells.

    Science.gov (United States)

    Dobersen, M J; Scharff, J E; Notkins, A L

    1980-04-01

    A method is described for growing monolayers of newborn rat beta-cells in microculture trays. After disruption of the pancreas with collagenase, islets were isolated by Ficoll density gradient centrifugation, trypsinized to obtain individual cells, and plated in 96-well tissue culture trays. The cells were incubated for the first 3 days in growth medium containing 0.1 mM 3-isobutyl-1-methylxanthine to promote monolayer formation. The cultures could be maintained in a functional state, as defined by their responsiveness to known modulators of insulin secretion, for at least 2 weeks. As few as 1 X 10(3) islet cells/well gave results that were reproducible within +/- 10%. It is suggested that the microculture system for islet cells might prove to be a rapid and reproducible screening technique for studying drugs, viruses, or other agents that affect beta-cell function.

  20. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related......, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis....

  1. Subcellular topological effect of particle monolayers on cell shapes and functions.

    Science.gov (United States)

    Miura, Manabu; Fujimoto, Keiji

    2006-12-01

    We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell-cell adhesion became stronger than cell-substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm(-2), some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and

  2. Large Spin-Valley Polarization in Monolayer MoTe2 on Top of EuO(111)

    KAUST Repository

    Zhang, Qingyun

    2015-12-08

    The electronic properties of monolayer MoTe2 on top of EuO(111) are studied by first-principles calculations. Strong spin polarization is induced in MoTe2, which results in a large valley polarization. In a longitudinal electric field this will result in a valley and spin-polarized charge Hall effect. The direction of the Hall current as well as the valley and spin polarizations can be tuned by an external magnetic field. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Carrier and polarization dynamics in monolayer MoS2: temperature and power dependence

    Science.gov (United States)

    Urbaszek, Bernhard; Lagarde, D.; Bouet, L.; Amand, T.; Marie, X.; Zhu, C. R.; Liu, B. L.; Tan, P. H.

    2014-03-01

    In monolayer (ML) MoS2 optical transitions across the direct bandgap are governed by chiral selection rules, allowing optical k-valley initialization. Here we present the first time resolved photoluminescence (PL) polarization measurements in MoS2 MLs, providing vital information on the electron valley dynamics. Using quasi-resonant excitation of the A-exciton transitions, we can infer that the PL decays within τ ~= 4ps. The PL polarization of Pc ~ 60 % remains nearly constant in time for experiments from 4K - 300K, a necessary condition for the success of future Valley Hall experiments. τ does not vary significantly over this temperature range. This is surprising when considering the decrease of Pc in continuous wave experiments when going from 4K to 300K reported in the literature. By tuning the laser following the shift of the A-exciton resonance with temperature we are able to recover at 300K ~ 80 % of the polarization observed at 4K. For pulsed laser excitation, we observe a decrease of Pc with increasing laser power at all temperatures.

  4. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  5. Quantifying cell behaviors in negative-pressure induced monolayer cell movement

    Directory of Open Access Journals (Sweden)

    Shu-Er Chow

    2016-02-01

    Conclusion: A quick membrane ruffling formation, an early cell–substratum separation, and an ensuing decrease in the cellular interaction occur in cells at NP. These specific monolayer cell behaviors at NP have been quantified and possibly accelerate wound healing.

  6. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R.; Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); García Bermúdez, Gerardo, E-mail: ggb@tandar.cnea.gov.ar [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Escuela de Ciencia y Tecnología, UNSAM (Argentina)

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  7. Transport of curcumin derivatives in Caco-2 cell monolayers.

    Science.gov (United States)

    Zeng, Zhen; Shen, Zhe L; Zhai, Shuo; Xu, Jia L; Liang, Hui; Shen, Qin; Li, Qing Y

    2017-08-01

    Curcumin (Cur) is a strong natural antioxidant, who can prevent multiple diseases such as anti-cancer, anti-inflammatory, have a resistance to alzheimer's disease and various malignant diseases. But it has poor oral bioavailability due to its poor aqueous solubility, as well as instability. While its novel derivatives (CB and FE), showed better anti-tumor activity, better anti-oxidant activity and better stability than the original drug (Cur). The aim of this study was to study the intestinal transport of Cur, CB and FE using an in vitro Caco-2 cell monolayer model. The results showed that Cur had a lower permeability coefficient (1.13×10 -6 ±0.11×10 -6 cm/s) for apical-to-basolated (AP-BL) transport at 25μM, while the transport rate for AP to BL flux of CB (3.18×10 -6 ±0.31×10 -6 cm/s) and FE (5.28×10 -6 ±0.83×10 -6 cm/s) were significantly greater than that of Cur. The efflux ratio (ER) value at the concentration of 25μM was 1.31 for Cur, 1.26 for CB and 1.33 for FE, suggesting there was no active efflux involved in the translocation across the Caco-2 cell monolayers for the three compounds. Furthermore, the transport flux of CB and FE was in a concentration dependent manner, suggesting the intestinal transport mechanism in them was passive transport. In summary, the results demonstrated that both the intestinal permeability of CB and FE across Caco-2 cell monolayers was significantly improved compare to Cur. Thus they might show a higher oral bioavailability in vivo, and show the potential application in clinic or nutraceutical. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Acamprosate permeability across Caco-2 cell monolayer is predominantly paracellular

    DEFF Research Database (Denmark)

    Antonescu, Irina-Elena; Steffansen, Bente

    Background. The human oral bioavailability (BA) of acamprosate is 11% and its oral absorption is permeability limited (BCS class III). Acamprosate is not metabolized, therefore it’s BA has the same nominal value as its fraction absorbed (fa). It is however controversial whether the intestinal...... in the different regions of the rodent small intestine and colon. Biopharm Drug Dispos. 2017;38(2):94-114. 2. Avdeef A. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers-interlaboratory comparison. Pharm Res. 2010;27(3):480-9. 3. Avdeef A. Absorption and Drug Development...

  9. Anisotropic hybrid excitation modes in monolayer and double-layer phosphorene on polar substrates

    Science.gov (United States)

    Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2017-09-01

    We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer and double-layer phosphorene systems located on the polar substrates, such as SiO2, h -BN, and Al2O3 . We calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via Fröhlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function. Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the misalignment and separation between layers in double-layer phosphorene.

  10. Characterization of zinc (Zn) transport across Caco-2 cell monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Wapnir, R.A.; Raffaniello, R.; Shihyu Lee (North Shore Univ. Hospital, Manhasset, NY (United States))

    1991-03-15

    Colonic carcinoma Caco-2 cells grown as a monolayer exhibit many of the characteristics of the small intestine including inducibility of metallothionein by Zn. The authors have now characterized the transport of Zn across confluent, 14 day in vitro Caco-2 monolayers grown on polycarbonate support membranes. Both uptake and transport across the cells were linear for at least 10 min. Zn cell uptake in the mucosa-to-serosa (m-s) direction was saturable, with a K{sub t} = 23.8 {plus minus} 7.8 {mu}M. J{sub max} was 0.46 {plus minus} 0.08 {mu}mol/cm{sup 2} {times} 10 min. Transcellular passage was concentration dependent. In the (s-m) direction, the K{sub t} of Zn cell uptake was 59 {plus minus} 13 {mu}M and that of the transcellular transport was 103 {plus minus} 53 {mu}M. Cell uptake J{sub max} was 0.98 {plus minus} 0.11 {mu}mol/cm{sup 2} {times} 10 min, and transcellular transport J{sub max} was 2.90 {plus minus} 0.47 {mu}mol/cm{sup 2} {times} 10 min. Low molecular weight ligands (histidine, cysteine, proline or glutathione at 1 mM each), added to the mucosal side, did not alter Zn cell uptake or transmembrane passage. Potential transport inhibitors such as ouabain or vanadate, or metabolic inhibitors also had no effect. Zn transport and cell uptake by Caco-2 cells are kinetically comparable to those of in vivo systems and could serve as a valid model for Zn absorption studies.

  11. Regulation of cell polarity by cell adhesion receptors.

    Science.gov (United States)

    Ebnet, Klaus; Kummer, Daniel; Steinbacher, Tim; Singh, Amrita; Nakayama, Masanori; Matis, Maja

    2017-07-22

    The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  13. Quantification of stromal vascular cell mechanics with a linear cell monolayer rheometer

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Claire M., E-mail: cma9@stanford.edu; Fuller, Gerald G. [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Shen, Wen-Jun; Khor, Victor K.; Kraemer, Fredric B. [Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California 94305 and Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304 (United States)

    2015-01-15

    Over the past few decades researchers have developed a variety of methods for measuring the mechanical properties of whole cells, including traction force microscopy, atomic force microscopy (AFM), and single-cell tensile testing. Though each of these techniques provides insight into cell mechanics, most also involve some nonideal conditions for acquiring live cell data, such as probing only one portion of a cell at a time, or placing the cell in a nonrepresentative geometry during testing. In the present work, we describe the development of a linear cell monolayer rheometer (LCMR) and its application to measure the mechanics of a live, confluent monolayer of stromal vascular cells. In the LCMR, a monolayer of cells is contacted on both top and bottom by two collagen-coated plates and allowed to adhere. The top plate then shears the monolayer by stepping forward to induce a predetermined step strain, while a force transducer attached to the top plate collects stress information. The stress and strain data are then used to determine the maximum relaxation modulus recorded after step-strain, G{sub r}{sup 0}, referred to as the zero-time relaxation modulus of the cell monolayer. The present study validates the ability of the LCMR to quantify cell mechanics by measuring the change in G{sub r}{sup 0} of a confluent cell monolayer upon the selective inhibition of three major cytoskeletal components (actin microfilaments, vimentin intermediate filaments, and microtubules). The LCMR results indicate that both actin- and vimentin-deficient cells had ∼50% lower G{sub r}{sup 0} values than wild-type, whereas tubulin deficiency resulted in ∼100% higher G{sub r}{sup 0} values. These findings constitute the first use of a cell monolayer rheometer to quantitatively distinguish the roles of different cytoskeletal elements in maintaining cell stiffness and structure. Significantly, they are consistent with results obtained using single-cell mechanical testing methods

  14. Acamprosate permeability across Caco-2 cell monolayer is predominantly paracellular

    DEFF Research Database (Denmark)

    Antonescu, Irina-Elena; Steffansen, Bente

    was mathematically accounting for the unstirred boundary layer permeability (PUBL), the filter permeability (Pf), the intrinsic passive transcellular permeability (Ptrans,0) and Ppara (1-3). The mathematical model thereby accounted for (i) the physical-chemical properties of acamprosate and mannitol (molecular...... role in acamprosate permeability, as only a very low fraction of acamprosate is in the neutral form at pH 7.4. The estimated acamprosate Ppara accounts for nearly 100% of the mathematically determined acamprosate Papp, calc (0.20 ± 0.10 x 10-6 cm/s), which matches well with the experimentally...... in the different regions of the rodent small intestine and colon. Biopharm Drug Dispos. 2017;38(2):94-114. 2. Avdeef A. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers-interlaboratory comparison. Pharm Res. 2010;27(3):480-9. 3. Avdeef A. Absorption and Drug Development...

  15. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    Science.gov (United States)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  16. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration

    OpenAIRE

    Gan, Zhuo; Ding, Liya; Burckhardt, Christoph J.; Lowery, Jason; Zaritsky, Assaf; Sitterley, Karlyndsay; Mota, Andressa; Costigliola, Nancy; Starker, Colby G.; Voytas, Daniel F.; Tytell, Jessica; Goldman, Robert D.; Danuser, Gaudenz

    2016-01-01

    Increased expression of vimentin intermediate filaments (VIF) enhances directed cell migration, but the mechanism behind VIF’s effect on motility is not understood. VIF interact with microtubules, whose organization contributes to polarity maintenance in migrating cells. Here we characterize the dynamic coordination of VIF and microtubule networks in wounded monolayers of Retinal Pigment Epithelial cells. By genome editing we fluorescently labelled endogenous vimentin and α-...

  17. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  18. Long-term Renewable Human Intestinal Epithelial Stem Cells as Monolayers: A Potential for Clinical Use

    Science.gov (United States)

    Scott, Andrew; Rouch, Joshua D; Jabaji, Ziyad; Khalil, Hassan A; Solorzano, Sergio; Lewis, Michael; Martín, Martín G.; Stelzner, Matthias G.; Dunn, James C.Y.

    2016-01-01

    Purpose Current culture schema for human intestinal stem cells (hISCs) frequently rely on a 3D culture system using Matrigel™, a laminin-rich matrix derived from murine sarcoma that is not suitable for clinical use. We have developed a novel 2D culture system for the in vitro expansion of hISCs as an intestinal epithelial monolayer without the use of Matrigel. Methods Cadaveric duodenal samples were processed to isolate intestinal crypts from the mucosa. Crypts were cultured on a thin coat of type I collagen or laminin. Intestinal epithelial monolayers were supported with growth factors to promote self-renewal or differentiation of the hISCs. Proliferating monolayers were sub-cultured every 4–5 days. Results Intestinal epithelial monolayers were capable of long-term cell renewal. Less differentiated monolayers expressed high levels of gene marker LGR5, while more differentiated monolayers had higher expressions of CDX2, MUC2, LYZ, DEF5, and CHGA. Furthermore, monolayers were capable of passaging into a 3D culture system to generate spheroids and enteroids. Conclusion This 2D system is an important step to expand hISCs for further experimental studies and for clinical cell transplantation. PMID:26995514

  19. The effect of hyperosmosis on paracellular permeability in Caco-2 cell monolayers.

    Science.gov (United States)

    Inokuchi, Hitoshi; Takei, Takuto; Aikawa, Katsuyoshi; Shimizu, Makoto

    2009-02-01

    The intestinal epithelium is a significant barrier to oral absorption of hydrophilic compounds, and their passage through the intercellular space is restricted by the tight junctions. In this study we found that hyperosmosis is a significant factor altering paracellular transport in Caco-2 cell monolayers. Osmotic regulators, such as sodium chloride, mannitol, and raffinose, decreased transepithelial electrical resistance and enhanced lucifer yellow permeability. The effect of these osmotic regulators on Caco-2 cell monolayers was not likely to be caused by gross cytotoxicity. Although certain amino acids and oligosaccharides have been reported to have specific tight junction-modulating activity, we found that the increased paracellular permeability of Caco-2 monolayers induced by these compounds was at least partly due to the increased osmotic pressure of the test solutions. These findings provide a new potential precaution in the evaluation of paracellular permeability-modulating substances using the Caco-2 cell monolayer system.

  20. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  1. Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2

    Science.gov (United States)

    Milovic, Vladan; Turchanowa, Lyudmila; Stein, Jürgen; Caspary, Wolfgang F.

    2001-01-01

    AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The transepithelial transport and the cellular accumulation of putrescine was measured using Caco-2 cell monolayers grown on permeable filters. RESULTS: Transepithelial transport of putrescine in physiological concentrations ( > 0.5 mM) from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical to basolateral direction.EGF enhanced putrescine accumulation in Caco-2 cells by four fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of S adenosylmethionine decarboxylase. However, EGF did not have any significant influence on putrescine flux across the Caco- 2 cell monolayers. Excretion of putrescine from Caco-2 cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber, contributed hundreds of micromoles polyamines to the basolateral chamber. CONCLUSION: Transepithelial transport of putrescine across Caco-2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF. PMID:11819759

  2. [Cell polarity in the cardiovascular system].

    Science.gov (United States)

    Haller, C; Kübler, W

    1999-05-01

    The importance of cell polarity as a fundamental biological principle is increasingly recognized in the cardiovascular system. Polar cell mechanisms underlie not only the development of the heart and blood vessels, but also play a major role in the adult organism for polarized endothelial functions such as the separation of the intra- and extravascular compartment and the vectorial exchange of substances between these compartments. Endothelial cells are connected through intercellular junctions which separate the functionally and structurally distinct luminal and abluminal cell surfaces. The luminal plasma membrane is in contact with the blood and takes part in the regulation of hemostasis. The abluminal cell membrane connects the endothelial cell with the basement membrane and modulates blood flow through the release of vasoactive substances. Results from epithelial model systems have shown that the polarized cell phenotype is generated by specific protein sorting and regulated protein trafficking between the trans-Golgi network and the cell surface. The polarized distribution of cell membrane proteins is maintained by anchorage with the cytoskeleton and limitation of lateral diffusion by tight junctions. Disturbances of cell polarity may contribute to the pathogenesis of disease states, including ischemic and radiocontrast-induced acute renal failure and carcinomas. Recent results have demonstrated the importance of cholesterol for protein traffic from the trans-Golgi network to the apical cell membrane. This novel intracellular function of cholesterol could point to a connection between cell polarity and the pathogenesis of arteriosclerosis. The polarity of the endothelium also has to be taken into account when developing gene-therapeutic strategies, since therapeutic success will not only depend on the efficient expression of the desired gene product, but also on its correct cellular location or secretion into the correct extracellular compartment. These

  3. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Zhang, Yan; Liu, Jingbo

    2015-09-23

    The objective of this study was to investigate the transepithelial transport of RVPSL (Arg-Val-Pro-Ser-Leu), an egg-white-derived peptide with angiotensin I-converting enzyme (ACE) inhibitory and antihypertensive activity, in human intestinal Caco-2 cell monolayers. Results revealed that RVPSL could be passively transported across Caco-2 cell monolayers. However, during the process of transport, 36.31% ± 1.22% of the initial RVPSL added to the apical side was degraded, but this degradation decreased to 23.49% ± 0.68% when the Caco-2 cell monolayers were preincubated with diprotin A (P transport from the apical side to the basolateral side was investigated, the apparent permeability coefficient (Papp) was (6.97 ± 1.11) × 10(-6) cm/s. The transport route of RVPSL appears to be the paracellular pathway via tight junctions, as only cytochalasin D, a disruptor of tight junctions (TJs), significantly increased the transport rate (P transport across Caco-2 cell monolayers was studied by mutation of RVPSL. It was found that N-terminal Pro residues were more beneficial for transport of pentapeptides across Caco-2 cell monolayers than Arg and Val. Furthermore, RVPSL could be more easily transported as smaller peptides, especially in the form of dipeptides and tripeptides.

  4. Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer.

    Science.gov (United States)

    Lee, Meng-Horng; Wu, Pei-Hsun; Staunton, Jack Rory; Ros, Robert; Longmore, Gregory D; Wirtz, Denis

    2012-06-20

    The mechanical and adhesive properties of cancer cells significantly change during tumor progression. Here we assess the functional consequences of mismatched stiffness and adhesive properties between neighboring normal cells on cancer cell migration in an epithelial-like cell monolayer. Using an in vitro coculture system and live-cell imaging, we find that the speed of single, mechanically soft breast carcinoma cells is dramatically enhanced by surrounding stiff nontransformed cells compared with single cells or a monolayer of carcinoma cells. Soft tumor cells undergo a mode of pulsating migration that is distinct from conventional mesenchymal and amoeboid migration, whereby long-lived episodes of slow, random migration are interlaced with short-lived episodes of extremely fast, directed migration, whereas the surrounding stiff cells show little net migration. This bursty migration is induced by the intermittent, myosin II-mediated deformation of the soft nucleus of the cancer cell, which is induced by the transient crowding of the stiff nuclei of the surrounding nontransformed cells, whose movements depend directly on the cadherin-mediated mismatched adhesion between normal and cancer cells as well as α-catenin-based intercellular adhesion of the normal cells. These results suggest that a mechanical and adhesive mismatch between transformed and nontransformed cells in a cell monolayer can trigger enhanced pulsating migration. These results shed light on the role of stiff epithelial cells that neighbor individual cancer cells in early steps of cancer dissemination. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Magnetic and electric control of spin- and valley-polarized transport across tunnel junctions on monolayer WSe2

    Science.gov (United States)

    Tahir, M.; Krstajić, P. M.; Vasilopoulos, P.

    2017-06-01

    The recent experimental realization of high-quality WSe2 leads to the possibility of an efficient manipulation of its spin and valley degrees of freedom. Its electronic properties comprise a huge spin-orbit coupling, a direct band gap, and a strong anisotropic lifting of the degeneracy of the valley degree of freedom in a magnetic field. We evaluate its band structure and study ballistic electron transport through single and double junctions (or barriers) on monolayer WSe2 in the presence of spin Ms and valley Mv Zeeman fields and of an electric potential U . The conductance versus the field Ms or Mv decreases in a fluctuating manner. For a single junction, the spin Ps and valley Pv polarizations rise with M =Mv=2 Ms , reach a value of more than 55 % , and become perfect above U ≈45 meV while for a double junction this change can occur for U ≥50 meV and M ≥5 meV. In certain regions of the (M ,U ) plane Pv becomes perfect. The conductance gc, its spin-up and spin-down components, and both polarizations oscillate with the barrier width d . The ability to isolate various carrier degrees of freedom in WSe2 may render it a promising candidate for new spintronic and valleytronic devices.

  6. Symmetry breaking signaling mechanisms during cell polarization

    NARCIS (Netherlands)

    Bruurs, LJM

    2017-01-01

    Breaking of cellular symmetry in order to establish an apico-basal polarity axis initiates de novo formation of cell polarity. However, symmetry breaking provides a formidable challenge from a signaling perspective, because by definition no spatial cues are present to instruct axis establishment.

  7. A protocol for isolation and enriched monolayer cultivation of neural precursor cells from mouse dentate gyrus

    OpenAIRE

    Harish eBabu; Jan-Hendrik eClaasen; Jan-Hendrik eClaasen; Jan-Hendrik eClaasen; Suresh eKannan; Annette E. Rünker; Theo ePalmer; Gerd eKempermann; Gerd eKempermann

    2011-01-01

    In vitro assays are valuable tools to study the characteristics of adult neural precursor cells under controlled conditions with a defined set of parameters. We here present a detailed protocol based on our previous original publication (Babu et al., Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons, PLoS One 2007, 2:e388) to isolate neural precursor cells from the hippocampus of adult mice and maintain and pro...

  8. Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Francesca Mancuso

    2010-01-01

    Full Text Available The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM. Starting from isolated neonatal porcine pancreatic islets (NPIs, we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs for different time periods (7, 14, 21 days. To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM.

  9. Polarized Cell Division of Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Yasser Abdelrahman

    2016-08-01

    Full Text Available Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.

  10. Characterization of Influenza Virus-Induced Leukocyte Adherence to Human Umbilical Vein Endothelial Cell Monolayers

    Science.gov (United States)

    1993-07-01

    with other viruses. HL-60 cell adherence to endothelial cell virus type A, which did not infect human venous or bovine monolayers was modulated by...LEUCOCYTE ADHERENC:E TO [NDOTIIELIL (FS1% A. B reawsd on parainfluenza virus-infected airway epithelial Poiy-iiysine Codled IPLC) Wells PLC.Wells cells...an antibody against ICAN1- I has no significant effect PLC Wells Virus on parainfluenza -induced neutrophil adherence (58). In 25 *HSV-intected HUVEC

  11. A Protocol for Isolation and Enriched Monolayer Cultivation of Neural Precursor Cells from Mouse Dentate Gyrus

    OpenAIRE

    Babu, Harish; Claasen, Jan-Hendrik; Kannan, Suresh; Rünker, Annette E.; Palmer, Theo; Kempermann, Gerd

    2011-01-01

    In vitro assays are valuable tools to study the characteristics of adult neural precursor cells under controlled conditions with a defined set of parameters. We here present a detailed protocol based on our previous original publication (Babu et al., 2007) to isolate neural precursor cells from the hippocampus of adult mice and maintain and propagate them as adherent monolayer cultures. The strategy is based on the use of Percoll density gradient centrifugation to enrich precursor cells from ...

  12. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J. W.; Bekker, C. P.; Voorhout, W. F.; Horzinek, M. C.; van der Ende, A.; Strous, G. J.; Rottier, P. J.

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable

  13. Transfer plate radioassay using cell monolayers to detect anti-cell surface antibodies synthesized by lymphocyte hybridomas

    International Nuclear Information System (INIS)

    Schneider, M.D.; Eisenbarth, G.S.

    1979-01-01

    A solid phase [ 125 I] Protein A radioassay for anti-cell surface antibodies is described, which employs target cell monolayers cultured on fenestrated polyvinyl chloride 96-well plates ('transfer plates'). The calibrated aperture in the bottom of each well is small enough to retain fluid contents by surface tension during monolayer growth, but also permits fluid to enter the wells when transfer plate are lowered into receptacles containing washing buffer on test sera. To assay for antibodies directed against target cell surface antigens, transfer plates bearing monolayers are inserted into microculture plates with corresponding 96-well geometry, thereby simultaneously sampling 96 wells. This assay allows rapid screening of hundreds of hybrid cell colonies for production of antibodies with desired tissue specificity. (Auth.)

  14. Monitoring single-channel water permeability in polarized cells.

    Science.gov (United States)

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-11-18

    So far the determination of unitary permeability (p(f)) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability p(f) as a function of the incremental water permeability (P(f,c)) and the number (n) of water channels that contributed to P(f,c). Although the unitary conductance of ion channels is measured in the native environment of the channel, p(f) is so far derived from reconstituted channels or channels expressed in oocytes. To determine the p(f) of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both P(f,c) and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the p(f) of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on p(f).

  15. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    Science.gov (United States)

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future

    Science.gov (United States)

    Lehmann, Guillermo L.; Benedicto, Ignacio; Philp, Nancy J.; Rodriguez-Boulan, Enrique

    2015-01-01

    The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin–Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity. PMID:25152359

  17. Hypercapnia accelerates wound healing in endothelial cell monolayers exposed to hypoxia.

    Science.gov (United States)

    Tsuji, Takao; Aoshiba, Kazutetsu; Itoh, Masayuki; Nakamura, Hiroyuki; Yamaguchi, Kazuhiro

    2013-01-01

    While tissue hypoxia is known to play a critical role in the process of vascular injury and repair, the effect of hypercapnia on this process remains uncertain. We investigated whether hypercapnia might influence endothelial cell wound healing under the influence of hypoxia. Monolayers of human umbilical venous endothelial cells (HUVECs) were scratch-wounded and incubated under different levels of O2, CO2, and pH in the environment. Inhibition of wound healing was observed in the HUVEC monolayers under the hypoxic condition as compared to the normoxic condition. Both hypercapnic acidosis and buffered hypercapnia, but not normocapnic acidosis improved the rate of wound healing under the influence of hypoxia. The beneficial effect of hypercapnia was associated with stimulation of cell proliferation, without effects on cell adhesion, migration or apoptosis. On the other hand, the stimulatory effect of hypercapnia on wound healing and cell proliferation was not noted under normoxic conditions. These results suggest that hypercapnia, rather than acidosis per se, accelerated the wound healing in HUVEC monolayers cultured under hypoxic conditions. The effect of hypercapnia on wound healing was due, at least in part, to the stimulation of cell proliferation by hypercapnia.

  18. The role of secretory and endocytic pathways in the maintenance of cell polarity.

    Science.gov (United States)

    Ang, Su Fen; Fölsch, Heike

    2012-01-01

    Epithelial cells line virtually every organ cavity in the body and are important for vectorial transport through epithelial monolayers such as nutrient uptake or waste product excretion. Central to these tasks is the establishment of epithelial cell polarity. During organ development, epithelial cells set up two biochemically distinct plasma membrane domains, the apical and the basolateral domain. Targeting of correct constituents to each of these regions is essential for maintaining epithelial cell polarity. Newly synthesized transmembrane proteins destined for the basolateral or apical membrane domain are sorted into separate transport carriers either at the TGN (trans-Golgi network) or in perinuclear REs (recycling endosomes). After initial delivery, transmembrane proteins, such as nutrient receptors, frequently undergo multiple rounds of endocytosis followed by re-sorting in REs. Recent work in epithelial cells highlights the REs as a potent sorting station with different subdomains representing individual targeting zones that facilitate the correct surface delivery of transmembrane proteins.

  19. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2017-11-01

    Full Text Available A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF state to low resistance (ON state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  20. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Science.gov (United States)

    Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei

    2017-11-01

    A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  1. Choroid plexus epithelial monolayers – a cell culture model from porcine brain

    Directory of Open Access Journals (Sweden)

    Reichel Valeska

    2006-12-01

    Full Text Available Abstract Background The goal of the present study was to develop an in vitro choroid plexus (CP epithelial cell culture model for studying transport of protein-mediated drug secretion from blood to cerebrospinal fluid (CSF and vice versa. Methods Cells were isolated by mechanical and enzymatic treatment of freshly isolated porcine plexus tissue. Epithelial cell monolayers were grown and CSF secretion and transepithelial resistance were determined. The expression of f-actin as well as the choroid plexus marker protein transthyretin (TTR, were assessed. The expression of the export proteins p-glycoprotein (Pgp, Abcb1 and multidrug resistance protein 1 (Mrp1, Abcc1 was studied by RT-PCR, Western-blot and immunofluorescence techniques and their functional activity was assessed by transport and uptake experiments. Results Choroid plexus epithelial cells were isolated in high purity and grown to form confluent monolayers. Filter-grown monolayers displayed transendothelial resistance (TEER values in the range of 100 to 150 Ωcm2. Morphologically, the cells showed the typical net work of f-actin and expressed TTR at a high rate. The cultured cells were able to secrete CSF at a rate of 48.2 ± 4.6 μl/cm2/h over 2–3 hours. The ABC-export protein Mrp1 was expressed in the basolateral (blood-facing membranes of cell monolayers and intact tissue. P-glycoprotein showed only low expression within the apical (CSF directed membrane but was located more in sub-apical cell compartments. This finding was paralleled by the lack of directed excretion of p-glycoprotein substrates, verapamil and rhodamine 123. Conclusion It was demonstrated that CP epithelium can be isolated and cultured, with cells growing into intact monolayers, fully differentiating and with properties resembling the tissue in vivo. Thus, the established primary porcine CP model, allowing investigation of complex transport processes, can be used as a reliable tool for analysis of xenobiotic

  2. Transport in Caco-2 cell monolayers of antidiabetic cucurbitane triterpenoids from Momordica charantia fruits.

    Science.gov (United States)

    Wu, Shi-Biao; Yue, Grace G L; To, Ming-Ho; Keller, Amy C; Lau, Clara B S; Kennelly, Edward J

    2014-07-01

    Bitter melon, the fruit of Momordica charantia L. (Cucurbitaceae), is a widely-used treatment for diabetes in traditional medicine systems throughout the world. Various compounds have been shown to be responsible for this reputed activity, and, in particular, cucurbitane triterpenoids are thought to play a significant role. The objective of this study was to investigate the gastrointestinal transport of a triterpenoid-enriched n-butanol extract of M. charantia using a two-compartment transwell human intestinal epithelial cell Caco-2 monolayer system, simulating the intestinal barrier. Eleven triterpenoids in this extract were transported from the apical to basolateral direction across Caco-2 cell monolayers, and were identified or tentatively identified by HPLC-TOF-MS. Cucurbitane triterpenoids permeated to the basolateral side with apparent permeability coefficient (P app) values for 3-β-7-β,25-trihydroxycucurbita-5,23(E)-dien-19-al and momordicines I and II at 9.02 × 10(-6), 8.12 × 10(-6), and 1.68 × 10(-6)cm/s, respectively. Also, small amounts of these triterpenoids were absorbed inside the Caco-2 cells. This is the first report of the transport of the reputed antidiabetic cucurbitane triterpenoids in human intestinal epithelial cell monolayers. Our findings, therefore, further support the hypothesis that cucurbitane triterpenoids from bitter melon may explain, at least in part, the antidiabetic activity of this plant in vivo. Georg Thieme Verlag KG Stuttgart · New York.

  3. A monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells

    Science.gov (United States)

    Yan, X. H.; Wu, Ruizhe; Xu, J. B.; Luo, Zhengtang; Zhao, T. S.

    2016-04-01

    Methanol crossover due to the low selectivity of proton exchange membranes is a long-standing issue in direct methanol fuel cell technology. Here we attempt to address this issue by designing a composite membrane fabricated by sandwiching a monolayer graphene between two thin Nafion membranes to take advantage of monolayer graphene's selective permeability to only protons. The methanol permeability of the present membrane is demonstrated to have a 68.6% decrease in comparison to that of the pristine Nafion membrane. The test in a passive direct methanol fuel cell (DMFC) shows that the designed membrane retains high proton conductivity while substantially suppressing methanol crossover. As a result, the present membrane enables the passive DMFC to exhibit a decent performance even at a methanol concentration as high as 10.0 M.

  4. Effect of chum salmon egg lectin on tight junctions in Caco-2 cell monolayers.

    Science.gov (United States)

    Nemoto, Ryo; Yamamoto, Shintaro; Ogawa, Tomohisa; Naude, Ryno; Muramoto, Koji

    2015-05-05

    The effect of a chum salmon egg lectin (CSL3) on tight junction (TJ) of Caco-2 cell monolayers was investigated. The lectin opened TJ as indicated by the decrease of the transepithelial electrical resistance (TER) value and the increase of the permeation of lucifer yellow, which is transported via the TJ-mediated paracellular pathway. The effects of CSL3 were inhibited by the addition of 10 mM L-rhamnose or D-galactose which were specific sugars for CSL3. The lectin increased the intracellular Ca2+ of Caco-2 cell monolayers, that could be inhibited by the addition of L-rhamnose. The fluorescence immunostaining of β-actin in Caco-2 cell monolayers revealed that the cytoskeleton was changed by the CSL3 treatment, suggesting that CSL3 depolymerized β-actin to cause reversible TJ structural and functional disruption. Although Japanese jack bean lectin and wheat germ lectin showed similar effects in the decrease of the TER values and the increase of the intracellular Ca2+, they could not be inhibited by the same concentrations of simple sugars, such as D-glucose and N-acetyl-D-glucosamine.

  5. Effect of Chum Salmon Egg Lectin on Tight Junctions in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Ryo Nemoto

    2015-05-01

    Full Text Available The effect of a chum salmon egg lectin (CSL3 on tight junction (TJ of Caco-2 cell monolayers was investigated. The lectin opened TJ as indicated by the decrease of the transepithelial electrical resistance (TER value and the increase of the permeation of lucifer yellow, which is transported via the TJ-mediated paracellular pathway. The effects of CSL3 were inhibited by the addition of 10 mM L-rhamnose or D-galactose which were specific sugars for CSL3. The lectin increased the intracellular Ca2+ of Caco-2 cell monolayers, that could be inhibited by the addition of L-rhamnose. The fluorescence immunostaining of β-actin in Caco-2 cell monolayers revealed that the cytoskeleton was changed by the CSL3 treatment, suggesting that CSL3 depolymerized β-actin to cause reversible TJ structural and functional disruption. Although Japanese jack bean lectin and wheat germ lectin showed similar effects in the decrease of the TER values and the increase of the intracellular Ca2+, they could not be inhibited by the same concentrations of simple sugars, such as D-glucose and N-acetyl-D-glucosamine.

  6. Transport of lipid nano-droplets through MDCK epithelial cell monolayer.

    Science.gov (United States)

    Khatri, Pulkit; Shao, Jun

    2017-05-01

    This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, P.J.; Storch, J. (Harvard School of Public Health, Boston, MA (United States))

    1990-02-26

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of {sup 3}H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37{degrees}C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32{plus minus}4 and 24{plus minus}2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly.

  8. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    International Nuclear Information System (INIS)

    Trotter, P.J.; Storch, J.

    1990-01-01

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of 3 H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37 degrees C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32±4 and 24±2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly

  9. Enhanced detection of infectious hematopoietic necrosis virus by pretreatment of cell monolayers with polyethylene glycol

    Science.gov (United States)

    Batts, W.N.; Winton, J.R.

    1989-01-01

    To improve quantification of very low levels of infectious hematopoietic necrosis virus (IHNV) in samples of tissue, ovarian fluid, or natural water supplies, we tested the ability of polyethylene glycol (PEG) to enhance the sensitivity and speed of the plaque assay system. We compared 4, 7, and 10% solutions of PEG of molecular weight 6,000, 8,000, or 20,000 applied at selected volumes and for various durations. When cell monolayers of epithelioma papulosum cyprini (EPC), fathead minnow (FHM), chinook salmon embryo (CHSE-214), and bluegill fry (BF2) were pretreated with 7% PEG-20,000, they produced 4-17-fold increases in plaque assay titers of IHNV. The plaque assay titers of viral hemorrhagic septicemia virus, chum salmon reovirus, and chinook salmon paramyxovirus were also enhanced by exposure of CHSE-214 cells to PEG, but the titers of infectious pancreatic necrosis virus and Oncorhynchus masou virus were not substantially changed. Plaques formed by IHNV on PEG-treated EPC cells incubated at 15°C had a larger mean diameter at 6 d than those on control cells at 8 d; this suggests the assay could be shortened by use of PEG. Pretreatment of EPC cell monolayers with PEG enabled detection of IHNV in some samples that appeared negative with untreated cells. For example, when ovarian fluid samples from chinook salmon Oncorhynchus tshawytscha were inoculated onto untreated monolayers of EPC cells, IHNV was detected in only 11 of 51 samples; 17 of the samples were positive when PEG-treated EPC cells were used.PDF

  10. A protocol for isolation and enriched monolayer cultivation of neural precursor cells from mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Harish eBabu

    2011-07-01

    Full Text Available In vitro assays are valuable tools to study the characteristics of adult neural precursor cells under controlled conditions with a defined set of parameters. We here present a detailed protocol based on our previous original publication (Babu et al., Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons, PLoS One 2007, 2:e388 to isolate neural precursor cells from the hippocampus of adult mice and maintain and propagate them as adherent monolayer cultures. The strategy is based on the use of Percoll density gradient centrifugation to enrich precursor cells from the micro-dissected dentate gyrus. Based on the expression of Nestin and Sox2, a culture-purity of more than 98% can be achieved. The cultures are expanded under serum-free conditions in Neurobasal A medium with addition of the mitogens EGF and FGF2 as well as the supplements Glutamax-1 and B27. Under differentiation conditions, the precursor cells reliably generate approximately 30% neurons with appropriate morphological, molecular and electrophysiological characteristics that might reflect granule cell properties as their in vivo counterpart. We also highlight potential modifications to the protocol.

  11. Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell.

    Science.gov (United States)

    Gong, Feng; Wang, Hong; Wang, Zhong-Sheng

    2011-10-21

    Monolayer of PDDA/graphene/PDDA/H(2)PtCl(6) is fabricated on conductive glass using electrostatic layer-by-layer self-assembly technique, which is then converted to graphene/Pt monolayer for use as counter electrode in dye-sensitized solar cell (DSSC). As compared to the sputtered Pt counter electrode, the self-assembled monolayer reduces the Pt amount by about 1000-fold but exhibits comparable photovoltaic performance. This finding provides a new route to fabrication of cheap and efficient counter electrodes for flow-line production of DSSCs. This journal is © the Owner Societies 2011

  12. Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy

    Science.gov (United States)

    Shiraga, K.; Suzuki, T.; Kondo, N.; Tanaka, K.; Ogawa, Y.

    2015-06-01

    The hydration state in living cells is believed to be associated with various cellular activities. Nevertheless, in vivo characterization of intracellular hydration state under physiological condition has not been well documented to date. In this study, the hydration state of an intact HeLa cell monolayer was investigated by terahertz time-domain attenuated total reflection spectroscopy. Combined with the extended theory of Onsager, we found 23.8 ± 7.4% of HeLa intracellular water was hydrated to biomolecules (corresponding to 1.25 g H2O/g solute); exhibiting slower relaxation dynamics than bulk water.

  13. Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers

    Directory of Open Access Journals (Sweden)

    Stella W. Nowotarska

    2014-06-01

    Full Text Available Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE, 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin. Surface pressure–area (π-A and surface potential–area (Δψ-A isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial –lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.

  14. Hugl1 and Hugl2 in mammary epithelial cells: polarity, proliferation, and differentiation.

    Directory of Open Access Journals (Sweden)

    Atlantis Russ

    Full Text Available Loss of epithelial polarity is described as a hallmark of epithelial cancer. To determine the role of Hugl1 and Hugl2 expression in the breast, we investigated their localization in human mammary duct tissue and the effects of expression modulation in normal and cancer cell lines on polarity, proliferation and differentiation. Expression of Hugl1 and Hugl2 was silenced in both MCF10A cells and Human Mammary Epithelial Cells and cell lines were grown in 2-D on plastic and in 3-D in Matrigel to form acini. Cells in monolayer were compared for proliferative and phenotypic changes while acini were examined for differences in size, ability to form a hollow lumen, nuclear size and shape, and localization of key domain-specific proteins as a measure of polarity. We detected overlapping but distinct localization of Hugl1 and Hugl2 in the human mammary gland, with Hugl1 expressed in both luminal and myoepithelium and Hugl2 largely restricted to myoepithelium. On a plastic surface, loss of Hugl1 or Hugl2 in normal epithelium induced a mesenchymal phenotype, and these cells formed large cellular masses when grown in Matrigel. In addition, loss of Hugl1 or Hugl2 expression in MCF10A cells resulted in increased proliferation on Matrigel, while gain of Hugl1 expression in tumor cells suppressed proliferation. Loss of polarity was also observed with knockdown of either Hugl1 or Hugl2, with cells growing in Matrigel appearing as a multilayered epithelium, with randomly oriented Golgi and multiple enlarged nuclei. Furthermore, Hugl1 knock down resulted in a loss of membrane identity and the development of cellular asymmetries in Human Mammary Epithelial Cells. Overall, these data demonstrate an essential role for both Hugl1 and Hugl2 in the maintenance of breast epithelial polarity and differentiated cell morphology, as well as growth control.

  15. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    International Nuclear Information System (INIS)

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M.

    2005-01-01

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7 HIGH -polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium

  16. Effect of chitosan-coated alginate microspheres on the permeability of Caco-2 cell monolayers.

    Science.gov (United States)

    Silva, Catarina M; Veiga, Francisco; Ribeiro, António J; Zerrouk, Naïma; Arnaud, Philippe

    2006-10-01

    Alginate microspheres were prepared by emulsification/internal gelation and coated with chitosan. The ability of chitosan-coated alginate microspheres to increase the paracellular transport across Caco-2 cell monolayers was evaluated in comparison to uncoated microspheres and chitosan solutions. Transport studies were performed by using a permeability marker, Lucifer Yellow (LY), and by measuring the transepithelial electric resistance (TEER) variations. Furthermore, the occurrence of cytotoxic effects was assessed by evaluating neutral red uptake in viable cells and lactate dehydrogenase (LDH) release from damaged cells. A 3-fold increase on LY permeability was obtained for coated microspheres when compared to chitosan solutions. TEER variations were in agreement with permeability results. Chitosan solutions exhibited a dose-dependent toxicity, but coated microspheres did not decrease the viability of cells. Chitosan-coated alginate microspheres have potential to be used as carriers of poorly absorbable hydrophilic drugs to the intestinal epithelia and possibly increase their oral bioavailability.

  17. Regrowth and radiation sensitivity of quiescent cells isolated from EMT6/Ro-fed plateau monolayers

    International Nuclear Information System (INIS)

    Luk, C.K.; Keng, P.C.; Sutherland, R.M.

    1985-01-01

    A quiescent [denoted as Q(G0/G1)] subpopulation was isolated from EMT6/Ro-fed plateau monolayers by centrifugal elutriation. The median Coulter volume of these cells was significantly smaller than that of the original population from which they were elutriated. Using two-step acridine orange staining and dual parameter flow cytometric analysis, over 95% of quiescent cells were found to have G1 DNA content, and 80% of the cells had a decreased RNA content as compared to rapidly proliferating exponential G1 cells. After labeling for 24 hr (two doubling times) with [ 3 H]thymidine, less than 2% of the quiescent cells incorporated [3H]thymidine as measured by autoradiography. The colony-forming efficiency of these cells was not significantly different from that of exponential cells. When such Q(G0/G1) cells were replated in fresh medium at a lower density, there was a lag time of 30 hr before any increase in cell number was detected, after which the cell-doubling rate matched that of exponential culture. Results obtained from the radiation dose-response curves showed that quiescent (G0/G1) cells were more radiosensitive than exponential G1 or unseparated fed plateau cells

  18. Impact of lipid-based drug delivery systems on the transport and uptake of insulin across Caco-2 Cell monolayers

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2016-01-01

    on the transport and uptake mechanisms of insulin across the intestinal membrane. For this purpose, 3 SNEDDS were prepared, and Caco-2 cell monolayers were used to study transport and uptake. The prepared SNEDDSs were all in the range of 35-50 nm and had a negative zeta potential (between -8 and -25 m...... space of the Caco-2 cell monolayer, indicating transport by paracellular diffusion. In contrast, the fluorescein isothiocyanate-labeled insulin in LCT SNEDDS was taken up by the cells. In conclusion, the present study demonstrated that MCT1 and MCT2 SNEDDS, but not LCT SNEDDS increased...

  19. Comparison of Genotoxic Damage in Monolayer Cell and Three-Dimensional Tissue-Like Cell Assemblies

    Science.gov (United States)

    Behravesh, E.; Emami, K.; Wu, H.; Gonda, S.

    Risk assessment for the biological effects of high-energy charged particles, ranging from protons to iron nuclei, encountered in space is essential for the success of long-term space exploration. While prokaryotic and eukaryotic cell models, developed in our lab and others, have advanced our understanding of many aspects of genotoxicity, there is a need for in vitro models to assess the risk to humans from space radiation insults that are representative of the cellular interactions present in tissues and capable of quantifying genotoxic damage. Toward this overall goal, the objective of this study is to examine the effect of the localized microenvironment of cells, either cultured as 2-dimensional monolayers (2D) or 3-dimensional aggregates (3D), on the rate and type of genotoxic damage, and to examine those effects after the normal cell repair processes. Rodent transgenic cell lines containing 50-70 copies of a transgene were utilized to provide the enhanced sensitivity required to enable the identification and quantification of the types of mutational events incurred from exposure to iron charged particles which makes up a significant portion of Space radiation. Although the LacI target of this system is ~1000 bps, each copy of the entire construct is over 45 kbps. The utilization of this system allows for the quantification of mutational frequency and type for the LacI target as well as assessment of DNA damage for the entire 45 kbp construct. The samples were exposed to high-LET iron charged particles at Brookhaven National Laboratory's AGS/NSRL facilities for a total dose of 0, 0.1, 0.25, 0.5, 1.0, and 2.0 Gy and recovered after 0, 1, and 7 days of tissue culture post-irradiation. The mutational frequency was found to be greater for the 3D samples when compared to the 2D samples at all doses. In addition, there was increased mutational frequency with 7 days culture post irradiation when compared to samples analyzed immediately after exposure. DNA sequencing of

  20. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Science.gov (United States)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-04-01

    Different concentrations of CuSO4, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10-20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient ( P app) of CuSO4 and nano-CuO increased with the Cu concentration in the culture medium ( p Caco-2 cells ( p > 0.05). When the Cu concentration in the culture medium was in the range 31.25-500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO4. The latter was also significantly higher than that when cells were incubated with micro-CuO ( p Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  1. A theoretical model of cytosolic calcium elevation following wounding in urothelial cell monolayers

    International Nuclear Information System (INIS)

    Appleby, Peter A; Walker, Dawn; Shabir, Saqib; Southgate, Jennifer

    2013-01-01

    Scratch wounding of a urothelial cell monolayer triggers a number of events including the release of soluble, diffusible signalling factors and mechanical stimulation of cells at the wound edge. These events cause a sustained elevation in cytosolic calcium concentration in the cells surrounding the wound and a transient rise in those further away. The precise form of this calcium transient is believed to play a central role in determining the subsequent response of individual cells and ultimately leads to a co-ordinated, population-level response that rapidly closes the wound. Here we present a framework for modelling the initial phases of this process. We combine a PDE model of diffusion in the extracellular medium and an ODE model of calcium signalling that has been tailored to represent urothelial cells. The ODE model is capable of generating a wide range of calcium transients, including spikes, bursts, oscillations and sustained elevations in the cytosolic calcium concentration. In multi-cell simulations of scratch wounding in a perfusion flow we find that the spatial position of the cells relative to the wound site leads to distinct classes of calcium response, with cells proximal to the wound exhibiting a sustained elevation and cells distal to the wound exhibiting a more transient elevation. We compare these results to existing experimental data and generate a number of novel predictions that could be used to test the model experimentally.

  2. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate.

    Science.gov (United States)

    Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste

    2017-09-01

    Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL -/- ) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL -/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.

  3. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    International Nuclear Information System (INIS)

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-01-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  4. Diagnostic Implementation of Fast and Selective Integrin-Mediated Adhesion of Cancer Cells on Functionalized Zeolite L Monolayers.

    Science.gov (United States)

    Greco, Arianna; Maggini, Laura; De Cola, Luisa; De Marco, Rossella; Gentilucci, Luca

    2015-09-16

    The rapid and exact identification and quantification of specific biomarkers is a key technology for always achieving more efficient diagnostic methodologies. We present the first application of a nanostructured device constituted of patterned self-assembled monolayers of disk-shaped zeolite L coated with the cyclic integrin ligand c[RGDfK] via isocyanate linker, to the rapid detection of cancer cells. With its high specificity toward HeLa and Glioma cells and fast adhesion ability, this biocompatible monolayer is a promising platform for implementation in diagnostics and personalized therapy formulation devices.

  5. Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots

    Science.gov (United States)

    Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang

    2016-04-01

    We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.

  6. Estimation of the effective intercellular diffusion coefficient in cell monolayers coupled by gap junctions

    DEFF Research Database (Denmark)

    Olesen, Niels Erik; Hofgaard, Johannes P; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    A recently developed dye-based assay to study gap junction permeability is analysed. The assay is based on electroporation of dye into a large number of connexin 43 expressing cells, grown to confluency on electrically conductive slides. The subsequent intercellular spread of dye to non-electropo......A recently developed dye-based assay to study gap junction permeability is analysed. The assay is based on electroporation of dye into a large number of connexin 43 expressing cells, grown to confluency on electrically conductive slides. The subsequent intercellular spread of dye to non......-electroporated parts of the monolayer enables estimation of the intercellular coupling. So far, the extent of dye spread has been analyzed in qualitative terms only and not in a manner based directly on the physics of the underlying diffusion process....

  7. [In vitro absorption mechanism of strychnine and the transport interaction with liquiritin in Caco-2 cell monolayer model].

    Science.gov (United States)

    Wang, Jun-jun; Liao, Xiao-huan; Ye, Min; Chen, Yong

    2010-09-01

    To study the effect of liquiritin (Liq) on the transport of strychnine (Str) in Caco-2 cell monolayer model, the transport parameters of Str, such as apparent permeability coefficient (P app (B-->A) and P app (A-->B)) and cumulative transport amount (TRcum), were determined and comparatively analyzed when Str was used solely and co-used with Liq. The effect of drug concentrations, conveying times, P-glycoprotein (P-gp) inhibitor verapamil and conveying liquor pH values on the transport of Str were also investigated. The results indicated that the absorption of Str in Caco-2 cell monolayer model was well and the passive transference was the main intestinal absorption mechanism of Str in the Caco-2 monolayer model, along with the excretion action mediated by P-gp. Liq enhanced the absorption of Str. Meanwhile, conveying liquor pH value had significant influence on the excretion transport of Str.

  8. Astilbin from Engelhardtia chrysolepis enhances intestinal barrier functions in Caco-2 cell monolayers.

    Science.gov (United States)

    Nakahara, Tatsuo; Nishitani, Yosuke; Nishiumi, Shin; Yoshida, Masaru; Azuma, Takeshi

    2017-06-05

    Astilbin, which is one of polyphenolic compounds isolated from the leaves of Engelhardtia chrysolepis H ANCE (Chinese name, huang-qui), is available as the effective component in food and cosmetics because of its anti-oxidant and anti-inflammatory effects. The tight junction (TJ) proteins, which protect the body from foreign substances, are related to adhesion between a cell and a cell. Previously, the enhancement of TJ's functions induced by aglycones of flavonoids has been demonstrated, but the effects of the glycosides such as astilbin have not been observed yet. In this study, we investigated the effects of astilbin on the TJ's functions, and human colon carcinoma Caco-2 cell monolayers were used to evaluate the effects of astilbin on transepithelial electrical resistance (TER) value and the mRNA and proteins expressions of TJ-related molecules. Astilbin increased the TER value, mRNA expression levels of claudin-1 and ZO-2, and protein expression levels of occludin and ZO-2 in Caco-2 cells. Astilbin also increased the TER value in Caco-2 cells co-stimulated with TNF-α plus IFN-γ, and moreover upregulated the protein expression of TJ-related molecules in Caco-2 cells co-treated with TNF-α plus IFN-γ. These results suggest that astilbin can enhance the expressions of TJ-related molecules, leading to upregulation of the barrier functions in the intestinal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Media from macrophages co-incubated with Enterococcus faecalis induces epithelial cell monolayer reassembly and altered cell morphology.

    Directory of Open Access Journals (Sweden)

    Natalia Belogortseva

    Full Text Available Signal exchange between intestinal epithelial cells, microbes and local immune cells is an important mechanism of intestinal homeostasis. Given that intestinal macrophages are in close proximity to both the intestinal epithelium and the microbiota, their pathologic interactions may result in epithelial damage. The present study demonstrates that co-incubation of murine macrophages with E. faecalis strains producing gelatinase (GelE and serine protease (SprE leads to resultant condition media (CM capable of inducing reassembly of primary colonic epithelial cell monolayers. Following the conditioned media (CM exposure, some epithelial cells are shed whereas adherent cells are observed to undergo dissolution of cell-cell junctions and morphologic transformation with actin cytoskeleton reorganization resulting in flattened and elongated shapes. These cells exhibit marked filamentous filopodia and lamellipodia formation. Cellular reorganization is not observed when epithelial monolayers are exposed to: CM from macrophages co-incubated with E. faecalis GelE/SprE-deficient mutants, CM from macrophages alone, or E. faecalis (GelE/SprE alone. Flow cytometry analysis reveals increased expression of CD24 and CD44 in cells treated with macrophage/E. faecalis CM. This finding in combination with the appearance colony formation in matrigel demonstrate that the cells treated with macrophage/E. faecalis CM contain a higher proportion progenitor cells compared to untreated control. Taken together, these findings provide evidence for a triangulated molecular dialogue between E. faecalis, macrophages and colonic epithelial cells, which may have important implications for conditions in the gut that involve inflammation, injury or tumorigenesis.

  10. Media from macrophages co-incubated with Enterococcus faecalis induces epithelial cell monolayer reassembly and altered cell morphology.

    Science.gov (United States)

    Belogortseva, Natalia; Krezalek, Monika; Guyton, Kristina; Labno, Christine; Poroyko, Valeriy; Zaborina, Olga; Alverdy, John C

    2017-01-01

    Signal exchange between intestinal epithelial cells, microbes and local immune cells is an important mechanism of intestinal homeostasis. Given that intestinal macrophages are in close proximity to both the intestinal epithelium and the microbiota, their pathologic interactions may result in epithelial damage. The present study demonstrates that co-incubation of murine macrophages with E. faecalis strains producing gelatinase (GelE) and serine protease (SprE) leads to resultant condition media (CM) capable of inducing reassembly of primary colonic epithelial cell monolayers. Following the conditioned media (CM) exposure, some epithelial cells are shed whereas adherent cells are observed to undergo dissolution of cell-cell junctions and morphologic transformation with actin cytoskeleton reorganization resulting in flattened and elongated shapes. These cells exhibit marked filamentous filopodia and lamellipodia formation. Cellular reorganization is not observed when epithelial monolayers are exposed to: CM from macrophages co-incubated with E. faecalis GelE/SprE-deficient mutants, CM from macrophages alone, or E. faecalis (GelE/SprE) alone. Flow cytometry analysis reveals increased expression of CD24 and CD44 in cells treated with macrophage/E. faecalis CM. This finding in combination with the appearance colony formation in matrigel demonstrate that the cells treated with macrophage/E. faecalis CM contain a higher proportion progenitor cells compared to untreated control. Taken together, these findings provide evidence for a triangulated molecular dialogue between E. faecalis, macrophages and colonic epithelial cells, which may have important implications for conditions in the gut that involve inflammation, injury or tumorigenesis.

  11. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals

    International Nuclear Information System (INIS)

    Inauen, W.; Payne, D.K.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the hot and cold chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues

  12. A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-PGJ2

    Directory of Open Access Journals (Sweden)

    Dorothy I. Wallace

    2016-01-01

    Full Text Available Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G1,S,G2/M as well as quiescent (Q and necrotic (N cells. Monolayer treatment data for 15-deoxy-PGJ2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment.

  13. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Steuer, A; Wende, K; Babica, P; Kolb, J F

    2017-09-01

    Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

  14. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization.

    Science.gov (United States)

    Moeller, Marcus J; Soofi, Abdulsalam; Braun, Gerald S; Li, Xiaodong; Watzl, Carsten; Kriz, Wilhelm; Holzman, Lawrence B

    2004-10-01

    Cell migration requires integration of cellular processes resulting in cell polarization and actin dynamics. Previous work using tools of Drosophila genetics suggested that protocadherin fat serves in a pathway necessary for determining cell polarity in the plane of a tissue. Here we identify mammalian FAT1 as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin-dependent cell motility. FAT1 is localized to the leading edge of lamellipodia, filopodia, and microspike tips where FAT1 directly interacts with Ena/VASP proteins that regulate the actin polymerization complex. When targeted to mitochondrial outer leaflets, FAT1 cytoplasmic domain recruits components of the actin polymerization machinery sufficient to induce ectopic actin polymerization. In an epithelial cell wound model, FAT1 knockdown decreased recruitment of endogenous VASP to the leading edge and resulted in impairment of lamellipodial dynamics, failure of polarization, and an attenuation of cell migration. FAT1 may play an integrative role regulating cell migration by participating in Ena/VASP-dependent regulation of cytoskeletal dynamics at the leading edge and by transducing an Ena/VASP-independent polarity cue.

  15. [MIP-1α promotes the migration ability of Jurkat cell through human brain microvascular endothelial cell monolayer].

    Science.gov (United States)

    Ma, Yi-Ran; Zhang, Shuang; Sun, Ying; Liu, Yi-Yang; Song, Qian; Hao, Yi-Wen

    2014-02-01

    This study was purposed to explore the mechanism of central nervous system (CNS) leukemia resulting from brain metastasis of human acute T-cell leukemia (T-ALL) cells and the role of MIP-1α in migration of Jurkat cells through human brain microvascular endothelial cells (HBMEC). The real-time PCR, siRNA test, transendothelial migration test, endothelial permeability assay and cell adhesion assay were used to detect MIP-1α expression, penetration and migration ability as well as adhesion capability respectively. The results showed that the MIP-1α expression in Jurkat cells was higher than that in normal T cells and CCRF-HSB2, CCRF-CEM , SUP-T1 cells. The MIP-1α secreted from Jurkat cells enhanced the ability of Jurkat cells to penetrate through HBMEC, the ability of Jurkat cells treated by MIP-1α siRNA to adhere to HBMEC and to migrate trans endothelial cells decreased. It is concluded that the MIP-1α secreted from Jurkat cells participates in process of penetrating the Jurkat cells through HBMEC monolayer.

  16. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Zhang, Ting; Yu, Zhipeng; Liu, Jingbo

    2018-04-01

    The objective of this paper was to investigate the transepithelial transport of two novel corn gluten-derived antioxidant peptides, YFCLT and GLLLPH, using Caco-2 cell monolayers. Results showed that both of YFCLT and GLLLPH could transport in intact form across Caco-2 cell monolayers with apparent permeability coefficient (P app ) values of (1.10±0.16)×10 -7 cm/s and (1.98±0.23)×10 -7 cm/s, respectively. However, it was found that the two peptides were susceptible and easily hydrolyzed by brush border membrane peptidases. In the presence of diprotin A, an inhibitor of dipeptidyl peptidase IV (DPPIV), the hydrolysis of YFCLT and GLLLPH decreased and their permeabilities increased significantly compared to control group (P0.05), suggesting that the transport of YFCLT and GLLLPH across Caco-2 cell monolayers was not mediated by PepT1. However, it was found that cytochalasin d, a tight junctions (TJs) disruptor, increased the permeability significantly (PCaco-2 cell monolayers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    and the anticancer prodrug d-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least...

  18. A protocol for isolation and enriched monolayer cultivation of neural precursor cells from mouse dentate gyrus.

    Science.gov (United States)

    Babu, Harish; Claasen, Jan-Hendrik; Kannan, Suresh; Rünker, Annette E; Palmer, Theo; Kempermann, Gerd

    2011-01-01

    In vitro assays are valuable tools to study the characteristics of adult neural precursor cells under controlled conditions with a defined set of parameters. We here present a detailed protocol based on our previous original publication (Babu et al., 2007) to isolate neural precursor cells from the hippocampus of adult mice and maintain and propagate them as adherent monolayer cultures. The strategy is based on the use of Percoll density gradient centrifugation to enrich precursor cells from the micro-dissected dentate gyrus. Based on the expression of Nestin and Sox2, a culture-purity of more than 98% can be achieved. The cultures are expanded under serum-free conditions in Neurobasal A medium with addition of the mitogens Epidermal growth factor and Fibroblast growth factor 2 as well as the supplements Glutamax-1 and B27. Under differentiation conditions, the precursor cells reliably generate approximately 30% neurons with appropriate morphological, molecular, and electrophysiological characteristics that might reflect granule cell properties as their in vivo counterpart. We also highlight potential modifications to the protocol.

  19. The effect of adriamycin and 4'-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids.

    Science.gov (United States)

    Kerr, D J; Wheldon, T E; Kerr, A M; Freshney, R I; Kaye, S B

    1986-09-01

    Using growth delay and clonogenic cell survival as end points, we have shown that the 3-dimensional structure of human lung tumour spheroids confers a degree of resistance to the anthracyclines adriamycin and 4'-deoxydoxorubicin, relative to cells grown as monolayer. 4'-deoxydoxorubicin induces a longer growth delay and greater clonogenic cell kill than adriamycin in spheroids, although it is no more cytotoxic in monolayer (exponential and plateau phase). There is a log linear relationship between clonogenic cell survival and duration of adriamycin exposure in monolayers, and biphasic curve with a lesser degree of cell kill for disaggregated spheroid cells. Using fluorescent microscopy we have demonstrated, qualitatively, that the more lipophilic analogue partitions into the spheroid more rapidly and to a greater degree than adriamycin. It is possible that adriamycin penetration is a relatively important aspect of spheroid drug resistance, which may be related to intraspheroidal pH gradients, and that we have partially overcome this by using a lipophilic analogue.

  20. Proliferation of pulmonary endothelial cells: time-lapse cinematography of growth to confluence and restitution of monolayer after wounding.

    Science.gov (United States)

    Ryan, U S; Absher, M; Olazabal, B M; Brown, L M; Ryan, J W

    1982-01-01

    A fundamental characteristic of vascular endothelium is that it exists as a monolayer, a condition that must be met in both vascular growth and repair. Maintenance of the monolayer is important both for the exchange of nutrients and for interactions between blood solutes and endothelial enzymes and transport systems. We have used time-lapse cinematography to compare proliferative behavior of bovine pulmonary endothelial cells in (1) establishment of a monolayer from a low-density seed (7.5 X 10(4) cells in a 60 mm dish) and (2) restitution of a confluent monolayer (approx. 2.9 x 10(6) cells in a 60 mm dish) following a mechanical wound (removal of cells from an area 5 x 15 mm by scraping). Culture 2 was not refed after wounding. In culture 2, approx. 30% of the cells accounted for repopulation (confluence in 40 hr). In culture 1, all cells entered into division. Participating cells of culture 2 began division immediately (69 divisions/filmed area in 10 hr, vs. four divisions in culture 1). Interdivision times (IDT) were longer and relatively constant in culture 1 until near confluence; none were less than 10 h, whereas in 2, 24% of the IDT's were less than or equal to 10 hr. Remarkably, IDTs of culture 2 decreased steadily until confluence was re-established. Cell migration in culture 1 was multidirectional while direction of migration in culture 2 was always into the wound area. Mean migration rate (MIG) in culture 2 was related to the site of origin of the cells, those dividing farthest from the unwounded area had fastest MIGs. Neither culture formed more than a single layer of cells. Although the cell kinetics of cultures 1 and 2 differed, the same goal, confluence, was achieved in either case.

  1. Classical cadherins control nucleus and centrosome position and cell polarity.

    Science.gov (United States)

    Dupin, Isabelle; Camand, Emeline; Etienne-Manneville, Sandrine

    2009-06-01

    Control of cell polarity is crucial during tissue morphogenesis and renewal, and depends on spatial cues provided by the extracellular environment. Using micropatterned substrates to impose reproducible cell-cell interactions, we show that in the absence of other polarizing cues, cell-cell contacts are the main regulator of nucleus and centrosome positioning, and intracellular polarized organization. In a variety of cell types, including astrocytes, epithelial cells, and endothelial cells, calcium-dependent cadherin-mediated cell-cell interactions induce nucleus and centrosome off-centering toward cell-cell contacts, and promote orientation of the nucleus-centrosome axis toward free cell edges. Nucleus and centrosome off-centering is controlled by N-cadherin through the regulation of cell interactions with the extracellular matrix, whereas the orientation of the nucleus-centrosome axis is determined by the geometry of N-cadherin-mediated contacts. Our results demonstrate that in addition to the specific function of E-cadherin in regulating baso-apical epithelial polarity, classical cadherins control cell polarization in otherwise nonpolarized cells.

  2. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells.

    Science.gov (United States)

    Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M

    2018-02-01

    Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A new method for cryo-sectioning cell monolayers using a correlative workflow.

    Science.gov (United States)

    Kolovou, Androniki; Schorb, Martin; Tarafder, Abul; Sachse, Carsten; Schwab, Yannick; Santarella-Mellwig, Rachel

    2017-01-01

    Cryo-electron microscopy (cryo-EM) techniques have made a huge advancement recently, providing close to atomic resolution of the structure of protein complexes. Interestingly, this imaging technique can be performed in cells, giving access to the molecular machines in their natural context, therefore bridging structural and cell biology. However, in situ structural electron microscopy faces one major challenge, which is the ability to focus on specific subcellular regions to capture the objects of interest. Correlative light and electron microscopy (CLEM) is one very efficient solution for this. Here we present a sample preparation technique that enables cryo-sections of vitrified cell monolayers in an orientation that places the cryo-section parallel to the fluorescence imaging plane. The main advantage of this approach is that it exploits the potentials of CLEM for cryo-EM investigation, for selecting specific cells of interest in a heterogeneous population, or for finding identified subcellular regions on sections. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Retracing the path of planar cell polarity.

    Science.gov (United States)

    Schenkelaars, Quentin; Fierro-Constain, Laura; Renard, Emmanuelle; Borchiellini, Carole

    2016-04-02

    The Planar Cell Polarity pathway (PCP) has been described as the main feature involved in patterning cell orientation in bilaterian tissues. Recently, a similar phenomenon was revealed in cnidarians, in which the inhibition of this pathway results in the absence of cilia orientation in larvae, consequently proving the functional conservation of PCP signaling between Cnidaria and Bilateria. Nevertheless, despite the growing accumulation of databases concerning basal lineages of metazoans, very few information concerning the existence of PCP components have been gathered outside of Bilateria and Cnidaria. Thus, the origin of this module or its prevalence in early emerging metazoans has yet to be elucidated. The present study addresses this question by investigating the genomes and transcriptomes from all poriferan lineages in addition to Trichoplax (Placozoa) and Mnemiopsis (Ctenophora) genomes for the presence of the core components of this pathway. Our results confirm that several PCP components are metazoan innovations. In addition, we show that all members of the PCP pathway, including a bona fide Strabismus ortholog (Van gogh), are retrieved only in one sponge lineage (Homoscleromorpha) out of four. This highly suggests that the full PCP pathway dates back at least to the emergence of homoscleromorph sponges. Consequently, several secondary gene losses would have occurred in the three other poriferan lineages including Amphimedon queenslandica (Demospongiae). Several proteins were not retrieved either in placozoans or ctenophores leading us to discuss the difficulties to predict orthologous proteins in basally branching animals. Finally, we reveal how the study of multigene families may be helpful to unravel the relationships at the base of the metazoan tree. The PCP pathway antedates the radiation of Porifera and may have arisen in the last common ancestor of animals. Oscarella species now appear as key organisms to understand the ancestral function of PCP

  5. Salbutamol sulfate absorption across Calu-3 bronchial epithelia cell monolayer is inhibited in the presence of common anionic NSAIDs.

    Science.gov (United States)

    Mamlouk, Mariam; Young, Paul M; Bebawy, Mary; Haghi, Mehra; Mamlouk, Shery; Mulay, Vishwaroop; Traini, Daniela

    2013-05-01

    The aim of this study was to characterize the permeability kinetics of salbutamol sulfate, a commonly used β2-agonist in the treatment of asthma exacerbation, across Calu-3 respiratory epithelial cell monolayers in the presence of non-steroidal anti-inflammatory drugs (NSAIDs), as they have been implicated to be able to modulate organic cation transporters (OCTs). Calu-3 cell monolayers were grown in a liquid covered culture (LCC) configuration on 0.33 cm(2) Transwell polyester cell culture supports. Monolayers, cultured between 11 and 14 days were evaluated for epithelial resistance, tight junction integrity, and expression of OCT using Western blot analysis. The transport of salbutamol across the monolayer was studied as a function of concentration. Directional transport was investigated by assessing apical-basal (a-b) and basal-apical (b-a) directions. The influence of a non-specific OCT inhibitor (tetraethylammonium, TEA) and three NSAIDs (aspirin, ibuprofen, and indomethacin) on the uptake of salbutamol was studied. The flux of salbutamol sulfate increased with increasing concentration before reaching a plateau, suggesting the involvement of a transport-mediated uptake mechanism. Western blot analysis detected the presence of OCT1-3 and N1 and N2 sub-types, suggesting the presence of functioning transporters. The apparent permeability (P(app)) of 0.1 mM salbutamol across the epithelial monolayer displayed directional transport in the a-b direction which was inhibited by ˜70% in the presence of TEA, suggesting OCT-mediated uptake. Likewise, the uptake of 0.1 mM salbutamol was decreased in the presence of all the three NSAIDs, supporting a mechanism whereby NSAIDs inhibit absorption of salbutamol across the bronchial epithelium via effects on the OCT transporters. This study demonstrates that NSAIDs influence the uptake kinetics of salbutamol in an in vitro Calu-3 cell system.

  6. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  7. The polarized double cell target of the SMC

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Torre, S. Dalla; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Gracia, G.; Groot, N. de; Perdekamp, M. Grosse; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Krivokhijine, V.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Neganov, B.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H. E-mail: hpostma@dataweb.nl; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raedel, G.; Reyhancan, I.; Reicherz, G.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F. [and others

    1999-11-11

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials -- butanol, ammonia, and deuterated butanol -- with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed.

  8. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  9. Electrokinetics of Polar Liquids in Contact with Non-Polar Surfaces

    OpenAIRE

    Lin, Chih-Hsiu; Ferguson, Gregory S.; Chaudhury, Manoj K.

    2014-01-01

    Zeta potentials of several polar protic (water, ethylene glycol, formamide) as well as polar aprotic (dimethyl sulfoxide) liquids were measured in contact with three non-polar surfaces using closed-cell electro-osmosis. The test surfaces were chemisorbed monolayers of alkyl siloxanes, fluoroalkyl siloxanes and polydimethylsiloxanes (PDMS) grafted on glass slides. All these liquids exhibited substantial electrokinetics in contact with the non-polar surfaces with these observations: the electro...

  10. Polymer photovoltaic cells sensitive to the circular polarization of light

    Energy Technology Data Exchange (ETDEWEB)

    Gilot, Jan; Abbel, Robert; Lakhwani, Girish; Meijer, E.W.; Schenning, Albertus P.H.J.; Meskers, Stefan C.J. [Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology (Netherlands)

    2010-05-25

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties of all layers inside the device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    International Nuclear Information System (INIS)

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E 2 (PGE 2 ) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  12. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  13. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  14. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  15. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gao; Lianqin, Zhu, E-mail: lianqinz1963@163.com; Fenghua, Zhu [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China); Fang, Zheng [Dezhou University, College of Agriculture (China); Mingming, Song; Kai, Huang [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China)

    2015-04-15

    Different concentrations of CuSO{sub 4}, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P{sub app}) of CuSO{sub 4} and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P{sub app} value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P{sub app} value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO{sub 4}. The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO{sub 4} concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO{sub 4} concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  16. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    International Nuclear Information System (INIS)

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-01-01

    Different concentrations of CuSO 4 , micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P app ) of CuSO 4 and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P app value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO 4 . The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO 4 concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO 4 concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways

  17. Radiation-induced apoptosis in human ovarian carcinoma cells growing as a monolayer and as multicell spheroids.

    Science.gov (United States)

    Filippovich, I V; Sorokina, N I; Robillard, N; Chatal, J F

    1997-09-04

    Response to external gamma irradiation was studied in a human ovarian carcinoma cell line (OVCAR 3) growing as a monolayer and as multicell spheroids. Necrosis and apoptosis were documented using Trypan-blue uptake and acridine-orange staining, respectively, and apoptosis was quantified using a terminal deoxynucleotidyl transferase assay. Exposure of OVCAR 3 cells growing as a monolayer to 137Cs gamma radiation at a dose of 10 Gy produced 30-40% apoptosis 72 hr after irradiation. Cell-cycle analysis of irradiated cells showed an accumulation of cells in G2/M phase 24 hr after irradiation and then a decline at 48 hr in conjunction with apoptosis onset. The loss of G0/G1 cells in irradiated cultures suggested a preferential entry into apoptosis. No increase in apoptotic cell number was observed in OVCAR 3 spheroids after irradiation, and the cells probably died as a result of necrosis. When spheroids were disrupted immediately after irradiation to obtain a cell suspension, minor apoptosis was observed in association with a marked increase in TB-positive cell number after 96 hr of incubation following irradiation. Thus, a relationship was found between radiation-induced apoptosis and the cell cycle. Results with spheroids suggested the possible involvement of cell-to-cell interactions in apoptosis regulation.

  18. Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors

    Science.gov (United States)

    Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee

    2017-04-01

    We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.

  19. Drug-transporter mediated interactions between anthelminthic and antiretroviral drugs across the Caco-2 cell monolayers.

    Science.gov (United States)

    Kigen, Gabriel; Edwards, Geoffrey

    2017-05-04

    Drug interactions between antiretroviral drugs (ARVs) and anthelminthic drugs, ivermectin (IVM) and praziquantel (PZQ) were assessed by investigating their permeation through the Caco-2 cell monolayers in a transwell. The impact of anthelminthics on the transport of ARVs was determined by assessing the apical to basolateral (AP → BL) [passive] and basolateral to apical (BL → AP) [efflux] directions alone, and in presence of an anthelminthic. The reverse was conducted for the assessment of the influence of ARVs on anthelminthics. Samples from the AP and BL compartments were taken at 60, 120, 180 and 240 min and quantified either by HPLC or radiolabeled assay using a liquid scintillating counter for the respective drugs. Transepithelial resistance (TEER) was used to assess the integrity of the monolayers. The amount of compound transported per second (apparent permeability, Papp) was calculated for both AP to BL (Papp AtoB ), and BL to AP (Papp BtoA ) movements. Samples collected after 60 min were used to determine the efflux ratio (ER), quotient of secretory permeability and absorptive permeability (PappBL-AP/PappAP-BL). The reverse, (PappAP-BL/PappBL-AP) constituted the uptake ratio. The impact of SQV, EFV and NVP on the transport of both IVM and PZQ were investigated. The effect of LPV on the transport of IVM was also determined. The influence of IVM on the transport of SQV, NVP, LPV and EFV; as well as the effect PZQ on the transport of SQV of was also investigated, and a two-tailed p value of <0.05 was considered significant. IVM significantly inhibited the efflux transport (BL → AP movement) of LPV (ER; 6.7 vs. 0.8, p = 0.0038) and SQV (ER; 3.1 vs. 1.2 p = 0.00328); and increased the efflux transport of EFV (ER; 0.7 vs. 0.9, p = 0.031) suggesting the possibility of drug transporter mediated interactions between the two drugs. NVP increased the efflux transport of IVM (ER; 0.8 vs. 1.8, p = 0.0094). The study provides in vitro

  20. Effects of acylcarnitines on efflux transporting system in Caco-2 cell monolayers.

    Science.gov (United States)

    Tomita, Mikio; Doi, Nobuyuki; Hayashi, Masahiro

    2010-09-01

    This study examined the effects of the absorption enhancers, acylcarnitines, on efflux transporting systems, including P-glycoprotein (P-gp) and other efflux transporters, and elucidated the importance of acyl chain length and the concentration of acylcarnitine on the activity of efflux transport. The effects of two acyl (lauroyl and palmitoyl) carnitines on the influx and efflux of lucifer yellow and fluorescein isothiocyanate dextran 4,000, which have characteristic vectorial transport, were examined in Caco-2 cell monolayers. Lauroylcarnitine and palmitoylcarnitine increased influx and decreased efflux of these substrates, in a manner dependent on their concentration and acyl chain lengths by increasing influx and inhibiting efflux of the substrates. The results indicated that both the acyl moiety and long acyl chains play important roles in the modification of influx and efflux transport. Because no marked changes in the levels of P-gp protein or the leakage of LDH were observed at 1 h after the application of acylcarnitines, it was concluded that these acylcarnitines had an effect on modulation of the function of P-gp or other efflux transporters without cytotoxicity.

  1. Estimation of the effective intercellular diffusion coefficient in cell monolayers coupled by gap junctions.

    Science.gov (United States)

    Olesen, Niels Erik; Hofgaard, Johannes P; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten Schak; Jacobsen, Jens Christian Brings

    2012-07-16

    A recently developed dye-based assay to study gap junction permeability is analysed. The assay is based on electroporation of dye into a large number of connexin 43 expressing cells, grown to confluency on electrically conductive slides. The subsequent intercellular spread of dye to non-electroporated parts of the monolayer enables estimation of the intercellular coupling. So far, the extent of dye spread has been analyzed in qualitative terms only and not in a manner based directly on the physics of the underlying diffusion process. We apply a continuum approximation assuming that the observed dye spread can be described by Fick's law of diffusion. Deduced from Fick's law, new measures are presented which directly relate the observed spread of dye to the diffusion coefficient. The theoretical framework enables the estimation of an effective diffusion coefficient from Fick's law independently of the specific indicator substance used in the assay. For Lucifer Yellow, diffusion stops within few minutes after the electroporation. Therefore only an order-of-magnitude estimate of the diffusion coefficient can be given for this dye. In terms of the underlying diffusion coefficient, the hitherto used measures give a relatively poor degree of quantification. In contrast, the present methods may yield direct information on the effective intercellular diffusion coefficient and hence provide additional and more precise information as to the permeability modulating effect of various substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix.

    Science.gov (United States)

    Tesoriere, L; Gentile, C; Angileri, F; Attanzio, A; Tutone, M; Allegra, M; Livrea, M A

    2013-04-01

    This study investigated the absorption mechanism of the phytochemicals indicaxanthin and betanin and the influence of their food matrix (cactus pear and red beet) on the intestinal transport. Trans-epithelial transport of dietary-consistent amounts of indicaxanthin and betanin in Caco-2 cell monolayers seeded on Transwell(R) inserts was measured in apical to basolateral (AP-BL) and basolateral to apical (BL-AP) direction, under an inwardly directed pH gradient (pH 6.0/7.4, AP/BL) mimicking luminal and serosal sides of human intestinal epithelium. The effect of inhibitors of membrane transporters on the absorption was also evaluated. Contribution of the paracellular route was investigated after EDTA treatment of the cell monolayer. In vitro digestion of betalainic food was performed to provide a post-intestinal fraction containing bioaccessible pigments. Apparent permeability coefficients (P(app)) in the absorptive direction were (4.4 ± 0.4) × 10⁻⁶ and (3.2 ± 0.3) × 10⁻⁶ cm s⁻¹ for indicaxanthin and betanin, respectively. Transport of indicaxanthin was non-polarized, linear as a function of time and concentration, and unaffected by inhibitors of membrane transporters. Betanin exhibited significantly different bidirectional P(app) values and non-linear efflux kinetics. The concentration-dependent betanin efflux was described by a kinetic model including one non-saturable (K(d) = 0.042 μL cm⁻² min⁻¹) and one saturable component identified as the apical multidrug resistance-associated protein 2 (MRP2; K(m) = 275 μM; J(max) = 42 pmol min⁻¹ cm⁻²). Permeation of both betalains increased remarkably after EDTA treatment of the cell monolayer. Neither indicaxanthin nor betanin underwent metabolic transformation. Food matrix did not affect trans-epithelial transfer of indicaxanthin, but reduced the absorption rate of betanin, red beet more than cactus pear. Dietary indicaxanthin and betanin can substantially be absorbed through paracellular

  3. Importance of Terminal Amino Acid Residues to the Transport of Oligopeptides across the Caco-2 Cell Monolayer.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Yu, Zhipeng; Ma, Sitong; Du, Zhiyang; Zhang, Ting; Liu, Jingbo

    2017-09-06

    The objective of this paper was to investigate the effects of terminal amino acids on the transport of oligopeptides across the Caco-2 cell monolayer. Ala-based tetra- and pentapeptides were designed, and the N- or C-terminal amino acid residues were replaced by different amino acids. The results showed that the oligopeptides had a wide range of transport permeability across the Caco-2 cell monolayer and could be divided into four categories: non-/poor permeability, low permeability, intermediate permeability, and good permeability. Tetrapeptides with N-terminal Leu, Pro, Ile, Cys, Met, and Val or C-terminal Val showed the highest permeability, with apparent permeability coefficient (P app ) values over 10 × 10 -6 cm/s (p transport of tetrapeptides. Pentapeptides with N- or C-terminal Tyr also showed high permeability levels, with P app values of about 10 × 10 -6 cm/s. The amino acids Glu, Asn, and Thr at the N terminus or Lys, Asp, and Arg at the C terminus were also beneficial for the transport of tetra- and pentapeptides, with P app values ranging from 1 × 10 -6 to 10 × 10 -6 cm/s. In addition, peptides with amino acids replaced at the N terminus generally showed higher permeability than those with amino acids replaced at the C terminus (p transport of oligopeptides across the Caco-2 cell monolayer.

  4. Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models

    Science.gov (United States)

    Yohan, Darren; Yang, Celina; Lu, Xiaofeng; Chithrani, Devika B.

    2016-03-01

    Gold nanoparticles (GNPs) can be used as a model NP system to improve the interface between nanotechnology and medicine since their size and surface properties can be tailored easily. GNPs are being used as radiation dose enhancers and as drug carriers in cancer research. Hence, it is important to know the optimum NP size for uptake not only at monolayer level but also at tissue level. Once GNPs leave tumor vasculature, they enter the tumor tissue. Success of any therapeutic technique using NPs depends on how well NPs penetrate the tumor tissue and reach individual tumor cells. In this work, multicellular layers (MCLs) were grown to model the post-vascular tumor environment. GNPs of 20 nm and 50 nm diameters were used to elucidate the effects of size on the GNP penetration and distribution dynamics. Larger NPs (50 nm) were better at monolayer level, but smaller NPs (20 nm) were at tissue level. The MCLs exhibited a much more extensive extracellular matrix (ECM) than monolayer cell cultures. This increased ECM created a barrier for NP transport and ECM was also dependent on the tumor cell lines. Smaller NPs penetrated better compared to larger NPs. Transport of NPs was better in MDA-MB231 vs MCF-7. This MCL model tissue structures are better tools to optimize NP transport through tissue before using them in animal models. Based on our study, we believe that smaller NPs are better for improved outcome in future cancer therapeutics.

  5. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  6. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Sëma

    2015-05-14

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  7. Mechanical model of geometric cell and topological algorithm for cell dynamics from single-cell to formation of monolayered tissues with pattern.

    Directory of Open Access Journals (Sweden)

    Sëma Kachalo

    Full Text Available Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues. Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software

  8. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  9. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    Science.gov (United States)

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. [The persistence of the causative agent of amyotrophic leukospongiosis and the astrocyte reaction in monolayer cultures of brain cells].

    Science.gov (United States)

    Poleshchuk, N N; Kvacheva, Z B; Il'kevich, Iu G; Kolomiets, N D

    1990-01-01

    The amyotrophic leukospongiosis (AL) agent which is considered to be an unconventional virus was shown to replicate and amplify in non-neuronal monolayer brain cell cultures. The AL agent persistence was accompanied by complicated morphofunctional changes in astrocytes, some of them developing a specific cytodystrophic process. Phagocytosis in the infected astrocytes came to its end. The dose-dependent effect and selective sensitivity of these cells to the cytodestructive activity of AL was demonstrated. Astrocytes are regarded to be target cells serving as a reservoir for agent amplification.

  11. Synthetic spatially graded Rac activation drives cell polarization and movement.

    Science.gov (United States)

    Lin, Benjamin; Holmes, William R; Wang, C Joanne; Ueno, Tasuku; Harwell, Andrew; Edelstein-Keshet, Leah; Inoue, Takanari; Levchenko, Andre

    2012-12-26

    Migrating cells possess intracellular gradients of active Rho GTPases, which serve as central hubs in transducing signals from extracellular receptors to cytoskeletal and adhesive machinery. However, it is unknown whether shallow exogenously induced intracellular gradients of Rho GTPases are sufficient to drive cell polarity and motility. Here, we use microfluidic control to generate gradients of a small molecule and thereby directly induce linear gradients of active, endogenous Rac without activation of chemotactic receptors. Gradients as low as 15% were sufficient not only to trigger cell migration up the chemical gradient but to induce both cell polarization and repolarization. Cellular response times were inversely proportional to the steepness of Rac inducer gradient in agreement with a mathematical model, suggesting a function for chemoattractant gradient amplification upstream of Rac. Increases in activated Rac levels beyond a well-defined threshold augmented polarization and decreased sensitivity to the imposed gradient. The threshold was governed by initial cell polarity and PI3K activity, supporting a role for both in defining responsiveness to Rac activation. Our results reveal that Rac can serve as a starting point in defining cell polarity. Furthermore, our methodology may serve as a template to investigate processes regulated by intracellular signaling gradients.

  12. Blended learning fitting algorithm for polarization curves of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fengxiang; Ji, Guangji; Zhang, Chuansheng [School of Automotive Studies of Tongji University, Shanghai 201804 (China); Zhou, Su [School of Automotive Studies of Tongji University, Shanghai 201804 (China); CDHK of Tongji University, Shanghai 200092 (China); Sundmacher, Kai [Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg 39106 (Germany)

    2009-07-15

    Fuel cell polarization curves, characterized by nonlinear models and the parameters of which are time-consuming to be identified, can represent fuel cell performance but will alter as the fuel cell degrades. For getting the information on degradation in time, a less time-consuming and an easily programmed algorithm, based on blended learning technique and linear least square estimation (LSE), is proposed to fit polarization curves obtained from the fuel cell systems. Simulations show that the proposed algorithm, compared with classical nonlinear LSE algorithms, converges much faster, features better extrapolation and less average quadratic error, and is easy to be programmed by C language. Therefore, the algorithm is a good option not only for fitting the polarization curves but also for implementation in embedded systems. (author)

  13. Defective planar cell polarity in polycystic kidney disease.

    Science.gov (United States)

    Fischer, Evelyne; Legue, Emilie; Doyen, Antonia; Nato, Faridabano; Nicolas, Jean-François; Torres, Vicente; Yaniv, Moshe; Pontoglio, Marco

    2006-01-01

    Morphogenesis involves coordinated proliferation, differentiation and spatial distribution of cells. We show that lengthening of renal tubules is associated with mitotic orientation of cells along the tubule axis, demonstrating intrinsic planar cell polarization, and we demonstrate that mitotic orientations are significantly distorted in rodent polycystic kidney models. These results suggest that oriented cell division dictates the maintenance of constant tubule diameter during tubular lengthening and that defects in this process trigger renal tubular enlargement and cyst formation.

  14. Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers.

    Science.gov (United States)

    Burcham, Philip C; Raso, Albert; Henry, Peter J

    2014-05-07

    The combustion product acrolein is a key mediator of pulmonary edema in victims of smoke inhalation injury. Since studying acrolein toxicity in conventional in vitro systems is complicated by reactivity with nucleophilic culture media constituents, we explored an exposure system which delivers airborne acrolein directly to lung cell monolayers at the air-liquid interface. Calu-3 lung adenocarcinoma cells were maintained on membrane inserts such that the basal surface was bathed in nucleophile-free media while the upper surface remained in contact with acrolein-containing air. Cells were exposed to airborne acrolein for 30 min before they were allowed to recover in fresh media, with cell sampling at defined time points to allow evaluation of toxicity and protein damage. After prior exposure to acrolein, cell ATP levels remained close to controls for 4h but decreased in an exposure-dependent manner by 24h. A loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-labeled dextran preceded ATP loss. Use of antibody arrays to monitor protein expression in exposed monolayers identified strong upregulation of phospho-keratin-8 (Ser(73)) as an early consequence of acrolein exposure. These changes were accompanied by chemical damage to keratin-8 and other intermediate filament family members, while acrolein exposure also resulted in controlled ubiquitination of high mass proteins within the intermediate filament extracts. These findings confirm the usefulness of systems allowing delivery of airborne smoke constituents to lung cell monolayers during studies of the molecular basis for acute smoke intoxication injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Grafted organic monolayer for single electron transport and for quantum dots solar cells

    Science.gov (United States)

    Caillard, Louis Marie

    Functionalization of oxide-free silicon and silicon oxide surfaces is important for a number of applications. In this work, organic monolayers are grafted (GOM) on oxide-free silicon surfaces using thermal and ultraviolet-activated hydrosilylation of hydrogen-terminated silicon surfaces, primarily using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy for characterization. The resulting amine-terminated GOM have been used for depositing nanoparticles, selecting the end group for two very specific applications: single electron devices and nano-quantum-dot (NQD) enhanced Si photovoltaic cells. To perform single-electron transport measurements, colloidal gold nanoparticles have been deposited on amine-functionalized silicon surfaces and tunneling measurements performed with a scanning tunneling microscope in an ultra-high vacuum chamber. Using a double-barrier tunneling junction (with the GOM as the first barrier and the vacuum between the scanning tip and the gold nanoparticle as the second one), single-electron transport was observed at 30K through a Coulomb staircase phenomenon. The critical parameters were identified to improve reproducibility. Finally, recently developed advanced modeling, based on traditional "orthodox" theory, was optimized to account for the observations (e.g. I-V dependence on band bending). This work provides a basis for the development of single-electron transistors that are compatible with current silicon based technology. To enhance standard silicon-based solar cells, GOM is also needed to graft strongly absorbing II-VI NQDs and optimize their energy transfer to the silicon substrate. Recent photoluminescence spectroscopy has demonstrated that energy transfer occurs through both radiative and non-radiative mechanisms between NQDs and the substrate. With grafting technology, the aim was to optimize absorption, as probed by photoluminescence, in two ways. First, silicon nanopillars were fabricated to increase the

  16. The formation of quiescent glomerular endothelial cell monolayer in vitro is strongly dependent on the choice of extracellular matrix coating

    Energy Technology Data Exchange (ETDEWEB)

    Pajęcka, Kamilla, E-mail: kpaj@novonordisk.com [Global Research, Novo Nordisk A/S, Måløv (Denmark); Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus (Denmark); Nielsen, Malik Nygaard [Global Research, Novo Nordisk A/S, Måløv (Denmark); Hansen, Troels Krarup [Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus (Denmark); Williams, Julie M. [Global Research, Novo Nordisk A/S, Måløv (Denmark)

    2017-04-01

    Background and aims: Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). Methods: Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barrier function by passage of fluorescent dextrans and magnitude of VEGF response. Results: All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70 kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). Conclusion: We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 – which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity. - Highlights: • rhLN521, rhLN511 and hFN assure physiologically relevant permeability. • rhLN521 and rhLN511 ensure best cell morphology and adherens junction formation. • Collagen IV and I based coating results in disorganized hGEnC monolayer. • Physiologically relevant ECM may lead to down-regulation of self-produced matrices.

  17. The formation of quiescent glomerular endothelial cell monolayer in vitro is strongly dependent on the choice of extracellular matrix coating

    International Nuclear Information System (INIS)

    Pajęcka, Kamilla; Nielsen, Malik Nygaard; Hansen, Troels Krarup; Williams, Julie M.

    2017-01-01

    Background and aims: Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). Methods: Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barrier function by passage of fluorescent dextrans and magnitude of VEGF response. Results: All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70 kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). Conclusion: We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 – which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity. - Highlights: • rhLN521, rhLN511 and hFN assure physiologically relevant permeability. • rhLN521 and rhLN511 ensure best cell morphology and adherens junction formation. • Collagen IV and I based coating results in disorganized hGEnC monolayer. • Physiologically relevant ECM may lead to down-regulation of self-produced matrices.

  18. FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity.

    Science.gov (United States)

    Dobens, Leonard L; Shipman, Anna; Axelrod, Jeffrey D

    2017-12-22

    Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.

  19. High Throughput Method to Quantify Anterior-Posterior Polarity of T-Cells and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Susan J. Marriott

    2011-11-01

    Full Text Available The virologic synapse (VS, which is formed between a virus-infected and uninfected cell, plays a central role in the transmission of certain viruses, such as HIV and HTLV-1. During VS formation, HTLV-1-infected T-cells polarize cellular and viral proteins toward the uninfected T-cell. This polarization resembles anterior-posterior cell polarity induced by immunological synapse (IS formation, which is more extensively characterized than VS formation and occurs when a T-cell interacts with an antigen-presenting cell. One measure of cell polarity induced by both IS or VS formation is the repositioning of the microtubule organizing center (MTOC relative to the contact point with the interacting cell. Here we describe an automated, high throughput system to score repositioning of the MTOC and thereby cell polarity establishment. The method rapidly and accurately calculates the angle between the MTOC and the IS for thousands of cells. We also show that the system can be adapted to score anterior-posterior polarity establishment of epithelial cells. This general approach represents a significant advancement over manual cell polarity scoring, which is subject to experimenter bias and requires more time and effort to evaluate large numbers of cells.

  20. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L. extract polyphenols and terpenoids in Caco-2 cell monolayers.

    Directory of Open Access Journals (Sweden)

    Almudena Pérez-Sánchez

    Full Text Available Rosemary (Rosmarinus officinalis is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids of a rosemary extract (RE, obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS, and the apparent permeability values (Papp were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability; therefore, RE itself should also be classified into this category.

  1. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers

    Science.gov (United States)

    Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category. PMID:28234919

  2. Self-assembled monolayers with different chemical group substrates for the study of MCF-7 breast cancer cell line behavior

    International Nuclear Information System (INIS)

    Yan, Hongji; Yin, Yanbin; Li, Yu; Tian, Weiming; Zhang, Song; Nie, Yongzhan; He, Jin; Wang, Xiumei; Cui, Fuzhai; Chen, Xiongbiao

    2013-01-01

    The interactions between cancer cells and the extracellular matrix (ECM) are important with respect to a number of cell behavoirs, yet remain unclear. In this study, self-assembled monolayers with different terminal chemical groups (hydroxyl (-OH), carboxyl (-COOH), animo (-NH 2 ), mercapto (-SH), and methyl (-CH 3 )) were employed as substrates for the culture of MCF-7 cells to examine effects on cell behavior. Cell spreading was investigated by scanning electron microscopy, tallin expression by immunofluorescence, proliferation rate by counting cell numbers, cell cycle by flow cytometry, metabolism by high-performance liquid chromatography and cell migration by live cell imaging. Annexin V-FITC (fluorescein isothiocyanate) and JC-1 assays were performed to determine cell apoptosis and mitochondrial membrane potential, respectively. Our results demonstrate the varied behaviors of MCF-7 cells in response to different chemical groups. Specifically, NH 2 and COOH terminal functional groups promote proliferation, the production of lactic acid and mobility of MCF-7 cells; SH and OH terminal groups enhance the expression and distribution of tallin but result in weak cell proliferation, metabolism, spreading and mobility. These results are meaningful for uncovering the interactions between the ECM and cancer cells; they are potentially useful for designing novel cancer treatment strategies. (paper)

  3. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel

    2012-01-01

    Planar cell polarity (PCP) refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.5 synch...... that tridimensional organization and collective communication of cells are needed in the pancreatic epithelium in order to generate appropriate numbers of endocrine cells....

  4. The interaction of mefloquine hydrochloride with cell membrane models at the air-water interface is modulated by the monolayer lipid composition.

    Science.gov (United States)

    Goto, Thiago Eichi; Caseli, Luciano

    2014-10-01

    The antiparasitic properties of antiparasitic drugs are believed to be associated with their interactions with the protozoan membrane, encouraging research on the identification of membrane sites capable of drug binding. In this study, we investigated the interaction of mefloquine hydrochloride, known to be effective against malaria, with cell membrane models represented by Langmuir monolayers of selected lipids. It is shown that even small amounts of the drug affect the surface pressure-area isotherms as well as surface vibrational spectra of some lipid monolayers, which points to a significant interaction. The effects on the latter depend on the electrical charge of the monolayer-forming molecules, with the drug activity being particularly distinctive for negatively charged lipids. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic drug, which may have important implications in understanding how the drug acts on specific sites of the protozoan membrane. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Modulation of cell polarization by the Na+-K+-ATPase-associated protein FXYD5 (dysadherin).

    Science.gov (United States)

    Lubarski, Irina; Asher, Carol; Garty, Haim

    2014-06-01

    FXYD5 (dysadherin or also called a related to ion channel, RIC) is a transmembrane auxiliary subunit of the Na(+)-K(+)-ATPase shown to increase its maximal velocity (Vmax). FXYD5 has also been identified as a cancer-associated protein whose expression in tumor-derived cell lines impairs cytoskeletal organization and increases cell motility. Previously, we have demonstrated that the expression of FXYD5 in M1 cells derived from mouse kidney collecting duct impairs the formation of tight and adherence junctions. The current study aimed to further explore effects of FXYD5 at a single cell level. It was found that in M1, as well as three other cell lines, FXYD5 inhibits transformation of adhered single cells from the initial radial shape to a flattened, elongated shape in the first stage of monolayer formation. This is also correlated to less ordered actin cables and fewer focal points. Structure-function analysis has demonstrated that the transmembrane domain of FXYD5, and not its unique extracellular segment, mediates the inhibition of change in cell shape. This domain has been shown before to be involved in the association of FXYD5 with the Na(+)-K(+)-ATPase, which leads to the increase in Vmax. Furthermore, specific transmembrane point mutations in FXYD5 that either increase or decrease its effect on cell elongation had a corresponding effect on the coimmunoprecipitation of FXYD5 with α Na(+)-K(+)-ATPase. These findings lend support to the possibility that FXYD5 affects cell polarization through its transmembrane domain interaction with the Na(+)-K(+)-ATPase. Yet interaction of FXYD5 with other proteins cannot be excluded. Copyright © 2014 the American Physiological Society.

  6. Structure of polarization-resolved conoscopic patterns of planar oriented liquid crystal cells

    Science.gov (United States)

    Kiselev, A. D.; Vovk, R. G.

    2010-05-01

    The geometry of distributions of the polarization of light in conoscopic patterns of planar oriented nematic and cholesteric liquid crystal (LC) cells is described in terms of the polarization singularities including C-points (points of circular polarization) and L lines (lines of linear polarization). Conditions for the formation of polarization singularities ( C-points) in an ensemble of conoscopic patterns parametrized by the polarization azimuth and ellipticity of the incident light wave have been studied. A characteristic feature of these conditions is selectivity with respect to the polarization parameters of the incident light wave. The polarization azimuth and ellipticity are determining parameters for nematic and cholesteric LC cells, respectively.

  7. Intestinal Absorption of Triterpenoids and Flavonoids from Glycyrrhizae radix et rhizoma in the Human Caco-2 Monolayer Cell Model.

    Science.gov (United States)

    Wang, Xiao-Xue; Liu, Gui-Yan; Yang, Yan-Fang; Wu, Xiu-Wen; Xu, Wei; Yang, Xiu-Wei

    2017-09-29

    Glycyrrhizae radix et rhizoma has been used as a traditional Chinese medicine for the treatment of various diseases. Triterpenoids and flavonoids from the plant have many beneficial effects and their chemical structures are modified in the gastrointestinal tract after oral administration. However, absorption of these triterpenoids and flavonoids still needs to be defined. Here, the uptake and transepithelial transport of the selected major triterpenoids, glycyrrhizin ( 1 ), glycyrrhetic acid-3- O -mono-β-d-glucuronide ( 2 ), and glycyrrhetinic acid ( 3 ); and the selected major flavonoids, licochalcone A ( 4 ), licochalcone B ( 5 ), licochalcone C ( 6 ), echinatin ( 7 ), isoliquiritin apioside ( 8 ), liquiritigenin ( 9 ), liquiritin apioside ( 10 ) isolated from Glycyrrhizae radix et rhizoma , were investigated in the human intestinal epithelium-like Caco-2 cell monolayer model. Compounds 3 , 5 - 7 , and 9 were designated as well-absorbed compounds, 2 and 4 were designated as moderately absorbed ones, and 1 , 8 , and 10 were assigned for the poorly absorbed ones. The absorption mechanism of well and moderately absorbed compound was mainly passive diffusion to pass through the human intestinal Caco-2 cell monolayer. These findings provided useful information for predicting their oral bioavailability and the clinical application.

  8. Comparison of genotoxic damage in monolayer cell cultures and three-dimensional tissue-like cell assemblies

    Science.gov (United States)

    Behravesh, E.; Emami, K.; Wu, H.; Gonda, S.

    Assessing the biological risks associated with exposure to the high-energy charged particles encountered in space is essential for the success of long-term space exploration. Although prokaryotic and eukaryotic cell models developed in our laboratory and others have advanced our understanding of many aspects of genotoxicity, in vitro models are needed to assess the risk to humans from space radiation insults. Such models must be representative of the cellular interactions present in tissues and capable of quantifying genotoxic damage. Toward this overall goal, the objectives of this study were to examine the effect of the localized microenvironment of cells, cultured as either 2-dimensional (2D) monolayers or 3-dimensional (3D) aggregates, on the rate and type of genotoxic damage resulting from exposure to Fe-charged particles, a significant portion of space radiation. We used rodent transgenic cell lines containing 50-70 copies of a LacI transgene to provide the enhanced sensitivity required to quantify mutational frequency and type in the 1100-bp LacI target as well as assessment of DNA damage to the entire 45-kbp construct. Cultured cells were exposed to high-energy Fe charged particles at Brookhaven National Laboratory's Alternating Gradient Synchrotron facility for a total dose ranging from 0.1 to 2 Gy and allowed to recover for 0-7 days, after which mutational type and frequency were evaluated. The mutational frequency was found to be higher in 3D samples than in 2D samples at all radiation doses. Mutational frequency also was higher at 7 days after irradiation than immediately after exposure. DNA sequencing of the mutant targets revealed that deletional mutations contributed an increasingly high percentage (up to 27%) of all mutations in cells as the dose was increased from 0.5 to 2 Gy. Several mutants also showed large and complex deletions in multiple locations within the LacI target. However, no differences in mutational type were found between the 2D and

  9. Repair of wounded monolayers of cultured bovine aortic endothelial cells is inhibited by calcium spirulan, a novel sulfated polysaccharide isolated from Spirulina platensis.

    Science.gov (United States)

    Kaji, Toshiyuki; Fujiwara, Yasuyuki; Inomata, Yuki; Hamada, Chieko; Yamamoto, Chika; Shimada, Satomi; Lee, Jung-Bum; Hayashi, Toshimitsu

    2002-03-08

    Calcium spirulan (Ca-SP) is a novel sulfated polysaccharide isolated from a blue-green alga Spirulina platensis. Ca-SP inhibits thrombin by activation of heparin cofactor II. Therefore, it could serve as an origin of anti-atherogenic medicines. Since maintenance of vascular endothelial cell monolayers is important for prevention of vascular lesions such as atherosclerosis, the effect of Ca-SP at 20 microg/ml or less on the repair of wounded bovine aortic endothelial cell monolayers in culture was investigated in the present study. When the monolayers were wounded and cultured in the presence of Ca-SP, the polysaccharide inhibited the appearance of the cells in the wounded area. The inhibition was also observed even when the repair was promoted by excess basic fibroblast growth factor, which is one of the autocrine growth factors that are involved in the endothelial cell monolayer maintenance. On the other hand, Ca-SP inhibited the cell growth and the incorporation of [3H]thymidine into the acid-insoluble fraction of proliferating endothelial cells, suggesting that Ca-SP inhibits endothelial cell proliferation. From these results, it is concluded that Ca-SP may retard the repair process of damaged vascular endothelium through inhibition of vascular endothelial cell proliferation by induction of a lower ability to respond to stimulation by endogenous basic fibroblast growth factor.

  10. Tick-Borne Encephalitis Virus Replication, Intracellular Trafficking, and Pathogenicity in Human Intestinal Caco-2 Cell Monolayers

    Science.gov (United States)

    Möller, Lars; Schulzke, Joerg D.; Niedrig, Matthias; Bücker, Roland

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route. PMID

  11. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers.

    Directory of Open Access Journals (Sweden)

    Chao Yu

    Full Text Available Tick-borne encephalitis virus (TBEV is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin and microtubules (Nocodazole are important for PI3K-dependent (LY294002 virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1 as well as with sorting nexin-5 (SNX5, pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary

  12. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Yu, Chao; Achazi, Katharina; Möller, Lars; Schulzke, Joerg D; Niedrig, Matthias; Bücker, Roland

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route.

  13. Highly-Oriented Molecular Assembly on Monolayer Graphene for Boosting Photon Harvesting in Bilayer Organic Solar Cells

    Science.gov (United States)

    Cho, Kilwon

    2015-03-01

    A novel approach to dramatically enhance the photon harvesting in organic solar cells was demonstrated by utilizing a graphene-organic heterointerface. A large area, residue-free monolayer graphene was inserted at anodic interface to serve as an atomically thin, transparent and highly conductive epitaxial template for organic crystal growth with specific orientation. The anisotropic nature of optoelectronic properties of organic semiconductor molecules provided a significant enhancement in exciton diffusion length, optical absorption, charge carrier lifetime as well as the energy level alignment at metal-organic and organic-organic interfaces. Especially, the exciton diffusion length increases up to nearly 100 nm, which allows the device thickness to be doubled to yield 5 times higher power conversion efficiency in comparison to conventional planar heterojunction organic photovoltaic cells. Theoretical simulations as well as systematic studies on the film structure and optoelectrical properties were performed to corroborate our new findings.

  14. Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides.

    Science.gov (United States)

    Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji

    2018-01-15

    Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Cell polarity signaling in the plasticity of cancer cell invasiveness

    Czech Academy of Sciences Publication Activity Database

    Gandalovičová, A.; Vomastek, Tomáš; Rosel, D.; Brábek, J.

    2016-01-01

    Roč. 7, č. 18 (2016), s. 25022-25049 ISSN 1949-2553 R&D Projects: GA ČR GA13-06405S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : polarity * invasion * plasticity Subject RIV: EE - Microbiology, Virology Impact factor: 5.168, year: 2016

  16. Prion infection of epithelial Rov cells is a polarized event.

    Science.gov (United States)

    Paquet, Sophie; Sabuncu, Elifsu; Delaunay, Jean-Louis; Laude, Hubert; Vilette, Didier

    2004-07-01

    During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells.

  17. Four Cation-Selective Transporters Contribute to Apical Uptake and Accumulation of Metformin in Caco-2 Cell Monolayers

    Science.gov (United States)

    Han, Tianxiang (Kevin); Proctor, William R.; Costales, Chester L.; Cai, Hao; Everett, Ruth S.

    2015-01-01

    Metformin is the frontline therapy for type II diabetes mellitus. The oral bioavailability of metformin is unexpectedly high, between 40 and 60%, given its hydrophilicity and positive charge at all physiologic pH values. Previous studies in Caco-2 cell monolayers, a cellular model of the human intestinal epithelium, showed that during absorptive transport metformin is taken up into the cells via transporters in the apical (AP) membrane; however, predominant transport to the basolateral (BL) side occurs via the paracellular route because intracellular metformin cannot egress across the BL membrane. Furthermore, these studies have suggested that the AP transporters can contribute to intestinal accumulation and absorption of metformin. Transporter-specific inhibitors as well as a novel approach involving a cocktail of transporter inhibitors with overlapping selectivity were used to identify the AP transporters that mediate metformin uptake in Caco-2 cell monolayers; furthermore, the relative contributions of these transporters in metformin AP uptake were also determined. The organic cation transporter 1, plasma membrane monoamine transporter (PMAT), serotonin reuptake transporter, and choline high-affinity transporter contributed to approximately 25%, 20%, 20%, and 15%, respectively, of the AP uptake of metformin. PMAT-knockdown Caco-2 cells were constructed to confirm the contribution of PMAT in metformin AP uptake because a PMAT-selective inhibitor is not available. The identification of four intestinal transporters that contribute to AP uptake and potentially intestinal absorption of metformin is a significant novel finding that can influence our understanding of metformin pharmacology and intestinal drug-drug interactions involving this highly prescribed drug. PMID:25563903

  18. Centrosome polarization in T cells: a task for formins

    Directory of Open Access Journals (Sweden)

    Laura eAndrés-Delgado

    2013-07-01

    Full Text Available T-cell antigen receptor (TCR engagement triggers the rapid reorientation of the centrosome, which is associated with the secretory machinery, towards the immunological synapse (IS for polarized protein trafficking. Recent evidence indicates that upon TCR triggering the INF2 formin, together with the formins DIA1 and FMNL1, promotes the formation of a specialized array of stable detyrosinated MTs that breaks the symmetrical organization of the T-cell microtubule (MT cytoskeleton. The detyrosinated MT array and TCR-induced tyrosine phosphorylation should coincide for centrosome polarization. We propose that the pushing forces produced by the detyrosinated MT array, which modify the position of the centrosome, in concert with Src kinase dependent TCR signaling, which provide the reference frame with respect to which the centrosome reorients, result in the repositioning of the centrosome to the IS.

  19. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  20. Polarization-resolved angular patterns of nematic liquid crystal cells: Topological events driven by incident light polarization

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Egorov, Roman I.; Chigrinov, Vladimir G.

    2008-09-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization-resolved angular (conoscopic) patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C points (points of circular polarization) and L lines (lines of linear polarization). For the homeotropically aligned cell, the Stokes polarimetry technique is used to measure the polarization resolved conoscopic patterns at different values of the ellipticity of the incident light, γell(inc) , impinging onto the cell. Using the exact analytical expressions for the transfer matrix we show that variations of the ellipticity, γell(inc) , induce transformations of the angular pattern exhibiting the effect of avoided L -line crossings and characterized by topological events such as creation and annihilation of the C points. The predictions of the theory are found to be in good agreement with the experimental results.

  1. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  2. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    Science.gov (United States)

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  3. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions.

    Science.gov (United States)

    Rodin, Sergey; Antonsson, Liselotte; Hovatta, Outi; Tryggvason, Karl

    2014-10-01

    A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.

  4. Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell

    Science.gov (United States)

    Tozlu, Cem; Mutlu, Adem; Can, Mustafa; Havare, Ali Kemal; Demic, Serafettin; Icli, Sıddık

    2017-11-01

    The effects of surface modification of titanium dioxide (TiO2) on the performance of inverted type organic solar cells (i-OSCs) was investigated in this study. A series of benzoic acid derivatized self-assembled monolayer (SAM) molecules of 4‧-[(hexyloxy)phenyl]amino-3,5-biphenyl dicarboxylic acid (CT17) and 4‧-[1-naphthyl (phenyl)amino]biphenyl-4-carboxylic acid (CT19) were utilized to modify the interface between TiO2 buffer layer and poly-3 hexylthiophene (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PC61BM) active layer having the device structure of ITO/TiO2/SAM/P3HT:PC61BM/MoO3/Ag. The work function and surface wetting properties of TiO2 buffer layer served as electron transporting layer between ITO and PC61BM active layer were tuned by SAM method. The solar cell of the SAM modified devices exhibited better performance. The power conversion efficiency (PCE) of i-OSCs devices with bare TiO2 electrodes enhanced from 2.00% to 2.21% and 2.43% with CT17 and CT19 treated TiO2 electrodes, respectively. The open circuit voltage (Voc) of the SAM treated TiO2 devices reached to 0.60 V and 0.61 V, respectively, while the Voc of untreated TiO2 was 0.57 V. The water contact angle of i-OSCs with CT17 and CT19 SAMs was also higher than the value of the unmodified TiO2 electrode. These results show that inserting a monolayer at the interface between organic and inorganic layers is an useful alternative method to improve the performance of i-OSCs.

  5. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  6. Long polar fimbriae participates in the induction of neutrophils transepithelial migration across intestinal cells infected with enterohemorrhagic E. coli O157:H7.

    Science.gov (United States)

    Vergara, Alejandra F; Vidal, Roberto M; Torres, Alfredo G; Farfan, Mauricio J

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains are causative agents of diarrhea and hemorrhagic colitis, both diseases associated with intestinal inflammation and cell damage. Several studies have correlated EHEC virulence factors to high levels of intestinal pro-inflammatory cytokines and we have previously described that the Long polar fimbriae (Lpf) is involved in the secretion of interleukin-8 (IL-8) and up-regulation of genes belonging to the NF-κB pathway using non-polarized epithelial intestinal T84 cells. In the current study, we evaluated the two EHEC O157 Lpf fimbriae (Lpf1 and Lpf2) for their ability to induce intestinal secretion of IL-8 and the activation of IL8, CCL20, and ICAM1 genes on polarized T84 cells. We also determined the participation of Lpf1 and Lpf2 in transepithelial migration of polymorphonuclear neutrophils (PMNs). Polarized T84 cells infected with EHEC revealed that both, Lpf1 and Lpf2, were required for the secretion of IL-8 and the induction of IL8, CCL20, and ICAM1 genes. Both fimbriae also played a role in the migration of PMNs trough the intestinal cells monolayer. Overall, the present work further demonstrated that the fimbriae Lpf1 and Lpf2 are important bacterial virulence factors that might be involved in the inflammatory responses associated with EHEC infections.

  7. T-helper 17 cell polarization in pulmonary arterial hypertension.

    Science.gov (United States)

    Hautefort, Aurélie; Girerd, Barbara; Montani, David; Cohen-Kaminsky, Sylvia; Price, Laura; Lambrecht, Bart N; Humbert, Marc; Perros, Frédéric

    2015-06-01

    Inflammation may contribute to the pathobiology of pulmonary arterial hypertension (PAH). Deciphering the PAH fingerprint on the inflammation orchestrated by dendritic cells (DCs) and T cells, key driver and effector cells, respectively, of the immune system, may allow the identification of immunopathologic approaches to PAH management. Using flow cytometry, we performed immunophenotyping of monocyte-derived DCs (MoDCs) and circulating lymphocytes from patients with idiopathic PAH and control subjects. With the same technique, we performed cytokine profiling of both populations following stimulation, coculture, or both. We tested the immunomodulatory effects of a glucocorticoid (dexamethasone [Dex]) on this immunophenotype and cytokine profile. Using an epigenetic approach, we confirmed the immune polarization in blood DNA of patients with PAH. The profile of membrane costimulatory molecules of PAH MoDCs was similar to that of control subjects. However, PAH MoDCs retained higher levels of the T-cell activating molecules CD86 and CD40 after Dex pretreatment than did control MoDCs. This was associated with an increased expression of IL-12p40 and a reduced migration toward chemokine (C-C motif) ligand 21. Moreover, both with and without Dex, PAH MoDCs induced a higher activation and proliferation of CD4+ T cells, associated with a reduced expression of IL-4 (T helper 2 response) and a higher expression of IL-17 (T helper 17 response). Purified PAH CD4+ T cells expressed a higher level of IL-17 after activation than did those of control subjects. Lastly, there was significant hypomethylation of the IL-17 promoter in the PAH blood DNA as compared with the control blood. We have highlighted T helper 17 cell immune polarization in patients with PAH, as has been previously demonstrated in other chronic inflammatory and autoimmune conditions.

  8. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity.

    Science.gov (United States)

    Mihajlović, Aleksandar I; Bruce, Alexander W

    2017-11-01

    During the first cell-fate decision of mouse preimplantation embryo development, a population of outer-residing polar cells is segregated from a second population of inner apolar cells to form two distinct cell lineages: the trophectoderm and the inner cell mass (ICM), respectively. Historically, two models have been proposed to explain how the initial differences between these two cell populations originate and ultimately define them as the two stated early blastocyst stage cell lineages. The 'positional' model proposes that cells acquire distinct fates based on differences in their relative position within the developing embryo, while the 'polarity' model proposes that the differences driving the lineage segregation arise as a consequence of the differential inheritance of factors, which exhibit polarized subcellular localizations, upon asymmetric cell divisions. Although these two models have traditionally been considered separately, a growing body of evidence, collected over recent years, suggests the existence of a large degree of compatibility. Accordingly, the main aim of this review is to summarize the major historical and more contemporarily identified events that define the first cell-fate decision and to place them in the context of both the originally proposed positional and polarity models, thus highlighting their functional complementarity in describing distinct aspects of the developmental programme underpinning the first cell-fate decision in mouse embryogenesis. © 2017 The Authors.

  9. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nøhr, Martha Kampp; Hansen, Steen Honoré; Brodin, Birger

    2014-01-01

    of vigabatrin in Caco-2 cells, a cell culture model of the small intestinal epithelium. The uptake and transepithelial flux of vigabatrin was measured using an LC-MS method for quantification. Transepithelial transport of vigabatrin was shown to be proton-dependent and polarized in the apical-to-basolateral (A...... of the human proton-coupled amino acid transporter (hPAT1) to the apical solution. The present study indicates that the transepithelial A-B flux of vigabatrin is mainly mediated by hPAT1 in Caco-2 cells at dose-relevant concentrations....

  10. Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Linxi Li

    2017-08-01

    Full Text Available In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2 in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19 interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin at the actin-rich apical ectoplasmic specialization (ES since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin, tight junction (occludin-ZO-1 and claudin 11-ZO-1, and gap junction (connexin 43-plakophilin-2 and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2. In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both and these polarity (or PCP protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed.

  11. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity

    Science.gov (United States)

    Fölsch, Heike

    2015-01-01

    Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B. PMID:27057418

  12. Acanthamoeba culbertsoni isolated from a clinical case with intraocular dissemination: Structure and in vitro analysis of the interaction with hamster cornea and MDCK epithelial cell monolayers.

    Science.gov (United States)

    González-Robles, Arturo; Omaña-Molina, Maritza; Salazar-Villatoro, Lizbeth; Flores-Maldonado, Catalina; Lorenzo-Morales, Jacob; Reyes-Batlle, María; Arnalich-Montiel, Francisco; Martínez-Palomo, Adolfo

    2017-12-01

    Acanthamoeba culbertsoni trophozoites, previously isolated from a human keratitis case with severe intraocular damage, were maintained in axenic culture. Co-incubation of amoebae with MDCK cell monolayers demonstrated an apparent preference of the amoebae to introduce themselves between the cells. The trophozoites appeared to cross the cell monolayer through the tight junctions, which resulted in decreased trans-epithelial resistance (TER) measurements. Unexpectedly, after co-incubation of amoebae with hamster corneas, we observed that the trophozoites were able to cross the different cell layers and reach the corneal stroma after only 12 h of interaction, in contrast to other Acanthamoeba species. These observations suggest that this A. culbertsoni isolate is particularly pathogenic. Further research with diverse methodologies needs to be performed to explain the unique behavior of this Acanthamoeba strain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Myofibroblast keratinocyte growth factor reduces tight junctional integrity and increases claudin-2 levels in polarized Caco-2 cells

    Science.gov (United States)

    Kim, Tae Il; Poulin, Emily J.; Blask, Elliot; Bukhalid, Raghida; Whitehead, Robert H.; Franklin, Jeffrey L.; Coffey, Robert J.

    2013-01-01

    The colonic epithelium is composed of a polarized monolayer sheathed by a layer of pericryptal myofibroblasts (PCMFs). We mimicked these cellular compartments in vitro to assess the effects of paracrine-acting PCMF-derived factors on tight junction (TJ) integrity, as measured by transepithelial electrical resistance (TER). Co-culture with 18Co PCMFs, or basolateral administration of 18Co conditioned medium (CM), significantly reduced TER of polarized Caco-2 cells. Amongst candidate paracrine factors, only keratinocyte growth factor (KGF) reduced Caco-2 TER; basolateral KGF treatment led to time- and concentration-dependent increases in claudin-2 levels. We also demonstrate amphiregulin (AREG), produced largely by Caco-2 cells, increased claudin-2 levels, leading to epidermal growth factor receptor-mediated TER reduction. We propose that colonic epithelial TJ integrity can be modulated by paracrine KGF and autocrine AREG through increased claudin-2 levels. KGF-regulated claudin-2 induction may have implications for inflammatory bowel disease, where both KGF and claudin-2 are upregulated. PMID:22946653

  14. Perforated monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Regen, S.L.

    1992-12-01

    Goal of this research program is to create ultrathin organic membranes that possess uniform and adjustable pores ( < 7[angstrom] diameter). Such membranes are expected to possess high permeation selectivity (permselectivity) and high permeability, and to provide the basis for energy-efficient methods of molecular separation. Work carried out has demonstrated feasibility of using perforated monolayer''-based composites as molecular sieve membranes. Specifically, composite membranes derived from Langmuir-Blodgett multilayers of the calix[6]arene-based surfactant shown below plus poly[l-(trimethylsilyl)-l-propyne] (PTMSP) were found to exhibit sieving behavior towards He, N[sub 2] and SF[sub 6]. Results of derivative studies that have also been completed are also described in this report.

  15. Topological events in polarization resolved angular patterns of nematic liquid crystal cells at varying ellipticity of incident wave

    OpenAIRE

    Kiselev, Alexei D.; Vovk, Roman G.

    2008-01-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...

  16. The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation.

    Science.gov (United States)

    Mizukawa, Benjamin; O'Brien, Eric; Moreira, Daniel C; Wunderlich, Mark; Hochstetler, Cindy L; Duan, Xin; Liu, Wei; Orr, Emily; Grimes, H Leighton; Mulloy, James C; Zheng, Yi

    2017-09-14

    As a central regulator of cell polarity, the activity of CDC42 GTPase is tightly controlled in maintaining normal hematopoietic stem and progenitor cell (HSC/P) functions. We found that transformation of HSC/P to acute myeloid leukemia (AML) is associated with increased CDC42 expression and activity in leukemia cells. In a mouse model of AML, the loss of Cdc42 abrogates MLL-AF9 -induced AML development. Furthermore, genetic ablation of CDC42 in both murine and human MLL-AF9 (MA9) cells decreased survival and induced differentiation of the clonogenic leukemia-initiating cells. We show that MLL-AF9 leukemia cells maintain cell polarity in the context of elevated Cdc42-guanosine triphosphate activity, similar to nonmalignant, young HSC/Ps. The loss of Cdc42 resulted in a shift to depolarized AML cells that is associated with a decrease in the frequency of symmetric and asymmetric cell divisions producing daughter cells capable of self-renewal. Importantly, we demonstrate that inducible CDC42 suppression in primary human AML cells blocks leukemia progression in a xenograft model. Thus, CDC42 loss suppresses AML cell polarity and division asymmetry, and CDC42 constitutes a useful target to alter leukemia-initiating cell fate for differentiation therapy. © 2017 by The American Society of Hematology.

  17. The transepithelial transport mechanism of polybrominated diphenyl ethers in human intestine determined using a Caco-2 cell monolayer.

    Science.gov (United States)

    Yu, Yingxin; Wang, Mengmeng; Zhang, Kaiqiong; Yang, Dan; Zhong, Yufang; An, Jing; Lei, Bingli; Zhang, Xinyu

    2017-04-01

    Oral ingestion plays an important role in human exposure to polybrominated diphenyl ethers (PBDEs). The uptake of PBDEs primarily occurs in the small intestine. The aim of the present study is to investigate the transepithelial transport characteristics and mechanisms of PBDEs in the small intestine using a Caco-2 cell monolayer model. The apparent permeability coefficients of PBDEs indicated that tri- to hepta-BDEs were poorly absorbed compounds. A linear increase in transepithelial transport was observed with various concentrations of PBDEs, which suggested that passive diffusion dominated their transport at the concentration range tested. In addition, the pseudo-first-order kinetics equation can be applied to the transepithelial transport of PBDEs. The rate-determining step in transepithelial transport of PBDEs was trans-cell transport including the trans-pore process. The significantly lower transepithelial transport rates at low temperature for bidirectional transepithelial transport suggested that an energy-dependent transport mechanism was involved. The efflux transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) and influx transporters (organic cation transporters) participated in the transepithelial transport of PBDEs. In addition, the transepithelial transport of PBDEs was pH sensitive; however, more information is required to understand the influence of pH. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Using self-assembled monolayers to pattern ECM proteins and cells on substrates.

    Science.gov (United States)

    Ostuni, Emanuele; Whitesides, George M; Ingber, Donald E; Chen, Christopher S

    2009-01-01

    We present a method that uses microcontact printing of alkanethiols on gold to generate patterned substrates presenting "islands" of extracellular matrix (ECM) surrounded by nonadhesive regions such that single cells attach and spread only on the adhesive regions. We have used this micropatterning technology to demonstrate that mammalian cells can be switched between growth and apoptosis programs in the presence of saturating concentrations of growth factors by either promoting or preventing cell spreading (Science 276:1425-1428, 1997). From the perspective of fundamental cell biology, these results suggested that the local differentials in growth and viability that are critical for the formation of complex tissue patterns may be generated by local changes in cell-ECM interactions. In the context of cell culture technologies, such as bioreactors and cellular engineering applications, the regulation of cell function by cell shape indicates that the adhesive microenvironment around cells can be carefully optimized by patterning a substrate in addition to using soluble factors (Biotech. Prog. 14:356-363, 1998). Micropatterning technology is playing a central role both in our understanding how ECM and cell shape regulate cell physiology and in facilitating the development of cellular biosensor and tissue engineering applications (Science 264:696-698, 1994; J. Neurosci. Res. 13:213-20, 1985; Biotech. Bioeng. 43:792-800, 1994).

  19. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    since, in the absence of such knowledge, the development of effective therapeutic interventions to target CSCs and prevent cancer progression and...yes) (2) Presentations: a. 2016 Keystone Symposia- Stem Cells & Cancer, Breckenridge, “Epigenetic regulation promotes obesity related breast

  20. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model.

    Science.gov (United States)

    Huang, Xiao-Zhong; Li, Zhong-Rong; Zhu, Li-Bin; Huang, Hui-Ya; Hou, Long-Long; Lin, Jing

    2014-08-01

    Butyrate is well known to induce apoptosis in differentiating intestinal epithelial cells. The present study was designed to examine the role of p38 mitogen-activated protein kinase (MAPK) in butyrate-induced intestinal barrier impairment. The intestinal barrier was determined by measuring the transepithelial electrical resistance (TER) in a Caco-2 cell monolayer model. The permeability was determined by measuring transepithelial passage of fluorescein isothiocyanate-conjugated inulin (inulin-FITC). The morphology of the monolayers was examined with scanning electron microscopy. The apoptosis status was determined by annexin V-FITC labeling and flow cytometry. The activity of p38 MAPK was determined by the phosphorylation status of p38 with Western blotting. Butyrate at 5 mM increases the apoptosis rate of Caco-2 cells and induces impairment of intestinal barrier functions as determined by decreased TER and increased inulin-FITC permeability. Butyrate treatment activates p38 MAPK in a concentration- and time-dependent manner. SB203580, a specific p38 inhibitor, inhibits butyrate-induced Caco-2 cell apoptosis. Treatment of SB203580 significantly attenuates the butyrate-induced impairment of barrier functions in the Caco-2 cell monolayer model. p38 MAPK can be activated by butyrate and is involved in the butyrate-induced apoptosis and impairment of intestinal barrier function. Inhibition of p38 MAPK can significantly attenuate butyrate-induced intestinal barrier dysfunction.

  1. Conditioned Medium of Wharton's Jelly Derived Stem Cells Can Enhance the Cartilage Specific Genes Expression by Chondrocytes in Monolayer and Mass Culture Systems

    Directory of Open Access Journals (Sweden)

    Maryam Hassan Famian

    2017-04-01

    Full Text Available Purpose: Mesenchymal stem cells (MSCs have been introduced for cell therapy strategies in osteoarthritis (OA. Despite of their capacity for differentiation into chondrocyte, there are some evidences about their life-threatening problem after transplantation. So, some researchers shifted on the application of stem cells conditioned medium. The goal of this study is to evaluate whether Wharton's jelly derived stem cell conditioned medium (WJSCs-CM can enhance the gene expression profile by chondrocytes in monolayer and mass culture systems. Methods: Conditioned medium was obtained from WJSCs at fourth passage. Isolated chondrocytes were plated at density of 1×106 for both monolayer and high density culture. Then cells in both groups were divided into control (received medium and experiment group treated with WJ-CM for 3 and 6 days. Samples were prepared to evaluate gene expression profile of collagen II, aggrecan, cartilage oligomeric matrix protein (COMP and sox-9 using real-time RT-PCR. Results: After 3 days, Chondrocytes treated with WJSCs-CM expressed significantly higher level of genes compared to the control group in both culture systems. After 6 days, the expression of genes in monolayer cultivated chondrocytes was decreased but that of the mass culture were up-regulated significantly. Conclusion: WJ-SCs-CM can increase the expression of cartilage-specific genes and can be introduced as a promoting factor for cartilage regeneration.

  2. TU-H-CAMPUS-TeP3-01: Gold Nanoparticle-Enhanced Radiation Therapy in In Vitro A549 Lung Carcinoma: Studies in Both Traditional Monolayer and Three Dimensional Cell Culture Models

    Energy Technology Data Exchange (ETDEWEB)

    Oumano, M [Baystate Medical Center, Springfield, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Harvard Medical School, Boston, MA (United States); Celli, J; Hempstead, J; Petrovic, L [University of Massachusetts Boston, Boston, MA (United States); Arnoldussen, M; Hanlon, J [Oraya Therapeutics inc., Newark, CA (United States)

    2016-06-15

    Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factor reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.

  3. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2016-10-01

    stably express miR-200c (pCDH- miR200c) and MCF7 cells with knock- down of miR-200c (pZIP-miR200c) (Months 1-2) Completed! We have successfully...established BT549-pCDH-miR200c and MCF7 - pZIP-miR200c and examined the protein expression levels as described in subtask 2 (Fig. 1). Subtask 2...Determine expression levels of PKCζ and phospho-NUMB (p- NUMB), by re-expressing PKCζ in BT549-pCDH-miR200c cells and knocking-down PKCζ in MCF7

  4. Angular structure of light polarization and singularities in transmittance of nematic liquid crystal cells

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Buinyi, Igor O.; Soskin, Marat S.

    2007-06-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles. Our theoretical results are obtained by evaluating the Stokes parameters that characterize the polarization state of plane waves propagating through the NLC layer at varying direction of incidence. Using the Stokes polarimetry technique we carried out the measurements of the polarization resolved conoscopic patterns emerging after the homeotropically aligned NLC cell illuminated by the convergent light beam. The resulting polarization resolved angular patterns are described both theoretically and experimentally in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). When the ellipticity of the incident light varies, the angular patterns are found to undergo transformations involving the processes of creation and annihilation of the C-points.

  5. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  6. Monolayer to MTS: using SEM, HIM, TEM and SERS to compare morphology, nanosensor uptake and redox potential in MCF7 cells

    Science.gov (United States)

    Jamieson, L. E.; Bell, A. P.; Harrison, D. J.; Campbell, C. J.

    2015-06-01

    Cellular redox potential is important for the control and regulation of a vast number of processes occurring in cells. When the fine redox potential balance within cells is disturbed it can have serious consequences such as the initiation or progression of disease. It is thought that a redox gradient develops in cancer tumours where the peripheral regions are well oxygenated and internal regions, further from vascular blood supply, become starved of oxygen and hypoxic. This makes treatment of these areas more challenging as, for example, radiotherapy relies on the presence of oxygen. Currently techniques for quantitative analysis of redox gradients are limited. Surface enhanced Raman scattering (SERS) nanosensors (NS) have been used to detect redox potential in a quantitative manner in monolayer cultured cells with many advantages over other techniques. This technique has considerable potential for use in multicellular tumour spheroids (MTS) - a three dimensional (3D) cell model which better mimics the tumour environment and gradients that develop. MTS are a more realistic model of the in vivo cellular morphology and environment and are becoming an increasingly popular in vitro model, replacing traditional monolayer culture. Imaging techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM) and helium ion microscopy (HIM) were used to investigate differences in morphology and NS uptake in monolayer culture compared to MTS. After confirming NS uptake, the first SERS measurements revealing quantitative information on redox potential in MTS were performed.

  7. Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    KAUST Repository

    Ardalan, Pendar

    2010-06-01

    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.

  8. Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Ardalan, Pendar

    2011-02-22

    Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.

  9. Enhanced Intestinal Permeability of Bufalin by a Novel Bufalin-Peptide-Dendrimer Inclusion through Caco-2 Cell Monolayer.

    Science.gov (United States)

    Chan, Chi-On; Jing, Jing; Xiao, Wei; Tan, Zhexu; Lv, Qiuyue; Yang, Jingyu; Chen, Sibao

    2017-11-29

    Bufalin (BFL) has excellent physiological activities such as defending tumors, improving cardiac function, and so on. However, due to its poor water-solubility and bioavailability, the clinical application of BFL remains limited. In order to improve bioavailability of BFL, in our previous research, a novel peptide-dendrimer (PD) was synthesized and applied to encapsulate BFL. In the present study, we investigate the absorption property and mechanism of BFL in free form and BFL-peptide-dendrimer inclusion (BPDI) delivery system by using the Caco-2 cell monolayer model in vitro. The apparent permeability coefficient ( P app ) values of BFL in free or BPDI form were over 1.0 × 10 -6 cm/s. Meanwhile, their almost equal bi-directional transport and linear transport percentage with time and concentration course indicated that BFL in both forms was absorbed mainly through passive diffusion. The most important result is that the P app values of BFL increased about three-fold more BPDI than those of its free form, which indicated the intestinal permeability of BFL could be improved while BFL was encapsulated in BPDI form. Therefore, PD encapsulation may be a potential delivery system to increase the bioavailability of BFL.

  10. Nanoemulsion-based delivery system for enhanced oral bioavailability and caco-2 cell monolayers permeability of berberine hydrochloride.

    Science.gov (United States)

    Li, Yong-Jiang; Hu, Xiong-Bin; Lu, Xiu-Ling; Liao, De-Hua; Tang, Tian-Tian; Wu, Jun-Yong; Xiang, Da-Xiong

    2017-11-01

    Berberine hydrochloride (BBH) has a variety of pharmacological activities such as antitumor, antimicrobial, anti-inflammation, and reduce irritable bowel syndrome. However, poor stability and low oral bioavailability limited its usage. Herein, an oil-in-water nanoemulsion system of BBH was developed to improve its stability and oral bioavailability. The pseudoternary phase diagrams were constructed for the determination of composition of various nanoemulsions. The nanoemulsions of BBH composed of Labrafil M 1944 CS (oil phase), RH-40 (surfactant), glycerin (co-surfactant), and water (aqueous phase). The O/W nanoemulsion of BBH showed a relative bioavailability of 440.40% compared with unencapsulated BBH and was stable in our 6-month stability study. Further, there was a significant increase in intestinal permeability of BBH as assessed by Caco-2 cell monolayers and a significant reduction in efflux of BBH by the multidrug efflux pump P-glycoprotein. This study confirmed that the nanoemulsion formulation could be used as an alternative oral formulation of BBH to improve its stability, oral bioavailability and permeability.

  11. Development of Yam Dioscorin-Loaded Nanoparticles for Paracellular Transport Across Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Hsieh, Hung-Ling; Lee, Chia-Hung; Lin, Kuo-Chih

    2018-02-07

    Dioscorins, the major storage proteins of yam tubers, exert immunomodulatory activities. To improve oral bioavailability of dioscorins in the intestine, recombinant dioscorin (rDioscorin) was coated with N,N,N-trimethyl chitosan (TMC) and tripolyphosphate (TPP), resulting in the formation of TMC-rDio-TPP nanoparticles (NPs). The loading capacity and entrapment efficiency of rDioscorin in the NPs were 26 ± 0.7% and 61 ± 1.4%, respectively. The NPs demonstrated a substantial release profile in the pH environment of the jejunum. The rDioscorin released from the NPs stimulated proliferation and phagocytosis of the macrophage RAW264.7 and activated the gene expression of IL-1β and IL-6. Incubation of the NPs in the Caco-2 cell monolayer led to a 5.2-fold increase of P app compared with rDioscorin alone, suggesting that rDioscorin, with the assistance of TMC, can be promptly transported across the intestinal epithelia. These results demonstrate that the TMC-rDio-TPP NPs can be utilized for elucidating the immunopharmacological effects of dioscorins through oral delivery.

  12. Effects of Catechins and Their Related Compounds on Cellular Accumulation and Efflux Transport of Mitoxantrone in Caco-2 Cell Monolayers.

    Science.gov (United States)

    Sugihara, Narumi; Kuroda, Norihiko; Watanabe, Fumiya; Choshi, Tominari; Kamishikiryo, Jun; Seo, Makoto

    2017-05-01

    The ability of catechins and their related compounds to inhibit breast cancer resistance protein (BCRP) function in Caco-2 cell monolayers was investigated with mitoxantrone as a BCRP substrate. The gallate or pyrogallol moiety on the catechin structure seemed to promote increased cellular accumulation and inhibit efflux transport of mitoxantrone. The ability of gallate catechins such as (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) to increase cellular accumulation and inhibit efflux transport of mitoxantrone was greater than that of nongallate catechins. Gallic acid octyl ester (GAO) also increased intracellular mitoxantrone accumulation. Experiments using GAO derivatives indicated that the gallate moiety required the presence of a long carbon chain for BCRP inhibition. Cellular accumulation and reduced efflux transport of mitoxantrone were greater with epigallocatechin 3-(3″-O-butyl) gallate than with EGCG. EGCG inhibition of BCRP seemed to be restricted by hydrophobicity. The co-administration of catechins, particularly EGCG and related compounds, with greater hydrophobicity may increase the therapeutic activities of BCRP substrates such as mitoxantrone. © 2017 Institute of Food Technologists®.

  13. Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via ITC, QCM-D and Langmuir Monolayer Study.

    Science.gov (United States)

    Zou, Yuan; Pan, Run-Ting; Ruan, Qi-Jun; Wan, Zhili; Guo, Jian; Yang, Xiao-Quan

    2018-04-10

    To understand an underlying molecular mechanism on the cholesterol-lowering effect of soybean 7S globulins, the interactions of their pepsin-released peptides (7S-peptides) with cell membrane models consisting of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL) were systematically studied. The results showed that 7S-peptides were bound to DPPC/DOPC/CHOL liposomes mainly through Van der Waals forces and hydrogen bonds, and the presence of higher CHOL concentrations enhanced the binding affinity (e.g. DPPC/DOPC/CHOL = 1:1:0, binding ratio = 0.114; DPPC/DOPC/CHOL = 1:1:1, binding ratio = 2.02). Compression isotherms indicated that the incorporation of 7S-peptides increased the DPPC/DOPC/CHOL monolayer fluidity and the lipid raft size. The presence of CHOL accelerated the 7S-peptide accumulation on lipid rafts, which could serve as platforms for peptides to develop into β-sheet rich structures. These results allow us to hypothesize that 7S-peptides may indirectly influence membrane protein functions via altering the membrane organization in enterocyte.

  14. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation.

    Science.gov (United States)

    Shao, Wanchen; Dong, Juan

    2016-11-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants. Copyright © 2016. Published by Elsevier Inc.

  15. Salicylate effects on a monolayer culture of gastric mucous cells from adult rats.

    OpenAIRE

    Ota, S; Razandi, M; Sekhon, S; Krause, W J; Terano, A; Hiraishi, H; Ivey, K J

    1988-01-01

    Aspirin, acetyl salicylic acid, damages gastric mucosal cells. This effect is considered related to its inhibition of prostaglandin synthesis. On the other hand, sodium salicylate has been reported to be cytoprotective against drug damage to gastric mucosa in vivo. One reason for this difference is that salicylic acid, unlike acetyl salicylic acid does not inhibit prostaglandin synthesis by gastric mucosa in vivo. Previous studies on tissue culture cells from our laboratory have required gast...

  16. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning.

    Science.gov (United States)

    Song, Hai; Hu, Jianxin; Chen, Wen; Elliott, Gene; Andre, Philipp; Gao, Bo; Yang, Yingzi

    2010-07-15

    Defining the three body axes is a central event of vertebrate morphogenesis. Establishment of left-right (L-R) asymmetry in development follows the determination of dorsal-ventral and anterior-posterior (A-P) body axes, although the molecular mechanism underlying precise L-R symmetry breaking in reference to the other two axes is still poorly understood. Here, by removing both Vangl1 and Vangl2, the two mouse homologues of a Drosophila core planar cell polarity (PCP) gene Van Gogh (Vang), we reveal a previously unrecognized function of PCP in the initial breaking of lateral symmetry. The leftward nodal flow across the posterior notochord (PNC) has been identified as the earliest event in the de novo formation of L-R asymmetry. We show that PCP is essential in interpreting the A-P patterning information and linking it to L-R asymmetry. In the absence of Vangl1 and Vangl2, cilia are positioned randomly around the centre of the PNC cells and nodal flow is turbulent, which results in disrupted L-R asymmetry. PCP in mouse, unlike what has been implicated in other vertebrate species, is not required for ciliogenesis, cilium motility, Sonic hedgehog (Shh) signalling or apical docking of basal bodies in ciliated tracheal epithelial cells. Our data suggest that PCP acts earlier than the unidirectional nodal flow during bilateral symmetry breaking in vertebrates and provide insight into the functional mechanism of PCP in organizing the vertebrate tissues in development.

  17. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  18. Caco-2 cell monolayer integrity and effect of probiotic Escherichia coli Nissle 1917 components

    Czech Academy of Sciences Publication Activity Database

    Štětinová, V.; Smetanová, L.; Květina, J.; Svoboda, Z.; Zídek, Zdeněk; Tlaskalová-Hogenová, Helena

    2010-01-01

    Roč. 31, - (2010), s. 51-56 ISSN 0172-780X R&D Projects: GA ČR GA305/08/0535; GA MZd NS9775 Institutional support: RVO:68378041 ; RVO:61388971 Keywords : probiotics * lipopolysaccharide (LPS) * Caco -2 cells Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.621, year: 2010

  19. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila

    DEFF Research Database (Denmark)

    Deng, Wu-Min; Schneider, Martina; Frock, Richard

    2003-01-01

    , and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell......-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical...... localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells...

  20. Digestive Stability and Transport of Norbixin, a 24-Carbon Carotenoid, across Monolayers of Caco-2 Cells

    Science.gov (United States)

    Polar-Cabrera, Karina; Huo, Tianyao; Schwartz, Steven J.; Failla, Mark L.

    2013-01-01

    Annatto is a natural pigment widely used in the food industry to add yellow to red colors to dairy and cereal products. Here, the in vitro bioaccessibility and potential bioavailability of norbixin, the abundant 24-carbon carotenoid in annatto, were investigated. Norbixin added to milk was highly stable during simulated digestion, and bile salts enhanced partitioning of this carotenoid in the aqueous fraction during the small intestinal phase of digestion. Apical uptake of norbixin by Caco-2 cells was proportional to the concentration in apical medium, but cellular content increased only slightly after 60 min. Transport of norbixin to the basolateral compartment was maximum at 120 min. Both all-trans and cis isomers of norbixin were present in cells and basolateral medium. The results suggest that ingested norbixin is stable during gastric and small intestinal phases of digestion and that both cis and all-trans isomers are bioavailable. PMID:20408560

  1. Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra.

    Science.gov (United States)

    Seybold, Anna; Salvenmoser, Willi; Hobmayer, Bert

    2016-04-01

    Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Drug and radiation sensitivity measurements of successful primary monolayer culturing of human tumor cells using cell-adhesive matrix and supplemented medium

    International Nuclear Information System (INIS)

    Baker, F.L.; Spitzer, G.; Ajani, J.A.

    1986-01-01

    The limitations of the agar suspension culture method for primary culturing of human tumor cells prompted development of a monolayer system optimized for cell adhesion and growth. This method grew 83% of fresh human tumor cell biopsy specimens, cultured and not contaminated, from a heterogeneous group of 396 tumors including lung cancer (93 of 114, 82%); melanoma (54 of 72, 75%); sarcoma (46 of 59, 78%); breast cancer (35 of 39, 90%); ovarian cancer (16 of 21, 76%); and a miscellaneous group consisting of gastrointestinal, genitourinary, mesothelioma, and unknown primaries (78 of 91, 86%). Cell growth was characterized morphologically with Papanicolaoustained coverslip cultures and cytogenetically with Giemsastained metaphase spreads. Morphological features such as nuclear pleomorphism, chromatin condensation, basophilic cytoplasm, and melanin pigmentation were routinely seen. Aneuploid metaphases were seen in 90% of evaluable cultures, with 15 of 28 showing 70% or more aneuploid metaphases. Colony-forming efficiency ranged between 0.01 and 1% of viable tumor cells, with a median efficiency of 0.2%. This culture system uses a low inoculum of 25,000 viable cells per well which permitted chemosensitivity testing of nine drugs at four doses in duplicate from 2.2 X 10(6) viable tumor cells and radiation sensitivity testing at five doses in quadruplicate from 0.6 X 10(6) cells. Cultures were analyzed for survival by computerized image analysis of crystal violet-stained cells. Drug sensitivity studies showed variability in sensitivity and in survival curve shape with exponential cell killing for cisplatin, Adriamycin, and etoposide, and shouldered survival curves for 5-fluorouracil frequently seen. Radiation sensitivity studies also showed variability in both sensitivity and survival curve shape. Many cultures showed exponential cell killing, although others had shouldered survival curves

  3. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells.

    Science.gov (United States)

    Park, Jaehyung; Gerber, Michael H; Babensee, Julia E

    2015-01-01

    Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses. © 2014 Wiley Periodicals, Inc.

  4. A polarized cell model for Chikungunya virus infection: entry and egress of virus occurs at the apical domain of polarized cells.

    Directory of Open Access Journals (Sweden)

    Pei Jin Lim

    2014-02-01

    Full Text Available Chikungunya virus (CHIKV has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals.

  5. Chemo-sensitivity of Two-dimensional Monolayer and Three-dimensional Spheroid of Breast Cancer MCF-7 Cells to Daunorubicin, Docetaxel, and Arsenic Disulfide.

    Science.gov (United States)

    Uematsu, Nami; Zhao, Yuxue; Kiyomi, Anna; Yuan, B O; Onda, Kenji; Tanaka, Sachiko; Sugiyama, Kentaro; Sugiura, Munetoshi; Takagi, Norio; Hayakawa, Akemi; Hirano, Toshihiko

    2018-04-01

    Chemo-sensitivity of two-dimensional (2D) monolayers and three-dimensional (3D) spheroids of human breast cancer MCF-7 cells were investigated. MCF-7 cells were cultured in monolayers or spheroids established using a thermo-reversible gelatin polymer, in the presence of daunorubicin, docetaxel, or As 2 S 2 Cell proliferation was examined by a Cell Counting Kit-8 assay. Daunorubicin, docetaxel, and As 2 S 2 dose-dependently decreased the MCF-7 cell proliferation in both 2D- and 3D-culture systems. The 3D spheroids were less sensitive to these agents than the 2D cultured cells. Verapamil, an inhibitor of P-glycoprotein, partially enhanced the antiproliferative effects of the agents. DL-buthionine-(S, R)-sulfoximine significantly increased (p<0.05), while N-acetyl-L-cysteine significantly inhibited the antiproliferative effects of As 2 S 2 (p<0.003). The 3D spheroids showed less sensitivity to the antiprolliferative efficacies of anticancer agents than the 2D cultured cells. P-Glycoprotein is suggested to be partially implicated in drug resistance. Reduction of cellular glutathione level enhanced the As 2 S 2 cytotoxicity. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure

    Science.gov (United States)

    Wu, Yun-Ben; Yang, Wen; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2016-02-01

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98% light absorptance in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorptance of the GM-PV cell are explored. Despite these effects, the GM-PV cell can still achieve at least 90% light absorptance with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  7. Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers.

    Science.gov (United States)

    Chanburee, Sanipon; Tiyaboonchai, Waree

    2018-02-01

    This study aimed to compare the intestinal permeation of curcumin-loaded polymer coated nanostructured lipid carriers (NLCs) and uncoated NLCs using the Caco-2 cell model. The uncoated NLCs were prepared using a warm microemulsion technique, while polymer-coated NLCs were prepared with the same method but were followed by coating particle surface with polyethylene glycol (PEG) 400 or polyvinyl alcohol (PVA). After lyophilization, all formulations possessed a mean size of  0.05) compared to those freshly prepared formulations. Considered overall, polymer coated NLCs are an important strategy to improve the oral bioavailability of curcumin. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 734-741, 2018. © 2017 Wiley Periodicals, Inc.

  8. A mathematical model for electrical stimulation of a monolayer of cardiac cells

    Directory of Open Access Journals (Sweden)

    Roth Bradley J

    2004-01-01

    Full Text Available Abstract Background The goal of our study is to examine the effect of stimulating a two-dimensional sheet of myocardial cells. We assume that the stimulating electrode is located in a bath perfusing the tissue. Methods An equation governing the transmembrane potential, based on the continuity equation and Ohm's law, is solved numerically using a finite difference technique. Results The sheet is depolarized under the stimulating electrode and is hyperpolarized on each side of the electrode along the fiber axis. Conclusions The results are similar to those obtained previously by Sepulveda et al. (Biophys J, 55: 987–999, 1989 for stimulation of a two-dimensional sheet of tissue with no perfusing bath present.

  9. The keratin-binding protein Albatross regulates polarization of epithelial cells

    OpenAIRE

    Sugimoto, Masahiko; Inoko, Akihito; Shiromizu, Takashi; Nakayama, Masanori; Zou, Peng; Yonemura, Shigenobu; Hayashi, Yuko; Izawa, Ichiro; Sasoh, Mikio; Uji, Yukitaka; Kaibuchi, Kozo; Kiyono, Tohru; Inagaki, Masaki

    2008-01-01

    The keratin intermediate filament network is abundant in epithelial cells, but its function in the establishment and maintenance of cell polarity is unclear. Here, we show that Albatross complexes with Par3 to regulate formation of the apical junctional complex (AJC) and maintain lateral membrane identity. In nonpolarized epithelial cells, Albatross localizes with keratin filaments, whereas in polarized epithelial cells, Albatross is primarily localized in the vicinity of the AJC. Knockdown o...

  10. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer.

    Science.gov (United States)

    Ujhelyi, Zoltán; Fenyvesi, Ferenc; Váradi, Judit; Fehér, Pálma; Kiss, Tímea; Veszelka, Szilvia; Deli, Mária; Vecsernyés, Miklós; Bácskay, Ildikó

    2012-10-09

    The objective of this study was to examine the cellular effects of the members of two non-ionic amphiphilic tenside groups and their mixtures on human Caco-2 cell monolayers as dependent upon their chemical structures and physicochemical properties. The first group of polyethylene glycol esters is represented by Polysorbates and Labrasol alone and in blends, while the members of the second group. Capryol 90, Capryol PGMC, Lauroglycol 90 and Lauroglycol FCC were used as propylene glycol esters. They are increasingly used in SMEDDS as recent tensides or co-tensides to increase hydrophobic bioavailability of a drug. Critical micelle concentration was measured by determination of surface tension. CMC refers to the ability of solubilization of surfactants. Cytotoxicity tests were performed on Caco-2 cell monolayers by MTT and LDH methods. Paracellular permeability as a marker of the integrity of cell monolayers, was examined with Lucifer yellow assays combined with TransEpithelial Electrical Resistance (TEER) measurements. The effect of these surfactants on tight junctions as evidence for paracellular pathway was also characterized. The results of cytotoxicity assays were in agreement, and showed significant differences among the cytotoxic properties of surfactants in a concentration-dependent manner. Polysorbates 20, 60, 80 are the most toxic compounds. In the case of Labrasol, the degree of esterification and lack of sorbit component decreased cytotoxicity. If the hydrophyl head was changed from polyethylene glycol to propylene glycol the main determined factor of cytotoxicity was the monoester content and the length of carbon chain. In our CMC experiments, we found that only Labrasol showed expressed cytotoxicity above the CMC. It refers to good ability of micelle solubilization of Labrasol. In our paracellular transport experiments each of polyethylene glycol surfactants (Polysorbates and Labrasol) altered TEER values, but propylene glycol esters did not modify the

  11. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  12. Polarization resolved conoscopic patterns in nematic cells: effects induced by the incident light ellipticity

    Science.gov (United States)

    Buinyi, Igor O.; Soskin, Marat S.; Vovk, Roman G.

    2008-05-01

    Topological structure of the polarization resolved conoscopic patterns, calculated theoretically and measured experimentally for nematic liquid crystal (NLC) cells, is described in terms of polarization singularities, saddle points and bifurcation lines. The parametric dynamics of the topological network, induced by the variation of the incident light ellipticity, is analyzed for the nematic cells with uniform and non-uniform director configuration. Different stages of similar dynamics are observed for homeotropically oriented NLC cell. Non-uniform director configuration within the cell results in broken central symmentry in the arrangement of the topological network. Main features of the experimentally obtained polarization resolved conoscopic patterns are the same to the theoretically predicted ones.

  13. Topological structure in polarization resolved conoscopic patterns for nematic liquid crystal cells

    Science.gov (United States)

    Buinyi, Igor O.; Denisenko, Vladimir G.; Soskin, Marat S.

    2009-01-01

    We investigate the polarization structure of coherent light, produced by a convergent light beam transmitted through nematic liquid crystal (NLC) cells with different director configurations. Employing solutions to the transmission problem for the case when plane wave propagates through an anisotropic layer, we analyze the arrangement of the topological elements, such as polarization singularities (C points with circular polarization and L lines with linear polarization), saddle points and extrema of polarization azimuth. We observe transformations of the topological structure under the variation of the incident light ellipticity and represent it by corresponding trajectories of topological elements in three-dimensional space. For the cells with uniform and non-uniform director configuration we describe the processes of creation/annihilation of C point pairs, which can be controlled precisely in the case of the cell with non-uniform director. Our experimental measurements for the homeotropically oriented NLC cells are in good agreement with the theoretical predictions.

  14. Comparative Characterization of Shiga Toxin Type 2 and Subtilase Cytotoxin Effects on Human Renal Epithelial and Endothelial Cells Grown in Monolayer and Bilayer Conditions.

    Directory of Open Access Journals (Sweden)

    Romina S Álvarez

    Full Text Available Postdiarrheal hemolytic uremic syndrome (HUS affects children under 5 years old and is responsible for the development of acute and chronic renal failure, particularly in Argentina. This pathology is a complication of Shiga toxin (Stx-producing Escherichia coli infection and renal damage is attributed to Stx types 1 and 2 (Stx1, Stx2 produced by Escherichia coli O157:H7 and many other STEC serotypes. It has been reported the production of Subtilase cytotoxin (SubAB by non-O157 STEC isolated from cases of childhood diarrhea. Therefore, it is proposed that SubAB may contribute to HUS pathogenesis. The human kidney is the most affected organ because very Stx-sensitive cells express high amounts of biologically active receptor. In this study, we investigated the effects of Stx2 and SubAB on primary cultures of human glomerular endothelial cells (HGEC and on a human tubular epithelial cell line (HK-2 in monoculture and coculture conditions. We have established the coculture as a human renal proximal tubule model to study water absorption and cytotoxicity in the presence of Stx2 and SubAB. We obtained and characterized cocultures of HGEC and HK-2. Under basal conditions, HGEC monolayers exhibited the lowest electrical resistance (TEER and the highest water permeability, while the HGEC/HK-2 bilayers showed the highest TEER and the lowest water permeability. In addition, at times as short as 20-30 minutes, Stx2 and SubAB caused the inhibition of water absorption across HK-2 and HGEC monolayers and this effect was not related to a decrease in cell viability. However, toxins did not have inhibitory effects on water movement across HGEC/HK-2 bilayers. After 72 h, Stx2 inhibited the cell viability of HGEC and HK-2 monolayers, but these effects were attenuated in HGEC/HK-2 bilayers. On the other hand, SubAB cytotoxicity shows a tendency to be attenuated by the bilayers. Our data provide evidence about the different effects of these toxins on the bilayers

  15. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation.

    Science.gov (United States)

    Katt, Moriah E; Linville, Raleigh M; Mayo, Lakyn N; Xu, Zinnia S; Searson, Peter C

    2018-02-20

    Transwell-based models of the blood-brain barrier (BBB) incorporating monolayers of human brain microvascular endothelial cells (dhBMECs) derived from induced pluripotent stem cells show many of the key features of the BBB, including expression of transporters and efflux pumps, expression of tight junction proteins, and physiological values of transendothelial electrical resistance. The fabrication of 3D BBB models using dhBMECs has so far been unsuccessful due to the poor adhesion and survival of these cells on matrix materials commonly used in tissue engineering. To address this issue, we systematically screened a wide range of matrix materials (collagen I, hyaluronic acid, and fibrin), compositions (laminin/entactin), protein coatings (fibronectin, laminin, collagen IV, perlecan, and agrin), and soluble factors (ROCK inhibitor and cyclic adenosine monophosphate) in 2D culture to assess cell adhesion, spreading, and barrier function. Cell coverage increased with stiffness of collagen I gels coated with collagen IV and fibronectin. On 7 mg mL -1 collagen I gels coated with basement membrane proteins (fibronectin, collagen IV, and laminin), cell coverage was high but did not reliably reach confluence. The transendothelial electrical resistance (TEER) on collagen I gels coated with basement membrane proteins was lower than on coated transwell membranes. Agrin, a heparin sulfate proteoglycan found in basement membranes of the brain, promoted monolayer formation but resulted in a significant decrease in transendothelial electrical resistance (TEER). However, the addition of ROCK inhibitor, cAMP, or cross-linking the gels to increase stiffness, resulted in a significant improvement of TEER values and enabled the formation of confluent monolayers. Having identified matrix compositions that promote monolayer formation and barrier function, we successfully fabricated dhBMEC microvessels in cross-linked collagen I gels coated with fibronectin and collagen IV, and

  16. Tests of a polarized source of hydrogen and deuterium based on spin-exchange optical pumping and a storage cell for polarized deuterium

    International Nuclear Information System (INIS)

    Holt, R.J.; Gilman, R.; Kinney, E.R.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which is based on the principle of spin-exchange optical pumping has been developed at Argonne. The advantages of this method over conventional polarized sources for internal target experiments is discussed. At present, the laser-driven polarized source delivers hydrogen 8 x 10 16 atoms/s with a polarization of 24% and deuterium at 6 x 10 16 atoms/s with a polarization of 25%. A passive storage cell for polarized deuterium was tested in the VEPP-3 electron storage ring. The storage cell was found to increase the target thickness by approximately a factor of three and no loss in polarization was observed. 10 refs., 4 figs., 2 tabs

  17. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity

    Directory of Open Access Journals (Sweden)

    Adam M. Perez

    2017-02-01

    Full Text Available Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment.

  18. Polarity governed selective amplification of through plane proton shuttling in proton exchange membrane fuel cells.

    Science.gov (United States)

    Gautam, Manu; Chattanahalli Devendrachari, Mruthyunjayachari; Thimmappa, Ravikumar; Raja Kottaichamy, Alagar; Pottachola Shafi, Shahid; Gaikwad, Pramod; Makri Nimbegondi Kotresh, Harish; Ottakam Thotiyl, Musthafa

    2017-03-15

    Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H 2 -O 2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

  19. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm.

    Directory of Open Access Journals (Sweden)

    Deep Agnani

    Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the

  20. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    NARCIS (Netherlands)

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  1. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization.

    Science.gov (United States)

    Zheng, Zhenzhen; Chou, Ching-Shan; Yi, Tau-Mu; Nie, Qing

    2011-10-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together

  2. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates

    DEFF Research Database (Denmark)

    Gu, Zhuowei; Zuo, Lijian; Larsen-Olsen, Thue Trofod

    2015-01-01

    The morphologies of the perovskite (e.g. CH3NH3PbI3) layer are demonstrated to be critically important for highly efficient perovskite solar cells. This work applies 3-aminopropanoic acid as a self-assembled monolayer (C3-SAM) on a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT...... 3.7% to 5.1%. The successful application of the facile HTL modification indicates a common strategy for SAM material design and selection for efficiency enhancement in perovskite photovoltaic devices....

  3. Networking for proteins : A yeast two-hybrid and RNAi profiling approach to uncover C. elegans cell polarity regulators

    NARCIS (Netherlands)

    Koorman, T.

    2016-01-01

    Cell polarity is a near universal trait of life and guides many aspects of animal development. Although a number of key polarity proteins have been identified, many interactions with proteins acting downstream likely remain to be elucidated. Mutations in polarity proteins or deregulation of polarity

  4. Airway epithelial cell-derived insulin-like growth factor-1 triggers skewed CD8(+) T cell polarization.

    Science.gov (United States)

    Zou, Jian-Yong; Huang, Shao-hong; Li, Yun; Chen, Hui-guo; Rong, Jian; Ye, Sheng

    2014-10-01

    Skewed CD8(+) T cell responses are important in airway inflammation. This study investigates the role of the airway epithelial cell-derived insulin-like growth factor 1 (IGF1) in contributing to CD8(+) T cell polarization. Expression of IGF1 in the airway epithelial cell line, RPMI2650 cells, was assessed by quantitative real time RT-PCR and Western blotting. The role of IGF1 in regulating CD8(+) T cell activation was observed by coculture of mite allergen-primed RPMI2650 cells and naïve CD8(+) T cells. CD8(+) T cell polarization was assessed by the carboxyfluorescein succinimidyl ester-dilution assay and the determination of cytotoxic cytokine levels in the culture medium. Exposure to mite allergen, Der p1, increased the expression of IGF1 by RPMI2650 cells. The epithelial cell-derived IGF1 prevented the activation-induced cell death by inducing the p53 gene hypermethylation. Mite allergen-primed RPMI2650 cells induced an antigen-specific CD8(+) T cell polarization. We conclude that mite allergens induce airway epithelial cell line, RPMI2650 cells, to produce IGF1; the latter contributes to antigen-specific CD8(+) T cell polarization. © 2014 International Federation for Cell Biology.

  5. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha

    2017-07-19

    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  6. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, A [Institute of Dental Sciences, Faculty of Dental Medicine, and the Fritz Haber Center for Molecular Dynamics, Hebrew University-Hadassah Medical Center, Jerusalem, 91120 (Israel); Rehfeldt, F [III. Physikalisches Institut, Georg-August-Universitaet, 37077 Goettingen (Germany); Brown, A E X [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Discher, D E [Graduate Group of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  7. Polarization splitting phenomenon of photonic crystals constructed by two-fold rotationally symmetric unit-cells

    Science.gov (United States)

    Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-09-01

    We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.

  8. MCAM contributes to the establishment of cell autonomous polarity in myogenic and chondrogenic differentiation

    Directory of Open Access Journals (Sweden)

    Artal Moreno-Fortuny

    2017-11-01

    Full Text Available Cell polarity has a fundamental role in shaping the morphology of cells and growing tissues. Polarity is commonly thought to be established in response to extracellular signals. Here we used a minimal in vitro assay that enabled us to monitor the determination of cell polarity in myogenic and chondrogenic differentiation in the absence of external signalling gradients. We demonstrate that the initiation of cell polarity is regulated by melanoma cell adhesion molecule (MCAM. We found highly polarized localization of MCAM, Moesin (MSN, Scribble (SCRIB and Van-Gogh-like 2 (VANGL2 at the distal end of elongating myotubes. Knockout of MCAM or elimination of its endocytosis motif does not impair the initiation of myogenesis or myoblast fusion, but prevents myotube elongation. MSN, SCRIB and VANGL2 remain uniformly distributed in MCAM knockout cells. We show that MCAM is also required at early stages of chondrogenic differentiation. In both myogenic and chondrogenic differentiation MCAM knockout leads to transcriptional downregulation of Scrib and enhanced MAP kinase activity. Our data demonstrates the importance of cell autonomous polarity in differentiation.

  9. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  10. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2015-01-01

    Roč. 60, č. 6 (2015), s. 545-550 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : polarization microscopy * microbial cells * positive phase contrast Subject RIV: EE - Microbiology, Virology Impact factor: 1.335, year: 2015

  11. Zebrafish models of non-canonical Wnt/planar cell polarity signalling: fishing for valuable insight into vertebrate polarized cell behavior.

    Science.gov (United States)

    Jussila, Maria; Ciruna, Brian

    2017-05-01

    Planar cell polarity (PCP) coordinates the uniform orientation, structure and movement of cells within the plane of a tissue or organ system. It is beautifully illustrated in the polarized arrangement of bristles and hairs that project from specialized cell surfaces of the insect abdomen and wings, and pioneering genetic studies using the fruit fly, Drosophila melanogaster, have defined a core signalling network underlying PCP. This core PCP/non-canonical Wnt signalling pathway is evolutionarily conserved, and studies in zebrafish have helped transform our understanding of PCP from a peculiarity of polarized epithelia to a more universal cellular property that orchestrates a diverse suite of polarized cell behaviors that are required for normal vertebrate development. Furthermore, application of powerful genetics, embryonic cell-transplantation, and live-imaging capabilities afforded by the zebrafish model have yielded novel insights into the establishment and maintenance of vertebrate PCP, over the course of complex and dynamic morphogenetic events like gastrulation and neural tube morphogenesis. Although key questions regarding vertebrate PCP remain, with the emergence of new genome-editing technologies and the promise of endogenous labeling and Cre/LoxP conditional targeting strategies, zebrafish remains poised to deliver fundamental new insights into the function and molecular dynamic regulation of PCP signalling from embryonic development through to late-onset phenotypes and adult disease states. WIREs Dev Biol 2017, 6:e267. doi: 10.1002/wdev.267 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  12. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Intensification of the inhibitory effect of X-rays on the growth of Ehrlich ascites tumor cells in monolayer culture by quinacrine (atebrine) or chloroquine (resochine)

    International Nuclear Information System (INIS)

    Biller, H.; Pfab, R.; Hess, F.; Schachtschabel, D.O.; Leising, H.B.

    1980-01-01

    Monolayers of Ehrlich ascites tumor cells in their logarithmic phase of growth were exposed to a single X-ray dose of 1 to 16 Gy. Following exposure, the monolayers were cultured for several days or weeks with or without an addition of 4 x to 6 x 10 -6 M of quinacrine (atebrine) or 3.3 x 10 -5 to 1 x 10 -4 M of chloroquine. Proliferation activity was controlled by the daily microscopical count of representative areas out of the total population. A significant delay resulted from exposure to 4 Gy (particularly during the 1st day), while sole irradiation with 1 or 2 Gy did not much influence the proliferation of the cells. An 8-Gy dose and to a larger extent 16 Gy led to a fall of the cell number down to 20% (8 Gy) or around 10% (16 Gy) of the initial value between the 7th and the 10th day. The cells subsequently multiplied with nearly the growth rate of controls. The inhibitory effect on cells proliferation produced by an exposure to X-rays was distinctly intensified by means of incubation with continuously replaced quinacrine or chloroquine containing culture media. Treatment with 1 x 10 -4 mol chloroquine thus brought about a more pronounced inhibition after pre-irradiation with a single dose of 2 or 8 Gy. If 4 x 10 -6 or 6 x 10 -6 M of quinacrine were added to cultures pretreated with 4 Gy, a more intense inhibition of growth resulted therefrom than from sole treatment with either quinacrine or X-rays. Incubation of cultures pretreated with 8 Gy in the presence of 6 x 10 -6 M quinacrine led to the death of all the cells within 8 days. Quinacrine and chloroquine effects on cells previously exposed to X-rays are discussed in view of the well-known effects these agents exert by inhibiting enzymatic repair processes of DNA damage. (orig.) [de

  14. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  15. Permeability through the Caco-2 cell monolayer of 42 bioactive compounds in the TCM formula Gegen-Qinlian Decoction by liquid chromatography tandem mass spectrometry analysis.

    Science.gov (United States)

    Wang, Qi; Kuang, Yi; Song, Wei; Qian, Yi; Qiao, Xue; Guo, De-An; Ye, Min

    2017-11-30

    Caco-2 cell monolayer model was used to evaluate the intestinal permeability of 42 bioactive compounds in the famous traditional Chinese medicine (TCM) formula Gegen-Qinlian Decoction (GQD). These compounds include alkaloids, flavonoids and glycosides, triterpenoid saponins, and coumarins. Their transportations across the cell monolayers in the forms of herb extract and formula extract were monitored by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analysis. Most alkaloids from Huang-Lian; flavonoid C-glycosides from Ge-Gen and Huang-Qin; O-glycosides from Ge-Gen, Huang-Qin and Gan-Cao; O-glucuronides from Huang-Qin; and coumarins from Gan-Cao exhibited favorable permeability. Their P AB values were >1.05×10 -5 cm/s, and efflux ratios (ER, P BA /P AB ) were≤1.0. In contrast, triterpenoid saponins showed poor permeability (P AB ≤1.50×10 -6 cm/s, ER≤1.5), indicating a paracellular diffusion mechanism. Furthermore, GQD could remarkably improve the intestinal transport of alkaloids in Huang-Lian, flavonoid C-glycosides in Ge-Gen, as well as coumarins and flavonoid O-glycosides in Gan-Cao. These results indicate herb-herb interactions in GQD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Prognostic Classification of Early Ovarian Cancer Based on very Low Dimensionality Adaptive Texture Feature Vectors from Cell Nuclei from Monolayers and Histological Sections

    Directory of Open Access Journals (Sweden)

    Birgitte Nielsen

    2001-01-01

    Full Text Available In order to study the prognostic value of quantifying the chromatin structure of cell nuclei from patients with early ovarian cancer, low dimensionality adaptive fractal and Gray Level Cooccurrence Matrix texture feature vectors were extracted from nuclei images of monolayers and histological sections. Each light microscopy nucleus image was divided into a peripheral and a central part, representing 30% and 70% of the total area of the nucleus, respectively. Textural features were then extracted from the peripheral and central parts of the nuclei images. The adaptive feature extraction was based on Class Difference Matrices and Class Distance Matrices. These matrices were useful to illustrate the difference in chromatin texture between the good and bad prognosis classes of ovarian samples. Class Difference and Distance Matrices also clearly illustrated the difference in texture between the peripheral and central parts of cell nuclei. Both when working with nuclei images from monolayers and from histological sections it seems useful to extract separate features from the peripheral and central parts of the nuclei images.

  17. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells

    NARCIS (Netherlands)

    Horzinek, M.C.; Rossen, J.W.A.; Beer, R. de; Godeke, G.J.; Raamsman, M.J.; Vennema, H.; Rottier, P.J.M.

    1998-01-01

    Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to

  18. Anti-inflammatory effect of stem cells against spinal cord injury via regulating macrophage polarization

    Directory of Open Access Journals (Sweden)

    Cheng ZJ

    2017-02-01

    Full Text Available Zhijian Cheng, Xijing He Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: Spinal cord injury (SCI is a traumatic event that involves not just an acute physical injury but also inflammation-driven secondary injury. Macrophages play a very important role in secondary injury. The effects of macrophages on tissue damage and repair after SCI are related to macrophage polarization. Stem cell transplantation has been studied as a promising treatment for SCI. Recently, increasing evidence shows that stem cells, including mesenchymal stem, neural stem/progenitor, and embryonic stem cells, have an anti-inflammatory capacity and promote functional recovery after SCI by inducing macrophages M1/M2 phenotype transformation. In this review, we will discuss the role of stem cells on macrophage polarization and its role in stem cell-based therapies for SCI. Keywords: stem cells, macrophages, spinal cord injury, polarization

  19. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms

    Science.gov (United States)

    Sipe, Conor W.; Lu, Xiaowei

    2011-01-01

    Auditory hair cells represent one of the most prominent examples of epithelial planar polarity. In the auditory sensory epithelium, planar polarity of individual hair cells is defined by their V-shaped hair bundle, the mechanotransduction organelle located on the apical surface. At the tissue level, all hair cells display uniform planar polarity across the epithelium. Although it is known that tissue planar polarity is controlled by non-canonical Wnt/planar cell polarity (PCP) signaling, the hair cell-intrinsic polarity machinery that establishes the V-shape of the hair bundle is poorly understood. Here, we show that the microtubule motor subunit Kif3a regulates hair cell polarization through both ciliary and non-ciliary mechanisms. Disruption of Kif3a in the inner ear led to absence of the kinocilium, a shortened cochlear duct and flattened hair bundle morphology. Moreover, basal bodies are mispositioned along both the apicobasal and planar polarity axes of mutant hair cells, and hair bundle orientation was uncoupled from the basal body position. We show that a non-ciliary function of Kif3a regulates localized cortical activity of p21-activated kinases (PAK), which in turn controls basal body positioning in hair cells. Our results demonstrate that Kif3a-PAK signaling coordinates planar polarization of the hair bundle and the basal body in hair cells, and establish Kif3a as a key component of the hair cell-intrinsic polarity machinery, which acts in concert with the tissue polarity pathway. PMID:21752934

  20. n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells.

    Science.gov (United States)

    Monk, Jennifer M; Hou, Tim Y; Turk, Harmony F; McMurray, David N; Chapkin, Robert S

    2013-09-01

    Little is known about the impact of n3 (ω3) PUFAs on polarization of CD4(+) T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4(+) T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3(+)) cells] or Th17 cells [interleukin (IL)-17A(+) and retinoic acid receptor-related orphan receptor (ROR) γτ(+) cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4(+) IL-17A(+) (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA-dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset.

  1. Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells

    Directory of Open Access Journals (Sweden)

    Pirson Chris

    2012-06-01

    Full Text Available Abstract Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM and trehalose monomycolate (TMM, the apolar phthiocerol dimycocersates (PDIMs, triacyl glycerol (TAG, pentacyl trehalose (PAT, phenolic glycolipid (PGL, and mono-mycolyl glycerol (MMG. Polar lipids identified included glucose monomycolate (GMM, diphosphatidyl glycerol (DPG, phenylethanolamine (PE and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs. These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.

  2. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Directory of Open Access Journals (Sweden)

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  3. The keratin-binding protein Albatross regulates polarization of epithelial cells.

    Science.gov (United States)

    Sugimoto, Masahiko; Inoko, Akihito; Shiromizu, Takashi; Nakayama, Masanori; Zou, Peng; Yonemura, Shigenobu; Hayashi, Yuko; Izawa, Ichiro; Sasoh, Mikio; Uji, Yukitaka; Kaibuchi, Kozo; Kiyono, Tohru; Inagaki, Masaki

    2008-10-06

    The keratin intermediate filament network is abundant in epithelial cells, but its function in the establishment and maintenance of cell polarity is unclear. Here, we show that Albatross complexes with Par3 to regulate formation of the apical junctional complex (AJC) and maintain lateral membrane identity. In nonpolarized epithelial cells, Albatross localizes with keratin filaments, whereas in polarized epithelial cells, Albatross is primarily localized in the vicinity of the AJC. Knockdown of Albatross in polarized cells causes a disappearance of key components of the AJC at cell-cell borders and keratin filament reorganization. Lateral proteins E-cadherin and desmoglein 2 were mislocalized even on the apical side. Although Albatross promotes localization of Par3 to the AJC, Par3 and ezrin are still retained at the apical surface in Albatross knockdown cells, which retain intact microvilli. Analysis of keratin-deficient epithelial cells revealed that keratins are required to stabilize the Albatross protein, thus promoting the formation of AJC. We propose that keratins and the keratin-binding protein Albatross are important for epithelial cell polarization.

  4. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  5. Cell polarity and neurogenesis in embryonic stem cell-derived neural rosettes.

    Science.gov (United States)

    Banda, Erin; McKinsey, Anna; Germain, Noelle; Carter, James; Anderson, Nickesha Camille; Grabel, Laura

    2015-04-15

    Embryonic stem cells (ESCs) undergoing neural differentiation form radial arrays of neural stem cells, termed neural rosettes. These structures manifest many of the properties associated with embryonic and adult neurogenesis, including cell polarization, interkinetic nuclear migration (INM), and a gradient of neuronal differentiation. We now identify novel rosette structural features that serve to localize key regulators of neurogenesis. Cells within neural rosettes have specialized basal as well as apical surfaces, based on localization of the extracellular matrix receptor β1 integrin. Apical processes of cells in mature rosettes terminate at the lumen, where adherens junctions are apparent. Primary cilia are randomly distributed in immature rosettes and tightly associated with the neural stem cell's apical domain as rosettes mature. Components of two signaling pathways known to regulate neurogenesis in vivo and in rosettes, Hedgehog and Notch, are apically localized, with the Hedgehog effector Smoothened (Smo) associated with primary cilia and the Notch pathway γ-secretase subunit Presenilin 2 associated with the adherens junction. Increased neuron production upon treatment with the Notch inhibitor DAPT suggests a major role for Notch signaling in maintaining the neural stem cell state, as previously described. A less robust outcome was observed with manipulation of Hedgehog levels, though consistent with a role in neural stem cell survival or proliferation. Inhibition of both pathways resulted in an additive effect. These data support a model by which cells extending a process to the rosette lumen maintain neural stem cell identity whereas release from this association, either through asymmetric cell division or apical abscission, promotes neuronal differentiation.

  6. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  7. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium.

    Science.gov (United States)

    Wortman, Juliana C; Nahmad, Marcos; Zhang, Peng Cheng; Lander, Arthur D; Yu, Clare C

    2017-07-01

    In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.

  8. Single Atomically Sharp Lateral Monolayer p-n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency.

    Science.gov (United States)

    Tsai, Meng-Lin; Li, Ming-Yang; Retamal, José Ramón Durán; Lam, Kai-Tak; Lin, Yung-Chang; Suenaga, Kazu; Chen, Lih-Juann; Liang, Gengchiau; Li, Lain-Jong; He, Jr-Hau

    2017-08-01

    The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe 2 -MoS 2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Single Atomically Sharp Lateral Monolayer p-n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency

    KAUST Repository

    Tsai, Meng-Lin

    2017-06-26

    The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe-MoS lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.

  10. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division.

    Science.gov (United States)

    Dumont, Nicolas A; Wang, Yu Xin; von Maltzahn, Julia; Pasut, Alessandra; Bentzinger, C Florian; Brun, Caroline E; Rudnicki, Michael A

    2015-12-01

    Dystrophin is expressed in differentiated myofibers, in which it is required for sarcolemmal integrity, and loss-of-function mutations in the gene that encodes it result in Duchenne muscular dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells), in which it associates with the serine-threonine kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to localize the cell polarity regulator Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, which also display a loss of polarity, abnormal division patterns (including centrosome amplification), impaired mitotic spindle orientation and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors that are needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD not only is caused by myofiber fragility, but also is exacerbated by impaired regeneration owing to intrinsic satellite cell dysfunction.

  11. Regulation of vascular endothelial cell polarization and migration by Hsp70/Hsp90-organizing protein.

    Science.gov (United States)

    Li, Jingyu; Sun, Xiaodong; Wang, Zaizhu; Chen, Li; Li, Dengwen; Zhou, Jun; Liu, Min

    2012-01-01

    Hsp70/Hsp90-organizing protein (HOP) is a member of the co-chaperone family, which directly binds to chaperones to regulate their activities. The participation of HOP in cell motility and endothelial cell functions remains largely unknown. In this study, we demonstrate that HOP is critically involved in endothelial cell migration and angiogenesis. Tube formation and capillary sprouting experiments reveal that depletion of HOP expression significantly inhibits vessel formation from endothelial cells. Wound healing and transwell migration assays show that HOP is important for endothelial cell migration. By examination of centrosome reorientation and membrane ruffle dynamics, we find that HOP plays a crucial role in the establishment of cell polarity in response to migratory stimulus. Furthermore, our data show that HOP interacts with tubulin and colocalizes with microtubules in endothelial cells. These findings indicate HOP as a novel regulator of angiogenesis that functions through promoting vascular endothelial cell polarization and migration.

  12. Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants.

    Science.gov (United States)

    Rakusová, Hana; Fendrych, Matyáš; Friml, Jiří

    2015-02-01

    Subcellular trafficking and cell polarity are basic cellular processes crucial for plant development including tropisms - directional growth responses to environmental stimuli such as light or gravity. Tropisms involve auxin gradient across the stimulated organ that underlies the differential cell elongation and bending. The perception of light or gravity is followed by changes in the polar, cellular distribution of the PIN auxin transporters. Such re-specification of polar trafficking pathways is a part of the mechanism, by which plants adjust their phenotype to environmental changes. Recent genetic and biochemical studies provided the important insights into mechanisms of PIN polarization during tropisms. In this review, we summarize the present state of knowledge on dynamic PIN repolarization and its specific regulations during hypocotyl tropisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of III-nitride polarization on V{sub OC} in p-i-n and MQW solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon; Boland, Patrick; Foe, Kurniawan; Latimer, Kevin [Department of Electrical and Computer Engineering, Old Dominion University, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Bae, Si-Young; Shim, Jae-Phil; Lee, Dong-Seon [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeon, Seong-Ran [Korea Photonics Technology Institute, 971-35, Wolchul-dong, Buk-gu, Gwangju, 500-779 (Korea, Republic of); Doolittle, W. Alan [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    We performed detailed studies of the effect of polarization on III-nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (V{sub OC}) in p-i(InGaN)-n and multi-quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga-polar p-i-n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades V{sub OC} compared to non-polar p-i-n structures. In contrast, we found that piezoelectric polarization in Ga-polar MQW structures does not have a large influence on V{sub OC} compared to non-polar MQW structures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization.

    Science.gov (United States)

    Lin, Joseph; Hou, Kirk K; Piwnica-Worms, Helen; Shaw, Andrey S

    2009-07-15

    Engagement of a T cell to an APC induces the formation of an immunological synapse as well as reorientation of the microtubule-organizing center (MTOC) toward the APC. How signals emanating from the TCR induce MTOC polarization is not known. One group of proteins known to play a critical role in asymmetric cell division and cell polarization is the partitioning defective (Par) family of proteins. In this study we found that Par1b, a member of the Par family of proteins, was inducibly phosphorylated following TCR stimulation. This phosphorylation resulted in 14-3-3 protein binding and caused the relocalization of Par1b from the membrane into the cytoplasm. Because a dominant-negative form of Par1b blocked TCR-induced MTOC polarization, our data suggest that Par1b functions in the establishment of T cell polarity following engagement to an APC.

  15. Action of X-rays and neuraminidase on pinocytotic activity and microtubule-microfilament system of Ehrlich ascites tumor cells in monolayer culture

    Energy Technology Data Exchange (ETDEWEB)

    Pfab, R.; Hess, F.; Schachtschabel, D.O.; Paul, N.; Kern, H.F.

    1981-07-01

    Monolayer cultures of Ehrlich ascites tumor cells in exponential growth phase were treated with X-rays and neuraminidase alone or in combination. A radiation dose of 2 Gy (200 rd) and higher effected a significant inhibition of DNA synthesis and cell proliferation. Neuraminidase treatment in addition to irradiation did not modify the growth-inhibitory irradiation effect. Cells pretreated for 0.5 to 1.0 hours with neuraminidase (in Earle's salt solution) and cultured thereafter (4 h) in serum-containing growth medium exhibited an enhanced development of the microtube-microfilament-system. Morphometric analysis of microtubulus on electronmicroscopic sections revealed a nearly 4-fold increased number in neuraminidase treated cells while the average length of microtubules was similar to controls. Pinocytosis as measured by the ultrastructural uptake of ferritin appeared to be increased following neuraminidase treatment. A connection between neuraminic acid containing components (glycoproteins or glycolipids) of the cell membrane or cell surface, on the one hand, and the cytoskeleton and the endocytotic process of these tumor cells, on the other hand, is suggested.

  16. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    International Nuclear Information System (INIS)

    van den Brand, J.; Bulten, H.; Zhou, Z.; Unal, O.; van den Brand, J.; Ferro-Luzzi, M.; Botto, T.; Bouwhuis, M.; Heimberg, P.; de Jager, C.; de Lange, D.; Nooren, G.; Papadakis, N.; Passchier, I.; Poolman, H.; Steijger, J.; Vodinas, N.; de Vries, H.; van den Brand, J.; Ferro-Luzzi, M.; Lang, J.; Alarcon, R.; Dolfini, S.; Ent, R.; Higinbotham, D.

    1997-01-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. copyright 1997 The American Physical Society

  17. Tropospheric entrainment as a source of ground level aerosols within the polar Antarctic cell

    Science.gov (United States)

    Humphries, R. S.; Schofield, R.; Keywood, M.; Wilson, S. R.; Klekociuk, A. R.; Paton-Walsh, C.

    2013-12-01

    The Antarctic region is a pristine environment without any significant anthropogenic influence. Measurements of aerosols in this environment therefore allow the study of natural aerosol properties and formation mechanisms in polar conditions, and also allow insight into polar atmospheric dynamics. Measurements in this region have been limited primarily to continental and coastal locations where permanent stations exist, with only one other measurement campaign passing through the sea ice region. The MAPS campaign (Measurements of Aerosols and Precursors during SIPEXII) occurred as part of SIPEX II (Sea Ice Physics and Ecosystems eXperiment II) voyage in Spring, 2012, and produced the first sea-ice focused aerosol dataset aimed at characterizing new particle formation processes in the pack ice off the coast of East Antarctica (~65°S, 120°E). Numerous atmospheric parameters and species were measured, including the number of aerosol particles in the 3-10 nm size range, the range associated with new particle formation. During the latitudinal transect through the sea ice, these measurements were used to identify the polar front - the boundary between the Polar cell and the Ferrel cell. Nuclei concentrations showed a clear and sudden change with latitude, averaging 51cm-3 north of the front in the Ferrel cell, and 766 cm-3 south of the front, in the Polar cell region. The latitudinal location of the polar front was also confirmed by wind directions which reflected global circulation patterns (Ferrel cell westerlies and Polar cell easterlies). Background aerosol populations in the Polar cell fluctuated significantly (3-10 nm particle concentrations ranged between 153 cm-3 to 2312 cm-3) but displayed no growth indicators, suggesting transport. Back-trajectories revealed that air parcels often descended from the free-troposphere within the previous 24-48 hrs. It is proposed that particle formation occurs in the free troposphere from precursors uplifted at the polar front

  18. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...

  19. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    Science.gov (United States)

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  1. Monitoring the initiation and kinetics of human dendritic cell-induced polarization of autologous naive CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tammy Oth

    Full Text Available A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC. In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.

  2. Label-free investigation of the effects of lithium niobate polarization on cell adhesion

    Science.gov (United States)

    Mandracchia, B.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2017-06-01

    The determination of contact area is pivotal to understand how biomaterials properties influence cell adhesion. In particular, the influence of surface charges is well-known but still controversial, especially when new functional materials and methods are introduced. Here, we use for the first time Holographic Total Internal Reflection Microscopy (HoloTIRM) to study the influence of the spontaneous polarization of ferroelectric lithium niobate (LN) on the adhesion properties of fibroblast cells. The selective illumination of a very thin region directly above the substrate, achieved by Total Internal Reflection, provides high-contrast images of the contact regions. Holographic recording, on the other hand, allows for label-free quantitative phase imaging of the contact areas between cells and LN. Phase signal is more sensitive in the first 100nm and, thus more reliable in order to locate focal contacts. This work shows that cells adhering on negatively polarized LN present a significant increase of the contact area in comparison with cells adhering on the positively polarized LN substrate, as well as an intensification of contact vicinity. This confirms the potential of LN as a platform for investigating the role of charges on cellular processes. The similarity of cell adhesion behavior on negatively polarized LN and glass control also confirms the possibility to use LN as an active substrate without impairing cell behavior.

  3. Krüppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT, was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell

  4. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We...

  5. Mass spectrometric analysis of monolayer protected nanoparticles

    Science.gov (United States)

    Zhu, Zhengjiang

    Monolayer protected nanoparticles (NPs) include an inorganic core and a monolayer of organic ligands. The wide variety of core materials and the tunable surface monolayers make NPs promising materials for numerous applications. Concerns related to unforeseen human health and environmental impacts of NPs have also been raised. In this thesis, new analytical methods based on mass spectrometry are developed to understand the fate, transport, and biodistributions of NPs in the complex biological systems. A laser desorption/ionization mass spectrometry (LDI-MS) method has been developed to characterize the monolayers on NP surface. LDI-MS allows multiple NPs taken up by cells to be measured and quantified in a multiplexed fashion. The correlations between surface properties of NPs and cellular uptake have also been explored. LDI-MS is further coupled with inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively measure monolayer stability of gold NPs (AuNPs) and quantum dots (QDs), respectively, in live cells. This label-free approach allows correlating monolayer structure and particle size with NP stability in various cellular environments. Finally, uptake, distribution, accumulation, and excretion of NPs in higher order organisms, such as fish and plants, have been investigated to understand the environmental impact of nanomaterials. The results indicate that surface chemistry is a primary determinant. NPs with hydrophilic surfaces are substantially less toxic and present a lower degree of bioaccumulation, making these nanomaterials attractive for sustainable nanotechnology.

  6. PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells.

    Directory of Open Access Journals (Sweden)

    Alexander Arkhipenko

    Full Text Available The Prion Protein (PrP is an ubiquitously expressed glycosylated membrane protein attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (GPI. While the misfolded PrPSc scrapie isoform is the infectious agent of prion disease, the cellular isoform (PrPC is an enigmatic protein with unclear function. Of interest, PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that, unlike other GPI-anchored proteins (GPI-APs, PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage fragments are segregated in different domains of the plasma membrane in polarized cells in both 2D and 3D cultures.

  7. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien

    2018-04-04

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  8. Identification of genes associated with the penetration activity of the human type of Edwardsiella tarda EdwGII through human colon epithelial cell monolayers.

    Science.gov (United States)

    Suezawa, Chigusa; Yasuda, Masashi; Negayama, Kiyoshi; Kameyama, Taeko; Hirauchi, Misato; Nakai, Toshihiro; Okuda, Jun

    2016-06-01

    Edwardsiella tarda is a Gram-negative pathogen with a broad host range including fish and humans. E. tarda causes gastrointestinal and extraintestinal infections in humans. In present study, the penetration activities of 22 strains of E. tarda, including 10 human isolates and 12 diseased fish isolates, through Caco-2 cell monolayers were evaluated. All the human isolates exhibited penetration activity in contrast to the fish isolates, which did not. In order to identify genes responsible for penetration activity, we screened transposon (Tn) insertion mutants for reduced penetration activity. Two Tn insertion mutants showed markedly reduced penetration activity, and we identified the wecC and fliF genes as Tn insertion sites. The wecC and fliF genes encode UDP-N-acetyl-d-mannosamine dehydrogenase, which is involved in synthesis of enterobacterial common antigen and flagellar basal body M-ring protein, respectively. Motility activity, including swarming and swimming, by the wecC mutant was weaker than that by the wild-type strain, while the fliF mutant was immotile. These results indicated that the swarming and swimming abilities mediated by the wecC and fliF genes appeared to be essential for penetration activity of E. tarda through Caco-2 cell monolayers. We also demonstrated that it was possible to group E. tarda strains into two types of human isolates and diseased fish isolates based on distribution of the wecC gene, type III and type VI secretion system genes. PCR detection of the wecC gene may represent a useful method for detecting the human type of E. tarda, which may have the ability to cause human infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Olson, Scott; Kalina, Warren V; Ruthel, Gordon; Demmin, Gretchen L; Warfield, Kelly L; Bavari, Sina; Klaenhammer, Todd R

    2005-02-22

    Professional antigen-presenting dendritic cells (DCs) are critical in regulating T cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded as safe when administered as probiotics. Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and functions of human MDCs. Lactobacillus-exposed MDCs up-regulated HLA-DR, CD83, CD40, CD80, and CD86 and secreted high levels of IL-12 and IL-18, but not IL-10. IL-12 was sustained in MDCs exposed to all three Lactobacillus species in the presence of LPS from Escherichia coli, whereas LPS-induced IL-10 was greatly inhibited. MDCs activated with lactobacilli clearly skewed CD4(+) and CD8(+) T cells to T helper 1 and Tc1 polarization, as evidenced by secretion of IFN-gamma, but not IL-4 or IL-13. These results emphasize a potentially important role for lactobacilli in modulating immunological functions of DCs and suggest that certain strains could be particularly advantageous as vaccine adjuvants, by promoting DCs to regulate T cell responses toward T helper 1 and Tc1 pathways.

  10. Aluminium-phthalocyanine chloride nanoemulsions for anticancer photodynamic therapy: Development and in vitro activity against monolayers and spheroids of human mammary adenocarcinoma MCF-7 cells.

    Science.gov (United States)

    Muehlmann, Luis Alexandre; Rodrigues, Mosar Corrêa; Longo, João Paulo Figueiró; Garcia, Mônica Pereira; Py-Daniel, Karen Rapp; Veloso, Aline Bessa; de Souza, Paulo Eduardo Narciso; da Silva, Sebastião William; Azevedo, Ricardo Bentes

    2015-05-13

    Photodynamic therapy (PDT) combines light, molecular oxygen and a photosensitizer to induce oxidative stress in target cells. Certain hydrophobic photosensitizers, such as aluminium-phthalocyanine chloride (AlPc), have significant potential for antitumor PDT applications. However, hydrophobic molecules often require drug-delivery systems, such as nanostructures, to improve their pharmacokinetic properties and to prevent aggregation, which has a quenching effect on the photoemission properties in aqueous media. As a result, this work aims to develop and test the efficacy of an AlPc in the form of a nanoemulsion to enable its use in anticancer PDT. The nanoemulsion was developed using castor oil and Cremophor ELP®, and a monodisperse population of nanodroplets with a hydrodynamic diameter of approximately 25 nm was obtained. While free AlPc failed to show significant activity against human breast adenocarcinoma MCF-7 cells in an in vitro PDT assay, the AlPc in the nanoemulsion showed intense photodynamic activity. Photoactivated AlPc exhibited a 50 % cytotoxicity concentration (CC50) of 6.0 nM when applied to MCF-7 cell monolayers and exerted a powerful cytotoxic effect on MCF-7 cell spheroids. Through the use of spontaneous emulsification, a stable AlPc nanoemulsion was developed that exhibits strong in vitro photodynamic activity on cancer cells.

  11. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells.

    Science.gov (United States)

    Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-12-01

    Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.

  12. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  13. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore

    2005-01-01

    Cdc42 is a small GTPase involved in the regulation of the cytoskeleton and cell polarity. To test whether Cdc42 has an essential role in the formation of filopodia or directed cell migration, we generated Cdc42-deficient fibroblastoid cells by conditional gene inactivation. We report here that loss...... of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi...... apparatus into the direction of migration was decreased. However, expression of dominant negative Cdc42 in Cdc42-null cells resulted in strongly reduced directed migration, severely reduced single cell directionality, and complete loss of Golgi polarization and of directionality of protrusion formation...

  14. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  15. Evolution and development of hair cell polarity and efferent function in the inner ear.

    Science.gov (United States)

    Sienknecht, Ulrike J; Köppl, Christine; Fritzsch, Bernd

    2014-01-01

    The function of the inner ear critically depends on mechanoelectrically transducing hair cells and their afferent and efferent innervation. The first part of this review presents data on the evolution and development of polarized vertebrate hair cells that generate a sensitive axis for mechanical stimulation, an essential part of the function of hair cells. Beyond the cellular level, a coordinated alignment of polarized hair cells across a sensory epithelium, a phenomenon called planar cell polarity (PCP), is essential for the organ's function. The coordinated alignment of hair cells leads to hair cell orientation patterns that are characteristic of the different sensory epithelia of the vertebrate inner ear. Here, we review the developmental mechanisms that potentially generate molecular and morphological asymmetries necessary for the control of PCP. In the second part, this review concentrates on the evolution, development and function of the enigmatic efferent neurons terminating on hair cells. We present evidence suggestive of efferents being derived from motoneurons and synapsing predominantly onto a unique but ancient cholinergic receptor. A review of functional data shows that the plesiomorphic role of the efferent system likely was to globally shut down and protect the peripheral sensors, be they vestibular, lateral line or auditory hair cells, from desensitization and damage during situations of self-induced sensory overload. The addition of a dedicated auditory papilla in land vertebrates appears to have favored the separation of vestibular and auditory efferents and specializations for more sophisticated and more diverse functions. © 2014 S. Karger AG, Basel.

  16. Perforated monolayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Regen. Steven L.

    2000-06-01

    This STI is a final report for a DOE-supported program, ''Perforated Monolayers,'' which focused on the fabrication of ultrathin membranes for gas separations based on Langmuir-Blodgett chemistry.

  17. n3 PUFAs Reduce Mouse CD4+ T-Cell Ex Vivo Polarization into Th17 Cells123

    Science.gov (United States)

    Monk, Jennifer M.; Hou, Tim Y.; Turk, Harmony F.; McMurray, David N.; Chapkin, Robert S.

    2013-01-01

    Little is known about the impact of n3 (ω3) PUFAs on polarization of CD4+ T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4+ T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3+) cells] or Th17 cells [interleukin (IL)-17A+ and retinoic acid receptor-related orphan receptor (ROR) γτ+ cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4+ IL-17A+ (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA–dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset. PMID:23864512

  18. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  19. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  20. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development.

    Directory of Open Access Journals (Sweden)

    Charlene Rivera

    Full Text Available The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP, appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP. Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.

  1. Effect of Polarization on Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Chhoden, Tashi; Arge, Maria

    2015-01-01

    ' immunoregulatory properties; thus, previous observations obtained using traditional setups should be considered with caution. Using the optimized setup, AEC conditioning of MDDCs led to increased expression of programmed death 1 ligand 1 (PD-L1), Immunoglobulin-Like Transcript 3, CD40, CD80 and CD23...... were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs...... to sample allergens administered to the apical side. Allergen uptake depended on both polarization and the nature of the allergen. AEC conditioning led to decreased birch allergen-specific proliferation of autologous T cells and a trend toward decreased secretion of the Th2-specific cytokines IL-5 and IL-13...

  2. Interaction of toremifene with dipalmitoyl-phosphatidyl-glycerol in monolayers at the air–water interface followed by fluorescence microscopy in Langmuir–Blodgett films

    International Nuclear Information System (INIS)

    Romão, Rute I.S.; Maçôas, Ermelinda; Martinho, José M.G.; Gonçalves da Silva, Amélia M.P.S.

    2013-01-01

    Langmuir monolayers of dipalmitoyl-phosphatidyl-glycerol (DPPG) containing toremifene (TOR), an antiestrogen drug derivative of tamoxifen, were prepared in order to study the interaction of the drug with the cell membrane. TOR is not surface active but it remains at the interface in DPPG rich monolayers anchored by electrostatic interaction with the anionic DPPG up to the equimolar composition. The fluidity of mixed monolayers increases up to the TOR mole fraction X TOR = 0.3, remaining practically invariant for higher compositions. Brewster angle microscopy shows that the TOR disturbs the DPPG organization and the liquid condensed (LC) domains of DPPG become undetectable for X TOR ≥ 0.4. Laser scanning confocal fluorescence microscopy images of the LB films doped with rhodamine B-piperazine amide dye confirm the progressive reduction in size of LC domains, from which TOR and rhodamine are excluded. The incorporation of TOR in DPPG monolayers up to the equimolar composition supports the formation of a TOR:DPPG complex (1:1) due to electrostatic interactions between the negatively charged polar groups of DPPG and protonated TOR. - Highlights: • Toremifene (TOR) in dipalmitoyl-phosphatidyl-glycerol (DPPG) monolayers • Electrostatic interactions between DPPG and TOR form a 1:1 complex. • TOR increases the fluidity of DPPG monolayers. • Incorporation of TOR in the fluid phase of DPPG followed by fluorescence imaging

  3. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Blocking of α1β1 and α2β1 adhesion molecules inhibits eosinophil migration through human lung microvascular endothelial cell monolayer

    Directory of Open Access Journals (Sweden)

    Stanisława Bazan-Socha

    2014-12-01

    Full Text Available In cell trafficking to the airways in asthma, among integrins the most important are those containing α4 and β2 subunits. We have previously shown that also blocking of collagen receptors, α1β1 and α2β1 integrins, inhibits transmigration of eosinophils of asthmatic subjects through a monolayer of skin microvascular endothelial cells seeded on collagen IV coated inserts. However, it was not clear whether this observation was limited to asthma or depended on the type of microvascular cell and collagen IV used as a base. In the current study we performed a transmigration assay using human lung microvascular endothelial cells seeded directly on a plastic surface as a base and blood cells isolated from 12 representatives of each of two groups, asthmatics and healthy donors, by gradient centrifugation, followed by immunomagnetic negative separation of eosinophils. Isolated eosinophils and peripheral blood mononuclear cells (PBMC were inhibited by snake venom-derived integrin antagonists including viperistatin and VP12, as inhibitors of α1β1 and α2β1 integrin, respectively, and VLO5 and VLO4, as inhibitors of α4β1 and α5β1 integrin, respectively. All snake venom-derived anti-adhesive proteins were effective in inhibiting eosinophil transmigration, whilst only VLO5 and VLO4 reduced PBMC mobility in this assay. This observation was similar in both groups of subjects studied. α1β1 and α2β1 integrins could be involved in transmigration of eosinophil to the inflammatory site. Migratory inhibition was observed in asthma subjects as well as in healthy donors, and did not depend on origin of endothelial cells or the extracellular matrix component used as a base.

  5. Ultrastructural investigations about the effect of X-rays and quinacrine (Atebrin) - alone or in combination - upon Ehrlich ascitic carcinoma cells in monolayer culture

    Energy Technology Data Exchange (ETDEWEB)

    Pfab, R.; Biller, H.; Hess, F.; Schachtschabel, D.O.; Paul, N.

    1983-08-01

    Already two days after an X-ray irradiation with 8 Gy performed during the phase of exponential growth, the cells of an Ehrlich ascitic carcinoma in monolayer culture showed remarkable ultrastructural modifications, e.g. a markedly vacuolized endoplasmic reticulum, swollen mitochondria, increase of lysosome-like structures, and a decrease of microvilli in number and size. Ehrlich ascitic carcinoma cells submitted to an X-ray irradiation with 8 Gy and subsequently incubated with quinacrine (Atebrin) in a concentration of 4x10/sup -6/ M, which alone had no significant effects on growth or ultrastructure, showed severe cellular lesions. The endoplasmic reticulum was still more vacuolized, the mitochondria were severely damaged, lysosome-like structures and residual bodies were increased, and the cellular surfaces had still less microvilli. Microtubules and microfilaments, however, seemed rather increased. The effects of quinacrine (Atebrin) on cells exposed to X-rays were discussed with respect to the known inhibiting action of this substance on DNA synthesis, especially with regard to DNA reparation. The modifications of the microtubule-microfilament system could be correlated to increased intracellular digestive processes involved in the catabolism of radiodamaged structures.

  6. Differential osteogenicity of multiple donor-derived human mesenchymal stem cells and osteoblasts in monolayer, scaffold-based 3D culture and in vivo.

    Science.gov (United States)

    Quent, Verena M C; Theodoropoulos, Christina; Hutmacher, Dietmar W; Reichert, Johannes C

    2016-06-01

    We set out to compare the osteogenicity of human mesenchymal stem (hMSCs) and osteoblasts (hOBs). Upon osteogenic induction in monolayer, hMSCs showed superior matrix mineralization expressing characteristic bone-related genes. For scaffold cultures, both cell types presented spindle-shaped, osteoblast-like morphologies forming a dense, interconnected network of high viability. On the scaffolds, hOBs proliferated faster. A general upregulation of parathyroid hormone-related protein (PTHrP), osteoprotegrin (OPG), receptor activator of NF-κB ligand (RANKL), sclerostin (SOST), and dentin matrix protein 1 (DMP1) was observed for both cell types. Simultaneously, PTHrP, RANKL and DMP-1 expression decreased under osteogenic stimulation, while OPG and SOST increased significantly. Following transplantation into NOD/SCID mice, μCT and histology showed increased bone deposition with hOBs. The bone was vascularized, and amounts further increased for both cell types after recombinant human bone morphogenic protein 7 (rhBMP-7) addition also stimulating osteoclastogenesis. Complete bone organogenesis was evidenced by the presence of osteocytes and hematopoietic precursors. Our study results support the asking to develop 3D cellular models closely mimicking the functions of living tissues suitable for in vivo translation.

  7. The subapical compartment and its role in intracellular trafficking and cell polarity

    NARCIS (Netherlands)

    Van Ijzendoorn, Sven C. D.; Maier, Olaf; Van Der Wouden, Johanna M.; Hoekstra, Dick

    In polarized epithelial cells and hepatocytes, apical and basolateral plasma membrane surfaces are maintained, each displaying a distinct molecular composition. In recent years, it has become apparent that a subapical compartment, referred to as SAC, plays a prominent if not crucial role in the

  8. LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism

    NARCIS (Netherlands)

    Jansen, Marnix; ten Klooster, Jean Paul; Offerhaus, G. Johan; Clevers, Hans

    2009-01-01

    Jansen M, ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism. Physiol Rev 89: 777-798, 2009; doi:10.1152/physrev.00026.2008. Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers

  9. TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation

    OpenAIRE

    2008-01-01

    TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation correspondence: Corresponding author. Tel.: +49 241 8080208; fax: +49 241 8082613. (Rink, Lothar) (Rink, Lothar) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMANY (Uciechowski, Peter) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMAN...

  10. Apical–basal polarity: why plant cells don't stand on their heads

    Czech Academy of Sciences Publication Activity Database

    Friml, J.; Benfey, P.; Benková, E.; Bennett, M. D.; Berleth, T.; Geldner, N.; Grebe, M.; Heisler, M.; Hejátko, J.; Jürgens, G.; Laux, T.; Lindsey, K.; Lukowitz, W.; Luschnig, Ch.; Offringa, R.; Scheres, B.; Swarup, R.; Torres-Ruiz, R.; Weijers, D.; Zažímalová, Eva

    2006-01-01

    Roč. 11, č. 1 (2006), s. 12-14 ISSN 1360-1385 R&D Projects: GA AV ČR IAA6038303 Institutional research plan: CEZ:AV0Z50380511 Keywords : Apical * Basal * Polarity of plant cell Subject RIV: EF - Botanics Impact factor: 8.000, year: 2006

  11. Mutation of the planar cell polarity gene VANGL1 in adolescent idiopathic scoliosis

    DEFF Research Database (Denmark)

    Andersen, Malene Rask; Farooq, Muhammad; Rasmussen, Karen Koefoed

    2017-01-01

    STUDY DESIGN: Mutation analysis of a candidate disease gene in a cohort of patients with moderate to severe Adolescent idiopathic scoliosis (AIS). OBJECTIVE: To investigate if damaging mutations in the planar cell polarity gene VANGL1 could be identified in AIS patients. SUMMARY OF BACKGROUND DATA...

  12. Measurement of cell wall depolarization of polarized hydrogen gas targets in a weak magnetic field

    International Nuclear Information System (INIS)

    Price, J.S.; Haeberli, W.

    1994-01-01

    Polarized gas targets using windowless storage cells are being developed for use as internal targets in medium and high energy particle storage rings. Tests were conducted to evaluate wall depolarization for different cell wall materials. Measurements of the target polarization were made on polarized vector H 0 gas targets in a weak magnetic field. Fifteen materials were tested in geometries corresponding to different average number of wall collisions, N 0 , from 40 to 380 collisions, for wall temperatures, T, from 20 K to 300 K. A method was developed to measure the polarization of a vector H 0 target in a 0.5 mT field: a beam of 50 keV D + picks up electrons from the target gas and the vector D 0 acquires a tensor polarization, p zz , which is measured by means of the 3 H( vector d, n) 4 He reaction. A simple model for depolarization at surfaces is proposed. Comparison to the data shows fair agreement, but the model is unrealistic in that it does not include the effects of the recombination of atoms on the surface to form molecules. ((orig.))

  13. Mathematical modeling of planar cell polarity signaling in the Drosophila melanogaster wing

    Science.gov (United States)

    Amonlirdviman, Keith

    Planar cell polarity (PCP) signaling refers to the coordinated polarization of cells within the plane of various epithelial tissues to generate sub-cellular asymmetry along an axis orthogonal to their apical-basal axes. For example, in the Drosophila wing, PCP is seen in the parallel orientation of hairs that protrude from each of the approximately 30,000 epithelial cells to robustly point toward the wing tip. Through a poorly understood mechanism, cell clones mutant for some PCP signaling components, including some, but not all alleles of the receptor frizzled, cause polarity disruptions of neighboring, wild-type cells, a phenomenon referred to as domineering nonautonomy. Previous models have proposed diffusible factors to explain nonautonomy, but no such factors have yet been found. This dissertation describes the mathematical modeling of PCP in the Drosophila wing, based on a contact dependent signaling hypothesis derived from experimental results. Intuition alone is insufficient to deduce that this hypothesis, which relies on a local feedback loop acting at the cell membrane, underlies the complex patterns observed in large fields of cells containing mutant clones, and others have argued that it cannot account for observed phenotypes. Through reaction-diffusion, partial differential equation modeling and simulation, the feedback loop is shown to fully reproduce PCP phenotypes, including domineering nonautonomy. The sufficiency of this model and the experimental validation of model predictions argue that previously proposed diffusible factors need not be invoked to explain PCP signaling and reveal how specific protein-protein interactions lead to autonomy or domineering nonautonomy. Based on these results, an ordinary differential equation model is derived to study the relationship of the feedback loop with upstream signaling components. The cadherin Fat transduces a cue to the local feedback loop, biasing the polarity direction of each cell toward the wing tip

  14. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis

    NARCIS (Netherlands)

    Tejos, R.; Sauer, M.; Vanneste, S.; Palacios-Gomez, M.; Li, H.; Heilmann, M.; van Wijk, R.; Vermeer, J.E.M.; Heilmann, I.; Munnik, T.; Friml, J.

    2014-01-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the

  15. Polarity establishment, morphogenesis, and cultured plant cells in space

    Science.gov (United States)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  16. Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lieneke I Bouwman

    Full Text Available Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.

  17. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  18. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion.

    Science.gov (United States)

    Futrega, Kathryn; Atkinson, Kerry; Lott, William B; Doran, Michael R

    2017-04-01

    While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25-400 MSCs and 10 umbilical cord blood (CB)-derived CD34 + progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34 + cell expansion outcomes. By contrast, a substantial increase in CD34 + CD38 - cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34 + CD38 - cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34 + CD38 - cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34 + cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications.

  19. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells.

    Science.gov (United States)

    Cooper, Sam; Sadok, Amine; Bousgouni, Vicky; Bakal, Chris

    2015-11-05

    Melanoma cells can adopt two functionally distinct forms, amoeboid and mesenchymal, which facilitates their ability to invade and colonize diverse environments during the metastatic process. Using quantitative imaging of single living tumor cells invading three-dimensional collagen matrices, in tandem with unsupervised computational analysis, we found that melanoma cells can switch between amoeboid and mesenchymal forms via two different routes in shape space--an apolar and polar route. We show that whereas particular Rho-family GTPases are required for the morphogenesis of amoeboid and mesenchymal forms, others are required for transitions via the apolar or polar route and not amoeboid or mesenchymal morphogenesis per se. Altering the transition rates between particular routes by depleting Rho-family GTPases can change the morphological heterogeneity of cell populations. The apolar and polar routes may have evolved in order to facilitate conversion between amoeboid and mesenchymal forms, as cells are either searching for, or attracted to, particular migratory cues, respectively. © 2015 Cooper et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells

    Science.gov (United States)

    Shin, In Hee; Shin, Sang-Mo; Kim, Dug Young

    2010-01-01

    We propose a new, simple theory-based, accurate polarization microscope for birefringence imaging of cytoskeletal structures of biological cells. The new theory lets us calculate very easily the phase retardation and the orientation of the principal axis of a particular area of a biological living cell in media by simply measuring the intensity variation of a pixel of a CCD camera while rotating a single polarizer. Just from the measured intensity maxima and minima, the amount of phase retardation δ between the fast and the slow axis of the sample area is obtained with an accuracy of 5.010+/-0.798×10-3 rad. The orientation of the principal axis is calculated from the angle of the polarizer for the intensity maximum. We have compared our microscopes with two previously reported polarization microscopes for birefringence imaging of cytoskeletal structures and demonstrated the utility of our microscope with the phase retardation and orientation images of weakly invasive MCF7 and highly invasive MDA MB 231 human breast cancer cells as an example.

  1. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells.

    Science.gov (United States)

    Žižka, Zdeněk; Gabriel, Jiří

    2015-11-01

    Polarization and positive phase contrast microscope were concomitantly used in the study of the internal structure of microbial cells. Positive phase contrast allowed us to view even the fine cell structure with a refractive index approaching that of the surrounding environment, e.g., the cytoplasm, and transferred the invisible phase image to a visible amplitude image. With polarization microscopy, crossed polarizing filters together with compensators and a rotary stage showed the birefringence of different cell structures. Material containing algae was collected in ponds in Sýkořice and Zbečno villages (Křivoklát region). The objects were studied in laboratory microscopes LOMO MIN-8 Sankt Petersburg and Polmi A Carl Zeiss Jena fitted with special optics for positive phase contrast, polarizers, analyzers, compensators, rotary stages, and digital SLR camera Nikon D 70 for image capture. Anisotropic granules were found in the cells of flagellates of the order Euglenales, in green algae of the orders Chlorococcales and Chlorellales, and in desmid algae of the order Desmidiales. The cell walls of filamentous algae of the orders Zygnematales and Ulotrichales were found to exhibit significant birefringence; in addition, relatively small amounts of small granules were found in the cytoplasm. A typical shape-related birefringence of the cylindrical walls and the septa between the cells differed in intensity, which was especially apparent when using a Zeiss compensator RI-c during its successive double setting. In conclusion, the anisotropic granules found in the investigated algae mostly showed strong birefringence and varied in number, size, and location of the cells. Representatives of the order Chlorococcales contained the highest number of granules per cell, and the size of these granules was almost double than that of the other monitored microorganisms. Very strong birefringence was exhibited by cell walls of filamentous algae; it differed in the intensity

  2. Organic Cation Transporter 1 (OCT1/mOct1) Is Localized in the Apical Membrane of Caco-2 Cell Monolayers and Enterocytes

    Science.gov (United States)

    Han, Tianxiang (Kevin); Everett, Ruth S.; Proctor, William R.; Ng, Chee M.; Costales, Chester L.; Brouwer, Kim L. R.

    2013-01-01

    Organic cation transporters (OCTs) are members of the solute carrier 22 family of transporter proteins that are involved in absorption, distribution, and excretion of organic cations. OCT3 is localized in the apical (AP) membrane of enterocytes, but the literature is ambiguous about OCT1 (mOct1) localization, with some evidence suggesting a basolateral (BL) localization in human and mouse enterocytes. This is contrary to our preliminary findings showing AP localization of OCT1 in Caco-2 cell monolayers, an established model of human intestinal epithelium. Therefore, this study aims at determining the localization of OCT1 (mOct1) in Caco-2 cells, and human and mouse enterocytes. Functional studies using OCT1-specific substrate pentamidine showed transporter-mediated AP but not BL uptake in Caco-2 cells and human and mouse intestinal tissues. OCT1 inhibition decreased AP uptake of pentamidine by ∼50% in all three systems with no effect on BL uptake. A short hairpin RNA-mediated OCT1 knockdown in Caco-2 cells decreased AP uptake of pentamidine by ∼50% but did not alter BL uptake. Immunostaining and confocal microscopy in all three systems confirmed AP localization of OCT1 (mOct1). Our studies unequivocally show AP membrane localization of OCT1 (mOct1) in Caco-2 cells and human and mouse intestine. These results are highly significant as they will require reinterpretation of previous drug disposition and drug-drug interaction studies where conclusions were drawn assuming BL localization of OCT1 in enterocytes. Most importantly, these results will require revision of the regulatory guidance for industry in the United States and elsewhere because it has stated that OCT1 is basolaterally localized in enterocytes. PMID:23680637

  3. Variation in the uptake of nanoparticles by monolayer cultured cells using high resolution MeV ion beam imaging

    International Nuclear Information System (INIS)

    Tao, Ye; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-Belle; Bettiol, Andrew A.; Watt, Frank

    2015-01-01

    Gold nanoparticle uptake by cells is being increasingly studied because of its potential in biomedical applications. In this work, we show how scanning transmission ion microscopy can be employed to visualize and quantify 50 nm gold nanoparticles taken up by individual cells. Preliminary studies have indicated that the cellular content of gold nanoparticles exhibits a wide variation (up to a factor of 10) among individual cells. This cell-to-cell variation can affect the efficiency of utilizing gold nanoparticles for therapeutic or diagnostic purposes

  4. Participation of the cell polarity protein PALS1 to T-cell receptor-mediated NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Gabrielle Carvalho

    Full Text Available BACKGROUND: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR-mediated activation. METHODOLOGY/PRINCIPAL FINDINGS: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. CONCLUSIONS: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation.

  5. Bioelectric and Morphological Response of Liquid-Covered Human Airway Epithelial Calu-3 Cell Monolayer to Periodic Deposition of Colloidal 3-Mercaptopropionic-Acid Coated CdSe-CdS/ZnS Core-Multishell Quantum Dots.

    Directory of Open Access Journals (Sweden)

    Aizat Turdalieva

    Full Text Available Lung epithelial cells are extensively exposed to nanoparticles present in the modern urban environment. Nanoparticles, including colloidal quantum dots (QDs, are also considered to be potentially useful carriers for the delivery of drugs into the body. It is therefore important to understand the ways of distribution and the effects of the various types of nanoparticles in the lung epithelium. We use a model system of liquid-covered human airway epithelial Calu-3 cell cultures to study the immediate and long-term effects of repeated deposition of colloidal 3-mercaptopropionic-acid coated CdSe-CdS/ZnS core-multishell QDs on the lung epithelial cell surface. By live confocal microscope imaging and by QD fluorescence measurements we show that the QD permeation through the mature epithelial monolayers is very limited. At the time of QD deposition, the transepithelial electrical resistance (TEER of the epithelial monolayers transiently decreased, with the decrement being proportional to the QD dose. Repeated QD deposition, once every six days for two months, lead to accumulation of only small amounts of the QDs in the cell monolayer. However, it did not induce any noticeable changes in the long-term TEER and the molecular morphology of the cells. The colloidal 3-mercaptopropionic-acid coated CdSe-CdS/ZnS core-multishell QDs could therefore be potentially used for the delivery of drugs intended for the surface of the lung epithelia during limited treatment periods.

  6. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  7. Nuclear fallout provides a new link between aPKC and polarized cell trafficking.

    Science.gov (United States)

    Calero-Cuenca, Francisco J; Espinosa-Vázquez, José Manuel; Reina-Campos, Miguel; Díaz-Meco, María T; Moscat, Jorge; Sotillos, Sol

    2016-04-18

    Cell polarity, essential for cell physiology and tissue coherence, emerges as a consequence of asymmetric localization of protein complexes and directional trafficking of cellular components. Although molecules required in both processes are well known their relationship is still poorly understood. Here we show a molecular link between Nuclear Fallout (Nuf), an adaptor of Rab11-GTPase to the microtubule motor proteins during Recycling Endosome (RE) trafficking, and aPKC, a pivotal kinase in the regulation of cell polarity. We demonstrate that aPKC phosphorylates Nuf modifying its subcellular distribution. Accordingly, in aPKC mutants Nuf and Rab11 accumulate apically indicating altered RE delivery. We show that aPKC localization in the apico-lateral cortex is dynamic. When we block exocytosis, by means of exocyst-sec mutants, aPKC accumulates inside the cells. Moreover, apical aPKC concentration is reduced in nuf mutants, suggesting aPKC levels are maintained by recycling. We demonstrate that active aPKC interacts with Nuf, phosphorylating it and, as a result, modifying its subcellular distribution. We propose a regulatory loop by which Nuf promotes aPKC apical recycling until sufficient levels of active aPKC are reached. Thus, we provide a novel link between cell polarity regulation and traffic control in epithelia.

  8. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    2010-05-01

    Full Text Available The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation.We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus.Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  9. ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion

    International Nuclear Information System (INIS)

    Feigin, Michael E.; Muthuswamy, Senthil K.

    2009-01-01

    The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression

  10. Baicalin pharmacokinetic profile of absorption process using novel in-vitro model: cytochrome P450 3A4-induced Caco-2 cell monolayers combined with rat intestinal rinse fluids.

    Science.gov (United States)

    Morisaki, Tomoko; Hou, Xiao-Long; Takahashi, Kyoko; Takahashi, Koichi

    2013-10-01

    This study was designed to investigate baicalin (BG) pharmacokinetic profile in absorption process using a new model and evaluate the potentiality as a new model. The effects of BG on intestinal cytochrome P450 3A4 (CYP3A) protein/mRNA expression, activity and permeability glycoprotein (P-gp) were evaluated in CYP3A4-induced Caco-2 cell monolayers or rats. Intestinal rinse fluids (IF) were obtained from rat were added to modified Caco-2 monolayers. Orally administered BG (7 days pretreatment) inhibited intestinal CYP3A activity and protein expression. Baicalein (B) converted from BG by IF was detected in the upper jejunum in a portion-dependent manner. Subsequently, most BG were converted to B in the caecum. In modified Caco-2 monolayers, BG exhibited no effect on CYP3A4 activity or mRNA, whereas B and BG treated with IF inhibited CYP3A4 transcription and activity. Intestinal CYP3A was inhibited following oral administration of BG to rat. Correspondingly, BG-mediated CYP3A inhibition was shown in vitro using modified Caco-2 monolayers treated with IF. Hence, in-vivo intestinal absorption pharmacokinetic was reproduced in vitro. IF is a key determinant of intestinal absorption, and it facilitated inhibition of CYP3A by B, not BG. © 2013 Royal Pharmaceutical Society.

  11. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    Science.gov (United States)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  12. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity

    Directory of Open Access Journals (Sweden)

    Gianluca Baldanzi

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs terminate diacylglycerol (DAG signaling and promote phosphatidic acid (PA production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse.When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.

  13. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues

    NARCIS (Netherlands)

    Parsons, Linda M.; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-01-01

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein

  14. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco

    2013-01-01

    induction of type 1 effector T cells. Standard matured clinical grade DCs “sDCs” were compared with DCs matured with either of two type 1 polarizing maturation cocktails; the alpha-type-1 DCs “αDC1s” (TNF-α, IL-1β, IFN-γ, IFN-α, Poly(I:C)) and “mDCs” (monophosphoryl lipid A (MPL), IFN-γ) or a mixed cocktail....... αDC1s and mDCs were functionally superior to sDCs as they polarized naïve CD4+ T cells most efficiently into T helper type 1 effector cells and primed more functional MART-1 specific CD8+ T cells although with variation between donors. αDC1s and mDCs were transiently less capable of CCL21-directed......DCs and strikingly had the highest expression of the inhibitory molecules PD-L1 and CD25. Thus, further studies with type 1 polarized DCs are warranted for use in immunotherapy, but when combined with PGE2 as in mpDCs, they seems to be less optimal for maturation of DCs....

  15. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization.

    Science.gov (United States)

    Buttari, Brigitta; Profumo, Elisabetta; Domenici, Giacomo; Tagliani, Angela; Ippoliti, Flora; Bonini, Sergio; Businaro, Rita; Elenkov, Ilia; Riganò, Rachele

    2014-07-01

    Neuropeptide Y (NPY), a major autonomic nervous system and stress mediator, is emerging as an important regulator of inflammation, implicated in autoimmunity, asthma, atherosclerosis, and cancer. Yet the role of NPY in regulating phenotype and functions of dendritic cells (DCs), the professional antigen-presenting cells, remains undefined. Here we investigated whether NPY could induce DCs to migrate, mature, and polarize naive T lymphocytes. We found that NPY induced a dose-dependent migration of human monocyte-derived immature DCs through the engagement of NPY Y1 receptor and the activation of ERK and p38 mitogen-activated protein kinases. NPY promoted DC adhesion to endothelial cells and transendothelial migration. It failed to induce phenotypic DC maturation, whereas it conferred a T helper 2 (Th2) polarizing profile to DCs through the up-regulation of interleukin (IL)-6 and IL-10 production. Thus, during an immune/inflammatory response NPY may exert proinflammatory effects through the recruitment of immature DCs, but it may exert antiinflammatory effects by promoting a Th2 polarization. Locally, at inflammatory sites, cell recruitment could be amplified in conditions of intense acute, chronic, or cold stress. Thus, altered or amplified signaling through the NPY-NPY-Y1 receptor-DC axis may have implications for the development of inflammatory conditions.-Buttari, B., Profumo, E., Domenici, G., Tagliani, A., Ippoliti, F., Bonini, S., Businaro, R., Elenkov, I., Riganò, R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. © FASEB.

  16. B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis.

    Science.gov (United States)

    Bénard, Alan; Sakwa, Imme; Schierloh, Pablo; Colom, André; Mercier, Ingrid; Tailleux, Ludovic; Jouneau, Luc; Boudinot, Pierre; Al-Saati, Talal; Lang, Roland; Rehwinkel, Jan; Loxton, Andre G; Kaufmann, Stefan H E; Anton-Leberre, Véronique; O'Garra, Anne; Sasiain, Maria Del Carmen; Gicquel, Brigitte; Fillatreau, Simon; Neyrolles, Olivier; Hudrisier, Denis

    2018-03-15

    In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood. To document the role of B cells in TB in an unbiased manner. We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB. B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs. Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.

  17. Coupling Mechanical Deformations and Planar Cell Polarity to Create Regular Patterns in the Zebrafish Retina

    Science.gov (United States)

    Salbreux, Guillaume; Barthel, Linda K.; Raymond, Pamela A.; Lubensky, David K.

    2012-01-01

    The orderly packing and precise arrangement of epithelial cells is essential to the functioning of many tissues, and refinement of this packing during development is a central theme in animal morphogenesis. The mechanisms that determine epithelial cell shape and position, however, remain incompletely understood. Here, we investigate these mechanisms in a striking example of planar order in a vertebrate epithelium: The periodic, almost crystalline distribution of cone photoreceptors in the adult teleost fish retina. Based on observations of the emergence of photoreceptor packing near the retinal margin, we propose a mathematical model in which ordered columns of cells form as a result of coupling between planar cell polarity (PCP) and anisotropic tissue-scale mechanical stresses. This model recapitulates many observed features of cone photoreceptor organization during retinal growth and regeneration. Consistent with the model's predictions, we report a planar-polarized distribution of Crumbs2a protein in cone photoreceptors in both unperturbed and regenerated tissue. We further show that the pattern perturbations predicted by the model to occur if the imposed stresses become isotropic closely resemble defects in the cone pattern in zebrafish lrp2 mutants, in which intraocular pressure is increased, resulting in altered mechanical stress and ocular enlargement. Evidence of interactions linking PCP, cell shape, and mechanical stresses has recently emerged in a number of systems, several of which show signs of columnar cell packing akin to that described here. Our results may hence have broader relevance for the organization of cells in epithelia. Whereas earlier models have allowed only for unidirectional influences between PCP and cell mechanics, the simple, phenomenological framework that we introduce here can encompass a broad range of bidirectional feedback interactions among planar polarity, shape, and stresses; our model thus represents a conceptual framework

  18. Photo-switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    Science.gov (United States)

    2015-11-05

    Dye-Sensitized Solar Cells," Dyes and Pigments , 107, 9-14, 2014 (DOI: 10.1016/j.dyepig.2014.03.010). Here we report the synthesis and...electron acceptor and anchoring unit for Dye-Sensitized Solar Cells,\\" Dyes and Pigments , 107, 9-14, 2014 (DOI: 10.1016/j.dyepig.2014.03.010). 4. Danny...linked by vinyl-fluorene or vinyl-thiophene spacers for dye-sensitized solar cells,” Dyes and Pigments , 112, 127-137, 2014 (DOI: 10.1016/j.dyepig

  19. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    Science.gov (United States)

    2014-01-24

    Accessory, 6) a Jelight Co. UVO cleaner, and 7) a Laurell Technologies Spin Coater . These instruments were used to characterize a variety of...goniometer/tensiometer, UVO cleaner, spin coater U U U UU Luis Echegoyen (915) 747-7573 (HBCU) - Required Equipment for Photo-switchable Donor...are exposed to the spin coated photoactive layer over the ITO monolayer, the effectiveness of this monolayer will be difficult to study. We need

  20. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  1. The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model

    Directory of Open Access Journals (Sweden)

    Yi-Nan Zhang

    2017-11-01

    Full Text Available Uncariae Ramulus Cum Uncis (URCU is a widely used traditional Chinese medicine, and is reported to have various central nervous system effects. Alkaloids have been demonstrated to be the predominant pharmacological active components of URCU. In order to evaluate the blood-brain barrier (BBB permeability and transport mechanism of six typical indole alkaloids from URCU, the MDCK-pHaMDR cell monolayer model was used as an in vitro surrogate model for BBB. The samples were analyzed by high-performance liquid chromatography, and the apparent permeability coefficients (Papp were calculated. Among the six alkaloids, isorhynchophylline (2, isocorynoxeine (4, hirsutine (5 and hirsuteine (6 showed high permeability, with Papp values at 10−5 cm/s level in bidirectional transport. For rhynchophylline (1 and corynoxeine (3, they showed moderate permeability, with Papp values from the apical (AP side to the basolateral (BL side at 10−6 cm/s level and efflux ratio (Papp BL→AP/Papp AP→BL above 2. The time- and concentration-dependency experiments indicated that the main mechanism for 2, 4, 5 and 6 through BBB was passive diffusion. The efflux mechanism involved in the transports of compounds 1 and 3 could be reduced significantly by verapamil, and molecular docking screening also showed that 1 and 3 had strong bindings to P-glycoprotein. This study provides useful information for predicting the BBB permeability for 1–6, as well as better understanding of their central nervous system pharmacological activities.

  2. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y

    1989-08-01

    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  3. RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells.

    Science.gov (United States)

    Alghanem, Ahmad F; Wilkinson, Emma L; Emmett, Maxine S; Aljasir, Mohammad A; Holmes, Katherine; Rothermel, Beverley A; Simms, Victoria A; Heath, Victoria L; Cross, Michael J

    2017-08-01

    Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the calcineurin pathway in cells. It is expressed as two isoforms in vertebrates: RCAN1.1 is constitutively expressed in most tissues, whereas transcription of RCAN1.4 is induced by several stimuli that activate the calcineurin-NFAT pathway. RCAN1.4 is highly upregulated in response to VEGF in human endothelial cells in contrast to RCAN1.1 and is essential for efficient endothelial cell migration and tubular morphogenesis. Here, we show that RCAN1.4 has a role in the regulation of agonist-stimulated VEGFR-2 internalisation and establishment of endothelial cell polarity. siRNA-mediated gene silencing revealed that RCAN1 plays a vital role in regulating VEGF-mediated cytoskeletal reorganisation and directed cell migration and sprouting angiogenesis. Adenoviral-mediated overexpression of RCAN1.4 resulted in increased endothelial cell migration. Antisense-mediated morpholino silencing of the zebrafish RCAN1.4 orthologue revealed a disrupted vascular development further confirming a role for the RCAN1.4 isoform in regulating vascular endothelial cell physiology. Our data suggest that RCAN1.4 plays a novel role in regulating endothelial cell migration by establishing endothelial cell polarity in response to VEGF.

  4. Kv7.1 surface expression is regulated by epithelial cell polarization

    DEFF Research Database (Denmark)

    Andersen, Martin N; Olesen, Søren-Peter; Rasmussen, Hanne Borger

    2011-01-01

    The potassium channel K(V)7.1 is expressed in the heart where it contributes to the repolarization of the cardiac action potential. In addition, K(V)7.1 is expressed in epithelial tissues where it plays a role in salt and water transport. Mutations in the kcnq1 gene can lead to long QT syndrome...... and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate K(V)7.1 surface expression, we have investigated the trafficking of K(V)7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using...... is regulated by signaling mechanisms involved in epithelial cell polarization in particular signaling cascades involving protein kinase C and PI3K....

  5. Characterization of a pancreatic islet cell tumor in a polar bear (Ursus maritimus).

    Science.gov (United States)

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2014-01-01

    Herein, we report a 25-year-old male polar bear suffering from a pancreatic islet cell tumor. The aim of this report is to present a case of this rare tumor in a captive polar bear. The implication of potential risk factors such as high carbohydrate diet or the presence of amyloid fibril deposits was assessed. Necropsy examination revealed several other changes, including nodules observed in the liver, spleen, pancreas, intestine, and thyroid glands that were submitted for histopathologic analysis. Interestingly, the multiple neoplastic nodules were unrelated and included a pancreatic islet cell tumor. Immunohistochemistry of the pancreas confirmed the presence of insulin and islet amyloid polypeptide (IAPP) within the pancreatic islet cells. The IAPP gene was extracted from the paraffin-embedded liver tissue and sequenced. IAPP cDNA from the polar bear exhibits some differences as compared to the sequence published for several other species. Different factors responsible for neoplasms in bears such as diet, infectious agents, and industrial chemical exposure are reviewed. This case report raised several issues that further studies may address by evaluating the prevalence of cancers in captive or wild animals. © 2014 Wiley Periodicals, Inc.

  6. Self-organized spatiotemporal patterns of PIP3 and PTEN during spontaneous cell polarization

    Science.gov (United States)

    Knoch, Fabian; Tarantola, Marco; Rappel, Wouter-Jan; Bodenschatz, Eberhard

    2014-03-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, PIP3 (phosphatidylinositol (3,4,5)-triphoshpate) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules, which govern the process of polarization in a self-organized manner. Gerisch et al. have shown that randomly triggered excitable PIP3 waves regulate the anti-correlated PTEN concentration. Here we show that this requires a switch-like dynamics of the overall membrane bound PTEN concentration in combination with two species of PTEN differing in their dephosphorylation rates. A quantitative modeling with a coupled reaction-diffusion system shows excellent agreement with experimental results and predicts a ratio σ of dephosphorylation rates acting on PIP3 of σ ~ 80 - 100. Our quantitative analysis suggests that surface-attached cell membrane spanning PIP3 waves are necessary for resetting the global actin network. This is evidenced by the experimentally observed delay between polarization-cycles also quantitatively captured by our analysis. Max Planck Society and Center for Theoretical Biological Physics.

  7. Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen

    Science.gov (United States)

    Vogler, Frank; Konrad, Sebastian S. A.; Sprunck, Stefanie

    2015-01-01

    Pollen tubes are an excellent system for studying the cellular dynamics and complex signaling pathways that coordinate polarized tip growth. Although several signaling mechanisms acting in the tip-growing pollen tube have been described, our knowledge on the subcellular and molecular events during pollen germination and growth site selection at the pollen plasma membrane is rather scarce. To simultaneously track germinating pollen from up to 12 genetically different plants we developed an inexpensive and easy mounting technique, suitable for every standard microscope setup. We performed high magnification live-cell imaging during Arabidopsis pollen activation, germination, and the establishment of pollen tube tip growth by using fluorescent marker lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization during pollen activation and characteristic growth kinetics during pollen germination and pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and forms a uniform roundish bulge, followed by a transition phase with vesicles heavily accumulating at the growth site before switching to rapid tip growth. Furthermore, we found the two sperm cells to be transported into the pollen tube after the phase of rapid tip growth has been initiated. The method presented here is suitable to quantitatively study subcellular events during Arabidopsis pollen germination and growth, and for the detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth site selection at the pollen plasma membrane. PMID:25954283

  8. Effect of Toxic Components on Microbial Fuel Cell-Polarization Curves and Estimation of the Type of Toxic Inhibition

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Straten, van G.; Keesman, K.J.

    2012-01-01

    Polarization curves are of paramount importance for the detection of toxic components in microbial fuel cell (MFC) based biosensors. In this study, polarization curves were made under non-toxic conditions and under toxic conditions after the addition of various concentrations of nickel, bentazon,

  9. Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Straten, G. van; Keesman, K.J.

    2012-01-01

    Polarization curves are of paramount importance for the detection of toxic components in microbial fuel cell (MFC) based biosensors. In this study, polarization curves were made under non-toxic conditions and under toxic conditions after the addition of various concentrations of nickel, bentazon,

  10. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  11. Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1.

    Directory of Open Access Journals (Sweden)

    Michelle M Hill

    Full Text Available Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.

  12. Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Ryuji; Yano, Tatsuya; Eguchi, Koichi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Takeguchi, Tatsuya [Catalysis Research Center, Hokkaido University, Kita-ku, Sapporo 001-0021 (Japan)

    2004-10-29

    AC impedance measurements were carried out under pressurized conditions by using a Ni-Y{sub 2}O{sub 3}-stabilized zirconia (YSZ)/YSZ half cell in order to investigate anodic polarization at high-pressure conditions. AC impedance spectra were measured at 900 and 1000C in H{sub 2}-H{sub 2}O system with a constant H{sub 2}/H{sub 2}O ratio, or a constant partial pressure of H{sub 2} or H{sub 2}O for different total pressures of 1 to 10 atm. At high pressures, the resistance characterized by the semicircle at high frequency was lowered, whereas that at low frequency was raised. A model based on one-dimensional diffusion was developed to estimate concentration polarization based on the impedance measurements, and activation polarization was evaluated using a linear current-potential relation derived from the Butler-Volmer equation. The activation overvoltage was at most 40 mV at 10 mA/cm{sup 2}, irrespective of the total pressure. Concentration polarization was computed to increase as the total pressure was raised, whereas it was almost constant for temperature change. Large voltage drop at small current densities was calculated for the system with low partial pressure of oxygen.

  13. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    Directory of Open Access Journals (Sweden)

    Brown Dan

    2005-01-01

    Full Text Available Abstract Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p p > 0.05. Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p p Conclusions The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods.

  14. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  15. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  16. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    OpenAIRE

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2005-01-01

    Abstract Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro diges...

  17. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun

    2018-03-01

    Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.

  18. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation

    Directory of Open Access Journals (Sweden)

    Susanne Cranz-Mileva

    2015-08-01

    Full Text Available Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.

  19. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Deok Rim [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Shin, Sung Jae; Kim, Woo Sik [Department of Microbiology, College of Medicine, Chungnam National University, Munwha-Dong, Jung-Ku, Daejeon 301-747 (Korea, Republic of); Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Won Sun [Department of Physiology, Kangwon National University, School of Medicine, Chuncheon 200-701 (Korea, Republic of); Lee, Min-Goo [Department of Physiology, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705 (Korea, Republic of); Kim, Daejin [Department of Anatomy, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Shin, Yong Kyoo [Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Jung, In Duk, E-mail: jungid@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Yeong-Min, E-mail: immunpym@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of)

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  20. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  1. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex.

    Science.gov (United States)

    Beringer, Dennis X; Kleijwegt, Fleur S; Wiede, Florian; van der Slik, Arno R; Loh, Khai Lee; Petersen, Jan; Dudek, Nadine L; Duinkerken, Gaby; Laban, Sandra; Joosten, Antoinette; Vivian, Julian P; Chen, Zhenjun; Uldrich, Adam P; Godfrey, Dale I; McCluskey, James; Price, David A; Radford, Kristen J; Purcell, Anthony W; Nikolic, Tatjana; Reid, Hugh H; Tiganis, Tony; Roep, Bart O; Rossjohn, Jamie

    2015-11-01

    Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iT(reg)) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iT(reg) TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition.

  2. CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia.

    Science.gov (United States)

    Kim, Sun K; Zhang, Siwei; Werner, Michael E; Brotslaw, Eva J; Mitchell, Jennifer W; Altabbaa, Mohamed M; Mitchell, Brian J

    2018-03-07

    Most epithelial cells polarize along the axis of the tissue, a feature known as planar cell polarity (PCP). The initiation of PCP requires cell-cell signaling via the noncanonical Wnt/PCP pathway. Additionally, changes in the cytoskeleton both facilitate and reflect this polarity. We have identified CLAMP/Spef1 as a novel regulator of PCP signaling. In addition to decorating microtubules (MTs) and the ciliary rootlet, a pool of CLAMP localizes at the apical cell cortex. Depletion of CLAMP leads to the loss of PCP protein asymmetry, defects in cilia polarity, and defects in the angle of cell division. Additionally, depletion of CLAMP leads to a loss of the atypical cadherin-like molecule Celrs2, suggesting that CLAMP facilitates the stabilization of junctional interactions responsible for proper PCP protein localization. Depletion of CLAMP also affects the polarized organization of MTs. We hypothesize that CLAMP facilitates the establishment of cell polarity and promotes the asymmetric accumulation of MTs downstream of the establishment of proper PCP. © 2018 Kim et al.

  3. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  4. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys.

    Directory of Open Access Journals (Sweden)

    Alyssa D Flora

    Full Text Available Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock.

  5. Kermit interacts with Gαo, Vang, and motor proteins in Drosophila planar cell polarity.

    Directory of Open Access Journals (Sweden)

    Chen Lin

    Full Text Available In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue--the phenomenon known as planar cell polarity (PCP. In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.

  6. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry.

    Science.gov (United States)

    Martin, Sophie G

    2015-11-01

    Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites. © 2015 WILEY Periodicals, Inc.

  7. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Martin eAugsten

    2014-03-01

    Full Text Available Tumor- or cancer-associated fibroblasts (CAFs are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular ´polarization´, previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.

  8. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  9. A Kinome RNAi Screen inDrosophilaIdentifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    Science.gov (United States)

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 ( SIK2 and 3 ) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  10. Anti-Inflammatory Phenolic Acid Esters from the Roots and Rhizomes of Notopterygium incisium and Their Permeability in the Human Caco-2 Monolayer Cell Model.

    Science.gov (United States)

    Wu, Xiu-Wen; Wei, Wei; Yang, Xiu-Wei; Zhang, You-Bo; Xu, Wei; Yang, Yan-Fang; Zhong, Guo-Yue; Liu, Hong-Ning; Yang, Shi-Lin

    2017-06-04

    A new ferulic acid ester named 4-methyl-3- trans -hexenylferulate ( 1 ), together with eight known phenolic acid esters ( 2 - 9 ), was isolated from the methanolic extract of the roots and rhizomes of Notopterygium incisium . Their structures were elucidated by extensive spectroscopic techniques, including 2D NMR spectroscopy and mass spectrometry. 4-Methoxyphenethyl ferulate ( 8 ) NMR data is reported here for the first time. The uptake and transepithelial transport of the isolated compounds 1 - 9 were investigated in the human intestinal Caco-2 cell monolayer model. Compounds 2 and 6 were assigned for the well-absorbed compounds, compound 8 was assigned for the moderately absorbed compound, and compounds 1 , 3 , 4 , 5 , 7 , and 9 were assigned for the poorly absorbed compounds. Moreover, all of the isolated compounds were assayed for the inhibitory effects against nitric oxide (NO) production in the lipopolysaccharide-activated RAW264.7 macrophages model and L-N ⁶-(1-iminoethyl)-lysine (L-NIL) was used as a positive control. Compounds 1 , 5 , 8 , and 9 exhibited potent inhibitory activity on NO production with the half maximal inhibitory concentration (IC 50 ) values of 1.01, 4.63, 2.47, and 2.73 μM, respectively, which were more effective than L-NIL with IC 50 values of 9.37 μM. These findings not only enriched the types of anti-inflammatory compounds in N. incisum but also provided some useful information for predicting their oral bioavailability and their suitability as drug leads or promising anti-inflammatory agents.

  11. A hybrid biocatalyst consisting of silver nanoparticle and naphthalenethiol self-assembled monolayer prepared for anchoring glucose oxidase and its use for an enzymatic biofuel cell

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Do-Heyoung; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    A novel hybrid biocatalyst is synthesized by the enzyme composite consisting of silver nanoparticle (AgNP), naphthalene-thiol based couplers (Naph-SH) and glucose oxidase (GOx), which is then bonded with the supporter consisting of polyethyleneimine (PEI) and carbon nanotube (CNT) (CNT/PEI/AgNPs/Naph-SH/GOx) to facilitate glucose oxidation reaction (GOR). Here, the AgNPs play a role in obstructing denaturation of the GOx molecules from the supporter because of Ag-thiol bond, while the PEIs have the AgNPs keep their states without getting ionized by hydrogen peroxide produced during anodic reaction. The Naph-SHs also prevent ionization of the AgNP by forming self-assembled monolayer on their surface. Such roles of each component enable the catalyst to form (i) hydrophobic interaction between the GOx molecules and supporter and (ii) π-conjugated electron pathway between the GOx molecules and AgNP, promoting electron transfer. Catalytic nature of the catalyst is characterized by measuring catalytic activity and performance of enzymatic biofuel cell (EBC) using the catalyst. Regarding the catalytic activity, the catalyst leads to high electron transfer rate constant (9.6 ± 0.4 s-1), low Michaelis-Menten constant (0.51 ± 0.04 mM), and low charge transfer resistance (7.3 Ω cm2) and high amount of immobilized GOx (54.6%), while regarding the EBC performance, high maximum power density (1.46 ± 0.07 mW cm-2) with superior long-term stability result are observed.

  12. The Blood-Brain Barrier Permeability of Lignans and Malabaricones from the Seeds of Myristica fragrans in the MDCK-pHaMDR Cell Monolayer Model

    Directory of Open Access Journals (Sweden)

    Ni Wu

    2016-01-01

    Full Text Available The blood-brain barrier (BBB permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (Papp were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with Papp values at 10−8–10−6 cm/s; those of 8-O-4′-neolignan and tetrahydrofuran-lignan were at 10−6–10−5 cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their Papp values were at 10−8–10−7 cm/s. To 5-methoxy-dehydrodiisoeugenol (2, erythro-2-(4-allyl-2,6-dimethoxyphenoxy-1-(3,4-dimethoxyphenyl-propan-1-ol acetate (6, verrucosin (8, and nectandrin B (9, an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1, myrislignan (7 and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg.

  13. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Qin; Chueh, Chu-Chen; Zhao, Ting; Cheng, Jiaqi; Eslamian, Morteza; Choy, Wallace C H; Jen, Alex K-Y

    2017-10-09

    Entirely low-temperature solution-processed (≤100 °C) planar p-i-n perovskite solar cells (PSCs) offer great potential for commercialization of roll-to-roll fabricated photovoltaic devices. However, the stable inorganic hole-transporting layer (HTL) in PSCs is usually processed at high temperature (200-500 °C), which is far beyond the tolerant temperature (≤150 °C) of roll-to-roll fabrication. In this context, inorganic NiO x nanoparticles (NPs) are an excellent candidate to serve as the HTL in PSCs, owing to their excellent solution processability at room temperature. However, the low-temperature processing condition is usually accompanied with defect formation, which deteriorates the film quality and device efficiency to a large extent. To suppress this setback, we used a series of benzoic acid selfassembled monolayers (SAMs) to passivate the surface defects of the NiO x NPs and found that 4-bromobenzoic acid could effectively play the role of the surface passivation. This SAM layer reduces the trap-assisted recombination, minimizes the energy offset between the NiO x NPs and perovskite, and changes the HTL surface wettability, thus enhancing the perovskite crystallization, resulting in more stable PSCs with enhanced power conversion efficiency (PCE) of 18.4 %, exceeding the control device PCE (15.5 %). Also, we incorporated the above-mentioned SAMs into flexible PSCs (F-PSCs) and achieved one of the highest PCE of 16.2 % on a polyethylene terephthalate (PET) substrate with a remarkable power-per-weight of 26.9 W g -1 . This facile interfacial engineering method offers great potential for the large-scale manufacturing and commercialization of PSCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Functional characterization of S100A8 and S100A9 in altering monolayer permeability of human umbilical endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liqun Wang

    Full Text Available S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs. The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration.

  15. Structural polarity and dynamics of male germline stem cells in the milkweed bug (Oncopeltus fasciatus).

    Science.gov (United States)

    Schmidt, Esther D; Dorn, August

    2004-11-01

    The male germline stem cells (GSCs) of the milkweed bug present an extraordinary structural polarity that is, to our knowledge, unequalled by any other type of stem cells. They consist of a perikaryon and numerous projections arising from the cell pole directed toward the apical cells, the proposed niche of the GSCs. The projections can traverse a considerable distance until their terminals touch the apical cells. From hatching until death, the GSC projections undergo conspicuous changes, the sequence of which has been deduced from observations of all developmental stages. Projection formation starts from lobular cell protrusions showing trabecular ingrowths of the cell membrane. Finger-like projections result from a process of growth and "carving out". The newly formed projections contain mostly only free ribosomes other than a few mitochondria. A stereotyped degradation process commences in the projection terminals: profiles of circular, often concentric, cisternae of rough endoplasmic reticulum appear and turn into myelin bodies, whereas mitochondria become more numerous. The cytoplasm vesiculates, lysosomal bodies appear, and mitochondria become swollen. At the same time, the projection terminals are segregated by transverse ingrowths of the cell membrane. Finally, autophagic vacuoles and myelin bodies fill the segregated terminals, which then rupture. Simultaneously, new projections seem to sprout from the perikaryon of the GSCs. These dynamics, which are not synchronized among the GSCs, indicate that a novel type of signal exchange and transduction between the stem cells and their niche is involved in the regulation of asymmetric versus symmetric division of GSCs.

  16. Domain-specific control of germ cell polarity and migration by multifunction Tre1 GPCR

    Science.gov (United States)

    2017-01-01

    The migration of primordial germ cells (PGCs) from their place of origin to the embryonic gonad is an essential reproductive feature in many animal species. In Drosophila melanogaster, a single G protein–coupled receptor, Trapped in endoderm 1 (Tre1), mediates germ cell polarization at the onset of active migration and directs subsequent migration of PGCs through the midgut primordium. How these different aspects of cell behavior are coordinated through a single receptor is not known. We demonstrate that two highly conserved domains, the E/N/DRY and NPxxY motifs, have overlapping and unique functions in Tre1. The Tre1-NRY domain via G protein signaling is required for reading and responding to guidance and survival cues controlled by the lipid phosphate phosphatases Wunen and Wunen2. In contrast, the Tre1-NPIIY domain has a separate role in Rho1- and E-cadherin–mediated polarization at the initiation stage independent of G protein signaling. We propose that this bifurcation of the Tre1 G protein–coupled receptor signaling response via G protein–dependent and independent branches enables distinct spatiotemporal regulation of germ cell migration. PMID:28687666

  17. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Directory of Open Access Journals (Sweden)

    Christie A Bader

    Full Text Available Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in

  18. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Science.gov (United States)

    Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  19. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    Science.gov (United States)

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  20. Polarized Human Retinal Pigment Epithelium Exhibits Distinct Surface Proteome on Apical and Basal Plasma Membranes.

    Science.gov (United States)

    Khristov, Vladimir; Wan, Qin; Sharma, Ruchi; Lotfi, Mostafa; Maminishkis, Arvydas; Bharti, Kapil

    2018-01-01

    Surface proteins localized on the apical and basal plasma membranes are required for a cell to sense its environment and relay changes in ionic, cytokine, chemokine, and hormone levels to the inside of the cell. In a polarized cell, surface proteins are differentially localized on the apical or the basolateral sides of the cell. The retinal pigment epithelium (RPE) is an example of a polarized cell that performs a variety of functions that are dependent on its polarized state including trafficking of ions, fluid, and metabolites across the RPE monolayer. These functions are absolutely crucial for maintaining the health and integrity of adjacent photoreceptors, the photosensitive cells of the retina. Here we present a series of approaches to identify and validate the polarization state of cultured primary human RPE cells using immunostaining for RPE apical/basolateral markers, polarized cytokine secretion, electrophysiology, fluid transport, phagocytosis, and identification of plasma membrane proteins through cell surface capturing technology. These approaches are currently being used to validate the polarized state and the epithelial phenotype of human induced pluripotent stem (iPS) cell derived RPE cells. This work provides the basis for developing an autologous cell therapy for age-related macular degeneration using patient specific iPS cell derived RPE.

  1. Absence of the Polar Organizing Protein PopZ Results in Reduced and Asymmetric Cell Division in Agrobacterium tumefaciens.

    Science.gov (United States)

    Howell, Matthew; Aliashkevich, Alena; Salisbury, Anne K; Cava, Felipe; Bowman, Grant R; Brown, Pamela J B

    2017-09-01

    Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division. IMPORTANCE A. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies. Copyright © 2017 American Society for Microbiology.

  2. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Michelle W Clark

    Full Text Available Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH, no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5 the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  3. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division.

    Science.gov (United States)

    Anderson-Furgeson, James C; Zupan, John R; Grangeon, Romain; Zambryski, Patricia C

    2016-07-01

    Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several

  4. Polarization Sensitive Measurements of Molecular Reorientation in a Glass Capacitor Cell

    Science.gov (United States)

    Cooper, Nathan; Lawhead, Carlos; Anderson, Josiah; Shiver, Tegan; Prayaga, Chandra; Ujj, Laszlo

    2014-03-01

    It is well known that molecules having a permanent dipole moment tend to orient in the direction of the electric field at room temperature. The reorientation can be probed with the help of linear spectroscopy methods such as fluorescence anisotropy measurements. We have used nonlinear polarization sensitive Raman scattering spectroscopy to quantify the orientation effect of the dipoles. Vibrational spectra of the molecules has been recorded as a function of the external electric field. The polarization changes observed during the measurement are directly linked to the molecular reorientation rearrangement. Spectra has been recorded with a laser spectrometer comprised of a Nd:YAG laser and an optical parametric oscillator and an imaging spectrometer with a CCD detector. In order to make this measurement we have constructed a glass capacitor cell coated in TiO and applied a significant electric field (0-3 kV/mm) to the sample. Our measurements showed that the orientation effect is most significant for liquid crystals as observed previously with non-polarization sensitive CARS spectroscopy.

  5. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis.

    Science.gov (United States)

    Tejos, Ricardo; Sauer, Michael; Vanneste, Steffen; Palacios-Gomez, Miriam; Li, Hongjiang; Heilmann, Mareike; van Wijk, Ringo; Vermeer, Joop E M; Heilmann, Ingo; Munnik, Teun; Friml, Jiří

    2014-05-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2 ] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P 2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain-delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Dishevelled is essential for neural connectivity and planar cell polarity in planarians.

    Science.gov (United States)

    Almuedo-Castillo, Maria; Saló, Emili; Adell, Teresa

    2011-02-15

    The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia.

  7. ImaEdge - a platform for quantitative analysis of the spatiotemporal dynamics of cortical proteins during cell polarization.

    Science.gov (United States)

    Zhang, Zhen; Lim, Yen Wei; Zhao, Peng; Kanchanawong, Pakorn; Motegi, Fumio

    2017-12-15

    Cell polarity involves the compartmentalization of the cell cortex. The establishment of cortical compartments arises from the spatial bias in the activity and concentration of cortical proteins. The mechanistic dissection of cell polarity requires the accurate detection of dynamic changes in cortical proteins, but the fluctuations of cell shape and the inhomogeneous distributions of cortical proteins greatly complicate the quantitative extraction of their global and local changes during cell polarization. To address these problems, we introduce an open-source software package, ImaEdge, which automates the segmentation of the cortex from time-lapse movies, and enables quantitative extraction of cortical protein intensities. We demonstrate that ImaEdge enables efficient and rigorous analysis of the dynamic evolution of cortical PAR proteins during Caenorhabditis elegans embryogenesis. It is also capable of accurate tracking of varying levels of transgene expression and discontinuous signals of the actomyosin cytoskeleton during multiple rounds of cell division. ImaEdge provides a unique resource for quantitative studies of cortical polarization, with the potential for application to many types of polarized cells.This article has an associated First Person interview with the first authors of the paper. © 2017. Published by The Company of Biologists Ltd.

  8. An Instructive Role for C. elegans HMR-1/E-cadherin in Translating Cell Contact Cues into Cortical Polarity

    Science.gov (United States)

    Klompstra, Diana; Anderson, Dorian C.; Yeh, Justin Y.; Zilberman, Yuliya; Nance, Jeremy

    2015-01-01

    Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals. In C. elegans, contacts polarize early embryonic cells by recruiting the RhoGAP PAC-1 to the adjacent cortex, inducing PAR protein asymmetry. Here we show that HMR-1/E-cadherin, which is dispensable for adhesion, functions together with HMP-1/α-catenin, JAC-1/p120 catenin, and the previously uncharacterized linker PICC-1/CCDC85/DIPA to bind PAC-1 and recruit it to contacts. Mislocalizing the HMR-1 intracellular domain to contact-free surfaces draws PAC-1 to these sites and depolarizes cells, demonstrating an instructive role for HMR-1 in polarization. Our findings identify an E-cadherin-mediated pathway that translates cell contacts into cortical polarity by directly recruiting a symmetry-breaking factor to the adjacent cortex. PMID:25938815

  9. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells

    DEFF Research Database (Denmark)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna

    2017-01-01

    -free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K(+), the levels of phosphorylated NCC increased and decreased...... constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion....

  10. In vitro biocompatibility and proliferative effects of polar and non-polar extracts of cucurbita ficifolia on human mesenchymal stem cells.

    Science.gov (United States)

    Aristatile, Balakrishnan; Alshammari, Ghedeir M

    2017-05-01

    Cucurbita ficifolia (C. ficifolia) has been traditionally known for its medicinal properties as an antioxidant, anti-diabetic and anti-inflammatory agent. However, there has been an enduring attention towards the identification of unique method, to isolate the natural components for therapeutic applications. Our study focuses on different polar and non-polar solvents (methanol, hexane and chloroform) to extract the bioactive components from C. ficifolia (pumpkin) and to study the biocompatibility and cytotoxicity effects on human bone marrow-mesenchymal stem cells (hBM-MSCs). The extracts were screened for their effects on cytotoxicity, cell proliferation and cell cycle on the hBM-MSCs cell line. The assays demonstrated that the chloroform extract was highly biocompatible, with less cytotoxic effect, and enhanced the cell proliferation. The methanol extract did not exhibit significant cytotoxicity when compare to the control. Concordantly, the cell cycle analysis confirmed that chloroform extract enhances the proliferation at lower concentrations. On the other hand, hexane extract showed high level of cytotoxicity with apoptotic and necrotic changes in hBM-MSCs. Collectively, our data revealed that chloroform is a good candidate to extract the bioactive components from C. ficifolia. Furthermore, our results suggest that specific gravity and density of the solvent might play a crucial role in the extraction process, which warrants further investigations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Blood-brain barrier permeability and neuroprotective effects of three main alkaloids from the fruits of Euodia rutaecarpa with MDCK-pHaMDR cell monolayer and PC12 cell line.

    Science.gov (United States)

    Zhang, Yi-Nan; Yang, Yan-Fang; Yang, Xiu-Wei

    2018-02-01

    The fruits of Euodia rutaecarpa (Euodiae Fructus, EF), the widely used traditional Chinese medicine, have various central nervous system effects. Alkaloids following as evodiamine (EDM), rutaecarpine (RCP) and dehydroevodiamine (DEDM) are the major substances in EF. The MDCK-pHaMDR cell monolayer model was utilized as a blood-brain barrier (BBB) surrogate model to study their BBB permeability. The transport samples were analyzed by high performance liquid chromatography and the apparent permeability coefficients (P app ) were calculated. EDM and RCP showed high permeability through BBB by passive diffusion, while DEDM showed moderate permeability with efflux mechanism related to P-glycoprotein (P-gp). EDM and RCP could also reduce the efflux of DEDM probably by inhibiting P-gp. The neuroprotective effects of the three alkaloids were then studied on the PC12 cell line injured by 1-methyl-4-phenylpyridinium ion (MPP + ) or hydrogen peroxide (H 2 O 2 ). EDM could significantly reduce MPP + or H 2 O 2 -induced cell injury dose-dependently. RCP could increase the cell viability in MPP + treated group while DEDM showed a protective effect against H 2 O 2 injury. This study predicted the permeability of EDM, RCP and DEDM through BBB and discovered the neuroprotective substance basis of EF as a potential encephalopathy drug. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Villadsen, Rene; Rank, Fritz; Bissell, Mina J.; Petersen, Ole William

    2001-10-04

    The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and {beta}4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal. Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce {alpha}-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumorassociated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be

  13. The three-dimensional cultivation of the carcinoma cell line HepG2 in a perfused chip system leads to a more differentiated phenotype of the cells compared to monolayer culture

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, B; Giselbrecht, S; Weibezahn, K-F; Welle, A; Gottwald, E [Forschungszentrum Karlsruhe, Institute for Biological Interfaces, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: eric.gottwald@ibg.fzk.de

    2008-09-01

    We describe a polymer chip with a grid-like architecture that it is intended for the three-dimensional cultivation of cells with an active nutrient and gas supply. The chip is typically made from polymethyl methacrylate or polycarbonate but can also be manufactured from biodegradable polymers, such as poly(lactic-co-glycolic acid). Different designs of the chip can be realized. In this study, we evaluated a chip with 506 microcontainers of the size of 300 x 300 x 300 {mu}m that are capable of housing up to 6 million cells, and its suitability as a tissue-specific culture system for the carcinoma cell line HepG2 instead of primary liver cells. Related to an earlier study, where we could show the principal suitability of the system for rat primary cells, we here investigated the system's suitability for the human carcinoma cell line HepG2. The carcinoma cells were used in two different types of chip-containing bioreactors. By confocal laser scanning microscopy, we could show that cellular integrity in the chip culture was maintained and that there were no signs of apoptosis as confirmed by the absence of K18 fragmentation. Gene expression analysis of some liver-specific genes revealed a significantly higher expression of the phase II metabolism genes uridine-diphosphate- glucosyl-transferase (UGT1A1) and glutathione-S-transferase (GST{pi}1) as a marker. Therefore, we conclude that by using a three-dimensional instead of a conventional monolayer culture system, hepatocellular carcinoma cells display a phenotype that resembles more closely the tissue of origin.

  14. Ror2 Enhances Polarity and Directional Migration of Primordial Germ Cells

    Science.gov (United States)

    Kissner, Michael D.; Zhou, Xin; Anderson, Kathryn V.

    2011-01-01

    The trafficking of primordial germ cells (PGCs) across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL), whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell. PMID:22216013

  15. Ror2 enhances polarity and directional migration of primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Diana J Laird

    2011-12-01

    Full Text Available The trafficking of primordial germ cells (PGCs across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL, whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell.

  16. Modeling self-organized spatio-temporal patterns of PIP₃ and PTEN during spontaneous cell polarization.

    Science.gov (United States)

    Knoch, Fabian; Tarantola, Marco; Bodenschatz, Eberhard; Rappel, Wouter-Jan

    2014-08-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, phosphatidylinositol (3,4,5)-triphoshpate (PIP3) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules which govern the process of polarization in a self-organized manner. Recent experiments have quantified the spatio-temporal dynamics of these signaling components. Surprisingly, it was found that membrane-bound PTEN can be either in a high or low state, that PIP3 waves were initiated in areas lacking PTEN through an excitable mechanism, and that PIP3 was degraded even though the PTEN concentration remained low. Here we develop a reaction-diffusion model that aims to explain these experimental findings. Our model contains bistable dynamics for PTEN, excitable dynamics for PIP3, and postulates the existence of two species of PTEN with different dephosphorylation rates. We show that our model is able to produce results that are in good qualitative agreement with the experiments, suggesting that our reaction-diffusion model underlies the self-organized spatio-temporal patterns observed in experiments.

  17. TNF-α decreases VEGF secretion in highly polarized RPE cells but increases it in non-polarized RPE cells related to crosstalk between JNK and NF-κB pathways.

    Directory of Open Access Journals (Sweden)

    Hiroto Terasaki

    Full Text Available Asymmetrical secretion of vascular endothelial growth factor (VEGF by retinal pigment epithelial (RPE cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD. We studied the effect of tumor necrosis factor-α (TNF-α on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells.

  18. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  19. MHV-A59 enters polarized murine epithelial cells through the apical surface but is released basolaterally

    NARCIS (Netherlands)

    Rossen, J W; Voorhout, W F; Horzinek, M C; van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. Entry and release of the porcine transmissible gastroenteritis virus (TGEV) is restricted to apical surfaces of polarized epithelial cells, as we have recently shown (J. W. A. Rossen, C. P. J. Bekker, W. F. Voorhout, G. J. A. M. Strous, A.

  20. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    Science.gov (United States)

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  1. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  2. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. (Lawrence Berkeley Lab., CA (United States)); Ojakian, G.K. (State Univ. of New York, Brooklyn (United States))

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  3. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage.

    Science.gov (United States)

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I; Thompson, Barry J

    2016-07-01

    The YAP/TAZ family of transcriptional co-activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB-Hippo/MST-Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST-LATS or Src family kinase activity to modulate YAP/TAZ activity. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  4. Endocytic machinery protein SlaB is dispensable for polarity establishment but necessary for polarity maintenance in hyphal tip cells of Aspergillus nidulans.

    Science.gov (United States)

    Hervás-Aguilar, América; Peñalva, Miguel A

    2010-10-01

    The Aspergillus nidulans endocytic internalization protein SlaB is essential, in agreement with the key role in apical extension attributed to endocytosis. We constructed, by gene replacement, a nitrate-inducible, ammonium-repressible slaB1 allele for conditional SlaB expression. Video microscopy showed that repressed slaB1 cells are able to establish but unable to maintain a stable polarity axis, arresting growth with budding-yeast-like morphology shortly after initially normal germ tube emergence. Using green fluorescent protein (GFP)-tagged secretory v-SNARE SynA, which continuously recycles to the plasma membrane after being efficiently endocytosed, we establish that SlaB is crucial for endocytosis, although it is dispensable for the anterograde traffic of SynA and of the t-SNARE Pep12 to the plasma and vacuolar membrane, respectively. By confocal microscopy, repressed slaB1 germlings show deep plasma membrane invaginations. Ammonium-to-nitrate medium shift experiments demonstrated reversibility of the null polarity maintenance phenotype and correlation of normal apical extension with resumption of SynA endocytosis. In contrast, SlaB downregulation in hyphae that had progressed far beyond germ tube emergence led to marked polarity maintenance defects correlating with deficient SynA endocytosis. Thus, the strict correlation between abolishment of endocytosis and disability of polarity maintenance that we report here supports the view that hyphal growth requires coupling of secretion and endocytosis. However, downregulated slaB1 cells form F-actin clumps containing the actin-binding protein AbpA, and thus F-actin misregulation cannot be completely disregarded as a possible contributor to defective apical extension. Latrunculin B treatment of SlaB-downregulated tips reduced the formation of AbpA clumps without promoting growth and revealed the formation of cortical "comets" of AbpA.

  5. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells

    Science.gov (United States)

    Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110

  6. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine

    Science.gov (United States)

    Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  7. Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles.

    Science.gov (United States)

    Siletti, Kimberly; Tarchini, Basile; Hudspeth, A J

    2017-12-26

    The establishment of planar polarization by mammalian cells necessitates the integration of diverse signaling pathways. In the inner ear, at least two systems regulate the planar polarity of sensory hair bundles. The core planar cell polarity (PCP) proteins coordinate the orientations of hair cells across the epithelial plane. The cell-intrinsic patterning of hair bundles is implemented independently by the G protein complex classically known for orienting the mitotic spindle. Although the primary cilium also participates in each of these pathways, its role and the integration of the two systems are poorly understood. We show that Dishevelled-associating protein with a high frequency of leucine residues (Daple) interacts with PCP and cell-intrinsic signals. Regulated by the cell-intrinsic pathway, Daple is required to maintain the polarized distribution of the core PCP protein Dishevelled and to position the primary cilium at the abneural edge of the apical surface. Our results suggest that the primary cilium or an associated structure influences the domain of cell-intrinsic signals that shape the hair bundle. Daple is therefore essential to orient and pattern sensory hair bundles. Copyright © 2017 the Author(s). Published by PNAS.

  8. Structural polarity and dynamics of male germline stem cells in an insect (milkweed bug Oncopeltus fasciatus).

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2008-01-01

    Knowing the structure opens a door for a better understanding of function because there is no function without structure. Male germline stem cells (GSCs) of the milkweed bug (Oncopeltus fasciatus) exhibit a very extraordinary structure and a very special relationship with their niche, the apical cells. This structural relationship is strikingly different from that known in the fruit fly (Drosophila melanogaster) -- the most successful model system, which allowed deep insights into the signaling interactions between GSCs and niche. The complex structural polarity of male GSCs in the milkweed bug combined with their astonishing dynamics suggest that cell morphology and dynamics are causally related with the most important regulatory processes that take place between GSCs and niche and ensure maintenance, proliferation, and differentiation of GSCs in accordance with the temporal need of mature sperm. The intricate structure of the GSCs of the milkweed bug (and probably of some other insects, i.e., moths) is only accessible by electron microscopy. But, studying singular sections through the apical complex (i.e., GSCs and apical cells) is not sufficient to obtain a full picture of the GSCs; especially, the segregation of projection terminals is not tangible. Only serial sections and their overlay can establish whether membrane ingrowths merely constrict projections or whether a projection terminal is completely cut off. To sequence the GSC dynamics, it is necessary to include juvenile stages, when the processes start and the GSCs occur in small numbers. The fine structural analysis of segregating projection terminals suggests that these terminals undergo autophagocytosis. Autophagosomes can be labeled by markers. We demonstrated acid phosphatase and thiamine pyrophosphatase (TPPase). Both together are thought to identify autophagosomes. Using the appropriate substrate of the enzymes and cerium chloride, the precipitation of electron-dense cerium phosphate granules

  9. High expression of Rac1 is correlated with partial reversed cell polarity and poor prognosis in invasive ductal carcinoma of the breast.

    Science.gov (United States)

    Liu, Bingbing; Xiong, Jianhua; Liu, Guiqiu; Wu, Jing; Wen, Likun; Zhang, Qin; Zhang, Chuanshan

    2017-07-01

    The change of cell polarity is usually associated with invasion and metastasis. Partial reverse cell polarity in IDC-NOS may play a role in lymphatic tumor spread. Rac1 is a kind of polarity related protein. It plays an important role in invasion and metastasis in tumors. We here investigated the expression of Rac1 and partial reverse cell polarity status in breast cancer and evaluated their value for prognosis in breast cancer. The association of the expression of Rac1 and MUC-1 with clinicopathological parameters and prognostic significance was evaluated in 162 cases of IDC-NOS paraffin-embedded tissues by immunohistochemical method. The Rac1 messenger RNA expression was measured by real-time polymerase chain reaction in 30 breast cancer patients, which was divided into two groups of partial reverse cell polarity and no partial reverse cell polarity. We found that lymph node metastasis of partial reverse cell polarity patients was higher than no partial reverse cell polarity patients (Z = -4.030, p = 0.000). Rac1 was upregulated in partial reverse cell polarity group than no partial reverse cell polarity group (Z = -3.164, p = 0.002), and there was correlationship between the expression of Rac1 and partial reverse cell polarity status (r s  = 0.249, p = 0.001). The level of Rac1 messenger RNA expression in partial reverse cell polarity group was significantly higher compared to no partial reverse cell polarity group (t = -2.527, p = 0.017). Overexpression of Rac1 and partial reverse cell polarity correlates with poor prognosis of IDC-NOS patients (p = 0.011). Partial reverse cell polarity and lymph node metastasis remained as independent predictors for poor disease-free survival of IDC-NOS (p = 0.023, p = 0.046). Our study suggests that partial reverse cell polarity may lead to poor prognosis of breast cancer. Overexpression of Rac1 may lead to polarity change in IDC-NOS of the breast. Therefore, Rac1 could be a

  10. Melatonin modulates microfilament phenotypes in epithelial cells, implications for adhesion and inhibition of cancer cell migration

    OpenAIRE

    Benítez-King, Gloria; Soto-Vega, Elena; Ramírez-Rodriguez, Gerardo

    2009-01-01

    Cell migration and adhesion are cytoskeleton- dependent functions that play a key role in epithelial physiology. Specialized epithelial cells in water transport have specific microfilament rearrangements that make these cells adopt a polyhedral shape, forming a sealed monolayer which functions as permeability barrier. Also, specific polarized microfilament phenotypes are formed at the front and the rear of migratory epithelial cells. In pathological processes such a...

  11. THE CONTENTS OF NEUTRAL AND POLAR LIPIDS IN CLOSTRIDIA CELLS UNDER CULTIVATION IN THE PRESENCE OF BUTANOL

    Directory of Open Access Journals (Sweden)

    S. I. Voychuk

    2017-02-01

    Full Text Available The aim of the study was to evaluate changes in the portion of polar and neutral lipids in the cells of Clostridium during their cultivation in the presence of butanol. Four natural isolates of Clostridium genus were studied with flow cytometry approaches. Under the optimal culture conditions, the polar lipids prevailed over neutral ones in bacterial cells; the content of neutral lipids doubled in spores of these microorganisms, while the content of polar ones was reduced. Strains No 1 and No 2 were able to grow at 1% butanol in the medium, and the strain No 4 was at 1.5%. When cultivated in the presence of different concentrations of butanol, the bacterial strains did not differ in such cytomorphological features as granularity and cell size. The quantitative content of polar and neutral lipids in the presence of butanol varied depending on the content of butanol in the medium, however this effect had a strain-specific character and did not show a correlation with the resistance of these bacteria to butanol. So, the content of polar and neutral lipids varied depending on butanol content in the medium. However this effect was strain-specific independently of resistance of these bacteria to butanol. The use of bacterial biomass as a source of lipids for the production of biofuels requires further optimization of the process to increase the content of the neutral lipid fraction in bacterial cells.

  12. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model.

    Science.gov (United States)

    Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun

    2015-01-01

    Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10.

  13. Priming dendritic cells for Th2 polarization: lessons learned from helminths and implications for metabolic disorders

    Directory of Open Access Journals (Sweden)

    Leonie eHussaarts

    2014-10-01

    Full Text Available Nearly one quarter of the world’s population is infected with helminth parasites. A common feature of helminth infections is the manifestation of a type 2 immune response, characterized by T helper 2 (Th2 cells that mediate anti-helminth immunity. In addition, recent literature described a close association between type 2 immune responses and wound repair, suggesting that a Th2 response may concurrently mediate repair of parasite-induced damage. The molecular mechanisms that govern Th2 responses are poorly understood, although it is clear that dendritic cells (DCs, which are the most efficient antigen-presenting cells in the immune system, play a central role. Here, we review the molecular mechanisms by which DCs polarize Th2 cells, examining both helminth antigens and helminth-mediated tissue damage as Th2-inducing triggers. Finally, we discuss the implication of these findings in the context of metabolic disorders, as recent literature indicates that various aspects of the Th2-associated inflammatory response contribute to metabolic homeostasis.

  14. Epidermal wound repair is regulated by the planar cell polarity signaling pathway

    Science.gov (United States)

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B.; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A.; Murdoch, Jennifer N.; Humbert, Patrick O.; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M.; Jane, Stephen M.

    2010-01-01

    SUMMARY The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3−/− mice, we identified RhoGEF19, a homologue of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerisation, cellular polarity and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling, and broadly implicate this pathway in epidermal repair. PMID:20643356

  15. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2011-01-01

    Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as "power overshoot". Linear sweep voltammetry (LSV, 1 mV s- 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems. © 2010 Elsevier B.V. All rights reserved.

  16. The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells

    Science.gov (United States)

    Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.

    2007-02-01

    Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60

  17. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  18. Luminescent Organic Semiconducting Langmuir Monolayers.

    Science.gov (United States)

    Agina, Elena V; Mannanov, Artur A; Sizov, Alexey S; Vechter, Olga; Borshchev, Oleg V; Bakirov, Artem V; Shcherbina, Maxim A; Chvalun, Sergei N; Konstantinov, Vladislav G; Bruevich, Vladimir V; Kozlov, Oleg V; Pshenichnikov, Maxim S; Paraschuk, Dmitry Yu; Ponomarenko, Sergei A

    2017-05-31

    In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene-phenylene dimer D2-Und-PTTP-TMS (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices.

  19. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    2010-02-01

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  20. Electronic and Magnetic Properties of Rare-Earth Metals Doped ZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan

    2015-01-01

    Full Text Available The structural, electronic, and magnetic properties of rare-earth metals doped ZnO monolayer have been investigated using the first-principles calculations. The induced spin polarization is confirmed for Ce, Eu, Gd, and Dy dopings while the induced spin polarization is negligible for Y doping. The localized f states of rare-earth atoms respond to the introduction of a magnetic moment. ZnO monolayer undergoes transition from semiconductor to metal in the presence of Y, Ce, Gd, and Dy doping. More interestingly, Eu doped ZnO monolayer exhibits half-metallic behavior. Our result demonstrates that the RE-doping is an efficient route to modify the magnetic and electronic properties in ZnO monolayer.

  1. Absence of transepithelial anion exchange by rabbit OMCD: Evidence against reversal of cell polarity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Matsuhiko; Schuster, V.L.; Stokes, J.B. (Univ. of Iowa College of Medicine, Iowa City (USA))

    1988-08-01

    In the rabbit cortical collecting duct (CCD), Cl tracer crosses the epithelium predominantly via an anion exchange system that operates in either a Cl-Cl or Cl-HCO{sub 3} exchange mode. In the present study, the authors used the {sup 36}Cl lumen-to-bath rate coefficient (K{sub Cl}, nm/s), a sensitive measurement of CCD transepithelial anion transport, to investigate the nature of Cl transport in the medullary collecting duct dissected from inner stripe, outer medulla (OMCD). The K{sub Cl} in OMCD perfused and bathed in HCO{sub 3}-Ringer solution was low and similar to that value observed in the CCD when anion exchange is inhibited and Cl permeates the epithelium by diffusion. To test the hypothesis that metabolic alkalosis could reverse the polarity of intercalated cells and thus induce an apical Cl-HCO{sub 3} exchanger in H{sup +}-secreting OMCD cells, they measured K{sub Cl} in OMCD from rabbits make alkalotic by deoxycorticosterone and furosemide. Although the base-line K{sub Cl} was slightly higher than in OMCD from control rabbits, the value was still far lower than the K{sub Cl} under comparable conditions in CCD. They conclude (1) Cl transport across the MCD by anion exchange is immeasurably low or nonexistent; (2) unlike the CCD, Cl transport in OMCD is not responsive to cAMP; and (3) metabolic alkalosis does not induce an apical anion exchanger in OMCD, i.e., does not cause epithelial polarity reversal.

  2. Monolayers and mixed-layers on copper towards corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Sinapi, F. [Fonds pour la Formation a la Recherche dans l' Industrie et dans l' Agriculture, Rue d' Egmont 5, B-1000 Brussels (Belgium); Julien, S.; Auguste, D.; Hevesi, L.; Delhalle, J. [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur, FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium); Mekhalif, Z. [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur, FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: zineb.mekhalif@fundp.ac.be

    2008-05-01

    In order to improve the protection abilities of (3-mercaptopropy)trimethoxysilane (MPTS) self-assembled monolayers on copper surfaces, mixed monolayers have been formed successfully by successive immersions in MPTS and in n-dodecanethiol (DT). A newly synthesised molecule, (11-mercaptoundecyl)trimethoxysilane (MUTS), has also been employed to form a thicker organic film on copper surfaces and, thereby, enhance the inhibitory action of the coating. The grafting has been confirmed by X-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) and water contact angle. The protective efficiency of each protective organic film has been evidenced by cyclic voltammetry (CV) and polarization curve measurements (CP). It was shown that the MUTS and unhydrolyzed MPTS/DT films exhibited significant corrosion protection properties.

  3. Polarizing T and B cell responses by APC-targeted subunit vaccines.

    Directory of Open Access Journals (Sweden)

    Gunnveig eGrødeland

    2015-07-01

    Full Text Available Current influenza vaccines mostly aim at the induction of specific neutralizing antibodies. While antibodies are important for protection against a particular virus strain, T cells can recognize epitopes that will offer broader protection against influenza. We have previously developed a DNA vaccine format by which protein antigens can be targeted specifically to receptors on antigen presenting cells (APCs. The DNA-encoded vaccine proteins are homodimers, each chain consisting of a targeting unit, a dimerization unit, and an antigen. The strategy of targeting antigen to APCs greatly enhances immune responses as compared to non-targeted controls. Furthermore, targeting of antigen to different receptors on APCs can polarize the immune response to different arms of immunity. Here, we discuss how targeting of hemagglutinin (HA to MHC class II molecules increases Th2 and IgG1 antibody responses, whereas targeting to chemokine receptors XCR1 or CCR1/3/5 increases Th1 and IgG2a responses, in addition to CD8+ T cell responses. We also discuss these results in relation to work published by others on APC-targeting. Differential targeting of APC surface molecules may allow the induction of tailor-made phenotypes of adaptive immune responses that are optimal for protection against various infectious agents, including influenza virus.

  4. Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish.

    Science.gov (United States)

    López-Schier, Hernán; Starr, Catherine J; Kappler, James A; Kollmar, Richard; Hudspeth, A J

    2004-09-01

    The proper orientation of mechanosensory hair cells along the lateral-line organ of a fish or amphibian is essential for the animal's ability to sense directional water movements. Within the sensory epithelium, hair cells are polarized in a stereotyped manner, but the mechanisms that control their alignment relative to the body axes are unknown. We have found, however, that neuromasts can be oriented either parallel or perpendicular to the anteroposterior body axis. By characterizing the strauss mutant zebrafish line and by tracking labeled cells, we have demonstrated that neuromasts of these two orientations originate from, respectively, the first and second primordia. Furthermore, altering the migratory pathway of a primordium reorients a neuromast's axis of planar polarity. We propose that the global orientation of hair cells relative to the body axes is established through an interaction between directional movement by primordial cells and the timing of neuromast maturation.

  5. Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis.

    Science.gov (United States)

    Li, Lin; Saga, Naotsune; Mikami, Koji

    2009-01-01

    The asymmetrical distribution of F-actin directed by cell polarity has been observed during the migration of monospores from the red alga Porphyra yezoensis. The significance of Ca2+ influx and phosphoinositide signalling during the formation of cell polarity in migrating monospores was analysed pharmacologically. The results indicate that the inhibition of the establishment of cell polarity, as judged by the ability of F-actin to localize asymmetrically, cell wall synthesis, and development into germlings, occurred when monospores were treated with inhibitors of the Ca2+ permeable channel, phospholipase C (PLC), diacylglycerol kinase, and inositol-1,4,5-trisphosphate receptor. Moreover, it was also found that light triggered the establishment of cell polarity via photosynthetic activity but not its direction, indicating that the Ca2+ influx and PLC activation required for the establishment of cell polarity are light dependent. By contrast, inhibition of phospholipase D (PLD) prevented the migration of monospores but not the asymmetrical localization of F-actin. Taken together, these findings suggest that there is functional diversity between the PLC and PLD signalling systems in terms of the formation of cell polarity; the former being critical for the light-dependent establishment of cell polarity and the latter playing a role in the maintenance of established cell polarity.

  6. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  7. Alpha-type-1 polarized dendritic cells: A novel immunization tool with optimized CTL-inducing activity

    NARCIS (Netherlands)

    Mailliard, Robbie B.; Wankowicz-Kalinska, Anna; Cai, Quan; Wesa, Amy; Hilkens, Catharien M.; Kapsenberg, Martien L.; Kirkwood, John M.; Storkus, Walter J.; Kalinski, Pawel

    2004-01-01

    Using the principle of functional polarization of dendritic cells (DCs), we have developed a novel protocol to generate human DCs combining the three features critical for the induction of type-1 immunity: (a) fully mature status; (b) responsiveness to secondary lymphoid organ chemokines; and (c)

  8. Regulatory Cells and Immunosuppressive Cytokines: Parasite-Derived Factors Induce Immune Polarization

    Directory of Open Access Journals (Sweden)

    Ali Ouaissi

    2007-01-01

    Full Text Available Parasitic infections are prevalent in both tropical and subtropical areas. Most of the affected and/or exposed populations are living in developing countries where control measures are lacking or inadequately applied. Although significant progress has been made in our understanding of the immune response to parasites, no definitive step has yet been successfully done in terms of operational vaccines against parasitic diseases. Evidence accumulated during the past few years suggests that the pathology observed during parasitic infections is in part due to deregulation of normal components of the immune system, mainly cytokines, antibodies, and immune effector cell populations. A large number of studies that illustrate how parasites can modify the host immune system for their own benefit have been reported in both metazoan and protozoan parasites. The first line of defense against foreign organisms is barrier tissue such as skin, humoral factors, for instance the complement system and pentraxin, which upon activation of the complement cascade facilitate pathogen recognition by cells of innate immunity such as macrophages and DC. However, all the major groups of parasites studied have been shown to contain and/or to release factors, which interfere with both arms of the host immune system. Even some astonishing observations relate to the production by some parasites of orthologues of mammalian cytokines. Furthermore, chronic parasitic infections have led to the immunosuppressive environment that correlates with increased levels of myeloid and T suppressor cells that may limit the success of immunotherapeutic strategies based on vaccination. This minireview briefly analyzes some of the current data related to the regulatory cells and molecules derived from parasites that affect cellular function and contribute to the polarization of the immune response of the host. Special attention is given to some of the data from our laboratory illustrating the

  9. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers

    Directory of Open Access Journals (Sweden)

    Hu CS

    2012-09-01

    Full Text Available Chieh-shen Hu,1 Chiao-hsi Chiang,2 Po-da Hong,1,4,* Ming-kung Yeh1–3,*1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology; 2School of Pharmacy, National Defence Medical Center; 3Bureau of Pharmaceutical Affairs, Ministry of National Defence Medical Affairs Bureau; 4Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan, Republic of China*These authors contributed equally to this workBackground and methods: Chondroitin sulfate-chitosan (ChS-CS nanoparticles and positively and negatively charged fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA-loaded ChS-CS nanoparticles were prepared and characterized. The properties of ChS-CS nanoparticles, including cellular uptake, cytotoxicity, and transepithelial transport, as well as findings on field emission-scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were evaluated in human epithelial colorectal adenocarcinoma (Caco-2 fibroblasts. ChS-CS nanoparticles with a mean particle size of 250 nm and zeta potentials ranging from –30 to +18 mV were prepared using an ionic gelation method.Results: Standard cell viability assays demonstrated that cells incubated with ChS-CS and FITC-BSA-loaded ChS-CS nanoparticles remained more than 95% viable at particle concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was confirmed by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded ChS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles.Conclusion: The ChS-CS nanoparticles fabricated in this study were

  10. Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Elčkner, Miroslav; Morris, David; Zažímalová, Eva

    2002-01-01

    Roč. 216, - (2002), s. 302-308 ISSN 0032-0935 R&D Projects: GA ČR GA206/98/1510 Grant - others:INCO Copernicus(BE) IC15-CT98-0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : Auxin carrier * 1,N,Naphthylphthalamic acid * Nicotiana ( cell culture) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.960, year: 2002

  11. Lactobacilli Activate Human Dendritic Cells that Skew T Cells Toward T Helper 1 Polarization

    Science.gov (United States)

    2005-01-06

    as Klebsiella pneumoniae (21–23). To determine whether this difference might vary among species, live L . gasseri, L . johnsonii, and L . reuteri cells...or L . reuteri plus E. coli LPS for 2 d. Under these conditions, LPS promoted the production of IL-10 only in 11% of MDCs, compared with the high (60...induction of IL-10 with E. coli LPS in the absence of L . reuteri (Fig. 2 B and C). Lethally-irradiated Lactobacillus species (10 gml) also

  12. DESENVOLVIMENTO DE FOLÍCULOS PRÉ-ANTRAIS BOVINOS IN VITRO EM MONOCAMADA DE CÉLULAS OVARIANAS IN VITRO DEVELOPMENT OF BOVINE PREANTRAL FOLLICLES IN MONOLAYER OF OVARIAN CELLS

    Directory of Open Access Journals (Sweden)

    Luís Fabiano Santos da Costa

    2001-04-01

    Full Text Available O presente trabalho teve como objetivos determinar a influência de células ovarianas no desenvolvimento in vitro de folículos pré-antrais, avaliar a viabilidade das células ovarianas em monocamada e a influência do soro na manutenção de folículos pré-antrais in vitro. Folículos pré-antrais (FPs e células ovarianas foram isolados de ovários de fetos bovinos, com idade entre 6 e 8 meses de gestação, oriundos de matadouro. Células ovarianas em monocamada foram cultivadas em meio TCM-199, e a viabilidade celular, após o cultivo na presença ou ausência de FSH, foi determinada com o corante vital azul de tripan. FPs foram distribuidos em quatro tratamentos e cultivados em TCM-199 modificado, contendo soro de novilho castrado (SNC, SNC em monocamada de células ovarianas (MCO, MCO com FSH ou meio definido com álcool polivinílico (PVA como macromolécula. A viabilidade celular não foi afetada em conseqüência da presença ou ausência de FSH. No entanto, houve um incremento significativo no tamanho dos FPs cultivados na presença de SNC, MCO e FSH (PThe aim of the present work was to determine the influence of ovarian cells in the in vitro development of preantral follicles (PF. The viability of monolayer ovarian cells and the effect of the serum in the survive of in vitro PF was also investigated. Ovarian cells and PF were isolated from ovaries of bovine fetus between 6 and 8 months of pregnancy, obtained in a slaughterhouse. Monolayer of ovarian cells were cultured in a modified TCM-199 in the presence and absence of FSH and its viability after incubation was determined with Trypan Blue. PFs were divided in four different treatments, cultured in modified TCM-199, containing serum of castrated steer (SCS, SCS in monolayer of ovarian cells (MOC, MOC with FSH or a defined medium with polyvinyl alcohol (PVA as macromolecule. The cellular viability was not affected by the presence or absence of FSH. However, PFs had a significant

  13. A Steering Model of Endothelial Sheet Migration Recapitulates Monolayer Integrity and Directed Collective Migration ▿ †

    Science.gov (United States)

    Vitorino, Philip; Hammer, Mark; Kim, Jongmin; Meyer, Tobias

    2011-01-01

    Cells in endothelial cell monolayers maintain a tight barrier between blood and tissue, but it is not well understood how endothelial cells move within monolayers, pass each other, migrate when stimulated with growth factor, and also retain monolayer integrity. Here, we develop a quantitative steering model based on functional classes of genes identified previously in a small interfering RNA (siRNA) screen to explain how cells locally coordinate their movement to maintain monolayer integrity and collectively migrate in response to growth factor. In the model, cells autonomously migrate within the monolayer and turn in response to mechanical cues resulting from adhesive, drag, repulsive, and directed steering interactions with neighboring cells. We show that lateral-drag steering explains the local coordination of cell movement and the maintenance of monolayer integrity by allowing closure of small lesions. We further demonstrate that directional steering of cells at monolayer boundaries, combined with adhesive steering of cells behind, can explain growth factor-triggered collective migration into open space. Together, this model provides a mechanistic explanation for the observed genetic modularity and a conceptual framework for how cells can dynamically maintain sheet integrity and undergo collective directed migration. PMID:20974808

  14. Ultrastructural investigations on the effect of X-radiation and quinacrine (Atebrin) of chloroquine (Resochin) - alone and in combination - on cells of a Harding-Passey melanoma in monolayer culture

    Energy Technology Data Exchange (ETDEWEB)

    Pfab, R.; Schachtschabel, D.O.; Kern, H.F.

    1985-11-01

    Monolayer cells of a Harding-Passey melanoma (HPM 73 cells) which were irradiated during the phase of exponential growth with an X-ray dose of 4 Gy or 8 Gy did not show any ultrastructural changes four days after 4 Gy, whereas cells irradiated with 8 Gy showed slight damages such as swollen mitochondria and vacuoles. As shown by the electron microscope, a sole addition of a sublethal quantity (6 x 10/sup -6/ M) of quinacrine (Atebrin) or chloroquine (Resochin) did not lead to significant cell modifications. Those melanoma cells which were pre-irradiated with 8 Gy and then incubated during four days with 6 x 10/sup -6/ M of quinacrine (Atebrin) or 6 x 10/sup -6/ M of chloroquine (Resochin) showed severe damages. There was an increased rate of vacuoles and segregational structures in cytoplasm. The mitochondria were increased and swollen and the cellular surfaces had less microvilli. However, microtubules and microfilaments seemed more distinct. The melanin concentration increased under this treatment. The cell nuclei were increased in volume and seemed to be rather void of chromatin. These reactions of cells on quinacrine (Atebrin) and chloroquine (Resochin) are explained by the known inhibition effect exerted by these substances on DNA synthesis, especially as far as the processes of DNA reparation are concerned. The changes of the microtubule-microfilament system could be due to a correlation with the increase of digestive intracellular processes connected with the catabolism of radiation-damaged structures.

  15. The influence of non polar and polar molecules in mouse motile cells membranes and pure lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Francisco J Sierra-Valdez

    Full Text Available We report an experimental study of mouse sperm motility that shows chief aspects characteristic of neurons: the anesthetic (produced by tetracaine and excitatory (produced by either caffeine or calcium effects and their antagonic action. While tetracaine inhibits sperm motility and caffeine has an excitatory action, the combination of these two substances balance the effects, producing a motility quite similar to that of control cells. We also study the effects of these agents (anesthetic and excitatory on the melting points of pure lipid liposomes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC and dipalmitoyl phosphatidic acid (DPPA. Tetracaine induces a large fluidization of the membrane, shifting the liposomes melting transition temperature to much lower values. The effect of caffeine is null, but its addition to tetracaine-doped liposomes greatly screen the fluidization effect. A high calcium concentration stiffens pure lipid membranes and strongly reduces the effect of tetracaine. Molecular Dynamics Simulations are performed to further understand our experimental findings at the molecular level. We find a strong correlation between the effect of antagonic molecules that could explain how the mechanical properties suitable for normal cell functioning are affected and recovered.

  16. Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2

    Science.gov (United States)

    vandenBerg, Alysia L.; Sassoon, David A.

    2009-01-01

    Summary Wnt signaling effectors direct the development and adult remodeling of the female reproductive tract (FRT); however, the role of non-canonical Wnt signaling has not been explored in this tissue. The non-canonical Wnt signaling protein van gogh-like 2 is mutated in loop-tail (Lp) mutant mice (Vangl2Lp), which display defects in multiple tissues. We find that Vangl2Lp mutant uterine epithelium displays altered cell polarity, concommitant with changes in cytoskeletal actin and scribble (scribbled, Scrb1) localization. The postnatal mutant phenotype is an exacerbation of that seen at birth, exhibiting more smooth muscle and reduced stromal mesenchyme. These data suggest that early changes in cell polarity have lasting consequences for FRT development. Furthermore, Vangl2 is required to restrict Scrb1 protein to the basolateral epithelial membrane in the neonatal uterus, and an accumulation of fibrillar-like structures observed by electron microscopy in Vangl2Lp mutant epithelium suggests that mislocalization of Scrb1 in mutants alters the composition of the apical face of the epithelium. Heterozygous and homozygous Vangl2Lp mutant postnatal tissues exhibit similar phenotypes and polarity defects and display a 50% reduction in Wnt7a levels, suggesting that the Vangl2Lp mutation acts dominantly in the FRT. These studies demonstrate that the establishment and maintenance of cell polarity through non-canonical Wnt signaling are required for FRT development. PMID:19363157

  17. Influence of serum extraction from the culture medium and of sublethal X-ray irradiation upon microvilli and invaginations of the membrane of Ehrlich ascites tumor cells in monolayer culture

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, G.; Pfab, R.; Hess, F.; Schachtschabel, D.O.

    1984-09-01

    In order to find out modifications of microvilli and invaginations, the cellular surfaces of Ehrlich ascites tumor cells in monolayer culture (basal medium of Eagle + 10% fetal calf serum) were investigated with the aid of electron-microscopic cross-sections. The tumor cells had been cultured without serum 24 hours prior to investigation or irradiated with 2 Gy. Morphometric evaluation after cell culture in a serum-free medium showed a reduced number of microvilli and a diminution of sections of microvilli. As already described before, a reduction of cell proliferation, of the microtubule-microfilament system, and of the endocytosis activity occurs under these serum-free conditions. The number of invaginations (related to a constant membrane part) was reduced by nearly 50% after serum extraction. Similarly to serum extraction, sublethal X-ray irradiation reduced the sections of microvilli, whereas the number of microvilli increased slightly. Contrary to the effect of serum extraction, the irradiated cells showed twice as many invaginations as the non-irradiated control cells. These differences in the surface structures are interpreted as a result of modified growth stimulations (+- serum) and radiogenic reparation processes.

  18. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Science.gov (United States)

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti

  19. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Directory of Open Access Journals (Sweden)

    Carlos Barcia

    2008-08-01

    Full Text Available Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown.Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes.Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV

  20. Cigarette smoke extract-treated mast cells promote alveolar macrophage infiltration and polarization in experimental chronic obstructive pulmonary disease.

    Science.gov (United States)

    Li, Hong; Yang, Tian; Ning, Qian; Li, Feiyan; Chen, Tianjun; Yao, Yan; Sun, Zhongmin

    2015-01-01

    Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) and may modulate the immune response of exposed individuals. Mast cell function can be altered by cigarette smoking, but the role of smoking in COPD remains poorly understood. The current study aimed to explore the role of cigarette smoke extract (CSE)-treated mast cells in COPD pathogenesis. Cytokine and chemokine expression as well as degranulation of bone marrow-derived mast cells (BMMCs) were detected in cells exposed to immunoglobulin E (IgE) and various doses of CSE. Adoptive transfer of CSE-treated BMMCs into C57BL/6J mice was performed, and macrophage infiltration and polarization were evaluated by fluorescence-activated cell sorting (FACS). Furthermore, a coculture system of BMMCs and macrophages was established to examine macrophage phenotype transition. The role of protease serine member S31 (Prss31) was also investigated in the co-culture system and in COPD mice. CSE exposure suppressed cytokine expression and degranulation in BMMCs, but promoted the expressions of chemokines and Prss31. Adoptive transfer of CSE-treated BMMCs induced macrophage infiltration and M2 polarization in the mouse lung. Moreover, CSE-treated BMMCs triggered macrophage M2 polarization via Prss31 secretion. Recombinant Prss31 was shown to activate interleukin (IL)-13/IL-13Rα/Signal transducers and activators of transcription (Stat) 6 signaling in macrophages. Additionally, a positive correlation was found between Prss31 expression and the number of M2 macrophages in COPD mice. In conclusion, CSE-treated mast cells may induce macrophage infiltration and M2 polarization via Prss31 expression, and potentially contribute to COPD progression.

  1. A link between planar polarity and staircase-like bundle architecture in hair cells.

    Science.gov (United States)

    Tarchini, Basile; Tadenev, Abigail L D; Devanney, Nicholas; Cayouette, Michel

    2016-11-01

    Sensory perception in the inner ear relies on the hair bundle, the highly polarized brush of movement detectors that crowns hair cells. We previously showed that, in the mouse cochlea, the edge of the forming bundle is defined by the 'bare zone', a microvilli-free sub-region of apical membrane specified by the Insc-LGN-Gαi protein complex. We now report that LGN and Gαi also occupy the very tip of stereocilia that directly abut the bare zone. We demonstrate that LGN and Gαi are both essential for promoting the elongation and differential identity of stereocilia across rows. Interestingly, we also reveal that total LGN-Gαi protein amounts are actively balanced between the bare zone and stereocilia tips, suggesting that early planar asymmetry of protein enrichment at the bare zone confers adjacent stereocilia their tallest identity. We propose that LGN and Gαi participate in a long-inferred signal that originates outside the bundle to model its staircase-like architecture, a property that is essential for direction sensitivity to mechanical deflection and hearing. © 2016. Published by The Company of Biologists Ltd.

  2. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis[W

    Science.gov (United States)

    Tejos, Ricardo; Sauer, Michael; Vanneste, Steffen; Palacios-Gomez, Miriam; Li, Hongjiang; Heilmann, Mareike; van Wijk, Ringo; Vermeer, Joop E.M.; Heilmann, Ingo; Munnik, Teun; Friml, Jiří

    2014-01-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain–delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning. PMID:24876254

  3. Overcrowding drives the unjamming transition of gap-free monolayers

    Science.gov (United States)

    Lan, Ganhui; Su, Tao

    Collective cell motility plays central roles in various biological phenomena such as wound healing, cancer metastasis and embryogenesis. These are demonstrations of the unjamming transition in biology. However, contradictory to the typical density-driven jamming in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowding environments. Here, we investigate monolayers' collective behaviors when cell number changes under the gap-free constraint. We report that overcrowding can unjam gap-free monolayers through increasing isotropic compression. We show that the transition boundary is determined by the isotropic compression and the cell-cell adhesion. Furthermore, we construct the free energy landscape for the T1 topological transition during monolayer rearrangement, and discover that the landscape evolves from single-barrier W shape to double-barrier M shape during the unjamming process. We also discover a distributed-to-disordered morphological transition of cells' geometry, coinciding with the unjamming transition. Our analyses reveal that the overcrowding and adhesion induced unjamming reflects the mechanical yielding of the highly deformable monolayer, suggesting an alternative mechanism that cells may robustly gain collective mobility through proliferation in confined environments, which differs from those caused by loosing up a packed particulate assembly. This work is supported by the GWU College Facilitating Funds.

  4. Non-histone nuclear protein HMGN2 differently regulates the urothelium barrier function by altering expression of antimicrobial peptides and tight junction protein genes in UPEC J96-infected bladder epithelial cell monolayer.

    Science.gov (United States)

    Tian, Hanwen; Miao, Junming; Zhang, Fumei; Xiong, Feng; Zhu, Feimei; Li, Jinyu; Wang, Xiaoying; Chen, Shanzhe; Chen, Junli; Huang, Ning; Wang, Yi

    2018-01-01

    The urinary tract is vulnerable to frequent challenges from environmental microflora. Uropathogenic Escherichia coli (UPEC) makes a major contribution to urinary tract infection (UTI). Previous studies have characterized positive roles of non-histone nuclear protein HMGN2 in lung epithelial innate immune response. In the study presented here, we found HMGN2 expression was up-regulated in UPEC J96-infected urothelium. Surprisingly, over-expression of HMGN2 promoted disruption of BECs 5637 cells' intercellular junctions by down-regulating tight junction (TJs) components' expression and physical structure under J96 infection. Further investigation showed that BECs 5637 monolayer, in which HMGN2 was over-expressed, had significantly increased permeability to J96. Our study systemically explored the regulatory roles of HMGN2 in BECs barrier function during UPEC infection and suggested different modulations of intracellular and paracellular routes through which UPEC invades the bladder epithelium.

  5. Intracellular photoreceptive site for blue light-induced cell division in protonemata of the fern Adiantum [Pteridophyta]: Further analyses by polarized light irradiation and cell centrifugation

    International Nuclear Information System (INIS)

    Kadota, A.; Fushimi, Y.; Wada, M.

    1986-01-01

    The intracellular localization of the photoreceptive site for blue light-induced cell division in single-celled protonemata of Adiantum capillus-veneris L. was investigated using polarized light irradiation and protonemal cell centrifugation. The response to irradiation with polarized blue light showed no dependence on the direction of light polarization. However, centrifugation of the protonemata followed by microbeam irradiation showed that the site of blue light perception could be displaced together with the nucleus. Centrifugal treatment changed the distribution of intracellular organelles at the time of light exposure and basipetally displaced the nucleus about 90μm. This treatment had no effect on the induction of cell division with blue light if the protonemata were centrifuged again acropetally after the light treatment. Microbeam (30×30 μm2) irradiation with blue light of the apical 45–75 βm region, the receptive site of blue light in non-centrifuged cell, did not induce cell division. However, cell division was induced by irradiation of the nucleus-containing region, indicating that the photoreceptive site was displaced together with the nucleus by the centrifugation. These results suggest that the blue light receptor regulating cell division in Adiantum protonemata is not likely to be located on the plasma membrane. (author)

  6. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Cohen, David; Fernandez, Dawn; Hodgson, Louis; van Ijzendoorn, Sven C D; Müsch, Anne

    2013-10-28

    Columnar epithelia establish their luminal domains and their mitotic spindles parallel to the basal surface and undergo symmetric cell divisions in which the cleavage furrow bisects the apical domain. Hepatocyte lumina interrupt the lateral domain of neighboring cells perpendicular to two basal domains and their cleavage furrow rarely bifurcates the luminal domains. We determine that the serine/threonine kinase Par1b defines lumen position in concert with the position of the astral microtubule anchoring complex LGN-NuMA to yield the distinct epithelial division phenotypes. Par1b signaling via the extracellular matrix (ECM) in polarizing cells determined RhoA/Rho-kinase activity at cell-cell contact sites. Columnar MDCK and Par1b-depleted hepatocytic HepG2 cells featured high RhoA activity that correlated with robust LGN-NuMA recruitment to the metaphase cortex, spindle alignment with the substratum, and columnar organization. Reduced RhoA activity at the metaphase cortex in HepG2 cells and Par1b-overexpressing MDCK cells correlated with a single or no LGN-NuMA crescent, tilted spindles, and the development of lateral lumen polarity.

  7. Rab17 and rab18, small GTPases with specificity for polarized epithelial cells: genetic mapping in the mouse.

    Science.gov (United States)

    McMurtrie, E B; Barbosa, M D; Zerial, M; Kingsmore, S F

    1997-11-01

    The Rab subfamily of small GTPases plays an important role in the regulation of membrane traffic in eukaryotic cells. While most Rab proteins are equally expressed in polarized and nonpolarized cells, Rab17 and Rab18 show epithelial cell specificity. Here we report the genetic mapping of Rab17 and Rab18 on mouse chromosomes 1 and 18, respectively. We also discuss some implications of Rab17 and Rab18 mapping, including their candidacy for the mouse mutations ln (leaden), Tw (twirler), and ax (ataxia). Copyright 1997 Academic Press.

  8. ASPP2 links the apical lateral polarity complex to the regulation of YAP activity in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christophe Royer

    Full Text Available The Hippo pathway, by tightly controlling the phosphorylation state and activity of the transcription cofactors YAP and TAZ is essential during development and tissue homeostasis whereas its deregulation may lead to cancer. Recent studies have linked the apicobasal polarity machinery in epithelial cells to components of the Hippo pathway and YAP and TAZ themselves. However the molecular mechanism by which the junctional pool of YAP proteins is released and activated in epithelial cells remains unknown. Here we report that the tumour suppressor ASPP2 forms an apical-lateral polarity complex at the level of tight junctions in polarised epithelial cells, acting as a scaffold for protein phosphatase 1 (PP1 and junctional YAP via dedicated binding domains. ASPP2 thereby directly induces the dephosphorylation and activation of junctional YAP. Collectively, this study unearths a novel mechanistic paradigm revealing the critical role of the apical-lateral polarity complex in activating this localised pool of YAP in vitro, in epithelial cells, and in vivo, in the murine colonic epithelium. We propose that this mechanism may commonly control YAP functions in epithelial tissues.

  9. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    Yang Jing; Zhao De-Gang; Jiang De-Sheng; Liu Zong-Shun; Chen Ping; Li Liang; Wu Liang-Liang; Le Ling-Cong; Li Xiao-Jing; He Xiao-Guang; Yang Hui; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm 2 to 0.95 mA/cm 2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  10. Study of Collagen Birefringence in Different Grades of Oral Squamous Cell Carcinoma Using Picrosirius Red and Polarized Light Microscopy

    Directory of Open Access Journals (Sweden)

    Pillai Arun Gopinathan

    2015-01-01

    Full Text Available Objectives. The present study was done to evaluate birefringence pattern of collagen fibres in different grades of oral squamous cell carcinoma using Picrosirius red stain and polarization microscopy and to determine if there is a change in collagen fibres between different grades of oral squamous cell carcinoma. Materials and Methods. Picrosirius red stained 5 μm thick sections of previously diagnosed different grades of squamous cell carcinoma and normal oral mucosa were studied under polarization microscopy for arrangement as well as birefringence of collagen fibres around tumour islands. Results. It was found that thin collagen fibres increased and thick collagen fibres decreased with dedifferentiation of OSCC (P<0.0001 . It was observed that there was change in polarization colours of thick fibres from yellowish orange to greenish yellow with dedifferentiation of OSCC indicating loosely packed fibres (P<0.0001. Conclusion. There was a gradual change of birefringence of collagen from yellowish orange to greenish yellow from well to poorly differentiated squamous cell carcinoma, indicating that there is a change from mature form of collagen to immature form as tumour progresses. Studying collagen fibres with Picrosirius red for stromal changes around tumour islands along with routine staining may help in predicting the prognosis of tumour.

  11. A new source of Southern Ocean and Antarctic aerosol from tropospheric polar cell chemistry of sea ice emissions

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Robinson, A. D.; Harris, N. R. P.; Keywood, M.; Ward, J.; Galbally, I.; Molloy, S.; Thomas, A.; Wilson, S. R.

    2014-12-01

    The Antarctic region is a pristine environment with minimal anthropogenic influence. Aerosol measurements in this environment allow the study of natural aerosols and polar atmospheric dynamics. Measurements in this region have been limited primarily to continental and coastal locations where permanent stations exist, with a handful of measurements in the sea ice region. The MAPS campaign (Measurements of Aerosols and Precursors during SIPEXII) occurred as part of SIPEX II (Sea Ice Physics and Ecosystems eXperiment II) voyage in Spring, 2012, and produced the first Antarctic pack-ice focused aerosol dataset aimed at characterizing new particle formation processes off the coast of East Antarctica (~65°S, 120°E). Numerous atmospheric parameters and species were measured, including the number of aerosol particles in the 3-10 nm size range, the range associated with nucleating particle formation. A latitudinal transect through the sea ice identified the Polar Front from sudden changes in nucleating particle concentrations, averaging 51cm-3 north of the front in the Ferrel cell, and 766 cm-3 south of the front, in the Polar cell region. The Polar Front location was also confirmed by meteorological and back-trajectory data. Background aerosol populations in the Polar cell fluctuated significantly but displayed no growth indicators, suggesting transport. Back-trajectories revealed that air parcels often descended from the free-troposphere within the previous 24-48 hrs. It is proposed that particle formation occurs in the free troposphere from precursors uplifted at the polar front region which, being a sea-ice/ocean region, is a significant precursor source. After tropospheric formation, populations descending at the poles are transported northward and reach the sea ice surface, missing continental stations. Current measurements of Antarctic aerosol suggest very low loading which may be explained by these circulation patterns and may underestimate total regional loading

  12. Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays.

    Science.gov (United States)

    Wen, Long; Chen, Qin; Song, Shichao; Yu, Yan; Jin, Lin; Hu, Xin

    2015-07-03

    We describe the integral electro-optical strategies that combine the functionalities of photovoltaic (PV) electricity generation and color filtering as well as polarizing to realize more efficient energy routing in display technology. Unlike the conventional pigment-based filters and polarizers, which absorb substantial amounts of unwanted spectral components and dissipate them in the form of heat, we propose converting the energy of those photons into electricity by constructing PV cell-integrated color filters based on a selectively transmitting aluminum (Al) rear electrode perforated with nanoholes (NHs). Combining with a dielectric-metal-dielectric (DMD) front electrode, the devices were optimized to enable efficient cavity-enhanced photon recycling in the PV functional layers. We perform a comprehensive theoretical and numerical analysis to explore the extraordinary optical transmission (EOT) through the Al NHs and identify basic design rules for achieving structural coloring or polarizing in our PV color filters. We show that the addition of thin photoactive polymer layers on the symmetrically configured Al NH electrode narrows the bandwidth of the EOT-assisted high-pass light filtering due to the strongly damped anti-symmetric coupling of the surface modes excited on the front and rear surface of the Al NHs, which facilitates the whole visible coloring with relatively high purity for the devices. By engineering the cut-off characteristics of the plasmonic waveguide mode supported by the circular or ellipsoidal Al NHs, beyond the photon recycling capacity, PV color filters and PV polarizing color filters that allow polarization-insensitive and strong polarization-anisotropic color filtering were demonstrated. The findings presented here may shed some light on expanding the utilization of PV electricity generation across new-generation energy-saving electrical display devices.

  13. Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays

    International Nuclear Information System (INIS)

    Wen, Long; Chen, Qin; Song, Shichao; Yu, Yan; Jin, Lin; Hu, Xin

    2015-01-01

    We describe the integral electro-optical strategies that combine the functionalities of photovoltaic (PV) electricity generation and color filtering as well as polarizing to realize more efficient energy routing in display technology. Unlike the conventional pigment-based filters and polarizers, which absorb substantial amounts of unwanted spectral components and dissipate them in the form of heat, we propose converting the energy of those photons into electricity by constructing PV cell-integrated color filters based on a selectively transmitting aluminum (Al) rear electrode perforated with nanoholes (NHs). Combining with a dielectric-metal-dielectric (DMD) front electrode, the devices were optimized to enable efficient cavity-enhanced photon recycling in the PV functional layers. We perform a comprehensive theoretical and numerical analysis to explore the extraordinary optical transmission (EOT) through the Al NHs and identify basic design rules for achieving structural coloring or polarizing in our PV color filters. We show that the addition of thin photoactive polymer layers on the symmetrically configured Al NH electrode narrows the bandwidth of the EOT-assisted high-pass light filtering due to the strongly damped anti-symmetric coupling of the surface modes excited on the front and rear surface of the Al NHs, which facilitates the whole visible coloring with relatively high purity for the devices. By engineering the cut-off characteristics of the plasmonic waveguide mode supported by the circular or ellipsoidal Al NHs, beyond the photon recycling capacity, PV color filters and PV polarizing color filters that allow polarization-insensitive and strong polarization-anisotropic color filtering were demonstrated. The findings presented here may shed some light on expanding the utilization of PV electricity generation across new-generation energy-saving electrical display devices. (paper)

  14. Identification of the arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization

    Science.gov (United States)

    Zermiani, Monica; Begheldo, Maura; Nonis, Alessandro; Palme, Klaus; Mizzi, Luca; Morandini, Piero; Nonis, Alberto; Ruperti, Benedetto

    2015-01-01

    Background and Aims The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. Methods Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. Key Results Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. Conclusions The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity. PMID:26078466

  15. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  16. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent years there has been an increasing interest in the propagation of polarized light in randomly scattering media. The investigation of backscattered light is...

  17. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  18. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1993-02-01

    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  19. Valley-selective optical Stark effect in monolayer WS2

    Science.gov (United States)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  20. Phase behavior of lipid monolayers containing DPPC and cholesterol analogs.

    Science.gov (United States)

    Stottrup, Benjamin L; Keller, Sarah L

    2006-05-01

    We investigate the miscibility phase behavior of lipid monolayers containing a wide variety of sterols. Six of the sterols satisfy a definition from an earlier study of "membrane-active sterols" in bilayers (cholesterol, epicholesterol, lathosterol, dihydrocholesterol, ergosterol, and desmosterol), and six do not (25-hydroxycholesterol, lanosterol, androstenolone, coprostanol, cholestane, and cholestenone). We find that monolayers containing dipalmitoyl phosphatidylcholine mixed with membrane-active sterols generally produce phase diagrams containing two distinct regions of immiscible liquid phases, whereas those with membrane-inactive sterols generally do not. This observation establishes a correlation between lipid monolayers and bilayers. It also demonstrates that the ability to form two regions of immiscibility in monolayers is not one of the biophysical attributes that explains cholesterol's predominance in animal cell membranes. Furthermore, we find unusual phase behavior for dipalmitoyl phosphatidylcholine monolayers containing 25-hydroxycholesterol, which produce both an upper and a lower miscibility transition. The lower transition correlates with a sharp change of slope in the pressure-area isotherm.

  1. Study of iridium silicide monolayers using density functional theory

    Science.gov (United States)

    Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz

    2018-02-01

    In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.

  2. Controllable optical bistability and multistability in a graphene monolayer system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@126.com [School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Sun, Zhaoyu [School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Ding, Chunling [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Yu, Rong [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-02-15

    We theoretically investigate the behavior of optical bistability (OB) and optical multistability (OM) in a graphene monolayer system driven by an elliptically polarized control field and a right-hand circularly polarized probe field. Our numerical results show that it is easy to realize the transition from OB to OM or vice versa by adjusting the frequency detunings of the probe field and the control field, as well as the polarization-dependent phase difference between the two components of the control laser field. The influences of the intensity of the control field and the cooperation parameter on the OB behavior are also discussed in detail. These results may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  3. Stranski-Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells

    Science.gov (United States)

    Kim, Yeongho; Cho, Il-Wook; Ryu, Mee-Yi; Kim, Jun Oh; Lee, Sang Jun; Ban, Keun-Yong; Honsberg, Christiana B.

    2017-08-01

    The optical properties of the Stranski-Krastanov (S-K) grown InAs/GaAsSb quantum dots (QDs) coupled to sub-monolayer (SML) InAs QD stacks are investigated using photoluminescence (PL) spectroscopy. The PL emission peak of the S-K QDs shifts to shorter wavelengths with increasing the number of SML stacks (NSML) due to the increasing strain fields from the SML QDs. The PL peak energy is linearly increased with increasing the cube root of excitation power, with a different ratio of the absorption coefficient to radiative recombination rate for all the QD samples. The total carrier lifetime for the S-K QDs is increased with increasing NSML, most probably caused by the increase in the ground-state transition energy of the S-K QDs. The nonmonotonic behavior of the thermal activation energy of electrons in the S-K QDs is observed due to the NSML-dependent variation of the strain and Coulombic interaction within the QDs.

  4. Mammalian diaphanous-related formin 1 regulates GSK3β-dependent microtubule dynamics required for T cell migratory polarization.

    Directory of Open Access Journals (Sweden)

    Baoxia Dong

    Full Text Available The mammalian diaphanous-related formin (mDia1, a Rho-regulated cytoskeletal modulator, has been shown to promote T lymphocyte chemotaxis and interaction with antigen presenting cells, but the mechanisms underpinning mDia1 roles in these processes have not been defined. Here we show that mDia1(-/- T cells exhibit impaired lymphocyte function-associated antigen 1 (LFA-1-mediated T cell adhesion, migration and in vivo trafficking. These defects are associated with impaired microtubule (MT polarization and stabilization, altered MT dynamics and reduced peripheral clustering of the MT plus-end-protein, adenomatous polyposis coli (APC in migrating T cells following LFA-1-engagement. Loss of mDia1 also leads to impaired inducible inactivation of the glycogen synthase kinase (GSK 3β as well as hyperphosphorylation and reduced levels of APC in migrating T cells. These findings identify essential roles for the mDia1 formin in modulating GSK3β-dependent MT contributions to induction of T-cell polarity, adhesion and motility.

  5. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  6. Distinct self-assembly of dithiol monolayers on Au(1 1 1) in water and hexane

    Science.gov (United States)

    Sharif, Aisyah M.; Laffir, Fathima R.; Buckley, D. Noel; Silien, Christophe

    2014-09-01

    The self-assembly of 1,4-benzenedimethanethiol on Au(1 1 1), at low concentration in water and in hexane which are respectively polar and non-polar solvent, has been studied by scanning tunneling microscopy (STM). The data reveal that, on clean Au(1 1 1), a complete and ordered self-assembled monolayer (SAM) of lying-down dithiols can form within a few seconds in water. While in hexane the adsorption is initially impeded by the rapid growth of an ordered hexane film that is gradually replaced by disordered domains of dithiol until completion of a saturated monolayer. Complemented by X-ray photoelectron spectroscopy measurements, the STM images resolve the progression of the self-assembly in both these polar and non-polar solvent, and highlight how the self-assembly depends on the trio solvent, dithiol, and substrate.

  7. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    Science.gov (United States)

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  8. Polarity inversion of aluminum nitride by direct wafer bonding

    Science.gov (United States)

    Hayashi, Yusuke; Katayama, Ryuji; Akiyama, Toru; Ito, Tomonori; Miyake, Hideto

    2018-03-01

    A novel fabrication process based on direct bonding technologies is proposed and demonstrated to achieve polarity inversion in AlN. High-angle annular dark-field scanning transmission electron microscopy observation clearly showed an atomically flat bonding interface and an abrupt transition from Al polarity (+c) to N polarity (‑c) through a single monolayer. This ideal polarity inversion of III–nitride materials is expected to provide new insight into heteropolar device applications.

  9. Differential expression of p-ERM, a marker of cell polarity, in benign and neoplastic oviductal epithelium.

    Science.gov (United States)

    Ning, Gang; Bijron, Jonathan G; Yuan, Ju; Hirsch, Michelle S; McKeon, Frank D; Nucci, Marisa R; Crum, Christopher P; Xian, Wa

    2013-07-01

    Serous tubal intraepithelial carcinoma (STIC) is a noninvasive phase of pelvic serous cancer at risk for metastasizing. Because of its biologic significance, its accurate distinction from nonmalignant mimics is important. Loss of cell orientation is an important feature of STIC. We sought to determine whether the immunohistochemical localization of cytoskeletal-organizing proteins phospho-ezrin-radaxin-moesin (p-ERM) would be useful in making this distinction. The benign oviductal entities (normal and p53 signatures), premalignant atypias (tubal intraepithelial lesions in transition), serous intraepithelial carcinomas (STICs), and carcinomas were analyzed for 5 staining patterns and compared. Linear or uniform luminal p-ERM staining was strongly associated with benign mucosa in contrast to STICs, in which it was lost and often replaced by nonlinear or nonuniform patterns highlighting individually cell groups or single cells. Premalignant atypias were similar to benign mucosa by p-ERM staining and retained the linear luminal pattern. This study shows, for the first time, that patterns of staining for an immunohistochemical correlate of cell polarity (p-ERM) differ between STICs, their benign counterparts and premalignant atypias that do not fulfill the criteria for STICs. If confirmed, these findings warrant further analysis of indices of cell polarity as objective markers for the diagnosis and mapping of the evolution of pelvic serous precursors.

  10. Effects of low molecular weight heparin on the polarization and cytokine profile of macrophages and T helper cells in vitro.

    Science.gov (United States)

    Bruno, Valentina; Svensson-Arvelund, Judit; Rubér, Marie; Berg, Göran; Piccione, Emilio; Jenmalm, Maria C; Ernerudh, Jan

    2018-03-08

    Low molecular weight heparin (LMWH) is widely used in recurrent miscarriage treatment. The anti-coagulant effects are established, while immunological effects are not fully known. Our aim was to assess LMWH effects on activation and polarization of central regulatory immune cells from healthy women, and on placenta tissues from women undergoing elective abortions. Isolated blood monocytes and T helper (Th) cells under different activation and polarizing conditions were cultured with or without LMWH. Flow cytometry showed that LMWH exposure induced increased expression of HLA-DR and CD206 in macrophages. This phenotype was associated with increased secretion of Th17-associated CCL20, and decreased secretion of CCL2 (M2-associated) and CCL22 (Th2), as measured by multiplex bead array. In accordance, LMWH exposure to Th cells reduced the proportion of CD25highFoxp3+ regulatory T-cells, intensified IFN-γ secretion and showed a tendency to increase the lymphoblast proportions. Collectively, a mainly pro-inflammatory effect was noted on two essential tolerance-promoting cells. Although the biological significancies of these in vitro findings are uncertain and need to be confirmed in vivo, they suggest the possibility that immunological effects of LMWH may be beneficial mainly at an earlier gestational age to provide an appropriate implantation process in women with recurrent miscarriage.

  11. Membrane potential of cells and its regulation during aging. 2. Report: the effect of hormones on the level of the cellular plasma membrane polarization.

    Science.gov (United States)

    Frolkis, V V; Tanin, S A; Gorban, E N; Bogatskaya, L N; Sabko, V E

    1987-01-01

    Age-dependent changes in the polarization of plasma membranes (PM) of various cell types and the mechanisms responsible for its regulation were studied in the experiments on the adult (6-8 and old (28-32 months) Wistar male rats. It was found that the effect of the hormones on the PM polarization level is altered during aging. This being related to shifts in the number and affinity of the hormonal receptors, energetic processes and protein synthesis in the cell.

  12. Living Cells and Dynamic Molecules Observed with the Polarized Light Microscope: the Legacy of Shinya Inoué.

    Science.gov (United States)

    Tani, Tomomi; Shribak, Michael; Oldenbourg, Rudolf

    2016-08-01

    In 1948, Shinya Inoué arrived in the United States for graduate studies at Princeton. A year later he came to Woods Hole, starting a long tradition of summer research at the Marine Biological Laboratory (MBL), which quickly became Inoué's scientific home. Primed by his Japanese mentor, Katsuma Dan, Inoué followed Dan's mantra to work with healthy, living cells, on a fundamental problem (mitosis), with a unique tool set that he refined for precise and quantitative observations (polarized light microscopy), and a fresh and brilliant mind that was unafraid of challenging current dogma. Building on this potent combination, Inoué contributed landmark observations and concepts in cell biology, including the notion that there are dynamic, fine structures inside living cells, in which molecular assemblies such as mitotic spindle fibers exist in delicate equilibrium with their molecular building blocks suspended in the cytoplasm. In the late 1970s and 1980s, Inoué and others at the MBL were instrumental in conceiving video microscopy, a groundbreaking technique which married light microscopy and electronic imaging, ushering in a revolution in how we know and what we know about living cells and the molecular mechanisms of life. Here, we recount some of Inoué's accomplishments and describe how his legacy has shaped current activities in polarized light imaging at the MBL. © 2016 Marine Biological Laboratory.

  13. Development of an Immunoperoxidase Monolayer Assay for the Detection of Antibodies against Peste des Petits Ruminants Virus Based on BHK-21 Cell Line Stably Expressing the Goat Signaling Lymphocyte Activation Molecule.

    Directory of Open Access Journals (Sweden)

    Jialin Zhang

    Full Text Available From 2013 to 2015, peste des petits ruminants (PPR broke out in more than half of the provinces of China; thus, the application and development of diagnostic methods are very important for the control of PPR. Here, an immunoperoxidase monolayer assay (IPMA was developed to detect antibodies against PPR. However, during IPMA development, we found that Vero cells were not the appropriate choice because staining results were not easily observed. Therefore, we first established a baby hamster kidney-goat signaling lymphocyte activation molecule (BHK-SLAM cell line that could stably express goat SLAM for at least 20 generations. Compared with Vero cells, the PPR-mediated cytopathic effect occurred earlier in BHK-SLAM cells, and large syncytia appeared after virus infection. Based on this cell line and recombinant PPR virus expressing the green fluorescent protein (GFP (rPPRV-GFP, an IPMA for PPR diagnosis was developed. One hundred and ninety-eight PPR serum samples from goats or sheep were tested by the IPMA and virus neutralization test (VNT. Compared with the VNT, the sensitivity and specificity of the IPMA were 91% and 100%, respectively, and the coincidence rate of the two methods was 95.5%. The IPMA assay could be completed in 4 h, compared with more than 6 d for the VNT using rPPRV-GFP, and it is easily performed, as the staining results can be observed under a microscope. Additionally, unlike the VNT, the IPMA does not require antigen purification, which will reduce its cost. In conclusion, the established IPMA will be an alternative method that replaces the VNT for detecting antibodies against PPRV in the field.

  14. Type I collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity.

    Science.gov (United States)

    Zuk, A; Matlin, K S; Hay, E D

    1989-03-01<