WorldWideScience

Sample records for polarization-sensitive quantum-optical coherence

  1. Polarization sensitive optical coherence tomography detection method

    International Nuclear Information System (INIS)

    Colston, B W; DaSilva, L B; Everett, M J; Featherstone, J D B; Fried, D; Ragadio, J N; Sathyam, U S.

    1999-01-01

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattering coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions

  2. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  3. Polarization sensitive optical coherence tomography in dentistry

    International Nuclear Information System (INIS)

    Dichtl, S.

    1998-01-01

    Optical coherence tomography (OCT) is a noninvasive and noncontact technique for obtaining cross-sectional images of biologic structure, which was initially introduced to depict the transparent tissue of the eye. It employs the partial coherence properties of a light source to image structures with high resolution (< 20 (m). Recently, this technique has also been applied in turbid media. This tomographic imaging is analogous to conventional ultrasound B mode imaging, except that OCT measures the intensity of backreflected infrared light rather than acoustical waves. First applications, of OCT in dentistry for diagnosing periodontal disease have been reported by Colston et al. presenting in vitro OCT images of the dental and periodontal tissues of porcine premolar teeth. In this work, the feasibility of polarisation sensitive OCT for dental material is suggested. In contrast with conventional OCT, where the magnitude of backscattered light as a function of depth is imaged, backscattered light is used to image the magnitude of the birefringence in the sample as a function of depth. Partial loss of birefringence is known to be an early indication of incipient caries or tissue thermal damage. Applying this technique for caries diagnosis or guidance regarding optimal dosimetry for thermally mediated laser therapeutic procedures, polarisation sensitive OCT would represent a promising new technology for dentistry. (author)

  4. International Conference on Coherence and Quantum Optics

    CERN Document Server

    RECENT DEVELOPMENTS IN QUANTUM OPTICS

    1993-01-01

    This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder­ abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the ma...

  5. Advanced polarization sensitive analysis in optical coherence tomography

    Science.gov (United States)

    Wieloszyńska, Aleksandra; StrÄ kowski, Marcin R.

    2017-08-01

    The optical coherence tomography (OCT) is an optical imaging method, which is widely applied in variety applications. This technology is used to cross-sectional or surface imaging with high resolution in non-contact and non-destructive way. OCT is very useful in medical applications like ophthalmology, dermatology or dentistry, as well as beyond biomedical fields like stress mapping in polymers or protective coatings defects detection. Standard OCT imaging is based on intensity images which can visualize the inner structure of scattering devices. However, there is a number of extensions improving the OCT measurement abilities. The main of them are the polarization sensitive OCT (PS-OCT), Doppler enable OCT (D-OCT) or spectroscopic OCT (S-OCT). Our research activities have been focused on PS-OCT systems. The polarization sensitive analysis delivers an useful information about optical anisotropic properties of the evaluated sample. This kind of measurements is very important for inner stress monitoring or e.g. tissue recognition. Based on our research results and knowledge the standard PS-OCT provide only data about birefringence of the measured sample. However, based on the OCT measurements more information including depolarization and diattenuation might be obtained. In our work, the method based on Jones formalism are going to be presented. It is used to determine birefringence, dichroism and optic axis orientation of the tested sample. In this contribution the setup of the optical system, as well as tests results verifying the measurements abilities of the system are going to be presented. The brief discussion about the effectiveness and usefulness of this approach will be carried out.

  6. Polarization sensitive optical coherence tomography in equine bone

    Science.gov (United States)

    Jacobs, J. W.; Matcher, S. J.

    2009-02-01

    Optical coherence tomography (OCT) has been used to image equine bone samples. OCT and polarization sensitive OCT (PS-OCT) images of equine bone samples, before and after demineralization, are presented. Using a novel approach, taking a series of images at different angles of illumination, the polar angle and true birefringence of collagen within the tissue is determined, at one site in the sample. The images were taken before and after the bones were passed through a demineralization process. The images show an improvement in depth penetration after demineralization allowing better visualization of the internal structure of the bone and the optical orientation of the collagen. A quantitative measurement of true birefringence has been made of the bone; true birefringence was shown to be 1.9x10-3 before demineralization increasing to 2.7x10-3 after demineralization. However, determined collagen fiber orientation remains the same before and after demineralization. The study of bone is extensive within the field of tissue engineering where an understanding of the internal structures is essential. OCT in bone, and improved depth penetration through demineralization, offers a useful approach to bone analysis.

  7. 8th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    2001-01-01

    The Eighth Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the period June 13-16,2001. This volume contains the proceedings of the meeting. The meeting was preceded by an affiliated conference, the International Conference on Quantum Information, with some overlapping sessions on June 13. The proceedings of the affiliated conference will be published separately by the Optical Society of America. A few papers that were presented in common plenary sessions of the two conferences will be published in both proceedings volumes. More than 268 scientists from 28 countries participated in the week long discussions and presentations. This Conference differed from the previous seven in the CQO series in several ways, the most important of which was the absence of Leonard Mandel. Professor Mandel died a few months before the conference. A special memorial symposium in his honor was held at the end of the conference. The presentations from that sym...

  8. Polarization sensitive optical coherence tomography - a review [Invited

    NARCIS (Netherlands)

    de Boer, Johannes F.; Hitzenberger, Christoph K.; Yasuno, Yoshiaki

    2017-01-01

    Optical coherence tomography (OCT) is now a well-established modality for high-resolution cross-sectional and three-dimensional imaging of transparent and translucent samples and tissues. Conventional, intensity based OCT, however, does not provide a tissue-specific contrast, causing an ambiguity

  9. 7th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard; Wolf, Emil

    1996-01-01

    The Seventh Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the four-day period June 7 - 10, 1996. More than 280 scientists from 33 countries participated. This book contains the Proceedings of the meeting. This Conference differed from the previous six in the series in having only a limited number of oral presentations, in order to avoid too many parallel sessions. Another new feature was the introduction of tutorial lectures. Most contributed papers were presented in poster sessions. The Conference was sponsored by the American Physical Society, by the Optical Society of America, by the International Union of Pure and Applied Physics and by the University of Rochester. We wish to express our appreciation to these organizations for their support and we especially extend our thanks to the International Union of Pure and Applied Physics for providing financial assistance to a number of speakers from Third World countries, to enable them to take ...

  10. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography

    NARCIS (Netherlands)

    Kim, K.H.; Pierce, M. C.; Maguluri, G. N.; Park, B. H.; Yoon, S.J.; Lydan, M.; Sheridan, R.; de Boer, J.F.

    2012-01-01

    The accurate determination of burn depth is critical in the clinical management of burn wounds. Polarization- sensitive optical coherence tomography (PS-OCT) has been proposed as a potentially non-invasive method for determining burn depth by measuring thermally induced changes in the structure and

  11. Imaging of human breast tissue using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Verma, Y.; Gautam, M.; Divakar Rao, K.; Swami, M. K.; Gupta, P. K.

    2011-12-01

    We report a study on the use of polarization sensitive optical coherence tomography (PSOCT) for discriminating malignant (invasive ductal carcinoma), benign (fibroadenoma) and normal (adipocytes) breast tissue sites. The results show that while conventional OCT, that utilizes only the intensity of light back-scattered from tissue microstructures, is able to discriminate breast tissues as normal (adipocytes) and abnormal (malignant and benign) tissues, PS-OCT helps in discriminating between malignant and benign tissue sites also. The estimated values of birefringence obtained from the PSOCT imaging show that benign breast tissue samples have significantly higher birefringence as compared to the malignant tissue samples.

  12. Non-invasive assessment of corneal crosslinking changes using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Alonso-Caneiro, D.; Yamanari, M.; Fukuda, S.; Hoshi, S.; Nagase, S.; Oshika, T.; Yasuno, Y.; Collins, M.

    2013-03-01

    Collagen crosslinking (CXL) has shown promising results in the prevention of the progression of keratoconus and corneal ectasia. However, techniques for in vivo and in situ assessment of the treatment are limited. In this study, ex vivo porcine eyes were treated with a chemical CXL agent (glutaraldehyde), during which polarization sensitive optical coherence tomography (PS-OCT) recordings were acquired simultaneously to assess the sensitivity of the technique to assess changes in the cornea. The results obtained in this study suggest that PSOCT may be a suitable technique to measure CXL changes in situ and to assess the local changes in the treated region of the cornea.

  13. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  14. Characterization of muscle stretching and damage using polarization-sensitive optical coherence tomography (PS-OCT)

    Science.gov (United States)

    Chen, Dongsheng; Zeng, Nan; Liu, Celong; Ma, Hui

    2012-12-01

    In this paper, we study muscle elastic drawing and damage using our lab's polarization-sensitive optical coherence tomography (PS-OCT) instrument and polarization sensitive Monte Carlo program. First, we acquire two-dimensional PS-OCT images of elastically drawn and injured muscle, injury processes including dehydration and hydrolysis, we extract some characteristics from experimental results including extinction coefficient, integral reflectivity and birefringence and so on, which will change during muscle is being elastically drawn or injured. In order to further understand and evaluate the degree of muscle elastic drawing or damage according to the measurements parameters mentioned above, we do some corresponding simulations using our lab's Monte Carlo program, which is based on a sphere cylinder birefringence model and can simulate complicated tissue containing anisotropic microstructures and various polarization imaging and measurement systems. For muscle elastic drawing, we find that integral reflectivity sometimes increases and decreases as muscle's elastic drawing continues, and through simulation we are unable to find the relationship between extinction coefficients and muscle elastic drawing. As for muscle damage, we simulate two processes: dehydration and hydrolysis. We find that as dehydration deepens, the birefringence of muscle is increasing but getting slowly and the integral reflectivity is decreasing, and as hydrolysis deepens, the birefringence decreases and the integral reflectivity decreases almost linearly. Through the analysis above, we demonstrate the validity of those parameters to characterize muscle elasticity and fiber structure and explain its potential for assessment of muscle damage.

  15. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  16. Polarization-Sensitive Optical Coherence Tomography Imaging of Benign and Malignant Laryngeal Lesions: An In Vivo Study

    NARCIS (Netherlands)

    Burns, J.A.; Kim, K.H.; de Boer, J.F.; Anderson, R.R.; Zeitels, S. M.

    2011-01-01

    Objective. Optical coherence tomography (OCT), an imaging technology that provides cross-sectional subsurface tissue structure images using back-scattered light, is a promising noninvasive imaging modality for in vivo assessment of vocal fold layered microstructure. Polarization-sensitive OCT

  17. Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin

    Science.gov (United States)

    Manesh, Saman K.; Darling, Cynthia L.; Fried, Daniel

    2009-07-01

    Previous studies have demonstrated that polarization-sensitive optical coherence tomography (PS-OCT) can be used to image caries lesions in dentin, measure nondestructively the severity of dentin demineralization, and determine the efficacy of intervention with anticaries agents including fluoride and lasers. The objective of this study is to determine if PS-OCT can be used to nondestructively measure a reduction in the reflectivity of dentin lesions after exposure to a remineralization solution. Although studies have shown the ability of PS-OCT to image the remineralization of lesions in enamel, none have included dentin. PS-OCT images of dentin surfaces are acquired after exposure to an artificial demineralizing solution for six days and a remineralizing solution for 20 days. The integrated reflectivity, depth of demineralization, and thickness of the layer of remineralization are calculated for each of the two treatment groups on each sample. Polarized light microscopy and microradiography are used to measure lesion severity on histological thin sections for comparison. PS-OCT successfully measured the formation of a layer of increased mineral content near the lesion surface. Polorized light microscopy (PLM) and transverse microradiography (TMR) corroborated those results. PS-OCT can be used for the nondestructive measurement of the remineralization of dentin.

  18. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Kim, Ki Hean; Pierce, Mark C.; Maguluri, Gopi; Park, B. Hyle; Yoon, Sang June; Lydon, Martha; Sheridan, Robert; de Boer, Johannes F.

    2012-06-01

    The accurate determination of burn depth is critical in the clinical management of burn wounds. Polarization-sensitive optical coherence tomography (PS-OCT) has been proposed as a potentially non-invasive method for determining burn depth by measuring thermally induced changes in the structure and birefringence of skin, and has been investigated in pre-clinical burn studies with animal models and ex vivo human skin. In this study, we applied PS-OCT to the in-vivo imaging of two pediatric burn patients. Deep and superficial burned skins along with contralateral controls were imaged in 3D. The imaging size was 8 mm×6 mm×2 mm in width, length, and depth in the air respectively, and the imaging time was approximately 6 s per volume. Superficially burned skins exhibited the same layered structure as the contralateral controls, but more visible vasculature and reduced birefringence compared to the contralateral controls. In contrast, a deeply burned skin showed loss of the layered structure, almost absent vasculature, and smaller birefringence compared to superficial burns. This study suggested the vasculature and birefringence as parameters for characterizing burn wounds.

  19. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography.

    Science.gov (United States)

    Lu, Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  20. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  1. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  2. Polarization-sensitive optical coherence tomography for imaging of biological tissues

    Science.gov (United States)

    Chen, Xiaodong; Wang, Yi; Li, Wanhui; Yu, Daoyin

    2006-09-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a new non-contact and non-invasive method for measuring the change of birefringence in biological tissues caused by pathological changes of body. It has great potential in imaging the structural properties of turbid biological media because the polarization state of light backscattered from biological tissues is influenced by the birefringence of fibrous structures. The arrangement is based on a Michelson interferometer with use of quarter-wave plates and polarimeter. Through the detection of light backscattered from biological tissues and reflected from a reference mirror, the optical phase delay between orthogonal polarization compositions propagating in the birefringence media can be measured. PS-OCT is a powerful tool for research of tendon, dentin, lesions, which have strong polarization effective. We in this paper describe the experimental scheme and its mathematical representation, along with the theory of PS-OCT imaging. Besides, we introduce a fiber-based PS-OCT system for measuring the tissue birefringence.

  3. Correlation between polarization sensitive optical coherence tomography and second harmonic generation microscopy in skin.

    Science.gov (United States)

    Le, Viet-Hoan; Lee, Seunghun; Kim, Bumju; Yoon, Yeoreum; Yoon, Calvin J; Chung, Wan Kyun; Kim, Ki Hean

    2015-07-01

    Both polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property. These two modalities have been applied to the same skin pathologies associated with collagen changes, but their relationship has not been examined. In this study, we tried to find the relationship by imaging the same skin samples with both modalities. Various parts of the normal rat skin and burn damaged skin were imaged ex vivo, and their images were analyzed both qualitatively and quantitatively. PS-OCT images were analyzed to obtain tissue birefringence. SHG images were analyzed to obtain collagen orientation indices by applying 2D Fourier transform. The skin samples having higher birefringence values had higher collagen orientation indices, and a linear correlation was found between them. Burn damaged skin showed decreases in both parameters compared to the control skins. This relationship between the bulk and microscopic properties of skin may be useful for further skin studies.

  4. The hand-hold polarization-sensitive spectral domain optical coherence and its applications

    Science.gov (United States)

    Liu, Hao; Gao, Wanrong

    2017-08-01

    The polarization-sensitive spectral domain optical coherence tomography (PSOCT) has the advantages of being able to measure the polarization properties of samples, such as phase-retardation, diattenuation, depolarization, and optical axis orientation, providing a contrast to identify the diseased area and normal area in tissues in PSOCT images. Conventionally, the sample arm of PSOCT is fixed on the stage where biomedical tissues or models is placed, and the OCT images is acquired by scanning with a galvanometer-based mirror. To be applied in the practical diagnosis, a promising way is to design a hand-held device. To this end, it is required that probe is assembled with a small volume to allow for comprehensively imaging large tissues areas at a microscopic scale, and is available to move on different samples to be acquired quickly with negligible motion artifacts. Meanwhile, the probe should be manufactured wih well stability to avoid system jitter error while it is used to detect the biological tissues in vivo. In this work, a design of a hand-hold fiber-based PSOCT is described. The device is of the size of 10 cm (length) × 8 cm (width) × 6 cm (height). Both the axial resolution and the imaging depth of the system are measured and were approximately 7 μm and 2.5 mm in air, respectively, which are in good agreement with the theoretical predictions. The A-scan rate of the system is 70 kHz. The structure is compact and all the components are fixed on the shell to reduce the motion artifact, resulting in a great stability on measuring the tissues in vivo. The cross sectional images of ex vivo chicken breast, ex vivo pork cartilage and in vivo forearm skin of human wolunteer are presented to demonstrate the capability of the system.

  5. Nano-particle doped hydroxyapatite material evaluation using spectroscopic polarization sensitive optical coherence tomography

    Science.gov (United States)

    Strąkowska, Paulina; Trojanowski, Michał; Gardas, Mateusz; Głowacki, Maciej J.; Kraszewski, Maciej; Strąkowski, Marcin R.

    2015-03-01

    Bio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp. In order to achieve this, we propose to use Optical Coherence Tomography (OCT) for non-destructive and non-invasive evaluation. Our system works in the IR spectrum range, which is helpful due to the wide range of nanocomposites being opaque in the VIS range. In order to use our method we need to measure two samples, one which is a reference HAp solution and second: a similar HAp solution with nanoparticles introduced inside. We use silver nanoparticles below 300 nm. The aim of this research is to analyze the concentration and dispersion of nanodopants in the bio-ceramic matrix. Furthermore, the quality of the HAp coating and deposition process repetition have been monitored. For this purpose the polarization sensitive OCT with additional spectroscopic analysis is being investigated. Despite the other methods, which are suitable for nanocomposite materials evaluation, the OCT with additional features seems to be one of the few which belong to the NDE/NDT group. Here we are presenting the OCT system for evaluation of the HAp with nano-particles, as well as HAp manufacturing process. A brief discussion on the usefulness of OCT for bio-ceramics materials examination is also being presented.

  6. A Study on the Applications of Quantum Optical Coherence to Nano-Optics

    Science.gov (United States)

    Hakami, Jabir Wali

    Optically controlled dipole-dipole interaction at submicrometers and subwavelength scales leads to many interesting phenomenon and remarkable potential applications in quantum optics, condensed matter physics, and today's micro-devices. In this dissertation, we study the applications of quantum optical coherence to nano-optics in the following systems and aspects. On the one hand, chiral metamaterials has been previously reported as excellent candidates to realize both attractive and repulsive Casimir forces, where the existence of a repulsive Casimir force depends upon the strength of the chirality. On the other hand, nanoscale integration of metal nanoparticles and semiconductors is particularly interesting because the strengths of both materials are combined in such a hybrid system. In the first part of this work, we proposed a technical scheme to coherently control of the Casimir interaction energy with two identical chirality mediums. We took explicit caution regarding the requirements of passivity and causal response of the materials, since these requirements are essential for the application of the Lifshitz formula. The rare-earth metals' atomic species, for instance, dysprosium, is proposed as an applicable medium for the forthcoming studies of possible experimental implementation of our technique. Secondly, we fully investigated the coherent control of the quantum optical properties of spontaneous emission spectra of a semiconductor quantum dot coupled to a metallic nanoparticle. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. In

  7. Polarization sensitive optical coherence tomography at 1060 nm for retinal imaging

    International Nuclear Information System (INIS)

    Torzicky, T.

    2014-01-01

    The aim of this thesis was to develop a Polarization Sensitive Optical Coherence Tomography (PS-OCT) device for ocular imaging in the 1 µm wavelength range and to explore its capabilities to image healthy subjects and patients with various retinal disorders. PS-OCT set-ups working in the 840 nm range have been used in several clinical studies, for examining different retinal pathologies. Especially the segmentation of the retinal pigment epithelium (RPE) based on PS-OCT data shows advantages in cases of age related macular degeneration (AMD) in comparison to segmentation based on intensity images from commercial OCT systems. OCT imaging in the 1 µm wavelength region has recently gained popularity for ophthalmic applications due to the fact that it is perfectly suitable for enhanced visualization of choroid and sclera. This is due to decreased scattering and absorption in the RPE with increasing wavelength and due to the local absorption minimum of water (the vitreous of the eye consists mainly of water) for wavelengths around 1060 nm. An additional advantage is that a higher imaging quality in patients with corneal haze or cataract can be achieved when using OCT systems working at 1 µm. In this work we combine the advantages of PS-OCT imaging with the enhanced penetration depth of the 1 µm wavelength range for acquiring intensity, retardation, axis orientation and degree of polarization uniformity (DOPU) images of choroid and sclera. As a first step different PS-OCT set-ups working at 1060 nm were developed and a comparison regarding set-up parameters and imaging performance was accomplished. The two different set-ups that were built and investigated were a spectrometer based Fourier Domain OCT set-up and a swept source Fourier Domain OCT set-up. The swept source set-up was tested with two different light sources, a commercially available swept source laser (A-Scan rate of 100 kHz) and a prototype of a Fourier Domain Mode Locked (FDML) laser (A-Scan rate of 350

  8. Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography

    Science.gov (United States)

    Nadkarni, Seemantini K.; Pierce, Mark C.; Park, B. Hyle; de Boer, Johannes F.; Whittaker, Peter; Bouma, Brett E.; Bressner, Jason E.; Halpern, Elkan; Houser, Stuart L.; Tearney, Guillermo J.

    2009-01-01

    Objectives The purpose of this study was to investigate the measurement of collagen and smooth muscle cell (SMC) content in atherosclerotic plaques using polarization-sensitive optical coherence tomography (PSOCT). Background A method capable of evaluating plaque collagen content and SMC density can provide a measure of the mechanical fidelity of the fibrous cap and can enable the identification of high-risk lesions. Optical coherence tomography has been demonstrated to provide cross-sectional images of tissue microstructure with a resolution of 10 µm. A recently developed technique, PSOCT measures birefringence, a material property that is elevated in tissues such as collagen and SMCs. Methods We acquired PSOCT images of 87 aortic plaques obtained from 20 human cadavers. Spatially averaged PSOCT birefringence, Φ, was measured and compared with plaque collagen and SMC content, quantified morphometrically by picrosirius red and smooth muscle actin staining at the corresponding locations. Results There was a high positive correlation between PSOCT measurements of Φ and total collagen content in all plaques (r = 0.67, p < 0.001) and in fibrous caps of necrotic core fibroatheromas (r = 0.68, p < 0.001). Polarization-sensitive optical coherence tomography measurements of Φ demonstrated a strong positive correlation with thick collagen fiber content (r = 0.76, p < 0.001) and SMC density (r = 0.74, p < 0.01). Conclusions Our results demonstrate that PSOCT enables the measurement of birefringence in plaques and in fibrous caps of necrotic core fibroatheromas. Given its potential to evaluate collagen content, collagen fiber thickness, and SMC density, we anticipate that PSOCT will significantly improve our ability to evaluate plaque stability in patients. PMID:17397678

  9. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  10. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Baumann, Bernhard; Gotzinger, Erich; Pircher, Michael; Sattmann, Harald; Schuutze, Christopher; Schlanitz, Ferdinand; Ahlers, Christian; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K

    2010-01-01

    We present polarization-sensitive optical coherence tomography (PS-OCT) for quantitative assessment of retinal pathologies in age-related macular degeneration (AMD). On the basis of the polarization scrambling characteristics of the retinal pigment epithelium, novel segmentation algorithms were developed that allow one to segment pathologic features such as drusen and atrophic zones in dry AMD as well as to determine their dimensions. Results from measurements in the eyes of AMD patients prove the ability of PS-OCT for quantitative imaging based on the retinal features polarizing properties. Repeatability measurements were performed in retinas diagnosed with drusen and geographic atrophy in order to evaluate the performance of the described methods. PS-OCT appears as a promising imaging modality for three-dimensional retinal imaging and ranging with additional contrast based on the structures' tissue-inherent polarization properties.

  11. Development of an polarization sensitive Fourier domain optical coherence tomography and it utilization on the Mueller matrix determination

    International Nuclear Information System (INIS)

    Raele, Marcus Paulo

    2009-01-01

    This study approached theoretical and experimental aspects related with the development of a polarization sensitive, Fourier domain, optical coherence tomography system (PS-FD-OCT) and its utilization on the Mueller Matrix determination. This work began with a bibliographic revision, which describes since the early studies to the actual state of the art of the technique. The mathematical formalism of Fourier domain low coherence interferometry and light polarization was performed as well. Studies based on numerical simulations, of three different algorithm types, responsible to recover the scattering profile, were done. The implemented algorithms were: Direct Fourier Transform, Interpolation and zero-filling. By the end of the simulation study, was possible to conclude that the algorithm zero-filling 2N presented better characteristics when compared with the others. In the experimental part, firstly different OCT setups were assembled and measurements were done in order to verify aspects related with the theory. Then, using a polymeric sample, birefringence images were performed, which allowed determining the sample birefringence quantitatively. Finally, images taken of different polarization states were collected, and through then images related with the Mueller Matrix elements were calculated, which were analyzed individually. (author)

  12. Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser

    DEFF Research Database (Denmark)

    Torzicky, Teresa; Marschall, Sebastian; Pircher, Michael

    2013-01-01

    We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser...

  13. Investigation of acid-etched CO2 laser ablated enamel surfaces using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Nahm, Byung J.; Kang, Hobin; Chan, Kenneth; Fried, Daniel

    2012-01-01

    A carbon dioxide laser operating at the highly absorbed wavelength of 9.3μm with a pulse duration of 10-15μs is ideally suited for caries removal and caries prevention. The enamel thermally modified by the laser has enhanced resistance to acid dissolution. This is an obvious advantage for caries prevention; however, it is often necessary to etch the enamel surface to increase adhesion to composite restorative materials and such surfaces may be more resistant to etching. The purpose of the study was to non-destructively measure the susceptibility of laser-ablated enamel surfaces to acid dissolution before and after acid-etching using Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT was used to acquire images of bovine enamel surfaces after exposure to laser irradiation at ablative fluence, acid-etching, and a surface softened dissolution model. The integrated reflectivity from lesion and the lesion depth were measured using PS-OCT. Samples were also sectioned for examination by Polarized Light Microscopy (PLM). PS-OCT images showed that acid-etching greatly accelerated the formation of subsurface lesions on both laser-irradiated and non-irradiated surfaces (Plaser modified enamel layer after 5-10 seconds.

  14. Assessment of vascularization and myelination following peripheral nerve repair using angiographic and polarization sensitive optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Nam, Ahhyun S.; Chico-Calero, Isabel; Easow, Jeena M.; Villiger, Martin; Welt, Jonathan; Winograd, Jonathan M.; Randolph, Mark A.; Redmond, Robert W.; Vakoc, Benjamin J.

    2017-02-01

    A severe traumatic injury to a peripheral nerve often requires surgical graft repair. However, functional recovery after these surgical repairs is often unsatisfactory. To improve interventional procedures, it is important to understand the regeneration of the nerve grafts. The rodent sciatic nerve is commonly used to investigate these parameters. However, the ability to longitudinally assess the reinnervation of injured nerves are limited, and to our knowledge, no methods currently exist to investigate the timing of the revascularization in functional recovery. In this work, we describe the development and use of angiographic and polarization-sensitive (PS) optical coherence tomography (OCT) to visualize the vascularization, demyelination and remyelination of peripheral nerve healing after crush and transection injuries, and across a variety of graft repair methods. A microscope was customized to provide 3.6 cm fields of view along the nerve axis with a capability to track the nerve height to maintain the nerve within the focal plane. Motion artifact rejection was implemented in the angiography algorithm to reduce degradation by bulk respiratory motion in the hindlimb site. Vectorial birefringence imaging methods were developed to significantly enhance the accuracy of myelination measurements and to discriminate birefringent contributions from the myelin and epineurium. These results demonstrate that the OCT platform has the potential to reveal new insights in preclinical studies and may ultimately provide a means for clinical intra-surgical assessment of peripheral nerve function.

  15. Polarization sensitive subcutaneous and muscular imaging based on common path optical coherence tomography using near infrared source.

    Science.gov (United States)

    Han, Jae-Ho; Kang, Jin U; Song, Chul Gyu

    2011-08-01

    In this paper, we describe a polarization sensitive (PS) subcutaneous and muscular imaging system based on common path optical coherence tomography (CP-OCT) using a near infrared source. The axial and lateral resolutions of the PS-OCT system are 9 and 6 μm, respectively. The main goal of this work is to build a high-resolution and minimally invasive optical imager for examining various kinds of cutaneous substructures with intrinsic or form birefringence. The internal structural information is extracted by the real-time signal analysis (Fourier Transform) of the modulated spectral intensity depending on the beam and tissue birefringence. The preliminary results using fresh beef longissimus muscle and in vivo Rattus norvegicus (rat) show that it is possible to visualize the birefringence effect of the tissue collagen fibers in the samples in order to achieve superior image contrast and sensitivity for the detection of hidden dermal structures. Compared to conventional CP-OCT, the proposed PS-OCT system provides depth-resolved images, which reflect the tissue birefringence.

  16. Multifunctional in vivo imaging for monitoring wound healing using swept-source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Park, Kwan S; Choi, Woo June; Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2017-11-30

    Wound healing involves a complex and dynamic biological process in response to tissue injury. Monitoring of the cascade of cellular events is useful for wound management and treatment. The aim of this study is to demonstrate the potential of multifunctional polarization-sensitive optical coherence tomography (PS-OCT) to longitudinally monitor the self-healing process in a murine cutaneous wound model. A multi-functional PS-OCT system based on swept source OCT configuration (1,310 nm central wavelength) was designed to obtain simultaneously microstructural, blood perfusion, and birefringent information of a biological tissue in vivo. A 1-mm-diameter wound was generated in a mouse pinna with a complete biopsy punch. Afterwards, the self-healing process of the injured tissue was observed every week over 6-week period using the multifunctional system to measure changes in the tissue birefringence. Further OCT angiography (OCTA) was used in post data processing to obtain blood perfusion information over the injured tissue. Three complementary images indicating the changes in anatomical, vascular, and birefringent information of tissue around wound were simultaneously provided from a 3-dimensional (3-D) PS-OCT data set during the wound repair over 1 month. Specifically, inflammatory and proliferative phases of wound healing were characterized by thickened epidermal tissue (from OCT images) and angiogenesis (from OCT angiography images) around wound. Also, it was observed that the regenerating tissues had highly realigned birefringent structures (from PS-OCT images). This preliminary study suggests that the proposed multi-functional imaging modality has a great potential to improve the understanding of wound healing through non-invasive, serial monitoring of vascular and tissue responses to injury. Lasers Surg. Med. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Polarization-Sensitive Optical Coherence Tomographic Documentation of Choroidal Melanin Loss in Chronic Vogt-Koyanagi-Harada Disease.

    Science.gov (United States)

    Miura, Masahiro; Makita, Shuichi; Yasuno, Yoshiaki; Tsukahara, Rintaro; Usui, Yoshihiko; Rao, Narsing A; Ikuno, Yasushi; Uematsu, Sato; Agawa, Tetsuya; Iwasaki, Takuya; Goto, Hiroshi

    2017-09-01

    Vogt-Koyanagi-Harada (VKH) disease is a systemic autoimmune disorder that affects organs with melanocytes. The sunset glow fundus (SGF) in VKH disease was evaluated with polarization-sensitive optical coherence tomography (PS-OCT). The study involved 28 eyes from 14 patients with chronic VKH disease, 21 eyes from 21 age-matched controls, and 22 eyes from 22 high-myopic patients with a tessellated fundus. VKH eyes were grouped into sunset or non-sunset groups on the basis of color fundus images. The presence of melanin in the choroid was determined by using the degree of polarization uniformity (DOPU) obtained by PS-OCT. The sunset glow index (SGI) was calculated by using color fundus images. Presence of an SGF was evaluated by using DOPU, SGI, subfoveal choroidal thicknesses, near-infrared images, and autofluorescence images at 488 nm (SW-AF) and 785 nm (NIR-AF). There were 16 eyes in the sunset group and 12 eyes in the non-sunset group. For all eyes in the sunset group, the disappearance of choroidal melanin was clearly detected with PS-OCT. Percentage areas of low DOPU in the choroidal interstitial stroma of the sunset group were significantly lower than those of other groups and showed no overlap with other groups. The distribution of choroidal thicknesses and SGI in the sunset group substantially overlapped with other groups. The subjective analyses of the sunset and non-sunset groups, using near infrared, SW-AF, or NIR-AF, showed substantial inconsistencies with the PS-OCT results. PS-OCT provides an in vivo objective evaluation of choroidal melanin loss of the SGF in chronic VKH disease.

  18. Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography

    Science.gov (United States)

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Hirn, Cornelia; Vass, Clemens; Hitzenberger, Christoph K.

    2010-01-01

    Purpose To analyze the physical origin of atypical scanning laser polarimetry (SLP) patterns. To compare polarization-sensitive optical coherence tomography (PS-OCT) scans to SLP images. To present a method to obtain pseudo-SLP images by PS-OCT that are free of atypical artifacts. Methods Forty-one eyes of healthy subjects, subjects with suspected glaucoma, and patients with glaucoma were imaged by SLP (GDx VCC) and a prototype spectral domain PS-OCT system. The PS-OCT system acquires three-dimensional (3D) datasets of intensity, retardation, and optic axis orientation simultaneously within 3 seconds. B-scans of intensity and retardation and en face maps of retinal nerve fiber layer (RNFL) retardation were derived from the 3D PS-OCT datasets. Results were compared with those obtained by SLP. Results Twenty-two eyes showed atypical retardation patterns, and 19 eyes showed normal patterns. From the 22 atypical eyes, 15 showed atypical patterns in both imaging modalities, five were atypical only in SLP images, and two were atypical only in PS-OCT images. In most (15 of 22) atypical cases, an increased penetration of the probing beam into the birefringent sclera was identified as the source of atypical patterns. In such cases, the artifacts could be eliminated in PS-OCT images by depth segmentation and exclusion of scleral signals. Conclusions PS-OCT provides deeper insight into the contribution of different fundus layers to SLP images. Increased light penetration into the sclera can distort SLP retardation patterns of the RNFL. PMID:19036999

  19. Lesion size detection in geographic atrophy by polarization-sensitive optical coherence tomography and correlation to conventional imaging techniques.

    Science.gov (United States)

    Schütze, Christopher; Bolz, Matthias; Sayegh, Ramzi; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2013-01-28

    To investigate the reproducibility of automated lesion size detection in patients with geographic atrophy (GA) using polarization-sensitive spectral-domain optical coherence tomography (PS-OCT) and to compare findings with scanning laser ophthalmoscopy (SLO), fundus autofluorescence (FAF), and intensity-based spectral-domain OCT (SD-OCT). Twenty-nine eyes of 22 patients with GA were examined by PS-OCT, selectively identifying the retinal pigment epithelium (RPE). A novel segmentation algorithm was applied, automatically detecting and quantifying areas of RPE atrophy. The reproducibility of the algorithm was assessed, and lesion sizes were correlated with manually delineated SLO, FAF, and intensity-based SD-OCT images to validate the clinical applicability of PS-OCT in GA evaluation. Mean GA lesion size of all patients was 5.28 mm(2) (SD: 4.92) in PS-OCT. Mean variability of individual repeatability measurements was 0.83 mm(2) (minimum: 0.05; maximum: 3.65). Mean coefficient of variation was 0.07 (min: 0.01; max: 0.19). Mean GA area in SLO (Spectralis OCT) was 5.15 mm(2) (SD: 4.72) and 2.5% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area in intensity-based SD-OCT pseudo-SLO images (Cirrus OCT) was 5.14 mm(2) (SD: 4.67) and 2.7% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area of all eyes measured 5.41 mm(2) (SD: 4.75) in FAF, deviating by 2.4% from PS-OCT results (P = 0.89, Pearson correlation coefficient = 0.99, P < 0.01). PS-OCT demonstrated high reproducibility of GA lesion size determination. Results correlated well with SLO, FAF, and intensity-based SD-OCT fundus imaging. PS-OCT may therefore be a valuable and specific imaging modality for automated GA lesion size determination in scientific studies and clinical practice.

  20. Quantum Optics

    CERN Document Server

    Garrison, J C

    2008-01-01

    Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor

  1. Quantum optics

    International Nuclear Information System (INIS)

    Flytzanis, C.

    1988-01-01

    The 1988 progress report of the Quantum Optics laboratory (Polytechnic School, France) is presented. The research program is focused on the behavior of dense and dilute materials submitted to short and high-intensity light radiation fields. Nonlinear optics techniques, with time and spatial resolution, are developed. An important research activity concerns the investigations on the interactions between the photon beams and the inhomogeneous or composite materials, as well as the artificial microstructures. In the processes involving molecular beams and surfaces, the research works on the photophysics of surfaces and the molecule-surface interactions, are included [fr

  2. In vivo polarization-sensitive optical coherence tomography of human burn scars: birefringence quantification and correspondence with histologically determined collagen density

    Science.gov (United States)

    Jaspers, Mariëlle E. H.; Feroldi, Fabio; Vlig, Marcel; de Boer, Johannes F.; van Zuijlen, Paul P. M.

    2017-12-01

    Obtaining adequate information on scar characteristics is important for monitoring their evolution and the effectiveness of clinical treatment. The aberrant type of collagen in scars may give rise to specific birefringent properties, which can be determined using polarization-sensitive optical coherence tomography (PS-OCT). The aim of this pilot study was to evaluate a method to quantify the birefringence of the scanned volume and correlate it with the collagen density as measured from histological slides. Five human burn scars were measured in vivo using a handheld probe and custom-made PS-OCT system. The local retardation caused by the tissue birefringence was extracted using the Jones formalism. To compare the samples, histograms of birefringence values of each volume were produced. After imaging, punch biopsies were harvested from the scar area of interest and sent in for histological evaluation using Herovici polychrome staining. Two-dimensional en face maps showed higher birefringence in scars compared to healthy skin. The Pearson's correlation coefficient for the collagen density as measured by histology versus the measured birefringence was calculated at r=0.80 (p=0.105). In conclusion, the custom-made PS-OCT system was capable of in vivo imaging and quantifying the birefringence of human burn scars, and a nonsignificant correlation between PS-OCT birefringence and histological collagen density was found.

  3. Concepts of quantum optics

    CERN Document Server

    Knight, P L

    1983-01-01

    Concepts of Quantum Optics is a coherent and sequential coverage of some real insight into quantum physics. This book is divided into six chapters, and begins with an overview of the principles and concepts of radiation and quanta, with an emphasis on the significance of the Maxwell's electromagnetic theory of light. The next chapter describes first the properties of the radiation field in a bounded cavity, showing how each cavity field mode has the characteristics of a simple harmonic oscillator and how each can be quantized using known results for the quantum harmonic oscillator. This chapte

  4. Quantum optics for experimentalists

    CERN Document Server

    Ou, Zhe-Yu Jeff

    2017-01-01

    This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar.

  5. Using supermodels in quantum optics

    Directory of Open Access Journals (Sweden)

    Garbers Nicole

    2006-01-01

    Full Text Available Starting from supersymmetric quantum mechanics and related supermodels within Schrödinger theory, we review the meaning of self-similar superpotentials which exhibit the spectrum of a geometric series. We construct special types of discretizations of the Schrödinger equation on time scales with particular symmetries. This discretization leads to the same type of point spectrum for the referred Schrödinger difference operator than in the self-similar superpotential case, hence exploiting an isospectrality situation. A discussion is opened on the question of how the considered energy sequence and its generalizations serve the understanding of coherent states in quantum optics.

  6. Elements of quantum optics

    CERN Document Server

    Meystre, Pierre

    2007-01-01

    Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...

  7. Quantum optics for engineers

    CERN Document Server

    Duarte, FJ

    2013-01-01

    Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book:Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflectionProvides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglem

  8. Quantum optics in multiple scattering random media

    DEFF Research Database (Denmark)

    Lodahl, Peter; Lagendijk, Ad

    2005-01-01

    Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent...... quantum optics in multiple scattering media and novel fundamental phenomena have been predicted when examining quantum fluctuations instead of merely the intensity of the light [1]. Here I will present the first experimental study of the propagation of quantum noise through an elastic, multiple scattering...... medium [2]. Two different types of quantum noise measurements have been carried out: total transmission and short-range frequency correlations. When comparing shot noise (quantum) to technical noise (classical) we observed markedly different behavior, c.f. Fig. 1. The experimental results are found...

  9. Quantum optics in multiple scattering random media

    DEFF Research Database (Denmark)

    Lodahl, Peter

    wave scattering has the potential of enhancing communication capacities, is ubiquitous in acoustical and biomedical imaging, and is the basis for fundamental findings such as intensity correlations, enhanced backscattering, and Anderson localization of light. Recently, theoretical work has considered......Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent...... quantum optics in multiple scattering media and novel fundamental phenomena have been predicted when examining quantum fluctuations instead of merely the intensity of the light [1]. Here I will present the first experimental study of the propagation of quantum noise through an elastic, multiple scattering...

  10. PREFACE: Quantum Optics III

    Science.gov (United States)

    Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.

    2007-06-01

    All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and

  11. Quantum optics in phase space

    CERN Document Server

    Schleich, W P; Mayr, E

    1998-01-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as

  12. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  13. Polarization-sensitive optical frequency domain imaging based on unpolarized light

    NARCIS (Netherlands)

    Kim, K.H.; Park, B. H.; Tu, Y.P.; Hasan, T.; Lee, B.; Li, J.; de Boer, J.F.

    2011-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is an augmented form of OCT, providing 3D images of both tissue structure and polarization properties. We developed a new method of polarization-sensitive optical frequency domain imaging (PS-OFDI), which is based on a wavelength-swept

  14. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  15. International Conference on Laser Physics and Quantum Optics

    CERN Document Server

    Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan

    2000-01-01

    Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...

  16. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  17. Quantum optical ABCD theorem in two-mode case

    International Nuclear Information System (INIS)

    Fan Hongyi; Hu Liyun

    2008-01-01

    By introducing the entangled Fresnel operator (EFO) this paper demonstrates that there exists ABCD theorem for two-mode entangled case in quantum optics. The canonical operator method as mapping of ray-transfer ABCD matrix is explicitly shown by EFO's normally ordered expansion through the coherent state representation and the technique of integration within an ordered product of operators

  18. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  19. Atomic physics and quantum optics using superconducting circuits.

    Science.gov (United States)

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  20. Collision models in quantum optics

    Science.gov (United States)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  1. Nonlinear Quantum Optical Springs and Their Nonclassical Properties

    International Nuclear Information System (INIS)

    Faghihi, M.J.; Tavassoly, M.K.

    2011-01-01

    The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of ω to ω√1+μa † a the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence of frequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Quantum Optical Effects in Semiconductors

    Science.gov (United States)

    Hoyer, W.; Kira, M.; Koch, S. W.

    Quantum optical effects in semiconductors are studied using a density-matrix approach which takes into account the many-body Coulomb interaction among the charge carriers, coupling to lattice vibrations, and the quantum nature of light. The theory provides a consistent set of equations which is used to compute photoluminescence spectra, predict the emission of squeezed light, investigate correlations between photons emitted by quantum-well structures, and to show examples where light-matter entanglement influences experiments done with classical optical fields.

  3. Development of an polarization sensitive Fourier domain optical coherence tomography and it utilization on the Mueller matrix determination; Desenvolvimento de um sistema de tomografia por coerencia optica no dominio de Fourier sensivel a polarizacao e sua utilizacao na determinacao das matrizes de Mueller

    Energy Technology Data Exchange (ETDEWEB)

    Raele, Marcus Paulo

    2009-07-01

    This study approached theoretical and experimental aspects related with the development of a polarization sensitive, Fourier domain, optical coherence tomography system (PS-FD-OCT) and its utilization on the Mueller Matrix determination. This work began with a bibliographic revision, which describes since the early studies to the actual state of the art of the technique. The mathematical formalism of Fourier domain low coherence interferometry and light polarization was performed as well. Studies based on numerical simulations, of three different algorithm types, responsible to recover the scattering profile, were done. The implemented algorithms were: Direct Fourier Transform, Interpolation and zero-filling. By the end of the simulation study, was possible to conclude that the algorithm zero-filling 2N presented better characteristics when compared with the others. In the experimental part, firstly different OCT setups were assembled and measurements were done in order to verify aspects related with the theory. Then, using a polymeric sample, birefringence images were performed, which allowed determining the sample birefringence quantitatively. Finally, images taken of different polarization states were collected, and through then images related with the Mueller Matrix elements were calculated, which were analyzed individually. (author)

  4. A topological quantum optics interface.

    Science.gov (United States)

    Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo

    2018-02-09

    The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Experimental quantum forgery of quantum optical money

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, Antonín; Chimczak, G.; Lemr, K.; Miranowicz, A.; Nori, F.

    2017-01-01

    Roč. 3, Mar (2017), s. 1-8, č. článku 7. ISSN 2056-6387 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : experimental quantum forgery * quantum optical money Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 9.111, year: 2016

  6. Experimental implementation of a quantum optical state comparison amplifier.

    Science.gov (United States)

    Donaldson, Ross J; Collins, Robert J; Eleftheriadou, Electra; Barnett, Stephen M; Jeffers, John; Buller, Gerald S

    2015-03-27

    We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.

  7. Semiconductor quantum optics with tailored photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne

    2011-06-15

    single photon emission into the waveguide. The results obtained during the course of this thesis contribute significantly to the understanding of coupling phenomena between excitons in self-assembled quantum dots and optical modes of tailored photonic nanostructures realized on the basis of two-dimensional photonic crystals. While we highlight the potential for advanced applications in the direction of quantum optics and quantum computation, we also identify some of the challenges which will need to be overcome on the way. (orig.)

  8. Semiconductor quantum optics with tailored photonic nanostructures

    International Nuclear Information System (INIS)

    Laucht, Arne

    2011-01-01

    the understanding of coupling phenomena between excitons in self-assembled quantum dots and optical modes of tailored photonic nanostructures realized on the basis of two-dimensional photonic crystals. While we highlight the potential for advanced applications in the direction of quantum optics and quantum computation, we also identify some of the challenges which will need to be overcome on the way. (orig.)

  9. Principles of laser spectroscopy and quantum optics

    CERN Document Server

    Berman, Paul R

    2011-01-01

    Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorptio

  10. Families of Bose rays in quantum optics

    International Nuclear Information System (INIS)

    Mukunda, N.; Sudarshan, E.C.G.; Simon, R.

    1988-01-01

    Having known classical wave optics and wave mechanics, can we reverse Schroedinger's path and extend the concept of families of rays of light to provide a new exact rendering of quantum optics including the Bose nature of photons? This question is answered in the affirmative, and the implications of the Bose symmetry for certain nonlocal correlations of the many-ray distribution functions are worked out. The similarities and the differences between classical and quantum wave optics are brought out. The ray-ray Bose correlation is analyzed. The generating functional for the many-ray distribution functions is formulated; and the notion of paraxial illumination for quantum optics is made precise

  11. Polarization sensitive beam bending using a spatially variant photonic crystal

    Science.gov (United States)

    Digaum, Jennefir L.; Pazos, Javier; Rumpf, Raymond; Chiles, Jeff; Fathpour, Sasan; Thomas, Jeremy N.; Kuebler, Stephen M.

    2015-02-01

    A spatially-variant photonic crystal (SVPC) that can control the spatial propagation of electromagnetic waves in three dimensions with high polarization sensitivity was fabricated and characterized. The geometric attributes of the SVPC lattice were spatially varied to make use of the directional phenomena of self-collimation to tightly bend an unguided beam coherently through a 90 degree angle. Both the lattice spacing and the fill factor of the SVPC were maintained to be nearly constant throughout the structure. A finite-difference frequency-domain computational method confirms that the SVPC can self-collimate and bend light without significant diffuse scatter caused by the bend. The SVPC was fabricated using multi-photon direct laser writing in the photo-polymer SU-8. Mid-infrared light having a vacuum wavelength of λ0 = 2.94 μm was used to experimentally characterize the SVPCs by scanning the sides of the structure with optical fibers and measuring the intensity of light emanating from each face. Results show that the SVPC is capable of directing power flow of one polarization through a 90-degree turn, confirming the self-collimating and polarization selective light-guiding properties of the structures.

  12. Quantum optical measurements with undetected photons through vacuum field indistinguishability.

    Science.gov (United States)

    Lee, Sun Kyung; Yoon, Tai Hyun; Cho, Minhaeng

    2017-07-26

    Quantum spectroscopy and imaging with undetected idler photons have been demonstrated by measuring one-photon interference between the corresponding entangled signal fields from two spontaneous parametric down conversion (SPDC) crystals. In this Report, we present a new quantum optical measurement scheme utilizing three SPDC crystals in a cascading arrangement; here, neither the detection of the idler photons which interact with materials of interest nor their conjugate signal photons which do not interact with the sample is required. The coherence of signal beams in a single photon W-type path-entangled state is induced and modulated by indistinguishabilities of the idler beams and crucially the quantum vacuum fields. As a result, the optical properties of materials or objects interacting with the idler beam from the first SPDC crystal can be measured by detecting second-order interference between the signal beams generated by the other two SPDC crystals further down the set-up. This gedankenexperiment illustrates the fundamental importance of vacuum fields in generating an optical tripartite entangled state and thus its crucial role in quantum optical measurements.

  13. Quantum optics shines in the photon's centenary

    CERN Multimedia

    Cho, Adrian

    2005-01-01

    Hundred years after Einstein's hypothesis, the 2005 Nobel Prize in physics honors three researchers who have pioneered the frontier between the wave and particle views of light and laid the foundation for the field of "quantum optics" (1/2 page)

  14. Fundamentals of quantum optics 3. Proceedings

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1993-01-01

    The present Seminar offered the opportunity to discuss at leisure problems of mutual interest to theoreticians and experimentalists who are working on various aspects of the field of quantum optics. The intention was to bring together people who are doing research on atomic interferometry, physics of cooled and trapped particles, cavity quantum electrodynamics, quantum statistics of light and other fundamentals. (orig.)

  15. Lectures on light nonlinear and quantum optics using the density matrix

    CERN Document Server

    Rand, Stephen C.

    2016-01-01

    This book bridges the gap between introductory quantum mechanics and the research front of modern optics and scientific fields that make use of light. While suitable as a reference for the specialist in quantum optics, it also targets non-specialists from other disciplines who need to understand light and its uses in research. It introduces a single analytic tool, the density matrix, to analyze complex optical phenomena encountered in traditional as well as cross-disciplinary research. It moves swiftly in a tight sequence from elementary to sophisticated topics in quantum optics, including optical tweezers, laser cooling, coherent population transfer, optical magnetism, electromagnetically induced transparency, squeezed light, and cavity quantum electrodynamics. A systematic approach starts with the simplest systems—stationary two-level atoms—then introduces atomic motion, adds more energy levels, and moves on to discuss first-, second-, and third-order coherence effects that are the basis for analyzing n...

  16. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    DEFF Research Database (Denmark)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing

    2016-01-01

    electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions transform under coordinate......While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...

  17. Quantum Optics Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence

    CERN Document Server

    Orszag, Miguel

    2008-01-01

    Quantum Optics gives a very broad coverage of basic laser-related phenomena that allow scientist and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this second edition, there is an enlarged chapter on decoherence, as well as additional material dealing with elements of quantum computation, entanglement of pure and mixed states as well as a chapter on quantum copying and processors. These topics are presented in a unified and didactic manner. The presentation of the book is clear and pedagogical; it balances the theoretical aspect of qua...

  18. A guide to experiments in quantum optics

    CERN Document Server

    Bachor, Hans-A

    2019-01-01

    In the third, fully revised and expanded edition of this well established textbook, the authors present new concepts, results, techniques, and the latest experiments in the field of quantum optics. They begin with the basic building blocks and concepts, before moving on to detailed procedures, and novel techniques. The focus is on metrology, communications, and quantum logic, with a special emphasis on single photon technology as well as hybrid detection. A new feature to this edition are the end-of-chapter summaries and full problems sets throughout.

  19. The 1989 progress report: quantum optics

    International Nuclear Information System (INIS)

    Flytzanis, C.

    1989-01-01

    The 1989 progress report of the laboratory of Quantum Optics of the Polytechnic School (France) is presented. The main research activity of the Laboratory is the study of processes controlling the behavior of matter under the action of high intensity light fields and under space-time constraints. The reported investigations were performed in the following fields: dynamics and vibrational relaxation modes in dense phases; nonlinear optical properties of composite materials; surface energy transfer and distribution in molecule surface interactions. Techniques relating to femtosecond impulsions, pulsating Raman and nonlinear optics were developed. The published papers, the conferences and the Laboratory staff are listed [fr

  20. Quantum optics. Gravity meets quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bernhard W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  1. Polarization sensitive optical frequency domain imaging system for endobronchial imaging

    NARCIS (Netherlands)

    Li, J.; Feroldi, Fabio; de Lange, J.; Daniels, J.M.A.; Grünberg, K.; de Boer, J.F.

    2015-01-01

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to

  2. The Sixth Rochester Conference on Coherence and Quantum Optics

    Science.gov (United States)

    1990-11-01

    ROCHESTER, MT 14618 USA IAUIEREP DARI UN!VERISTY OF TEXAS DIVISION OF E GIERING SAN ANTONIO , TI 70285 USA KAURANEN HATII UNIVERSITY OF ROCHESTER 125...11790 USA MEUCCI RICCARIO ISTITUTO MZIWL. ITTIC LAM E FEII 6 FIRENZE 50125 ITA. RETERHOFFER IAVII UNIVERSITT If ItOMSTEI 22 iEHAN ILKA ROCHESTER, NY...OFFICE " NAVAL IESEARN III N WIY, 1112Li AX6IOM, VA W� USA POLITI ANTONIO ISTITUTO NAZIGKIM’ITICA LUC1 E FEI i FIUMi£E 50125 ITALY "eTIi AifOlfle •f

  3. An exactly solvable system from quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Andrzej J., E-mail: maciejka@astro.ia.uz.zgora.pl [J. Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417 Zielona Góra (Poland); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland); Stachowiak, Tomasz, E-mail: stachowiak@cft.edu.pl [Center for Theoretical Physics PAS, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2015-07-31

    We investigate a generalisation of the Rabi system in the Bargmann–Fock representation. In this representation the eigenproblem of the considered quantum model is described by a system of two linear differential equations with one independent variable. The system has only one irregular singular point at infinity. We show how the quantisation of the model is related to asymptotic behaviour of solutions in a vicinity of this point. The explicit formulae for the spectrum and eigenfunctions of the model follow from an analysis of the Stokes phenomenon. An interpretation of the obtained results in terms of differential Galois group of the system is also given. - Highlights: • New exactly solvable system from quantum optics is found. • Normalisation condition for system in Bargmann representation is used. • Formulae for spectrum and eigenfunctions from analysis of Stokes phenomenon are given.

  4. Polarization-sensitive optical frequency domain imaging based on unpolarized light.

    Science.gov (United States)

    Kim, Ki Hean; Park, B Hyle; Tu, Yupeng; Hasan, Tayyaba; Lee, Byunghak; Li, Jianan; de Boer, Johannes F

    2011-01-17

    Polarization-sensitive optical coherence tomography (PS-OCT) is an augmented form of OCT, providing 3D images of both tissue structure and polarization properties. We developed a new method of polarization-sensitive optical frequency domain imaging (PS-OFDI), which is based on a wavelength-swept source. In this method the sample was illuminated with unpolarized light, which was composed of two orthogonal polarization states (i.e., separated by 180° in the Poincaré sphere) that are uncorrelated to each other. Reflection of these polarization states from within the sample was detected simultaneously and independently using a frequency multiplexing scheme. This simultaneous sample probing with two polarization states enabled determination of the depth-resolved Jones matrices of the sample. Polarization properties of the sample were obtained by analyzing the sample Jones matrices through eigenvector decomposition. The new PS-OFDI system ran at 31K wavelength-scans/s with 3072 pixels per wavelength-scan, and was tested by imaging a polarizer and several birefringent tissues such as chicken muscle and human skin. Lastly the new PS-OFDI was applied to imaging two cancer animal models: a mouse model by injecting cancer cells and a hamster cheek pouch model. These animal model studies demonstrated the significant differences in tissue polarization properties between cancer and normal tissues in vivo.

  5. Depth-encoded all-fiber swept source polarization sensitive OCT

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Lee, ByungKun; Choi, WooJhon; Potsaid, Benjamin; Liu, Jonathan; Jayaraman, Vijaysekhar; Cable, Alex; Kraus, Martin F.; Liang, Kaicheng; Hornegger, Joachim; Fujimoto, James G.

    2014-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design. PMID:25401008

  6. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  7. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  8. Topological insulator infrared pseudo-bolometer with polarization sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Peter Anand

    2017-10-25

    Topological insulators can be utilized in a new type of infrared photodetector that is intrinsically sensitive to the polarization of incident light and static magnetic fields. The detector isolates single topological insulator surfaces and allows light collection and exposure to static magnetic fields. The wavelength range of interest is between 750 nm and about 100 microns. This detector eliminates the need for external polarization selective optics. Polarization sensitive infrared photodetectors are useful for optoelectronics applications, such as light detection in environments with low visibility in the visible wavelength regime.

  9. A vertebrate retina with segregated colour and polarization sensitivity.

    Science.gov (United States)

    Novales Flamarique, Iñigo

    2017-09-13

    Besides colour and intensity, some invertebrates are able to independently detect the polarization of light. Among vertebrates, such separation of visual modalities has only been hypothesized for some species of anchovies whose cone photoreceptors have unusual ultrastructure that varies with retinal location. Here, I tested this hypothesis by performing physiological experiments of colour and polarization discrimination using the northern anchovy, Engraulis mordax Optic nerve recordings showed that the ventro-temporal (VT), but not the ventro-nasal (VN), retina was polarization sensitive, and this coincided with the exclusive presence of polarization-sensitive photoreceptors in the VT retina. Spectral (colour) sensitivity recordings from the VN retina indicated the contribution of two spectral cone mechanisms to the optic nerve response, whereas only one contributed to the VT retina. This was supported by the presence of only one visual pigment in the VT retina and two in the VN retina, suggesting that only the VN retina was associated with colour sensitivity. Behavioural tests further demonstrated that anchovies could discriminate colour and the polarization of light using the ventral retina. Thus, in analogy with the visual system of some invertebrates, the northern anchovy has a retina with segregated retinal pathways for colour and polarization vision. © 2017 The Author(s).

  10. Classical Optical Transforms Studied in the Context of Quantum Optics via the Route of Developing Dirac's Symbolic Method

    Science.gov (United States)

    Fan, Hong-Yi; Lu, Hai-Liang

    Via the route of developing Dirac's symbolic method and following Dirac's assertion: "⋯ for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory", we find the generalized Fresnel operator (GFO) corresponding to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in quantum optics. With the aid of entangled state representation the entangled Fresnel transform is proposed; new eigenfunctions of the complex fractional Fourier transform and fractional Hankel transform are obtained; the two-variable Hermite eigenmodes of light propagation are used in studying the Talbot effect in quadratic-index media; the complex wavelet transform and the condition of mother wavelet are studied in the context of quantum optics too. Moreover, quantum optical version of classical z-transforms is obtained on the basis of the eigenvector of creation operator. Throughout our discussions, the coherent state, squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used.

  11. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    Science.gov (United States)

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  12. Correspondence between quantum-optical transform and classical-optical transform explored by developing Dirac's symbolic method

    Science.gov (United States)

    Fan, Hong-yi; Hu, Li-yun

    2012-06-01

    By virtue of the new technique of performing integration over Dirac's ket-bra operators, we explore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel-Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, deriving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel operator (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum optics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".

  13. X-ray quantum optics with Moessbauer nuclei in thin-film cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heeg, Kilian Peter

    2014-12-09

    In this thesis thin-film cavities with embedded Moessbauer nuclei probed by near-resonant X-ray light are studied from a quantum optical perspective. A theoretical framework is developed and compact expressions for the observables are derived for the linear excitation regime, which is encountered in current experiments. Even advanced cavity layouts can be modeled in excellent agreement with the results of previous experiments and semi-classical approaches. In the absence of magnetic hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano profiles. An experimental implementation of this line shape control allows to extract spectroscopic signatures with high precision and to reconstruct the phase of the nuclear transition in good agreement with the theoretical predictions. The alignment of medium magnetization and polarization control of the X-rays enable to engineer advanced quantum optical level schemes, in which vacuum induced coherence effects are predicted and successfully demonstrated in an experiment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved in the cavity. A scheme for its observation is proposed and then employed to experimentally confirm sub-luminal X-ray propagation. Finally, non-linear effects, which could become accessible with future light sources, are explored and a non-linear line shape control mechanism is discussed.

  14. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014.......With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...

  15. Statistical methods in quantum optics 2 non-classical fields

    CERN Document Server

    Carmichael, H J

    2007-01-01

    Statistical Methods in Quantum Optics 2 - Non-Classical Fields continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in the first volume Statistical Methods in Quantum Optics 1 - Matter Equations and Fokker-Planck Equations: the difficulties these methods face in treating non-classical light are exposed, where the regime of large fluctuations – failure of the system size expansion – is shown to be particularly problematic. Cavity QED is adopted as a natural vehicle for extending quantum noise theory into this regime. In response to the issues raised, the theory of quantum trajectories is presented as a universal approach to the treatment of fluctuations in open quantum systems. This book presents its material at a level suitable for beginning researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with o...

  16. Quantum optics, molecular spectroscopy and low-temperaturespectroscopy: general discussion

    Czech Academy of Sciences Publication Activity Database

    Orrit, M.; Evans, G.; Cordes, T.; Kratochvílová, Irena

    2015-01-01

    Roč. 184, Sep (2015), 275-303 ISSN 1359-6640 R&D Projects: GA TA ČR TA04020156 Institutional support: RVO:68378271 Keywords : quantum optics * molecular spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.544, year: 2015

  17. Scattering Induced Quantum Interference of Multiple Quantum Optical States

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger

    2011-01-01

    Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...

  18. Quantum optical predictions in Q representation for Bell's type experiments

    International Nuclear Information System (INIS)

    Ferrero, M.; Marshall, T.W.

    1991-01-01

    Using the Q representation, the authors study the disagreement between quantum optical formalism and local realism and they show that the phenomenon of enhancement, first revealed by the local realist analysis, could receive a simple explanation if they use this particular version of the quantum formalism. Nevertheless, some fundamental difficulties remain

  19. Polarization sensitive optical frequency domain imaging system for endobronchial imaging.

    Science.gov (United States)

    Li, Jianan; Feroldi, Fabio; de Lange, Joop; Daniels, Johannes M A; Grünberg, Katrien; de Boer, Johannes F

    2015-02-09

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2x2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens.

  20. THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, R. J. [Department of Physics, West Chester University of Pennsylvania, West Chester, PA 19383 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales, CF24 3AA (United Kingdom); Aiola, S. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Angilè, F. E.; Devlin, M. J.; Dicker, S. R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Amiri, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Beall, J. A.; Becker, D. T.; Fowler, J. W.; Fox, A. E.; Gao, J. [NIST Quantum Sensors Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Cho, H-M. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Choi, S. K.; Grace, E. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Corlies, P.; Gallardo, P. A. [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Coughlin, K. P.; Datta, R. [Department of Physics, University of Michigan Ann Arbor, MI 48109 (United States); Dünner, R. [Instituto de Astrofísica and Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); and others

    2016-12-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  1. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    Science.gov (United States)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; hide

    2016-01-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  2. Interference due to coherence swapping

    Indian Academy of Sciences (India)

    Quantum Optics and Information Groups, School of Informatics, Dean Street, University of Wales,. Bangor LL 57 1UT, UK ... has come from a single source and made to pass through a double slit or through a suit- able device such as a .... This is a method to swap coherence from the primary pairs of possible paths to another ...

  3. Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence

    CERN Document Server

    Orszag, Miguel

    2016-01-01

    This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to...

  4. EDITORIAL: The 15th Central European Workshop on Quantum Optics The 15th Central European Workshop on Quantum Optics

    Science.gov (United States)

    Bozic, Mirjana; Man'ko, Margarita; Arsenovic, Dusan

    2009-07-01

    The development of quantum optics was part and parcel of the formation of modern physics following the fundamental work of Max Planck and Albert Einstein, which gave rise to quantum mechanics. The possibility of working with pure quantum objects, like single atoms and single photons, has turned quantum optics into the main tool for testing the fundamentals of quantum physics. Thus, despite a long history, quantum optics nowadays remains an extremely important branch of physics. It represents a natural base for the development of advanced technologies, like quantum information processing and quantum computing. Previous Central European Workshops on Quantum Optics (CEWQO) took place in Palermo (2007), Vienna (2006), Ankara (2005), Trieste (2004), Rostock (2003), Szeged (2002), Prague (2001), Balatonfüred (2000), Olomouc (1999), Prague (1997), Budmerice (1995, 1996), Budapest (1994) and Bratislava (1993). Those meetings offered excellent opportunities for the exchange of knowledge and ideas between leading scientists and young researchers in quantum optics, foundations of quantum mechanics, cavity quantum electrodynamics, photonics, atom optics, condensed matter optics, and quantum informatics, etc. The collaborative spirit and tradition of CEWQO were a great inspiration and help to the Institute of Physics, Belgrade, and the Serbian Academy of Sciences and Arts, as the organizers of CEWQO 2008. The 16th CEWQO will take place in 2009 in Turku, Finland, and the 17th CEWQO will be organized in 2010 in St Andrews, United Kingdom. The 15th CEWQO was organized under the auspices and support of the Ministry of Science of the Republic of Serbia, the Serbian Physical Society, the European Physical Society with sponsorship from the University of Belgrade, the Central European Initiative, the FP6 Program of the European Commission under INCO project QUPOM No 026322, the FP7 Program of the European Commission under project NANOCHARM, Europhysics Letters (EPL), The European

  5. Automated Identification and Quantification of Subretinal Fibrosis in Neovascular Age-Related Macular Degeneration Using Polarization-Sensitive OCT.

    Science.gov (United States)

    Roberts, Philipp; Sugita, Mitsuro; Deák, Gábor; Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Sacu, Stefan; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2016-04-01

    To identify and quantify subretinal fibrosis in eyes with advanced neovascular age-related macular degeneration (nAMD) using polarization-sensitive optical coherence tomography (PS-OCT). Eyes of patients with subretinal fibrosis secondary to nAMD were included in this case series. All patients underwent a complete ophthalmic examination to clearly identify advanced nAMD lesions with fibrosis. Examinations of PS-OCT were performed using a novel system with an integrated eye tracker. Areas of fibrosis in PS-OCT, automatically segmented using a custom-built algorithm, were compared with conventional imaging modalities including spectral-domain OCT, fluorescein angiography, and color fundus photography in their potential to visualize fibrosis in nAMD. Fifteen eyes of 15 consecutive patients were included. In polarization-sensitive OCT B-scans, a distinct "column-like" pattern was observed in averaged axis orientation images. En face analysis provided a precise mapping of the fibrotic scar component. Fibrous tissue was selectively identified by PS-OCT based on birefringence in all lesions, whereas in SD-OCT, subretinal hyperreflective material (SHRM) could not be further classified into scar tissue, fibrovascular material, or other AMD-specific material. Based on simultaneous polarization analyses in PS-OCT, the level of RPE alteration could be evaluated as well, showing thinning and loss of RPE associated with subretinal fibrosis. Using PS-OCT, subretinal fibrosis can be identified as an intrinsically birefringent structure and can be segmented based solely on tissue-specific contrast. Polarization-sensitive OCT offers a unique method to identify clinically relevant components of SHRM (i.e., neovascular tissue versus fibrous tissue) and therefore allows for an optimized disease management and evaluation of therapeutic strategies.

  6. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    Science.gov (United States)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  7. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental c...

  8. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental ...

  9. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental...

  10. Hard X-ray quantum optics in thin films nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Johann Friedrich Albert

    2017-05-15

    This thesis describes quantum optical experiments with X-rays with the aim of reaching the strong-coupling regime of light and matter. We make use of the interaction which arises between resonant matter and X-rays in specially designed thin-film nanostructures which form X-ray cavities. Here, the resonant matter are Tantalum atoms and the Iron isotope {sup 57}Fe. Both limit the number of modes available to the resonant atoms for interaction, and enhances the interaction strength. Thus we have managed to observe a number of phenomena well-known in quantum optics, which are the building blocks for sophisticated applications in e.g. metrology. Among these are the strong coupling of light and matter and the concurrent exchange of virtual photons, often called Rabi oscillations. Furthermore we have designed and tested a type of cavity hitherto unused in X-ray optics. Finally, we develop a new method for synchrotron Moessbauer spectroscopy, which not only promises to yield high-resolution spectra, but also enables the retrieval of the phase of the scattered light. The results open new avenues for quantum optical experiments with X-rays, particularly with regards to the ongoing development of high-brilliance X-ray free-electron lasers.

  11. Hard X-ray quantum optics in thin films nanostructures

    International Nuclear Information System (INIS)

    Haber, Johann Friedrich Albert

    2017-05-01

    This thesis describes quantum optical experiments with X-rays with the aim of reaching the strong-coupling regime of light and matter. We make use of the interaction which arises between resonant matter and X-rays in specially designed thin-film nanostructures which form X-ray cavities. Here, the resonant matter are Tantalum atoms and the Iron isotope 57 Fe. Both limit the number of modes available to the resonant atoms for interaction, and enhances the interaction strength. Thus we have managed to observe a number of phenomena well-known in quantum optics, which are the building blocks for sophisticated applications in e.g. metrology. Among these are the strong coupling of light and matter and the concurrent exchange of virtual photons, often called Rabi oscillations. Furthermore we have designed and tested a type of cavity hitherto unused in X-ray optics. Finally, we develop a new method for synchrotron Moessbauer spectroscopy, which not only promises to yield high-resolution spectra, but also enables the retrieval of the phase of the scattered light. The results open new avenues for quantum optical experiments with X-rays, particularly with regards to the ongoing development of high-brilliance X-ray free-electron lasers.

  12. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    Science.gov (United States)

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  13. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide

    Science.gov (United States)

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D.; Ludwig, Arne; Löbl, Matthias C.; Söllner, Immo; Warburton, Richard J.; Lodahl, Peter

    2018-03-01

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise is of importance and the influence of photonic nanostructures on the broadening has not been clarified. We present near lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of $66 \\pm 4 \\%$, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically-contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out, i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  14. EDITORIAL The 17th Central European Workshop on Quantum Optics

    Science.gov (United States)

    Man'ko, Margarita A.

    2011-02-01

    Although the origin of quantum optics can be traced back to the beginning of the 20th century, when the fundamental ideas about the quantum nature of the interaction between light and matter were put forward, the splendid blossoming of this part of physics began half a century later, after the invention of masers and lasers. It is remarkable that after another half a century the tree of quantum optics is not only very strong and spreading, but all its branches continue to grow, showing new beautiful blossoms and giving very useful fruits. A reflection of this progress has been the origin and development of the series of annual events called the Central European Workshops on Quantum Optics (CEWQO). They started at the beginning of the 1990s as rather small meetings of physicists from a few countries in central-eastern Europe, but in less than two decades they have transformed into important events, gathering 100 to 200 participants from practically all European countries. Moreover, many specialists from other continents like to attend these meetings, since they provide an excellent chance to hear about the latest results and new directions of research. Regarding this, it seems worth mentioning at least some of the most interesting and important areas of quantum optics that have attracted the attention of researchers for the past two decades. One of these areas is quantum information, which over the course of time has become an almost independent area of quantum physics. But it still maintains very close ties with quantum optics. The specific parts of this area are, in particular, quantum computing, quantum communication and quantum cryptography, and the problem of quantitative description of such genuine quantum phenomena as entanglement is one of the central items in the current stream of publications. Theory and experiment related to quantum tomography have also become important to contemporary quantum optics. They are closely related to the subject of so

  15. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....

  16. Coherent states in quantum mechanics; Estados coerentes em mecanica quantica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  17. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device.

    Science.gov (United States)

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Junhua; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2018-01-28

    Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO 2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.

  18. Quantum optical arbitrary waveform manipulation and measurement in real time.

    Science.gov (United States)

    Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping

    2014-11-17

    We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.

  19. Generalized delta functions and their use in quantum optics

    Science.gov (United States)

    Brewster, R. A.; Franson, J. D.

    2018-01-01

    The Dirac delta function δ(x) is widely used in many areas of physics and mathematics. Here we consider the generalization of a Dirac delta function to allow the use of complex arguments. We show that the properties of a generalized delta function are very different from those of a Dirac delta function and that they behave more like a pole in the complex plane. We use the generalized delta function to derive the Glauber-Sudarshan P-function, P(α), for a Schrödinger cat state in a surprisingly simple form. Aside from their potential applications in classical electromagnetism and quantum optics, these results provide insight into the ability of the diagonal P-function to describe density operators with off-diagonal elements.

  20. Nanoparticles displacement analysis using optical coherence tomography

    Science.gov (United States)

    StrÄ kowski, Marcin R.; Kraszewski, Maciej; StrÄ kowska, Paulina

    2016-03-01

    Optical coherence tomography (OCT) is a versatile optical method for cross-sectional and 3D imaging of biological and non-biological objects. Here we are going to present the application of polarization sensitive spectroscopic OCT system (PS-SOCT) for quantitative measurements of materials containing nanoparticles. The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. In this contribution the benefits of using the combination of timefrequency and polarization sensitive analysis are being expressed. The usefulness of PS-SOCT for nanoparticles evaluation is going to be tested on nanocomposite materials with TiO2 nanoparticles. The OCT measurements results have been compared with SEM examination of the PMMA matrix with nanoparticles. The experiment has proven that by the use of polarization sensitive and spectroscopic OCT the nanoparticles dispersion and size can be evaluated.

  1. Cell Microtubules as Cavities Quantum Coherence and Energy Transfer?

    CERN Document Server

    Mavromatos, Nikolaos E

    2000-01-01

    A model is presented for dissipationless energy transfer in cell microtubules due to quantum coherent states. The model is based on conjectured (hydrated) ferroelectric properties of microtubular arrangements. Ferroelectricity is essential in providing the necessary isolation against thermal losses in thin interior regions, full of ordered water, near the tubulin dimer walls of the microtubule. These play the role of cavity regions, which are similar to electromagnetic cavities of quantum optics. As a result, the formation of (macroscopic) quantum coherent states of electric dipoles on the tubulin dimers may occur. Some experiments, inspired by quantum optics, are suggested for the falsification of this scenario.

  2. ABCD rule for Gaussian beam propagation in the context of quantum optics derived by the IWOP technique

    International Nuclear Information System (INIS)

    Fan Hongyi; Lu Hailiang; Gao Weibo; Xu Xuefen

    2006-01-01

    The development of technique of integration within an ordered product (IWOP) of operators extends the Newton-Leibniz integration rule, originally applying to permutable functions, to the non-commutative quantum mechanical operators composed of Dirac's ket-bra, which enables us to obtain the images of directly mapping symplectic transformation in classical phase space parameterized by [A, B; C, D] into quantum mechanical operator through the coherent state representation, we call them the generalized Fresnel operators (GFO) since they correspond to Fresnel transforms in Fourier optics. Based on GFO we find the ABCD rule for Gaussian beam propagation in the context of quantum optics (both in one-mode and two-mode cases) whose classical correspondence is just the ABCD rule in matrix optics. The entangled state representation is used in discussing the two-mode case

  3. Generalized optomechanics and its applications quantum optical properties of generalized optomechanical system

    CERN Document Server

    Li, Jin Jin

    2013-01-01

    A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure

  4. Quantum-optical magnets with competing short- and long-range interactions: Rydberg-dressed spin lattice in an optical cavity

    Directory of Open Access Journals (Sweden)

    Jan Gelhausen, Michael Buchhold, Achim Rosch, Philipp Strack

    2016-10-01

    Full Text Available The fields of quantum simulation with cold atoms [1] and quantum optics [2] are currently being merged. In a set of recent pathbreaking experiments with atoms in optical cavities [3,4] lattice quantum many-body systems with both, a short-range interaction and a strong interaction potential of infinite range -mediated by a quantized optical light field- were realized. A theoretical modelling of these systems faces considerable complexity at the interface of: (i spontaneous symmetry-breaking and emergent phases of interacting many-body systems with a large number of atoms $N\\rightarrow\\infty$, (ii quantum optics and the dynamics of fluctuating light fields, and (iii non-equilibrium physics of driven, open quantum systems. Here we propose what is possibly the simplest, quantum-optical magnet with competing short- and long-range interactions, in which all three elements can be analyzed comprehensively: a Rydberg-dressed spin lattice [5] coherently coupled to a single photon mode. Solving a set of coupled even-odd sublattice Master equations for atomic spin and photon mean-field amplitudes, we find three key results. (R1: Superradiance and a coherent photon field can coexist with spontaneously broken magnetic translation symmetry. The latter is induced by the short-range nearest-neighbor interaction from weakly admixed Rydberg levels. (R2: This broken even-odd sublattice symmetry leaves its imprint in the light via a novel peak in the cavity spectrum beyond the conventional polariton modes. (R3: The combined effect of atomic spontaneous emission, drive, and interactions can lead to phases with anomalous photon number oscillations. Extensions of our work include nano-photonic crystals coupled to interacting atoms and multi-mode photon dynamics in Rydberg systems.

  5. Coherent states, wavelets, and their generalizations

    CERN Document Server

    Ali, Syed Twareque; Gazeau, Jean-Pierre

    2014-01-01

    This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics.   Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altoget...

  6. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Directory of Open Access Journals (Sweden)

    Zhu Shiming

    2018-01-01

    Full Text Available A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  7. EDITORIAL: The 18th Central European Workshop on Quantum Optics The 18th Central European Workshop on Quantum Optics

    Science.gov (United States)

    Sánchez-Soto, Luis L.; Man'ko, Margarita A.

    2012-02-01

    Much of our present understanding of the microscopic world is based on quantum mechanics. The field owes much of its existence to the venerable science of optics, since the fundamental ideas on the nature of the interaction between light and matter lie at the roots of its origin. We have now reached one century of quantum mechanics. In contrast, the splendid blossoming of quantum optics began only after the comparatively recent invention of the laser. Since then, it has become an exciting and always expanding area at the cutting-edge of research, in part because theory and experiment are more closely connected in this field than any other. Moreover, the technological distance between fundamental studies and practical applications has always been very short in quantum optics. As a result, modern engineering is increasingly based on quantum rather than classical physics; we are facing a transition similar to the one society confronted 200 years ago, at the start of the Industrial Revolution. In parallel with this, the physics community is witnessing the recent and vigorous emergence of quantum information. It aims at exploring the physical foundations of information and at developing efficient methods for processing quantum information. The questions driving this field reveal a profound change in attitude towards fundamental aspects of quantum theory. The photon turns out to be a tool extremely well suited to exploring theoretical quantum information schemes and their experimental implementations. Mirroring this continued progress has been the growth and development of the series of annual Central European Workshops on Quantum Optics (CEWQO). The series started at the beginning of the 1990s, as rather small meetings of physicists from a few countries in central-eastern Europe. In two decades, the workshops have transformed into important events that reach well beyond the original rather restricted geographical limits. The history of CEWQOs can be found in the preface

  8. Multiple particle production processes in the ''light'' of quantum optics

    International Nuclear Information System (INIS)

    Friedlander, E.M.

    1990-09-01

    Ever since the observation that high-energy ''nuclear active'' cosmic-ray particles create bunches of penetrating particles upon hitting targets, a controversy has raged about whether these secondaries are created in a ''single act'' or whether many hadrons are just the result of an intra-nuclear cascade, yielding one meson in every step. I cannot escape the impression that: the latter kind of model appeals naturally as a consequence of an innate bio-morphism in our way of thinking and that in one guise or another it has tenaciously survived to this day, also for hadron-hadron collisions, via multi-peripheral models to the modern parton shower approach. Indeed, from the very beginning of theoretical consideration of multiparticle production, the possibility of many particles arising from a single ''hot'' system has been explored, with many fruitful results, not the least of which are the s 1/4 dependence of the mean produced particle multiplicity and the ''thermal'' shape of the P T spectra. An important consequence of the thermodynamical-hydrodynamical models is that particle emission is treated in analogy to black-body radiation, implying for the secondaries a set of specific Quantum-Statistical properties, very similar to those observed in quantum optics. From here on I shall try to review a number of implications and applications of this QS analogy in the study of multiplicity distributions of the produced secondaries. I will touch only in passing another very important topic of this class, the Bose-Einstein two-particle correlations

  9. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    OpenAIRE

    Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...

  10. Some quantum optical states as realizations of Lie groups

    Directory of Open Access Journals (Sweden)

    Abdel-Shafy Fahmy Obada

    2011-04-01

    Full Text Available We start with the Heisenberg–Weyl algebra and after the definitions of the Fock states we give the definition of the coherent state of this group. This is followed by the exposition of the SU(2 and SU(1,1 algebras and their coherent states. From there we go on describing the binomial state and its extensions as realizations of the SU(2 group. This is followed by considering the negative binomial states, and some squeezed states as realizations of the SU(1,1 group. Generation schemes based on physical systems are mentioned for some of these states.

  11. Polarization Sensitive Measurements of Molecular Reorientation in a Glass Capacitor Cell

    Science.gov (United States)

    Cooper, Nathan; Lawhead, Carlos; Anderson, Josiah; Shiver, Tegan; Prayaga, Chandra; Ujj, Laszlo

    2014-03-01

    It is well known that molecules having a permanent dipole moment tend to orient in the direction of the electric field at room temperature. The reorientation can be probed with the help of linear spectroscopy methods such as fluorescence anisotropy measurements. We have used nonlinear polarization sensitive Raman scattering spectroscopy to quantify the orientation effect of the dipoles. Vibrational spectra of the molecules has been recorded as a function of the external electric field. The polarization changes observed during the measurement are directly linked to the molecular reorientation rearrangement. Spectra has been recorded with a laser spectrometer comprised of a Nd:YAG laser and an optical parametric oscillator and an imaging spectrometer with a CCD detector. In order to make this measurement we have constructed a glass capacitor cell coated in TiO and applied a significant electric field (0-3 kV/mm) to the sample. Our measurements showed that the orientation effect is most significant for liquid crystals as observed previously with non-polarization sensitive CARS spectroscopy.

  12. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    Science.gov (United States)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  13. Colloquium: Quantum coherence as a resource

    Science.gov (United States)

    Streltsov, Alexander; Adesso, Gerardo; Plenio, Martin B.

    2017-10-01

    The coherent superposition of states, in combination with the quantization of observables, represents one of the most fundamental features that mark the departure of quantum mechanics from the classical realm. Quantum coherence in many-body systems embodies the essence of entanglement and is an essential ingredient for a plethora of physical phenomena in quantum optics, quantum information, solid state physics, and nanoscale thermodynamics. In recent years, research on the presence and functional role of quantum coherence in biological systems has also attracted considerable interest. Despite the fundamental importance of quantum coherence, the development of a rigorous theory of quantum coherence as a physical resource has been initiated only recently. This Colloquium discusses and reviews the development of this rapidly growing research field that encompasses the characterization, quantification, manipulation, dynamical evolution, and operational application of quantum coherence.

  14. The Quantum World of Ultra-Cold Atoms and Light - Book 1: Foundations of Quantum Optics

    Science.gov (United States)

    Gardiner, Crispin; Zoller, Peter

    2014-03-01

    Abstract The Table of Contents is as follows: * I - THE PHYSICAL BACKGROUND * 1. Controlling the Quantum World * 1.1 Quantum Optics * 1.2 Quantum Information * 2. Describing the Quantum World * 2.1 Classical Stochastic Processes * 2.2. Theoretical Quantum Optics * 2.3. Quantum Stochastic Methods * 2.4. Ultra-Cold Atoms * II - CLASSICAL STOCHASTIC METHODS * 3. Physics in a Noisy World * 3.1. Brownian Motion and the Thermal Origin of Noise * 3.2. Brownian Motion, Friction, Noise and Temperature * 3.3. Measurement in a Fluctuating System * 4. Stochastic Differential Equations * 4.1. Ito Stochastic Differential Equation * 4.2. The Fokker-Planck Equation * 4.3. The Stratonovich Stochastic Differential Equation * 4.4. Systems with Many Variables * 4.5. Numerical Simulation of Stochastic Differential Equations * 5. The Fokker-Planck Equation * 5.1. Fokker-Planck Equation in One Dimension * 5.2. Eigenfunctions of the Fokker-Planck Equation * 5.3. Many-Variable Fokker-Planck Equations * 6. Master Equations and Jump Processes * 6.1. The Master Equation * 7. Applications of Random Processes * 7.1. The Ornstein-Uhlenbeck Process * 7.2. Johnson Noise * 7.3. Complex Variable Oscillator Processes * 8. The Markov Limit * 8.1. The White Noise Limit * 8.2. Interpretation and Generalizations of the White Noise Limit * 8.3. Linear Non-Markovian Stochastic Differential Equations * 9. Adiabatic Elimination of Fast Variables * 9.1 Slow and Fast Variables * 9.2. Other Applications of the Adiabatic Elimination Method * III - FIELDS, QUANTA AND ATOMS * 10. Ideal Bose and Fermi Systems * 10.1. The Quantum Gas * 10.2. Thermal States * 10.3. Fluctuations in the Ideal Bose Gas * 10.4. Bosonic Quantum Gaussian Systems * 10.5. Coherent States * 10.6. Fluctuations in Systems of Fermions * 10.7. Two-Level Systems and Pauli Matrices * 11. Quantum Fields * 11.1 Kinds of Quantum Field * 11.2 Coherence and Correlation Functions * 12. Atoms, Light and their Interaction * 12.1. Interaction with the

  15. A high-speed, reconfigurable, channel- and time-tagged photon arrival recording system for intensity-interferometry and quantum optics experiments

    Science.gov (United States)

    Girish, B. S.; Pandey, Deepak; Ramachandran, Hema

    2017-08-01

    We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.

  16. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  17. Quantum opto-mechanics with micromirrors : combining nano-mechanics with quantum optics

    International Nuclear Information System (INIS)

    Groeblacher, S.

    2010-01-01

    This work describes more than four years of research on the effects of the radiation-pressure force of light on macroscopic mechanical structures. The basic system studied here is a mechanical oscillator that is highly reflective and part of an optical resonator. It interacts with the optical cavity mode via the radiation-pressure force. Both the dynamics of the mechanical oscillation and the properties of the light field are modified through this interaction. In our experiments we use quantum optical tools (such as homodyning and down-conversion) with the goal of ultimately showing quantum behavior of the mechanical center of mass motion. In this thesis we present several experiments that pave the way towards this goal and when combined should allow the demonstration of the envisioned quantum phenomena, including entanglement, teleportation and Schroeodinger cat states. The study of quantum behavior of truly macroscopic systems is a long outstanding goal, which will help to answer some of the most fundamental questions in quantum physics today: Why is the world around us classical and not quantum? Is there a size- or mass-limit to systems for them to behave according to quantum mechanics? Is quantum theory complete or do we have to extend it to include mechanisms such as decoherence? Can we use the quantum nature of macroscopic objects to, for example, improve the measurement precision of classical apparatuses? The experiments discussed in this thesis include the very first passive radiation-pressure cooling of a mechanical oscillator in a cryogenic optical resonator, as well as the experimental demonstration of radiation-pressure cooling close to the mechanical quantum ground state. Cooling of the mechanical motion is an important pre-condition for observing quantum effects of the mechanical oscillator. In another experiment, we have demonstrated that we are able to enter the strong-coupling regime of the optomechanical system a regime where coherent energy

  18. PREFACE: International Conference on Quantum Optics and Quantum Information (icQoQi) 2013

    Science.gov (United States)

    2014-11-01

    Quantum Information can be understood as being naturally derived from a new understanding of information theory when quantum systems become information carriers and quantum effects become non negligible. Experiments and the realization of various interesting phenomena in quantum information within the established field of quantum optics have been reported, which has provided a very convenient framework for the former. Together, quantum optics and quantum information are among the most exciting areas of interdisciplinary research in modern day science which cover a broad spectrum of topics, from the foundations of quantum mechanics and quantum information science to the introduction of new types of quantum technologies and metrology. The International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 was organized by the Faculty of Science, International Islamic University Malaysia with the objective of bringing together leading academic scientists, researchers and scholars in the domain of interest from around the world to share their experiences and research results about all aspects of quantum optics and quantum information. While the event was organized on a somewhat modest scale, it was in fact a rather fruitful meeting for established researchers and students as well, especially for the local scene where the field is relatively new. We would therefore, like to thank the organizing committee, our advisors and all parties for having made this event successful and last but not least would extend our sincerest gratitude to IOP for publishing these selected papers from icQoQi2013 in Journal of Physics: Conference Series.

  19. Acquisition of the polarity sensitive item renhe 'any' in Mandarin Chinese.

    Science.gov (United States)

    Huang, Aijun; Crain, Stephen

    2014-07-01

    The present study investigated Mandarin-speaking children's acquisition of the polarity sensitive item renhe 'any' in Mandarin Chinese. Like its English counterpart any, renhe can be used as a negative polarity item (NPI), or as a free choice (FC) item, and both the distribution and interpretation of renhe are governed by the same syntactic and semantic constraints as English any. Using a Truth Value Judgment Task, the present study tested five-year-old Mandarin-speaking children's comprehension of FC renhe in sentences containing the modal word neng 'can', and tested children's comprehension of NPI renhe in sentences containing the temporal conjunction zai…zhiqian 'before'. Most children demonstrated knowledge of the interpretation of both FC renhe and NPI renhe despite a paucity of relevant adult input. Like adults, however, Mandarin-speaking children do not use renhe frequently in ordinary conversation, due to the availability of alternative colloquial expressions (wh-pronouns) that also convey children's intended meanings.

  20. Simple Unbiased Hot-Electron Polarization-Sensitive Near-Infrared Photodetector.

    Science.gov (United States)

    Mirzaee, Somayeh M A; Lebel, Olivier; Nunzi, Jean-Michel

    2018-03-27

    Plasmonic nanostructures can generate energetic "hot" electrons from light in a broad band fashion depending on their shape, size, and arrangement. Such structures have a promising use in photodetectors, allowing high speed, broad band, and multicolor photodetection. Because they function without a band gap absorption, photon detection at any energy would be possible through engineering of the plasmonic nanostructure. Herein, a compact hot-electron-based photodetector that combines polarization sensitivity and circularly polarized light detection in the near-infrared region was fabricated using an indium tin oxide (ITO)-Au hybrid layer. Furthermore, the sensitivity of the device was significantly increased by adding a poled Azo molecular glass film in a capacitor configuration. The resulting device is capable of detecting light below the ITO band gap at ambient temperature without any bias voltage. This photodetector, which is amenable to large-area fabrication, can be integrated with other nanophotonic and nanoplasmonic structures for operation at telecom wavelengths.

  1. Polarization sensitivity of light diffraction for periodic array of anisotropic gold nanoparticles

    International Nuclear Information System (INIS)

    Tsai, Ming-shan; Liu, Tung-kai; Tsen, Chun-yu; Ting, Chen-ching

    2015-01-01

    This article aims to analyze the first order diffraction intensity of the incident polarized light which is diffracted by the gold nanoparticles array in terms of the surface plasmon effect. The inspected gold nanoparticles array films are built in grating pattern with stripe thickness of 4 μm and diameters of gold nanoparticles ca. 10–56 nm, which are formed by annealing at temperatures of 400, 450, 500, and 550 °C, respectively. The probing light is linearly polarized with wavelengths of 450–800 nm and counterclockwise turns its polarization direction from 0° to 90° during measurements. The results show that the diffraction intensity depends on the anisotropic configuration samples which gold nanoparticles are orientated by analyzing the scanning electron microscope images. It results that the localized surface plasmon effect induced by incident field depends on orientation and causes the sample polarization-sensitive

  2. Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications

    Science.gov (United States)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.; hide

    2014-01-01

    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.

  3. A Low-Complexity DOA and Polarization Method of Polarization-Sensitive Array

    Directory of Open Access Journals (Sweden)

    Wen Dong

    2017-05-01

    Full Text Available This paper proposes a low-complexity method to estimate the direction of arrival and polarization based on the polarization sensitive array (PSA which is composed of cross-dipoles. We built a half-quaternions model through the Cayley–Dickson form to remove the redundant information. Then, the directions of arrival (DOAs were estimated via the root-MUSIC algorithm. Finally, the polarizations were estimated by generalized eigenvalue method. Unlike some existing searching algorithms, such as multiple signal classification (MUSIC, this method can avoid the peak searching and maintains high estimation accuracy. Moreover, we use the oblique projection operators to filter out the interference signals which are decoys of the target signal. Simulation results demonstrate the effectiveness and favorable performance of the proposed method.

  4. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  5. Asymmetric MQW semiconductor optical amplifier with low-polarization sensitivity of over 90-nm bandwidth

    Science.gov (United States)

    Nkanta, Julie E.; Maldonado-Basilio, Ramón; Abdul-Majid, Sawsan; Zhang, Jessica; Hall, Trevor J.

    2013-12-01

    An exhausted capacity of current Passive Optical Networks has been anticipated as bandwidth-hungry applications such as HDTV and 3D video become available to end-users. To enhance their performance, the next generation optical access networks have been proposed, using optical carriers allocated within the E-band (1360-1460 nm). It is partly motivated by the low-water peak fiber being manufactured by Corning. At these wavelengths, choices for low cost optical amplifiers, with compact size, low energy consumption and feasibility for integration with other optoelectronic components are limited, making the semiconductor optical amplifiers (SOA) a realistic solution. An experimental characterization of a broadband and low polarization sensitive asymmetric multi quantum well (MQW) SOA operating in the E-band is reported. The SOA device is composed of nine 6 nm In1-xGaxAsyP1-y 0.2% tensile strained asymmetric MQW layers sandwiched between nine latticed matched 6 nm InGaAsP barrier layers. The active region is grown on an n-doped InP substrate and buried by p-doped InGaAsP layers. The SOA devices have 7-degrees tilt anti-reflected coated facets, with 2 μm ridge width, and a cavity length of 900 μm. For input powers of -10 dBm and -20 dBm, a maximum gain of 20 dB at 1360 nm with a polarization insensitivity under 3 dB for over 90 nm bandwidth is measured. Polarization sensitivity of less than 0.5 dB is observed for some wavelengths. Obtained results indicate a promising SOA with broadband amplification, polarization insensitivity and high gain. These SOAs were designed and characterized at the Photonics Technology Laboratory, University of Ottawa, Canada.

  6. Quantum optical effective-medium theory for loss-compensated metamaterials

    DEFF Research Database (Denmark)

    Amooghorban, Ehsan; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    A central aim in metamaterial research is to engineer subwavelength unit cells that give rise to desired effective-medium properties and parameters, such as a negative refractive index. Ideally one can disregard the details of the unit cell and employ the effective description instead. A popular...... strategy to compensate for the inevitable losses in metallic components of metamaterials is to add optical gain material. Here we study the quantum optics of such loss-compensated metamaterials at frequencies for which effective parameters can be unambiguously determined. We demonstrate that the usual...... effective parameters are insufficient to describe the propagation of quantum states of light. Furthermore, we propose a quantum optical effective-medium theory instead and show that it correctly predicts the properties of the light emerging from loss-compensated metamaterials. © 2013 American Physical...

  7. Nonlocal modification and quantum optical generalization of effective-medium theory for metamaterials

    DEFF Research Database (Denmark)

    Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan

    2013-01-01

    leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal...... response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective...... index is enough to describe this quantum noise effectively. We show that this is true for passive metamaterials, but not for metamaterials where loss is compensated by linear gain. For such loss-compensated metamaterials we present a quantum optical effective medium theory with an effective noise photon...

  8. Photon entanglement in the phase-space Q representation of quantum optics

    CERN Document Server

    Santos, E

    2003-01-01

    Several examples of photon entanglement are studied in the Q representation of quantum optics. In particular, the entangled states produced in parametric down conversion are studied in detail, and we determine the conditions for the violation of Bell's inequality. Our approach shows that photon entanglement is related to the existence of correlations between the quantum fluctuations of the electromagnetic field associated to different modes. (author)

  9. Quantum Optics and Nanophotonics : Lecture Notes of the Les Houches Summer School : Session CI

    CERN Document Server

    Sandoghdar, Vahid; Treps, Nicolas; Cugliandolo, Leticia F

    2017-01-01

    Quantum Optics and Nanophotonics consists of the lecture notes of the Les Houches Summer School 101 held in August 2013. Some of the most eminent experts in this flourishing area of research have contributed chapters lying at the intersection of basic quantum science and advanced nanotechnology. The book is part of the renowned series of tutorial books that contain the lecture notes of all the Les Houches Summer Schools since the 1950's and cover the latest developments in physics and related fields.

  10. NATO Advanced Study Institute on Instabilities and Chaos in Quantum Optics

    CERN Document Server

    Arecchi, F; Lugiato, L; Instabilities and Chaos in Quantum Optics II

    1988-01-01

    This volume contains tutorial papers from the lectures and seminars presented at the NATO Advanced Study Institute on "Instabilities and Chaos in Quantum Optics", held at the "Il Ciocco" Conference Center, Castelvecchio Pascoli, Lucca, Italy, June 28-July 7, 1987. The title of the volume is designated Instabilities and Chaos in Quantum Optics II, because of the nearly coincident publication of a collection of articles on research in this field edited by F.T. Arecchi and R.G. Harrison [Instabilities and Chaos in Quantum Optics, (Springer, Berlin, 1987) 1. That volume provides more detailed information about some of these topics. Together they will serve as a comprehensive and tutorial pair of companion volumes. This school was directed by Prof. Massimo Inguscio, of the Department of Physics, University of Naples, Naples, Italy to whom we express our gratitude on behalf of all lecturers and students. The Scientific Advisory Committee consisted of N.B. Abraham of Bryn Mawr College; F.T. Arecchi of the National I...

  11. Enhanced monolithic diffraction gratings with high efficiency and reduced polarization sensitivity for remote sensing applications

    Science.gov (United States)

    Triebel, Peter; Diehl, Torsten; Moeller, Tobias; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander

    2015-10-01

    distribution. Beside of the results of straylight measurement the actual results on improving efficiency and lowering the polarization sensitivity for transmission gratings will be discussed on theoretical simulations compared to measured data over the entire wavelength range.

  12. Coherent-Entangled State in Three-Mode and Its Applications

    International Nuclear Information System (INIS)

    Fan Hongyi; Wang Wenqin

    2006-01-01

    We introduce the new concept of coherent-entangled state (CES). By virtue of the technique of integration within an ordered product of operators we introduce a new kind of three-mode CES |β,γ,x), which exhibits both properties of the coherent state and the entangled state. |β,γ,x) makes up a new quantum mechanical representation. Its applications in quantum optics are also presented.

  13. Single input state, single–mode fiber–based polarization sensitive optical frequency domain imaging by eigenpolarization referencing

    Science.gov (United States)

    Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.

    2015-01-01

    Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775

  14. Coherent control of photoelectron wavepacket angular interferograms

    International Nuclear Information System (INIS)

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)

  15. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  16. Polarization sensitive changes in the human macula associated with normal aging and age-related macular degeneration

    Science.gov (United States)

    VanNasdale, Dean Allan, Jr.

    2011-12-01

    The human macula occupies a relatively small, but crucial retinal area, as it is the location responsible for our most acute spatial vision and best color discrimination. Localizing important landmarks in the retina is difficult even in normal eyes where morphological inter-individual variability is high. This becomes even more challenging in the presence of sight-threatening pathology. With respect to the human macula, there remains a significant gap in the understanding of normal structure and function. Even less is known about the pathological mechanisms that occur in sight-threatening diseases including age-related macular degeneration. Because relatively little is known about normal aging changes, it is also difficult to differentiate those changes from changes associated with retinal disease. To better understand normal and pathological changes in the macula, imaging techniques using specific optical signatures are required. Structural features in the macula can be distinguished based on their intrinsic properties using specific light/tissue interactions. Because of the high degree of structural regularity in the macula, polarization sensitive imaging is potentially a useful tool for evaluating the morphology and integrity of the cellular architecture for both normal individuals and those affected by disease. In our investigations, we used polarization sensitive imaging to determining normal landmarks that are important clinically and for research investigations. We found that precision and accuracy in localizing the central macula was greatly improved through the use of polarization sensitive imaging. We also found that specific polarization alterations can be used to demonstrate systematic changes as a function of age, disproportionately affecting the central macular region. When evaluating patients with age-related macular degeneration, we found that precision and accuracy of localizing the central macula was also improved, even when significant pathology

  17. Selective photodissociation of tailored molecular tags as a tool for quantum optics

    Directory of Open Access Journals (Sweden)

    Ugur Sezer

    2017-02-01

    Full Text Available Recent progress in synthetic chemistry and molecular quantum optics has enabled demonstrations of the quantum mechanical wave–particle duality for complex particles, with masses exceeding 10 kDa. Future experiments with even larger objects will require new optical preparation and manipulation methods that shall profit from the possibility to cleave a well-defined molecular tag from a larger parent molecule. Here we present the design and synthesis of two model compounds as well as evidence for the photoinduced beam depletion in high vacuum in one case.

  18. Quantum optics and nuclear clocks: a look at the 2012 physics nobel prize

    International Nuclear Information System (INIS)

    Herrera-Sancho, Oscar-Andrey

    2013-01-01

    Pioneering researches in the field of quantum optics are presented. These have laid the foundation for photonics research, that has grasped the particle properties of light to create new technologies and deepen the understanding of the physical laws. The quantum computation and quantum clocks have been highlighted. Individual particles have managed to manipulate without losing its properties in quantum, using photons to immobilize atoms with electric charges (ions) and study their properties. Researches conducted by the French scientist Serge Haroche and American David Wineland nobel prize winners for Physics 2012, have been commented [es

  19. Polarity-sensitive nanocarrier for oral delivery of Sb(V and treatment of cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Lanza JS

    2016-05-01

    remarkable property of these nanoassemblies, as revealed by AFM analysis, is the flexibility of their supramolecular organization, which showed changes as a function of the solvent and substrate polarities. The formulation of SbL8 in 1:1 water:PG given orally to mice promoted significantly higher and more sustained serum levels of Sb, when compared to SbL8 in water. The new formulation, when given as repeated doses (200 mg Sb/kg/day to BALB/c mice infected with Leishmania amazonensis, was significantly more effective in reducing the lesion parasite burden, compared to SbL8 in water, and even, the conventional drug Glucantime® given intraperitoneally at the same dose. In conclusion, this work introduces a new concept of polarity-sensitive nanocarrier that was successfully applied to optimize an oral formulation of Sb(V for treating cutaneous leishmaniasis. Keywords: propylene glycol, antimony, Leishmania amazonensis, AFM, amphiphilic complex, SAXS

  20. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  1. LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy.

    Science.gov (United States)

    Park, Jongchan; Yu, Hyeonseung; Park, Jung-Hoon; Park, YongKeun

    2014-10-06

    We present measurements of the full Jones matrix of individual pixels in a liquid-crystal display (LCD) panel. Employing a polarization-sensitive digital holographic microscopy based on Mach-Zehnder interferometry, the complex amplitudes of the light passing through individual LCD pixels are precisely measured with respect to orthogonal bases of polarization states, from which the full Jones matrix components of individual pixels are obtained. We also measure the changes in the Jones matrix of individual LCD pixels with respect to an applied bias. In addition, the complex optical responses of a LCD panel with respect to arbitrary polarization states of incident light were characterized from the measured Jones matrix.

  2. Intersubband absorption in annealed InAs/GaAs quantum dots: a case for polarization-sensitive infrared detection

    International Nuclear Information System (INIS)

    Chakrabarti, S; Bhattacharya, P; Stiff-Roberts, A D; Lin, Y Y; Singh, J; Lei, Y; Browning, N

    2003-01-01

    We have studied the characteristics of intersubband absorption of polarized infrared (IR) radiation in as-grown and annealed self-organized InAs/GaAs quantum dots. It is observed that with the increase of annealing time and temperature, the dots tend to flatten and behave more like quantum wells. As a result, their sensitivity to TE (in-plane)-polarized light decreases and that to TM (out-of-plane)-polarized light increases. The effect could be utilized for the realization of polarization-sensitive IR detectors

  3. d-PET-controlled “off-on” Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes

    Science.gov (United States)

    Zhu, Hao; Fan, Jiangli; Mu, Huiying; Zhu, Tao; Zhang, Zhen; Du, Jianjun; Peng, Xiaojun

    2016-10-01

    Polarity-sensitive fluorescent probes are powerful chemical tools for studying biomolecular structures and activities both in vitro and in vivo. However, the lack of “off-on” polarity-sensing probes has limited the accurate monitoring of biological processes that involve an increase in local hydrophilicity. Here, we design and synthesize a series of “off-on” polarity-sensitive fluorescent probes BP series consisting of the difluoroboron dippyomethene (BODIPY) fluorophore connected to a quaternary ammonium moiety via different carbon linkers. All these probes showed low fluorescence quantum yields in nonpolar solution but became highly fluorescent in polar media. BP-2, which contains a two-carbon linker and a trimethyl quaternary ammonium, displayed a fluorescence intensity and quantum yield that were both linearly correlated with solvent polarity. In addition, BP-2 exhibited high sensitivity and selectivity for polarity over other environmental factors and a variety of biologically relevant species. BP-2 can be synthesized readily via an unusual Mannich reaction followed by methylation. Using electrochemistry combined with theoretical calculations, we demonstrated that the “off-on” sensing behavior of BP-2 is primarily due to the polarity-dependent donor-excited photoinduced electron transfer (d-PET) effect. Live-cell imaging established that BP-2 enables the detection of local hydrophilicity within lysosomes under conditions of lysosomal dysfunction.

  4. Accessible coherence and coherence distribution

    Science.gov (United States)

    Ma, Teng; Zhao, Ming-Jing; Zhang, Hai-Jun; Fei, Shao-Ming; Long, Gui-Lu

    2017-04-01

    The definition of accessible coherence is proposed. Through local measurement on the other subsystem and one-way classical communication, a subsystem can access more coherence than the coherence of its density matrix. Based on the local accessible coherence, the part that cannot be locally accessed is also studied, which we call it remaining coherence. We study how the bipartite coherence is distributed by partition for both l1 norm coherence and relative entropy coherence, and the expressions for local accessible coherence and remaining coherence are derived. We also study some examples to illustrate the distribution.

  5. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  6. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    Science.gov (United States)

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  7. On-chip quantum optics with quantum dots and superconducting resonators

    Science.gov (United States)

    Deng, Guang-Wei; Guo, Guo-Ping; Guo, Guang-Can

    2016-11-01

    Benefit from the recent nanotechnology process, people can integrate different nanostructures on a single chip. Particularly, quantum dots (QD), which behave as artificial atoms, have been shown to couple with a superconducting resonator, indicating that quantum-dot based quantum chip has a highly scalable possibility. Here we show a quantum chip architecture by combining graphene quantum dots and superconducting resonators together. A double quantum dot (DQD) and a microwave hybrid system can be described by the Jaynes-Cummings model, while a multi-quantum-dots system is conformed to the Tavis-Cummings model. These simple quantum optics models are experimentally realized in our device, providing a compelling platform for both graphene study and potential applications.

  8. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  9. Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander

    2010-01-01

    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information...... technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based...... on linear optics, and it protects a four-mode entangled mesoscopic state of light against erasures. We investigate two approaches for circumventing in-line losses, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means. Because in-line attenuation...

  10. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  11. (Full field) optical coherence tomography and applications

    Science.gov (United States)

    Buchroithner, Boris; Hannesschläger, Günther; Leiss-Holzinger, Elisabeth; Prylepa, Andrii; Heise, Bettina

    2018-03-01

    This paper illustrates specific features and use of optical coherence tomography (OCT) in the raster-scanning and in comparison in the full field version of this imaging technique. Cases for nondestructive testing are discussed alongside other application schemes. In particular monitoring time-dependent processes and probing of birefringent specimens are considered here. In the context of polymer testing birefringence mapping may often provide information about internal strain and stress states. Recent results obtained with conventional raster-scanning OCT systems, with (dual and single-shot) full field OCT configurations, and with polarization-sensitive versions of (full field) OCT are presented here.

  12. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    Science.gov (United States)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  13. Fabrication of ultrahigh-precision hemispherical mirrors for quantum-optics applications.

    Science.gov (United States)

    Higginbottom, Daniel B; Campbell, Geoff T; Araneda, Gabriel; Fang, Fengzhou; Colombe, Yves; Buchler, Ben C; Lam, Ping Koy

    2018-01-09

    High precision, high numerical aperture mirrors are desirable for mediating strong atom-light coupling in quantum optics applications and can also serve as important reference surfaces for optical metrology. In this work we demonstrate the fabrication of highly-precise hemispheric mirrors with numerical aperture NA = 0.996. The mirrors were fabricated from aluminum by single-point diamond turning using a stable ultra-precision lathe calibrated with an in-situ white-light interferometer. Our mirrors have a diameter of 25 mm and were characterized using a combination of wide-angle single-shot and small-angle stitched multi-shot interferometry. The measurements show root-mean-square (RMS) form errors consistently below 25 nm. The smoothest of our mirrors has a RMS error of 14 nm and a peak-to-valley (PV) error of 88 nm, which corresponds to a form accuracy of λ/50 for visible optics.

  14. Entanglement indicators for quantum optical fields: three-mode multiport beamsplitters EPR interference experiments

    Science.gov (United States)

    Ryu, Junghee; Marciniak, Marcin; Wieśniak, Marcin; Żukowski, Marek

    2018-04-01

    We generalize a new approach to entanglement conditions for light of undefined photons numbers given in Żukowski et al (2017 Phys. Rev. A 95 042113) for polarization correlations to a broader family of interferometric phenomena. Integrated optics allows one to perform experiments based upon multiport beamsplitters. To observe entanglement effects one can use multi-mode parametric down-conversion emissions. When the structure of the Hamiltonian governing the emissions has (infinitely) many equivalent Schmidt decompositions into modes (beams), one can have perfect EPR-like correlations of numbers of photons emitted into ‘conjugate modes’ which can be monitored at spatially separated detection stations. We provide entanglement conditions for experiments involving three modes on each side, and three-input-three-output multiport beamsplitters, and show their violations by bright squeezed vacuum states. We show that a condition expressed in terms of averages of observed rates is a much better entanglement indicator than a related one for the usual intensity variables. Thus, the rates seem to emerge as a powerful concept in quantum optics, especially for fields of undefined intensities.

  15. Quantum Coherent Multielectron Processes in an Atomic Scale Contact

    DEFF Research Database (Denmark)

    Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen

    2017-01-01

    The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hv > 2eV. A model of electrons interacti...... coherently via a localized plasmon-polariton mode reproduces the experimental data, in particular, the kinks in the spectra at eV and 2eV as well as the scaling of the intensity at low and intermediate conductances....

  16. Quantifying the optical properties and chromophore concentrations of turbid media using polarization sensitive hyperspectral imaging: optical phantom studies

    Science.gov (United States)

    Vasefi, Fartash; Saager, Rolf; Durkin, Anthony J.; MacKinnon, Nicholas; Gussakovsky, Eugene; Chave, Robert; Farkas, Daniel L.

    2013-02-01

    We present a polarization-sensitive hyperspectral imaging system (SkinSpect) that employs a spectrally-programmable light source in the visible and NIR domains. Multiple tissue-mimicking phantoms were fabricated to mimic the optical properties of normal skin as well as pigmented light and dark moles. The phantoms consist of titanium dioxide and a mixture of coffee, red food dye, and naphthol green as the scattering and the three absorptive agents in a polydimethylsiloxane (PDMS) base. Phantoms were produced with both smooth and rough textured surfaces and tested using Spatial Frequency Domain Imaging (SFDI) and Spatially Modulated Quantitative Spectroscopy (SMoQS) for homogeneity as well as determining absorption and scattering variance, respectively. The reflectance spectral images were also recorded using the SkinSpect research prototype; the spectral signatures of the phantoms were calculated using a two-flux single-layer Kubelka-Munk model and non-negative least square fitting routine was applied to extract the relative concentrations of the individual phantom components.

  17. Light polarization sensitive photodetectors with m- and r-plane homoepitaxial ZnO/ZnMgO quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, G.; Hierro, A., E-mail: adrian.hierro@upm.es; Lopez-Ponce, M.; Muñoz, E. [ISOM and Dpto. Ingeniería Electrónica, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Vinter, B.; Chauveau, J.-M. [CRHEA-CNRS, Av. B. Gregory, 06560 Valbonne (France); University of Nice Sophia Antipolis, Parc Valrose, 06102 Nice cedex 2 (France)

    2015-02-09

    Homoepitaxial ZnO/(Zn,Mg)O multiple quantum wells (MQWs) grown with m- and r-plane orientations are used to demonstrate Schottky photodiodes sensitive to the polarization state of light. In both orientations, the spectral photoresponse of the MQW photodiodes shows a sharp excitonic absorption edge at 3.48 eV with a very low Urbach tail, allowing the observation of the absorption from the A, B and C excitonic transitions. The absorption edge energy is shifted by ∼30 and ∼15 meV for the m- and r-plane MQW photodiodes, respectively, in full agreement with the calculated polarization of the A, B, and C excitonic transitions. The best figures of merit are obtained for the m-plane photodiodes, which present a quantum efficiency of ∼11%, and a specific detectivity D* of ∼6.4 × 10{sup 10} cm Hz{sup 1/2}/W. In these photodiodes, the absorption polarization sensitivity contrast between the two orthogonal in-plane axes yields a maximum value of (R{sub ⊥}/R{sub ||}){sub max} ∼ 9.9 with a narrow bandwidth of ∼33 meV.

  18. Anisotropic percolation conduction in elastomer-carbon black composites investigated by polarization-sensitive terahertz time-domain spectroscopy

    Science.gov (United States)

    Okano, Makoto; Fujii, Misako; Watanabe, Shinichi

    2017-11-01

    We investigated the draw ratio (DR) dependence of the anisotropic dielectric function and conductivity of styrene butadiene rubbers (SBRs) with different carbon black (CB) concentrations by polarization-sensitive terahertz time-domain spectroscopy. From the frequency dependence of the conductivity in the unstretched SBRs ranging from direct current to terahertz frequencies, it is found that the SBR with a CB concentration above 30 wt. % exhibits percolation conductivity. We investigated the spectral shape of the dielectric function and conductivity of the SBR samples below and above the percolation threshold for two representative DRs in the terahertz frequency region. We found that the DR dependence of the spectral shape is well explained by the effective medium approximation, except for the sample with the CB concentration above 30 wt. % under the unstretched condition. The conductivity in that sample remarkably changes in the low terahertz frequency region, which suggests a change in the CB network by deformation. The investigation of the dielectric anisotropy and percolation conductivity using our polarization technique can be applied to a wide range of elastomer composites.

  19. Demonstration of polarization sensitivity of emulsion-based pair conversion telescope for cosmic gamma-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Keita, E-mail: ozaki@radix.h.kobe-u.ac.jp [Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe 657-8501 (Japan); Takahashi, Satoru, E-mail: satoru@radix.h.kobe-u.ac.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Aoki, Shigeki; Kamada, Keiki; Kaneyama, Taichi; Nakagawa, Ryo; Rokujo, Hiroki [Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe 657-8501 (Japan)

    2016-10-11

    Linear polarization of high-energy gamma-rays (10MeV–100 GeV) can be detected by measuring the azimuthal angle of electron–positron pairs and observing the modulation of the azimuthal distribution. To demonstrate the gamma-ray polarization sensitivity of emulsion, we conducted a test using a polarized gamma-ray beam (0.8–2.4 GeV) at SPring-8/LEPS. Emulsion tracks were reconstructed using scanning data, and gamma-ray events were selected automatically. Using an optical microscope, out of the 2381 gamma-ray conversions that were observed, 1372 remained after event selection, on the azimuthal angle distribution of which we measured the modulation. From the distribution of the azimuthal angles of the selected events, a modulation factor of 0.21+0.11−0.09 was measured, from which the detection of a non-zero modulation was established with a significance of 3.06σ. This attractive polarimeter will be applied to the GRAINE project, a balloon-borne experiment that observes 10–100 GeV cosmic gamma-rays with an emulsion-based pair conversion telescope.

  20. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Boppart, Stephen

    2006-02-01

    Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

  1. Quantum key distribution with a single photon from a squeezed coherent state

    International Nuclear Information System (INIS)

    Matsuoka, Masahiro; Hirano, Takuya

    2003-01-01

    Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation

  2. Coherent States for Kronecker Products of Non Compact Groups: Formulation and Applications

    Science.gov (United States)

    Bambah, Bindu A.; Agarwal, Girish S.

    1996-01-01

    We introduce and study the properties of a class of coherent states for the group SU(1,1) X SU(1,1) and derive explicit expressions for these using the Clebsch-Gordan algebra for the SU(1,1) group. We restrict ourselves to the discrete series representations of SU(1,1). These are the generalization of the 'Barut Girardello' coherent states to the Kronecker Product of two non-compact groups. The resolution of the identity and the analytic phase space representation of these states is presented. This phase space representation is based on the basis of products of 'pair coherent states' rather than the standard number state canonical basis. We discuss the utility of the resulting 'bi-pair coherent states' in the context of four-mode interactions in quantum optics.

  3. General properties of quantum optical systems in a strong field limit

    Science.gov (United States)

    Chumakov, S. M.; Klimov, Andrei B.

    1994-01-01

    We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.

  4. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.

    Science.gov (United States)

    Bromberg, Joan Lisa

    2006-06-01

    Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.

  5. Parity detection in quantum optical metrology without number-resolving detectors

    Energy Technology Data Exchange (ETDEWEB)

    Plick, William N; Anisimov, Petr M; Dowling, Jonathan P; Lee, Hwang [Department of Physics and Astronomy, Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, LA 70803 (United States); Agarwal, Girish S, E-mail: william.plick@univie.ac.a [Department of Physics, Oklahoma State University, Stillwater, OK 74078 (United States)

    2010-11-15

    We present a method for directly obtaining the parity of a Gaussian state of light without recourse to photon-number counting. The scheme uses only a simple balanced homodyne technique and intensity correlation. Thus interferometric schemes utilizing coherent or squeezed light and parity detection may be practically implemented for an arbitrary photon flux. Specifically, we investigate a two-mode, squeezed light, Mach-Zehnder interferometer and show how the parity of the output state may be obtained. We also show that the detection may be described independently of the parity operator and that this 'parity-by-proxy' measurement has the same signal as traditional parity.

  6. Operator ordering in quantum optics theory and the development of Dirac's symbolic method

    International Nuclear Information System (INIS)

    Fan Hongyi

    2003-01-01

    We present a general unified approach for arranging quantum operators of optical fields into ordered products (normal ordering, antinormal ordering, Weyl ordering (or symmetric ordering)) by fashioning Dirac's symbolic method and representation theory. We propose the technique of integration within an ordered product (IWOP) of operators to realize our goal. The IWOP makes Dirac's representation theory and the symbolic method more transparent and consequently more easily understood. The beauty of Dirac's symbolic method is further revealed. Various applications of the IWOP technique, such as in developing the entangled state representation theory, nonlinear coherent state theory, Wigner function theory, etc, are presented. (review article)

  7. Dissipative preparation of entanglement in quantum optical and solid state systems

    DEFF Research Database (Denmark)

    Reiter, Florentin

    . Entangled states are, however, sensitive to interactions with the environment, which are present in any open system. Here, in particular decoherence, i.e. loss of coherence, and dissipation, i.e. loss of energy, destroy the desired correlations. The novel approach of “dissipative quantum computing......-particle entangled states in several concrete physical systems such as optical cavities, trapped ions, and superconducting qubits. To study the dynamics of open quantum systems, we first develop an operator formalism which allows us to identify the effective interactions. Eliminating the decaying states from......Quantum mechanics is an immensely successful theory which is essential for the explanation of numerous phenomena in atomic physics, solid state physics, nuclear physics and elementary particle physics. Quantum theory also involves effects which have no analogy in the classical world. In particular...

  8. Tunable 3D cQED: Applications to Quantum Optics and Quantum Information

    Science.gov (United States)

    Reed, Matthew; Chou, Kevin; Ofek, Nissim; Blumoff, Jacob; Vlastakis, Brian; Kirchmair, Gerhard; Leghtas, Zaki; Nigg, Simon; Frunzio, Luigi; Girvin, Steven; Mirrahimi, Mazyar; Schoelkopf, Robert

    2013-03-01

    The ability to control the frequency of a superconducting qubit on nanosecond timescales has been used, among other things, to generate multi-qubit entanglement. The recently developed 3D cQED architecture has yielded dramatic coherence improvements and novel methods of entangling fixed-tuned qubits, but has until now has lacked the ability to control qubit frequencies in situ. Adding this would grant several abilities. First, the coupling of a qubit to the cavity bus could be modulated to control both the inherited nonlinearity and the dispersive shift of the oscillator. Second, controlling the interactions between individual qubits, particularly those coupled to more than one cavity, could be used to shuttle quantum information between subsystems. Third, a small change to the physical implementation could yield efficient individual qubit QND readout or reset. These abilities are readily applicable to demonstrations of hardware-efficient quantum error correction, entanglement distillation between distant pairs of qubits, and teleportation of quantum information. In this talk, we will discuss our recent results toward achieving these capabilities using the tunable 3D cQED architecture introduced previously.

  9. XIX International Youth School on Coherent Optics and Optical Spectroscopy

    International Nuclear Information System (INIS)

    2016-01-01

    The XIX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2015) was held in Kazan, Russia, from October 5 to October 7 at the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency toward comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarussia and Russia had plenary lecture presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions regarding the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. (paper)

  10. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections upon these terms...

  11. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light-matter interaction

    International Nuclear Information System (INIS)

    Mekhov, Igor B; Ritsch, Helmut

    2012-01-01

    Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)

  12. EDITORIAL: Fluctuations and noise in photonics and quantum optics: a special issue in memory of Hermann Haus

    Science.gov (United States)

    Abbott, Derek; Shapiro, Jeffrey H.; Yamamoto, Yoshihisa

    2004-08-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of fluctuational phenomena in photonics and quantum optics. The topics discussed in this issue extend from fundamental physics to applications of noise and fluctuational methods from quantum to classical systems, and include: bullet Quantum measurement bullet Quantum squeezing bullet Solitons and fibres bullet Gravitational wave inferometers bullet Fluorescence phenomena bullet Cavity QED bullet Photon statistics bullet Noise in lasers and laser systems bullet Quantum computing and information bullet Quantum lithography bullet Teleportation. This Special Issue is published in connection with the SPIE International Symposium on Fluctuations and Noise, held in Santa Fe, New Mexico, on 1-4 June 2003. The symposium contained six parallel conferences, and the papers in this Special Issue are connected to the conference entitled `Fluctuations and Noise in Photonics and Quantum Optics'. This was the first in a series of symposia organized with the support of the SPIE that have greatly contributed to progress in this area. The co-founders of the symposium series were Laszlo B Kish (Texas A&M University) and Derek Abbott (The University of Adelaide). The Chairs of the `Fluctuations and Noise in Photonics and Quantum Optics' conference were Derek Abbott, Jeffrey H Shapiro and Yoshihisa Yamamoto. The practical aspects of the organization were ably handled by Kristi Kelso and Marilyn Gorsuch of the SPIE, USA. Sadly, less than two weeks before the conference, Hermann A Haus passed away. Hermann Haus was a founding father of the field of noise in optics and quantum optics. He submitted three papers to the conference and was very excited to attend; as can be seen in the collection of papers, he was certainly present in spirit. In honour of his creativity and pioneering work in this field, we have

  13. Coherent states: a contemporary panorama Coherent states: a contemporary panorama

    Science.gov (United States)

    Twareque Ali, S.; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre

    2012-06-01

    Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schrödinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably the 1985 reprint volume of Klauder and Skagerstam [1], the 1990 review paper by Zhang et al [2], the 1993 Oak Ridge Conference [3] and the 1995 review paper by Ali et al [4]. Textbooks also have been published, among which one might mention the ground breaking text of Perelomov [5] focusing on the group-theoretical aspects, that of Ali et al [6]1 analyzing systematically the mathematical structure beyond the group-theoretical approach and also the relation to wavelet analysis, that of Dodonov and Man'ko [7] mostly devoted to quantum optics, that of Gazeau [8] more oriented towards the physical, probabilistic and quantization aspects, and finally the very recent one by Combescure and Robert [9]. In retrospect, one can see that the development of CS has gone through a two-phase transition. First, the (simultaneous) discovery in 1972 by Gilmore and Perelomov that CS were rooted in group theory, then the realization that CS can be defined in a purely algebraic way, as an eigenvalue problem or by a series expansion (Malkin and Man'ko 1969, Barut and Girardello 1971, Gazeau and Klauder 1999; references to the original articles may be found in the textbooks quoted above). Both facts resulted in an explosive expansion of the CS literature. We thought, therefore, that the time was ripe

  14. Functional optical coherence tomography: principles and progress

    Science.gov (United States)

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-05-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies.

  15. Fast and error-resilient coherent control in an atomic vapor

    Science.gov (United States)

    He, Yizun; Wang, Mengbing; Zhao, Jian; Qiu, Liyang; Wang, Yuzhuo; Fang, Yami; Zhao, Kaifeng; Wu, Saijun

    2017-04-01

    Nanosecond chirped pulses from an optical arbitrary waveform generator is applied to both invert and coherently split the D1 line population of potassium vapor within a laser focal volume of 2X105 μ m3. The inversion fidelity of f>96%, mainly limited by spontaneous emission during the nanosecond pulse, is inferred from both probe light transmission and superfluorescence emission. The nearly perfect inversion is uniformly achieved for laser intensity varying over an order of magnitude, and is tolerant to detuning error of more than 1000 times the D1 transition linewidth. We further demonstrate enhanced intensity error resilience with multiple chirped pulses and ``universal composite pulses''. This fast and robust coherent control technique should find wide applications in the field of quantum optics, laser cooling, and atom interferometry. This work is supported by National Key Research Program of China under Grant No. 2016YFA0302000, and NNSFC under Grant No. 11574053.

  16. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    examined is how activating of models of blended learning in undergraduate education for teacher and radiograph affects the knowledge development. This is approached by mixed methods. The empirical data consist of data from surveys as well as focus group interviews and some observation studies. These data...... are analyzed and interpreted through a critical hermeneutical process of prefiguration, configuration and re-figuration. The findings illustrate significantly importance of sense of coherence among participants as a condition for implementing new designs and new learning environments. It is revealed that sense...

  17. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie–Raman lidar and a sky radiometer

    International Nuclear Information System (INIS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Matsui, Ichiro; Jin, Yoshitaka; Khatri, Pradeep; Irie, Hitoshi; Takamura, Tamio; Aoki, Kazuma; Thana, Boossarasiri

    2015-01-01

    Distributions and optical characteristics of aerosols were continuously observed with a polarization-sensitive (532 nm), Mie-scattering (532 and 1064 nm) and Raman-scattering (607 nm) lidar and a sky radiometer in Phimai, Thailand. Polarization lidar measurements indicated that high concentration plumes of spherical aerosols considered as biomass burning smoke were often observed in the dry season. Plumes of non-spherical aerosols considered as long-range transported soil dust from Africa, the Middle East, or Northeast Asia were occasionally observed. Furthermore, low-concentration non-spherical aerosols were almost always observed in the atmospheric mixing layer. Extinction coefficient profiles of spherical aerosols and non-spherical dust exhibited different diurnal variations, and spherical aerosols including smoke were distributed in higher altitudes in the mixing layer and residual layer. The difference can be explained by hygroscopic growth of smoke particles and buoyancy of the smoke. Analysis of seasonal variations of optical properties derived from the Raman lidar and the sky radiometer confirmed that the lidar ratio, aerosol optical depth, and Angstrom exponent were higher in the dry season (October–May) and lower in the wet season (June–September). The single scattering albedo was lower in the dry season. These seasonal variations are explained by frequent biomass burning in the dry season consistent with previous studies in Southeast Asian region. At the same time, the present work confirmed that soil dust was a major aerosol component in Phimai, Thailand. (letter)

  18. Simultaneous in situ measurements of properties of particulates in rf silane plasmas using a polarization-sensitive laser-light-scattering method

    Science.gov (United States)

    Shiratani, Masaharu; Kawasaki, Hiroharu; Fukuzawa, Tsuyoshi; Yoshioka, Takashi; Ueda, Yoshio; Singh, Sanjay; Watanabe, Yukio

    1996-01-01

    A polarization-sensitive laser-light-scattering method is developed for simultaneous in situ measurements of properties (size, size dispersion, density, and refractive index) of particulates formed in processing plasmas. The developed system is applied to observe the growth processes of particulates in a range of their size larger than about 10 nm in rf silane plasmas. A size, a size dispersion (logarithm of a standard deviation of size), a density, and a refractive index of particulates in the plasmas are found to be 10-200 nm, about 0.1, 107-109 cm-3 and about 3-5i, respectively. The former three of such values agree fairly well with ones deduced from scanning electron microscopic (SEM) observation. These particulates grow through three phases of nucleation and initial growth, rapid growth, and growth saturation. Coexistence of two size groups of particulates with narrow size dispersions during and after the rapid growth phase verified by the SEM observation may be explained by a model taking into account coagulation between oppositely charged particulates.

  19. Interference due to coherence swapping

    Indian Academy of Sciences (India)

    Quantum Optics and Information Groups, School of Informatics, Dean Street, University of Wales, Bangor LL 57 1UT, UK; Theoretical Physics Division, 5th Floor, Central Complex, Bhabha Atomic Research Centre, Mumbai 400 085, India; Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdanski, PL-80-952 Gdansk, ...

  20. Quantum Optics Initiative

    Science.gov (United States)

    2007-06-30

    Quantum Cascade Laser", M. McCurdy, Y. Bakhirkin, A. Kosterev, R.F. Curl, M.G. Allen, and F. K. Tittel, Am. Acad. of Allergy , Asthma and Immunology...34Interactions of Nickel Phthalocyanine Molecules on řx20" Au(001) During the Initial Formation of Heteroepitaxy," Ken T. Park, Trinity Ellis, Steve L...Poster Presentation by Trinity Ellis. The following manuscripts have been either submitted or prepared for publication: * [4] "Interactions of Nickel

  1. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  2. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  3. Quantum optics and nano-optics teaching laboratory for the undergraduate curriculum: teaching quantum mechanics and nano-physics with photon counting instrumentation

    Science.gov (United States)

    Lukishova, Svetlana G.

    2017-08-01

    At the Institute of Optics, University of Rochester (UR), we have adapted to the main challenge (the lack of space in the curriculum) by developing a series of modular 3-hour experiments and 20-min-demonstrations based on technical elective, 4-credit-hour laboratory course "Quantum Optics and Nano-Optics Laboratory" (OPT 253/OPT453/PHY434), that were incorporated into a number of required courses ranging from freshman to senior level. Rochester Monroe Community College (MCC) students also benefited from this facility that was supported by four NSF grants. MCC students carried out two 3-hour labs on photon quantum mechanics at the UR. Since 2006, total 566 students passed through the labs with lab reports submission (including 144 MCC students) and more than 250 students through lab demonstrations. In basic class OPT 253, four teaching labs were prepared on generation and characterization of entangled and single (antibunched) photons demonstrating the laws of quantum mechanics: (1) entanglement and Bell's inequalities, (2) single-photon interference (Young's double slit experiment and Mach-Zehnder interferometer), (3) confocal microscope imaging of single-emitter (colloidal nanocrystal quantum dots and NV-center nanodiamonds) fluorescence within photonic (liquid crystal photonic bandgap microcavities) or plasmonic (gold bowtie nanoantennas) nanostructures, (4) Hanbury Brown and Twiss setup. Fluorescence antibunching from nanoemitters. Students also carried out measurements of nanodiamond topography using atomic force microscopy and prepared photonic bandgap materials from cholesteric liquid crystals. Manuals, student reports, presentations, lecture materials and quizzes, as well as some NSF grants' reports are placed on a website http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ . In 2011 UR hosted 6 professors from different US universities in three-days training of these experiments participating in the Immersion Program of the Advanced

  4. Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods

    Science.gov (United States)

    Nadkarni, Seemantini K.; Bouma, Brett E.; de Boer, Johannes; Tearney, Guillermo J.

    2009-01-01

    Acute coronary events such as myocardial infarction are frequently caused by the rupture of unstable atherosclerotic plaque. Collagen plays a key role in determining plaque stability. Methods to measure plaque collagen content are invaluable in detecting unstable atherosclerotic plaques. Recently, novel coherent laser-based imaging techniques, such as polarization-sensitive optical coherence tomography (PSOCT) and laser speckle imaging (LSI) have been investigated, and they provide a wealth of information related to collagen content and plaque stability. Additionally, given their potential for intravascular use, these technologies will be invaluable for improving our understanding of the natural history of plaque development and rupture and, hence, enable the detection of unstable plaques. In this article we review recent developments in these techniques and potential challenges in translating these methods into intra-arterial use in patients. PMID:18386093

  5. Phase-coherent frequency comparison of optical clocks using a telecommunication fiber link.

    Science.gov (United States)

    Schnatz, Harald; Terra, Osama; Predehl, Katharina; Feldmann, Thorsten; Legero, Thomas; Lipphardt, Burghard; Sterr, Uwe; Grosche, Gesine; Holzwarth, Ronald; Hänsch, Theodor W; Udem, Thomas; Lu, Zehuang H; Wang, Li J; Ertmer, Wolfgang; Friebe, Jan; Pape, Andrè; Rasel, Ernst-M; Riedmann, Mathias; Wübbena, Temmo

    2010-01-01

    We have explored the performance of 2 "dark fibers" of a commercial telecommunication fiber link for a remote comparison of optical clocks. These fibers establish a network in Germany that will eventually link optical frequency standards at PTB with those at the Institute of Quantum Optics (IQ) at the Leibniz University of Hanover, and the Max Planck Institutes in Erlangen (MPL) and Garching (MPQ). We demonstrate for the first time that within several minutes a phase coherent comparison of clock lasers at the few 10(-15) level can also be accomplished when the lasers are more than 100 km apart. Based on the performance of the fiber link to the IQ, we estimate the expected stability for the link from PTB to MPQ via MPL that bridges a distance of approximately 900 km.

  6. Classical and quantum ABCD-transformations and the propagation of coherent and Gaussian beams

    International Nuclear Information System (INIS)

    Ogura, Akihiro

    2009-01-01

    We develop the mathematical properties of the ABCD-transformation from the classical and quantum mechanical points of view. First, we list the four types of generating function which generate the ABCD-transformation in classical mechanics. Second, we introduce the unitary operator of the ABCD-transformation. Next, we calculate the normal ordering of this unitary operator and derive the kernels in coordinate-momentum phase space. The kernels are comprised of the generating functions, which generate the ABCD-transformation in classical mechanics. This reveals a new correspondence between classical and quantum mechanics. As an application of these kernels, we show the propagation of coherent and Gaussian beams in the context of quantum optics which corresponds to the ABCD-transformation in matrix optics.

  7. Coherent control of the waveforms of recoilless γ-ray photons

    Science.gov (United States)

    Vagizov, Farit; Antonov, Vladimir; Radeonychev, Y. V.; Shakhmuratov, R. N.; Kocharovskaya, Olga

    2014-04-01

    The concepts and ideas of coherent, nonlinear and quantum optics have been extended to photon energies in the range of 10-100 kiloelectronvolts, corresponding to soft γ-ray radiation (the term used when the radiation is produced in nuclear transitions) or, equivalently, hard X-ray radiation (the term used when the radiation is produced by electron motion). The recent experimental achievements in this energy range include the demonstration of parametric down-conversion in the Langevin regime, electromagnetically induced transparency in a cavity, the collective Lamb shift, vacuum-assisted generation of atomic coherences and single-photon revival in nuclear absorbing multilayer structures. Also, realization of single-photon coherent storage and stimulated Raman adiabatic passage were recently proposed in this regime. More related work is discussed in a recent review. However, the number of tools for the coherent manipulation of interactions between γ-ray photons and nuclear ensembles remains limited. Here we suggest and implement an efficient method to control the waveforms of γ-ray photons coherently. In particular, we demonstrate the conversion of individual recoilless γ-ray photons into a coherent, ultrashort pulse train and into a double pulse. Our method is based on the resonant interaction of γ-ray photons with an ensemble of nuclei with a resonant transition frequency that is periodically modulated in time. The frequency modulation, which is achieved by a uniform vibration of the resonant absorber, owing to the Doppler effect, renders resonant absorption and dispersion both time dependent, allowing us to shape the waveforms of the incident γ-ray photons. We expect that this technique will lead to advances in the emerging fields of coherent and quantum γ-ray photon optics, providing a basis for the realization of γ-ray-photon/nuclear-ensemble interfaces and quantum interference effects at nuclear γ-ray transitions.

  8. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  9. Optimal secure quantum teleportation of coherent states of light

    Science.gov (United States)

    Liuzzo-Scorpo, Pietro; Adesso, Gerardo

    2017-08-01

    We investigate quantum teleportation of ensembles of coherent states of light with a Gaussian distributed displacement in phase space. Recently, the following general question has been addressed in [P. Liuzzo-Scorpo et al., arXiv:1705.03017]: Given a limited amount of entanglement and mean energy available as resources, what is the maximal fidelity that can be achieved on average in the teleportation of such an alphabet of states? Here, we consider a variation of this question, where Einstein-Podolsky-Rosen steering is used as a resource rather than plain entanglement. We provide a solution by means of an optimisation within the space of Gaussian quantum channels, which allows for an intuitive visualisation of the problem. We first show that not all channels are accessible with a finite degree of steering, and then prove that practical schemes relying on asymmetric two-mode Gaussian states enable one to reach the maximal fidelity at the border with the inaccessible region. Our results provide a rigorous quantitative assessment of steering as a resource for secure quantum teleportation beyond the so-called no-cloning threshold. The schemes we propose can be readily implemented experimentally by a conventional Braunstein-Kimble continuous variable teleportation protocol involving homodyne detections and corrective displacements with an optimally tuned gain. These protocols can be integrated as elementary building blocks in quantum networks, for reliable storage and transmission of quantum optical states.

  10. Coherent interaction of single molecules and plasmonic nanowires

    Science.gov (United States)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  11. Coherent Raman spectroscopy

    CERN Document Server

    Eesley, G L

    1981-01-01

    Coherent Raman Spectroscopy provides a unified and general account of the fundamental aspects of nonlinear Raman spectroscopy, also known as coherent Raman spectroscopy. The theoretical basis from which coherent Raman spectroscopy developed is described, along with its applications, utility, and implementation as well as advantages and disadvantages. Experimental data which typifies each technique is presented. This book is comprised of four chapters and opens with an overview of nonlinear optics and coherent Raman spectroscopy, followed by a discussion on nonlinear transfer function of matter

  12. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  13. Coherence, Cohesion, and Deixis.

    Science.gov (United States)

    Foster, Dan

    Composition theory accounts of coherence have tended to look at relationships within the text rather than at those between the text and the real world. In fact, empirical evidence suggests that the relationships between the text and the real world may be just as important for coherence. Forty-eight short papers were selected at random from those…

  14. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  15. Coherent Polariton Laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui

    2016-01-01

    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  16. Coherent Polariton Laser

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim

    2016-03-01

    Full Text Available The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  17. Coherence, Complexity and Creativity

    Science.gov (United States)

    Arecchi, Fortunato Tito

    We review the ideas and experiments that established the onset of laser coherence beyond a suitable threshold. That threshold is the first of a chain of bifurcations in a non linear dynamics, leading eventually to deterministic chaos in lasers. In particular, the so called HC behavior has striking analogies with the electrical activity of neurons. Based on these considerations, we develop a dynamical model of neuron synchronization leading to coherent global perceptions. Synchronization implies a transitory control of neuron chaos. Depending on the time duration of this control, a cognitive agent has different amounts of awareness. Combining this with a stream of external inputs, one can point at an optimal use of internal resources, that is called cognitive creativity. While coherence is associated with long range correlations, complexity arises whenever an array of coupled dynamical systems displays multiple paths of coherence. What is the relation among the three concepts in the title? While coherence is associated with long range correlations, complexity arises whenever an array of coupled dynamical systems displays multiple paths of coherence. Creativity corresponds to a free selection of a coherence path within a complex nest. As sketched above, it seems dynamically related to chaos control.

  18. Special issue on coherent states: mathematical and physical aspects Special issue on coherent states: mathematical and physical aspects

    Science.gov (United States)

    Twareque Ali, Syed; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre

    2011-07-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to coherent states. The motivation behind this special issue is to gather in a single comprehensive volume the main aspects (past and present), latest developments, different viewpoints and directions being followed in this multidisciplinary field. Given the impressive development of the field in the past two decades, the topicality of such a volume can hardly be overemphasized. We strongly believe that such a special issue could become a particularly valuable reference for the broad scientific community working in mathematical and theoretical physics, as well as in signal processing and mathematics. Editorial policy The Guest Editors for this issue will be Syed Twareque Ali, Jean-Pierre Antoine, Fabio Bagarello and Jean-Pierre Gazeau. Potential topics include, but are not limited to, developments in the theory and applications of coherent states in: quantum optics, optomechanics, Bose-Einstein condensates quantum information, quantum measurement signal processing quantum gravity pseudo-Hermitian quantum mechanics supersymmetric quantum mechanics non-commutative quantum mechanics quantization theory harmonic and functional analysis operator theory Berezin-Toeplitz operators, PT-symmetric operators holomorphic representation theory, reproducing kernel spaces generalization of coherent states All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 October 2011. This deadline will allow the special issue to appear before the end of May 2012 There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a

  19. Macroscopic coherent magnetic islands

    International Nuclear Information System (INIS)

    Porcelli, F.; Airoldi, A.; Angioni, C.

    2001-01-01

    We present experimental and theoretical investigations on the dynamics of coherent magnetic islands in high temperature, magnetically confined plasmas of thermonuclear interest, and of their effects on plasma transport. (author)

  20. Coherence in Industrial Transformation

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Lauridsen, Erik Hagelskjær

    2003-01-01

    The notion of coherence is used to illustrate the general finding, that the impact of environmental management systems and environmental policy is highly dependent of the context and interrelatedness of the systems, procedures and regimes established in society....

  1. Intracoronary optical coherence tomography

    DEFF Research Database (Denmark)

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei

    2017-01-01

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT)...

  2. Coherence and chaos

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1993-01-01

    The annihilation operator for harmonic oscillator is a weighted shift operator and can be realized on a family of over complete coherent states. Shift operators arise in dynamical maps of systems exhibiting deterministic chaos. Generalized coherent states, called harmonious states, realize these maps in a simple manner. By analytic continuation the spectral family can be altered, thus furnishing an alternative perspective on resonant scattering. Singular distributions are necessary to reproduce the rich structure of chaotic and scattering systems

  3. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  4. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  5. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  6. The Puzzle of Coherence

    DEFF Research Database (Denmark)

    Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten

    2016-01-01

    Background During the past decade, politicians and healthcare providers have strived to create a coherent healthcare system across primary and secondary healthcare sectors in Denmark. Nevertheless, elderly patients with chronic diseases (EPCD) continue to report experiences of poor-quality care...... and lack of coherence in treatment and patient pathways. The aim of our study is to explore the role of healthcare providers in furthering coherence. Our ambition is to identify areas for improvement or change of collaborative practice between healthcare providers in municipalities, hospitals and general...... to an acute care ward to discharge and later in meetings with healthcare providers in general practice, outpatient clinics, home care and physiotherapy. Furthermore, field observations were conducted in general practice, home care and rehabilitation settings. Research design An explorative design based...

  7. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  8. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  9. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  10. QUANTUM OPTICS. Universal linear optics.

    Science.gov (United States)

    Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J; Silverstone, Joshua W; Shadbolt, Peter J; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Marshall, Graham D; Thompson, Mark G; Matthews, Jonathan C F; Hashimoto, Toshikazu; O'Brien, Jeremy L; Laing, Anthony

    2015-08-14

    Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies. Copyright © 2015, American Association for the Advancement of Science.

  11. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    Science.gov (United States)

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  13. Coherence Multiplex System Topologies

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; Heideman, G.H.L.M.; van Etten, Wim

    2007-01-01

    Coherence multiplexing is a potentially inexpensive form of optical code-division multiple access, which is particularly suitable for short-range applications with moderate bandwidth requirements, such as access networks, LANs, or interconnects. Various topologies are known for constructing an

  14. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Andersen, Peter E.

    2015-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. Mapping the local reflectivity, OCT visualizes the morphology of the sample, in real time or at video rate. In addition...

  15. Optical Coherence Elastography

    Science.gov (United States)

    Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.

    The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

  16. In-vivo cutaneous burn characterization and scar assay with multi-functional optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Kim, Bumju; Yoon, Yeorum; Le, Viet-Hoan; Yoon, Calvin J.; Kim, Ki Hean

    2016-03-01

    Research about the cutaneous burn was separated by assessment of burn depth and development of wound healing therapy. Various in vivo optical techniques were used to determined burn depth and observe the wound healing process. In this paper, we report the usage of multimodal optical coherence tomography system, which containing angiographic and polarization sensitive OCT (PS-OCT) with conventional OCT system, at burn studies. Burn was induced at 4 different degrees by control the attachment time of 75 Celsius degree heated brass rod at dorsal skin of the rat. For the burn depth assessment, we imaged the different burn degrees area. Changes of polarization sensitive signal were providing burn depth information. To see the wound healing process, each wound area imaged at long period. Conventional OCT shows the structural information about the tissue, like layer and hair follicle. Angiographic OCT provides vascular distribution and diameter of blood vessel information and PS-OCT shows birefringence tissue information. Based on the multimodal OCT data, burn depth assessment were well matched with burn induced time and wound healing process was consistent with previous wound healing report. Therefore, the multimodal OCT holds potential for burn study.

  17. Complementarity, quartic polynomials and one-photon-added coherent and squeezed states

    Science.gov (United States)

    Álvarez-Estrada, Ramón F.

    2014-04-01

    Complementarity (expressed through the x-p commutation relationship) yields, by using suitable non-negative polynomials, quantum inequalities. The latter become strict equalities only for restricted sets of quantum states, which display genuine quantum features. We have shown in previous studies that: (i) a certain non-negative quartic polynomial f4 led to a new quantum inequality, expressed through the discriminant (D‧r) of the equation f4 = 0 as D‧r ⩽ 0 (ii) D‧r = 0 gave rise to an interesting class of non-Gaussian quantum states |ψ4> and (iii) in quantum optics, a subset of those |ψ4> were the displaced one-photon states, previously proposed by other authors through different motivations and already generated experimentally in 2002. The extension of our previous research studies will be reported here. We shall characterize the general class of non-Gaussian quantum states |ψ4,g> such that D‧r = 0. The class of the |ψ4,g> is larger than and includes that of the former |ψ4>. The Wigner function for the |ψ4,g> is obtained and is negative in some domains. In quantum optics, a subclass of the |ψ4,g> is formed by the single-photon-added coherent states (non-Gaussian) generated experimentally, in turn, in 2004. Another subclass of the |ψ4,g> includes single-photon-added squeezed states and single-photon-added squeezed coherent states (both being non-Gaussian). Mandel's parameters are studied for those states: in particular, its negativity for the single-photon-added squeezed states is established for a certain interval of the squeeze factor. The (Hilbert-Schmidt) non-Gaussianities for both the displaced one-photon states and the single-photon-added squeezed states are obtained explicitly: both of them are numerically equal to 5/12. The possibility of generating the single-photon-added squeezed states experimentally is discussed briefly, by extending previous studies by other authors on producing related quantum states; in particular, we treat in

  18. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  19. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic......Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  20. Generalized hypergeometric coherent states

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2004-01-01

    We introduce a large class of holomorphic quantum states by choosing their normalization functions to be given by generalized hypergeometric functions. We call them generalized hypergeometric states in general, and generalized hypergeometric coherent states in particular, if they allow a resolution of unity. Depending on the domain of convergence of the generalized hypergeometric functions, we distinguish generalized hypergeometric states on the plane, the open unit disc and the unit circle. All states are eigenstates of suitably defined lowering operators. We then study their photon number statistics and phase properties as revealed by the Husimi and Pegg-Barnett phase distributions. On the basis of the generalized hypergeometric coherent states we introduce new analytic representations of arbitrary quantum states in Bargmann and Hardy spaces as well as generalized hypergeometric Husimi distributions and corresponding phase distributions

  1. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  2. The Puzzle of Coherence

    DEFF Research Database (Denmark)

    Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten

    2016-01-01

    During the past decade, politicians and health care providers have strived to create a coherent health care system across primary and secondary health care systems in Denmark. Nevertheless, elderly patients with chronic diseases (EPCD) continue to report experiences of poor-quality care and lack ...... both nationally and internationally in preparation of health agreements, implementation of new collaboration forms among health care providers, and in improvement of delegation and transfer of information and assignments across sectors in health care....

  3. Coherent radiation from pulsars

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1979-01-01

    Interaction between a relativistic electrom stream and a plasma under conditions believed to exist in pulsar magnetospheres is shown to result in the simultaneous emission of coherent curvature radiation at radio wavelengths and incoherent curvature radiation at X-ray wavelengths from the same spatial volume. It is found that such a stream can propagate through a plasma parallel to a very strong magnetic field only if its length is less than a critical length L/sub asterisk/ic. Charge induced in the plasma by the stream co-moves with the stream and has the same limitation in longitudinal extent. The resultant charge bunching is sufficient to cause the relatively low energy plasma particles to radiate at radio wavelengths coherently while the relatively high energy stream particles radiate at X-ray wavelengths incoherently as the stream-plasma system moves along curved magnetic field lines. The effective number of coherently radiating particles per bunch is estimated to be approx.10 14 --10 15 for a tupical pulsar

  4. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  5. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  6. Coherent orthogonal polynomials

    International Nuclear Information System (INIS)

    Celeghini, E.; Olmo, M.A. del

    2013-01-01

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L 2 functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L 2 and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the

  7. Volitional Control of Neuromagnetic Coherence

    Directory of Open Access Journals (Sweden)

    Matthew D Sacchet

    2012-12-01

    Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.

  8. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  9. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  10. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  11. Optical coherence refractometry.

    Science.gov (United States)

    Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew

    2008-10-01

    We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.

  12. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  13. Coherence generalises duality

    DEFF Research Database (Denmark)

    Carbone, Marco; Lindley, Sam; Montesi, Fabrizio

    2016-01-01

    Wadler introduced Classical Processes (CP), a calculus based on a propositions-as-types correspondence between propositions of classical linear logic and session types. Carbone et al. introduced Multiparty Classical Processes, a calculus that generalises CP to multiparty session types, by replacing...... the duality of classical linear logic (relating two types) with a more general notion of coherence (relating an arbitrary number of types). This paper introduces variants of CP and MCP, plus a new intermediate calculus of Globally-governed Classical Processes (GCP). We show a tight relation between...

  14. Coherent states and rational surfaces

    International Nuclear Information System (INIS)

    Brody, Dorje C; Graefe, Eva-Maria

    2010-01-01

    The state spaces of generalized coherent states associated with special unitary groups are shown to form rational curves and surfaces in the space of pure states. These curves and surfaces are generated by the various Veronese embeddings of the underlying state space into higher dimensional state spaces. This construction is applied to the parameterization of generalized coherent states, which is useful for practical calculations, and provides an elementary combinatorial approach to the geometry of the coherent state space. The results are extended to Hilbert spaces with indefinite inner products, leading to the introduction of a new kind of generalized coherent states.

  15. Coherent states and rational surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C; Graefe, Eva-Maria, E-mail: d.brody@imperial.ac.u [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-06-25

    The state spaces of generalized coherent states associated with special unitary groups are shown to form rational curves and surfaces in the space of pure states. These curves and surfaces are generated by the various Veronese embeddings of the underlying state space into higher dimensional state spaces. This construction is applied to the parameterization of generalized coherent states, which is useful for practical calculations, and provides an elementary combinatorial approach to the geometry of the coherent state space. The results are extended to Hilbert spaces with indefinite inner products, leading to the introduction of a new kind of generalized coherent states.

  16. Regulatory risk coherence

    International Nuclear Information System (INIS)

    Remick, F.J.

    1992-01-01

    As one of the most progressive users of risk assessment in decision making, the US Nuclear Regulatory Commission (NRC) is in a position to play an important role in influencing the development of standard government wide policies for the application of risk assessment in decision making. The NRC, with the support of the nuclear industry, should use the opportunity provided by its experience with risk assessment to actively encourage the adoption of standard national and international health-based safety goals and at the same time accelerate its own efforts to implement the safety goals it has already developed for itself. There are signs of increased recognition of the need for consistency and coherence in the application of risk assessment in government decision making. The NRC and the nuclear industry have recently taken a great step toward establishing a consistant and coherent risk assessment-based culture in the US nuclear industry. As a result of Generic Letter 88-20, which asks each commercial nuclear power plant licensee to perform an individual plant examination by September 1992, for the first time a risk assessment characterizing initiating events in each plant will exist

  17. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...... as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes...... in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic...

  18. Fermionic coherent states

    Science.gov (United States)

    Combescure, Monique; Robert, Didier

    2012-06-01

    The aim of this paper is to give a self-contained and unified presentation of a fermionic coherent state theory with the necessary mathematical details, discussing their definition, properties and some applications. After defining Grassmann algebras, it is possible to get a classical analog for the fermionic degrees of freedom in a quantum system. Following the basic work of Berezin (1966 The Method of Second Quantization (New York: Academic); 1987 Introduction to Superanalysis (Dordrecht: Reidel Publishing Company)), we show that we can compute with Grassmann numbers as we do with complex numbers: derivation, integration, Fourier transform. After that we show that we have quantization formulas for fermionic observables. In particular, there exists a Moyal product formula. As an application, we consider explicit computations for propagators with quadratic Hamiltonians in annihilation and creation operators. We prove a Mehler formula for the propagator and Mehlig-Wilkinson-type formulas for the covariant and contravariant symbols of ‘metaplectic’ transformations for fermionic states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  19. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  20. The Puzzle of Coherence

    DEFF Research Database (Denmark)

    Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten

    2016-01-01

    During the past decade, politicians and health care providers have strived to create a coherent health care system across primary and secondary health care systems in Denmark. Nevertheless, elderly patients with chronic diseases (EPCD) continue to report experiences of poor-quality care and lack....... Method and material We use an ethnographic method and apply field observation for data collection. 10 patients older than 65 years with multiple chronic diseases are followed through their patient pathways from admission to an acute care ward to discharge and later in meetings with health care providers...... both nationally and internationally in preparation of health agreements, implementation of new collaboration forms among health care providers, and in improvement of delegation and transfer of information and assignments across sectors in health care....

  1. Coherence and correspondence in medicine

    Directory of Open Access Journals (Sweden)

    Thomas G. Tape

    2009-03-01

    Full Text Available Many controversies in medical science can be framed as tension between a coherence approach (which seeks logic and explanation and a correspondence approach (which emphasizes empirical correctness. In many instances, a coherence-based theory leads to an understanding of disease that is not supported by empirical evidence. Physicians and patients alike tend to favor the coherence approach even in the face of strong, contradictory correspondence evidence. Examples include the management of atrial fibrillation, treatment of acute bronchitis, and the use of Vitamin E to prevent heart disease. Despite the frequent occurrence of controversy stemming from coherence-correspondence conflicts, medical professionals are generally unaware of these terms and the philosophical traditions that underlie them. Learning about the coherence-correspondence distinction and using the best of both approaches could not only help reconcile controversy but also lead to striking advances in medical science.

  2. International workshop on phase retrieval and coherent scattering. Coherence 2005

    International Nuclear Information System (INIS)

    Nugent, K.A.; Fienup, J.R.; Van Dyck, D.; Van Aert, S.; Weitkamp, T.; Diaz, A.; Pfeiffer, F.; Cloetens, P.; Stampanoni, M.; Bunk, O.; David, C.; Bronnikov, A.V.; Shen, Q.; Xiao, X.; Gureyev, T.E.; Nesterets, Ya.I.; Paganin, D.M.; Wilkins, S.W.; Mokso, R.; Cloetens, P.; Ludwig, W.; Hignette, O.; Maire, E.; Faulkner, H.M.L.; Rodenburg, J.M.; Wu, X.; Liu, H.; Grubel, G.; Ludwig, K.F.; Livet, F.; Bley, F.; Simon, J.P.; Caudron, R.; Le Bolloc'h, D.; Moussaid, A.; Gutt, C.; Sprung, M.; Madsen, A.; Tolan, M.; Sinha, S.K.; Scheffold, F.; Schurtenberger, P.; Robert, A.; Madsen, A.; Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.; Livet, F.; Sutton, M.D.; Ehrburger-Dolle, F.; Bley, F.; Geissler, E.; Sikharulidze, I.; Jeu, W.H. de; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Naryanan, S.; Sinha, S.K.; Lal, J.; Naryanan, S.; Sinha, S.K.; Lal, J.; Robinson, I.K.; Chapman, H.N.; Barty, A.; Beetz, T.; Cui, C.; Hajdu, J.; Hau-Riege, S.P.; He, H.; Stadler, L.M.; Sepiol, B.; Harder, R.; Robinson, I.K.; Zontone, F.; Vogl, G.; Howells, M.; London, R.; Marchesini, S.; Shapiro, D.; Spence, J.C.H.; Weierstall, U.; Eisebitt, S.; Shapiro, D.; Lima, E.; Elser, V.; Howells, M.R.; Huang, X.; Jacobsen, C.; Kirz, J.; Miao, H.; Neiman, A.; Sayre, D.; Thibault, P.; Vartanyants, I.A.; Robinson, I.K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.; Nishino, Y.; Miao, J.; Kohmura, Y.; Yamamoto, M.; Takahashi, Y.; Koike, K.; Ebisuzaki, T.; Ishikawa, T.; Spence, J.C.H.; Doak, B.

    2005-01-01

    The contributions of the participants have been organized into 3 topics: 1) phase retrieval methods, 2) X-ray photon correlation spectroscopy, and 3) coherent diffraction imaging. This document gathers the abstracts of the presentations and of the posters

  3. International workshop on phase retrieval and coherent scattering. Coherence 2005

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Fienup, J.R.; Van Dyck, D.; Van Aert, S.; Weitkamp, T.; Diaz, A.; Pfeiffer, F.; Cloetens, P.; Stampanoni, M.; Bunk, O.; David, C.; Bronnikov, A.V.; Shen, Q.; Xiao, X.; Gureyev, T.E.; Nesterets, Ya.I.; Paganin, D.M.; Wilkins, S.W.; Mokso, R.; Cloetens, P.; Ludwig, W.; Hignette, O.; Maire, E.; Faulkner, H.M.L.; Rodenburg, J.M.; Wu, X.; Liu, H.; Grubel, G.; Ludwig, K.F.; Livet, F.; Bley, F.; Simon, J.P.; Caudron, R.; Le Bolloc' h, D.; Moussaid, A.; Gutt, C.; Sprung, M.; Madsen, A.; Tolan, M.; Sinha, S.K.; Scheffold, F.; Schurtenberger, P.; Robert, A.; Madsen, A.; Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.; Livet, F.; Sutton, M.D.; Ehrburger-Dolle, F.; Bley, F.; Geissler, E.; Sikharulidze, I.; Jeu, W.H. de; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Naryanan, S.; Sinha, S.K.; Lal, J.; Naryanan, S.; Sinha, S.K.; Lal, J.; Robinson, I.K.; Chapman, H.N.; Barty, A.; Beetz, T.; Cui, C.; Hajdu, J.; Hau-Riege, S.P.; He, H.; Stadler, L.M.; Sepiol, B.; Harder, R.; Robinson, I.K.; Zontone, F.; Vogl, G.; Howells, M.; London, R.; Marchesini, S.; Shapiro, D.; Spence, J.C.H.; Weierstall, U.; Eisebitt, S.; Shapiro, D.; Lima, E.; Elser, V.; Howells, M.R.; Huang, X.; Jacobsen, C.; Kirz, J.; Miao, H.; Neiman, A.; Sayre, D.; Thibault, P.; Vartanyants, I.A.; Robinson, I.K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.; Nishino, Y.; Miao, J.; Kohmura, Y.; Yamamoto, M.; Takahashi, Y.; Koike, K.; Ebisuzaki, T.; Ishikawa, T.; Spence, J.C.H.; Doak, B

    2005-07-01

    The contributions of the participants have been organized into 3 topics: 1) phase retrieval methods, 2) X-ray photon correlation spectroscopy, and 3) coherent diffraction imaging. This document gathers the abstracts of the presentations and of the posters.

  4. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  5. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  6. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  7. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  8. Quantum coherence of relic neutrinos.

    Science.gov (United States)

    Fuller, George M; Kishimoto, Chad T

    2009-05-22

    We argue that in at least a portion of the history of the Universe the relic background neutrinos are spatially extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wave packets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence.

  9. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  10. Coherent states with elliptical polarization

    OpenAIRE

    Colavita, E.; Hacyan, S.

    2004-01-01

    Coherent states of the two dimensional harmonic oscillator are constructed as superpositions of energy and angular momentum eigenstates. It is shown that these states are Gaussian wave-packets moving along a classical trajectory, with a well defined elliptical polarization. They are coherent correlated states with respect to the usual cartesian position and momentum operators. A set of creation and annihilation operators is defined in polar coordinates, and it is shown that these same states ...

  11. Assessment of Optical Coherence Tomography Imaging in the Diagnosis of Non-Melanoma Skin Cancer and Benign Lesions Versus Normal Skin:

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Nürnberg, Birgit Meincke

    2009-01-01

    BACKGROUND Optical coherence tomography (OCT) is an optical imaging technique that may be useful in diagnosis of non-melanoma skin cancer (NMSC). OBJECTIVES To describe OCT features in NMSC such as actinic keratosis (AK) and basal cell carcinoma (BCC) and in benign lesions and to assess...... the diagnostic accuracy of OCT in differentiating NMSC from benign lesions and normal skin. METHODS AND MATERIALS OCT and polarization-sensitive (PS) OCT from 104 patients were studied. Observer-blinded evaluation of OCT images from 64 BCCs, 1 baso-squamous carcinoma, 39 AKs, two malignant melanomas, nine benign...... lesions, and 105 OCT images from perilesional skin was performed; 50 OCT images of NMSC and 50 PS-OCT images of normal skin were evaluated twice. RESULTS Sensitivity was 79% to 94% and specificity 85% to 96% in differentiating normal skin from lesions. Important features were absence of well...

  12. Manipulation of incoherent and coherent spin ensembles in diluted magnetic semiconductors via ferromagnetic fringe fields; Manipulation inkohaerenter und kohaerenter Spinensembles in verduennt-magnetischen Halbleitern mittels ferromagnetischer Streufelder

    Energy Technology Data Exchange (ETDEWEB)

    Halm, Simon

    2009-05-19

    In this thesis it is demonstrated that fringe fields of nanostructured ferromagnets provide the opportunity to manipulate both incoherent and coherent spin ensembles in a dilute magnetic semiconductor (DMS). Fringe fields of Fe/Tb ferromagnets with a remanent out-of-plane magnetization induce a local magnetization in a (Zn,Cd,Mn)Se DMS. Due to the sp-d exchange interaction, optically generated electron-hole pairs align their spin along the DMS magnetization. One obtains a local, remanent spin polarization which was probed by spatially resolved, polarization sensitive photoluminescence spectroscopy. Fringe fields from in-plane magnetized Co ferromagnets allow to locally modify the precession frequency of the Manganese magnetic moments of the DMS in an external magnetic field. This was probed by time-resolved Kerr rotation technique. The inhomogeneity of the fringe field leads to a shortening of the ensemble decoherence time and to the effect of a time-dependent ensemble precession frequency. (orig.)

  13. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-09-12

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  14. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-08-01

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  15. Coherence-vortex lattice formed via Mie scattering of partially coherent light by several dielectric nanospheres.

    Science.gov (United States)

    Marasinghe, Madara L; Paganin, David M; Premaratne, Malin

    2011-03-15

    We previously demonstrated that Mie scattering of stationary partially coherent light by dielectric spheres generates coherence vortices. In this Letter, we demonstrate that a lattice of coherence vortices can be generated by Mie scattering of partially coherent electromagnetic waves by a system of three coplanar dielectric spheres. Spontaneous coherence-vortex creation and destruction is observed in our computer modeling of this system.

  16. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  17. WEB COHERENCE LEARNING

    Directory of Open Access Journals (Sweden)

    Peter Karlsudd

    2008-09-01

    Full Text Available This article describes a learning system constructed to facilitate teaching and learning by creating a functional web-based contact between schools and organisations which in cooperation with the school contribute to pupils’/students’ cognitive development. Examples of such organisations include science centres, museums, art and music workshops and teacher education internships. With the support of the “Web Coherence Learning” IT application (abbreviated in Swedish to Webbhang developed by the University of Kalmar, the aim is to reinforce learning processes in the encounter with organisations outside school. In close cooperation with potential users a system was developed which can be described as consisting of three modules. The first module, “the organisation page” supports the organisation in simply setting up a homepage, where overarching information on organisation operations can be published and where functions like calendar, guestbook, registration and newsletter can be included. In the second module, “the activity page” the activities offered by the organisation are described. Here pictures and information may prepare and inspire pupils/students to their own activities before future visits. The third part, “the participant page” is a communication module linked to the activity page enabling school classes to introduce themselves and their work as well as documenting the work and communicating with the educators responsible for external activities. When the project is finished, the work will be available to further school classes, parents and other interested parties. System development and testing have been performed in a small pilot study where two creativity educators at an art museum have worked together with pupils and teachers from a compulsory school class. The system was used to establish, prior to the visit of the class, a deeper contact and to maintain a more qualitative continuous dialogue during and after

  18. Generation and optimization of superpixels as image processing kernels for Jones matrix optical coherence tomography.

    Science.gov (United States)

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa; Yasuno, Yoshiaki

    2017-10-01

    Jones matrix-based polarization sensitive optical coherence tomography (JM-OCT) simultaneously measures optical intensity, birefringence, degree of polarization uniformity, and OCT angiography. The statistics of the optical features in a local region, such as the local mean of the OCT intensity, are frequently used for image processing and the quantitative analysis of JM-OCT. Conventionally, local statistics have been computed with fixed-size rectangular kernels. However, this results in a trade-off between image sharpness and statistical accuracy. We introduce a superpixel method to JM-OCT for generating the flexible kernels of local statistics. A superpixel is a cluster of image pixels that is formed by the pixels' spatial and signal value proximities. An algorithm for superpixel generation specialized for JM-OCT and its optimization methods are presented in this paper. The spatial proximity is in two-dimensional cross-sectional space and the signal values are the four optical features. Hence, the superpixel method is a six-dimensional clustering technique for JM-OCT pixels. The performance of the JM-OCT superpixels and its optimization methods are evaluated in detail using JM-OCT datasets of posterior eyes. The superpixels were found to well preserve tissue structures, such as layer structures, sclera, vessels, and retinal pigment epithelium. And hence, they are more suitable for local statistics kernels than conventional uniform rectangular kernels.

  19. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  20. Coherent states on Hilbert modules

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S Twareque [Department of Mathematics and Statistics, Concordia University, 1455 De Maisonneuve Blvd West, Montreal, Quebec H3G 1M8 (Canada); Bhattacharyya, T [Department of Mathematics, Indian Institute of Science, Bengaluru 560012, Karnataka (India); Roy, S S, E-mail: stali@math.concordia.ca, E-mail: tirtha@member.ams.org [Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741252, West Bengal (India)

    2011-07-08

    We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.

  1. Coherent laser scanning diffraction microscopy

    International Nuclear Information System (INIS)

    Dierolf, Martin; Thibault, Pierre; Kewish, Cameron M; Menzel, Andreas; Bunk, Oliver; Pfeiffer, Franz

    2009-01-01

    Coherent diffractive imaging (CDI) is a promising approach to high-resolution x-ray microscopy. While CDI typically has a rather limited field of view, this problem can be solved by ptychography, a technique for which an extended object is raster scanned by a compact coherent illumination probe. Significant overlap of illumination for adjacent scan points allows then a self-consistent reconstruction from the entirety of collected coherent diffraction patterns. However, current reconstruction schemes require accurate a priori knowledge of the probe. Our recently developed new algorithm for ptychographic data sets allows us to simultaneously reconstruct both object and illuminating probe. We demonstrate the application of the new method in a test experiment with visible laser light showing that intricate illumination functions can be retrieved reliably.

  2. The Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    White, William E., E-mail: wewhite@slac.stanford.edu; Robert, Aymeric; Dunne, Mike [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    The present status of the Linac Coherent Light Source as a user facility is presented. Opportunities and challenges as well as the scientific impact of X-ray free-electron lasers are discussed. The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  3. Coherence effects in Mie scattering.

    Science.gov (United States)

    Fischer, David G; van Dijk, Thomas; Visser, Taco D; Wolf, Emil

    2012-01-01

    The scattering of a partially coherent beam by a deterministic, spherical scatterer is studied. In particular, the Mie scattering by a Gaussian Schell-model beam is analyzed. Expressions are derived for (a) the extinguished power, (b) the radiant intensity of the scattered field, and (c) the encircled energy in the far field. It is found that the radiant intensity and the encircled energy in the far field depend on the degree of coherence of the incident beam, whereas the extinguished power does not.

  4. Incoherent and coherent tune shifts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y. [Brookhaven National Lab., Upton, NY (United States). AGS Dept.

    1995-12-31

    The longitudinal and transverse microwave instabilities are the two important limiting factors for the performance of an accelerator. Comparing with the fairly unified approach for the longitudinal microwave instabilities, different approaches have been used to define the transverse microwave instabilities. One reason of this is related to the role played by the space charge incoherent and coherent tune shifts. In this article, the transverse microwave instabilities will be discussed by defining separately the roles of the space charge incoherent and coherent tunes, which are represented by the space charge transverse impedances. Preliminary results for the AGS as proton driver are presented by using this approach.

  5. Coherence vortices in Mie scattering of statistically stationary partially coherent fields.

    Science.gov (United States)

    Marasinghe, Madara L; Premaratne, Malin; Paganin, David M

    2010-03-29

    Points within a fully coherent complex scalar optical field, where the amplitude is identically zero but the optical phase has a jump discontinuity, have been widely investigated by the singular-optics community. More recent researches have extended the domain of singular optics to include partially coherent fields. For example, in coherence vortices the phase of the two-point spectral degree of coherence of a partially coherent field exhibits vortex structure around a point where the magnitude of the spectral degree of coherence vanishes. We show that the spectral degree of coherence of Mie scattered partially coherent statistically stationary electromagnetic fields exhibits a rich set of coherence vortices in both the internal and external fields. Specifically, we look at Mie scattering of a stationary beam from a dielectric sphere and study the formation of coherence vortices and their evolution with both the properties of the scattering sphere, and of the incident partially coherent beam.

  6. Interference due to coherence swapping

    Indian Academy of Sciences (India)

    pinhole arrangement in a diaphragm behind the crystal and/or with the use of filters. 4.2 Proposed observation of coherence swapping. We take two separate down conversion crystals, A, B, however pumped by the same pulsed laser (see figure 2). The pump beam is beam-split in such a way that the pulses enter both. 398.

  7. Optical coherent control in semiconductors

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher

    2001-01-01

    of quantum control including the recent applications to semiconductors and nanostructures. We study the influence of inhomogeneous broadening in semiconductors on CC results. Photoluminescence (PL) and the coherent emission in four-wave mixing (FWM) is recorded after resonant excitation with phase...

  8. Coherence effects in Mie scattering

    NARCIS (Netherlands)

    Fischer, D.G.; van Dijk, T.; Visser, T.D.; Wolf, E.

    2012-01-01

    The scattering of a partially coherent beam by a deterministic, spherical scatterer is studied. In particular, the Mie scattering by a Gaussian Schell-model beam is analyzed. Expressions are derived for (a) the extinguished power, (b) the radiant intensity of the scattered field, and (c) the

  9. Coherent state quantization of quaternions

    Energy Technology Data Exchange (ETDEWEB)

    Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Mathematics and Statistics, University of Jaffna, Thirunelveli (Sri Lanka); Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Computer Science and Software Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada)

    2015-08-15

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  10. Laser-Limited Signatures of Quantum Coherence

    NARCIS (Netherlands)

    Tempelaar, Roel; Halpin, Alexei; Johnson, Philip J. M.; Cai, Jianxin; Murphy, R. Scott; Knoester, Jasper; Miller, R. J. Dwayne; Jansen, Thomas L. C.

    2016-01-01

    Quantum coherence is proclaimed to promote efficient energy collection by light-harvesting complexes and prototype organic photovoltaics. However, supporting spectroscopic studies are hindered by the problem of distinguishing between the excited state and ground state origin of coherent spectral

  11. Spatial coherence in reverberant sound fields

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Roisin, Thibaut

    1999-01-01

    A new method of measuring spatial correlation functions in reverberant sound fields is presented. It is shown that coherence functions determined with appropriate spectral resolution contain the same information as the corresponding correlation functions, and that measuring such coherence functio...

  12. Generalized coherence concurrence and path distinguishability

    International Nuclear Information System (INIS)

    Chin, Seungbeom

    2017-01-01

    We propose a new family of coherence monotones, named the generalized coherence concurrence (or coherence k -concurrence), which is an analogous concept to the generalized entanglement concurrence. The coherence k -concurrence of a state is nonzero if and only if the coherence number (a recently introduced discrete coherence monotone) of the state is not smaller than k , and a state can be converted to a state with nonzero entanglement k -concurrence via incoherent operations if and only if the state has nonzero coherence k -concurrence. We apply the coherence concurrence family to the problem of wave-particle duality in multi-path interference phenomena. We obtain a sharper equation for path distinguishability (which witnesses the duality) than the known one and show that the amount of each concurrence for the quanton state determines the number of slits which are identified unambiguously. (paper)

  13. Generalized coherence concurrence and path distinguishability

    Science.gov (United States)

    Chin, Seungbeom

    2017-11-01

    We propose a new family of coherence monotones, named the generalized coherence concurrence (or coherence k-concurrence), which is an analogous concept to the generalized entanglement concurrence. The coherence k-concurrence of a state is nonzero if and only if the coherence number (a recently introduced discrete coherence monotone) of the state is not smaller than k, and a state can be converted to a state with nonzero entanglement k-concurrence via incoherent operations if and only if the state has nonzero coherence k-concurrence. We apply the coherence concurrence family to the problem of wave-particle duality in multi-path interference phenomena. We obtain a sharper equation for path distinguishability (which witnesses the duality) than the known one and show that the amount of each concurrence for the quanton state determines the number of slits which are identified unambiguously.

  14. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  15. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown that is a right -coherent ring if and only if every endomorphism of M R has a pseudokernel in add M R ; S is a left -coherent ring if and ...

  16. Some remarks on quantum coherence theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)

  17. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    We show that it is possible to make arbitrary number of copies of coherent states with exactly the same information content as the original unknown state. Complete information about a coherent state is contained in the complex coherency parameter α. Thus by information cloning what we mean is the ability to make arbitrary ...

  18. On Radar Resolution in Coherent Change Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

  19. Coherent states for polynomial su(2) algebra

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Inomata, Akira

    2007-01-01

    A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit

  20. Operator properties of generalized coherent state systems

    Indian Academy of Sciences (India)

    The main properties of standard quantum mechanical coherent states and the two generalizations of Klauder and of Perelomov are reviewed. For a system of generalized coherent states in the latter sense, necessary and sufficient conditions for existence of a diagonal coherent stable representation for all Hilbert-Schmidt ...

  1. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  2. Characterisation of dispersive systems using a coherer

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2002-01-01

    Full Text Available The possibility of characterization of aluminium powders using a horizontal coherer has been considered. Al powders of known dimension were treated with a high frequency electromagnetic field or with a DC electric field, which were increased until a dielectric breakdown occurred. Using a multifunctional card PC-428 Electronic Design and a suitable interface between the coherer and PC, the activation time of the coherer was measured as a function of powder dimension and the distance between the coherer electrodes. It was also shown that the average dimension of powders of unknown size could be determined using the coherer.

  3. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  4. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    The much anticipated year of 2012 is now here. Amidst the predictions and cosmic alignments that many are aware of, one thing is for sure: it will be an interesting and exciting year as the speed of change continues to increase, bringing both chaos and great opportunity. One benchmark of these times is a shift in many people from a paradigm of competition to one of greater cooperation. All across the planet, increasing numbers of people are practicing heart-based living, and more groups are forming activities that support positive change and creative solutions for manifesting a better world. The Global Coherence Initiative (GCI) is a science-based, co-creative project to unite people in heart-focused care and intention. GCI is working in concert with other initiatives to realize the increased power of collective intention and consciousness. The convergence of several independent lines of evidence provides strong support for the existence of a global information field that connects all living systems and consciousness. Every cell in our bodies is bathed in an external and internal environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems. Therefore, it should not be surprising that numerous physiological rhythms in humans and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most likely mechanism for explaining how solar and geomagnetic influences affect human health and behavior are a coupling between the human nervous system and resonating geomagnetic frequencies, called Schumann resonances, which occur in the earth-ionosphere resonant cavity and Alfvén waves. It is well established that these resonant frequencies directly overlap with those of the human brain and cardiovascular system. If all living systems are indeed interconnected and communicate with each other

  5. Photoelectric converters with quantum coherence

    Science.gov (United States)

    Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can

    2016-05-01

    Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to ηCA through manipulation of carefully controlled quantum coherences.

  6. Stochasticity induced by coherent wavepackets

    International Nuclear Information System (INIS)

    Fuchs, V.; Krapchev, V.; Ram, A.; Bers, A.

    1983-02-01

    We consider the momentum transfer and diffusion of electrons periodically interacting with a coherent longitudinal wavepacket. Such a problem arises, for example, in lower-hybrid current drive. We establish the stochastic threshold, the stochastic region δv/sub stoch/ in velocity space, the associated momentum transfer j, and the diffusion coefficient D. We concentrate principally on the weak-field regime, tau/sub autocorrelation/ < tau/sub bounce/

  7. Coherence effects in neutrino oscillations

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1996-01-01

    We study the effect of coherent and incoherent broadening on neutrino oscillations both in vacuum and in the presence of matter (the MSW effect). We show under very general assumptions that it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution. copyright 1995 The American Physical Society

  8. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  9. Coherent compounding in doppler imaging.

    Science.gov (United States)

    Ekroll, Ingvild K; Voormolen, Marco M; Standal, Oyvind K-V; Rau, Jochen M; Lovstakken, Lasse

    2015-09-01

    Coherent compounding can provide high frame rates and wide regions of interest for imaging of blood flow. However, motion will cause out-of-phase summation, potentially causing image degradation. In this work the impact of blood motion on SNR and the accuracy of Doppler velocity estimates are investigated. A simplified model for the compounded Doppler signal is proposed. The model is used to show that coherent compounding acts as a low-pass filter on the coherent compounding Doppler signal, resulting in negatively biased velocity estimates. Simulations and flow phantom experiments are used to quantify the bias and Doppler SNR for different velocities and beam-to-flow (BTF) angles. It is shown that the bias in the mean velocity increases with increasing beam-to-flow angle and/or blood velocity, whereas the SNR decreases; losses up to 4 dB were observed in the investigated scenarios. Further, a 2-D motion correction scheme is proposed based on multi-angle vector Doppler velocity estimates. For a velocity of 1.1 v(Nyq) and a BTF angle of 75°, the bias was reduced from 30% to less than 4% in simulations. The motion correction scheme was also applied to flow phantom and in vivo recordings, in both cases resulting in a substantially reduced mean velocity bias and an SNR less dependent on blood velocity and direction.

  10. Quantum optics as a conceptual testing ground

    International Nuclear Information System (INIS)

    Buzek, V.; Hillery, M.

    1997-01-01

    How well can one copy an arbitrary quantum state? It has been known since the results of Wooters and Zurek that perfect copies cannot be made. This then leads one to ask how well one can do. We analyze the copy machine discussed by Wooters and Zurek in their proof of the 'No Cloning' theorem, and a second one in which the quality of the copies is independent of the input state. Problems arising from the entanglement of the copies are discussed and measurement schemes to overcome them are presented. We also find fundamental limits on the quality of the copies which are produced, both in the case of a machine which makes 2 copies and one which makes n copies. Quantum logic circuits which realize the action of a quantum copier are presented. (authors)

  11. Quantum Optics in Diamond Nanophotonic Chips

    Science.gov (United States)

    2014-07-01

    quantum network in dia- mond The field of quantum information processing (QIP) takes advantage of the properties of quantum mechanics to perform tasks...We have now employed these cavities for precision sensing of gases and volatile liquids [22]. 4 Summary of Publications under this Program Journal

  12. Tamper-indicating quantum optical seals

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Williams, Brian P [ORNL

    2015-01-01

    Confidence in the means for identifying when tampering occurs is critical for containment and surveillance technologies. Fiber-optic seals have proven especially useful for actively surveying large areas or inventories due to the extended transmission range and flexible layout of fiber. However, it is reasonable to suspect that an intruder could tamper with a fiber-optic sensor by accurately replicating the light transmitted through the fiber. In this contribution, we demonstrate a novel approach to using fiber-optic seals for safeguarding large-scale inventories with increased confidence in the state of the seal. Our approach is based on the use of quantum mechanical phenomena to offer unprecedented surety in the authentication of the seal state. In particular, we show how quantum entangled photons can be used to monitor the integrity of a fiber-optic cable - the entangled photons serve as active sensing elements whose non-local correlations indicate normal seal operation. Moreover, we prove using the quantum no-cloning theorem that attacks against the quantum seal necessarily disturb its state and that these disturbances are immediately detected. Our quantum approach to seal authentication is based on physical principles alone and does not require the use of secret or proprietary information to ensure proper operation. We demonstrate an implementation of the quantum seal using a pair of entangled photons and we summarize our experimental results including the probability of detecting intrusions and the overall stability of the system design. We conclude by discussing the use of both free-space and fiber-based quantum seals for surveying large areas and inventories.

  13. Nonlinear and quantum optics with liquid crystals

    International Nuclear Information System (INIS)

    Lukishova, Svetlana G

    2014-01-01

    Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of rare-earths dispersed in liquid crystal host are presented.

  14. Quantum optics of dispersive dielectric media

    International Nuclear Information System (INIS)

    Lenac, Z.

    2003-01-01

    We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion. In our model the medium is described by a Lorenz-type dielectric function ε(r,ω) appropriate, e.g., for ionic crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function, i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion of the total field (transverse and longitudinal) in terms of the coupled (polariton) eigenmodes, and this approach incorporates all previous results derived for similar but restricted systems (e.g., without spatial or frequency dependence of coupled modes). Within the same model, we also quantize the Hamiltonian of a nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogonality and closure relations, which are used in a discussion of the fundamental (equal-time) commutation relations between the conjugate field operators

  15. Probing noncommutative theories with quantum optical experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Dey

    2017-11-01

    Full Text Available One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.

  16. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  17. Experimental quantum forgery of quantum optical money

    Science.gov (United States)

    Bartkiewicz, Karol; Černoch, Antonín; Chimczak, Grzegorz; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2017-03-01

    Unknown quantum information cannot be perfectly copied (cloned). This statement is the bedrock of quantum technologies and quantum cryptography, including the seminal scheme of Wiesner's quantum money, which was the first quantum-cryptographic proposal. Surprisingly, to our knowledge, quantum money has not been tested experimentally yet. Here, we experimentally revisit the Wiesner idea, assuming a banknote to be an image encoded in the polarization states of single photons. We demonstrate that it is possible to use quantum states to prepare a banknote that cannot be ideally copied without making the owner aware of only unauthorized actions. We provide the security conditions for quantum money by investigating the physically-achievable limits on the fidelity of 1-to-2 copying of arbitrary sequences of qubits. These results can be applied as a security measure in quantum digital right management.

  18. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  19. Anatomy of a digital coherent receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-01-01

    Digital coherent receivers have gained significant attention in the last decade. The reason for this is that coherent detection, along with digital signal processing (DSP) allows for substantial increase of the channel capacity by employing advanced detection techniques. In this paper, we first......, orthonormaliation, chromatic dispersion compensation/nonlinear compensation, resampling a nd timing recovery, polarization demultiplexing and equalization, frequency and phase recovery, digital demodulation. We also describe novel subsystems of a digital coherent receiver: modulation format recognition...

  20. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  1. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  2. Quantum oscillators in the canonical coherent states

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Lima, A.F. de; Ferreira, K. de Araujo; Vaidya, A.N.

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  3. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  4. XX International Youth Scientific School “Coherent Optics and Optical Spectroscopy”

    International Nuclear Information System (INIS)

    2017-01-01

    The XX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2016) was held in Kazan, Russia, from October 18 to October 20 on the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency to comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarus and Russia had plenary lectures presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions of the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. Plenary sessions were offered by the following invited speakers: Ildar Gabitov, University of Arizona, USA. • Error statistics in coherent communication lines Andrei Naumov, Institute for Spectroscopy RAS, Troitsk, Moscow, Russia. • Revisiting the question of the experimental realization of a nonclassical light source on the basis of single organic molecules of dyes Gerd Hermann, University of Giessien, Germany. • Applications of Coherent Spectroscopy Askhat Basharov, National Research Center ‘Kurchatov Institute’, Moscow, Russia. • Low-frequency emission in resonant processes • Evolution of a two-level quantum particle in the noise classical e.-m. field within and beyond the resonant approximation Anastas Bukharaev, Kazan E. K. Zavoisky Physical-Technical Institute, Kazan, Russia. • Straintronics Maxim Gladush, Institute for Spectroscopy RAS, Troitsk, Moscow, Russia. • Fluorescent properties of single quantum emitters and their ensembles in dielectric media Sergey Sazonov

  5. Enhanced delegated computing using coherence

    Science.gov (United States)

    Barz, Stefanie; Dunjko, Vedran; Schlederer, Florian; Moore, Merritt; Kashefi, Elham; Walmsley, Ian A.

    2016-03-01

    A longstanding question is whether it is possible to delegate computational tasks securely—such that neither the computation nor the data is revealed to the server. Recently, both a classical and a quantum solution to this problem were found [C. Gentry, in Proceedings of the 41st Annual ACM Symposium on the Theory of Computing (Association for Computing Machinery, New York, 2009), pp. 167-178; A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 2009), pp. 517-526]. Here, we study the first step towards the interplay between classical and quantum approaches and show how coherence can be used as a tool for secure delegated classical computation. We show that a client with limited computational capacity—restricted to an XOR gate—can perform universal classical computation by manipulating information carriers that may occupy superpositions of two states. Using single photonic qubits or coherent light, we experimentally implement secure delegated classical computations between an independent client and a server, which are installed in two different laboratories and separated by 50 m . The server has access to the light sources and measurement devices, whereas the client may use only a restricted set of passive optical devices to manipulate the information-carrying light beams. Thus, our work highlights how minimal quantum and classical resources can be combined and exploited for classical computing.

  6. Optical coherence elastography in ophthalmology.

    Science.gov (United States)

    Kirby, Mitchell A; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T; Wang, Ruikang K; O'Donnell, Matthew

    2017-12-01

    Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Optical coherence elastography in ophthalmology

    Science.gov (United States)

    Kirby, Mitchell A.; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2017-12-01

    Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.

  8. Coherently Enhanced Wireless Power Transfer

    Science.gov (United States)

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alù, Andrea

    2018-04-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and wireless power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load. This condition, however, can be easily affected by changes in the environment, preventing optimal operation of a WPT system. Here, we introduce the concept of coherently enhanced WPT that allows us to bypass this difficulty and achieve dynamic control of power transfer. The approach relies on coherent excitation of the waveguide connected to the antenna load with a backward propagating signal of specific amplitude and phase. This signal creates a suitable interference pattern at the load resulting in a modification of the local wave impedance, which in turn enables conjugate matching and a largely increased amount of extracted energy. We develop a simple theoretical model describing this concept, demonstrate it with full-wave numerical simulations for the canonical example of a dipole antenna, and verify experimentally in both near-field and far-field regimes.

  9. Coherence in Magnetic Quantum Tunneling

    Science.gov (United States)

    Fernandez, Julio F.

    2001-03-01

    Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.

  10. Coherent stuctures in geophysical turbulence

    Science.gov (United States)

    Siegel, Andrew Robert

    This thesis examines the dynamic role of coherent structures in high Re turbulence. Three settings are chosen: the atmospheric boundary layer (ABL), two- dimensional turbulence, and oceanic gyres. In the ABL, the intermittency of vertical heat and momentum fluxes complicates the use of local drag laws, which in turn has serious implications for large eddy simulations (LES). We develop a method to test the accuracy of local drag laws as a surface boundary condition for LES. When our diagnostic is applied to measurements of ABL turbulence, results indicate that drag-law formulations are only adequate for LES grid spacings dx > 25 km. The most salient aspect of 2-D solutions of the Navier Stokes equations is the appearance of populations of circular vortices and their subsequent dominance of the flow dynamics. To understand these dynamics, one must develop a method of decomposing such flows into their `coherent' and `non-coherent' components. We devise and test such an algorithm on weakly decaying 2-D simulations. We argue that the WPT algorithm is more general and suitable to a wider range of problems than a traditional selection-criteria approach. The decomposed 2-D solutions are then analyzed in light of turbulence theories which fail to take into account the two distinct regimes of the flow. Ocean General Circulation Models (OGCM's) traditionally fail to accurately mimic observed levels of eddy kinetic energy (EKE) and mesoscale vortex activity. A possible explanation is insufficient horizontal resolution due to the huge computational demands of complex ocean models. To test this hypothesis, a highly efficient, parallel numerical algorithm is designed to simulate the wind- driven, closed basin quasigeostrophic (QG) equations. The combination of idealized geometry, simplified equations, and the most recent technology in parallel computing permits us to achieve decade-length integrations at resolutions five times greater than has been possible with OGCM's. These

  11. Coherent ρ production from polarized deuterium

    International Nuclear Information System (INIS)

    Frankfurt, L.; Sargsian, M.; Sargsian, M.

    1996-01-01

    We discuss the coherent leptoproduction of vector mesons from polarized deuterium as a tool to investigate the evolution of small size quark-gluon configurations. Kinematic regions are determined where the final state interaction of the initially produced quark-gluon wave packet contributes dominantly to the production cross section. Two methods for an investigation of color coherence effects are suggested. (author)

  12. Coherent effects in semiconductor light emission

    Science.gov (United States)

    Kira, M.; Jahnke, Frank; Hoyer, W.; Koch, Stephan W.

    2000-03-01

    Coherent signatures in the semiconductor light emission are studied using a fully quantum mechanical theory for the system of photons and Coulomb interacting electron-hole pairs. The dominant light-matter correlations couple the semiconductor Bloch and luminescence equations yielding significant quantum corrections. A coherent excitation leads to squeezing of the emitted light as well as to entanglement between light and matter.

  13. Coherent state quantization of paragrassmann algebras

    Energy Technology Data Exchange (ETDEWEB)

    El Baz, M; Hassouni, Y [Laboratoire de Physique Theorique, LPT-URAC 13, Faculte des Sciences, Universite Mohamed V, Av.Ibn Battouta, BP 1014 Agdal Rabat (Morocco); Fresneda, R [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo (Brazil); Gazeau, J P, E-mail: elbaz@fsr.ac.m, E-mail: fresneda@gmail.co, E-mail: gazeau@apc.univ-paris7.f, E-mail: y-hassou@fsr.ac.m [Laboratoire APC, Universite Paris Diderot (Paris 7), 10, rue A Domon et L Duquet 75205 Paris Cedex 13 (France)

    2010-09-24

    By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.

  14. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    Abstract. We show that in the case of unknown harmonic oscillator coherent states it is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state.

  15. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    article/fulltext/pram/059/02/0263-0267. Keywords. Cloning; coherent states. Abstract. We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that ...

  16. Quantum Processes Which Do Not Use Coherence

    Directory of Open Access Journals (Sweden)

    Benjamin Yadin

    2016-11-01

    Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

  17. Spatial coherence profilometry on tilted surfaces

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Halouzka, M.; Duan, Z.; Takeda, M.

    2009-01-01

    Roč. 48, č. 34 (2009), H40-H47 ISSN 0003-6935 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : tilted surface * spatial coherence profilometry * spatial coherence * measurement error * shape measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.410, year: 2009

  18. An Example of Coherent Mathematics Lesson

    Science.gov (United States)

    Liang, Su

    2013-01-01

    This paper attempted to illustrate how a coherence instruction could be accomplished by a teacher's discourse moves. The ultimate goal of this study was to provide mathematics teachers and educational researchers an insightful view of instructional coherence which needs more attention to achieve high quality of mathematics teaching. A Chinese…

  19. Operator properties of generalized coherent state systems

    Indian Academy of Sciences (India)

    Keywords. Generalized coherent states; diagonal representation; induced representation theory. PACS Nos 03.65.-w; 03.65.Ca; 02.20.Qs. 1. Introduction ... sations of the coherent state concept due respectively to Klauder [1] and to Perelomov [2]; ..... ½ ¾, namely in the defining UIR of SU(2), for any choice of ¼ we have: А¼.

  20. Martingale characterizations of coherent acceptability measures

    NARCIS (Netherlands)

    Roorda, Berend

    2002-01-01

    The coherent risk framework is linked to martingale valuation by adding hedgeinvariance as a fifth axiom, motivated by the concept of consistent hedging. The resulting subclass, called coherent pre-hedge (CoPr) measures, is characterized by a martingale condition on the test set that underlies a

  1. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown ... Author Affiliations. Li-Xin Mao1. Institute of Mathematics, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China ...

  2. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use ...

  3. Extensions and modifications to explanatory coherence

    NARCIS (Netherlands)

    Vreeswijk, G.A.W.

    2016-01-01

    Thagard’s theory of explanatory coherence (TEC) and its implementation ECHO might be considered as the de facto calculus of explanatory coherence. It is an elaborate framework to compare competing scientific theories. Recently, it has become apparent that TEC is also useful as a tool for the

  4. High-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Norrenberg, Sarah; Jemec, Gregor

    2013-01-01

    High-definition optical coherence tomography (HD-OCT) is a non-invasive technique for morphological investigation of tissue with cellular resolution filling the imaging gap between reflectance confocal microscopy and conventional optical coherence tomography. The aim of this study is first...... technique appears to be a promising method for non-invasive diagnosis, evaluation and management of common inflammatory skin diseases....

  5. Geometry of generalized coherent states

    International Nuclear Information System (INIS)

    Bacry, H.; Centre National de la Recherche Scientifique, 13 - Marseille; Grossmann, A.; Zak, J.

    1975-09-01

    Various attempts have been made to generalize the concept of coherent states (c.s.). One of them, due to Perelomov, seems to be very promising but no restrictive enough. The Perelomov c.s. are briefly reviewed. One shows how his definition gives rise to Radcliffe's c.s. Relationship between the usual and Radcliffe's c.s. can be investigated either from group contraction point of view (Arecchi et al.) or from a physical point of view (with the aid of the Poincare sphere of elliptic polarizations of electromagnetic plane waves). The question of finding complete subsets of c.s. is revisited and an attempt is made to restrict the Perelomov definition [fr

  6. Deterministic Bragg Coherent Diffraction Imaging.

    Science.gov (United States)

    Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M

    2017-04-25

    A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.

  7. Nuclear structure with coherent states

    CERN Document Server

    Raduta, Apolodor Aristotel

    2015-01-01

    This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.

  8. Optical coherence tomography in dermatology

    Science.gov (United States)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  9. On coherence in neutron imaging

    Science.gov (United States)

    Treimer, W.; Feye-Treimer, U.

    2011-09-01

    The variety of imaging signals in neutron radiography and tomography became quite large compared to the pure absorption and scattering contrast in neutron radiographies and topographies in the early sixties or seventies of the last century. The diversity of absorption based techniques for neutron radiography and tomography is comparable to coherence based imaging techniques such as phase contrast, differential phase contrast, dark field imaging, diffraction enhanced contrast, refraction contrast, ultra small angle scattering contrast, grating interferometry and crystal interferometry, also the spin of the neutron was successfully used for imaging [1-12]. We show which effects (total reflection, diffraction, refraction) contribute to e.g. a step boundary or a phase boundary. Taking this simple object, one can learn to understand the imaging procedure and what is displayed in a radiograph.

  10. On coherence in neutron imaging

    International Nuclear Information System (INIS)

    Treimer, W.; Feye-Treimer, U.

    2011-01-01

    The variety of imaging signals in neutron radiography and tomography became quite large compared to the pure absorption and scattering contrast in neutron radiographies and topographies in the early sixties or seventies of the last century. The diversity of absorption based techniques for neutron radiography and tomography is comparable to coherence based imaging techniques such as phase contrast, differential phase contrast, dark field imaging, diffraction enhanced contrast, refraction contrast, ultra small angle scattering contrast, grating interferometry and crystal interferometry, also the spin of the neutron was successfully used for imaging . We show which effects (total reflection, diffraction, refraction) contribute to e.g. a step boundary or a phase boundary. Taking this simple object, one can learn to understand the imaging procedure and what is displayed in a radiograph.

  11. Coherent and squeezed states on physical basis

    International Nuclear Information System (INIS)

    Puri, R.R.

    1997-01-01

    A definition of coherent states is proposed as the minimum uncertainty states with equal variance in two hermitian non-commuting generators of the Lie algebra of the Hamiltonian. That approach classifies the coherent states into distinct classes. The coherent states of a harmonic oscillator, according to the proposed approach, are shown to fall in two classes. One is the familiar class of Glauber states whereas the other is a new class. The coherent states of spin constitute only one class. The squeezed states are similarly defined on the physical basis as the states that give better precision than the coherent states in a process of measurement of a force coupled to the given system. The condition of squeezing based on that criterion is derived for a system of spins. (author)

  12. Direct visualization of fiber information by coherence.

    Science.gov (United States)

    Hlawitschka, Mario; Garth, Christoph; Tricoche, Xavier; Kindlmann, Gordon; Scheuermann, Gerik; Joy, Kenneth I; Hamann, Bernd

    2010-03-01

    The structure of fiber tracts in DT-MRI data presents a challenging problem for visualization and analysis. We derive visualization of such traces from a local coherence measure and achieve much improved visual segmentation. We introduce a coherence measure defined for fiber tracts. This quantitative assessment is based on infinitesimal deviations of neighboring tracts and allows identification and segmentation of coherent fiber regions. We use a hardware-accelerated implementation to achieve interactive visualization on slices and provide several approaches to visualize coherence information. Furthermore, we enhance existing techniques by combining them with coherence. We demonstrate our method on both a canine heart, where the myocardial structure is visualized, and a human brain, where we achieve detailed visualization of major and minor fiber bundles in a quality similar to and exceeding fiber clustering approaches. Our approach allows detailed and fast visualization of important anatomical structures in DT-MRI data sets.

  13. Influence of HeartMath quick coherence technique on ...

    African Journals Online (AJOL)

    ... of high psychophysiological coherence, decreased feelings of sadness and increased feelings of peacefulness. Psychophysiological and emotional state findings are discussed in relation to health and sport psychology, theory and practice. Keywords: Biofeedback, physiological coherence, Quick Coherence Technique, ...

  14. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  15. Coherent x-rays from PEP

    International Nuclear Information System (INIS)

    Baird, S.; Nuhn, H.-D.; Tatchyn, R.; Winick, H.; Fisher, A.S.; Gallardo, J.C.; Pellegrini, C.

    1991-01-01

    This paper explores the use of a large-circumference, high-energy, electron-positron collider such as PEP to drive a free-electron laser (FEL), producing high levels of coherent power at short wavelengths. The author consider Self-Amplified Spontaneous Emission (SASE), in which electron bunches with low emittance, high peak current and small energy spread radiate coherently in a single passthrough a long undulator. As the electron beam passes down the undulator, its interaction with the increasingly intense spontaneous radiation causes a bunch density modulation at the optical wavelength, resulting in stimulated emissional growth of coherent power in a single pass. The need for optical-cavity mirrors, which place a lower limit on the wavelength of a conventional FEL oscillator, is avoided. The authors explore various combinations of electron-beam and undulator parameters, as well as special undulator designs and optical klystrons (OK), to reach high average or peak coherent power at wavelengths around 40 angstrom by achieving significant exponential gain or full saturation. Examples are presented for devices that achieve high peak coherent power (up to about 400 MW) with lower average coherent power (about 20 mW) and other devices which produce a few watts of average coherent power

  16. Optical Coherence Tomography of the Aging Kidney.

    Science.gov (United States)

    Andrews, Peter M; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Falola, Reuben; Chen, Yu

    2016-12-01

    The aging kidney exhibits a progressive decline in renal function with characteristic histopathologic changes and is a risk factor for renal transplant. However, the degree to which the kidney exhibits this decline depends on several factors that vary from one individual to the next. Optical coherence tomography is an evolving noninvasive imaging technology that has recently been used to evaluate acute tubular necrosis of living-human donor kidneys before their transplant. With the increasing use of kidneys from older individuals, it is important to determine whether optical coherence tomography also can distinguish the histopathology associated with aging. In this investigation, we used Munich-Wistar rats to evaluate the ability of optical coherence tomography to detect histopathologic changes associated with aging. Optical coherence tomography observations were correlated with renal function and conventional light microscopic evaluation of these same kidneys. With the onset of severe proteinuria at 10 to 12 months of age, optical coherence tomography revealed tubular necrosis/atrophy, interstitial fibrosis, tubular dilation, and glomerulosclerosis. With a further deterioration in kidney function at 16 to 18 months of age (as indicated by rising creatinine levels), optical coherence tomography revealed more extensive interstitial fibrosis and tubular atrophy, increased tubular dilation with cyst formation and more sclerotic glomeruli. The foregoing observations suggest that optical coherence tomography can be used to detect the histopathology of progressive nephropathy associated with aging.

  17. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  18. NASA's Earth Data Coherent Web

    Science.gov (United States)

    Gonzalez, R.; Murphy, K. J.; Cechini, M. F.

    2011-12-01

    NASA Earth Science Data Systems are a large and continuing investment in science data management activities. The Earth Science Data and Information System (ESDIS) project manages the science systems of the Earth Observing System Data and Information System (EOSDIS). EOSDIS provides science data to a wide community of users. Websites are the front door to data and services for users (science, programmatic, missions, citizen scientist, etc...), but these are disparate and disharmonious. Earth science is interdisciplinary thus, EOSDIS must enable users to discover and use the information, data and services they need in an easy and coherent manner. Users should be able to interact with each EOSDIS element in a predictable way and see EOSDIS as a program of inter-related but distinct systems each with expertise in a different science and/or information technology domain. Additionally, users should be presented with a general search capability that can be customized for each research discipline. Furthermore, the array of domain specific expertise along with crosscutting capabilities should be harmonized so users are presented with a common language and information framework to efficiently perform science investigations. The Earthdata Coherent Web Project goals are (1) to present NASA's EOSDIS as a coherent yet transparent system of systems that provide a highly functioning, integrated web presence that ties together information content and web services throughout EOSDIS so science users can easily find, access, and use data collected by NASA's Earth science missions. (2) Fresh, engaging and continually updated and coordinated content. (3) Create an active and immersive science user experience leveraging Web Services (e.g. W*S, SOAP, RESTful) from remote and local data centers and projects to reduce barriers to using EOSDIS data. Goals will be reached through a phased approach where functionality and processes are incrementally added. Phase I focused on the following main

  19. Mesoscopic quantum coherence in an optical lattice

    Science.gov (United States)

    Haycock; Alsing; Deutsch; Grondalski; Jessen

    2000-10-16

    We observe the quantum coherent dynamics of atomic spinor wave packets in the double-well potentials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates between the left and right localized states of the ground doublet, and at certain times the wave packet corresponds to a coherent superposition of these mesoscopically distinct quantum states. The atom/optical double-well potential is a flexible and powerful system for further study of quantum coherence, quantum control, and the quantum/classical transition.

  20. Experimental study on partial coherence source

    CERN Document Server

    Zhao Xue Qing; Yuan Xiao; LiuJingRu; Wang Long Hua; Tang Ying; Huang, Kerson

    2002-01-01

    Partial coherence source is a key part in the laser system using echelon-free introduced spatial incoherence beam smoothing technique. Different kinds of partial coherence sources have been studied experimentally for improving the uniformity of laser intensity distribution. It is found that the source produced by excimer laser scattering on the surface of a teflon plate is ideal. The properties of this kind of source are studied. As a result, the uniformity of source beam intensity distribution, the beam spatial coherence and energy transfer efficiency of the source are obtained

  1. Coherent states in quaternionic quantum mechanics

    International Nuclear Information System (INIS)

    Adler, S.L.; Millard, A.C.

    1997-01-01

    We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics

  2. Classical Trajectories from Coherent Quantum Oscillations

    Science.gov (United States)

    Kadin, Alan

    2013-03-01

    In the conventional Copenhagen interpretation of quantum mechanics, classical behavior arises from microscopic coherent quantum systems only in the presence of decoherence on the macroscopic scale. On the contrary, we derive classical Hamiltonian trajectories for a confined quantum wave directly from coherent phase evolution on the microscopic scale, without decoherence or wavefunction collapse (see also). This suggests that the basis for classical macroscopic physics, including relativity, lies in the microscopic behavior of coherently oscillating quantum fields. An outline of such a theory will be presented, which resolves longstanding paradoxes involving wave-particle duality, quantum entanglement, and the quantum-to-classical transition.

  3. A new coherence measure based on fidelity

    Science.gov (United States)

    Liu, C. L.; Zhang, Da-Jian; Yu, Xiao-Dong; Ding, Qi-Ming; Liu, Longjiang

    2017-08-01

    Quantifying coherence is an essential endeavor for both quantum foundations and quantum technologies. In this paper, we put forward a quantitative measure of coherence by following the axiomatic definition of coherence measures introduced in Baumgratz et al. (Phys Rev Lett 113:140401, 2014). Our measure is based on fidelity and analytically computable for arbitrary states of a qubit. As one of its applications, we show that our measure can be used to examine whether a pure qubit state can be transformed into another pure or mixed qubit state only by incoherent operations.

  4. Damage Proxy Map from Interferometric Synthetic Aperture Radar Coherence

    Science.gov (United States)

    Yun, Sang-Ho (Inventor); Fielding, Eric Jameson (Inventor); Webb, Frank H. (Inventor); Simons, Mark (Inventor)

    2015-01-01

    A method, apparatus, and article of manufacture provide the ability to generate a damage proxy map. A master coherence map and a slave coherence map, for an area prior and subsequent to (including) a damage event are obtained. The slave coherence map is registered to the master coherence map. Pixel values of the slave coherence map are modified using histogram matching to provide a first histogram of the master coherence map that exactly matches a second histogram of the slave coherence map. A coherence difference between the slave coherence map and the master coherence map is computed to produce a damage proxy map. The damage proxy map is displayed with the coherence difference displayed in a visually distinguishable manner.

  5. Coherence in Turbulence: New Perspective

    Science.gov (United States)

    Levich, Eugene

    2009-07-01

    It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows

  6. Estimating the coherence of noise

    Science.gov (United States)

    Wallman, Joel

    To harness the advantages of quantum information processing, quantum systems have to be controlled to within some maximum threshold error. Certifying whether the error is below the threshold is possible by performing full quantum process tomography, however, quantum process tomography is inefficient in the number of qubits and is sensitive to state-preparation and measurement errors (SPAM). Randomized benchmarking has been developed as an efficient method for estimating the average infidelity of noise to the identity. However, the worst-case error, as quantified by the diamond distance from the identity, can be more relevant to determining whether an experimental implementation is at the threshold for fault-tolerant quantum computation. The best possible bound on the worst-case error (without further assumptions on the noise) scales as the square root of the infidelity and can be orders of magnitude greater than the reported average error. We define a new quantification of the coherence of a general noise channel, the unitarity, and show that it can be estimated using an efficient protocol that is robust to SPAM. Furthermore, we also show how the unitarity can be used with the infidelity obtained from randomized benchmarking to obtain improved estimates of the diamond distance and to efficiently determine whether experimental noise is close to stochastic Pauli noise.

  7. Coherence effects in parton showers

    International Nuclear Information System (INIS)

    Pettersson, U.

    1988-10-01

    A model for gluon emission based on the colour dipole approximation is presented. Gluons are radiated from dipoles that are stretched from one colour charge to the corresponding anti-charge, with probability distribution given by generalizations of the Altarelli-Parisi equations. The model agrees very well with experimental data on e + e - annihilation. For the reaction e + e - -> W + W - -> qq ' QQ ' it is pointed out how to extract information about the QCD vacuum and the confinement mechanism by varying the CM energy. Finally the model is applied to deep inelastic lepton scattering. When a quark is kicked out in the lepton-proton interaction, separation of the colour charges leads to gluon emission. Since the proton remnant is not a pointlike object, coherence conditions lead to an asymmetry between gluons emitted in the forward and in the backward region. The asymmetry is controlled by the energy distribution in the force field. Experimental data are reproduced with a linear energy distribution, which is consistent with the proton behaving as a vortex line in a type II superconductor. (author)

  8. Diffusion tensor optical coherence tomography

    Science.gov (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  9. Coherence properties of the radiation from FLASH

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2015-02-01

    FLASH is the first free electron laser user facility operating in the vacuum ultraviolet and soft x-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper we present an analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach maximum close to the FEL saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that non-azimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

  10. Coherent Structures in Numerically Simulated Plasma Turbulence

    DEFF Research Database (Denmark)

    Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.

    1989-01-01

    Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...

  11. Coherent information structure in complex computation.

    Science.gov (United States)

    Lizier, Joseph T; Prokopenko, Mikhail; Zomaya, Albert Y

    2012-09-01

    We have recently presented a framework for the information dynamics of distributed computation that locally identifies the component operations of information storage, transfer, and modification. We have observed that while these component operations exist to some extent in all types of computation, complex computation is distinguished in having coherent structure in its local information dynamics profiles. In this article, we conjecture that coherent information structure is a defining feature of complex computation, particularly in biological systems or artificially evolved computation that solves human-understandable tasks. We present a methodology for studying coherent information structure, consisting of state-space diagrams of the local information dynamics and a measure of structure in these diagrams. The methodology identifies both clear and "hidden" coherent structure in complex computation, most notably reconciling conflicting interpretations of the complexity of the Elementary Cellular Automata rule 22.

  12. Ptychotomography at DLS Coherence Beamline I13

    Science.gov (United States)

    Kuppili, V. S. C.; Sala, S.; Chalkidis, S.; Wise, A. M.; Parsons, A. D.; Zanette, I.; Rau, C.; Thibault, P.

    2017-06-01

    We describe the implementation and execution of ptychotomography at I13-1, the coherence branchline at Diamond Light Source. The data collection and image reconstruction protocol is demonstrated with the three dimensional reconstruction of a nanoporous gold sample.

  13. Ptychotomography at DLS Coherence Beamline I13

    International Nuclear Information System (INIS)

    Kuppili, V.S.C.; Sala, S.; Chalkidis, S.; Wise, A.M.; Parsons, A.D.; Zanette, I.; Rau, C.; Thibault, P.

    2017-01-01

    We describe the implementation and execution of ptychotomography at I13-1, the coherence branchline at Diamond Light Source. The data collection and image reconstruction protocol is demonstrated with the three dimensional reconstruction of a nanoporous gold sample. (paper)

  14. Relative coordinates of coherent electron pair

    Science.gov (United States)

    Usenko, Constantin V.; Cherkashyna, Nataliia O.

    2008-03-01

    It is shown that relative coordinate and momentum of coherent electron pair have the meaning of observables with the help of quadrupole and magnetic moments. Distributions of quadrupole terms of scalar potential are shown. These distributions have nonclassical properties.

  15. Coherence and decoherence in the brain

    Science.gov (United States)

    Hepp, K.

    2012-09-01

    This review provides many entry points to controversies in neuroscience, where input from mathematical physics could be fruitful, especially about coherence and decoherence in the brain, both on the level of classical and quantum mechanics.

  16. Managing coherence via put/get windows

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  17. Restricted Coherent Risk Measures and Actuarial Solvency

    Directory of Open Access Journals (Sweden)

    Christos E. Kountzakis

    2012-01-01

    Full Text Available We prove a general dual representation form for restricted coherent risk measures, and we apply it to a minimization problem of the required solvency capital for an insurance company.

  18. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  19. Managing coherence via put/get windows

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  20. Power system coherency and model reduction

    CERN Document Server

    Chow, Joe H

    2014-01-01

    This book provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method.

  1. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  2. Overlapped optics induced perfect coherent effects.

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-20

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  3. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  4. Optical Coherent Receiver Enables THz Wireless Bridge

    DEFF Research Database (Denmark)

    Yu, Xianbin; Liu, Kexin; Zhang, Hangkai

    2016-01-01

    We experimentally demonstrated a 45 Gbit/s 400 GHz photonic wireless communication system enabled by an optical coherent receiver, which has a high potential in fast recovery of high data rate connections, for example, in disaster....

  5. Evidence for color coherence in jet events

    Energy Technology Data Exchange (ETDEWEB)

    CDF Collaboration

    1994-06-01

    Color coherence effects in p{bar p} collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multi jet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlos that are substantially different with respect to the implementation of coherence.

  6. Analytic coherent states for generalized potentials

    International Nuclear Information System (INIS)

    Nieto, M.M.; Simmons, L.M. Jr.

    1978-01-01

    A prescription is given for finding coherent states in generalized potentials. By coherent states is meant states which in time follow the motion that a classical particle would. This prescription is based upon finding those natural classical variables which vary as the sine and the cosine of the classical ω/sub c/t. As an example, the symmetric Rosen--Morse potential is discussed in detail

  7. El Naschie's coherence on the subquantum medium

    International Nuclear Information System (INIS)

    Agop, M.; Ioannou, P.D.; Nica, P.; Galusca, G.; Stefan, M.

    2005-01-01

    In the hydrodynamic formulation of the Scale Relativity theory one shows that a stable vortices distribution of bipolaron type induces superconducting pairs by means of the quantum potential. One builds the superconducting fractal by an iterated map and demonstrates that the superconducting pairs results as projections of this fractal. Thus, usual mechanisms (as example the exchange interaction used in the bipolaron theory) are reduced to the coherence on the subquantum medium in a ε (∞) space (El Naschie's coherence)

  8. Coherent states, pseudodifferential analysis and arithmetic

    Science.gov (United States)

    Unterberger, André

    2012-06-01

    Basic questions regarding families of coherent states include describing some constructions of such and the way they can be applied to operator theory or partial differential equations. In both questions, pseudodifferential analysis is important. Recent developments indicate that they can contribute to methods in arithmetic, especially modular form theory. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  9. Coherent structures in tokamak plasmas workshop: Proceedings

    International Nuclear Information System (INIS)

    Koniges, A.E.; Craddock, G.G.

    1992-08-01

    Coherent structures have the potential to impact a variety of theoretical and experimental aspects of tokamak plasma confinement. This includes the basic processes controlling plasma transport, propagation and efficiency of external mechanisms such as wave heating and the accuracy of plasma diagnostics. While the role of coherent structures in fluid dynamics is better understood, this is a new topic for consideration by plasma physicists. This informal workshop arose out of the need to identify the magnitude of structures in tokamaks and in doing so, to bring together for the first time the surprisingly large number of plasma researchers currently involved in work relating to coherent structures. The primary purpose of the workshop, in addition to the dissemination of information, was to develop formal and informal collaborations, set the stage for future formation of a coherent structures working group or focus area under the heading of the Tokamak Transport Task Force, and to evaluate the need for future workshops on coherent structures. The workshop was concentrated in four basic areas with a keynote talk in each area as well as 10 additional presentations. The issues of discussion in each of these areas was as follows: Theory - Develop a definition of structures and coherent as it applies to plasmas. Experiment - Review current experiments looking for structures in tokamaks, discuss experimental procedures for finding structures, discuss new experiments and techniques. Fluids - Determine how best to utilize the resource of information available from the fluids community both on the theoretical and experimental issues pertaining to coherent structures in plasmas. Computation - Discuss computational aspects of studying coherent structures in plasmas as they relate to both experimental detection and theoretical modeling

  10. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  11. Analysis on partial coherence propagation using the four-dimensional coherence function

    Science.gov (United States)

    Meng, Xiangyu; Xue, Chaofan; Yu, Huaina; Wang, Yong; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    The mutual optical intensity (MOI) is a four-dimensional coherence function and contains the full coherence information of the beam. The propagation of mutual optical intensity through a soft x-ray beamline is analyzed with a new developed model named MOI. The MOI model is based on statistical optics. The wavefront is separated into many elements and every element is assumed to has full coherence and constant complex amplitude, which is reasonable if the dimension of element is much smaller than the coherent length and beam spot size. The propagation of MOI for every element can be analytically solved with Fraunhofer or Fresnel approximations. The total MOI propagation through free space can be obtained by summing the contribution of all elements. Local stationary phase approximation is implemented to simulate MOI propagating through ideal mirrors and gratings. The MOI model provides not only intensity profile, but also wavefront and coherence information of the beam. These advantages make MOI model a useful tool for beamline design and optimization. The nano-ARPES beamline at SSRF is analyzed using the MOI model. A zone plate is used to focus the beam. The intensity profile and local coherence degree at the zone plate are acquired. The horizontal coherence is much worse than the vertical one. By cutting the horizontal beam with the exit slit the horizontal coherence can be improved but at the flux loss. The quantitative analysis on the coherence improvement and flux loss at different exit slit size are obtained with the MOI model.

  12. Painlevé IV coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, David, E-mail: david.bermudez@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Fernández C, David J., E-mail: david@fis.cinvestav.mx [Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  13. Painlevé IV coherent states

    International Nuclear Information System (INIS)

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-01-01

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states

  14. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    HO coherent states are states of minimum uncertainty: ApAـ = -h/2, and thus are most classical within the quantum framework. Output from a well stabilised laser is a coherent state. A cat-like state Φ can be considered as a superposition of two or more coherent states and is formed when an initial coherent state a is rotated ...

  15. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex

  16. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    Coherent states of other symmetry groups also exist. Thus, for example, the much studied pair [10] and Perelomov [11] coherent states belong to the SU(1,1) group and are special cases of what may be called generalized SU(1,1) coherent states [12,13]. Coherent states of the. SU(2) group have also been constructed [14].

  17. Asymmetric Cache Coherency: Policy Modifications to Improve Multicore Performance

    OpenAIRE

    Shield, John; Diguet, Jean-Philippe; Gogniat, Guy

    2012-01-01

    International audience; Asymmetric coherency is a new optimisation method for coherency policies to support non-uniform work- loads in multicore processors. Asymmetric coherency assists in load balancing a workload and this is applica- ble to SoC multicores where the applications are not evenly spread among the processors and customization of the coherency is possible. Asymmetric coherency is a policy change, and consequently our designs re- quire little or no additional hardware over an exis...

  18. Multinary systems and reliability models from coherence to some kind of non-coherence

    International Nuclear Information System (INIS)

    Mazars, N.

    1986-01-01

    First restricted to models for binary systems, reliability theory is being generalized for multinary systems, of multinary components. After a general viewpoint on reliability models for multinary systems, coherence generalizations are examined. First studied in terms of structure functions, the binary coherent systems can be fully characterized in terms of their minimal path (cut) sets as well as in terms of their life functions. Various fundamental notions such as minimal path (cut) sets and relevance first are introduced in terms of structure functions. The binary decompositions are studied and used for characterizing the broad-sense coherence in terms of sets. The binary-type coherence, the homogenous coherence and the various types of strict-sense coherence are reviewed and fully characterized in various ways. Life functions lead to some model useful for reliability calculations. Methods for determining, in a exact or approximated way, reliability characteristics of multinary coherent systems are studied from both of the fundamental models of reliability, then possible. Futhermore, some kind of non-coherent multinary system is suggested. This analysis may be interesting in the nuclear field

  19. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    Science.gov (United States)

    Goetz, E.; Riles, K.

    2016-04-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors.

  20. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  1. Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.

    2014-01-01

    The Special Section on Selected Topics in Biophotonics: Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy comprises two invited review papers and several contributed papers from the summer school Biophotonics ’13, as well as contributed papers within...

  2. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  3. Stochastic pulse models of a partially-coherent elementary field representation of pulse coherence.

    Science.gov (United States)

    Fernández-Pousa, Carlos R

    2013-04-22

    A representation of the mutual coherence function (MCF) of a light pulse as an incoherent sum of partially-coherent elementary pulses is introduced. It is shown that this MCF can be decomposed into fully and partially-coherent constituents and three different pulse models of partially-coherent constituents are constructed: single elementary-pulse fluctuations, emission of elementary fields driven by white noise, and elementary pulses triggered by Poisson impulses. The fourth-order correlation function of this last model includes as limit cases those of the fluctuating-pulse and noise-driven-emission models. These results provide a means of extending elementary-field models to higher-order coherence theory.

  4. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  5. Developing Coherent Conceptual Storylines: Two Elementary Challenges

    Science.gov (United States)

    Hanuscin, Deborah; Lipsitz, Kelsey; Cisterna-Alburquerque, Dante; Arnone, Kathryn A.; van Garderen, Delinda; de Araujo, Zandra; Lee, Eun Ju

    2016-06-01

    The `conceptual storyline' of a lesson refers to the flow and sequencing of learning activities such that science concepts align and progress in ways that are instructionally meaningful to student learning of the concepts. Research demonstrates that when teachers apply lesson design strategies to create a coherent science content storyline, student learning is positively impacted (Roth et al., 2011). Because the conceptual storyline is often implicit within a lesson, and teachers often have difficulty articulating this aspect of lesson design (Lo et al., 2014), our professional development program engages elementary teachers in analyzing and developing graphic representations of a lesson's conceptual storyline to make that element explicit. In this exploratory study, we present typologies that represent two primary challenges teachers faced in developing coherent conceptual storylines in their lesson design, and examine the extent to which professional development enhanced their capacity to develop a coherent conceptual storyline.

  6. Ultrafast Coherent Absorption in Diamond Metamaterials.

    Science.gov (United States)

    Karvounis, Artemios; Nalla, Venkatram; MacDonald, Kevin F; Zheludev, Nikolay I

    2018-02-27

    Diamond is introduced as a material platform for visible/near-infrared photonic metamaterials, with a nanostructured polycrystalline diamond metasurface only 170 nm thick providing an experimental demonstration of coherent light-by-light modulation at few-optical-cycle (6 fs) pulse durations. "Coherent control" of absorption in planar (subwavelength-thickness) materials has emerged recently as a mechanism for high-contrast all-optical gating, with a speed of response that is limited only by the spectral width of the absorption line. It is shown here that a free-standing diamond membrane structured by focused ion beam milling can provide strong, spectrally near-flat absorption over a visible to near-infrared wavelength range that is wide enough (wider than is characteristically achievable in plasmonic metal metasurfaces) to facilitate coherent modulation of ultrashort optical pulses comprising only a few oscillations of electromagnetic field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Color coherence in W + jet events

    International Nuclear Information System (INIS)

    Abbott, B.

    1997-11-01

    We report on preliminary studies of color coherence effects in p anti p collisions, based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron collider, at a center of mass energy √s = 1.8 TeV. Color interference effects are studied by examining particle distribution patterns in W + Jet events. The data are compared to Monte Carlo simulations with different color coherence implementations and to a recent analytic Modified-Leading-Log perturbative calculation based on the Local Parton-Hadron Duality hypothesis. Soft particle radiation is enhanced in the event plane relative to the transverse plane, in agreement with calculations in which the effects of color coherence are fully included

  8. Polarimetric Coherence Optimization for Multibaseline SAR Data

    Science.gov (United States)

    Neumann, M.; Ferro-Famil, L.; Reigber, A.

    2007-03-01

    This paper analyzes different approaches for polarimetric optimization of multibaseline interferometric coherences. Two general methods are developed which simultaneously optimize coherences for more than two datasets. The first method is based on multiset canonical correlation analysis, and it provides every dataset with a distinguished dominant scattering mechanism. The second optimization method is constrained to the use of an identical scattering mechanism for every dataset. A framework for a multibaseline orthogonal optimal scattering mechanisms decomposition is presented. The both methods are evaluated on real data acquired by DLR's ESAR sensor at L-band. As experimental results indicate, preferring simultaneous multibaseline coherence optimization to single-baseline optimization improves the estimation of the dominant scattering mechanisms and their interferometric phases.

  9. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  10. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  11. On the Coherence of Probabilistic Relational Formalisms

    Directory of Open Access Journals (Sweden)

    Glauber De Bona

    2018-03-01

    Full Text Available There are several formalisms that enhance Bayesian networks by including relations amongst individuals as modeling primitives. For instance, Probabilistic Relational Models (PRMs use diagrams and relational databases to represent repetitive Bayesian networks, while Relational Bayesian Networks (RBNs employ first-order probability formulas with the same purpose. We examine the coherence checking problem for those formalisms; that is, the problem of guaranteeing that any grounding of a well-formed set of sentences does produce a valid Bayesian network. This is a novel version of de Finetti’s problem of coherence checking for probabilistic assessments. We show how to reduce the coherence checking problem in relational Bayesian networks to a validity problem in first-order logic augmented with a transitive closure operator and how to combine this logic-based approach with faster, but incomplete algorithms.

  12. Coherent Bichromatic Force Deflection of Molecules

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  13. New plasma diagnosis by coherence length spectroscopy

    International Nuclear Information System (INIS)

    Poolyarat, N.; Kim, Y.W.

    2008-01-01

    A new methodology and instrumentation have been developed for diagnosis of dense high temperature plasmas. In a plasma medium, collision processes shorten the optical coherence length at a given emission wavelength. By measuring the coherence length, the rate of collisions a radiating particle experiences can be determined. A map of the collision rates throughout the plasma can speak volumes about the atomic and thermal state of the plasma. Both the time-integrated and time-resolved interference fringes are obtained using emissions due to the transition between 3s 2 3p 5 ( 2 P o 3/2 )4p and 3s 2 3p 5 ( 2 P o 3/2 )7d. We have observed that the coherence length indeed decreases with increasing collision rate, and in addition, as a function of time as a result of cumulative collisions. The coherence length was found to be 4200±800 nm at 50 torr where the collision frequency is 2.14x10 11 s -1 , and 2400±130 nm at 140 torr where the collision frequency is 8.13x10 11 s -1 . We have also discovered that the coherence length varies with the direction of the viewing line of sight into the discharge plasma. The anisotropy results from the non-uniform structure in the discharge current, and this is further investigated by intentionally deforming the tip of the cathode. A photographic examination of both the cathode and the anode disc confirms the non-axis-symmetric structure of the plasma, which leads to the asymmetry in the plasma, in agreement with the angular dependence of the coherence length. (author)

  14. Hilbert W*-modules and coherent states

    International Nuclear Information System (INIS)

    Bhattacharyya, T; Roy, S Shyam

    2012-01-01

    Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  15. Vector coherent states for nanoparticle systems

    Energy Technology Data Exchange (ETDEWEB)

    Aremua, Isiaka [Institut de Mathematiques et de Sciences Physiques (IMSP), University of Abomey-Calavi, 01 BP 613 Porto-Novo (Benin); Hounkonnou, Mahouton Norbert, E-mail: iaremua@imsp-uac.org, E-mail: norbert.hounkonnou@cipma.uac.bj [International Chair of Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50 Cotonou (Benin)

    2011-11-18

    The first part of this work deals with a formalism of vector coherent states construction for a system of M Fermi-type modes associated with N bosonic modes. Then follows a generalization to a Hamiltonian describing the translational motion of the center of mass of a nanoparticle. The latter gives rise to a new mechanism for the electronic energy relaxation in nanocrystals, intensively studied today in condensed matter physics. Finite degeneracies of the involved Hamiltonian systems are also investigated. The defined vector coherent states satisfy relevant mathematical properties of continuity, resolution of identity, temporal stability and action identity. (paper)

  16. Coherent manipulation of single spins in semiconductors.

    Science.gov (United States)

    Hanson, Ronald; Awschalom, David D

    2008-06-19

    During the past few years, researchers have gained unprecedented control over spins in the solid state. What was considered almost impossible a decade ago, in both conceptual and practical terms, is now a reality: single spins can be isolated, initialized, coherently manipulated and read out using both electrical and optical techniques. Progress has been made towards full control of the quantum states of single and coupled spins in a variety of semiconductors and nanostructures, and towards understanding the mechanisms through which spins lose coherence in these systems. These abilities will allow pioneering investigations of fundamental quantum-mechanical processes and provide pathways towards applications in quantum information processing.

  17. Electron dynamics inside short-coherence systems

    International Nuclear Information System (INIS)

    Ferrari, Giulio; Bordone, Paolo; Jacoboni, Carlo

    2006-01-01

    We present theoretical results on electron dynamics inside nanometric systems, where the coherence of the electron ensemble is maintained in a very short region. The contacts are supposed to spoil such a coherence, therefore the interference processes between the carrier wavefunction and the internal potential profile can be affected by the proximity of the contacts. The problem has been analysed by using the Wigner-function formalism. For very short devices, transport properties, such as tunnelling through potential barriers, are significantly influenced by the distance between the contacts

  18. Dental optical coherence domain reflectometry explorer

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Matthew J. (Livermore, CA); Colston, Jr., Billy W. (Livermore, CA); Sathyam, Ujwal S. (Livermore, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  19. Multiscale coherent structures in tokamak plasma turbulence

    International Nuclear Information System (INIS)

    Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.

    2006-01-01

    A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state

  20. Coherent multilayer crystals and method of making

    Science.gov (United States)

    Schuller, I.K.; Falco, C.M.

    A new material consisting of a multilayer crystalline structure is described which is coherent perpendicular to the layers and where each layer is composed of a single crystallilne element. The individual layers may vary from 2A to 100A or more in thickness.

  1. Imagining the Coherence of the English Major.

    Science.gov (United States)

    Culler, Jonathan

    2003-01-01

    Contemplates how Northrop Frye, a serious man, displayed great confidence that there is a group of those who have seriously studied literature who know that this study is coherent and progressive and who have a sense of the unity of the subject. Suspects that many do not know or no longer know this sense unity of the subject and have to posit it…

  2. Method of making coherent multilayer crystals

    Science.gov (United States)

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  3. Coherence-Multiplexed Optical RF Feeder Networks

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; van Etten, Wim

    2007-01-01

    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively

  4. Optical coherence tomography in conjunction with bronchoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi, E-mail: ascedio@gmail.com [Servico de Endoscopia Respiratoria, Hospital das Clinicas, Universidade de Sao Paulo (FM/USP), SP (Brazil)

    2012-07-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  5. Metaphor Coherence in the Book of Job

    Science.gov (United States)

    Hawley, Lance R.

    2016-01-01

    Within the book of Job, the interlocutors (Job, the friends, and Yahweh) seem to largely ignore one another's arguments within their dialogical discourse. This observation leads some to propose that the dialogue lacks conceptual coherence. I argue that the interlocutors tangentially attend to previously stated points-of-view and attempt to…

  6. Coherence energies in pre-equilibrium emission

    International Nuclear Information System (INIS)

    De Rosa, A.; Inglima, C.; Perillo, E.; Rosato, E.; Sandoli, M.; Spadaccini, G.

    1979-01-01

    A method, based on the spectral density analysis, has been developped in order to evaluate coherence of statistical fluctuations. It is specially suitable for reactions showing the contemporary presence of different emission mechanism (e.g. preequilibrium and evaporation - like mechanism)

  7. Integrated-optics-based optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, D.V.

    2013-01-01

    Optical coherence tomography (OCT) is a high resolution, imaging technique that has developed over the last 20 years from a complicated laboratory setup into a ready-to-use commercially available device. Instead of using electronic time gating as being used by ultrasound (US) imaging, in OCT, the

  8. Modes of storage ring coherent instabilities

    International Nuclear Information System (INIS)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered

  9. Coherence in the Danish Healthcare System

    DEFF Research Database (Denmark)

    Frederiksen, Jesper; Olivares Bøgeskov, Benjamin Miguel

    2017-01-01

    the stated aim in policy is to improve coherence in healthcare for the benefit of the patients, various ambiguities within the institutions producing policy tend to maintain a certain order rather than introducing changes. Furthermore, we discuss how this section of the welfare state, examined in relation...

  10. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  11. Optical coherence tomography of basal cell carcinoma

    DEFF Research Database (Denmark)

    Yücel, D.; Themstrup, L.; Manfredi, Maddalena

    2016-01-01

    Background: Basal cell carcinoma (BCC) is the most prevalent malignancy in Caucasians. Optical coherence tomography (OCT) is a non-invasive optical imaging technology using the principle of interferometry. OCT has shown a great potential in diagnosing, monitoring, and follow-up of BCC. So far most...

  12. Dynamic Optical Coherence Tomography in Dermatology

    DEFF Research Database (Denmark)

    Ulrich, Martina; Themstrup, Lotte; De Carvalho, Nathalie

    2016-01-01

    Optical coherence tomography (OCT) represents a non-invasive imaging technology, which may be applied to the diagnosis of non-melanoma skin cancer and which has recently been shown to improve the diagnostic accuracy of basal cell carcinoma. Technical developments of OCT continue to expand...

  13. Modes of storage ring coherent instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  14. Bunch length measurement using coherent Cherenkov radiation

    International Nuclear Information System (INIS)

    Kan, K.; Yang, J.; Ogata, A.; Kondoh, T.; Norizawa, K.; Yoshida, Y.

    2011-01-01

    A new method for bunch diagnostic based on multimode Coherent Cherenkov Radiation (CCR) was proposed. Generation of quasi-monochromatic terahertz (THz) using multimode CCR on the order of 0.1 THz was carried out. The intensity and frequency of CCR were measured directly by a Michelson interferometer and a bolometer. (author)

  15. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...

  16. Optical Coherence Tomography for Material Characterization

    NARCIS (Netherlands)

    Liu, P.

    2014-01-01

    Optical coherence tomography (OCT) is a non-invasive, contactless and high resolution imaging method, which allows the reconstruction of two or three dimensional depth-resolved images in turbid media. In the past 20 years, OCT has been extensively developed in the field of biomedical diagnostics,

  17. Quantifying quantum coherence with quantum Fisher information.

    Science.gov (United States)

    Feng, X N; Wei, L F

    2017-11-14

    Quantum coherence is one of the old but always important concepts in quantum mechanics, and now it has been regarded as a necessary resource for quantum information processing and quantum metrology. However, the question of how to quantify the quantum coherence has just been paid the attention recently (see, e.g., Baumgratz et al. PRL, 113. 140401 (2014)). In this paper we verify that the well-known quantum Fisher information (QFI) can be utilized to quantify the quantum coherence, as it satisfies the monotonicity under the typical incoherent operations and the convexity under the mixing of the quantum states. Differing from most of the pure axiomatic methods, quantifying quantum coherence by QFI could be experimentally testable, as the bound of the QFI is practically measurable. The validity of our proposal is specifically demonstrated with the typical phase-damping and depolarizing evolution processes of a generic single-qubit state, and also by comparing it with the other quantifying methods proposed previously.

  18. Optical coherence tomography as a diagnostic tool

    CSIR Research Space (South Africa)

    Singh, A

    2011-07-01

    Full Text Available Optical Coherence Tomography (OCT) has been used in biomedical applications as a method to non-invasively detect changes occurring in tissue such as the detection of skin cancer. The effect of skin tone on detection of skin cancer has however...

  19. Turbo Equalization for Digital Coherent Receivers

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Caballero Jambrina, Antonio; Borkowski, Robert

    2014-01-01

    . In this paper, it is demonstrated that Turbo Equalization routines can be used to mitigate performance degradations stemming from optical fiber propagation effects both in optical fiber dispersion managed and unmanaged coherent detection links. The effectiveness of this solution is analyzed both numerically...

  20. A compact, coherent light source system architecture

    NARCIS (Netherlands)

    Biedron, S.G.; Dattoli, G.; Dipalma, E.; Einstein, J.; Milton, S.V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I.P.; Van Der Slot, P. J.M.

    2016-01-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise

  1. Coherent quantitative measures of agricultural risks

    OpenAIRE

    TARASOV A.O.

    2011-01-01

    Advantages of quantitative risk measurements in agricultural business are grounded. Coherent methods of production and price risk assessment by modeling stochastic risk factor variations are proposed. Instruments for acceptable and critical risk level measurements are presented by providing an example for sunflower seed production.

  2. Selective Coherent Excitation of Charged Density Waves

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Sagar, D.M.; Loosdrecht, P.H.M. van; Marel, D. van der

    2003-01-01

    Real time femtosecond pump-probe spectroscopy is used to study collective and single particle excitations in the charge density wave state of the quasi-1D metal, blue bronze. Along with the previously observed collective amplitudon excitation, the spectra show several additional coherent features.

  3. New high power coherent radiation sources

    Science.gov (United States)

    Sprangle, P.; Coffey, T.

    1984-01-01

    In recent years, there has been considerable renewed interest in the development of novel devices for the production of high power coherent electromagnetic radiation. This interest has been motivated largely by the realization that, with existing technology, certain processes utilizing relativistic electron beams can produce coherent electromagnetic radiation at power levels far in excess of those achieved by conventional electron devices. This paper will review the current status of this rapidly developing field, with emphasis on two generic devices. The major thrust in the recent development of electron beam driven radiation sources has been directed towards achieving shorter wavelengths, greater power and higher efficiencies. Shortly after the development of such successful sources as the magnetron, kylstron and various traveling wave devices, it became clear that, in their original form, they were limited in their ability to produce high levels of radiation efficiently at short wavelengths. To circumvent the inherent limitations of these conventional coherent radiation sources, many new concepts and mechanisms, as well as variations on conventional concepts, were proposed. This paper is concerned primarily with two devices which are, relatively speaking, newcomers to the list of coherent classical radiation sources. They are the free electron laser and the cyclotron resonance maser (CRM); one well known type of CRM is the gyrotron.

  4. Testing nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Paternostro, Mauro; Jeong, Hyunseok

    2010-01-01

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  5. Nature of Coherent Radio Emission from Pulsars

    Indian Academy of Sciences (India)

    Dipanjan Mitra

    2017-09-12

    Sep 12, 2017 ... idea went through several refinement and presently it is understood that an additional source of plasma is ... observations tend to favour the idea that the coher- ent radio emission in pulsars are excited by ...... κ has some uncertainty, two extreme values of κ = 102 and 104 has been chosen while plottingν◦.

  6. Temporal Coherence Strategies for Augmented Reality Labeling

    DEFF Research Database (Denmark)

    Madsen, Jacob Boesen; Tatzgern, Markus; Madsen, Claus B.

    2016-01-01

    Temporal coherence of annotations is an important factor in augmented reality user interfaces and for information visualization. In this paper, we empirically evaluate four different techniques for annotation. Based on these findings, we follow up with subjective evaluations in a second experimen...

  7. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  8. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  9. Spectral-domain optical coherence phase and multiphoton microscopy

    NARCIS (Netherlands)

    Joo, C.; Kim, K.I.; de Boer, J.F.

    2007-01-01

    We describe simultaneous quantitative phase contrast and multiphoton fluorescence imaging by combined spectral-domain optical coherence phase and multiphoton microscopy. The instrument employs two light sources for efficient optical coherence microscopic and multiphoton imaging and can generate

  10. Towards an Integrated Approach o Cohesion and Coherence in ...

    African Journals Online (AJOL)

    ... an integrated approach is proposed as a viable approach to cohesion and coherence in interlingual subtitling. Advantages and implications of this integrated approach are highlighted for further research. Keywords: Integrated Approach, Cohesion, Coherence, Interlingual Subtitling, Metafunctional Semiotic Theory ...

  11. The pragmatics of discourse coherence : Theory and applications

    NARCIS (Netherlands)

    Redeker, Gisela; Gruber, Helmut

    2014-01-01

    Over the past four decades, discourse coherence has been studied from linguistic, psycholinguistic, computational, and applied perspectives. This volume identifies current issues and under-researched topics in the pragmatics of discourse coherence. Nine studies from various disciplines address the

  12. Coherent artifact suppression in line-field reflection confocal microscopy using a low spatial coherence light source.

    Science.gov (United States)

    Liu, Changgeng; Cao, Hui; Choma, Michael A

    2016-10-15

    Line-field reflection confocal microscopy (LF-RCM) has the potential to add a dimension of parallelization to traditional confocal microscopy while reducing the need for two-axis beam scanning. LF-RCM systems often employ light sources with a high degree of spatial coherence. This high degree of spatial coherence potentially leads to unwanted coherent artifact in the setting of nontrivial sample scattering. Here, we (a) confirm that a coherent artifact is a nontrivial problem in LF-RCM when using spatially coherent light, and (b) demonstrate that such a coherent artifact can be mitigated through the use of reduced spatial coherence line-field sources. We demonstrate coherent noise suppression in a full-pupil line-field confocal microscope using a large number of mutually incoherent emitters from a vertical-cavity surface-emitting lasers (VCSEL) array. The coherent noise from a highly scattering sample is significantly suppressed by the use of this synthesized reduced spatial coherence light source compared to a fully coherent light source. Lastly, with scattering samples, the axial confocality of line-field confocal microscopy is compromised independent of the source spatial coherence, as demonstrated by our experimental result. Our results highlight the importance of spatial coherence engineering in parallelized reflection confocal microscopy.

  13. Multiple symbol partially coherent detection of MPSK

    Science.gov (United States)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  14. Global Leadership as a Driver of Corporate Coherence

    DEFF Research Database (Denmark)

    Minbaeva, Dana; Straub-Bauer, Andrea

    2016-01-01

    We advance our understanding of corporate coherence by specifically focusing on how coherence can be enacted by global leaders to support strategy implementation in a global organization. Based on our theorizing and our illustrative case study, we suggest five steps that may help managers design...... and initiate corporate coherence programs. We also suggest an agenda for future research, which specifically focuses on the need to adopt a multi-level research logic in future research on global leadership and corporate coherence....

  15. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  16. Coherent matter wave optics on an atom chip

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Schumm, Thorsten

    2006-01-01

    Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip.......Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip....

  17. Extreme sub-wavelength atom localization via coherent population trapping

    OpenAIRE

    Agarwal, Girish S.; Kapale, Kishore T.

    2005-01-01

    We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity ...

  18. Development and Application of Multifunctional Optical Coherence Tomography

    Science.gov (United States)

    Zhi, Zhongwei

    Microcirculation refers to the functions of capillaries and the neighboring lymphatic vessels. It plays a vital role in the pathophysiology of disorders in many clinical areas including cardiology, dermatology, neurology and ophthalmology, and so forth. It is crucial to develop imaging technologies that can provide both qualitative and quantitative information as to how microcirculation responds to certain injury and/or disease, and its treatment. Optical coherence tomography (OCT) is a non-invasive optical imaging technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine. Current state-of-the-art OCT systems operate in the Fourier domain, using either a broadband light source with a spectrometer, known as spectral domain OCT (SDOCT), or a rapidly tunable laser, known as swept source OCT (SSOCT). The current Fourier domain OCT systems have dramatically improvement in sensitivity, resolution and speed compared to time domain OCT. In addition to the improvement in the OCT system hardware, different methods for functional measurements of tissue beds have been developed and demonstrated. This includes but not limited to, i) Phase-resolved Doppler OCT for quantifying the blood flow, ii) OCT angiography for visualization of microvasculature, iii) Polarization sensitive OCT for measuring the intrinsic optical property/ birefringence of tissue, iv) spectroscopic OCT for measuring blood oxygenation, etc. Functional OCT can provide important clinical information that is not available in the typical intensity based structural OCT images. Among these functional OCT modalities, Doppler OCT and OCT angiography attract great interests as they show high capability for in vivo study of microvascular pathology. By analyzing the Doppler effect of a flowing particle on light frequency, Doppler OCT allows the quantification of the blood flow speed and blood flow rate. The most popular approach for Doppler OCT is achieved through

  19. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    The wave function can then be found easily, by making use of these ladder operators. Glauber proposed standard coherent states for a harmonic oscillator which is the prototype for most of the coherent states [3,4]. The coherent states form a very convenient representation for problems of quantum mechanics and can be ...

  20. Neural Correlates of Bridging Inferences and Coherence Processing

    Science.gov (United States)

    Kim, Sung-il; Yoon, Misun; Kim, Wonsik; Lee, Sunyoung; Kang, Eunjoo

    2012-01-01

    We explored the neural correlates of bridging inferences and coherence processing during story comprehension using Positron Emission Tomography (PET). Ten healthy right-handed volunteers were visually presented three types of stories (Strong Coherence, Weak Coherence, and Control) consisted of three sentences. The causal connectedness among…

  1. Coherent Forecasts of Mortality with Compositional Data Analysis

    DEFF Research Database (Denmark)

    Bergeron-Boucher, Marie-Pier; Canudas-Romo, Vladimir; Oeppen, Jim

    2017-01-01

    Data Analysis (CoDa) of the life table distribution of deaths. We adapt existing coherent and non–coherent forecasting models to CoDa and compare their results. Results We apply our coherent method to the female mortality of 15 Western European countries and show that our proposed strategy would have...

  2. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  3. Factorization of the coherency matrix of polarization optics.

    Science.gov (United States)

    Sheppard, Colin J R; Le Gratiet, Aymeric; Diaspro, Alberto

    2018-04-01

    We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.

  4. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  5. Laser Coherence Meter Based on Nanostructured Liquid Crystals

    Directory of Open Access Journals (Sweden)

    A. Anczykowska

    2013-01-01

    Full Text Available We present the method for coherence length measurement using coherence meter based on hybrid liquid crystal structures doped with gold nanoparticles. The results indicate that the method is able to determine the coherence length of coherent light sources with precision of 0.01 m at wavelength range from 200 to 800 nm for wide range of initial beam powers starting from 1 mW. Given the increasing use of laser technology in industry, military, or medicine, our research may open up a possible route for the development of improved techniques of coherent diagnostic light sources.

  6. Realization of non-linear coherent states by photonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310027 (China); The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027 (China); Liu, Jiarui, E-mail: jrliu@zju.edu.cn; Yu, Faxin [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  7. Attention alters the appearance of motion coherence.

    Science.gov (United States)

    Liu, Taosheng; Fuller, Stuart; Carrasco, Marisa

    2006-12-01

    Selective attention enhances visual information processing, as measured by behavioral performance and neural activity. However, little is known about its effects on subjective experience. Here, we investigated the effect of transient (exogenous) attention on the appearance of visual motion, using a psychophysical procedure that directly measures appearance and controls for response bias. Observers viewed pairs of moving dot patterns and reported the motion direction of the more coherent pattern. Directing attention (via a peripheral precue) to a stimulus location increased its perceived coherence level and improved performance on a direction discrimination task. In a control experiment, we ruled out response bias by lengthening the time interval between the cue and the stimuli, so that the effect of transient attention could no longer be exerted. Our results are consistent with those of neurophysiological studies showing that attention modulates motion processing and provide evidence of a subjective perceptual correlate of attention, with a concomitant effect on performance.

  8. Observation of Frequency Locked Coherent Transition Radiation

    CERN Document Server

    Marsh, Roark A; Temkin, Richard J

    2005-01-01

    Measurements of frequency locked, coherent transition radiation (CTR) were performed at the 17 GHz high-gradient accelerator facility built by Haimson Research Corporation at MIT PSFC. CTR produced from a metallic foil placed in the beam path was extracted through a window, and measured with a variety of detectors, including: diode, Helium cooled Si Bolometer, and double heterodyne receiver system. The angular energy distribution measured by the diode and bolometer are in agreement and consistent with calculations for a 15 MeV 200 mA 110 ns beam of 1 ps bunches. Heterodyne receiver measurements were able to show frequency locking, namely inter-bunch coherence at integer multiples of the accelerator RF frequency of 17.14 GHz. At the locked frequencies the power levels are enhanced by the number of bunches in a single beam pulse. The CTR was measured as a comb of locked frequencies up to 240 GHz, with a bandwidth of 50 MHz.

  9. Emission of coherent THz radiation from superconductors.

    Science.gov (United States)

    Ozyuzer, L; Koshelev, A E; Kurter, C; Gopalsami, N; Li, Q; Tachiki, M; Kadowaki, K; Yamamoto, T; Minami, H; Yamaguchi, H; Tachiki, T; Gray, K E; Kwok, W-K; Welp, U

    2007-11-23

    Compact solid-state sources of terahertz (THz) radiation are being sought for sensing, imaging, and spectroscopy applications across the physical and biological sciences. We demonstrate that coherent continuous-wave THz radiation of sizable power can be extracted from intrinsic Josephson junctions in the layered high-temperature superconductor Bi2Sr2CaCu2O8. In analogy to a laser cavity, the excitation of an electromagnetic cavity resonance inside the sample generates a macroscopic coherent state in which a large number of junctions are synchronized to oscillate in phase. The emission power is found to increase as the square of the number of junctions reaching values of 0.5 microwatt at frequencies up to 0.85 THz, and persists up to approximately 50 kelvin. These results should stimulate the development of superconducting compact sources of THz radiation.

  10. Applications for the scalable coherent interface

    Science.gov (United States)

    Gustavson, David B.

    1990-08-01

    IEEE P1596, the Scalable Coherent Interface (formerly known as SuperBus) is based on experience gained while developing Fastbus (ANSI/IEEE 960-1986, IEC 935), Futurebus (IEEE P896.x) and other modern high-performance buses. SCI goals include a minimum and bandwidth of 1 GByte/sec per processor in multiprocessor systems with thousands of processors; efficient support of a coherent distributed-cache image of distributed shared memory; support for bridges which interface to existing or future buses; and support for inexpensive small rings as well as for general switched interconnections like Banyan, Omega, or crossbar networks. This paper reports to the status of the work in progress and suggests some applications in data acquisition and physics.

  11. Coherence effects in atomic impact processes

    International Nuclear Information System (INIS)

    Blum, K.

    1980-01-01

    The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)

  12. The Coherent Structure of Hafez's Ghazals (Sonnets

    Directory of Open Access Journals (Sweden)

    Dr. Teimour Malmir

    2010-01-01

    Full Text Available Hafez's poetry, despite its structural coherence, appears to be incoherent and fragmented. Some opponents, then, based on this surface appearance have criticized Hafez since each line of his ghazals contains an independent point; some have also used this quality as a pretext to invalidate his main themes; or they have separated the lines to diminish and neutralize the stinging bitterness of his critical comments. However, today, regardless of such controversial views, this independence of the lines has been considered as Hafez's craft and art. The present article, after discussing the roots of emergence of such diverse criticism, has dealt with the vital structural coherence of Hafez' ghazals interpretively posing one example from each of his mystic, witty love ghazals and clarifying the co-relationship among those lines.

  13. Coherent combining pulse bursts in time domain

    Science.gov (United States)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  14. Subwavelength atom localization via coherent population trapping

    International Nuclear Information System (INIS)

    Agarwal, G S; Kapale, K T

    2006-01-01

    We present an atom localization scheme based on coherent population trapping. We consider atomic transitions in a Lambda configuration where the control field is a standing-wave field. The probe field and the control field produce coherence between the two ground states and prepare the atom in a pure state. We show that the population in one of the ground states has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of this population would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelength localization

  15. Simulation of coherent interactions between Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F.; Hernandez, J.V.; Topcu, T.; Noordam, L.D.

    2004-01-01

    The results of a theoretical investigation of the coherent interaction between many Rydberg atoms are reported. The atoms are assumed to move very little during the time range we investigate. We describe the basic interaction between atoms and show that (contrary to previous theoretical studies) the interaction between the atoms can be coherent. The band structure for a perfect lattice of atoms and the density of states for an amorphous distribution of atoms are presented. We also give results for when the atoms are roughly positioned in a lattice. Finally, we performed detailed calculations to understand when the Rydberg interactions are too strong for an essential states type of approximation. The relevance of our results to previous measurements in a Rydberg gas and to possible future experiments is discussed

  16. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  17. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  18. Calculation of coherent synchrotron radiation using mesh

    Directory of Open Access Journals (Sweden)

    T. Agoh

    2004-05-01

    Full Text Available We develop a new method to simulate coherent synchrotron radiation numerically. It is based on the mesh calculation of the electromagnetic field in the frequency domain. We make an approximation in the Maxwell equation which allows a mesh size much larger than the relevant wavelength so that the computing time is tolerable. Using the equation, we can perform a mesh calculation of coherent synchrotron radiation in transient states with shielding effects by the vacuum chamber. The simulation results obtained by this method are compared with analytic solutions. Though, for the comparison with theories, we adopt simplifications such as longitudinal Gaussian distribution, zero-width transverse distribution, horizontal uniform bend, and a vacuum chamber with rectangular cross section, the method is applicable to general cases.

  19. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  20. Coherence and chaos in extended dynamical systems

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1994-01-01

    Coherence, chaos, and pattern formation are characteristic elements of the nonequilibrium statistical mechanics controlling mesoscopic order and disorder in many-degree-of-freedom nonlinear dynamical systems. Competing length scales and/or time scales are the underlying microscopic driving forces for many of these aspects of ''complexity.'' We illustrate the basic concepts with some model examples of classical and quantum, ordered and disordered, nonlinear systems

  1. Method and apparatus for coherent burst ranging

    Science.gov (United States)

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  2. Coherent states in the quantum multiverse

    Science.gov (United States)

    Robles-Pérez, S.; Hassouni, Y.; González-Díaz, P. F.

    2010-01-01

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  3. Coherent states in the quantum multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)

    2010-01-11

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  4. Frame-to-frame coherent GPU splatting

    OpenAIRE

    Grau Carrion, Sergi; Tost Pardell, Daniela

    2008-01-01

    Recently, several improvements of the classical splatting volume rendering technique have been proposed, specifically, GPU implementations that considerably speed it up. However, splatting time-varying data, even using the GPU, is still slow and not very suitable for interactive data exploration through time. In this paper, we propose a GPU-based viewaligned splatting algorithm that exploits frame-to-frame coherence to render time-varying volume datasets. Our method run-length enc...

  5. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... that fingerprint patterns exist in the inner layers (viz. papillary junction) of the skin of the fingertip. However, conventional acquisition systems do not have capabilities to extract fingerprints at subsurface layers of the finger for use in identity...

  6. COHERENT LASER VISION SYSTEM (CLVS) OPTION PHASE

    Energy Technology Data Exchange (ETDEWEB)

    Robert Clark

    1999-11-18

    The purpose of this research project was to develop a prototype fiber-optic based Coherent Laser Vision System (CLVS) suitable for DOE's EM Robotic program. The system provides three-dimensional (3D) vision for monitoring situations in which it is necessary to update the dimensional spatial data on the order of once per second. The system has total immunity to ambient lighting conditions.

  7. Colour coherence in deep inelastic Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.I.; Vazdik, J.A. (Lebedev Physical Inst., Academy of Sciences, Moscow (USSR))

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p{sub t} and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.).

  8. Colour coherence in deep inelastic Compton scattering

    International Nuclear Information System (INIS)

    Lebedev, A.I.; Vazdik, J.A.

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p t and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.)

  9. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  10. Selectivity and coherence for photoexcitation of atoms

    International Nuclear Information System (INIS)

    Dai Changjian

    1995-01-01

    The results of both analytic and numerical treatments of the four-level Schroedinger equation are displayed. Transition Probabilities to various states for the cases of on-resonance and off-resonance are calculated. Dependences of probability on time and on characteristics of laser fields are investigated. Selectivity and coherence of the interaction between monochromatic laser fields and isotopic atom are examined. The conditions under which the population inversion takes place derived from the analytic solutions are confirmed

  11. Optical Coherence Tomography for Artwork Diagnostics

    International Nuclear Information System (INIS)

    Targowski, P.; Gora, M.; Wojtkowski, M.

    2006-01-01

    An overview of the optical coherence tomography (OCT) technique is given. Time domain, spectral and sweep source modalities are briefly described, and important physical parameters of the OCT instrument are discussed. Examples of the application of OCT to diagnosis of various art objects such as oil paintings on canvas (imaging of glaze and varnish layers), porcelain, faience, and parchment are presented. Applications to surface profilometry of painting on canvas are also discussed.

  12. Coherent betatron instability in the Tevatron

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Harrison, M.; Ng, K.Y.

    1988-01-01

    The coherent betatron instability was first observed during the recent 1987-88 Tevatron fixed target run. In this operating mode 1000 consecutive bunches are loaded into the machine at 150 GeV with a bunch spacing of 18.8 /times/ 10 -9 sec (53 MHz). The normalized transverse emittance is typically 15 π /times/ 10 -6 m rad in each plane with a longitudinal emittance of about 1.5 eV-sec. The beam is accelerated to 800 GeV in 13 sec. and then it is resonantly extracted during a 23 sec flat top. As the run progressed the bunch intensities were increased until at about 1.4 /times/ 10 10 ppb (protons per bunch) we experienced the onset of a coherent horizontal oscillation taking place in the later stages of the acceleration cycle (>600 GeV). This rapidly developing coherent instability results in a significant emittance growth, which limits machine performance and in a catastrophic scenario it even prevents extraction of the beam. In this paper we will present a simple analytic description of the observed instability. We will show that a combination of a resistive wall coupled bunch effect and a single bunch slow head-tail instability is consistent with the above observations. Finally, a systematic numerical analysis of our model (growth-time vs chromaticity plots) points to the existence of the ≥1 slow head-tail modes as a plausible mechanism for the observed coherent instability. This last claim, as mentioned before, does not have conclusive experimental evidence, although it is based on a very good agreement between the measured values of the instability growth-time and the ones calculated on the basis of our model. 4 refs., 3 figs

  13. Visible light optical coherence correlation spectroscopy.

    Science.gov (United States)

    Broillet, Stephane; Szlag, Daniel; Bouwens, Arno; Maurizi, Lionel; Hofmann, Heinrich; Lasser, Theo; Leutenegger, Marcel

    2014-09-08

    Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.

  14. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  15. Modeling Coherent Structures in Canopy Flows

    Science.gov (United States)

    Luhar, Mitul

    2017-11-01

    It is well known that flows over vegetation canopies are characterized by the presence of energetic coherent structures. Since the mean profile over dense canopies exhibits an inflection point, the emergence of such structures is often attributed to a Kelvin-Helmholtz instability. However, though stability analyses provide useful mechanistic insights into canopy flows, they are limited in their ability to generate predictions for spectra and coherent structure. The present effort seeks to address this limitation by extending the resolvent formulation (McKeon and Sharma, 2010, J. Fluid Mech.) to canopy flows. Under the resolvent formulation, the turbulent velocity field is expressed as a superposition of propagating modes, identified via a gain-based (singular value) decomposition of the Navier-Stokes equations. A key advantage of this approach is that it reconciles multiple mechanisms that lead to high amplification in turbulent flows, including modal instability, transient growth, and critical-layer phenomena. Further, individual high-gain modes can be combined to generate more complete models for coherent structure and velocity spectra. Preliminary resolvent-based model predictions for canopy flows agree well with existing experiments and simulations.

  16. Function Lateralization via Measuring Coherence Laterality

    Science.gov (United States)

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  17. Improved wavefront correction for coherent image restoration.

    Science.gov (United States)

    Zelenka, Claudius; Koch, Reinhard

    2017-08-07

    Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.

  18. A coherent quantum annealer with Rydberg atoms

    Science.gov (United States)

    Glaetzle, A. W.; van Bijnen, R. M. W.; Zoller, P.; Lechner, W.

    2017-06-01

    There is a significant ongoing effort in realizing quantum annealing with different physical platforms. The challenge is to achieve a fully programmable quantum device featuring coherent adiabatic quantum dynamics. Here we show that combining the well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed Lechner-Hauke-Zoller (LHZ) architecture allows one to build a prototype for a coherent adiabatic quantum computer with all-to-all Ising interactions and, therefore, a platform for quantum annealing. In LHZ an infinite-range spin-glass is mapped onto the low energy subspace of a spin-1/2 lattice gauge model with quasi-local four-body parity constraints. This spin model can be emulated in a natural way with Rubidium and Caesium atoms in a bipartite optical lattice involving laser-dressed Rydberg-Rydberg interactions, which are several orders of magnitude larger than the relevant decoherence rates. This makes the exploration of coherent quantum enhanced optimization protocols accessible with state-of-the-art atomic physics experiments.

  19. Coherent Energy and Environmental System Analysis

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    This report presents a summary of results of the strategic research project “Coherent Energy and Environmental System Analysis” (CEESA) which was conducted in the period 2007-2011 and funded by the Danish Strategic Research Council together with the participating parties. The project was interdis......This report presents a summary of results of the strategic research project “Coherent Energy and Environmental System Analysis” (CEESA) which was conducted in the period 2007-2011 and funded by the Danish Strategic Research Council together with the participating parties. The project...... energy and environmental analysis tools as well as analyses of the design and implementation of future renewable energy systems. For practical reasons, the work has been carried out as an interaction between five work packages, and a number of reports, papers and tools have been reported separately from...... of the different project parts in a coherent way by presenting tools and methodologies as well as analyses of the design and implementation of renewable energy systems – including both energy and environmental aspects. The authors listed in the report represent those who have contributed directly as well...

  20. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.