WorldWideScience

Sample records for polarization shaping method

  1. Virtually Shaping the Future of Polar Research

    Science.gov (United States)

    Baeseman, J. L.; Koldunov, N. V.; Jochum, K.

    2009-12-01

    The Association of Polar Early Career Scientists (APECS) is an international and interdisciplinary organization for undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the wider cryosphere that started as a result of the International Polar Year (IPY). APECS is leading the way for virtual communication of polar research through several activities: an online Polar Literature Discussion Forum, a Virtual Poster Session, and Communication beyond the conference setting. APECS has created an extensive online discussion forum where researchers share both classic and cutting-edge literature articles and critique techniques that were used by authors, helping to improve methods as well as discover new ways to approach polar research questions. Many researchers present their results as posters at conferences. APECS has taken this process to a new level by creating a format to display previously presented posters online instead of these files simply sitting on a researcher’s hard-drive. Not only are the posters online, a monthly conference call open to hundreds of participants allows researchers to share their work with a new audience - fellow researchers, community members, potential colleagues, policy makers and educators. These calls are recorded and archived online so the next time someone visits the poster, they can hear the researcher describe their work and communicate with the researcher questions they may have, potential ways to collaborate or share different methodologies to improve future endeavors. Peer-reviewed literature articles are the currency of science and APECS has capitalized on this by creating a way for researchers to increase the exposure of their publications beyond the table of contents published by journals. The Polar Literature Discussion Forum is a new way for researchers to share their papers, as well as discuss classic articles. This has become a popular

  2. Shape Bonding method

    Science.gov (United States)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  3. Ultra-wideband polarization insensitive UT-shaped metamaterial absorber

    Science.gov (United States)

    Karampour, Nasrollah; Nozhat, Najmeh

    2017-05-01

    In this paper, an ultra-wideband metamaterial absorber (MMA) with U and T shaped resonators has been proposed. The resonators and the ground plane consist of gold (Au) and titanium (Ti) layers. The resistive sheet effect of Ti layer and the resonance elements in the structure cause a broad absorption spectrum. The simulations are based on the finite element method (FEM) and the results show that the absorption of the proposed structure is more than 90% between 150 and 300 THz that is much larger than previous works. Moreover, by applying the interference theory, we have demonstrated that the simulation results are in good agreement with the theoretical results. The primary proposed MMA is polarization sensitive. Therefore, a polarization insensitive metamaterial absorber has been suggested. Also, because of the extra resonance elements the full width at 90% absorption increases about 35 THz. This ultra-wideband MMA has various applications in microbalometer, imaging, thermal emitters, photovoltaic, and energy harvesting.

  4. Polarization Shaping for Control of Nonlinear Propagation.

    Science.gov (United States)

    Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W

    2016-12-02

    We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  5. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  6. Polarization Shaping for Control of Nonlinear Propagation

    Science.gov (United States)

    Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M.; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W.

    2016-12-01

    We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization—radially symmetric vector beams and Poincaré beams with lemon and star topologies—in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  7. Dielectric Polarization and Particle Shape Effects

    Directory of Open Access Journals (Sweden)

    Ari Sihvola

    2007-01-01

    Full Text Available This article reviews polarizability properties of particles and clusters. Especially the effect of surface geometry is given attention. The important parameter of normalized dipolarizability is studied as function of the permittivity and the shape of the surface of the particle. For nonsymmetric particles, the quantity under interest is the average of the three polarizability dyadic eigenvalues. The normalized polarizability, although different for different shapes, has certain universal characteristics independent of the inclusion form. The canonical shapes (sphere, spheroids, ellipsoids, regular polyhedra, circular cylinder, semisphere, double sphere are studied as well as the correlation of surface parameters with salient polarizability properties. These geometrical and surface parameters are essential in the material modeling problems in the nanoscale.

  8. Reversible Shaping of Microwells by Polarized Light Irradiation

    Directory of Open Access Journals (Sweden)

    Federica Pirani

    2017-01-01

    Full Text Available In the last years, stimuli-responsive polymeric materials have attracted great interest, due to their low cost and ease of structuration over large areas combined with the possibility to actively manipulate their properties. In this work, we propose a polymeric pattern of soft-imprinted microwells containing azobenzene molecules. The shape of individual elements of the pattern can be controlled after fabrication by irradiation with properly polarized light. By taking advantage of the light responsivity of the azobenzene compound, we demonstrate the possibility to reversibly modulate a contraction-expansion of wells from an initial round shape to very narrow slits. We also show that the initial shape of the microconcavities can be restored by flipping the polarization by 90°. The possibility to reversibly control the final shape of individual elements of structured surfaces offers the opportunity to engineer surface properties dynamically, thus opening new perspectives for several applications.

  9. Photon polarization in Compton scattering: pulse shape effects

    International Nuclear Information System (INIS)

    Boca, M; Stoica, C; Dumitriu, A; Florescu, V

    2015-01-01

    We study in the framework of quantum electrodynamics the scattering of a plane wave electromagnetic field on free electrons in the low intensity limit. We derive analytic formulas describing the polarization properties of the emitted photons. We discuss and illustrate with a numerical example the effects of the electromagnetic pulse duration on their polarization

  10. Updated Methods for Seed Shape Analysis.

    Science.gov (United States)

    Cervantes, Emilio; Martín, José Javier; Saadaoui, Ezzeddine

    2016-01-01

    Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index). The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc.) provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  11. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  12. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  13. Polarization-dependent electromagnetic responses in an A-shape metasurface.

    Science.gov (United States)

    Zhang, Ning; Xu, Quan; Li, Shaoxian; Ouyang, Chunmei; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Han, Jiaguang; Zhang, Weili

    2017-08-21

    We numerically and experimentally demonstrate polarization-dependent terahertz responses in a proposed metasurface of A-shape resonators. With the horizontal polarization incidence, the observed transmission window is formed by two resonance dips, corresponding to the inductive-capacitive resonance at the lower frequency and the high-order antisymmetric resonance at a higher frequency, respectively. When the incident wave is perpendicularly polarized, the transmission window arises from the plasmon-induced transparency spectral response. The origin of the polarization-sensitive resonance properties is revealed by mapping the electric field and terahertz-induced surface current in the proposed metamaterials. Moreover, the influence of the geometry of the A-shape microstructures on the transmission spectra is analyzed. These polarization-dependent metamaterials may provide more degrees of freedom in tuning the electromagnetic responses, thus offering a path toward robust metamaterials design.

  14. General method for designing wave shape transformers.

    Science.gov (United States)

    Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu

    2008-12-22

    An effective method for designing wave shape transformers (WSTs) is investigated by adopting the coordinate transformation theory. Following this method, the devices employed to transform electromagnetic (EM) wave fronts from one style with arbitrary shape and size to another style, can be designed. To verify this method, three examples in 2D spaces are also presented. Compared with the methods proposed in other literatures, this method offers the general procedure in designing WSTs, and thus is of great importance for the potential and practical applications possessed by such kinds of devices.

  15. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    Directory of Open Access Journals (Sweden)

    Liyang Li

    2015-03-01

    Full Text Available In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  16. Polarized atomic orbitals for linear scaling methods

    Science.gov (United States)

    Berghold, Gerd; Parrinello, Michele; Hutter, Jürg

    2002-02-01

    We present a modified version of the polarized atomic orbital (PAO) method [M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997)] to construct minimal basis sets optimized in the molecular environment. The minimal basis set derives its flexibility from the fact that it is formed as a linear combination of a larger set of atomic orbitals. This approach significantly reduces the number of independent variables to be determined during a calculation, while retaining most of the essential chemistry resulting from the admixture of higher angular momentum functions. Furthermore, we combine the PAO method with linear scaling algorithms. We use the Chebyshev polynomial expansion method, the conjugate gradient density matrix search, and the canonical purification of the density matrix. The combined scheme overcomes one of the major drawbacks of standard approaches for large nonorthogonal basis sets, namely numerical instabilities resulting from ill-conditioned overlap matrices. We find that the condition number of the PAO overlap matrix is independent from the condition number of the underlying extended basis set, and consequently no numerical instabilities are encountered. Various applications are shown to confirm this conclusion and to compare the performance of the PAO method with extended basis-set calculations.

  17. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  18. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  19. High-efficiency broadband polarization converter based on Ω-shaped metasurface

    Science.gov (United States)

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian

    2017-11-01

    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  20. Polarizing matter and antimatter: A new method

    International Nuclear Information System (INIS)

    Onel, Y.

    1992-02-01

    Several years ago a self-polarization effect for stored (anti)- protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at the Indiana University Cyclotron Facility (IUCF) is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low-energy range and at SSC and LHC energies. In this progress report we will describe our progress in three parts: (A) Experimental work at IUCF Cooler Ring; (B) Our extensive computer simulations of the spin stability for the IUCF Cooler Ring; and (C) Theoretical studies

  1. Polarization sensitive optical coherence tomography detection method

    International Nuclear Information System (INIS)

    Colston, B W; DaSilva, L B; Everett, M J; Featherstone, J D B; Fried, D; Ragadio, J N; Sathyam, U S.

    1999-01-01

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattering coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions

  2. Shape theory categorical methods of approximation

    CERN Document Server

    Cordier, J M

    2008-01-01

    This in-depth treatment uses shape theory as a ""case study"" to illustrate situations common to many areas of mathematics, including the use of archetypal models as a basis for systems of approximations. It offers students a unified and consolidated presentation of extensive research from category theory, shape theory, and the study of topological algebras.A short introduction to geometric shape explains specifics of the construction of the shape category and relates it to an abstract definition of shape theory. Upon returning to the geometric base, the text considers simplical complexes and

  3. A Bionic Polarization Navigation Sensor and Its Calibration Method.

    Science.gov (United States)

    Zhao, Huijie; Xu, Wujian

    2016-08-03

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation.

  4. The tidal-rotational shape of the Moon and evidence for polar wander.

    Science.gov (United States)

    Garrick-Bethell, Ian; Perera, Viranga; Nimmo, Francis; Zuber, Maria T

    2014-08-14

    The origin of the Moon's large-scale topography is important for understanding lunar geology, lunar orbital evolution and the Moon's orientation in the sky. Previous hypotheses for its origin have included late accretion events, large impacts, tidal effects and convection processes. However, testing these hypotheses and quantifying the Moon's topography is complicated by the large basins that have formed since the crust crystallized. Here we estimate the large-scale lunar topography and gravity spherical harmonics outside these basins and show that the bulk of the spherical harmonic degree-2 topography is consistent with a crust-building process controlled by early tidal heating throughout the Moon. The remainder of the degree-2 topography is consistent with a frozen tidal-rotational bulge that formed later, at a semi-major axis of about 32 Earth radii. The probability of the degree-2 shape having both tidal-heating and frozen shape characteristics by chance is less than 1%. We also infer that internal density contrasts eventually reoriented the Moon's polar axis by 36 ± 4°, to the configuration we observe today. Together, these results link the geology of the near and far sides, and resolve long-standing questions about the Moon's large-scale shape, gravity and history of polar wander.

  5. Convex and concave micro-structured silicone controls the shape, but not the polarization state of human macrophages.

    Science.gov (United States)

    Malheiro, V; Lehner, F; Dinca, V; Hoffmann, P; Maniura-Weber, K

    2016-10-18

    The typical foreign body response (FBR) to synthetic implants is characterized by local inflammation and tissue fibrosis. Silicone implants have been associated with the development of adverse capsular contraction (ACC); a form of excessive FBR to the material that often requires the replacement of the implant. It has been shown that surface roughening of silicone can reduce the prevalence of ACC, but the mechanisms remain poorly understood. Macrophages are key cells in FBR. They exert their control mainly by polarizing into pro-inflammatory (M1) or pro-healing (M2) cells. It is postulated that surface topography can reduce M1 polarization by limiting cell spreading and cytoskeleton organization. To test this hypothesis, we used KrF Excimer laser ablation with half-tone masks to produce convex and concave topographies with controlled surface dimensional parameters. Cells in convex and concave topographies were compared to cells in planar surfaces, with or without chemical polarization. We show that chemical polarization induced specific changes in the cell shape on planar substrates. Macrophage shape and size was different in concave and convex surfaces, but no correlation was found with the cell polarization state. The results highlight that chemical polarization of macrophages is associated with changes in the cell shape; however, topography-induced changes in macrophage shape could not be linked with a shift in macrophage polarization. Thus, the sole manipulation of cell shape does not seem to be the mechanism by which macrophage function could be controlled.

  6. Ultrafast shape recognition: method and applications.

    Science.gov (United States)

    Ballester, Pedro J

    2011-01-01

    Molecular shape complementarity is widely recognized as a key indicator of biological activity. Unfortunately, efficient computation of shape similarity is challenging, which severely limits the potential of shape-based virtual screening. Ultrafast shape recognition (USR) is a recent shape similarity technique that is characterized by its extremely high speed of operation. Here we review important methodological aspects for the optimal application of USR as well as its first applications to medicinal chemistry problems. These applications already include several particularly successful prospective virtual screens, which shows the important role that USR can play in identifying bioactive molecules to be used as chemical probes and potentially as starting points for the drug-discovery process.

  7. Method for Parametric Design of Three-Dimensional Shapes

    National Research Council Canada - National Science Library

    Dick, James L

    2006-01-01

    The present invention relates to computer-aided design of three-dimensional shapes and more particularly, relates to a system and method for parametric design of three-dimensional hydrodynamic shapes...

  8. A Low-Complexity DOA and Polarization Method of Polarization-Sensitive Array

    Directory of Open Access Journals (Sweden)

    Wen Dong

    2017-05-01

    Full Text Available This paper proposes a low-complexity method to estimate the direction of arrival and polarization based on the polarization sensitive array (PSA which is composed of cross-dipoles. We built a half-quaternions model through the Cayley–Dickson form to remove the redundant information. Then, the directions of arrival (DOAs were estimated via the root-MUSIC algorithm. Finally, the polarizations were estimated by generalized eigenvalue method. Unlike some existing searching algorithms, such as multiple signal classification (MUSIC, this method can avoid the peak searching and maintains high estimation accuracy. Moreover, we use the oblique projection operators to filter out the interference signals which are decoys of the target signal. Simulation results demonstrate the effectiveness and favorable performance of the proposed method.

  9. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    Science.gov (United States)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  10. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells.

    Science.gov (United States)

    Cooper, Sam; Sadok, Amine; Bousgouni, Vicky; Bakal, Chris

    2015-11-05

    Melanoma cells can adopt two functionally distinct forms, amoeboid and mesenchymal, which facilitates their ability to invade and colonize diverse environments during the metastatic process. Using quantitative imaging of single living tumor cells invading three-dimensional collagen matrices, in tandem with unsupervised computational analysis, we found that melanoma cells can switch between amoeboid and mesenchymal forms via two different routes in shape space--an apolar and polar route. We show that whereas particular Rho-family GTPases are required for the morphogenesis of amoeboid and mesenchymal forms, others are required for transitions via the apolar or polar route and not amoeboid or mesenchymal morphogenesis per se. Altering the transition rates between particular routes by depleting Rho-family GTPases can change the morphological heterogeneity of cell populations. The apolar and polar routes may have evolved in order to facilitate conversion between amoeboid and mesenchymal forms, as cells are either searching for, or attracted to, particular migratory cues, respectively. © 2015 Cooper et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard

  12. Polarization control method for UV writing of advanced bragg gratings

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2002-01-01

    We report the application of the polarization control method for the UV writing of advanced fiber Bragg gratings (FBG). We demonstrate the strength of the new method for different apodization profiles, including the Sinc-profile and two designs for dispersion-free square filters. The method has...

  13. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    Energy Technology Data Exchange (ETDEWEB)

    Jangid, K. G.; Kulhar, V. S. [Department of Physics, Manipal University Jaipur, Jaipur-303007 (India); Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Bhatnagar, D., E-mail: dbhatnagar-2000@rediffmail.com [Microwave Lab, Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-03-09

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  14. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity

    Directory of Open Access Journals (Sweden)

    Gianluca Baldanzi

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs terminate diacylglycerol (DAG signaling and promote phosphatidic acid (PA production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse.When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.

  15. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, A [Institute of Dental Sciences, Faculty of Dental Medicine, and the Fritz Haber Center for Molecular Dynamics, Hebrew University-Hadassah Medical Center, Jerusalem, 91120 (Israel); Rehfeldt, F [III. Physikalisches Institut, Georg-August-Universitaet, 37077 Goettingen (Germany); Brown, A E X [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Discher, D E [Graduate Group of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  16. The shape of supertrees to come: tree shape related properties of fourteen supertree methods.

    Science.gov (United States)

    Wilkinson, Mark; Cotton, James A; Creevey, Chris; Eulenstein, Oliver; Harris, Simon R; Lapointe, Francois-Joseph; Levasseur, Claudine; McInerney, James O; Pisani, Davide; Thorley, Joseph L

    2005-06-01

    Using a simple example and simulations, we explore the impact of input tree shape upon a broad range of supertree methods. We find that input tree shape can affect how conflict is resolved by several supertree methods and that input tree shape effects may be substantial. Standard and irreversible matrix representation with parsimony (MRP), MinFlip, duplication-only Gene Tree Parsimony (GTP), and an implementation of the average consensus method have a tendency to resolve conflict in favor of relationships in unbalanced trees. Purvis MRP and the average dendrogram method appear to have an opposite tendency. Biases with respect to tree shape are correlated with objective functions that are based upon unusual asymmetric tree-to-tree distance or fit measures. Split, quartet, and triplet fit, most similar supertree, and MinCut methods (provided the latter are interpreted as Adams consensus-like supertrees) are not revealed to have any bias with respect to tree shape by our example, but whether this holds more generally is an open problem. Future development and evaluation of supertree methods should consider explicitly the undesirable biases and other properties that we highlight. In the meantime, use of a single, arbitrarily chosen supertree method is discouraged. Use of multiple methods and/or weighting schemes may allow practical assessment of the extent to which inferences from real data depend upon methodological biases with respect to input tree shape or size.

  17. New pulse-shape analysis method with multi-shaping amplifiers

    CERN Document Server

    Sakai, H; Takenaka, Y; Mori, C; Iguchi, T

    1999-01-01

    A novel pulse-shape analysis method that uses similarity to recognize an individual pulse shape is presented in this paper. We obtain four pulse heights by using four linear amplifiers with different shaping time constants. We treat a combination of the four pulse heights as a pattern vector. A similarity of the pulse shape can be obtained by comparison between the pattern vector and a discriminant vector which was given in advance. Each pulse shape is analyzed by using the similarity. The method has been applied for the improvement of characteristics of a CdZnTe semiconductor detector. The characteristics of the energy spectrum of the CdZnTe detector such as the photopeak efficiency or the peak-to-valley ratio are improved after the correction procedure with the similarity.

  18. Methods for quantifying tongue shape and complexity using ultrasound imaging.

    Science.gov (United States)

    Dawson, Katherine M; Tiede, Mark K; Whalen, D H

    2016-01-01

    Quantification of tongue shape is potentially useful for indexing articulatory strategies arising from intervention, therapy and development. Tongue shape complexity is a parameter that can be used to reflect regional functional independence of the tongue musculature. This paper considers three different shape quantification methods - based on Procrustes analysis, curvature inflections and Fourier coefficients - and uses a linear discriminant analysis to test how well each method is able to classify tongue shapes from different phonemes. Test data are taken from six native speakers of American English producing 15 phoneme types. Results classify tongue shapes accurately when combined across quantification methods. These methods hold promise for extending the use of ultrasound in clinical assessments of speech deficits.

  19. Apple Shape Classification Method Based on Wavelet Moment

    Directory of Open Access Journals (Sweden)

    Jiangsheng Gui

    2014-09-01

    Full Text Available Shape is not only an important indicator for assessing the grade of the apple, but also the important factors for increasing the value of the apple. In order to improve the apple shape classification accuracy rate, an approach for apple shape sorting based on wavelet moments was proposed, the image was first subjected to a normalization process using its regular moments to obtain scale and translation invariance, the rotation invariant wavelet moment features were then extracted from the scale and translation normalized images and the method of cluster analysis was used for finished the shape classification. This method performs better than traditional approaches such as Fourier descriptors and Zernike moments, because of that Wavelet moments can provide time-domain and frequency domain window, which was verified by experiments. The normal fruit shape, mild deformity and severe deformity classification accuracy is 86.21 %, 85.82 %, 90.81 % by our method.

  20. Experimental Comparison of Probabilistic Shaping Methods for Unrepeated Fiber Transmission

    DEFF Research Database (Denmark)

    Renner, Julian; Fehenberger, Tobias; Yankov, Metodi Plamenov

    2017-01-01

    -step Fourier method based channel model. In the third and fourth approach, MB-shaped QAM and unconstrained QAM are optimized via the enhanced Gaussian noise (EGN) model. Although the absolute shaping gains are found to be relatively small, the relative improvements by EGN-optimized unconstrained distributions......, shaping is ultimately found to increase the AIR, which is the most relevant figure of merit as it is directly related to spectral efficiency. In a detailed study of these shaping gains for the nonlinear fiber channel, four strategies for optimizing QAM input distributions are evaluated and experimentally...

  1. Methods for Analyzing Electric Load Shape and its Variability

    Energy Technology Data Exchange (ETDEWEB)

    Price, Philip

    2010-05-12

    Current methods of summarizing and analyzing electric load shape are discussed briefly and compared. Simple rules of thumb for graphical display of load shapes are suggested. We propose a set of parameters that quantitatively describe the load shape in many buildings. Using the example of a linear regression model to predict load shape from time and temperature, we show how quantities such as the load?s sensitivity to outdoor temperature, and the effectiveness of demand response (DR), can be quantified. Examples are presented using real building data.

  2. Into the development of a model to assess beam shaping and polarization control effects on laser cutting

    Science.gov (United States)

    Rodrigues, Gonçalo C.; Duflou, Joost R.

    2018-02-01

    This paper offers an in-depth look into beam shaping and polarization control as two of the most promising techniques for improving industrial laser cutting of metal sheets. An assessment model is developed for the study of such effects. It is built upon several modifications to models as available in literature in order to evaluate the potential of a wide range of considered concepts. This includes different kinds of beam shaping (achieved by extra-cavity optical elements or asymmetric diode staking) and polarization control techniques (linear, cross, radial, azimuthal). A fully mathematical description and solution procedure are provided. Three case studies for direct diode lasers follow, containing both experimental data and parametric studies. In the first case study, linear polarization is analyzed for any given angle between the cutting direction and the electrical field. In the second case several polarization strategies are compared for similar cut conditions, evaluating, for example, the minimum number of spatial divisions of a segmented polarized laser beam to achieve a target performance. A novel strategy, based on a 12-division linear-to-radial polarization converter with an axis misalignment and capable of improving cutting efficiency with more than 60%, is proposed. The last case study reveals different insights in beam shaping techniques, with an example of a beam shape optimization path for a 30% improvement in cutting efficiency. The proposed techniques are not limited to this type of laser source, neither is the model dedicated to these specific case studies. Limitations of the model and opportunities are further discussed.

  3. Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures.

    Science.gov (United States)

    Yang, Jing; Hu, Chuang; Wen, Qiuling; Zhao, Chenglong; Zhang, Jiasen

    2015-03-15

    Given that plasmonic fields are intrinsically transverse magnetic (TM), coupling surface plasmon polaritons (SPPs) and transverse electric (TE) polarized light, especially at nanoscale, remain challenging. We propose the use of L-shaped nano-apertures to overcome this fundamental limitation and enable coupling between SPPs and TE polarized light. Polarization conversion originates from the interference of two resonant modes excited in the nano-apertures and the nearly 180° phase retardation between them. The experiments show that both TE-to-plasmon and plasmon-to-TE couplings can be implemented at the subwavelength scale. This discovery provides great freedom when manipulating light based on SPPs at the nanoscale and helps in using the energy of TE polarized light.

  4. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  5. Comparative Analysis of Kernel Methods for Statistical Shape Learning

    National Research Council Canada - National Science Library

    Rathi, Yogesh; Dambreville, Samuel; Tannenbaum, Allen

    2006-01-01

    .... In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding...

  6. Standard test method for conducting potentiodynamic polarization resistance measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers an experimental procedure for polarization resistance measurements which can be used for the calibration of equipment and verification of experimental technique. The test method can provide reproducible corrosion potentials and potentiodynamic polarization resistance measurements. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. An Input Shaping Method Based on System Output

    Directory of Open Access Journals (Sweden)

    Zhiqiang ZHU

    2014-06-01

    Full Text Available In this paper, an input shaping method is proposed. This method only requires the system output, and doesn't need the system model information. In the application of this method, the basic form of an input shaping filter is first decided, then according to the form of the filter, the system output is decomposed into several weighted signals. Based on the decomposition, the least square method is applied to minimize the difference between the actual system output and the reference system output. In this way, the vibration in the system output is eliminated and the desired bandwidth of the whole system can be fulfilled.

  8. Method of production of polarized negative hydrogen ions

    International Nuclear Information System (INIS)

    Belov, A.S.; Kuzik, V.E.; Yakushev, V.P.

    1990-01-01

    Result of experimental examination of the method of producing negative polarized hydrogen ions are presented. Beams of polarized hydrogen atoms and deuterium plasma are injected towards each other and meet in the region of recharging 1 in 1.3 kGs magnetic field, created by a solenoid. As follows from the measurements performed and the method analysis, a possibility of producing an intense H-vector - ion beam according to the given method is mainly dependent on plasma deuterium target parameters. It is possible to produce ∼500 μA current H-vector - ion beam by the method considered under ∼0.1 relative D - ion density in plasma, ∼1 eV electron temperature, ∼10 2 eV ion temperature (typical of surface - plasma sources) and 2 cm 2 transverse area of recharging volume. The method advantages as well include the absence in a source of targets of alkali metal vapours, the presence of which in other methods limits the time of continuous source operation and makes their operation difficult

  9. A New Shape Description Method Using Angular Radial Transform

    Science.gov (United States)

    Lee, Jong-Min; Kim, Whoi-Yul

    Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.

  10. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Directory of Open Access Journals (Sweden)

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  11. Design and investigations of a microstrip fed open V-shape slot antenna for wideband dual slant polarization

    Directory of Open Access Journals (Sweden)

    R.V.S. Ram Krishna

    2015-12-01

    Full Text Available A dual slant polarized slot antenna is proposed. The antenna is printed on the two sides of a single substrate and has two microstrip feed lines to excite a V-shaped slot formed by the merging of two tilted rectangular step shaped slots. Stepping of the slot sections as well as the feed line improves the impedance matching. A narrow rectangular metallic stub is introduced at the junction of the slot arms to improve the decoupling between the ports. The antenna polarization is +450/−450 with respect to horizontal under alternate excitation and this dual slant polarized nature is demonstrated through aperture electric field plots and far field radiation patterns. The measured return loss bandwidth (S11 < −10 dB of the antenna is from 2.3 GHz and extends beyond 12 GHz while the measured isolation bandwidth (S21 < −20 dB is from 5 GHz onwards. The time domain characterization of the antenna is also done by calculating the fidelity factor. For evaluating the diversity performance, the envelope correlation coefficients are calculated from the simulated and measured S-parameters. The correlation coefficients are well below the acceptable values. With a peak gain varying between 3 and 5 dBi, the antenna is expected to be useful for wideband dual slant polarized applications.

  12. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    International Nuclear Information System (INIS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-01-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations. - Highlights: • The CE318-DP polarized measurements are not yet widely used except DoLP. • Compared with DoLP and I, difficulty in calculating Stokes Q and U is discussed. • A new polarized almucantar observation geometry based on CE318-DP is executed. • We derive Stokes Q, U, and AoP both in principal and almucantar plane geometries. • The results are comparable with previous DoLP and I, as well as model simulations

  13. Interferometric method for birefringence determination with a polarizing microscope.

    Science.gov (United States)

    Dumitraşcu, Leonaş; Dumitraşcu, Irina; Dorohoi, Dana-Ortansa; Toma, Mihai

    2008-12-08

    We present a new mathematical technique which can be used to determine the main refractive indices and the birefringence of an anisotropic layer by using a polarizing microscope in conoscopic illumination. The values of the birefringence for the yellow radiation of a Na lamp are determined here for a Carpathian quartz sample, but the technique can also be applied to the study of other uniaxial substances such as liquid crystals, model membranes or biological tissues. The validity of the proposed method was tested by comparing the results with those obtained with a Rayleigh interferometer and by using the technology of channeled spectra.

  14. Wettability measurements of irregular shapes with Wilhelmy plate method

    Science.gov (United States)

    Park, Jaehyung; Pasaogullari, Ugur; Bonville, Leonard

    2018-01-01

    One of the most accurate methods for measuring the dynamic contact angle of liquids on solid surfaces is the Wilhelmy plate method. This method generally requires the use of rectangular samples having a constant perimeter in the liquid during advancing and receding cycles. A new formulation based on the Wilhelmy force balance equation to determine the contact angle for plate samples with irregular shapes has been developed. This method employs a profile plot obtained from an optical image to determine the perimeter (i.e. wetted length) of the sample as a function of the immersion depth. The raw force data measured by the force tensiometer is manipulated using the profile plot and the Wilhelmy equation to determine the wetting force and consequently advancing and the receding contact angle. This method is verified with both triangular and irregular PTFE samples in water, and measured contact angles are in good agreement with results from conventional regular shaped samples with a constant perimeter.

  15. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  16. Polarization shaping of high-order harmonics in laser-aligned molecules

    Science.gov (United States)

    Skantzakis, E.; Chatziathanasiou, S.; Carpeggiani, P. A.; Sansone, G.; Nayak, A.; Gray, D.; Tzallas, P.; Charalambidis, D.; Hertz, E.; Faucher, O.

    2016-01-01

    The present work reports on the generation of short-pulse coherent extreme ultraviolet radiation of controlled polarization. The proposed strategy is based on high-order harmonics generated in pre-aligned molecules. Field-free molecular alignment produced by a short linearly-polarized infrared laser pulse is used to break the isotropy of a gas medium. Driving the aligned molecules by a circularly-polarized infrared pulse allows to transfer the anisotropy of the medium to the polarization of the generated harmonic light. The ellipticity of the latter is controlled by adjusting the angular distribution of the molecules at the time they interact with the driving pulse. Extreme ultraviolet radiation produced with high degree of ellipticity (close to circular) is demonstrated. PMID:27995974

  17. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    fiber squeezing experiments. Explicit we produce squeezed states in counter propagating pulses along the same fiber axis to achieve near identical dispersion properties. This enables the production of polarization squeezing through interference in a polarization type Sagnac interferometer. We observe...

  18. Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems

    Science.gov (United States)

    Gielis, Johan; Caratelli, Diego; Fougerolle, Yohan; Ricci, Paolo Emilio; Tavkelidze, Ilia; Gerats, Tom

    2012-01-01

    Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way. PMID:23028417

  19. Method of transferring regular shaped vessel into cell

    International Nuclear Information System (INIS)

    Murai, Tsunehiko.

    1997-01-01

    The present invention concerns a method of transferring regular shaped vessels from a non-contaminated area to a contaminated cell. A passage hole for allowing the regular shaped vessels to pass in the longitudinal direction is formed to a partitioning wall at the bottom of the contaminated cell. A plurality of regular shaped vessel are stacked in multiple stages in a vertical direction from the non-contaminated area present below the passage hole, allowed to pass while being urged and transferred successively into the contaminated cell. As a result, since they are transferred while substantially closing the passage hole by the regular shaped vessels, radiation rays or contaminated materials are prevented from discharging from the contaminated cell to the non-contaminated area. Since there is no requirement to open/close an isolation door frequently, the workability upon transfer can be improved remarkably. In addition, the sealing member for sealing the gap between the regular shaped vessel passing through the passage hole and the partitioning wall of the bottom is disposed to the passage hole, the contaminated materials in the contaminated cells can be prevented from discharging from the gap to the non-contaminated area. (N.H.)

  20. Investigation of novel shape-controlled linearly and circularly polarized attosecond pulse sources

    International Nuclear Information System (INIS)

    Tóth, György; Tibai, Zoltán; Nagy-Csiha, Zsuzsanna; Márton, Zsuzsanna; Almási, Gábor; Hebling, János

    2016-01-01

    In this article, we investigate the temporal shape of one- or few-cycle, 20–180 nm central wavelength attosecond pulses that are produced in a scheme based on coherent undulator radiation. It is demonstrated, that the carrier–envelope phase (CEP) of the radiated electric field can be chosen arbitrarily by shaping the magnetic field of the radiator undulator appropriately. It is shown that the temporal shape and the spectrum of the generated electric field are influenced by the spatial shape and amplitude of the magnetic field of the radiator undulator for different central wavelength pulses, while both are practically independent of the energy of the initial electron bunch. Shape distortions at high K undulator parameters are also discussed.

  1. New shapes of light-cone distributions of the transversely polarized ρ-mesons

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Mikhajlov, S.V.

    2000-01-01

    The leading twist light-cone distributions for transversely polarized ρ-, ρ ' - and b 1 mesons are reanalyzed in the framework of QCD sum rules with nonlocal condensates. Using different kinds of sum rules to obtain reliable predictions, we estimate the 2-, 4-, 6- and 8-th moments for transversely polarized ρ- and ρ ' -meson distributions and reestimate tensor couplings f ρ,ρ ' ,b 1 T . It is stressed that the results of standard sum rules also support our estimation of the second moment of the transversely polarized ρ-meson distribution. New models for light-cone distributions are briefly discussed. Our results are compared with those found by Ball and Braun (1996), and the latter is shown to be incomplete

  2. Interactive Modelling of Shapes Using the Level-Set Method

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2002-01-01

    In this paper, we propose a technique for intuitive, interactive modelling of {3D} shapes. The technique is based on the Level-Set Method which has the virtue of easily handling changes to the topology of the represented solid. Furthermore, this method also leads to sculpting operations that are ......In this paper, we propose a technique for intuitive, interactive modelling of {3D} shapes. The technique is based on the Level-Set Method which has the virtue of easily handling changes to the topology of the represented solid. Furthermore, this method also leads to sculpting operations...... which are suitable for shape modelling are proposed. However, normally these would result in tools that would a ect the entire model. To facilitate local changes to the model, we introduce a windowing scheme which constrains the {LSM} to a ect only a small part of the model. The {LSM} based sculpting...... tools have been incorporated in our sculpting system which also includes facilities for volumetric {CSG} and several techniques for visualization....

  3. Pulse-shape discrimination technique in radioanalytical methods

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Posta, S.

    1998-01-01

    Several successful techniques have been developed to eliminate unwanted background level in experimental radiation spectra. One of the background-reduction techniques is pulse-shape discrimination (PSD) which is based on the fact that different particles or quanta give rise to different spectrometer response, i.e. to different signal shapes. The shapes can be recognized and analyzed by appropriate electronic circuits which can measure either the rise time or the fall time of the pulses. The PSD technique has been suggested for different particle/background separations (such as n/γ, α/γ, α/proton or αa/electron separations). It has been successfully applied i.e. in separation of (fast) neutrons from intensive gamma background or charged particles from gammas. Recently the principle of the PSD has been applied in the construction of special ORTEC and CANBERRA spectroscopic modules. In this study we have employed the principle of PSD in two different radioanalytical methods developed in the Nuclear Research and Nuclear Physics Institutes in Rez. One of the methods concerns with the determination of uranium by delayed neutron counting (DNC), the second method is known as neutron depth profiling (NDP). An effective elimination of unwanted background signals in measured radiation spectra has been proved. At least two orders of magnitude of background level suppression has been achieved independently of employed PSD circuits. The PSD technique has substantially improved detection limits of the DNC and NDP facilities. (author)

  4. Generation of high-intensity sub-30 as pulses by inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    Science.gov (United States)

    Feng, Liqiang; Feng, A. Yuanzi

    2018-04-01

    The generation of high-order harmonics and single attosecond pulses (SAPs) from He atom driven by the inhomogeneous polarization gating technology in a bowtie-shaped nanostructure is theoretically investigated. The results show that by the proper addition of bowtie-shaped nanostructure along the driven laser polarization direction, the harmonic emission becomes sensitive to the position of the laser field, and the harmonics emitted at the maximum orders that generate SAPs occur only at one side of the region inside the nanostructure. As a result, not only the harmonic cutoff can be extended, but also the modulations of the harmonics can be decreased, showing a carrier envelope phase independent harmonic cutoff with a bandwidth of 310 eV. Further, with the proper introduction of an ultraviolet pulse, the harmonic yield can be enhanced by 2 orders of magnitude. Finally, by the Fourier transformation of the selected harmonics, some SAPs with a full width at half maximum of sub-30 as can be obtained.

  5. Stochastic level-set method for shape optimisation

    Science.gov (United States)

    Hedges, Lester O.; Kim, H. Alicia; Jack, Robert L.

    2017-11-01

    We present a new method for stochastic shape optimisation of engineering structures. The method generalises an existing deterministic scheme, in which the structure is represented and evolved by a level-set method coupled with mathematical programming. The stochastic element of the algorithm is built on the methods of statistical mechanics and is designed so that the system explores a Boltzmann-Gibbs distribution of structures. In non-convex optimisation problems, the deterministic algorithm can get trapped in local optima: the stochastic generalisation enables sampling of multiple local optima, which aids the search for the globally-optimal structure. The method is demonstrated for several simple geometrical problems, and a proof-of-principle calculation is shown for a simple engineering structure.

  6. Methods for the design and optimization of shaped tokamaks

    International Nuclear Information System (INIS)

    Haney, S.W.

    1988-05-01

    Two major questions associated with the design and optimization of shaped tokamaks are considered. How do physics and engineering constraints affect the design of shaped tokamaks? How can the process of designing shaped tokamaks be improved? The first question is addressed with the aid of a completely analytical procedure for optimizing the design of a resistive-magnet tokamak reactor. It is shown that physics constraints---particularly the MHD beta limits and the Murakami density limit---have an enormous, and sometimes, unexpected effect on the final design. The second question is addressed through the development of a series of computer models for calculating plasma equilibria, estimating poloidal field coil currents, and analyzing axisymmetric MHD stability in the presence of resistive conductors and feedback. The models offer potential advantages over conventional methods since they are characterized by extremely fast computer execution times, simplicity, and robustness. Furthermore, evidence is presented that suggests that very little loss of accuracy is required to achieve these desirable features. 94 refs., 66 figs., 14 tabs

  7. Fabrication of shape memory nanofibers by electrospinning method

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong

    2013-04-01

    Shape memory nanofibers are capable of fixing a temporary shape and recovering a permanent shape in response to stimulus. Nafion nanofibers with shape memory effect are achieved via electrospinning technology. The resulting nanofibres exhibit the smooth, continuous, uniform fibrous structure. The diameter of nanofibers increases after annealing progress at different temperatures. The shape memory effect is evaluated in a fixed force controlled tensile test. Electrospun Nafion nanofibers show excellent shape memory properties upon heat. The shape fixity rates and shape recovery rates are about 95-96% and 87-89% after consecutive three shape memory cycles, respectively. The structure of electrospun nanofibers is stable and reversible for at least three cycles of shape memory tests. These results indicate that shape memory Nafion nanofibers can be used in a wide potential application fields such as smart materials and structures in the future.

  8. Facet shapes and thermo-stabilities of H₂SO₄•HNO₃ hydrates involved in polar stratospheric clouds.

    Science.gov (United States)

    Verdes, Marian; Paniagua, Miguel

    2015-09-01

    The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved -divided in two groups, one with HNO3 moiety, second with H2SO4 moiety- after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (∆E), relative reaction Gibbs free energies ∆(∆G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities.

  9. Palate Shape and Depth: A Shape-Matching and Machine Learning Method for Estimating Ancestry from Human Skeletal Remains.

    Science.gov (United States)

    Maier, Christopher A; Zhang, Kang; Manhein, Mary H; Li, Xin

    2015-09-01

    In the past, assessing ancestry relied on the naked eye and observer experience; however, replicability has become an important aspect of such analysis through the application of metric techniques. This study examines palate shape and assesses ancestry quantitatively using a 3D digitizer and shape-matching and machine learning methods. Palate curves and depths were recorded, processed, and tested for 376 individuals. Palate shape was an accurate indicator of ancestry in 58% of cases. Cluster analysis revealed that the parabolic, hyperbolic, and elliptical shapes are discrete from one another. Preliminary results indicate that palate depth in Hispanic individuals is greatest. Palate shape appears to be a useful indicator of ancestry, particularly when assessed by a computer. However, these data suggest that palate shape is not useful for assessing ancestry in Hispanic individuals. Although ancestry may be determined from palate shape, the use of multiple features is recommended and more reliable. © 2015 American Academy of Forensic Sciences.

  10. New method of contour-based mask-shape compiler

    Science.gov (United States)

    Matsuoka, Ryoichi; Sugiyama, Akiyuki; Onizawa, Akira; Sato, Hidetoshi; Toyoda, Yasutaka

    2007-10-01

    We have developed a new method of accurately profiling a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, it is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method for a DFM solution in which two dimensional data are extracted for an error free practical simulation by precise reproduction of a real mask shape in addition to the mask data simulation. The flow centering around the design data is fully automated and provides an environment where optimization and verification for fully automated model calibration with much less error is available. It also allows complete consolidation of input and output functions with an EDA system by constructing a design data oriented system structure. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.

  11. Shape Control of Vesicle by Reverse Process Method of Relaxation

    Science.gov (United States)

    Kohyama, Tamotsu

    2018-03-01

    We consider a reverse process of relaxation and obtain a necessary condition under which the reverse process proceeds. Applying this method to fluid vesicle dynamics, which is derived by Onsager's variational principle, we derive the necessary equations for spontaneous curvature and anisotropic bending rigidity distributions that are induced by the proteins attached to the membrane of the vesicle. Numerical schemes to obtain the distributions of the protein properties are proposed and applied to spheroid vesicles. It is shown that proteins with an anisotropic spontaneous curvature deviator are effective in forming a long prolate spheroid. We conclude that the proposed method may become a useful tool to study the protein distribution in the membrane of a vesicle with a measured shape.

  12. Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on platinum single-crystal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Koper, Marc T.M.; Schmidt, Thomas J.; Markovic, Nenad M.; Ross, Philip N.

    2001-03-01

    The occurrence of an S-shaped polarization curve in a simple model for the continuous electrochemical oxidation of CO on a platinum electrode is discussed. In the model, the S-shaped polarization curve is caused by the competitive Langmuir-Hinshelwood mechanism between surface-bonded CO and OH. The reaction is studied experimentally on single-crystal platinum rotating disk electrodes in perchloric and sulfuric acid solution, and it is shown that the voltammetry is in good agreement with the model predictions. When studied under current-controlled conditions, a fast galvanodynamic scan indeed suggests the existence of the S-shaped polarization curve. At lower scan rates, however, irregularities and small-amplitude irregular fluctuations or oscillations in potential are observed. Very regular potential oscillations under current-controlled conditions are observed only on Pt(111) in sulfuric acid. The possible origin of these irregularities and oscillations is discussed in relation to the existing theories of electrochemical instabilities.

  13. Exploratory Methods for the Study of Incomplete and Intersecting Shape Boundaries from Landmark Data

    Directory of Open Access Journals (Sweden)

    Fathi M. O. Hamed

    2016-01-01

    Full Text Available Structured spatial point patterns appear in many applications within the natural sciences. The points often record the location of key features, called landmarks, on continuous object boundaries, such as anatomical features on a human face. In other situations, the points may simply be arbitrarily spaced marks along a smooth curve, such as on handwritten numbers. This paper proposes novel exploratory methods for the identification of structure within point datasets. In particular, points are linked together to form curves which estimate the original shape from which the points are the only recorded information. Nonparametric regression methods are applied to polar coordinate variables obtained from the point locations and periodic modelling allows closed curves to be fitted even when data are available on only part of the boundary. Further, the model allows discontinuities to be identified to describe rapid changes in the curves. These generalizations are particularly important when the points represent shapes which are occluded or are intersecting. A range of real-data examples is used to motivate the modelling and to illustrate the flexibility of the approach. The method successfully identifies the underlying structure and its output could also be used as the basis for further analysis.

  14. Polarizing matter and antimatter: A new method. Final report

    International Nuclear Information System (INIS)

    Onel, Y.

    1994-12-01

    Several years ago a self-polarization effect for stored (anti-)protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at the Indiana University Cyclotron Facility (IUCF) is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low-energy range and at SSC and LHC energies. In this progress report the authors will describe the progress in three parts: (A) experimental work at IUCF Cooler Ring; (B) the extensive computer simulations of the spin stability for the IUCF Cooler Ring; and (C) theoretical studies

  15. A Method to Evaluate the Field-Shape Multipoles Induced by Coil Deformations

    CERN Document Server

    Ferracin, P; Todesco, Ezio; Tropea, P

    1999-01-01

    A semi-analytical method to evaluate the effect of coil de-formations on the field-shape imperfections of the LHC dipole is presented. The deformation induced by the collaring procedure and by the thermal stresses is evaluated numerically with a finite element code. The vector field of mechanical displacements is approximated with truncated Taylor and Fourier series. The fitting function agrees with the numerical data to within less that 10 mm. The decom-position in modes of the truncated series permits identification of displacements which are dangerous for the multi-polar content and how they could be cured. An application to compare two designs of the LHC dipole is given.

  16. Determination of electro-optic coefficients of lithium niobate crystal by polarization and interference methods

    Science.gov (United States)

    Syuy, A. V.; Kile, E. O.

    2016-11-01

    In this paper electrooptical coefficients r22, [r13 - 0.9r33 ], of nominally pure single congruent crystal of lithium niobate are determined. Measurement of electro-optic coefficients is produced by two independent methods: polarization and interference. The polarization scheme is based on the Senarmont method and interference scheme - on conoscopic figures.

  17. The polarization evolution of electromagnetic waves as a diagnostic method for a motional plasma

    Science.gov (United States)

    Shahrokhi, Alireza; Mehdian, Hassan; Hajisharifi, Kamal; Hasanbeigi, Ali

    2017-12-01

    The polarization evolution of electromagnetic (EM) radiation propagating through an electron beam-ion channel system is studied in the presence of self-magnetic field. Solving the fluid-Maxwell equations to obtain the medium dielectric tensor, the Stokes vector-Mueller matrix approach is employed to determine the polarization of the launched EM wave at any point in the propagation direction, applying the space-dependent Mueller matrix on the initial polarization vector of the wave at the plasma-vacuum interface. Results show that the polarization evolution of the wave is periodic in space along the beam axis with the specified polarization wavelength. Using the obtained results, a novel diagnostic method based on the polarization evolution of the EM waves is proposed to evaluate the electron beam density and velocity. Moreover, to use the mentioned plasma system as a polarizer, the fraction of the output radiation power transmitted through a motional plasma crossed with the input polarization is calculated. The results of the present investigation will greatly contribute to design a new EM amplifier with fixed polarization or EM polarizer, as well as a new diagnostic approach for the electron beam system where the polarimetric method is employed.

  18. Shape optimized headers and methods of manufacture thereof

    Science.gov (United States)

    Perrin, Ian James

    2013-11-05

    Disclosed herein is a shape optimized header comprising a shell that is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and tubes; wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell. Disclosed herein is a method comprising fixedly attaching tubes to a shell; wherein the shell is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell.

  19. Human macrophage polarization in vitro: Maturation and activation methods compared

    NARCIS (Netherlands)

    Vogel, D.Y.S.; Glim, J.E.; Stavenuiter, A.W.D.; Breur, M.; Heijnen, P.; Amor, S.; Dijkstra, C.D.; Beelen, R.H.J.

    2014-01-01

    Macrophages form a heterogeneous cell population displaying multiple functions, and can be polarized into pro- (M1) or anti-inflammatory (M2) macrophages, by environmental factors. Their activation status reflects a beneficial or detrimental role in various diseases. Currently several in vitro

  20. Low-Dispersion Fibre Bragg Gratings Written Using the Polarization Control Method

    DEFF Research Database (Denmark)

    Deyerl, Hans Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2002-01-01

    We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings.......We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings....

  1. Investigation of RNA Structure by High-Throughput SHAPE-Based Probing Methods

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl

    of highthroughput SHAPE-based approaches to investigate RNA structure based on novel SHAPE reagents that permit selection of full-length cDNAs. The SHAPE Selection (SHAPES) method is applied to the foot-and-mouth disease virus (FMDV) plus strand RNA genome, and the data is used to construct a genome-wide structural...

  2. The optimal method for the measurement of tau polarization

    International Nuclear Information System (INIS)

    Davier, M.; Duflot, L.; Le Diberder, F.; Rouge, A.

    1992-12-01

    A variable is constructed for each τ decay channel which carries all the available information on the τ spin state. Its use allows a simple determination of the polarization with the maximal sensitivity for all final states. Further applications to the τ → α 1 ν channel are discussed, and it is shown that a sizeable improvement of the measurement can be achieved. (author) 14 refs., 2 figs., 1 tab

  3. Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3](infinity) chains directed organic cations aggregation to Kagomé-shaped tubular architecture.

    Science.gov (United States)

    Zhao, Hai-Rong; Li, Dong-Ping; Ren, Xiao-Ming; Song, You; Jin, Wan-Qin

    2010-01-13

    Four isostructural inorganic-organic hybrid ferroelectric compounds, assembled from achiral 3-R-benzylidene-1-aminopyridiniums (R = NO(2), Br, Cl, or F for 1-4, respectively) and [PbI(3)](-) anions with the chiral Kagomé-shaped tubular aggregating architecture, show larger spontaneous polarizations.

  4. A pulse-shape discrimination method for improving Gamma-ray spectrometry based on a new digital shaping filter

    Science.gov (United States)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan

    2018-04-01

    It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.

  5. Descriptive study of the Socratic method: evidence for verbal shaping.

    Science.gov (United States)

    Calero-Elvira, Ana; Froján-Parga, María Xesús; Ruiz-Sancho, Elena María; Alpañés-Freitag, Manuel

    2013-12-01

    In this study we analyzed 65 fragments of session recordings in which a cognitive behavioral therapist employed the Socratic method with her patients. Specialized coding instruments were used to categorize the verbal behavior of the psychologist and the patients. First the fragments were classified as more or less successful depending on the overall degree of concordance between the patient's verbal behavior and the therapeutic objectives. Then the fragments were submitted to sequential analysis so as to discover regularities linking the patient's verbal behavior and the therapist's responses to it. Important differences between the more and the less successful fragments involved the therapist's approval or disapproval of verbalizations that approximated therapeutic goals. These approvals and disapprovals were associated with increases and decreases, respectively, in the patient's behavior. These results are consistent with the existence, in this particular case, of a process of shaping through which the therapist modifies the patient's verbal behavior in the overall direction of his or her chosen therapeutic objectives. © 2013.

  6. A three-dimensional polarization domain retrieval method from electron diffraction data

    International Nuclear Information System (INIS)

    Pennington, Robert S.; Koch, Christoph T.

    2015-01-01

    We present an algorithm for retrieving three-dimensional domains of picometer-scale shifts in atomic positions from electron diffraction data, and apply it to simulations of ferroelectric polarization in BaTiO 3 . Our algorithm successfully and correctly retrieves polarization domains in which the Ti atom positions differ by less than 3 pm (0.4% of the unit cell diagonal distance) with 5 and 10 nm depth resolution along the beam direction, and we also retrieve unit cell strain, corresponding to tetragonal-to-cubic unit cell distortions, for 10 nm domains. Experimental applicability is also discussed. - Highlights: • We show a retrieval method for ferroelectric polarization from TEM diffraction data. • Simulated strain and polarization variations along the beam direction are retrieved. • This method can be used for 3D strain and polarization mapping without specimen tilt

  7. Knowledge and method base for shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Welp, E.G.; Breidert, J. [Ruhr-University Bochum, Institute of Engineering Design, 44780 Bochum (Germany)

    2004-05-01

    It is often impossible for design engineers to decide whether it is possible to use shape memory alloys (SMA) for a particular task. In case of a decision to use SMA for product development, design engineers normally do not know in detail how to proceed in a correct and beneficial way. In order to support design engineers who have no previous knowledge about SMA and to assist in the transfer of results from basic research to industrial practice, an essential knowledge and method base has been developed. Through carefully conducted literature studies and patent analysis material and design information could be collected. All information is implemented into a computer supported knowledge and method base that provides design information with a particular focus on the conceptual and embodiment design phase. The knowledge and method base contains solution principles and data about effects, material and manufacturing as well as design guidelines and calculation methods for dimensioning and optimization. A browser-based user interface ensures that design engineers have immediate access to the latest version of the knowledge and method base. In order to ensure a user friendly application, an evaluation with several test users has been carried out. Reactions of design engineers from the industrial sector underline the need for support related to knowledge on SMA. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Fuer Konstrukteure ist es haeufig schwierig zu entscheiden, ob sich der Einsatz von Formgedaechtnislegierungen (FGL) fuer eine bestimmte Aufgabe eignet. Fuer den Fall, dass FGL fuer die Produktentwicklung genutzt werden sollen, besitzen Ingenieure zumeist nur unzureichende Detailkenntnisse, um Formgedaechtnislegierungen richtig und in vorteilhafter Weise anwenden zu koennen. Zur Unterstuetzung von Konstrukteuren, die ueber kein Vorwissen und keine Erfahrungen zu FGL verfuegen und zum Transfer von Forschungsergebnissen in die industrielle Praxis, ist eine

  8. Detection and Identification of Multipath Jamming Method for Polarized Radar Seeker

    Directory of Open Access Journals (Sweden)

    Dai Huanyao

    2016-04-01

    Full Text Available Multipath jamming is an effective self-defense jamming mode used to counter airborne fire-control radar or radar seekers. Multipath jamming has a deceptive jamming effect on the range, velocity, and angle of radar, making it difficult to identify and suppress. In this study, a polarized radar seeker structure is proposed. Based on the mechanism of the multipath jamming effect on radar, orthogonal polarization signal models of jamming and direct arrived signal are established. Next, a method to detect multipath jamming based on statistical property differences of polarization phases is proposed. The physical connotation of this method is clear and easy to realize. This method can be used to determine the presence of a jamming signal and identify the signal pattern and polarization types. The feasibility of this method has been verified via a simulation experiment, thereby demonstrating that the method serves as a useful reference for effectively countering multipath jamming.

  9. About Shape Identification Methods of Objects Invariant to Projective Transformations

    Directory of Open Access Journals (Sweden)

    Gostev Ivan M.

    2016-01-01

    Full Text Available Diffculties concerning the choice of the invariants of the projective transformation groups used for the identification of the shapes of planar objects are illustrated and solutions allowing the derivation of robust identification criteria are discussed.

  10. [Progress in sample preparation and analytical methods for trace polar small molecules in complex samples].

    Science.gov (United States)

    Zhang, Qianchun; Luo, Xialin; Li, Gongke; Xiao, Xiaohua

    2015-09-01

    Small polar molecules such as nucleosides, amines, amino acids are important analytes in biological, food, environmental, and other fields. It is necessary to develop efficient sample preparation and sensitive analytical methods for rapid analysis of these polar small molecules in complex matrices. Some typical materials in sample preparation, including silica, polymer, carbon, boric acid and so on, are introduced in this paper. Meanwhile, the applications and developments of analytical methods of polar small molecules, such as reversed-phase liquid chromatography, hydrophilic interaction chromatography, etc., are also reviewed.

  11. Type I collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity.

    Science.gov (United States)

    Zuk, A; Matlin, K S; Hay, E D

    1989-03-01

    In the embryo, epithelia give rise to mesenchyme at specific times and places. Recently, it has been reported (Greenburg, G., and E. D. Hay. 1986. Dev. Biol. 115:363-379; Greenberg, G., and E. D. Hay. 1988. Development (Camb.). 102:605-622) that definitive epithelia can give rise to fibroblast-like cells when suspended within type I collagen gels. We wanted to know whether Madin-Darby canine kidney (MDCK) cells, an epithelial line, can form mesenchyme under similar conditions. Small explants of MDCK cells on basement membrane were suspended within or placed on top of extracellular matrix gels. MDCK cells on basement membrane gel are tall, columnar in shape, and ultrastructurally resemble epithelia transporting fluid and ions. MDCK explants cultured on type I collagen gel give rise to isolated fusiform-shaped cells that migrate over the gel surface. The fusiform cells extend pseudopodia and filopodia, lose cell membrane specializations, and develop an actin cortex around the entire cell. Unlike true mesenchymal cells, which express vimentin and type I collagen, fusiform cells produce both keratin and vimentin, continue to express laminin, and do not turn on type I collagen. Fusiform cells are not apically-basally polarized, but show mesenchymal cell polarity. Influenza hemagglutinin and virus budding localize to the front end or entire cell surface. Na,K-ATPase occurs intracellularly and also symmetrically distributes on the cell surface. Fodrin becomes diffusely distributed along the plasma membrane, ZO-1 cannot be detected, and desmoplakins distribute randomly in the cytoplasm. The loss of epithelial polarity and acquisition of mesenchymal cell polarity and shape by fusiform MDCK cells on type I collagen gel was previously unsuspected. The phenomenon may offer new opportunities for studying cytoplasmic and nuclear mechanisms regulating cell shape and polarity.

  12. A LEVEL SET BASED SHAPE OPTIMIZATION METHOD FOR AN ELLIPTIC OBSTACLE PROBLEM

    KAUST Repository

    Burger, Martin

    2011-04-01

    In this paper, we construct a level set method for an elliptic obstacle problem, which can be reformulated as a shape optimization problem. We provide a detailed shape sensitivity analysis for this reformulation and a stability result for the shape Hessian at the optimal shape. Using the shape sensitivities, we construct a geometric gradient flow, which can be realized in the context of level set methods. We prove the convergence of the gradient flow to an optimal shape and provide a complete analysis of the level set method in terms of viscosity solutions. To our knowledge this is the first complete analysis of a level set method for a nonlocal shape optimization problem. Finally, we discuss the implementation of the methods and illustrate its behavior through several computational experiments. © 2011 World Scientific Publishing Company.

  13. A discrete spherical harmonics method for radiative transfer analysis in inhomogeneous polarized planar atmosphere

    Science.gov (United States)

    Tapimo, Romuald; Tagne Kamdem, Hervé Thierry; Yemele, David

    2018-03-01

    A discrete spherical harmonics method is developed for the radiative transfer problem in inhomogeneous polarized planar atmosphere illuminated at the top by a collimated sunlight while the bottom reflects the radiation. The method expands both the Stokes vector and the phase matrix in a finite series of generalized spherical functions and the resulting vector radiative transfer equation is expressed in a set of polar directions. Hence, the polarized characteristics of the radiance within the atmosphere at any polar direction and azimuthal angle can be determined without linearization and/or interpolations. The spatial dependent of the problem is solved using the spectral Chebyshev method. The emergent and transmitted radiative intensity and the degree of polarization are predicted for both Rayleigh and Mie scattering. The discrete spherical harmonics method predictions for optical thin atmosphere using 36 streams are found in good agreement with benchmark literature results. The maximum deviation between the proposed method and literature results and for polar directions \\vert μ \\vert ≥0.1 is less than 0.5% and 0.9% for the Rayleigh and Mie scattering, respectively. These deviations for directions close to zero are about 3% and 10% for Rayleigh and Mie scattering, respectively.

  14. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    Science.gov (United States)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  15. Standardization of size, shape and internal structure of spinal cord images: comparison of three transformation methods.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Fujiki

    Full Text Available Functional fluorescence imaging has been widely applied to analyze spatio-temporal patterns of cellular dynamics in the brain and spinal cord. However, it is difficult to integrate spatial information obtained from imaging data in specific regions of interest across multiple samples, due to large variability in the size, shape and internal structure of samples. To solve this problem, we attempted to standardize transversely sectioned spinal cord images focusing on the laminar structure in the gray matter. We employed three standardization methods, the affine transformation (AT, the angle-dependent transformation (ADT and the combination of these two methods (AT+ADT. The ADT is a novel non-linear transformation method developed in this study to adjust an individual image onto the template image in the polar coordinate system. We next compared the accuracy of these three standardization methods. We evaluated two indices, i.e., the spatial distribution of pixels that are not categorized to any layer and the error ratio by the leave-one-out cross validation method. In this study, we used neuron-specific marker (NeuN-stained histological images of transversely sectioned cervical spinal cord slices (21 images obtained from 4 rats to create the standard atlas and also to serve for benchmark tests. We found that the AT+ADT outperformed other two methods, though the accuracy of each method varied depending on the layer. This novel image standardization technique would be applicable to optical recording such as voltage-sensitive dye imaging, and will enable statistical evaluations of neural activation across multiple samples.

  16. Method and apparatus for determining the shape characteristics of particles

    NARCIS (Netherlands)

    Heffels, C.M.G

    1995-01-01

    To determine the shape characteristics of particles, a light beam (preferably a laser beam) is directed onto a transparent cell containing particles flowing therein and the intensity of the light scattered by the particles is measured with the aid of a photodetector array or a mask containing

  17. A novel autonomous real-time position method based on polarized light and geomagnetic field.

    Science.gov (United States)

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen

    2015-04-08

    Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance.

  18. Applicability study of the structure-factor phase method for determining the polarity of binary semiconductors.

    Science.gov (United States)

    Cao, Jiefeng; Guo, Chao; Zou, Huamin

    2013-12-01

    The structure-factor phase method of convergent-beam electron diffraction (CBED) has been widely applied as an effective tool in determining the polarity of binary compound materials, for example, the typical sphalerite material, GaAs. However, its validity on other polar materials is still unknown. In this paper we extensively investigated its potential applicability onto 11 AB-type semiconductors by dynamical simulations of CBED. Two key factors during the simulation, the difference between A and B atomic numbers and the sample thickness, are discussed in detail. It was found that this method is efficient to determine the polarity for a sphalerite structure under certain conditions, and, reversely, limited to determine the polarity for a wurtzite structure even though it is very similar to the sphalerite structure.

  19. a Spinning Polarizer and Spinning Analyzer Method for Visualizing the Isochromates in Conoscopic Interferometers

    Science.gov (United States)

    Olorunsola, Oluwatobi; Dada, Oluwaseye; Wang, Pengqian

    2013-09-01

    We have developed a spinning polarizer and spinning analyzer (SPSA) method to visualize the whole isochromatic fringes in conoscopic interferometers for the study of optically anisotropic materials. This simple method completely eliminates the broad and dark isogyre fringes appearing in a conventional conoscopic interferometer where a linear polarizer and a linear analyzer (LPLA) are used. Our method allows the direct visualization of the isochromates on the viewing screen by eyes in real time, without the need of additional optics or detectors other than those used in a conventional conoscopic interferometer, and no additional computation is required. This method works at any polarization state of the input light, and at any wavelength permitted by the polarizers. In the case of polychromatic illumination our method reveals the isochromates of all colors indiscriminatively, in comparison to the method of circular polarizer and circular analyzer (CPCA), which is considerably subject to spectrum modulation due to the dispersion in the retardation of the quarter-wave plates. The proposed method is demonstrated in a lithium niobate (LiNbO3) crystal driven by an external electric field.

  20. Monte Carlo method for polarized radiative transfer in gradient-index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2015-01-01

    Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated

  1. A New Method of Designing Circularly Symmetric Shaped Dual Reflector Antennas Using Distorted Conics

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Zaman

    2014-01-01

    Full Text Available A new method of designing circularly symmetric shaped dual reflector antennas using distorted conics is presented. The surface of the shaped subreflector is expressed using a new set of equations employing differential geometry. The proposed equations require only a small number of parameters to accurately describe practical shaped subreflector surfaces. A geometrical optics (GO based method is used to synthesize the shaped main reflector surface corresponding to the shaped subreflector. Using the proposed method, a shaped Cassegrain dual reflector system is designed. The field scattered from the subreflector is calculated using uniform geometrical theory of diffraction (UTD. Finally, a numerical example is provided showing how a shaped subreflector produces more uniform illumination over the main reflector aperture compared to an unshaped subreflector.

  2. High Throughput Method to Quantify Anterior-Posterior Polarity of T-Cells and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Susan J. Marriott

    2011-11-01

    Full Text Available The virologic synapse (VS, which is formed between a virus-infected and uninfected cell, plays a central role in the transmission of certain viruses, such as HIV and HTLV-1. During VS formation, HTLV-1-infected T-cells polarize cellular and viral proteins toward the uninfected T-cell. This polarization resembles anterior-posterior cell polarity induced by immunological synapse (IS formation, which is more extensively characterized than VS formation and occurs when a T-cell interacts with an antigen-presenting cell. One measure of cell polarity induced by both IS or VS formation is the repositioning of the microtubule organizing center (MTOC relative to the contact point with the interacting cell. Here we describe an automated, high throughput system to score repositioning of the MTOC and thereby cell polarity establishment. The method rapidly and accurately calculates the angle between the MTOC and the IS for thousands of cells. We also show that the system can be adapted to score anterior-posterior polarity establishment of epithelial cells. This general approach represents a significant advancement over manual cell polarity scoring, which is subject to experimenter bias and requires more time and effort to evaluate large numbers of cells.

  3. A novel fabrication method for nitinol shape memory alloys

    International Nuclear Information System (INIS)

    Rizvi, S.A.; Khan, T.I.

    2009-01-01

    Nitinol (NiTi) shape memory alloys are widely used in a variety of biomedical applications, such as dental implants, cervical and lumbar vertebral replacements, joint replacements and stents. In this study, commercially pure Ti and Ni foils approx. equal to 100 um thick were diffusion bonded in vacuum. The experimental conditions were optimized to achieve a near equiatomic composition to produce NiTi SMA thin foil of approx. 5-8 micron thick. The cross-sectional surfaces of joint were subjected to metallographic investigation using optical microscope after grinding, polishing and etching. Scanning electron microscope equipped with EDX system was utilized to characterize the bonded layer and compositional analysis. Differential scanning calorimetry (DSC) technique was employed to determine the shape memory effect. The samples were subjected to X-ray diffraction analysis in order to establish phase structures formed during the diffusion bonding stage. An ultra fast femto-second laser facility was utilized to ensure the production of complex shapes or patterns within micron scale. (author)

  4. Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser.

    Science.gov (United States)

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou

    2015-10-05

    We present experimental investigations on the generation of radially polarized laser beams excited by a ring-shaped pump intensity distribution in combination with polarizing grating waveguide mirrors in an Yb:YAG thin-disk laser resonator. Hollow optical fiber components were implemented in the pump beam path to transform the commonly used flattop pumping distribution into a ring-shaped distribution. The investigation was focused on finding the optimum mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian (LG(01)) doughnut mode. The power, efficiency and polarization state of the emitted laser beam as well as the thermal behavior of the disk was compared to that obtained with a standard flattop pumping distribution. A maximum output power of 107 W with a high optical efficiency of 41.2% was achieved by implementing a 300 mm long specially manufactured hollow fiber into the pump beam path. Additionally it was found that at a pump power of 280 W the maximum temperature increase is about 21% below the one observed with standard homogeneous pumping.

  5. A method of measuring magnetic texture with polarized neutrons

    International Nuclear Information System (INIS)

    Akselrod, L.A.; Gordeev, G.P.; Lazebnick, J.M.; Lebedev, V.I.

    1979-01-01

    A new method of qualitative and quantitative magnetic texture investigation is described. The description of the equipment used and results of measurements on three different samples are presented. (Auth.)

  6. Optical image encryption method based on incoherent imaging and polarized light encoding

    Science.gov (United States)

    Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C.

    2018-05-01

    We propose an incoherent encoding system for image encryption based on a polarized encoding method combined with an incoherent imaging. Incoherent imaging is the core component of this proposal, in which the incoherent point-spread function (PSF) of the imaging system serves as the main key to encode the input intensity distribution thanks to a convolution operation. An array of retarders and polarizers is placed on the input plane of the imaging structure to encrypt the polarized state of light based on Mueller polarization calculus. The proposal makes full use of randomness of polarization parameters and incoherent PSF so that a multidimensional key space is generated to deal with illegal attacks. Mueller polarization calculus and incoherent illumination of imaging structure ensure that only intensity information is manipulated. Another key advantage is that complicated processing and recording related to a complex-valued signal are avoided. The encoded information is just an intensity distribution, which is advantageous for data storage and transition because information expansion accompanying conventional encryption methods is also avoided. The decryption procedure can be performed digitally or using optoelectronic devices. Numerical simulation tests demonstrate the validity of the proposed scheme.

  7. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...... (7). In this paper a reliability-based shape optimization problem is formulated with the total expected cost as objective function and some requirements for the reliability measures (element or systems reliability measures) as constraints, see section 2. As design variables sizing variables...

  9. Prospects of hydrocarbon deposits exploration using the method of induced polarization during geomagnetic-variation profiling

    Directory of Open Access Journals (Sweden)

    К. М. Ермохин

    2017-10-01

    Full Text Available Traditionally it is believed that the effect of induced polarization is an interfering factor for the measurement of electromagnetic fields and their interpretation during conducting works using magnetotelluric sounding and geomag-netic-variation profiling methods. A new method is proposed for isolating the effects of induced polarization during geomagnetic-variation profiling aimed at searching for hydrocarbon deposits on the basis of phase measurements during the conduct of geomagnetic-variation profiling. The phenomenon of induced polarization is proposed to be used as a special exploration mark for deep-lying hydrocarbon deposits. The traditional method of induced polarization uses artificial field sources, the powers of which are principally insufficient to reach depths of 3-5 km, which leads to the need to search for alternative - natural sources in the form of telluric and magnetotelluric fields. The proposed method makes it possible to detect and interpret the effects of induced polarization from deep-seated oil and gas reservoirs directly, without relying on indirect signs.

  10. A method of factor analysis for shape coordinates.

    Science.gov (United States)

    Bookstein, Fred L

    2017-10-01

    Currently the most common reporting style for a geometric morphometric (GMM) analysis of anthropological data begins with the principal components of the shape coordinates to which the original landmark data have been converted. But this focus often frustrates the organismal biologist, mainly because principal component analysis (PCA) is not aimed at scientific interpretability of the loading patterns actually uncovered. The difficulty of making biological sense of a PCA is heightened by aspects of the shape coordinate setting that further diverge from our intuitive expectations of how morphometric measurements ought to combine. More than 50 years ago one of our sister disciplines, psychometrics, managed to build an algorithmic route from principal component analysis to scientific understanding via the toolkit generally known as factor analysis. This article introduces a modification of one standard factor-analysis approach, Henry Kaiser's varimax rotation of 1958, that accommodates two of the major differences between the GMM context and the psychometric context for these approaches: the coexistence of "general" and "special" factors of form as adumbrated by Sewall Wright, and the typical loglinearity of partial warp variance as a function of bending energy. I briefly explain the history of principal components in biometrics and the contrast with factor analysis, introduce the modified varimax algorithm I am recommending, and work three examples that are reanalyses of previously published cranial data sets. A closing discussion emphasizes the desirability of superseding PCA by algorithms aimed at anthropological understanding rather than classification or ordination. © 2017 Wiley Periodicals, Inc.

  11. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  12. Method to incorporate anisotropic semiconductor nanocrystals of all shapes in an ultrathin and uniform silica shell

    NARCIS (Netherlands)

    Hutter, Eline M.; Pietra, Francesca; Moes, Relinde; Mitoraj, Dariusz; Meeldijk, Johannes D.; De Mello Donegá, Celso; Vanmaekelbergh, Daniël

    2014-01-01

    In this work, we present a method for the incorporation of anisotropic colloidal nanocrystals of many different shapes in silica in a highly controlled way. This method yields a uniform silica shell, with thickness tunable from 3 to 17 nm. The silica shell perfectly adapts to the shape of the

  13. Method for Parametric Shaping Architectural Free Forms Roofed with Transformed Shell Sheeting

    Science.gov (United States)

    Abramczyk, Jacek

    2017-10-01

    An innovative method for shaping attractive architectural free forms of buildings is proposed. Consistency of shell roofs and plane-walled oblique elevations of the building free forms is preserved due to utilization of specific geometrical tetrahedrons controlling general forms of entire buildings. The method proposed enables shaping roofs as warped shell forms made up of plane steel sheets folded in one direction and connected to each other along their longitudinal edges to obtain a plane strip. Next, the strip is elastically transformed into a shell shape so that a freedom of the width increments of each shell fold would be ensured. Such effective sheet shape transformations make it possible to limit the negative influence of these initial fold’s shape changes on the strength and stability of the designed roof shell. The method also allows to shape oblique plane elevation walls almost freely both individual buildings and their complex structures.

  14. Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution

    Science.gov (United States)

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Abdou Ahmed, Marwan

    2016-04-01

    The efficient generation of a cylindrically (radially or azimuthally) polarized LG01 mode was investigated using a ring-shaped pumping distribution in a high-power Yb:YAG thin-disk laser setup. This was realized by implementing a 300 mm long customized fused silica fiber capillary in the pump beam path of the pumping optics of a thin-disk laser. Furthermore, a grating waveguide mirror based on the leaky-mode coupling mechanism was used as one of the cavity end mirrors to allow sufficient reduction of the reflectivity of the polarization state to be suppressed in the resonator. In order to achieve efficient laser operation, an optimized mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian doughnut mode is required. This was investigated theoretically by analyzing the intensity distribution generated by different fiber geometries using a commercially raytracing software (Zemax). The output power, polarization state and efficiency of the emitted laser beam were compared to that obtained with a standard flattop pumping distribution. In particular, the thermal behavior of the disk was investigated since the excessive fluorescence caused by the non-saturated excitation in the center of the homogeneously pumped disk leads to a strong heating of the crystal. This considerable heating source is avoided in the case of the ring-shaped pumping and a reduction of the temperature increase on the disk surface of about 21% (at 280 W of pump power) was observed. This should allow higher pump power densities without increasing the risk of damaging the disk or distorting the polarization purity. With a laser efficiency of 41.2% to be as high as in the case of the flattop pumping, a maximum output power of 107 W was measured.

  15. Deterministic and stochastic methods of calculation of polarization characteristics of radiation in natural environment

    Science.gov (United States)

    Strelkov, S. A.; Sushkevich, T. A.; Maksakova, S. V.

    2017-11-01

    We are talking about russian achievements of the world level in the theory of radiation transfer, taking into account its polarization in natural media and the current scientific potential developing in Russia, which adequately provides the methodological basis for theoretically-calculated research of radiation processes and radiation fields in natural media using supercomputers and mass parallelism. A new version of the matrix transfer operator is proposed for solving problems of polarized radiation transfer in heterogeneous media by the method of influence functions, when deterministic and stochastic methods can be combined.

  16. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  17. Resistivity, induced polarization, and self-potential methods in geothermal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Ward, S.H.; Sill, W.R.

    1982-01-01

    An overview of the literature is presented. This is followed by a statement of some elementary electromagnetic theory necessary to establish the MKS system of units and the fundamental physics governing electrical methods of exploration. Next there is presented a reasonably detailed discussion of the electrical properties of earth materials including normal mode of conduction, surface conduction, electrode polarization, membrane polarization, semiconduction, melt conduction, real and complex resistivity, and the origin of self-potentials in geothermal systems. To illustrate how electrical methods are used within the framework of integrated geological, geochemical, and geophysical exploration, the case history of the Monroe-Red Hill hot springs system is presented.

  18. Using a Fractal Analysis and Polarization Method for Phase Identification in Three-Component Seismograms

    Directory of Open Access Journals (Sweden)

    Boi-Yee Liao

    2010-01-01

    Full Text Available This study presents the automatic P-wave and S-wave arrivals picking algorithm which is essentially based on the fractal dimension and polarized method. With an estimate of the spectral exponent £^ in a 1/f process, an interval that indicates the preferred intersection containing both noise and the P-wave is well-detected by corresponding to the minimum absolute spectral exponent £^ value along the trace. Based on the different properties of background noise and deterministic signal, the fractal dimension technique can detect the position of the P-wave. The place where the fractal dimension value changes suddenly within the intersection interval indicates the location of arrival of the P-wave. Testing that adds various levels of noise to the seismic signal shows the method can prove able to tolerate noise to a signal-to-noise (S/N ratio 1.5. Based on the P-wave arrival, the polarized P-wave could be detected by a genetic algorithm (GA with the strength of polarization and phase difference between the vertical and horizontal components as constraints. Using the first arrival phase as the basis phase, this study combines a polarization filter including rectilinearity functions, linear polarization, phase difference and directionality with GA to detect polarized S-wave of seismograms. Finally, the technique was applied to teleseismic data and near-field motion to verify the accuracy and wide applicability of this method. To conclude, this proposed method, an efficient and brand-new method of associating signal processing technique with physical wave motion properties, may be of importance in finding P-wave and S-wave phase arrivals accurately using three-component seismograms.

  19. Iron Pole Shape Optimization of IPM Motors Using an Integrated Method

    Directory of Open Access Journals (Sweden)

    JABBARI, A.

    2010-02-01

    Full Text Available An iron pole shape optimization method to reduce cogging torque in Interior Permanent Magnet (IPM motors is developed by using the reduced basis technique coupled by finite element and design of experiments methods. Objective function is defined as the minimum cogging torque. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the rotor pole shape optimization of a 4-poles/24-slots IPM motor.

  20. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV in certain areas, but large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  1. THE METHODS DEVELOPMENT OF CALCULATION OF TUNNEL LINING RECTANGULAR SHAPE

    Directory of Open Access Journals (Sweden)

    V. P. Kozhushko

    2007-10-01

    Full Text Available The methods of computation of rectangular underground building developed last century and at the beginning of the 21st century with the purpose of exposing basic development directions of the given problem have been considered. The author's opinion concerning computation method development prospect of underground building of rectangular outline has been suggested.

  2. Some Methods to Determine Scaled Mode Shapes in Natural Input Modal Analysis

    DEFF Research Database (Denmark)

    Aenlle, Manuel López; Brincker, Rune; Canteli, Alfonso Fernández

    2005-01-01

    When the modal model is going to be used for structural modification or for structural response simulation, the scaled mode shapes must be known. If natural input modal analysis is performed, only un-scaled mode shapes can be obtained and an extra method is necessary to obtain the scaling factor....... In this paper, two new methods based on mass change are proposed. The first method involves small mass changes in two repeated tests allowing to achieve good accuracy. The second method involves only one mass change and enables the scaling factors of both the modified and unmodified mode shapes to be obtained...

  3. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Science.gov (United States)

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  4. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Directory of Open Access Journals (Sweden)

    Shigeki Nakagome

    Full Text Available Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA and matrilineal mitochondrial DNA (mtDNA. Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA or more than 14 times (mtDNA larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  5. Analysis of method of polarization surveying of water surface oil pollution

    Science.gov (United States)

    Zhukov, B. S.

    1979-01-01

    A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.

  6. Application of macro-polarization curve method to corrosion analysis of heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Dept. of Computational Science and Engineering, Toyo Univ., Kawagoe, Saitama (Japan); Amaya, K. [Dept. of Mechanical and Environmental Informatics, Tokyo Inst. of Tech., Tokyo (Japan); Miyuki, H. [Iron and Steel Research Labs., Sumitomo Steel Co. Ltd., Fuyocho, Amagasaki (Japan)

    2003-07-01

    A boundary element corrosion analysis was performed for a heat exchanger to predict the effect of zinc sacrificial anodes. Since a heat exchanger has thousands of stainless steel tubes held with two naval brass tube-holder plates, and hence the conventional BEM does not work, the equivalent macro-polarization curve method was applied. At first the part of the tube-holder plate surfaces which consist of a great number of stainless steel tube edges and brass tube-holder plate was assumed to be made of a homogeneous virtual material. Then, its equivalent macro-polarization curve was determined by analyzing a tube unit, which consists of a stainless steel tube and a part of naval brass tube-holder plate. By using the equivalent macro-polarization curve thus obtained, the heat exchanger was effectively analyzed with a small number of elements. (orig.)

  7. Polarization-selectable cavity locking method for generation of laser Compton scattered γ-rays.

    Science.gov (United States)

    Kosuge, Atsushi; Mori, Michiaki; Okada, Hajime; Hajima, Ryoichi; Nagashima, Keisuke

    2014-03-24

    Nowadays, generation of energy-tunable, monochromatic γ-rays is needed to establish a nondestructive assay method of nuclear fuel materials. The γ-rays are generated by collision of laser photons stored in a cavity and relativistic electrons. We propose a configuration of an enhancement cavity capable of performing polarization control fabricated by a combination of a four-mirror ring cavity with a small spot inside a cavity and a three-mirror of reflective optics as an image inverter for polarization-selectable γ-rays. The image inverter introduces a phase shift of specific polarization which can be used to generate an error signal to lock an optical cavity at a resonance condition.

  8. A Spatial Shape Constrained Clustering Method for Mammographic Mass Segmentation

    Directory of Open Access Journals (Sweden)

    Jian-Yong Lou

    2015-01-01

    error of 7.18% for well-defined masses (or 8.06% for ill-defined masses was obtained by using DACF on MiniMIAS database, with 5.86% (or 5.55% and 6.14% (or 5.27% improvements as compared to the standard DA and fuzzy c-means methods.

  9. METHOD OF PRODUCING SHAPED BODIES FROM POWDERED METALS

    Science.gov (United States)

    Blainey, A.

    1960-05-31

    A method is given for enclosing a body of uranium in a sheath of compacted beryllium or zirconium powder and comprises enveloping the body with uncompacted powder and pressing at a temperature above the beta - gamma transition point of uranium, thereby causing the uranium to flow and isotropically compress the powder.

  10. Applications of a discrete viscous adjoint method for aerodynamic shape optimisation of 3D configurations

    NARCIS (Netherlands)

    Brezillon, J.; Dwight, R.P.

    2012-01-01

    Within the next few years, numerical shape optimisation based on high-fidelity methods is likely to play a strategic role in future aircraft design. In this context, suitable tools have to be developed for solving aerodynamic shape optimisation problems, and the adjoint approach—which allows fast

  11. Handling uncertainties in background shapes the discrete profiling method

    CERN Document Server

    Dauncey, P D; Wardle, N; Davies, G J

    2015-01-01

    A common problem in high energy physics is the extraction of a signal over a potentially large background. In cases where the functional form of the background is not a priori known, then some extra uncertainty must be assigned to the signal parameters because of this lack of knowledge. A method for assigning an error from this cause is presented. It is based on treating the lack of knowledge of the functional form as a discrete nuisance parameter which is profiled in an equivalent way to continuous nuisance parameters. This effectively means an "envelope" is found which encompasses the lowest log-likelihood values for any given signal parameter. The bias and coverage of this method are shown to be good when applied to a realistic example.

  12. A method to evaluate residual phase error for polar formatted synthetic aperture radar systems

    Science.gov (United States)

    Musgrove, Cameron; Naething, Richard

    2013-05-01

    Synthetic aperture radar systems that use the polar format algorithm are subject to a focused scene size limit inherent to the polar format algorithm. The classic focused scene size limit is determined from the dominant residual range phase error term. Given the many sources of phase error in a synthetic aperture radar, a system designer is interested in how much phase error results from the assumptions made with the polar format algorithm. Autofocus algorithms have limits to the amount and type of phase error that can be corrected. Current methods correct only one or a few terms of the residual phase error. A system designer needs to be able to evaluate the contribution of the residual or uncorrected phase error terms to determine the new focused scene size limit. This paper describes a method to estimate the complete residual phase error, not just one or a few of the dominant residual terms. This method is demonstrated with polar format image formation, but is equally applicable to other image formation algorithms. A benefit for the system designer is that additional correction terms can be added or deleted from the analysis as necessary to evaluate the resulting effect upon image quality.

  13. A new method to reconstruct the ionospheric convection patterns in the polar cap

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    1999-06-01

    Full Text Available A new method to reconstruct the instantaneous convection pattern in the Earth's polar ionosphere is suggested. Plasma convection in the polar cap ionosphere is described as a hydrodynamic incompressible flow. This description is valid in the region where the electric currents are field aligned (and hence, the Lorentz body force vanishes. The problem becomes two-dimensional, and may be described by means of stream function. The flow pattern may be found as a solution of the boundary value problem for stream function. Boundary conditions should be provided by measurements of the electric field or plasma velocity vectors along the satellite orbits. It is shown that the convection pattern may be reconstructed with a reasonable accuracy by means of this method, by using only the minimum number of satellite crossings of the polar cap. The method enables us to obtain a reasonable estimate of the convection pattern without knowledge of the ionospheric conductivity.Key words. Ionosphere (modelling and forecasting; plasma convection; polar ionosphere

  14. A new method to reconstruct the ionospheric convection patterns in the polar cap

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    Full Text Available A new method to reconstruct the instantaneous convection pattern in the Earth's polar ionosphere is suggested. Plasma convection in the polar cap ionosphere is described as a hydrodynamic incompressible flow. This description is valid in the region where the electric currents are field aligned (and hence, the Lorentz body force vanishes. The problem becomes two-dimensional, and may be described by means of stream function. The flow pattern may be found as a solution of the boundary value problem for stream function. Boundary conditions should be provided by measurements of the electric field or plasma velocity vectors along the satellite orbits. It is shown that the convection pattern may be reconstructed with a reasonable accuracy by means of this method, by using only the minimum number of satellite crossings of the polar cap. The method enables us to obtain a reasonable estimate of the convection pattern without knowledge of the ionospheric conductivity.

    Key words. Ionosphere (modelling and forecasting; plasma convection; polar ionosphere

  15. Method for analysis of polar volatile trace components in aqueous samples by gas chromatography.

    Science.gov (United States)

    Pettersson, Johan; Roeraade, Johan

    2005-05-15

    A new method has been developed for direct analysis of volatile polar trace compounds in aqueous samples by gas chromatography. Water samples are injected onto a short packed precolumn containing anhydrous lithium chloride. A capillary column is coupled in series with the prefractionation column for final separation of the analytes. The enrichment principle of the salt precolumn is reverse to the principles employed in conventional methods such as SPE or SPME in which a sorbent or adsorbent is utilized to trap or concentrate the analytes. Such methods are not efficient for highly polar compounds. In the LiCl precolumn concept, the water matrix is strongly retained on the hygroscopic salt, whereas polar as well as nonpolar volatile organic compounds show very low retention and are eluted ahead of the water. After transfer of the analytes to the capillary column, the retained bulk water is removed by backflushing the precolumn at elevated temperature. For direct injections of 120 microL of aqueous samples, the combined time for injection and preseparation is only 3.5 min. With this procedure, direct repetitive automated analyses of highly volatile polar compounds such as methanol or tetrahydrofuran can be performed, and a limit of quantification in the low parts-per-billion region utilizing a flame ionization detector is demonstrated.

  16. Bayesian Methods for Predicting the Shape of Chinese Yam in Terms of Key Diameters

    Directory of Open Access Journals (Sweden)

    Mitsunori Kayano

    2017-01-01

    Full Text Available This paper proposes Bayesian methods for the shape estimation of Chinese yam (Dioscorea opposita using a few key diameters of yam. Shape prediction of yam is applicable to determining optimal cutoff positions of a yam for producing seed yams. Our Bayesian method, which is a combination of Bayesian estimation model and predictive model, enables automatic, rapid, and low-cost processing of yam. After the construction of the proposed models using a sample data set in Japan, the models provide whole shape prediction of yam based on only a few key diameters. The Bayesian method performed well on the shape prediction in terms of minimizing the mean squared error between measured shape and the prediction. In particular, a multiple regression method with key diameters at two fixed positions attained the highest performance for shape prediction. We have developed automatic, rapid, and low-cost yam-processing machines based on the Bayesian estimation model and predictive model. Development of such shape prediction approaches, including our Bayesian method, can be a valuable aid in reducing the cost and time in food processing.

  17. Simple Methods to Approximate CPC Shape to Preserve Collection Efficiency

    Directory of Open Access Journals (Sweden)

    David Jafrancesco

    2012-01-01

    Full Text Available The compound parabolic concentrator (CPC is the most efficient reflective geometry to collect light to an exit port. Anyway, to allow its actual use in solar plants or photovoltaic concentration systems, a tradeoff between system efficiency and cost reduction, the two key issues for sunlight exploitation, must be found. In this work, we analyze various methods to model an approximated CPC aimed to be simpler and more cost-effective than the ideal one, as well as to preserve the system efficiency. The manufacturing easiness arises from the use of truncated conic surfaces only, which can be realized by cheap machining techniques. We compare different configurations on the basis of their collection efficiency, evaluated by means of nonsequential ray-tracing software. Moreover, due to the fact that some configurations are beam dependent and for a closer approximation of a real case, the input beam is simulated as nonsymmetric, with a nonconstant irradiance on the CPC internal surface.

  18. A rapid method for determination of polar compounds in used frying fats and oils

    Directory of Open Access Journals (Sweden)

    Dobarganes, M.C.

    2007-06-01

    Full Text Available The determination of polar compounds by adsorption chromatography is the most accepted method for the analysis of used frying fats due to its high precision and accuracy. However, this method is expensive and time consuming. In this study, a rapid analytical method to determine polar compounds is proposed. Starting from milligrams of sample dissolved in a solution of hexane containing methyl oleate as internal standard, the nonpolar fraction, which comprises the non-altered triglycerides (TG and the internal standard, is obtained by solid phase extraction. Then, the non polar fraction is quantitatively analyzed in 15 min by high-performance size-exclusion chromatography (HPSEC and the polar fraction is determined by difference of weight. Response factors for pure TG and FAME were calculated. Six samples of sunflower oils of different degrees of unsaturation were analyzed in triplicate and the results were compared with those obtained by the gravimetric method based on silica classical column chromatography. Results showed no significant differences between the two methods. In addition, the repeatability of the proposed method was excellent, as the coefficient of variation ranged from 1.5 to 13% depending on the contents of polar compounds.La determinación de compuestos polares mediante cromatografía de adsorción es el método más aceptado en el análisis de aceites y grasas de fritura debido a su elevada exactitud y precisión. Sin embargo, la determinación es costosa, debido al elevado consumo de sílice y disolventes, y son necesarias varias horas para la obtención del resultado. En este estudio se propone una determinación alternativa rápida. Partiendo de miligramos de muestra disueltos en una solución de hexano con oleato de metilo como patrón interno, la fracción no polar, que contiene los triglicéridos no alterados y el patrón interno, es aislada mediante extracción en fase sólida. Posteriormente, la fracción no polar se

  19. Pulse-shape discrimination in radioanalytical methods. Part I. Delayed fission neutron counting

    International Nuclear Information System (INIS)

    Posta, S.; Vacik, J.; Hnatowicz, V.; Cervena, J.

    1999-01-01

    In this study the principle of pulse shape discrimination (PSD) has been employed in delayed fission neutron counting (DNC) method. Effective elimination of unwanted gamma background signals in measured radiation spectra has been proved. (author)

  20. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  1. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    Science.gov (United States)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the

  2. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kai [School of Science, Tianjin University of Technology and Education, Tianjin, 300222 (China); Lee, Soo-Y., E-mail: sooying@ntu.edu.sg [Division of Physics & Applied Physics, and Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  3. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Science.gov (United States)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  4. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    International Nuclear Information System (INIS)

    Niu, Kai; Lee, Soo-Y.

    2015-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms

  5. Using polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function

    Science.gov (United States)

    Weisman, Andrew L.

    Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a

  6. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance

    Science.gov (United States)

    Chen, Bao-Jun; Tang, Zhen-An; Ju, Yan-Jie

    2014-05-01

    When clock frequencies exceed gigahertz, the skin depth in analog and digital circuits greatly decreases. The irregular shape of the cross section of the interconnect plays an increasingly important role in interconnect parasitic extraction. However, existing methods only focus on the rough surface of the interconnect, while ignoring other irregular shapes, such as the trapezoidal cross section. In this work, a new simulation method is proposed for irregular interconnects, which is applicable to arbitrary irregular shapes and to a wide range of frequencies. The method involves generating a mesh information file firstly and then extracting the frequency-dependent resistance based on a numerical solution of scalar wave modeling by using the method of moments. The singularity extraction method is used to calculate the self-inductors. The data from experiments verify the accuracy of our proposed method.

  7. General method for calculating polarization electric fields produced by auroral Cowling mechanism and application examples

    Science.gov (United States)

    Vanhamäki, Heikki; Amm, Olaf; Fujii, Ryo; Yoshikawa, Aki; Ieda, Aki

    2013-04-01

    The Cowling mechanism is characterized by the generation of polarization space charges in the ionosphere in consequence of a partial or total blockage of FAC flowing between the ionosphere and the magnetosphere. Thus a secondary polarization electric field builds up in the ionosphere, which guarantees that the whole (primary + secondary) ionospheric current system is again in balance with the FAC. In the Earth's ionosphere the Cowling mechanism is long known to operate in the equatorial electrojet, and several studies indicate that it is important also in auroral current systems. We present a general method for calculate the secondary polarization electric field, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. Here the Cowling efficiency is defined as the fraction of the divergent Hall current canceled by secondary Pedersen current. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups (like an auroral arc), and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field or its potential, which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, for which the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate the effect of Cowling mechanism on ionospheric current systems, we apply our method to two simple models of auroral electrodynamic situations: 1) a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, 2) a morning sector auroral arc with only a weak conductance

  8. Intensity error correction for 3D shape measurement based on phase-shifting method

    Science.gov (United States)

    Chung, Tien-Tung; Shih, Meng-Hung

    2011-12-01

    3D shape measurement based on structured light system is a field of ongoing research for the past two decades. For 3D shape measurement using commercial projector and digital camera, the nonlinear gamma of the projector and the nonlinear response of the camera cause the captured fringes having both intensity and phase errors, and result in large measurement shape error. This paper presents a simple intensity error correction process for the phase-shifting method. First, a white flat board is projected with sinusoidal fringe patterns, and the intensity data is extracted from the captured image. The intensity data is fitted to an ideal sine curve. The difference between the captured curve and the fitted sine curve are used to establish an intensity look-up table (LUT). The LUT is then used to calibrate the intensities of measured object images for establishing 3D object shapes. Research results show that the measurement quality of the 3D shapes is significantly improved.

  9. The Second-Order Polarization Propagator Approximation (SOPPA) method coupled to the polarizable continuum model

    DEFF Research Database (Denmark)

    Eriksen, Janus Juul; Solanko, Lukasz Michal; Nåbo, Lina J.

    2014-01-01

    We present an implementation of the Polarizable Continuum Model (PCM) in combination with the Second–Order Polarization Propagator Approximation (SOPPA) electronic structure method. In analogy with the most common way of designing ground state calculations based on a Second–Order Møller-Plesset (MP......2) wave function coupled to PCM, we introduce dynamical PCM solvent effects only in the Random Phase Approximation (RPA) part of the SOPPA response equations while the static solvent contribution is kept in both the RPA terms as well as in the higher order correlation matrix components of the SOPPA...... response equations. By dynamic terms, we refer to contributions that describe a change in environmental polarization which, in turn, reflects a change in the core molecular charge distribution upon an electronic excitation. This new combination of methods is termed PCM-SOPPA/RPA. We apply this newly...

  10. Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing.

    Science.gov (United States)

    Samoilova, Svetlana V; Balin, Yurii S; Krekova, Margarita M; Winker, David M

    2005-06-10

    Inversion of polarization lidar sensing data based on the form of the lidar sensing equation with allowance for contributions from multiple-scattering calls for a priori information on the scattering phase matrix. In the present study the parameters of the Stokes vectors for various propagation media, including those with the scattering phase matrices that vary along the measuring range, are investigated. It is demonstrated that, in spaceborne lidar sensing, a simple parameterization of the multiple-scattering contribution is applicable and the polarization signal's characteristics depend mainly on the lidar and depolarization ratios, whereas differences in the angular dependences of the matrix components are no longer determining factors. An algorithm for simultaneous reconstruction of the profiles of the backscattering coefficient and depolarization and lidar ratios in an inhomogeneous medium is suggested. Specific features of the methods are analyzed for the examples of interpretation of lidar signal profiles calculated by the Monte Carlo method and are measured experimentally.

  11. Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Kilic, S.; Radelja, T.

    1981-01-01

    Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)

  12. Formal Solutions for Polarized Radiative Transfer. II. High-order Methods

    Energy Technology Data Exchange (ETDEWEB)

    Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)

    2017-08-20

    When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.

  13. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  14. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  15. Can Electron Propagator Methods Be Used To Improve Polarization Propagator Methods?

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Aagaard

    2008-01-01

    Calculations of Rydberg excitation energies with the second-order polarization propagator approximation (SOPPA) often produce results which are more in error than the random phase approximation (RPA), which formally is the first-order model. This is obviously because of cancellation of errors...... at the RPA level. On the other hand, valence excitation energies behave as expected, and they are systematically improved in SOPPA compared to RPA. Note that a Rydberg series is related to one of the ionization thresholds of the molecule, and it is thus obvious that a good description of the ionization...

  16. 3-D Forward modeling of Induced Polarization Effects of Transient Electromagnetic Method

    Science.gov (United States)

    Wu, Y.; Ji, Y.; Guan, S.; Li, D.; Wang, A.

    2017-12-01

    In transient electromagnetic (TEM) detection, Induced polarization (IP) effects are so important that they cannot be ignored. The authors simulate the three-dimensional (3-D) induced polarization effects in time-domain directly by applying the finite-difference time-domain method (FDTD) based on Cole-Cole model. Due to the frequency dispersion characteristics of the electrical conductivity, the computations of convolution in the generalized Ohm's law of fractional order system makes the forward modeling particularly complicated. Firstly, we propose a method to approximate the fractional order function of Cole-Cole model using a lower order rational transfer function based on error minimum theory in the frequency domain. In this section, two auxiliary variables are introduced to transform nonlinear least square fitting problem of the fractional order system into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Secondly, the time-domain expression of Cole-Cole model is obtained by using Inverse Laplace transform. Then, for the calculation of Ohm's law, we propose an e-index auxiliary equation of conductivity to transform the convolution to non-convolution integral; in this section, the trapezoid rule is applied to compute the integral. We then substitute the recursion equation into Maxwell's equations to derive the iterative equations of electromagnetic field using the FDTD method. Finally, we finish the stimulation of 3-D model and evaluate polarization parameters. The results are compared with those obtained from the digital filtering solution of the analytical equation in the homogeneous half space, as well as with the 3-D model results from the auxiliary ordinary differential equation method (ADE). Good agreements are obtained across the three methods. In terms of the 3-D model, the proposed method has higher efficiency and lower memory requirements as execution times and memory usage were reduced by 20

  17. A measurement method for micro 3D shape based on grids-processing and stereovision technology

    International Nuclear Information System (INIS)

    Li, Chuanwei; Xie, Huimin; Liu, Zhanwei

    2013-01-01

    An integrated measurement method for micro 3D surface shape by a combination of stereovision technology in a scanning electron microscope (SEM) and grids-processing methodology is proposed. The principle of the proposed method is introduced in detail. By capturing two images of the tested specimen with grids on the surface at different tilt angles in an SEM, the 3D surface shape of the specimen can be obtained. Numerical simulation is applied to analyze the feasibility of the proposed method. A validation experiment is performed here. The surface shape of the metal-wire/polymer-membrane structures with thermal deformation is reconstructed. By processing the surface grids of the specimen, the out-of-plane displacement field of the specimen surface is also obtained. Compared with the measurement results obtained by a 3D digital microscope, the experimental error of the proposed method is discussed (paper)

  18. A multilevel, level-set method for optimizing eigenvalues in shape design problems

    International Nuclear Information System (INIS)

    Haber, E.

    2004-01-01

    In this paper, we consider optimal design problems that involve shape optimization. The goal is to determine the shape of a certain structure such that it is either as rigid or as soft as possible. To achieve this goal we combine two new ideas for an efficient solution of the problem. First, we replace the eigenvalue problem with an approximation by using inverse iteration. Second, we use a level set method but rather than propagating the front we use constrained optimization methods combined with multilevel continuation techniques. Combining these two ideas we obtain a robust and rapid method for the solution of the optimal design problem

  19. Electromagnetic Radiation from Arbitrarily Shaped Microstrip Antenna Using the Equivalent Dipole-Moment Method

    Directory of Open Access Journals (Sweden)

    Jiade Yuan

    2012-01-01

    Full Text Available The equivalent dipole-moment method (EDM is extended and applied in the analysis of electromagnetic (EM radiation by arbitrarily shaped microstrip antenna in this paper. The method of moments (MoM is used to solve the volume-surface integral equation (VSIE. A strip model is applied in the treatment of the feeding probe of the microstrip antenna, in which the discretized triangular elements of the excitation source are equivalent as dipole models. The proposed approach is sufficiently versatile in handling arbitrarily shaped microstrip antenna and is easily constructed through a simple procedure. Numerical results are given to demonstrate the accuracy and efficiency of this method.

  20. Analysis on the geometrical shape of T-honeycomb structure by finite element method (FEM)

    Science.gov (United States)

    Zain, Fitri; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    Geometric in design is much related with our life. Each of the geometrical structure interacts with each other. The overall shape of an object contains other shape inside, and there shapes create a relationship between each other in space. Besides that, how geometry relates to the function of the object have to be considerate. In this project, the main purpose was to design the geometrical shape of modular furniture with the shrinking of Polyethylene Terephthalate (PET) jointing system that has good strength when applied load on it. But, the goal of this paper is focusing on the analysis of Static Cases by FEM of the hexagonal structure to obtain the strength when load apply on it. The review from the existing product has many information and very helpful to finish this paper. This project focuses on hexagonal shape that distributed to become a shelf inspired by honeycomb structure. It is very natural look and simple in shape and its modular structure more easily to separate and combine. The method discusses on chapter methodology are the method used to analysis the strength when the load applied to the structure. The software used to analysis the structure is Finite Element Method from CATIA V5R21 software. Bending test is done on the jointing part between the edges of the hexagonal shape by using Universal Tensile Machine (UTM). The data obtained have been calculate by bending test formulae and sketch the graph between flexural strains versus flexural stress. The material selection of the furniture is focused on wood. There are three different types of wood such as balsa, pine and oak, while the properties of jointing also be mentioned in this thesis. Hence, the design structural for honeycomb shape already have in the market but this design has main objective which has a good strength that can withstand maximum load and offers more potentials in the form of furniture.

  1. Interstellar scattering effect on pulsar mean pulse shape and apparent angular size: stochastic ray trajectory method

    International Nuclear Information System (INIS)

    Bocharov, A.A.

    1988-01-01

    The extension of stochastic ray-trajectory method - a specific approach to the analysis of radio wave scattering in the interstellar medium - is presented. This method enables one to obtain different characteristics of scattered radiation, connected with mean pulse shape. It allows one to complete very simple and efficient programs for numerical calculation of these characteristics

  2. Evaluation of shape indexing methods for content-based retrieval of x-ray images

    Science.gov (United States)

    Antani, Sameer; Long, L. Rodney; Thoma, George R.; Lee, Dah-Jye

    2003-01-01

    Efficient content-based image retrieval of biomedical images is a challenging problem of growing research interest. Feature representation algorithms used in indexing medical images on the pathology of interest have to address conflicting goals of reducing feature dimensionality while retaining important and often subtle biomedical features. At the Lister Hill National Center for Biomedical Communications, a R&D division of the National Library of Medicine, we are developing a content-based image retrieval system for digitized images of a collection of 17,000 cervical and lumbar x-rays taken as a part of the second National Health and Nutrition Examination Survey (NHANES II). Shape is the only feature that effectively describes various pathologies identified by medical experts as being consistently and reliably found in the image collection. In order to determine if the state of the art in shape representation methods is suitable for this application, we have evaluated representative algorithms selected from the literature. The algorithms were tested on a subset of 250 vertebral shapes. In this paper we present the requirements of an ideal algorithm, define the evaluation criteria, and present the results and our analysis of the evaluation. We observe that while the shape methods perform well on visual inspection of the overall shape boundaries, they fall short in meeting the needs of determining similarity between the vertebral shapes based on the pathology.

  3. Method and apparatus for shape and end position determination using an optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2010-01-01

    A method of determining the shape of an unbound optical fiber includes collecting strain data along a length of the fiber, calculating curvature and bending direction data of the fiber using the strain data, curve-fitting the curvature and bending direction data to derive curvature and bending direction functions, calculating a torsion function using the bending direction function, and determining the 3D shape from the curvature, bending direction, and torsion functions. An apparatus for determining the 3D shape of the fiber includes a fiber optic cable unbound with respect to a protective sleeve, strain sensors positioned along the cable, and a controller in communication with the sensors. The controller has an algorithm for determining a 3D shape and end position of the fiber by calculating a set of curvature and bending direction data, deriving curvature, bending, and torsion functions, and solving Frenet-Serret equations using these functions.

  4. Level set method for optimal shape design of MRAM core. Micromagnetic approach

    International Nuclear Information System (INIS)

    Melicher, Valdemar; Cimrak, Ivan; Keer, Roger van

    2008-01-01

    We aim at optimizing the shape of the magnetic core in MRAM memories. The evolution of the magnetization during the writing process is described by the Landau-Lifshitz equation (LLE). The actual shape of the core in one cell is characterized by the coefficient γ. Cost functional f=f(γ) expresses the quality of the writing process having in mind the competition between the full-select and the half-select element. We derive an explicit form of the derivative F=∂f/∂γ which allows for the use of gradient-type methods for the actual computation of the optimized shape (e.g., steepest descend method). The level set method (LSM) is employed for the representation of the piecewise constant coefficient γ

  5. Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions

    Science.gov (United States)

    Liu, C.; Charpentier, R.R.; Su, J.

    2011-01-01

    Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.

  6. Mitigation of Power frequency Magnetic Fields. Using Scale Invariant and Shape Optimization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, Ener; Yueqiang Liu; Daalder, Jaap; Cruz, Pedro; Antunez de Souza, Paulo Roberto Jr; Atalaya, Juan Carlos; Paula Marciano, Fabianna de; Eskinasy, Alexandre

    2006-10-15

    The present report describes the development and application of two novel methods for implementing mitigation techniques of magnetic fields at power frequencies. The first method makes use of scaling rules for electromagnetic quantities, while the second one applies a 2D shape optimization algorithm based on gradient methods. Before this project, the first method had already been successfully applied (by some of the authors of this report) to electromagnetic designs involving pure conductive Material (e.g. copper, aluminium) which implied a linear formulation. Here we went beyond this approach and tried to develop a formulation involving ferromagnetic (i.e. non-linear) Materials. Surprisingly, we obtained good equivalent replacement for test-transformers by varying the input current. In spite of the validity of this equivalence constrained to regions not too close to the source, the results can still be considered useful, as most field mitigation techniques are precisely developed for reducing the magnetic field in regions relatively far from the sources. The shape optimization method was applied in this project to calculate the optimal geometry of a pure conductive plate to mitigate the magnetic field originated from underground cables. The objective function was a weighted combination of magnetic energy at the region of interest and dissipated heat at the shielding Material. To our surprise, shapes of complex structure, difficult to interpret (and probably even harder to anticipate) were the results of the applied process. However, the practical implementation (using some approximation of these shapes) gave excellent experimental mitigation factors.

  7. Stokes vector based interpolation method to improve the efficiency of bio-inspired polarization-difference imaging in turbid media

    Science.gov (United States)

    Guan, Jinge; Ren, Wei; Cheng, Yaoyu

    2018-04-01

    We demonstrate an efficient polarization-difference imaging system in turbid conditions by using the Stokes vector of light. The interaction of scattered light with the polarizer is analyzed by the Stokes-Mueller formalism. An interpolation method is proposed to replace the mechanical rotation of the polarization axis of the analyzer theoretically, and its performance is verified by the experiment at different turbidity levels. We show that compared with direct imaging, the Stokes vector based imaging method can effectively reduce the effect of light scattering and enhance the image contrast.

  8. Full-Stokes polarization imaging method based on the self-organized grating array in fused silica.

    Science.gov (United States)

    Xu, Canhua; Ke, Chaozhen; Ma, Jing; Huang, Yantang; Zeng, Zhiping

    2018-02-05

    A full-Stokes polarization imaging method based on the self-organized grating array was presented. By focusing the ultra-fast laser with moderate fluence into fused silica, the self-organized grating array was fabricated, featuring the optical properties similar to wave plates. A set of four independent polarization measurements were simultaneously acquired with designed grating array mounted in the focal plane of an imaging detector. Experimental results including the device fabrication, calibration and optimization were presented. Finally, a principle verification experiment was implemented for our polarization imaging method.

  9. A Novel Method for Performance Analysis of OFDM Polarization Diversity System in Ricean Fading Environment

    DEFF Research Database (Denmark)

    Ilic-Delibasic, M.; Pejanovic-Djurisic, M.; Prasad, R.

    2012-01-01

    OFDM (Orthogonal Frequency Division Multiplexing) is proven to be a very effective modulation and multiple access technique that enables high data rate transmission. Due to its good performance it is already implemented in several standardized technologies, and it is very promising technique...... conditions. In order to calculate BER (Bit Error Rate) for the considered OFDM polarization diversity system with a certain level of the received signals correlation, we propose a novel analytical method. The obtained results are compared with the ones attained by simulation....

  10. Evaluation of polarization of embedded piezoelectrics by the thermal wave method.

    Science.gov (United States)

    Suchaneck, Gunnar; Eydam, Agnes; Hu, Wenguo; Kranz, Burkhart; Drossel, Welf-Guntram; Gerlach, Gerald

    2012-09-01

    This work demonstrates the benefit of the thermal wave method for the evaluation of the polarization state of embedded piezoelectrics. Two types of samples were investigated: A low-temperature co-fired ceramics (LTCC)/lead zirconate titanate (PZT) sensor-actuator and a macro-fiber composite (MFC) actuator. At modulation frequencies below 10 Hz, the pyroelectric response was governed by thermal losses to the embedding layers. Here, the sample behavior was described by a harmonically heated piezoelectric plate exhibiting heat losses to the environment characterized by a single thermal relaxation time.

  11. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara [Condensed Matter Physics Division, Materials Science Group, Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Condensed Matter Physics Division, Materials Science Group (India)

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  12. A direct and efficient synthesis method for dumbell-shaped linear DNA using PCR in vitro.

    Science.gov (United States)

    Taki, Masumi; Kato, Yoshio; Miyagishi, Makoto; Takagi, Yasuomi; Sano, Masayuki; Taira, Kazunari

    2003-01-01

    A linear, covalently-closed, dumbbell-shaped DNA vector including a transcription unit is known to have both biological stability and safety and is expected to be useful for gene therapy. We established an easy, quick, and large preparative synthetic method of modified- and unmodified-dumbbell DNA using an intramolecular cyclization at the DNA termini.

  13. Beam shaping and its solution with the use of an optimization method.

    Science.gov (United States)

    Cong, W X; Chen, N X; Gu, B Y

    1998-07-10

    We present an exact mathematical description of beam shaping and indicate that a rigorous solution does not exist: only an optimal solution can be found. An optimization method is proposed to search for the solution. The simulation results for an example are given in detail.

  14. METHODS AND MEANING OF RENAL VOLUME AND SHAPE IN CHILDREN EMPHASIS ON THREE-DIMENSIONAL ULTRASOUND

    Directory of Open Access Journals (Sweden)

    Andreja Dvoršak Erker

    2003-12-01

    Full Text Available Background. The changes in size and shape of kidneys are an important sign of kidney disease. There is constant development in methods and modalities used for determination of renal size and shape. Ultrasonography is a safe not invasive imaging modality. In recent years ultrasonography has tried to replace scintigraphy as a gold standard for determination of kidney function and size at the moment.Conclusions. With the development of three-dimensional ultrasound, ultrasonography get a new advantage in imaging of kidneys.

  15. A simple method to treat an ingrowing toenail with a shape-memory alloy device.

    Science.gov (United States)

    Ishibashi, Masaya; Tabata, Nobuko; Suetake, Takaki; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Yamauchi, Kiyoshi; Ishida, Kiyohito

    2008-01-01

    An ingrowing toenail has no definitive treatment. Previously, effective methods were complicated but easy ones had less effect. We show both an easy and an effective way with Cu-Al-Mn-based shape-memory alloys (SMAs). They have a characteristic shape which patients themselves can detach easily without any pain. But they also have enough corrective force. Cu-based SMAs cost much less than Ni-Ti-based alloys. Despite not being appropriate for all cases of ingrowing toenails, it is an easy, effective and less costly alternative.

  16. Support vector machine-based facial-expression recognition method combining shape and appearance

    Science.gov (United States)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  17. Deriving Shape-Based Features for C. elegans Locomotion Using Dimensionality Reduction Methods.

    Science.gov (United States)

    Gyenes, Bertalan; Brown, André E X

    2016-01-01

    High-throughput analysis of animal behavior is increasingly common following the advances of recording technology, leading to large high-dimensional data sets. This dimensionality can sometimes be reduced while still retaining relevant information. In the case of the nematode worm Caenorhabditis elegans, more than 90% of the shape variance can be captured using just four principal components. However, it remains unclear if other methods can achieve a more compact representation or contribute further biological insight to worm locomotion. Here we take a data-driven approach to worm shape analysis using independent component analysis (ICA), non-negative matrix factorization (NMF), a cosine series, and jPCA (a dynamic variant of principal component analysis [PCA]) and confirm that the dimensionality of worm shape space is close to four. Projecting worm shapes onto the bases derived using each method gives interpretable features ranging from head movements to tail oscillation. We use these as a comparison method to find differences between the wild type N2 worms and various mutants. For example, we find that the neuropeptide mutant nlp-1(ok1469) has an exaggerated head movement suggesting a mode of action for the previously described increased turning rate. The different bases provide complementary views of worm behavior and we expect that closer examination of the time series of projected amplitudes will lead to new results in the future.

  18. Deriving shape-based features for C. elegans locomotion using dimensionality reduction methods

    Directory of Open Access Journals (Sweden)

    Bertalan Gyenes

    2016-08-01

    Full Text Available High-throughput analysis of animal behavior is increasingly common following advances of recording technology, leading to large high-dimensional data sets. This dimensionality can sometimes be reduced while still retaining relevant information. In the case of the nematode worm Caenorhabditis elegans, more than 90% of the shape variance can be captured using just four principal components. However, it remains unclear if other methods can achieve a more compact representation or contribute further biological insight to worm locomotion. Here we take a data-driven approach to worm shape analysis using independent component analysis (ICA, non-negative matrix factorization (NMF, a cosine series, and jPCA (a dynamic variant of principal component analysis and confirm that the dimensionality of worm shape space is close to four. Projecting worm shapes onto the bases derived using each method gives interpretable features ranging from head movements to tail oscillation. We use these as a comparison method to find differences between the wild type N2 worms and various mutants. For example, we find that the neuropeptide mutant nlp-1(ok1469 has an exaggerated head movement suggesting a mode of action for the previously described increased turning rate. The different bases provide complementary views of worm behavior and we expect that closer examination of the time series of projected amplitudes will lead to new results in the future.

  19. An improved current potential method for fast computation of stellarator coil shapes

    Science.gov (United States)

    Landreman, Matt

    2017-04-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.

  20. Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-01-01

    Full Text Available Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.

  1. Monte Carlo method with heuristic adjustment for irregularly shaped food product volume measurement.

    Science.gov (United States)

    Siswantoro, Joko; Prabuwono, Anton Satria; Abdullah, Azizi; Idrus, Bahari

    2014-01-01

    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.

  2. Enhanced method to reconstruct mode shapes of continuous scanning measurements using the Hilbert Huang transform and the modal analysis method.

    Science.gov (United States)

    Lee, Jongsuh; Hussain, Syed Hassaan; Wang, Semyung; Park, Kyihwan

    2014-09-01

    Generally, it is time consuming to experimentally identify the operating deflection shape or mode shape of a structure. To overcome this problem, the Hilbert Huang transform (HHT) technique has been recently proposed. This technique is used to extract the mode shape from measurements that continuously measure the vibration of a region of interest within a structure using a non-contact laser sensor. In previous research regarding the HHT, two technical processes were needed to obtain the mode shape for each mode. The purpose of this study is to improve and complement our previous research, and for this purpose, a modal analysis approach is adapted without using the two technical processes to obtain an accurate un-damped impulse response of each mode for continuous scanning measurements. In addition, frequency response functions for each type of beam are derived, making it possible to make continuously scanned measurements along a straight profile. In this paper, the technical limitations and drawbacks of the damping compensation technique used in previous research are identified. In addition, the separation of resonant frequency (the Doppler effect) that occurs in continuous scanning measurements and the separation of damping phenomenon are also observed. The proposed method is quantitatively verified by comparing it with the results obtained from a conventional approach to estimate the mode shape with an impulse response.

  3. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem

    2011-10-01

    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  4. A shape-based quality evaluation and reconstruction method for electrical impedance tomography

    International Nuclear Information System (INIS)

    Antink, Christoph Hoog; Pikkemaat, Robert; Leonhardt, Steffen; Malmivuo, Jaakko

    2015-01-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community.In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed.Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images. (paper)

  5. A novel method for analysing key corticosteroids in polar bear (Ursus maritimus) hair using liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Weisser, Johan; Hansen, Martin; Björklund, Erland

    2016-01-01

    This paper presents the development and evaluation of a methodology for extraction, clean-up and analysis of three key corticosteroids (aldosterone, cortisol and corticosterone) in polar bear hair. Such a methodology can be used to monitor stress biomarkers in polar bears and may provide....... This procedure allows for the simultaneous determination of multiple steroids, which is in contrast to previous polar bear studies based on ELISA techniques. Absolute method recoveries were 81%, 75% and 60% for cortisol, corticosterone and aldosterone, respectively. We applied the developed method on a hair...... sample pooled from four East Greenland polar bears. Herein cortisol and corticosterone were successfully determined in levels of 0.32±0.02ng/g hair and 0.13±0.02ng/g hair, respectively. Aldosterone was below limit of detection (LOD

  6. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  7. 3D-surface reconstruction method for diffuse optical tomography phantoms and tissues using structured and polarized light

    Science.gov (United States)

    Baum, K.; Hartmann, R.; Bischoff, T.; Himmelreich, F.; Heverhagen, J. T.

    2011-07-01

    In recent years optical methods became increasingly popular for pre-clinical research and small animal imaging. One main field in biomedical optics research is the diffuse optical tomography (DOT). Many new systems were invented for small animal imaging and breast cancer detection. In combination with the progress in the development of optical markers, optical detectors and near infrared light sources, these new systems have become a formidable source of information. Most of the systems detect the transmitted light which passes through an object and one observes the intensity variations on the detector side. The biggest challenge for all diffuse optical tomography systems is the enormous scattering of light in tissues and tissue-like phantoms resulting in loss of image information. Many systems work with contact gels and optical fibers that have direct contact with the object to neglect the light path between surface and detector. Highly developed mathematic models and reconstruction algorithms based on FEM and Monte Carlo simulations describe the light transport inside tissues and determine differences in absorption and scattering coefficients inside. The proposed method allows a more exact description of the orientation of surface elements from semi-transparent objects towards the detector. Using Polarization Difference Imaging (PDI) in combination with structured light 3D-scanning, it is possible to separate information from the surface from that of the subsurface. Thus, the actual surface shape can be determined. Furthermore, overlaying byproducts caused by inter-reflections and multiple scattering can be filtered from the basic image information with this method. To enhance the image quality, the intensity dispersion between surface and camera is calculated and the creation of 3D-FEM-meshes simplified.

  8. Method of local pointed function reduction of original shape in Fourier transformation

    International Nuclear Information System (INIS)

    Dosch, H.; Slavyanov, S.Yu.

    2002-01-01

    The method for analytical reduction of the original shape in the one-dimensional Fourier transformation by the fourier image modulus is proposed. The basic concept of the method consists in the presentation of the model shape in the form of the local peak functions sum. The eigenfunctions, generated by the linear differential equations with the polynomial coefficients, are selected as the latter ones. This provides for the possibility of managing the Fourier transformation without numerical integration. This reduces the reverse task to the nonlinear regression with a small number of the evaluated parameters and to the numerical or asymptotic study on the model peak functions - the eigenfunctions of the differential tasks and their fourier images [ru

  9. Geometric shapes inversion method of space targets by ISAR image segmentation

    Science.gov (United States)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  10. Optimization of integration limit in the charge comparison method based on signal shape function

    International Nuclear Information System (INIS)

    Wang, Zhonghai; Zeng, Jun; Zhu, Tonghua; Wang, Yudong; Yang, Chaowen; Zhou, Rong

    2014-01-01

    A novel method is proposed to analyze neutron and gamma-ray signal shapes in liquid scintillation detectors. Specifically, the signal shape functions for a BC501 detector were characterized and a statistical model was used to analyze the discrimination of neutrons and gamma rays. The model varied the starting points of tail integration in the charge comparison method (CCM), and an optimized starting point was determined. Experimental measurements were performed to verify the model, and the results indicated good agreement. For a BC501 scintillator with 8.07 ns and 74.63 ns decay time constants we found optimal time to start the tail integration at 24 ns past the decay maximum

  11. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections.

    Science.gov (United States)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J; Weiss, Elisabeth; Lu, Jun; Brackbill, Emily; Hugo, Geoffrey D

    2011-04-01

    Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  12. An Image Matching Method Based on Fourier and LOG-Polar Transform

    Directory of Open Access Journals (Sweden)

    Zhijia Zhang

    2014-04-01

    Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.

  13. Transfer of polarized light in planetary atmospheres basic concepts and practical methods

    CERN Document Server

    Hovenier, Joop W; Domke, Helmut

    2004-01-01

    The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...

  14. Evaluation of a method based on image analysis to obtain shape parameters in crushed sand grains

    Directory of Open Access Journals (Sweden)

    A. G. Goldoni

    Full Text Available ABSTRACTThe objective of this paper is to evaluate a method based on image analysis to obtain shape parameters in crushed sand grains. There is no consensus about standards and rules for testing aggregates, the lack of methodology to prepare and conduct tests may produce incorrect results, which do not satisfactorily represent the aggregate characteristics. One way to perform these analyzes is the use of images obtained with magnifying glasses or similar equipment. To contribute to this, three experiments were prepared with samples of crushed sand from the city of Passo Fundo. The fixed and evaluated parameters were: samples preparation, zoom used for image acquisition and number of grains representative of the shape parameters. The results were statistically analyzed and significant differences were obtained to the shape factor regarding the fixed parameters, except for the number of grains needed to characterize it, which differs from the currently literature used by academic studies. According to this work it is possible to realize that it is necessary to standardize the tests for shape analysis to eliminate errors generated by the interpretation of incorrect results, which may have been generated by changes in the methodology for conducting the tests.

  15. Comparison On Matching Methods Used In Pose Tracking For 3D Shape Representation

    Directory of Open Access Journals (Sweden)

    Khin Kyu Kyu Win

    2017-01-01

    Full Text Available In this work three different algorithms such as Brute Force Delaunay Triangulation and k-d Tree are analyzed on matching comparison for 3D shape representation. It is intended for developing the pose tracking of moving objects in video surveillance. To determine 3D pose of moving objects some tracking system may require full 3D pose estimation of arbitrarily shaped objects in real time. In order to perform 3D pose estimation in real time each step in the tracking algorithm must be computationally efficient. This paper presents method comparison for the computationally efficient registration of 3D shapes including free-form surfaces. Matching of free-form surfaces are carried out by using geometric point matching algorithm ICP. Several aspects of the ICP algorithm are investigated and analyzed by using specified surface setup. The surface setup processed in this system is represented by simple geometric primitive dealing with objects of free-from shape. Considered representations are a cloud of points.

  16. [A novel method based on Y-shaped cotton-polyester thread microfluidic channel].

    Science.gov (United States)

    Wang, Lu; Shi, Yan-ru; Yan, Hong-tao

    2014-08-01

    A novel method based on Y-shaped microfluidic channel was firstly proposed in this study. The microfluidic channel was made of two cotton-polyester threads based on the capillary effect of cotton-polyester threads for the determination solutions. A special device was developed to fix the Y-shaped microfluidic channel by ourselves, through which the length and the tilt angle of the channel can be adjusted as requested. The spectrophotometry was compared with Scan-Adobe Photoshop software processing method. The former had a lower detection limit while the latter showed advantages in both convenience and fast operations and lower amount of samples. The proposed method was applied to the determination of nitrite. The linear ranges and detection limits are 1.0-70 micromol x L(-1), 0.66 micromol x L(-1) (spectrophotometry) and 50-450 micromol x L(-1), 45.10 micromol x L(-1) (Scan-Adobe Photoshop software processing method) respectively. This method has been successfully used to the determination of nitrite in soil samples and moat water with recoveries between 96.7% and 104%. It was proved that the proposed method was a low-cost, rapid and convenient analytical method with extensive application prospect.

  17. Electric and magnetic polarization saturations for a thermally loaded penny-shaped crack in a magneto-electro-thermo-elastic medium

    Science.gov (United States)

    Li, P.-D.; Li, X.-Y.; Kang, G.-Z.; Müller, R.

    2017-09-01

    This paper is devoted to investigating the thermal-induced electric and magnetic polarization saturations (PS) at the tip of a penny-shaped crack embedded in an infinite space of magneto-electro-thermo-elastic medium. In view of the symmetry with respect to the cracked plane, this crack problem is formulated by a mixed boundary value problem. By virtue of the solution to the Abel type integral equation, the governing equations corresponding to the present problem are analytically solved and the generalized crack surface displacement and field intensity factors are obtained in closed-forms. Applying the hypothesis of the electric and magnetic PS model to the analytical results, the sizes of the electric and magnetic yielding zones are determined. Numerical calculations are carried out to reveal the influences of the thermal load and the electric and magnetic yielding strengths on the results, and to show the distributions of the electric and magnetic potentials on the crack surfaces. It is found that the sizes of electric and magnetic yielding zones are mainly dependent on the electric and magnetic yielding strengths, respectively. Since the multi-ferroic media are widely used in various complex thermal environments, the present work could serve as a reference for the designs of various magneto-electric composite structures.

  18. Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method

    Science.gov (United States)

    Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.

    2017-08-01

    Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.

  19. Compensating for Electrode Polarization in Dielectric Spectroscopy Studies of Colloidal Suspensions: Theoretical Assessment of Existing Methods

    Science.gov (United States)

    Chassagne, Claire; Dubois, Emmanuelle; Jiménez, María L.; van der Ploeg, J. P. M; van Turnhout, Jan

    2016-01-01

    Dielectric spectroscopy can be used to determine the dipole moment of colloidal particles from which important interfacial electrokinetic properties, for instance their zeta potential, can be deduced. Unfortunately, dielectric spectroscopy measurements are hampered by electrode polarization (EP). In this article, we review several procedures to compensate for this effect. First EP in electrolyte solutions is described: the complex conductivity is derived as function of frequency, for two cell geometries (planar and cylindrical) with blocking electrodes. The corresponding equivalent circuit for the electrolyte solution is given for each geometry. This equivalent circuit model is extended to suspensions. The complex conductivity of a suspension, in the presence of EP, is then calculated from the impedance. Different methods for compensating for EP are critically assessed, with the help of the theoretical findings. Their limit of validity is given in terms of characteristic frequencies. We can identify with one of these frequencies the frequency range within which data uncorrected for EP may be used to assess the dipole moment of colloidal particles. In order to extract this dipole moment from the measured data, two methods are reviewed: one is based on the use of existing models for the complex conductivity of suspensions, the other is the logarithmic derivative method. An extension to multiple relaxations of the logarithmic derivative method is proposed. PMID:27486575

  20. Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure

    Directory of Open Access Journals (Sweden)

    Hesheng Zhang

    2016-01-01

    Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.

  1. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-08-09

    We address the task of adjusting a surface to a vector field of desired surface normals in space. The described method is entirely geometric in the sense, that it does not depend on a particular parametrization of the surface in question. It amounts to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly more robust and efficient, have not been attempted as they require second-order Hadamard differentials. These are difficult to compute for the problem of interest and in general fail to be positive-definite symmetric. We propose a novel approximation of the shape Hessian, which is not only rigorously justified but also leads to excellent numerical performance of the actual optimization. Moreover, a remarkable connection to Sobolev flows is exposed. Three other established algorithms from image and geometry processing turn out to be special cases of ours. Our numerical implementation founds on a fast finite-elements formulation on the minimizing sequence of triangulated shapes. A series of examples from a wide range of different applications is discussed to underline flexibility and efficiency of the approach. © 2011 Springer Science+Business Media, LLC.

  2. Apparatus and Method for Low-Temperature Training of Shape Memory Alloys

    Science.gov (United States)

    Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.

    2015-01-01

    An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.

  3. Apparatus and method for low-temperature training of shape memory alloys

    Science.gov (United States)

    Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.

    2015-12-01

    An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.

  4. A new method to determinate phase transformation in shape memory alloys: infrared thermography

    International Nuclear Information System (INIS)

    Bubulinca, C.; Balandraud, X.; Grediac, M.; Plaiasu, G. A.; Abrudeanu, M.; Stanciu, S.

    2013-01-01

    In this article it is presented a shape memory alloy case, based on copper, namely Cu-Zn-Al, which is subjected to periodic mechanical traction. Traction is performed in conditions of normal temperature and pressure. The purpose of this article it is to study stress induced phase transformation. All tests are performed in same conditions. Transformation on which is based this effect occurs in two ways: by applying a stress or temperature variation. In this article it is studied stress induced phase transformation. The method to analyze the microstructure of an shape memory alloy (SMA) is relatively new and it is based on tracking the evolution of temperature. After thermal analysis we can decide in which state is one alloy without any other supplier measures (differential scanning calorimetric or electrical resistivity). If our specimen will producing thermal energy when specimen is tensile he is austenitic. If absorbing heat during the first deformation is in martensitic state. (authors)

  5. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  6. Retrieve polarization aberration from image degradation: a new measurement method in DUV lithography

    Science.gov (United States)

    Xiang, Zhongbo; Li, Yanqiu

    2017-10-01

    Detailed knowledge of polarization aberration (PA) of projection lens in higher-NA DUV lithographic imaging is necessary due to its impact to imaging degradations, and precise measurement of PA is conductive to computational lithography techniques such as RET and OPC. Current in situ measurement method of PA thorough the detection of degradations of aerial images need to do linear approximation and apply the assumption of 3-beam/2-beam interference condition. The former approximation neglects the coupling effect of the PA coefficients, which would significantly influence the accuracy of PA retrieving. The latter assumption restricts the feasible pitch of test masks in higher-NA system, conflicts with the Kirhhoff diffraction model of test mask used in retrieving model, and introduces 3D mask effect as a source of retrieving error. In this paper, a new in situ measurement method of PA is proposed. It establishes the analytical quadratic relation between the PA coefficients and the degradations of aerial images of one-dimensional dense lines in coherent illumination through vector aerial imaging, which does not rely on the assumption of 3-beam/2- beam interference and linear approximation. In this case, the retrieval of PA from image degradation can be convert from the nonlinear system of m-quadratic equations to a multi-objective quadratic optimization problem, and finally be solved by nonlinear least square method. Some preliminary simulation results are given to demonstrate the correctness and accuracy of the new PA retrieving model.

  7. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering.

    Science.gov (United States)

    Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui

    2017-01-01

    The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research.

  8. A New Method for Simulating Power Flow Density Focused by a Silicon Lens Antenna Irradiated with Linearly Polarized THz Wave

    Directory of Open Access Journals (Sweden)

    Catur Apriono

    2015-08-01

    Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.

  9. OPTIMIZATION OF LAMBLIASIS MICROSCOPIC DIAGNOSTICS BY THE METHOD OF POLARIZED FLUORESCENCE FOR PATIENTS WITH ROSACEA AND URTICARIAL

    Directory of Open Access Journals (Sweden)

    Maryana Kovalchuk

    2013-07-01

    Full Text Available Introduction: There is little information about diagnosis of concurrent lambliasis in patients with rosacea and urticaria. We used method of polarized fluorescence to diagnose liambliasis, taking into account belonging of macromolecular structures of unicellular parasites Giardia lamblia to the optically active substances with the properties of liquid crystals. Material and Methods: Lambliasis was diagnosed on the basis of feces parasitological research and duodenal contents by methods of light and optic microscopy and polarized fluorescence in 105 patients with rosacea and urticaria. Research results were processed by the method of variation statistics in the Statgraf program by using Student’s criterion. Results: Search results of lamblia in patients with rosacea and urticaria depended on the conditions of its holding, patients’ preparation and from the previously received basic therapy if it consisted absorbents. Due to the fact that the fluorescence polarization as a physical method does not require the use of any generally toxic, dye- fluorochromes, qualitative cyto fluorescent analysis of lamblia in greeting microdrugs enables to distinguish vegetative forms of cysts. Conclussions: Polarized fluorescence method allows optimize the microscopic diagnosis of lambliasis, increasing its sensitivity. Previous preparation for the laboratory examination of Giardia lamblia is needed for the best exposure of vermin for patients with rosacea and urticaria.

  10. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  11. An Objective Prototype-Based Method for Dual-Polarization Radar Clutter Identification

    Directory of Open Access Journals (Sweden)

    Guang Wen

    2017-04-01

    Full Text Available A prototype-based method is developed to discriminate different types of clutter (ground clutter, sea clutter, and insects from weather echoes using polarimetric measurements and their textures. This method employs a clustering algorithm to generate data groups from the training dataset, each of which is modeled as a weighted Gaussian distribution called a “prototype.” Two classification algorithms are proposed based on the prototypes, namely maximum prototype likelihood classifier (MPLC and Bayesian classifier (BC. In the MPLC, the probability of a data point with respect to each prototype is estimated to retrieve the final class label under the maximum likelihood criterion. The BC models the probability density function as a Gaussian mixture composed by the prototypes. The class label is obtained under the maximum a posterior criterion. The two algorithms are applied to S-band dual-polarization CP-2 weather radar data in Southeast Queensland, Australia. The classification results for the test dataset are compared with the NCAR fuzzy-logic particle identification algorithm. Generally good agreement is found for weather echo and ground clutter; however, the confusion matrix indicates that the techniques tend to differ from each other on the recognition of insects.

  12. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015.

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y J

    2016-09-01

    Evaluation of ligand three-dimensional (3D) shape similarity is one of the commonly used approaches to identify ligands similar to one or more known active compounds from a library of small molecules. Apart from using ligand shape similarity as a virtual screening tool, its role in pose prediction and pose scoring has also been reported. We have recently developed a method that utilizes ligand 3D shape similarity with known crystallographic ligands to predict binding poses of query ligands. Here, we report the prospective evaluation of our pose prediction method through the participation in drug design data resource (D3R) Grand Challenge 2015. Our pose prediction method was used to predict binding poses of heat shock protein 90 (HSP90) and mitogen activated protein kinase kinase kinase kinase (MAP4K4) ligands and it was able to predict the pose within 2 Å root mean square deviation (RMSD) either as the top pose or among the best of five poses in a majority of cases. Specifically for HSP90 protein, a median RMSD of 0.73 and 0.68 Å was obtained for the top and the best of five predictions respectively. For MAP4K4 target, although the median RMSD for our top prediction was only 2.87 Å but the median RMSD of 1.67 Å for the best of five predictions was well within the limit for successful prediction. Furthermore, the performance of our pose prediction method for HSP90 and MAP4K4 ligands was always among the top five groups. Particularly, for MAP4K4 protein our pose prediction method was ranked number one both in terms of mean and median RMSD when the best of five predictions were considered. Overall, our D3R Grand Challenge 2015 results demonstrated that ligand 3D shape similarity with the crystal ligand is sufficient to predict binding poses of new ligands with acceptable accuracy.

  13. Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices.

    Science.gov (United States)

    Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias

    2018-03-01

    Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.

  14. A Preconditioning Method for Shape Optimization Governed by the Euler Equations

    Science.gov (United States)

    Arian, Eyal; Vatsa, Veer N.

    1998-01-01

    We consider a classical aerodynamic shape optimization problem subject to the compressible Euler flow equations. The gradient of the cost functional with respect to the shape variables is derived with the adjoint method at the continuous level. The Hessian (second order derivative of the cost functional with respect to the shape variables) is approximated also at the continuous level, as first introduced by Arian and Ta'asan (1996). The approximation of the Hessian is used to approximate the Newton step which is essential to accelerate the numerical solution of the optimization problem. The design space is discretized in the maximum dimension, i.e., the location of each point on the intersection of the computational mesh with the airfoil is taken to be an independent design variable. We give numerical examples for 86 design variables in two different flow speeds and achieve an order of magnitude reduction in the cost functional at a computational effort of a full solution of the analysis partial differential equation (PDE).

  15. Shape and Stress Sensing of Multilayered Composite and Sandwich Structures Using an Inverse Finite Element Method

    Science.gov (United States)

    Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.

  16. Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified Quick Polar Pesticides Extraction method.

    Science.gov (United States)

    Lara, Francisco J; Chan, Danny; Dickinson, Michael; Lloyd, Antony S; Adams, Stuart J

    2017-05-05

    Direct analysis in real time (DART) was evaluated for the determination of a number of highly polar pesticides using the Quick Polar Pesticides Extraction (QuPPe) method. DART was hyphenated to high resolution mass spectrometry (HRMS) in order to get the required selectivity that allows the determination of these compounds in complex samples such as lettuce and celery. Experimental parameters such as desorption temperature, scanning speed, and distances between the DART ion source and MS inlet were optimized. Two different mass analyzers (Orbitrap and QTOF) and two accessories for sample introduction (Dip-it ® tips and QuickStrip™ sample cards) were evaluated. An extra clean-up step using primary-secondary amine (PSA) was included in the QuPPe method to improve sensitivity. The main limitation found was in-source fragmentation, nevertheless QuPPe-DART-HRMS proved to be a fast and reliable tool with quantitative capabilities for at least seven compounds: amitrole, cyromazine, propamocarb, melamine, diethanolamine, triethanolamine and 1,2,4-triazole. The limits of detection ranged from 20 to 60μg/kg. Recoveries for fortified samples ranged from 71 to 115%, with relative standard deviations <18%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A novel method for analysing key corticosteroids in polar bear (Ursus maritimus) hair using liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Weisser, Johan J; Hansen, Martin; Björklund, Erland; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2016-04-01

    This paper presents the development and evaluation of a methodology for extraction, clean-up and analysis of three key corticosteroids (aldosterone, cortisol and corticosterone) in polar bear hair. Such a methodology can be used to monitor stress biomarkers in polar bears and may provide as a useful tool for long-term and retrospective information. We developed a combined pressurized liquid extraction (PLE)-solid phase extraction (SPE) procedure for corticosteroid extraction and clean-up followed by high pressure liquid chromatography tandem mass spectrometry (HPLC-MS/MS) analysis. This procedure allows for the simultaneous determination of multiple steroids, which is in contrast to previous polar bear studies based on ELISA techniques. Absolute method recoveries were 81%, 75% and 60% for cortisol, corticosterone and aldosterone, respectively. We applied the developed method on a hair sample pooled from four East Greenland polar bears. Herein cortisol and corticosterone were successfully determined in levels of 0.32±0.02ng/g hair and 0.13±0.02ng/g hair, respectively. Aldosterone was below limit of detection (LOD<0.17ng/g). The cortisol hair concentration found in these East Greenland polar bears was consistent with cortisol levels previously determined in the Southern Hudson Bay and James Bay in Canada using ELISA kits. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method

    Directory of Open Access Journals (Sweden)

    Adnan Kefal

    2017-11-01

    Full Text Available This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM was used together with the Refined Zigzag Theory (RZT, in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements, aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

  19. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method.

    Science.gov (United States)

    Kefal, Adnan; Yildiz, Mehmet

    2017-11-30

    This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

  20. Computer driven optical keratometer and method of evaluating the shape of the cornea

    Science.gov (United States)

    Baroth, Edmund C. (Inventor); Mouneimme, Samih A. (Inventor)

    1994-01-01

    An apparatus and method for measuring the shape of the cornea utilize only one reticle to generate a pattern of rings projected onto the surface of a subject's eye. The reflected pattern is focused onto an imaging device such as a video camera and a computer compares the reflected pattern with a reference pattern stored in the computer's memory. The differences between the reflected and stored patterns are used to calculate the deformation of the cornea which may be useful for pre-and post-operative evaluation of the eye by surgeons.

  1. 3D shape detection of the indoor space based on 3D-Hough method

    OpenAIRE

    安齋, 達也; ANZAI, Tatsuya

    2013-01-01

    This paper describes methods for detecting the 3D shapes of the indoor space that is represented as a combination of planes such as a wall, desk, or whatnot. Detecting the planes makes it possible to perform calibration of multiple sensors and 3D mapping, and then produces various services such as the acquisition of life logs, AR interaction, and invader detection. This paper proposes and verifies three algorithms. First, it mentions a way to use2D-Hough.The proposed technique converts 3D dat...

  2. Limit load estimation method for pipe with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Onizawa, Kunio; Sugino, Hideharu

    2009-01-01

    When a flaw is detected in a stainless steel pipe during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in the present codes, the limit load criterion is only provided for the case of a flaw with the uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in a pipe. In this paper, a limit load estimation method is proposed considering a circumferential flaw with arbitrary shape, in order to make it possible to evaluate the integrity of the pipe for general case. The plastic collapse moment and stress are obtained by dividing the surface flaw into several segmented sub-flaws. Using this method, good agreement is observed between the numerical solution and reported experimental results. Several numerical examples are also given to show the validity of this method. Finally, it can be seen that the number of the segmented sub-flaws for the semi-elliptical surface flaw is sufficient to be three from engineering judgment. (author)

  3. A NEW 3D DESIGN METHOD FOR FOOTWEAR SOLES USING DELCAM PowerSHAPE-e SYSTEM

    Directory of Open Access Journals (Sweden)

    IONESCU Cozmin

    2016-05-01

    Full Text Available Design methods of soles and soles injection moulds must be accurate, timely and at the same time, accessible to a wide category of soles and injection moulds designers and manufacturers. For designing soles and injection moulds for soles, various dedicated CAD/CAM systems have been developed, such as: Delcam Shoe Solution (3D, Delcam PowerSHAPE-e (2D and 3D, Padsy II (2D and Padsy III (3D, Shoemaster System (2D and 3D, Lectra System (2D and 3D, Parmel System (2D and ATOS II System (3D. These systems are equipped with colour displays, plotters, digitizers, terminals and other equipment dedicated for computer aided design activities. Designing 3D soles models using computer systems enables the prevention of ambiguities inherited from 2D drawings, thus reducing errors and remanufacturing. Depending on the design complexity of soles, the technical means available for copying shoe soles and the technologies at the disposal of the soles manufacturers, soles and injection moulds designers adopt various design methods. Not all CAD/CAM systems are accessible for all users, because often their purchasing costs are high. Design method developed and presented in this paper, uses Delcam PowerSHAPE software program, which has the advantage that it can be accessed free of charge from the manufacturer's website. At the same time, this software program provides the user with all the necessary tools and instruments needed to design the most complex injection moulds and footwear sole.

  4. [Study on a new method for instrumental line shape measurement of spatial heterodyne interference spectrometer].

    Science.gov (United States)

    Xiong, Wei; Shi, Hai-liang; Yu, Neng-hai

    2015-01-01

    Spatial heterodyne spectroscopy(SHS)is a novel method for hyper-spectral analysis, and instrument line shape function is one of the basic performance parameters, which should be precisely characterized. Based on the analysis of the influence factors(apodization, limited angle, abaxial detector element) and special requirement for measuring method and source, the present paper put forward a new method for measuring with tunable monochromatic light source, and designed experimental equipment with tunable laser and integrating sphere eliminating speckle. Selecting typical spectral range within band range for high spectral resolution scanning (0. 1nm step), the energy distribution of spectrum was obtained according to error correction, spectral reconstruction and normalization. In addition, rule curve for FWHM and wavelength was obtained by the full spectral range scanning interferogram. Finally, theoretical spectrum, ILS convolution simulated spectrum (LBL calculated), and measured carbon dioxide absorption spectrum by ground-based experiment are in good agreement. The result shows that the instrument line shape function exhibits high accuracy.

  5. HUMAN ERROR QUANTIFICATION USING PERFORMANCE SHAPING FACTORS IN THE SPAR-H METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Harold S. Blackman; David I. Gertman; Ronald L. Boring

    2008-09-01

    This paper describes a cognitively based human reliability analysis (HRA) quantification technique for estimating the human error probabilities (HEPs) associated with operator and crew actions at nuclear power plants. The method described here, Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method, was developed to aid in characterizing and quantifying human performance at nuclear power plants. The intent was to develop a defensible method that would consider all factors that may influence performance. In the SPAR-H approach, calculation of HEP rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action-oriented tasks, and incorporating performance shaping factor multipliers upon those nominal error rates.

  6. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Bernedo Alcazar

    Full Text Available The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses.The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique.The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research.Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups.The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies.

  7. A chest-shape target automatic detection method based on Deformable Part Models

    Science.gov (United States)

    Zhang, Mo; Jin, Weiqi; Li, Li

    2016-10-01

    Automatic weapon platform is one of the important research directions at domestic and overseas, it needs to accomplish fast searching for the object to be shot under complex background. Therefore, fast detection for given target is the foundation of further task. Considering that chest-shape target is common target of shoot practice, this paper treats chestshape target as the target and studies target automatic detection method based on Deformable Part Models. The algorithm computes Histograms of Oriented Gradient(HOG) features of the target and trains a model using Latent variable Support Vector Machine(SVM); In this model, target image is divided into several parts then we can obtain foot filter and part filters; Finally, the algorithm detects the target at the HOG features pyramid with method of sliding window. The running time of extracting HOG pyramid with lookup table can be shorten by 36%. The result indicates that this algorithm can detect the chest-shape target in natural environments indoors or outdoors. The true positive rate of detection reaches 76% with many hard samples, and the false positive rate approaches 0. Running on a PC (Intel(R)Core(TM) i5-4200H CPU) with C++ language, the detection time of images with the resolution of 640 × 480 is 2.093s. According to TI company run library about image pyramid and convolution for DM642 and other hardware, our detection algorithm is expected to be implemented on hardware platform, and it has application prospect in actual system.

  8. Calculation of the QED correction to the recoil proton polarization by the electron structure function method

    International Nuclear Information System (INIS)

    Afanasev, A.V.; Akushevich, I.; Merenkov, N.P.

    2000-01-01

    The recoil proton polarization for the quasielastic electron-proton scattering is represented as a contraction of the electron structure and the hard part of the polarization dependent contribution into cross-section. The calculation of the hard part with first order radiative correction is performed. The obtained representation includes the leading radiative corrections in all orders of perturbation theory and the main part of the second order next-to-leading ones

  9. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  10. Investigations on Shaped Mirror Systems in Quasi-Optical Mode Converters Based on Irradiance Moments Method

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2016-01-01

    Full Text Available A method of transforming high-order Gaussian beams (GBs mode into circular symmetry fundamental Gaussian beam (FGB mode with arbitrary waist size is presented using irradiance moments method in quasi-optical (QO mode converters. The double shaped mirrors correcting amplitude and phase simultaneously are generated by a single incidence irradiance sampling data and known ideal output FGB taking advantage of linear moment matching technique and Fresnel diffraction theory, which can be applied to a wide frequency range especially significant for terahertz band. The numerical coding procedure of creating double correcting mirrors and its fast convergence speed are discussed at 325 GHz. Numerical and experimental comparisons reveal the conclusion that enhancing surface precision and increasing moments order can improve main lobe levels.

  11. Development of Structure and Characteristics Calculation Method for Γ- shape Rope Vubration Insulator

    Science.gov (United States)

    Ponomarev, Yury K.

    2018-01-01

    The paper gives an overview of the design of rope vibration insulators with elastic elements of the center line in the form of two rectilinear and one curved section. In the Russian-language scientific literature this type of rope vibration insulators received a stable name "Γ-shaped vibration insulators” by analogy with the shape of the letter “gamma-Γ" of the Greek alphabet and a similar letter of the Cyrillic alphabet. Despite the wide using of vibration insulators designed on this shape, its mathematical calculation model has not yet been developed. In this connection, in this article, for the first time on the basis of the “Method of Forces” and the “Mohr Method”, an analytical technique has been developed for calculating the characteristics of a vibration insulator in the directions of three mutually perpendicular axes. In addition, the article proposes a new structure of a vibration insulator consisting of several tiers of elements of this type, based on a new patented technology for manufacturing quasi-continuous woven rings, proposed by the author of this article in co-authorship with several employees of the Samara National Research University. Simple formulas are obtained for calculating the load characteristics in three mutually perpendicular directions. This makes it possible to calculate the corresponding stiffness and natural frequencies of mechanical vibration protection systems. It is established that the stiffness of the vibration insulator in the direction of the Z axis is greater than the stiffness in the X and Y axis directions, however, if a vibration insulator with equal, or close to equal characteristics, along three axes has to be designed according to the technical specification, this can be done by selecting the parameters included in the equations given in article for load characteristics.

  12. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  13. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods

    Science.gov (United States)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa W.; Dorney, Daniel J.

    2001-01-01

    Turbine performance directly affects engine specific impulse, thrust-to-weight ratio, and cost in a rocket propulsion system. A global optimization framework combining the radial basis neural network (RBNN) and the polynomial-based response surface method (RSM) is constructed for shape optimization of a supersonic turbine. Based on the optimized preliminary design, shape optimization is performed for the first vane and blade of a 2-stage supersonic turbine, involving O(10) design variables. The design of experiment approach is adopted to reduce the data size needed by the optimization task. It is demonstrated that a major merit of the global optimization approach is that it enables one to adaptively revise the design space to perform multiple optimization cycles. This benefit is realized when an optimal design approaches the boundary of a pre-defined design space. Furthermore, by inspecting the influence of each design variable, one can also gain insight into the existence of multiple design choices and select the optimum design based on other factors such as stress and materials considerations.

  14. Evaluation of the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) methods.

    Science.gov (United States)

    Benveniste, J.; Garcia-Mondéjar, A.; Bercher, N.; Fabry, P. L.; Roca, M.; Varona, E.; Fernandes, J.; Lazaro, C.; Vieira, T.; David, G.; Restano, M.; Ambrózio, A.

    2017-12-01

    Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. The SHAPE Processor implements all of the steps necessary to derive rivers and lakes water levels and discharge from Delay-Doppler Altimetry and perform their validation against in situ data. The processor uses FBR CryoSat-2 and L1A Sentinel-3A data as input and also various ancillary data (proc. param., water masks, L2 corrections, etc.), to produce surface water levels. At a later stage, water level data are assimilated into hydrological models to derive river discharge. This poster presents the improvements obtained with the new methods and algorithms over the regions of interest (Amazon and Danube rivers, Vanern and Titicaca lakes).

  15. Gaussian-to-top-hat beam shaping: an overview of parameters, methods, and applications

    Science.gov (United States)

    Homburg, O.; Mitra, T.

    2012-02-01

    Direct laser patterning of various materials is today widely used in several micro-system production lines like inkjet printing, solar cell technology, flat-panel display production, LEDs, OLEDs, semiconductors and medicine. Typically single-mode solid state lasers and their higher harmonics (e. g. 266, 355, 532 and 1064 nm) are used especially for machining of holes and grooves. The striking advantages of flat top intensity distributions compared to Gaussian beam profiles with respect to the efficiency and quality of these processes were already demonstrated. Here we will give an overview of parameters, methods and applications of Gaussian-to-top-hat beam shaping. The top hat field size can start from about 30 μm with no upper size limitation in the far field of the optics. Beam shaping for various wavelengths were realized with field geometries of squares, rectangles and circles. With LIMO's compact Gaussian-to-top-hat converter an inhomogeneity better than 5% contrast was reached. Special focus is put on the integration of Gaussian-to-top-hat beam shapers in fast scanning systems employing Galvo mirrors and a specially developed f-Theta lens to avoid destruction of the top hat profile within the scan field. Results with a 50x50μm2 top hat size (inhomogeneity down to solar panels.

  16. Cone-shaped source characteristics and inductance effect of transient electromagnetic method

    Science.gov (United States)

    Yang, Hai-Yan; Li, Feng-Ping; Yue, Jian-Hua; Guo, Fu-Sheng; Liu, Xu-Hua; Zhang, Hua

    2017-03-01

    Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-offtime and a deep "blind zone". This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower "blind zone." Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to

  17. Method of making large area conformable shape structures for detector/sensor applications using glass drawing technique and postprocessing

    Science.gov (United States)

    Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, IN

    2012-01-24

    A method of making a large area conformable shape structure comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes of a predetermined shape. The cut drawn tubes have a first end and a second end along the longitudinal direction of the cut drawn tubes. The method further comprises conforming the first end of the cut drawn tubes into a predetermined curve to form the large area conformable shape structure, wherein the cut drawn tubes contain a material.

  18. Peat decomposition – shaping factors, significance in environmental studies and methods of determination; a literature review

    Directory of Open Access Journals (Sweden)

    Drzymulska Danuta

    2016-03-01

    Full Text Available A review of literature data on the degree of peat decomposition – an important parameter that yields data on environmental conditions during the peat-forming process, i.e., humidity of the mire surface, is presented. A decrease in the rate of peat decomposition indicates a rise of the ground water table. In the case of bogs, which receive exclusively atmospheric (meteoric water, data on changes in the wetness of past mire surfaces could even be treated as data on past climates. Different factors shaping the process of peat decomposition are also discussed, such as humidity of the substratum and climatic conditions, as well as the chemical composition of peat-forming plants. Methods for the determination of the degree of peat decomposition are also outlined, maintaining the division into field and laboratory analyses. Among the latter are methods based on physical and chemical features of peat and microscopic methods. Comparisons of results obtained by different methods can occasionally be difficult, which may be ascribed to different experience of researchers or the chemically undefined nature of many analyses of humification.

  19. Modification of backgammon shape cathode and graded charge division readout method for a novel triple charge division centroid finding method

    International Nuclear Information System (INIS)

    Javanmardi, F.; Matoba, M.; Sakae, T.

    1996-01-01

    Triple Charge Division (TCD) centroid finding method that uses modified pattern of Backgammon Shape Cathode (MBSC) is introduced for medium range length position sensitive detectors with optimum numbers of cathode segments. MBSC pattern has three separated areas and uses saw tooth like insulator gaps for separating the areas. Side areas of the MBSC pattern are severed by a central common area. Size of the central area is twice of the size of both sides. Whereas central area is the widest area among three, both sides' areas have the main role in position sensing. With the same resolution and linearity, active region of original Backgammon pattern increases twice by using MBSC pattern, and with the same length, linearity of TCD centroid finding is much better than Backgammon charge division readout method. Linearity prediction of TCD centroid finding and experimental results conducted us to find an optimum truncation of the apices of MBCS pattern in the central area. The TCD centroid finding has an especial readout method since charges must be collected from two segments in both sides and from three segments in the central area of MBSC pattern. The so called Graded Charge Division (GCD) is the especial readout method for TCD. The GCD readout is a combination of the charge division readout and sequence grading of serial segments. Position sensing with TCD centroid finding and GCD readout were done by two sizes MBSC patterns (200mm and 80mm) and Spatial resolution about 1% of the detector length is achieved

  20. TX-RX isolation method based on polarization diversity, spatial diversity and TX beamforming

    DEFF Research Database (Denmark)

    Foroozanfard, Ehsan; Carvalho, Elisabeth De; Pedersen, Gert F.

    2016-01-01

    In this paper, the feasibility of an antenna isolation technique based on null-steer beamforming, polarization diversity and spatial diversity is investigated. The proposed system consists of six patch antennas which are fed by a feeding network to obtain a null-steer beamformer. To achieve spatial...... diversity, antenna elements are located on two layers, facing in a different direction. Moreover, the antenna elements in two layers use different polarization. The measured results of the antenna system present a high TX-RX isolation in the order of 70 dB which shows the feasibility of such a system...

  1. Problems of shape characterization and comparison in bryophytes

    Directory of Open Access Journals (Sweden)

    Jerzy Szweykowski

    2014-01-01

    Full Text Available Shapes of leaves of two liverwort species, viz. Lophozia ventricosa and Lophozia silvicola, were characterized by means of three different methods: polar coordinates, conics, and Fourier series. Results were then used to compare the leaf shapes of the two taxa, and differentiate between their leaves. Characterization by Fourier series gave the most reliable results.

  2. [A new method to orthodontically correct dental occlusal plane canting: wave-shaped arch].

    Science.gov (United States)

    Zheng, X; Hu, X X; Ma, N; Chen, X H

    2017-02-18

    ; after treatment the angles were from -0.17° to 2.57° with a median of 1.87°, the decrease of the angles between AOP and BBP after treatment ranged from 1.08° to 4.15° with a median of 2.21°. Paired Wilcoxon test P was 0.000. The wave-shaped arch can be used independently or in combination with other treatment methods, which can take advantage of left and right interactive anchorage to correct AOPC effectively, so it has certain application value in clinical practice.

  3. Experimental measurement of effective refractive index difference for few mode polarization maintaining fibers using S2 method

    Science.gov (United States)

    Guo, Wenting; Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    Polarization maintaining fibers (PMFs) can keep linear polarization state against external perturbations by inducing a high effective refractive index difference (Δneff) along one polarization axis. For few mode polarization maintaining fibers (FM-PMFs), Δneff is applicable between both orthogonal linear polarization modes (e.g. LP01x and LP01y) and orthogonal degenerated modes (e.g. LP11a and LP11b), which can enable advanced functionalities in multiple-input multiple- output-free spatial division multiplexing systems and optical fiber sensing systems. Therefore, the measurement of Δneff for polarization modes and degenerated modes is very important for determining the quality of a FM-PMF. However, measurement of the Δneff for FM-PMFs can be complicated due to the requirement for generating and demultiplexing of the higher order modes (HOMs). In this paper, we propose to measure the Δneff of FM-PMFs using Spatially and Spectrally resolved imaging (S2) method for the first time. The presented method is simply by employing a tunable laser and an IR CCD camera, can avoid any mode converter or mode multiplexer/demultiplexer, featuring a rapid testing speed. A proof-of-concept experiment is carried out to measure FM-PMFs with a length of 1.1m and 5m. The Δneff between the orthogonal polarization modes (i.e. LP11ax-11ay, LP11bx-11by, LP21ax-21ay, and LP21bx-21by) are characterized as 7.05×10-4, 6.91×10-4, 1.02×10-3 and 1.04×10-3 respectively. The Δneff of the orthogonal degenerated modes (i.e. LP11ax-11bx, LP11ay-11by, LP21ax-21bx and LP21ay-21by) are also characterized to be 1.39×10-4, 1.24×10-4, 5.61×10-5 and 6.53×10-5 respectively.

  4. A Monte Carlo method for calculating the energy response of plastic scintillators to polarized photons below 100 keV

    International Nuclear Information System (INIS)

    Mizuno, T.; Kanai, Y.; Kataoka, J.; Kiss, M.; Kurita, K.; Pearce, M.; Tajima, H.; Takahashi, H.; Tanaka, T.; Ueno, M.; Umeki, Y.; Yoshida, H.; Arimoto, M.; Axelsson, M.; Marini Bettolo, C.; Bogaert, G.; Chen, P.; Craig, W.; Fukazawa, Y.; Gunji, S.

    2009-01-01

    The energy response of plastic scintillators (Eljen Technology EJ-204) to polarized soft gamma-ray photons below 100 keV has been studied, primarily for the balloon-borne polarimeter, PoGOLite. The response calculation includes quenching effects due to low-energy recoil electrons and the position dependence of the light collection efficiency in a 20 cm long scintillator rod. The broadening of the pulse-height spectrum, presumably caused by light transportation processes inside the scintillator, as well as the generation and multiplication of photoelectrons in the photomultiplier tube, were studied experimentally and have also been taken into account. A Monte Carlo simulation based on the Geant4 toolkit was used to model photon interactions in the scintillators. When using the polarized Compton/Rayleigh scattering processes previously corrected by the authors, scintillator spectra and angular distributions of scattered polarized photons could clearly be reproduced, in agreement with the results obtained at a synchrotron beam test conducted at the KEK Photon Factory. Our simulation successfully reproduces the modulation factor, defined as the ratio of the amplitude to the mean of the distribution of the azimuthal scattering angles, within ∼5% (relative). Although primarily developed for the PoGOLite mission, the method presented here is also relevant for other missions aiming to measure polarization from astronomical objects using plastic scintillator scatterers.

  5. A Monte Carlo method for calculating the energy response of plastic scintillators to polarized photons below 100 keV

    Science.gov (United States)

    Mizuno, T.; Kanai, Y.; Kataoka, J.; Kiss, M.; Kurita, K.; Pearce, M.; Tajima, H.; Takahashi, H.; Tanaka, T.; Ueno, M.; Umeki, Y.; Yoshida, H.; Arimoto, M.; Axelsson, M.; Marini Bettolo, C.; Bogaert, G.; Chen, P.; Craig, W.; Fukazawa, Y.; Gunji, S.; Kamae, T.; Katsuta, J.; Kawai, N.; Kishimoto, S.; Klamra, W.; Larsson, S.; Madejski, G.; Ng, J. S. T.; Ryde, F.; Rydström, S.; Takahashi, T.; Thurston, T. S.; Varner, G.

    2009-03-01

    The energy response of plastic scintillators (Eljen Technology EJ-204) to polarized soft gamma-ray photons below 100 keV has been studied, primarily for the balloon-borne polarimeter, PoGOLite. The response calculation includes quenching effects due to low-energy recoil electrons and the position dependence of the light collection efficiency in a 20 cm long scintillator rod. The broadening of the pulse-height spectrum, presumably caused by light transportation processes inside the scintillator, as well as the generation and multiplication of photoelectrons in the photomultiplier tube, were studied experimentally and have also been taken into account. A Monte Carlo simulation based on the Geant4 toolkit was used to model photon interactions in the scintillators. When using the polarized Compton/Rayleigh scattering processes previously corrected by the authors, scintillator spectra and angular distributions of scattered polarized photons could clearly be reproduced, in agreement with the results obtained at a synchrotron beam test conducted at the KEK Photon Factory. Our simulation successfully reproduces the modulation factor, defined as the ratio of the amplitude to the mean of the distribution of the azimuthal scattering angles, within ˜5% (relative). Although primarily developed for the PoGOLite mission, the method presented here is also relevant for other missions aiming to measure polarization from astronomical objects using plastic scintillator scatterers.

  6. A PCA-Based method for determining craniofacial relationship and sexual dimorphism of facial shapes.

    Science.gov (United States)

    Shui, Wuyang; Zhou, Mingquan; Maddock, Steve; He, Taiping; Wang, Xingce; Deng, Qingqiong

    2017-11-01

    Previous studies have used principal component analysis (PCA) to investigate the craniofacial relationship, as well as sex determination using facial factors. However, few studies have investigated the extent to which the choice of principal components (PCs) affects the analysis of craniofacial relationship and sexual dimorphism. In this paper, we propose a PCA-based method for visual and quantitative analysis, using 140 samples of 3D heads (70 male and 70 female), produced from computed tomography (CT) images. There are two parts to the method. First, skull and facial landmarks are manually marked to guide the model's registration so that dense corresponding vertices occupy the same relative position in every sample. Statistical shape spaces of the skull and face in dense corresponding vertices are constructed using PCA. Variations in these vertices, captured in every principal component (PC), are visualized to observe shape variability. The correlations of skull- and face-based PC scores are analysed, and linear regression is used to fit the craniofacial relationship. We compute the PC coefficients of a face based on this craniofacial relationship and the PC scores of a skull, and apply the coefficients to estimate a 3D face for the skull. To evaluate the accuracy of the computed craniofacial relationship, the mean and standard deviation of every vertex between the two models are computed, where these models are reconstructed using real PC scores and coefficients. Second, each PC in facial space is analysed for sex determination, for which support vector machines (SVMs) are used. We examined the correlation between PCs and sex, and explored the extent to which the choice of PCs affects the expression of sexual dimorphism. Our results suggest that skull- and face-based PCs can be used to describe the craniofacial relationship and that the accuracy of the method can be improved by using an increased number of face-based PCs. The results show that the accuracy of

  7. Modifying nanoparticle shape by choice of synthetic method: Nanorods, spheres, mutipods, and gels

    Science.gov (United States)

    Shrestha, Khadga M.

    A series of nanoparticle synthesis methods were devised with the aim of controlling shape. CuO nanorods were synthesized by a hydrothermal treatment with different chemical combinations. Physical parameters: concentration, temperature, and aging time greatly affected the size, morphology and the composition of nanorods. These CuO nanomaterials were reduced to metallic copper at elevated temperature by 4% H2 diluted in helium while preserving the morphology. The CuO and Cu nanomaterials were employed for near infra-red (NIR) diffuse reflectance. Among them, CuO nanorods were found to be the best NIR diffuse reflectors, indicating potential application as NIR obscurants. Cu2O and its comoposite samples with different morphologies, some with unique morphologies, were synthesized by reducing Cu2+ precursors without using any surfactant. The effects of change of Cu-precursors, reducing agents, and other physical conditions such as temperature and pressure were investigated. Since Cu2O is a semiconductor (Eg ˜ 2.1 eV), these samples were used as photocatalyst for the degradation of methyl violet B solution under UV-vis light and as dark catalysts for decomposition of H2O2 to investigate the effect of morphology. The photocatalytic activity was found to be morphology dependent and the dark catalytic activity was found to be dependent on both surface area and morphology. Mixed oxides of MgO and TiO2 with different ratios, and pure TiO2 were synthesized by two methods---flame synthesis and aerogel. These mixed oxides were employed as photo-catalysts under UV-vis light to oxidize acetaldehyde. The mixed oxides with low content of MgO (˜ 2 mole %) were found to be more UV active photo-catalysts for the degradation of acetaldehyde than the degradation by TiO2. The mixed oxides prepared by the aerogel method were found to be superior photo-catalysts than the mixed oxides of equal ratio prepared by flame synthesis. Silica aerosol gels were prepared by two methods: detonation

  8. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  9. Applying the polarity rapid assessment method to characterize nitrosamine precursors and to understand their removal by drinking water treatment processes.

    Science.gov (United States)

    Liao, Xiaobin; Bei, Er; Li, Shixiang; Ouyang, Yueying; Wang, Jun; Chen, Chao; Zhang, Xiaojian; Krasner, Stuart W; Suffet, I H Mel

    2015-12-15

    Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment. The results showed that PRAM has much higher selectivity for NA precursors than the resin approach. The normalized N-nitrosodimethylamine formation potential (NDMA FP) and N-nitrosodiethylamine (NDEA) FP of four resin fractions was at the same level as the average yield of the bulk organic matter whereas that of the cationic fraction by PRAM showed 50 times the average. Thus, the cationic fraction was shown to be the most important NDMA precursor contributor. The PRAM method also helped understand which portions of the NA precursor were removed by different water treatment processes. Activated carbon (AC) adsorption removed over 90% of the non-polar PRAM fraction (that sorbs onto the C18 solid phase extraction [SPE] cartridge) of NDMA and NDEA precursors. Bio-treatment removed 80-90% of the cationic fraction of PRAM (that is retained on the cation exchange SPE cartridge) and 40-60% of the non-cationic fractions. Ozonation removed 50-60% of the non-polar PRAM fraction of NA precursors and transformed part of them into the polar fraction. Coagulation and sedimentation had very limited removal of various PRAM fractions of NA precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. An optimized calibration method for surface measurements with MOSFETs in shaped-beam radiosurgery.

    Science.gov (United States)

    Sors, A; Cassol, E; Latorzeff, I; Duthil, P; Sabatier, J; Lotterie, J A; Redon, A; Berry, I; Franceries, X

    2014-02-01

    Nowadays MOSFET dosimeters are widely used for dose verification in radiotherapy procedures. Although their sensitive area satisfies size requirements for small field dosimetry, their use in radiosurgery has rarely been reported. The aim of this study is to propose and optimize a calibration method to perform surface measurements in 6 MV shaped-beam radiosurgery for field sizes down to 18 × 18 mm(2). The effect of different parameters such as recovery time between 2 readings, batch uniformity and build-up cap attenuation was studied. Batch uniformity was found to be within 2% and isocenter dose attenuation due to the build-up cap over the MOSFET was near 2% irrespective of field size. Two sets of sensitivity coefficients (SC) were determined for TN-502RD MOSFET dosimeters using experimental and calculated calibration; the latter being developed using an inverse square law model. Validation measurements were performed on a realistic head phantom in irregular fields. MOSFET dose values obtained by applying either measured or calculated SC were compared. For calibration, optimal results were obtained for an inter-measurement time lapse of 5 min. We also found that fitting the SC values with the inverse square law reduced the number of measurements required for calibration. The study demonstrated that combining inverse square law and Sterling-Worthley formula resulted in an underestimation of up to 4% of the dose measured by MOSFETs for complex beam geometries. With the inverse square law, it is possible to reduce the number of measurements required for calibration for multiple field-SSD combinations. Our results suggested that MOSFETs are suitable sensors for dosimetry when used at the surface in shaped-beam radiosurgery down to 18 × 18 mm(2). Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. QSPR studies for predicting polarity parameter of organic compounds in methanol using support vector machine and enhanced replacement method.

    Science.gov (United States)

    Golmohammadi, H; Dashtbozorgi, Z

    2016-12-01

    In the present work, enhanced replacement method (ERM) and support vector machine (SVM) were used for quantitative structure-property relationship (QSPR) studies of polarity parameter (p) of various organic compounds in methanol in reversed phase liquid chromatography based on molecular descriptors calculated from the optimized structures. Diverse kinds of molecular descriptors were calculated to encode the molecular structures of compounds, such as geometric, thermodynamic, electrostatic and quantum mechanical descriptors. The variable selection method of ERM was employed to select an optimum subset of descriptors. The five descriptors selected using ERM were used as inputs of SVM to predict the polarity parameter of organic compounds in methanol. The coefficient of determination, r 2 , between experimental and predicted polarity parameters for the prediction set by ERM and SVM were 0.952 and 0.982, respectively. Acceptable results specified that the ERM approach is a very effective method for variable selection and the predictive aptitude of the SVM model is superior to those obtained by ERM. The obtained results demonstrate that SVM can be used as a substitute influential modeling tool for QSPR studies.

  12. Understanding Factors that Shape Gender Attitudes in Early Adolescence Globally: A Mixed-Methods Systematic Review

    Science.gov (United States)

    Gibbs, Susannah; Blum, Robert Wm; Moreau, Caroline; Chandra-Mouli, Venkatraman; Herbert, Ann; Amin, Avni

    2016-01-01

    Background Early adolescence (ages 10–14) is a period of increased expectations for boys and girls to adhere to socially constructed and often stereotypical norms that perpetuate gender inequalities. The endorsement of such gender norms is closely linked to poor adolescent sexual and reproductive and other health-related outcomes yet little is known about the factors that influence young adolescents’ personal gender attitudes. Objectives To explore factors that shape gender attitudes in early adolescence across different cultural settings globally. Methods A mixed-methods systematic review was conducted of the peer-reviewed literature in 12 databases from 1984–2014. Four reviewers screened the titles and abstracts of articles and reviewed full text articles in duplicate. Data extraction and quality assessments were conducted using standardized templates by study design. Thematic analysis was used to synthesize quantitative and qualitative data organized by the social-ecological framework (individual, interpersonal and community/societal-level factors influencing gender attitudes). Results Eighty-two studies (46 quantitative, 31 qualitative, 5 mixed-methods) spanning 29 countries were included. Ninety percent of studies were from North America or Western Europe. The review findings indicate that young adolescents, across cultural settings, commonly express stereotypical or inequitable gender attitudes, and such attitudes appear to vary by individual sociodemographic characteristics (sex, race/ethnicity and immigration, social class, and age). Findings highlight that interpersonal influences (family and peers) are central influences on young adolescents’ construction of gender attitudes, and these gender socialization processes differ for boys and girls. The role of community factors (e.g. media) is less clear though there is some evidence that schools may reinforce stereotypical gender attitudes among young adolescents. Conclusions The findings from this

  13. Structural and magnetic properties evolution study method using a single ribbon-shaped sample

    Science.gov (United States)

    Moya, Javier A.

    2017-06-01

    A new type of study is presented for magnetic and structural characterization of amorphous or nanocrystalline metallic alloys in ribbon or wire-shaped samples. A single sample is subjecting to successive steps of flash isocurrent heat treatments with increasing duration in time, followed by a rapid cooling, while magneto-electric properties evolution are scanned in situ at room temperature. When one set of isocurrent heat treatments is finished, the annealing current is increased and a new set of isocurrent treatments starts. The properties studied were the saturation magnetization and the coercive field at 50 Hz, magnetic permeability at 100 kHz and electrical resistance from where we also obtained the crystalline fraction. The method was applied on two samples of Finemet-like alloys and the results were analyzed from the perspective of current literature. With the present method it is possible to obtain a general and meticulous understanding of the structural and magnetic evolution of the samples tested, with a considerable saving of time and samples.

  14. The Origins of the SPAR-H Method's Performance Shaping Factor Multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Harold S. Blackman

    2007-08-01

    The Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method has proved to be a reliable, easy-to-use method for human reliability analysis. Calculation of human error probability (HEP) rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action oriented tasks, and incorporating performance shaping factor (PSF) multipliers upon those nominal error rates. SPAR-H uses eight PSFs with multipliers typically corresponding to nominal, degraded, and severely degraded human performance for individual PSFs. Additionally, some PSFs feature multipliers to reflect enhanced performance. Although SPAR-H enjoys widespread use among industry and regulators, current source documents on SPAR-H such as NUREG/CR-6883 do not provide a clear account of the origin of these multipliers. The present paper redresses this shortcoming and documents the historic development of the SPAR-H PSF multipliers, from the initial use of nominal error rates, to the selection of the eight PSFs, to the mapping of multipliers to available data sources such as a Technique for Human Error Rate Prediction (THERP). Where error rates were not readily derived from THERP and other sources, expert judgment was used to extrapolate appropriate values. In documenting key background information on the multipliers, this paper provides a much needed cross-reference for human reliability practitioners and researchers of SPAR-H to validate analyses and research findings.

  15. A method for ultrashort electron pulse-shape measurement using coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Geloni, G.; Yurkov, M.V.

    2003-03-01

    In this paper we discuss a method for nondestructive measurements of the longitudinal profile of sub-picosecond electron bunches for X-ray free electron lasers (XFELs). The method is based on the detection of the coherent synchrotron radiation (CSR) spectrum produced by a bunch passing a dipole magnet system. This work also contains a systematic treatment of synchrotron radiation theory which lies at the basis of CSR. Standard theory of synchrotron radiation uses several approximations whose applicability limits are often forgotten: here we present a systematic discussion about these assumptions. Properties of coherent synchrotron radiation from an electron moving along an arc of a circle are then derived and discussed. We describe also an effective and practical diagnostic technique based on the utilization of an electromagnetic undulator to record the energy of the coherent radiation pulse into the central cone. This measurement must be repeated many times with different undulator resonant frequencies in order to reconstruct the modulus of the bunch form-factor. The retrieval of the bunch profile function from these data is performed by means of deconvolution techniques: for the present work we take advantage of a constrained deconvolution method. We illustrate with numerical examples the potential of the proposed method for electron beam diagnostics at the TESLA test facility (TTF) accelerator. Here we choose, for emphasis, experiments aimed at the measure of the strongly non-Gaussian electron bunch profile in the TTF femtosecond-mode operation. We demonstrate that a tandem combination of a picosecond streak camera and a CSR spectrometer can be used to extract shape information from electron bunches with a narrow leading peak and a long tail. (orig.)

  16. Development of Numerical Method for Two-phase Flows on Three-dimensional Arbitrarily-shaped Polyhedral Meshes

    Science.gov (United States)

    Suzuki, Kohei; Omori, Takesi; Kajishima, Takeo

    2014-11-01

    Although the advantage of using arbitrarily-shaped polyhedral meshes for the industrial flow applications is clear, their employment to two-phase flows is rather limited due to the poor prediction accuracy of the existing numerical methods on such meshes. We present a numerical method based on VOF (Volume of Fluid) method which works on arbitrarily-shaped three-dimensional polyhedral meshes with little volume/shape error for the interface advection and with little curvature estimation error. To make the implementation in three-dimensional geometry feasible, we extend THINC (Tangent of Hyperbola Interface Capturing) method for polyhedral meshes which does not require laborious geometric arithmetics. In the oral presentation we will also show that the combination of RDF (Reconstructed Distance Function) algorithm and the carefully selected discretization procedure gives good performance in the interface curvature estimation.

  17. A fabrication method of unique Nafion® shapes by painting for ionic polymer-metal composites

    Science.gov (United States)

    Trabia, Sarah; Hwang, Taeseon; Kim, Kwang J.

    2016-08-01

    Ionic polymer-metal composites (IPMC) are useful actuators because of their ability to be fabricated in different shapes and move in various ways. However, producing unique or intricate shapes can be difficult based upon the current fabrication techniques. Presented here is a fabrication method of producing the Nafion® membrane or thin film through a painting method. Using an airbrush, a Nafion water dispersion is sprayed onto an acrylonitrile butadiene styrene surface with a stencil of the desired shape. To verify that this method of fabrication produces a Nafion membrane similar to that which is commercially available, a sample that was made using the painting method and Nafion 117 purchased from DuPont™ were tested for various characteristics and compared. The results show promising similarities. The painted Nafion sample was chemically plated with platinum and compared with a traditional IPMC for its displacement and blocking force capabilities. The painted IPMC sample showed comparable results.

  18. Understanding Factors that Shape Gender Attitudes in Early Adolescence Globally: A Mixed-Methods Systematic Review.

    Science.gov (United States)

    Kågesten, Anna; Gibbs, Susannah; Blum, Robert Wm; Moreau, Caroline; Chandra-Mouli, Venkatraman; Herbert, Ann; Amin, Avni

    2016-01-01

    Early adolescence (ages 10-14) is a period of increased expectations for boys and girls to adhere to socially constructed and often stereotypical norms that perpetuate gender inequalities. The endorsement of such gender norms is closely linked to poor adolescent sexual and reproductive and other health-related outcomes yet little is known about the factors that influence young adolescents' personal gender attitudes. To explore factors that shape gender attitudes in early adolescence across different cultural settings globally. A mixed-methods systematic review was conducted of the peer-reviewed literature in 12 databases from 1984-2014. Four reviewers screened the titles and abstracts of articles and reviewed full text articles in duplicate. Data extraction and quality assessments were conducted using standardized templates by study design. Thematic analysis was used to synthesize quantitative and qualitative data organized by the social-ecological framework (individual, interpersonal and community/societal-level factors influencing gender attitudes). Eighty-two studies (46 quantitative, 31 qualitative, 5 mixed-methods) spanning 29 countries were included. Ninety percent of studies were from North America or Western Europe. The review findings indicate that young adolescents, across cultural settings, commonly express stereotypical or inequitable gender attitudes, and such attitudes appear to vary by individual sociodemographic characteristics (sex, race/ethnicity and immigration, social class, and age). Findings highlight that interpersonal influences (family and peers) are central influences on young adolescents' construction of gender attitudes, and these gender socialization processes differ for boys and girls. The role of community factors (e.g. media) is less clear though there is some evidence that schools may reinforce stereotypical gender attitudes among young adolescents. The findings from this review suggest that young adolescents in different cultural

  19. Understanding Factors that Shape Gender Attitudes in Early Adolescence Globally: A Mixed-Methods Systematic Review.

    Directory of Open Access Journals (Sweden)

    Anna Kågesten

    Full Text Available Early adolescence (ages 10-14 is a period of increased expectations for boys and girls to adhere to socially constructed and often stereotypical norms that perpetuate gender inequalities. The endorsement of such gender norms is closely linked to poor adolescent sexual and reproductive and other health-related outcomes yet little is known about the factors that influence young adolescents' personal gender attitudes.To explore factors that shape gender attitudes in early adolescence across different cultural settings globally.A mixed-methods systematic review was conducted of the peer-reviewed literature in 12 databases from 1984-2014. Four reviewers screened the titles and abstracts of articles and reviewed full text articles in duplicate. Data extraction and quality assessments were conducted using standardized templates by study design. Thematic analysis was used to synthesize quantitative and qualitative data organized by the social-ecological framework (individual, interpersonal and community/societal-level factors influencing gender attitudes.Eighty-two studies (46 quantitative, 31 qualitative, 5 mixed-methods spanning 29 countries were included. Ninety percent of studies were from North America or Western Europe. The review findings indicate that young adolescents, across cultural settings, commonly express stereotypical or inequitable gender attitudes, and such attitudes appear to vary by individual sociodemographic characteristics (sex, race/ethnicity and immigration, social class, and age. Findings highlight that interpersonal influences (family and peers are central influences on young adolescents' construction of gender attitudes, and these gender socialization processes differ for boys and girls. The role of community factors (e.g. media is less clear though there is some evidence that schools may reinforce stereotypical gender attitudes among young adolescents.The findings from this review suggest that young adolescents in different

  20. A New 3D Object Pose Detection Method Using LIDAR Shape Set.

    Science.gov (United States)

    Kim, Jung-Un; Kang, Hang-Bong

    2018-03-16

    In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird's eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets.

  1. Detection of Ground Clutter from Weather Radar Using a Dual-Polarization and Dual-Scan Method

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Golbon-Haghighi

    2016-06-01

    Full Text Available A novel dual-polarization and dual-scan (DPDS classification algorithm is developed for clutter detection in weather radar observations. Two consecutive scans of dual-polarization radar echoes are jointly processed to estimate auto- and cross-correlation functions. Discriminants are then defined and estimated in order to separate clutter from weather based on their physical and statistical properties. An optimal Bayesian classifier is used to make a decision on clutter presence from the estimated discriminant functions. The DPDS algorithm is applied to the data collected with the KOUN polarimetric radar and compared with the existing detection methods. It is shown that the DPDS algorithm yields a higher probability of detection and lower false alarm rate in clutter detection.

  2. Spin-polarized relativistic linear-muffin-tin-orbital method: Volume-dependent electronic structure and magnetic moment of plutonium

    International Nuclear Information System (INIS)

    Solovyev, I.V.; Liechtenstein, A.I.; Gubanov, V.A.; Antropov, V.P.; Andersen, O.K.

    1991-01-01

    The linear-muffin-tin-orbital method is generalized to the case of relativistic and spin-polarized self-consistent band calculations. Our formalism is analogous to the standard orthogonal--linear-muffin-tin-orbital formalism, except that the potential functions and the potential parameters are now matrices. The method is used to perform density-functional calculations for fcc plutonium with different atomic volumes. The formation of spin and orbital magnetic moments, as well as the changes in the energy bands for volume changes corresponding to the α-δ transition, are investigated. The calculated magnetic moments agree quite well with the experimental ones

  3. Shape Signatures: New Descriptors for Predicting Cardiotoxicity In Silico

    OpenAIRE

    Chekmarev, Dmitriy S.; Kholodovych, Vladyslav; Balakin, Konstantin V.; Ivanenkov, Yan; Ekins, Sean; Welsh, William J.

    2008-01-01

    Shape Signatures is a new computational tool that is being evaluated for applications in computational toxicology and drug discovery. The method employs a customized ray-tracing algorithm to explore the volume enclosed by the surface of a molecule and then uses the output to construct compact histograms (i.e., signatures) that encode for molecular shape and polarity. In the present study, we extend the application of the Shape Signatures methodology to the domain of computational models for c...

  4. A general method for the design and fabrication of shape memory alloy active spring actuators

    International Nuclear Information System (INIS)

    Follador, M; Cianchetti, M; Arienti, A; Laschi, C

    2012-01-01

    Shape memory alloys have been widely proposed as actuators, in fields such as robotics, biomimetics and microsystems: in particular spring actuators are the most widely used, due to their simplicity of fabrication. The aim of this paper is to provide a general model and the techniques for fabricating SMA spring actuators. All the steps of the design process are described: a mechanical model to optimize the mechanical characteristic for a given requirement of force and available space, and a thermal model for the estimation of the electrical power needed for activation. The parameters of both models are obtained by experimental measurements, which are described in the paper. The models are then validated on springs manufactured manually, showing also the fabrication process. The design method is valid for the dimensioning of SMA springs, independently from the external ambient conditions. The influence on the actuator bandwidth was investigated for different working environments, providing numerical indications for the utilization in underwater applications. The spring characteristics can be calculated by the mechanical model with an accuracy of 5%. The thermal model allows one to calculate the current needed for activation under different ambient conditions, in order to guarantee activation in the specific loading conditions. Moreover, two solutions were found to reduce the power consumption by more than 40% without a dramatic reduction of bandwidth. (paper)

  5. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  6. Standardization of shape memory alloy test methods toward certification of aerospace applications

    Science.gov (United States)

    Hartl, D. J.; Mabe, J. H.; Benafan, O.; Coda, A.; Conduit, B.; Padan, R.; Van Doren, B.

    2015-08-01

    The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization.

  7. Improving the position resolution of highly segmented HPGe detectors using pulse shape analysis methods

    International Nuclear Information System (INIS)

    Descovich, Martina

    2002-01-01

    This work presents an approach for determining the interaction position of γ rays in highly segmented HPGe detectors. A precise knowledge of the interaction position enables the effective granularity of the detector to be substantially improved and a calibration of the detector response as a function of position to be performed. An improved position resolution is fundamental for the development of arrays of γ ray tracking detectors. The performance of a highly segmented germanium detector (TIGRE) has been characterised. TIGRE consists of a large volume coaxial high-purity n-type germanium crystal with a 24-fold segmented outer contact. Due to its high granularity and its fast electronics, TIGRE represents a unique example of a tracking detector, having low noise output signals, fast rise time and good energy resolution. In order to calibrate the response of the detector as a function of the interaction position, a dedicated scanning apparatus has been developed and the front surface of the detector has been scanned. The method developed for position determination is based on the digital analysis of the preamplifier signal, whose features are position dependent. A two-dimensional position resolution is accomplished by combining the radial position information, contained in the rise time of the pulse shape leading edge, with the azimuthal position information, carried by the magnitude of the transient charge signals induced in the spectator segments. Utilising this method, a position resolution of 0.6 mm, both radially and along the azimuthal direction, can be achieved in the most sensitive part of the detector. (author)

  8. An Intriguing Method for Fabricating Arbitrarily Shaped "Matreshka" Hydrogels Using a Self-Healing Template.

    Science.gov (United States)

    Sato, Takeshi; Uto, Koichiro; Aoyagi, Takao; Ebara, Mitsuhiro

    2016-10-25

    This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as "Matreshka" boxes were successfully prepared by simply repeating the "self-healing" and "photo-irradiation" processes. We have also explored the potential of the SHT system for the manipulation of cells.

  9. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model....... In the patient group the EDV calculated using QGS and CAFU showed good agreement for large hearts and higher CAFU values compared with QGS for the smaller hearts. In the larger hearts, ESV was much larger for QGS than for CAFU both in the phantom and patient studies. In the smallest hearts there was good...

  10. Neutron-Gamma Pulse Shape Discrimination With Ne-213 Liquid Scintillator By Using Digital Signal Processing Combined With Similarity Method

    International Nuclear Information System (INIS)

    Mardiyanto

    2008-01-01

    Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method. Measurement of mixed neutron-gamma radiation is difficult because a nuclear detector is usually sensitive to both radiations. A new attempt of neutron-gamma pulse shape discrimination for a NE-213 liquid scintillator is presented by using digital signal processing combined with an off-line similarity method. The output pulse shapes are digitized with a high speed digital oscilloscope. The n-γ discrimination is done by calculating the index of each pulse shape, which is determined by the similarity method, and then fusing it with its corresponding pulse height. Preliminary results demonstrate good separation of neutron and gamma-ray signals from a NE-213 scintillator with a simple digital system. The results were better than those with a conventional rise time method. Figure of Merit is used to determine the quality of discrimination. The figure of merit of the discrimination using digital signal processing combined with off-line similarity method are 1.9; 1.7; 1.1; 1.1; and 0.8; on the other hand by using conventional method the rise time are 0.9; 0.9; 0.9; 0.7; and 0.4 for the equivalent electron energy of 800; 278; 139; 69; and 30 keV. (author)

  11. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  12. A facile one-step method for synthesising a parallelogram-shaped single-crystalline ZnO nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Renyun, E-mail: renyun.zhang@miun.se; Hummelgård, Magnus; Olin, Håkan

    2014-05-01

    Graphical abstract: - Highlights: • A simple method to synthesise ZnO nanosheets is described. • Parallelogram-shaped ZnO nanosheets were obtained with single-crystalline structure. • A specific mechanism of the growth was suggested. - Abstract: ZnO nanosheets are found to be useful in many fields such as sensors and electronics. Non-uniform-shaped ZnO nanosheets are synthesised using several methods; moreover, uniformly shaped ones are less studied. Here, we report on a simple one-step method to synthesise parallelogram-shaped single-crystalline ZnO nanosheets. By controlling the reaction of Zn(NO{sub 3}){sub 2} and hexamethylenetetramine (HMT) in ethanol, average 30 nm-thick nanosheets with a high aspect ratio of 1:100 were obtained. The parallelogram angles were between 97° and 99°. Transmission electron microscopy (TEM) diffraction and X-ray diffraction (XRD) showed that the nanosheets were wurtzite-structured single-crystalline ZnO. Moreover, a growth mechanism of these parallelogram nanosheets is suggested based on the experimental results. These results suggest a new simple solution process to synthesise uniformly shaped ZnO nanosheets allowing large-scale production to be employed.

  13. Exact solutions of the dirac equation for an electron in magnetic field with shape invariant method

    International Nuclear Information System (INIS)

    Setare, M.R.; Hatami, O.

    2008-01-01

    Based on the shape invariance property we obtain exact solutions of the Virac equation for an electron moving in the presence of a certain varying magnetic Geld, then we also show its non-relativistic limit. (authors)

  14. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Science.gov (United States)

    Holmes, Tim; Zanker, Johannes M

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the

  15. New method for preparing a liquid crystal polymer that exhibits linearly polarized white fluorescence

    International Nuclear Information System (INIS)

    Zheng Shijun; Kun, Wang; Kobayashi, Takaomi

    2011-01-01

    With the aim of developing a single-chain white-light-emitting polymer, liquid crystal (LC) polymers with a shish-kebab-type moiety on their cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s main chain were synthesized by Gilch polymerization. They were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarizing optical microscopy (POM). 1 H-NMR indicated that the polymers had a shish-kebab structure, which strongly suppressed the formation of structural defects in the polymers. DSC revealed that the polymers had thermotropic LC properties, indicating that the LC polymers were enantiotropic. XRD showed that the polymers had a mesophase, which implies that they were in a smectic LC phase. A polymer with 'kebabs' of 2,5-bis(4'-alkoxyphenyl)benzene was combined with an aligned polyimide film with orientated microgrooves. The polymer main chain was aligned due to the orientation of the 'kebabs' of the uniform cross-conjugated structure. It lay between the kebabs and the 'shish' of the polymer main chains. The aligned polymer main chain emitted yellow light while and the oriented LC side chains emitted blue light emission. These two emissions resulted in linearly polarized white fluorescence.

  16. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2011-01-01

    Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as "power overshoot". Linear sweep voltammetry (LSV, 1 mV s- 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems. © 2010 Elsevier B.V. All rights reserved.

  17. Particle system based adaptive sampling on spherical parameter space to improve the MDL method for construction of statistical shape models.

    Science.gov (United States)

    Xu, Rui; Zhou, Xiangrong; Hirano, Yasushi; Tachibana, Rie; Hara, Takeshi; Kido, Shoji; Fujita, Hiroshi

    2013-01-01

    Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

  18. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2013-01-01

    Full Text Available Minimum description length (MDL based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs. However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right lungs and 50 cases of livers, (left and right kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

  19. The role of Pleistocene glaciations in shaping the evolution of polar and brown bears. Evidence from a critical review of mitochondrial and nuclear genome analyses.

    Science.gov (United States)

    Hassanin, Alexandre

    2015-07-01

    In this report, I review recent molecular studies dealing with the origin and evolution of polar bears (Ursus maritimus), with special emphasis on their relationships with brown bears (U. arctos). On the basis of mitochondrial and nuclear data, different hypotheses have been proposed, including rapid morphological differentiation of U. maritimus, genetic introgression from U. arctos into U. maritimus, or inversely from U. maritimus into U. arctos, involving either male- or female-mediated gene flow. In the light of available molecular and eco-ethological data, I suggest, firstly, that all divergences among major clades of large bears can be linked to glacial periods, secondly, that polar bears diverged from brown bears before 530 thousand years ago (ka), during one of the three glacial marine isotope stages (MIS) 14, 15.2 or 16, and, thirdly, that genetic introgression had occurred from female polar bears into brown bear populations during at least two glacial periods, at 340 ± 10 ka (MIS 10) in western Europe, and at 155 ± 5 ka (MIS 6) on the ABC islands of southeastern Alaska, and probably also in Beringia and Ireland based on ancient DNA sequences. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Transient Analysis of Dispersive Power-Ground Plate Pairs With Arbitrarily Shaped Antipads by the DGTD Method With Wave Port Excitation

    KAUST Repository

    Li, Ping

    2016-09-09

    A discontinuous Galerkin time-domain (DGTD) method analyzing signal/power integrity on multilayered power-ground parallel plate pairs is proposed. The excitation is realized by introducing wave ports on the antipads where electric/magnetic current sources are represented in terms of the eigenmodes of the antipads. Since closed-forms solutions do not exist for the eigenmodes of the arbitrarily shaped antipads, they have to be calculated using numerical schemes. Spatial orthogonality of the eigenmodes permits determination of each mode\\'s temporal expansion coefficient by integrating the product of the electric field and the mode over the wave port. The temporal mode coefficients are then Fourier transformed to accurately calculate the S-parameters corresponding to different modes. Additionally, to generalize the DGTD to manipulate dispersive media, the auxiliary differential equation method is employed. This is done by introducing a time-dependent polarization volume current as an auxiliary unknown and the constitutive relation between this current and the electric field as an auxiliary equation. Consequently, computationally expensive temporal convolution is avoided. Various numerical examples, which demonstrate the applicability, robustness, and accuracy of the proposed method, are presented.

  1. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2009-03-20

    Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.

  2. Non-coherent continuum scattering as a line polarization mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J., E-mail: tanausu@iac.es, E-mail: rsainz@iac.es, E-mail: jtb@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-03-20

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  3. [A non-invasive glucose measurement method based on orthogonal twin-polarized light and its pilot experimental investigation].

    Science.gov (United States)

    Wang, Hong; Wu, Baoming; Liu, Ding

    2010-04-01

    In order to overcome the existing shortcomings of the non-invasive blood glucose polarized light measurement methods of optical heterodyne detection and direct detection, we present in this paper a new orthogonal twin-polarized light (OTPL) non-invasive blood glucose measurement method, which converts the micro-angle rotated by an optical active substance such as glucose to the energy difference of OTPL, amplifies the signals by the high-sensitivity lock-in amplifier made of relevant principle, controls Faraday coil current to compensate the changes in deflection angle caused by blood glucose, and makes use of the linear relationship between blood glucose concentration and Faraday coil current to calculate blood glucose concentration. In our comparative experiment using the data measured by LX-20 automatic biochemical analyzer as a standard, a 0.9777 correlation coefficient is obtained in glucose concentration experiment, and a 0.952 in serum experiment. The result shows that this method has higher detection sensitivity and accuracy and lays a foundation for the development of practical new type of non-invasive blood glucose tester for diabetic patients.

  4. Investigating preferences for colour-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Directory of Open Access Journals (Sweden)

    Tim eHolmes

    2013-12-01

    Full Text Available Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioural measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA, which has been used as a tool to identify aesthetic preferences (Holmes & Zanker, 2012. In the present study, the GDEA was used to investigate the preferred combination of colour and shape which have been promoted in the Bauhaus arts school. We used the same 3 shapes (square, circle, triangle used by Kandinsky (1923, with the 3 colour palette from the original experiment (A, an extended 7 colour palette (B, and 8 different shape orientation (C. Participants were instructed to look for their preferred circle, triangle or square in displays with 8 stimuli of different shapes, colours and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested 6 participants extensively on the different conditions and found consistent preferences for individuals, but little evidence at the group level for preference consistent with Kandinsky’s claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of colour and shapes, but also that these associations are robust within a single individual. These individual differences go some way towards challenging the claims of the universal preference for colour/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA in experimental aesthetics

  5. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations

    OpenAIRE

    Hamroun , Boussad; Dimofte , Alexandru; Lefevre , Laurent; Mendes , Eduardo

    2010-01-01

    International audience; — In this paper a control algorithm for the reduced port-Controlled Hamiltonian model (PCH) of the shallow water equations (PDEs) is developed. This control is developed using the Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) method on the reduced PCH model without the natural dissipation. It allows to assign desired structure and energy function to the closed loop system. The same control law is then derived using an energy shaping method ba...

  6. Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions

    CERN Document Server

    Del Duca, Vittorio

    2016-01-01

    We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.

  7. Testing for Gender Related Size and Shape Differences of the Human Ear canal using Statistical methods

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Larsen, Rasmus; Ersbøll, Bjarne Kjær

    2002-01-01

    surface models are built by using the anatomical landmarks to warp a template mesh onto all shapes in the training set. Testing the gender related differences is done by initially reducing the dimensionality using principal component analysis of the vertices of the warped meshes. The number of components...

  8. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    Science.gov (United States)

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  9. An Experimental Study on the Shape Changes of TiO2 Nanocrystals Synthesized by Microemulsion-Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 nanocrystals of different shape were successfully synthesized in a new microemulsion system through a solvothermal process. The TiO2 nanocrystals were prepared from the reaction of tetrabutyl titanate (TBT, H2O, and oleic acid (OA, which were used as solvent and surfactant at 300∘C and 240∘C in a stainless steel autoclave. The sphere, polygon, and rhombus-shaped nanocrystals have been prepared at 300∘C and the dot- and- rod shaped nanocrystals have been synthesized at 240∘C. The effect of the reaction time on the shape and size of TiO2 nanocrystals in this method was studied in the present paper. The size distribution of TiO2 nanocrystals prepared at 300∘C for different hours is also studied. In addition, an attempt to describe the mechanism of shape change of TiO2 nanocrystals was presented in this paper.

  10. A new method for 3D thinning of hybrid shaped porous media using artificial intelligence. Application to trabecular bone.

    Science.gov (United States)

    Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ceylan, Murat; Ozbay, Yüksel; Ucan, Osman Nuri

    2012-04-01

    Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.

  11. Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments

    Science.gov (United States)

    Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.

    2014-12-01

    The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with

  12. From global to local statistical shape priors novel methods to obtain accurate reconstruction results with a limited amount of training shapes

    CERN Document Server

    Last, Carsten

    2017-01-01

    This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.

  13. METHOD FOR PROVIDING SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES OF (CO) POLYMERS OF 1,3-TRIMETHYLENE CARBONATE (TMC), SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES, AND THE USE OF THESE STRUCTURES

    NARCIS (Netherlands)

    Grijpma, D.W.; Pêgo, A.P.; Feijen, Jan

    2004-01-01

    The present invention relates to methods for providing shaped biodegradable and elastomeric structures of (co)polymers of 1,3­trimethylene carbonate (TMC) with improved (mechanical) properties which can be used for tissue or tissue component support, generation or regeneration. Such shaped

  14. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  15. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).

    Science.gov (United States)

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Chang, Yanhe

    2013-09-01

    Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°-74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range.

  16. [MORF method for assessment of the size and shape of UHMWPE wear microparticles and nanoparticles in periprosthetic tissues].

    Science.gov (United States)

    Fulín, P; Pokorný, D; Slouf, M; Lapčíková, M; Pavlova, E; Zolotarevová, E

    2011-01-01

    Aseptic loosening of total joint replacement (TJR) due to wear of ultra-high molecular weight polyethylene (UHMWPE) is regarded as one of the major problems in the field of arthroplasty. This work describes a newly developed method, called MORF, which completely describes the morphology of UHMWPE wear particles. The differences in wear particle morphology may help to elucidate individual differences in TJR failures. During the years 2002-2010, a set of 47 typical damaged periprosthetic tissues, coming from 16 TJR revisions, was collected. Isolated on polycarbonate (PC) filters were quantified. Quantification of the particles consisted in determination of their concentration and description of their morphology by means of the newly developed MORF method. Firstly, the micrographs of isolated UHMWPE particles were obtained with a scanning electron microscope (Quanta 200 FEG; FEI) at two magnifications: x1200 and x6000. Secondly, both high- and low-magnification micrographs were processed by a standard image analysis software (program NIS Elements; Laboratory Imaging) in order to obtain basic morphological descriptors. Finally, the results from image analysis of high- and low- magnification micrographs were combined by means of our own program MDISTR in order to obtain correct particle sizes and shapes. In the first stage, the method was applied to 25 samples and yielded an average particle size of 0.51 µm. In the second stage, the method was further improved in order to calculate not only the size of particles but also the shape of descriptors. The improved method was applied to eight samples and gave an average size of particles (equivalent diameter, D) in the range of 0.27 - 0.60 µm, circularity (C) of 0.66-0.85 and elongation (E) of 1.75-1.79, suggesting that the great majority of particles were approximately spherical. Finally, in the third stage, the MORF method was applied to two exceptional samples which contained extremely small wear particles (D = 18.5 nm

  17. A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery

    Directory of Open Access Journals (Sweden)

    Hao Shi

    2018-02-01

    Full Text Available With the rapid development of remote sensing technologies, SAR satellites like China’s Gaofen-3 satellite have more imaging modes and higher resolution. With the availability of high-resolution SAR images, automatic ship target detection has become an important topic in maritime research. In this paper, a novel ship detection method based on gradient and integral features is proposed. This method is mainly composed of three steps. First, in the preprocessing step, a filter is employed to smooth the clutters and the smoothing effect can be adaptive adjusted according to the statistics information of the sub-window. Thus, it can retain details while achieving noise suppression. Second, in the candidate area extraction, a sea-land segmentation method based on gradient enhancement is presented. The integral image method is employed to accelerate computation. Finally, in the ship target identification step, a feature extraction strategy based on Haar-like gradient information and a Radon transform is proposed. This strategy decreases the number of templates found in traditional Haar-like methods. Experiments were performed using Gaofen-3 single-polarization SAR images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency. In addition, this method has the potential for on-board processing.

  18. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  19. Three-dimension Cole-Cole model inversion of induced polarization data based on regularized conjugate gradient method

    Science.gov (United States)

    Xu, Zhengwei

    Modeling of induced polarization (IP) phenomena is important for developing effective methods for remote sensing of subsurface geology and is widely used in mineral exploration. However, the quantitative interpretation of IP data in a complex 3D environment is still a challenging problem of applied geophysics. In this dissertation I use the regularized conjugate gradient method to determine the 3D distribution of the four parameters of the Cole-Cole model based on surface induced polarization (IP) data. This method takes into account the nonlinear nature of both electromagnetic induction (EMI) and IP phenomena. The solution of the 3D IP inverse problem is based on the regularized smooth inversion only. The method was tested on synthetic models with DC conductivity, intrinsic chargeability, time constant, and relaxation parameters, and it was also applied to the practical 3D IP survey data. I demonstrate that the four parameters of the Cole-Cole model, DC electrical resistivity, rho 0 , chargeability, eta time constant, tau and the relaxation parameter, C, can be recovered from the observed IP data simultaneously. There are four Cole-Cole parameters involved in the inversion, in other words, within each cell, there are DC conductivity (sigma0 ), chargeability (eta), time parameters (tau), and relaxation parameters (C) compared to conductivity only, used in EM only inversion. In addition to more inversion parameters used in IP survey, dipole-dipole configuration which requires more sources and receivers. One the other hand, calculating Green tensor and Frechet matrix time consuming and storing them requires a lot of memory. So, I develop parallel computation using MATLAB parallel tool to speed up the calculation.

  20. BLANK SHAPE OPTIMIZATION ON DEEP DRAWING OF A TWIN ELLIPTICAL CUP USING THE REDUCED BASIS TECHNIQUE METHOD

    Directory of Open Access Journals (Sweden)

    Mahdi Hasanzadeh Golshani

    2015-08-01

    Full Text Available In this project thesis, initial blank shape optimization of a twin elliptical cup to reduce earring phenomenon in anisotropic sheet deep drawing process was studied .The purpose of this study is optimization of initial blank for reduction of the ears height value. The optimization process carried out using finite element method approach, which is coupled with Taguchi design of experiments and reduced basis technique methods. The deep drawing process was simulated in FEM software ABAQUS 6.12. The results of optimization show earring height and, in addition, a number of design variables and time of process can be reduced by using this methods. After optimization process with the proposed method, the maximum reduction of the earring height would be from 21.08 mm to 0.07 mm and also it could be reduced to 0 in some of the directions. The proposed optimization design in this article allows the designers to select the practical basis shapes. This leads to obtain better results at the end of the optimization process, to reduce design variables, and also to prevent repeating the optimization steps for indirect shapes.

  1. A novel shape from focus method based on 3D steerable filters for improved performance on treating textureless region

    Science.gov (United States)

    Fan, Tiantian; Yu, Hongbin

    2018-03-01

    A novel shape from focus method combining 3D steerable filter for improved performance on treating textureless region was proposed in this paper. Different from conventional spatial methods focusing on the search of maximum edges' response to estimate the depth map, the currently proposed method took both of the edges' response and the axial imaging blur degree into consideration during treatment. As a result, more robust and accurate identification for the focused location can be achieved, especially when treating textureless objects. Improved performance in depth measurement has been successfully demonstrated from both of the simulation and experiment results.

  2. Joint 2D-DOA and Frequency Estimation for L-Shaped Array Using Iterative Least Squares Method

    Directory of Open Access Journals (Sweden)

    Ling-yun Xu

    2012-01-01

    Full Text Available We introduce an iterative least squares method (ILS for estimating the 2D-DOA and frequency based on L-shaped array. The ILS iteratively finds direction matrix and delay matrix, then 2D-DOA and frequency can be obtained by the least squares method. Without spectral peak searching and pairing, this algorithm works well and pairs the parameters automatically. Moreover, our algorithm has better performance than conventional ESPRIT algorithm and propagator method. The useful behavior of the proposed algorithm is verified by simulations.

  3. Variational Effective Index Method for 3D Vectorial Scattering Problems in Photonics: TE Polarization

    NARCIS (Netherlands)

    Ivanova, Alyona; Stoffer, Remco; Kauppinen, L.J.; Hammer, Manfred

    2009-01-01

    In order to reduce the computational effort we develop a method for 3D-to-2D dimensionality reduction of scattering problems in photonics. Contrary to the `standard' Effective Index Method the effective parameters of the reduced problem are always rigorously defined using the variational technique,

  4. Standard test method for measuring rolling friction characteristics of a spherical shape on a flat horizontal plane

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the use of an angled launch ramp to initiate rolling of a sphere or nearly spherical shape on a flat horizontal surface to determine the rolling friction characteristics of a given spherical shape on a given surface. 1.1.1 Steel balls on a surface plate were used in interlaboratory tests (see Appendix X1). Golf balls on a green, soccer and lacrosse balls on playing surfaces, bowling balls on an a lane, basketballs on hardwood, and marbles on composite surface were tested in the development of this test method, but the test applies to any sphere rolling on any flat horizontal surface. 1.1.2 The rolling friction of spheres on horizontal surfaces is affected by the spherical shape’s stiffness, radius of curvature, surface texture, films on the surface, the nature of the counterface surface; there are many factors to consider. This test method takes all of these factors into consideration. The spherical shape of interest is rolled on the surface of interest using a standard ramp to...

  5. Galvanokinetic polarization method applied to the pitting corrosion study of stainless steels

    International Nuclear Information System (INIS)

    Le Xuan, Q.; Vu Quang, K.

    1992-01-01

    Galvanokinetic (GK) polarisation method was used to study the pitting corrosion of 316L stainless steel in chloride solution. Current scan rate effect on the pitting characteristic parameters was pointed out. Specific relations between current scan rate and some pitting characteristic parameters, such as critical current density I c , stable current density I s , critical time t c , stable time t s , were established. Some advantages of the GK polarisation method were discussed

  6. An Objective Prototype-Based Method for Dual-Polarization Radar Clutter Identification

    OpenAIRE

    Guang Wen; Alain Protat; Hui Xiao

    2017-01-01

    A prototype-based method is developed to discriminate different types of clutter (ground clutter, sea clutter, and insects) from weather echoes using polarimetric measurements and their textures. This method employs a clustering algorithm to generate data groups from the training dataset, each of which is modeled as a weighted Gaussian distribution called a “prototype.” Two classification algorithms are proposed based on the prototypes, namely maximum prototype likelihood classifier (MPLC) an...

  7. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-11-01

    Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

  8. Distribution of conductive minerals as associated with uranium minerals at Dendang Arai sector by induced polarization method

    International Nuclear Information System (INIS)

    Nurdin, M.; Nikijuluw, N.; Subardjo; Sudarto, S.

    2000-01-01

    Based on previous investigation results, a favourable zone of 20-80 meters in wide, 80-240 meters in length and in the direction of East-West to Northwest-Southeast was found. The favourable zone is conductor, associated with sulfide. Induced polarization method has been applied to find vertical and horizontal sulfide distribution. The measurement was conducted in perpendicular to lateral direction of the conductive zone in an interval of 20 meters. Properties measured are apparent resistivity and charge ability. Measurement results indicated the presence of sulfide zone with the position and dip are sub-vertical. Sulfide zones were found on the fault cross-point with the directions being East-West to East South East-West North West by fault is North-South. This anomalies were then represented in 3 (three) dimension tomographic model. (author)

  9. A novel method for shape analysis: deformation of bubbles during wire drawing in doped tungsten

    International Nuclear Information System (INIS)

    Harmat, P.; Bartha, L.; Grosz, T.; Rosta, L.

    2001-01-01

    A novel technique has been developed for monitoring shape and size of microscopic pores, bubbles, second phase particles in deformed PM materials. The anisotropic small angle neutron scattering (ASANS) measurement provides direct visualization of the shape of second phase objects after rolling, swaging, wire drawing. Also in case of mixture of different objects e. g. uniformly elongated bubbles and spherical ones they can be separated and their morphological parameters like relative number density, diameter, aspect ratio can be obtained from the quantitative analysis of ASANS data. Rods and wires from K-AI-Si doped tungsten containing residual porosity and K filled bubbles were studied from 6 mm to 0.2 mm in diameter. The increase of the average aspect ratio (∼1/d) was found to be much slower than expected from the usual theory (∼1/d 3 ). Instead of 'constant volume' assumption, the 'constant length' seems to be reliable. The ASANS investigation revealed also the occurrence of a small amount of spherical bubbles after several steps of wire drawing. (author)

  10. Performance for the hybrid method using stochastic and deterministic searching for shape optimization of electromagnetic devices

    International Nuclear Information System (INIS)

    Yokose, Yoshio; Noguchi, So; Yamashita, Hideo

    2002-01-01

    Stochastic methods and deterministic methods are used for the problem of optimization of electromagnetic devices. The Genetic Algorithms (GAs) are used for one stochastic method in multivariable designs, and the deterministic method uses the gradient method, which is applied sensitivity of the objective function. These two techniques have benefits and faults. In this paper, the characteristics of those techniques are described. Then, research evaluates the technique by which two methods are used together. Next, the results of the comparison are described by applying each method to electromagnetic devices. (Author)

  11. Development and validation of polar RP-HPLC method for screening for ectoine high-yield strains in marine bacteria with green chemistry.

    Science.gov (United States)

    Chen, Jun; Chen, Jianwei; Wang, Sijia; Zhou, Guangmin; Chen, Danqing; Zhang, Huawei; Wang, Hong

    2018-04-02

    A novel, green, rapid, and precise polar RP-HPLC method has been successfully developed and screened for ectoine high-yield strain in marine bacteria. Ectoine is a polar and extremely useful solute which allows microorganisms to survive in extreme environmental salinity. This paper describes a polar-HPLC method employed polar RP-C18 (5 μm, 250 × 4.6 mm) using pure water as the mobile phase and a column temperature of 30 °C, coupled with a flow rate at 1.0 mL/min and detected under a UV detector at wavelength of 210 nm. Our method validation demonstrates excellent linearity (R 2  = 0.9993), accuracy (100.55%), and a limit of detection LOQ and LOD of 0.372 and 0.123 μgmL -1 , respectively. These results clearly indicate that the developed polar RP-HPLC method for the separation and determination of ectoine is superior to earlier protocols.

  12. A comparison of two methods of pulse-shape discrimination for alpha-gamma separation with trans-stilbene

    International Nuclear Information System (INIS)

    Shani, G.; Cojocaru, M.

    1977-01-01

    A method for measurement of low level alpha particles in high level gamma background is investigated. Because of its pulse-shape-discrimination properties and being a solid scintillator, trans-stilbene seems to be the proper scintillator, for this purpose. The investigation was done by measuring the effect of different gamma background level (from very low to very high) on constant alpha count rate. Two different pulse-shape-discrimination systems were used and compared. The Ortec system measures the pulse fall time and supplies a corresponding pulse height and the Elscint system checks whether the pulse is what is expected to be the gamma pulse, or is a longer pulse. Both systems yielded good results and were found to be adequate for alpha-gamma separation with trans-stilbene. (Auth.)

  13. Application of Taguchi method to optimization of surface roughness during precise turning of NiTi shape memory alloy

    Science.gov (United States)

    Kowalczyk, M.

    2017-08-01

    This paper describes the research results of surface quality research after the NiTi shape memory alloy (Nitinol) precise turning by the tools with edges made of polycrystalline diamonds (PCD). Nitinol, a nearly equiatomic nickel-titanium shape memory alloy, has wide applications in the arms industry, military, medicine and aerospace industry, and industrial robots. Due to their specific properties NiTi alloys are known to be difficult-to-machine materials particularly by using conventional techniques. The research trials were conducted for three independent parameters (vc, f, ap) affecting the surface roughness were analyzed. The choice of parameter configurations were performed by factorial design methods using orthogonal plan type L9, with three control factors, changing on three levels, developed by G. Taguchi. S/N ratio and ANOVA analyses were performed to identify the best of cutting parameters influencing surface roughness.

  14. Evaluation of Shape Parameter Effect on the J-R Curve of Curved CT Specimen Using Limit Load Method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, In Hwan; Park, Chi Yong [Korea Hydro Nuclear Power Corporation, Seoul (Korea, Republic of); Seok, Chang Sung; Koo, Jae Mean [SungKyunKwan University, Suwon (Korea, Republic of)

    2014-07-15

    In this study, the effect of shape parameters on the J-R curves of curved CT specimens was evaluated using the limit load method. Fracture toughness tests considering the shape factors L/W and Rm/t of the specimens were also performed. Thereafter, the J-R curves of the curved CT specimens were compared using the J-integral equation proposed in the ASTM (American Society for Testing and Materials) and limit load solution. The J-R curves of the curved CT specimens were also compared with those of the CWP (curved wide plate), which is regarded to be similar to real pipe and standard specimens.. Finally, the effectiveness of the J-R curve of each curved CT specimen was evaluated. The results of this study can be used for assessing the applicability of curved CT specimens in the accurate evaluation of the fracture toughness of real pipes.

  15. Optimization of Linear Permanent Magnet (PM Generator with Triangular-Shaped Magnet for Wave Energy Conversion using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Aamir Hussain

    2016-06-01

    Full Text Available This paper presents the design optimization of linear permanent magnet (PM generator for wave energy conversion using finite element method (FEM. A linear PM generator with triangular-shaped magnet is proposed, which has higher electromagnetic characteristics, superior performance and low weight as compared to conventional linear PM generator with rectangular shaped magnet. The Individual Parameter (IP optimization technique is employed in order to optimize and achieve optimum performance of linear PM generator. The objective function, optimization variables; magnet angle,M_θ(∆ (θ, the pole-width ratio, P_w ratio(τ_p/τ_mz,, and split ratio between translator and stator, δ_a ratio(R_m/R_e, and constraints are defined. The efficiency and its main parts; copper and iron loss are computed using time-stepping FEM. The optimal values after optimization are presented which yields highest efficiency. Key

  16. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method

    Science.gov (United States)

    Yaşar, Emrullah; Yıldırım, Yakup; Zhou, Qin; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Triki, Houria; Biswas, Anjan; Belic, Milivoj

    2017-11-01

    This paper obtains optical soliton solution to perturbed nonlinear Schrödinger's equation by modified simple equation method. There are four types of nonlinear fibers studied in this paper. They are Anti-cubic law, Quadratic-cubic law, Cubic-quintic-septic law and Triple-power law. Dark and singular soliton solutions are derived. Additional solutions such as singular periodic solutions also fall out of the integration scheme.

  17. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    International Nuclear Information System (INIS)

    Schoot, A. J. A. J. van de; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A.; Hoogeman, M. S.; Chai, X.

    2014-01-01

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  18. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    Energy Technology Data Exchange (ETDEWEB)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); Chai, X. [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Palo Alto, California 94305 (United States)

    2014-03-15

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  19. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    Science.gov (United States)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  20. Phase error compensation for a 3-D shape measurement system based on the phase-shifting method

    Science.gov (United States)

    Zhang, Song; Huang, Peisen S.

    2005-11-01

    This paper describes a novel phase error compensation method for reducing the measurement error caused by non-sinusoidal waveforms in the phase-shifting method. For 3D shape measurement systems using commercial video projectors, the non-sinusoidal nature of the projected fringe patterns as a result of the nonlinear gamma curve of the projectors causes significant phase measurement error and therefore shape measurement error. The proposed phase error compensation method is based on our finding that the phase error due to the non-sinusoidal waveform of the fringe patterns depends only on the nonlinearity of the projector's gamma curve. Therefore, if the projector's gamma curve is calibrated and the phase error due to the nonlinearity of the gamma curve is calculated, a look-up-table (LUT) that stores the phase error can be constructed for error compensation. Our experimental results demonstrate that by using the proposed method, the measurement error can be reduced by 10 times. In addition to phase error compensation, a similar method is also proposed to correct the nonsinusoidality of the fringe patterns for the purpose of generating a more accurate flat image of the object for texture mapping. While not relevant to applications in metrology, texture mapping is important for applications in computer vision and computer graphics.

  1. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  2. Methods comparison, transport and distribution of polar herbicides in the Baltic Sea.

    Science.gov (United States)

    Skeff, Wael; Orlikowska, Anna; Schulz-Bull, Detlef E

    2017-01-30

    Two LC-MS/MS methods including different sample preparation and quantitative processes showed a good agreement for analysis of the herbicides MCPA, mecoprop, isoproturon, bentazon and chloridazon, and the metabolite chloridazon-methyl-desphenyl (CMD) in estuarine waters. Due to different sensitivity of the methods only one could be used to analyze marine samples. The transport of these compounds to the Baltic Sea via ten German estuaries and their distribution between coastal water and sediments was studied. The results showed that all selected compounds can be transported to the Baltic Sea (0.9-747ng/L). Chloridazon, bentazon, isoproturon and CMD were detected (0.9-8.9ng/L) in the coastal waters and chloridazon and isorproturon in the sediments (5-136pg/g d.w.). Levels of contaminants in the sediments could be influenced by the total organic carbon content. Concentrations observed in the Baltic Sea are most likely not high enough to cause acute effects, but long term effect studies are strongly recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Boosting Deuteron Polarization in HD Targets: Experience of moving spins between H and D with RF methods during the E06-101 experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiangdong; Bass, Christopher; D' Angelo, Annalisa; Deur, Alexandre; Dezern, Gary; Kageya, Tsuneo; Laine, Vivien; Lowry, Michael; Sandorfi, Andrew; Teachey, Robert; Wang, Haipeng; Whisnant, Charles

    2014-06-01

    Solid HDice targets are polarized by bringing the HD crystal to thermal equilibrium at low temperature and high magnetic field, typically 10-20 mK and 15 Tesla, at Jefferson Lab. In this regime, due to its smaller magnetic moment, the resulting polarization for D is always at least three times smaller than for H. The controlled amount of polarizing catalysts, o-H2 and p-D2, used in the process of reaching a frozen-spin state, further limit the maximum achievable D polarization. Nonetheless, H and D polarizations can be transferred from one to the other by connecting the H and D sub-states of the HD system with RF. In a large target, the RF power needed for such transitions is effectively limited by non-uniformities in the RF field. High efficiency transfers can require substantial RF power levels, and a tuned-RF circuit is needed to prevent large temperature excursions of the holding cryostat. In this paper, we compare the advantages and limitations of two different RF transfer methods to increase D polarization, Forbidden Adiabatic and Saturated Forbidden RF Transitions. The experience with the HD targets used during the recently completed E06-101 experiment in Hall-B of Jefferson Lab is discussed.

  4. Person Recognition Method using Sequential Walking Footprints via Overlapped Foot Shape and Center-Of-Pressure Trajectory

    Directory of Open Access Journals (Sweden)

    Jin-Woo Jung

    2013-08-01

    Full Text Available One emerging biometric identification method is the use of human footprint. However, in the previous research, there were some limitations resulting from the spatial resolution of sensors. One possible method to overcome this limitation is through the use additional information such as dynamic walking information in sequential walking footprint. In this study, we suggest a new person recognition scheme based on both overlapped foot shape and COP (Center Of Pressure trajectory during one-step walking. And, we show the usefulness of the suggested method, obtaining a 98.6% recognition rate in our experiment with eleven people. In addition, we show an application of the suggested method, automatic door-opening system for intelligent residential space.

  5. Efficient polarization analysis for focusing neutron instruments

    Science.gov (United States)

    Stahn, Jochen; Glavic, Artur

    2017-06-01

    Polarized neutrons are a powerful probe to investigate magnetism in condensed matter on length scales from single atomic distances to micrometers. With the ongoing advancement of neutron optics, that allow to transport beams with increased divergence, the demands on neutron polarizes and analyzers have grown as well. The situation becomes especially challenging for new instruments at pulsed sources, where a large wavelength band needs to be polarized to make efficient use of the time structure of the beam. Here we present a polarization analysis concept for highly focused neutron beams that is based on transmission supermirrors that are bend in the shape of equiangular spirals. The method allows polarizations above 95% and good transmission, without negative impact on other beam characteristics. An example of a compact polarizing device already tested on the AMOR reflectometer is presented as well as the concept for the next generation implementation of the technique that will be installed on the Estia instrument being build for the European Spallation Source.

  6. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  7. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  8. Theodolite Polar measurements system and definition of the grid-lines method

    Directory of Open Access Journals (Sweden)

    Andréa de Seixas

    2004-12-01

    Full Text Available The requirements of construction quality, mainly in the car and airplane industries, accelerate the development of new 3D-Measurement Systems and Measurement Processes that make possible the automatic object recording and it’s post-processing on the basis, for example, on deformations. The geometrical reconstruction of objects or surface requires a minimal number of points, which abstracts and will be fulfill through interpolation its exact form and quality of the object in each case. The applications of the laser for the active signalization of a point object in combination with the directional measurement make possible in such way the determination of objects or surfaces, including also, places where the use of artificial targets is dangerous or impossible. This work describes the development of such measurement system based on two measurement robots or a reflector-free measuring tachymeter. The system is capable of reaching the intersections points of a grid-line that is defined in an appropriate coordinate system. The aim of this paper is to present the development of measurement methods that can reconstruct unknown three-dimensional and not signalized objects. The existing deformation-measurement, based on Pointer Theodolite and a Video Theodolite Measurement System and the other reflector-free Tachymeter Measurement System in context with the problematic analysis of deformation will be presented. The grid-lines Methods appear a solution and stand as new alternative for the geometrical reconstruction of the object surfaces. Its definition and preparations in a suitable coordinate system are discussed in detail.

  9. A novel laser air puff and shape profile method for predicting tenderness of broiler breast meat.

    Science.gov (United States)

    Lee, Y S; Owens, C M; Meullenet, J F

    2008-07-01

    The potential application of a new laser air puff system to assess poultry meat tenderness was investigated. Ninety broilers were deboned at either 1.25, 4, or 24 h postmortem. The raw breast fillets were scanned on a conveyor belt longitudinally by a laser distance sensor to obtain overall shape profiles and scanned again with a pressurized source of air (206.8 kPa). The 2 resulting profiles were superimposed to quantify the amount of deformation caused by the application of pressurized air. Five parameters including a height and length of each fillet were calculated and used to establish a model to predict tenderness. Tenderness of cooked fillets was determined instrumentally with the Meullenet-Owens razor shear, Blunt-Meullenet-Owens razor shear, and with sensory analysis. Hardness, Meullenet-Owens razor shear energy, and Blunt-Meullenet-Owens razor shear energy were modeled with the parameters extracted from the air puff system. Predicted values obtained from the models and observed values of individual fillets were subjected to logistic regression to classify fillets into tenderness levels. Tender fillets in the air puff predicted tender group represented 82, 81, and 88% based on hardness, Meullenet-Owens razor shear energy, and Blunt-Meullenet-Owens razor shear energy, respectively. The use of this tool resulted in more than a 20% improvement in the number of tender fillets after classification. The results suggested that this new system could potentially be implemented as an online tool for sorting poultry breast fillets by tenderness levels.

  10. Shaping suvorexant: application of experimental and theoretical methods for driving synthetic designs

    Science.gov (United States)

    McGaughey, Georgia; Bayly, Christopher I.; Cox, Christopher D.; Schreier, John D.; Breslin, Michael J.; Bogusky, Michael; Pitzenberger, Steve; Ball, Richard; Coleman, Paul J.

    2014-01-01

    Dual Orexin Receptor Antagonists (DORA) bind to both the Orexin 1 and 2 receptors. High resolution crystal structures of the Orexin 1 and 2 receptors, both class A GPCRs, were not available at the time of this study, and thus, ligand-based analyses were invoked and successfully applied to the design of DORAs. Computational analysis, ligand based superposition, unbound small-molecule X-ray crystal structures and NMR analysis were utilized to understand the conformational preferences of key DORAs and excellent agreement between these orthogonal approaches was seen in the majority of compounds examined. The predominantly face-to-face (F2F) interaction observed between the distal aromatic rings was the core 3D shape motif in our design principle and was used in the development of compounds. A notable exception, however, was seen between computation and experiment for suvorexant where the molecule exhibits an extended conformation in the unbound small-molecule X-ray structure. Even taking into account solvation effects explicitly in our calculations, we nevertheless find support that the F2F conformation is the bioactive conformation. Using a dominant states approximation for the partition function, we made a comprehensive assessment of the free energies required to adopt both an extended and a F2F conformation of a number of DORAs. Interestingly, we find that only a F2F conformation is consistent with the activities reported.

  11. Control of melt-crystal interface shape during sapphire crystal growth by heat exchanger method

    Science.gov (United States)

    Wu, Ming; Liu, Lijun; Ma, Wencheng

    2017-09-01

    We numerically investigate the melt-crystal interface shape during the early stage of the solidification process when the crystal diameter increases. The contact angle between the melt-crystal interface and the crucible bottom wall is found obtuse during this stage, which is unfavorable for the crystal quality. We found that the obtuse contact angle is caused by the thermal resistance difference between the sapphire crystal and melt as well as the insufficient cooling effect of the crucible bottom. Two approaches are proposed to suppress the obtuse contact angle. The first approach is to increase the emissivity of the outer surface of crucible bottom. The second approach is to install a heat shield near the crucible bottom. The reduction of the emissivity of the heat shield is also favorable for the suppression of the obtuse contact angle. Compared with the increase of the emissivity of the crucible bottom, the installation of a heat shield is a more effective approach to prevent the appearance of an obtuse contact angle for the sake of reliability since a molybdenum heat shield can be reused and will not induce other impurities.

  12. Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods.

    Science.gov (United States)

    Motil, Avi; Davidi, Roy; Hadar, Raanan; Tur, Moshe

    2017-09-18

    It has been recently shown that in stimulated Brillouin amplification (pulsed pump & CW probe) the line-shape of the normalized logarithmic Brillouin Gain Spectrum (BGS) broadens with increasing gain. Most pronounced for short pump pulses, a linewidth increase of ~3 MHz (~1.5 MHz) per dB of additional gain was observed for a pump pulse width of 15 ns (30 ns), respectively. This gain-dependency of the shape of the BGS compromises the accuracy of the otherwise attractive, highly dynamic and distributed slope-assisted BOTDA techniques, where measurand-induced gain variations of a single probe, are converted to strain/temperature values through a calibration factor that depends on the line-shape of the BGS. A previously developed technique with built-in compensation for Brillouin gain variations, namely: the Ratio Double Slope-Assisted BOTDA (RDSA-BOTDA) method, where both slopes of the BGS are interrogated, fails to meet this new challenge of the gain-induced shape dependence of the BGS, resulting, for instance, in significant measurement errors of ~5% per dB of gain change for a 15 ns pump pulse. Here, we propose and demonstrate an extension of the RDSA-BOTDA method, which now offers immunity also to Brillouin gain-dependent line-shape variations. Requiring a prior characterization of the gain-induced line-shape dependency of the fiber and pump-pulse-width in use, this mitigation technique takes advantage of the fact that the sum of the measured logarithmic gains at judiciously chosen two fixed frequency points of the BGS can be used to determine the local peak gain, via a pre-established calibration curve. Based on the deduced correct peak gain, its associated BGS shape can now be used in the application of the previously introduced RDSA-BOTDA technique to obtain error-free results, independent of the gain dependence of the line-shape. The proposed technique has been successfully put to test in an experiment, involving a RDSA-BOTDA measurement of a fiber segment

  13. Geophysical modeling in gold deposit through DC Resistivity and Induced Polarization methods

    Directory of Open Access Journals (Sweden)

    César Augusto Moreira

    Full Text Available Abstract Ore mining fundamentally depends on the definition of its tenor and volume, something extremely complex in disseminated mineralization, as in the case of certain types of deposits of gold and sulfites. This article proposes the use of electrical tomography for definition of a geophysical signature in terms of electrical resistivity and chargeability, in an outcrop of mineralized quartz lode at the end of an inactive gold mine. One of the targets was to analyze the continuity of the mineralized body, the occurrence of new outcrops and the applicability of the method as an auxiliary tool in mineral extraction. Three parallel lines of electrical tomography in a dipole-dipole arrangement, being orthogonal to the orientation of the gold lode, were installed in an area outside the mine. The results allowed the geophysical characterization of the mineralized zone by high resistivity (above 1000Ω.m and high chargeability (above 30mV/V. The results of the 2D inversion models were interpolated in 3D visualization models, which allowed definition of the contour surfaces for the physical parameters measured, and the morphological pattern modeling of the mineralization. The data reveal the existence of a new lode in subsurface, localized 30m to the south of the lode outcrop. The versatility of the acquisition and data processing indicate the application potential of electrical tomography as a criterion for sampling and tenor definition in ore extraction activities, since it is objective and low cost.

  14. Feature selection method based on support vector machine and shape analysis for high-throughput medical data.

    Science.gov (United States)

    Liu, Qiong; Gu, Qiong; Wu, Zhao

    2017-12-01

    Proteomics data analysis based on the mass-spectrometry technique can provide a powerful tool for early diagnosis of tumors and other diseases. It can be used for exploring the features that reflect the difference between samples from high-throughput mass spectrometry data, which are important for the identification of tumor markers. Proteomics mass spectrometry data have the characteristics of too few samples, too many features and noise interference, which pose a great challenge to traditional machine learning methods. Traditional unsupervised dimensionality reduction methods do not utilize the label information effectively, so the subspaces they find may not be the most separable ones of the data. To overcome the shortcomings of traditional methods, in this paper, we present a novel feature selection method based on support vector machine (SVM) and shape analysis. In the process of feature selection, our method considers not only the interaction between features but also the relationship between features and class labels, which improves the classification performance. The experimental results obtained from four groups of proteomics data show that, compared with traditional unsupervised feature extraction methods (i.e., Principal Component Analysis - Procrustes Analysis, PCA-PA), our method not only ensures that fewer features are selected but also ensures a high recognition rate. In addition, compared with the two kinds of multivariate filter methods, i.e., Max-Relevance Min-Redundancy (MRMR) and Fast Correlation-Based Filter (FCBF), our method has a higher recognition rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A semi-automated method for measuring femoral shape to derive version and its comparison with existing methods.

    Science.gov (United States)

    Berryman, F; Pynsent, P; McBryde, C

    2014-11-01

    The measurement of femoral version is important in surgical planning of derotational osteotomies particularly for patients with proximal femoral deformity. It is, however, difficult to measure version accurately and differences of 10° to 15° have been found between repeated measurements. The aim of this work was first to develop a method of measuring femoral version angle where the definition of the neck axis is based on the three-dimensional point cloud making up the neck, second to automate many of the processes involved thus reducing the influence of human error and third to ensure the method could run on freely available software suitable for most computer platforms. A CT scan was performed on 44 cadaveric femurs to generate point clouds of the femoral surfaces. The point clouds were then analysed semi-automatically to determine femoral version angle between a neck axis defined by the bone surface points belonging only to the neck and a femoral condylar axis. The results from the neck fitting method were compared against three other methods typically used in the clinic (Murphy, Reikeras and Lee methods). Version angle measured by the new method gave 19.1° ± 7.3° (mean ± standard deviation) for the set of cadaveric femurs, 3.5° lower than the Murphy method and 6.8° and 11.0° higher than the Reikeras and Lee 2D methods respectively. The results demonstrate a method of measuring femoral version angle incorporating a high level of automation running on free software. Copyright © 2014 John Wiley & Sons, Ltd.

  16. A simple method of calculating power-law velocity profile exponents from experimental data. [for boundary layer shape factor

    Science.gov (United States)

    Allen, J. M.

    1974-01-01

    Analytical expressions for the effects of compressibility and heat transfer on laminar and turbulent shape factors H have been developed. Solving the turbulent equation for the power law velocity profile exponent N has resulted in a simple technique by which the N values of experimental turbulent profiles can be calculated directly from the integral parameters. Thus the data plotting, curve fitting, and slope measuring, which is the normal technique of obtaining experimental N values, is eliminated. The N values obtained by this method should be within the accuracy with which they could be measured.

  17. A new mechanical characterization method for thin film microactuators and its application to NiTiCi shape memory alloy

    International Nuclear Information System (INIS)

    Seward, K P

    1999-01-01

    In an effort to develop a more full characterization tool of shape memory alloys, a new technique is presented for the mechanical characterization of microactuators and applied to SMA thin films. A test instrument was designed to utilize a spring-loaded transducer in measuring displacements with resolution of 1.5 pm and forces with resolution of 0.2 mN. Employing an out-of-plane loading method for freestanding SMA thin films, strain resolution of 30(mu)(epsilon) and stress resolution of 2.5 MPa were achieved. This new testing method is presented against previous SMA characterization methods for purposes of comparison. Four mm long, 2(micro)m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. The fabrication process used to micromachine the ligaments is presented step-by-step, alongside methods of fabrication that failed to produce testable ligaments. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. In terms of recoverable stress and recoverable strain, the ligaments achieved maximum recovery of 700 MPa and 3.0% strain. No permanent deformations were seen in any ligament during deflection measurements. Maximum actuation forces and displacements produced by the 4 mm ligaments situated on 1 cm square test chips were 56 mN and 300(micro)m, respectively. Fatigue analysis of the ligaments showed degradation in recoverable strain from 0.33% to 0.24% with 200,000 cycles, corresponding to deflections of 90(micro)m and forces of 25 mN. Cycling also produced a wavering shape memory effect late in ligament life, leading to broad inconsistencies of as much as 35% deviation from average. Unexpected phenomena like stress-induced martensitic twinning that leads to less recoverable stress and the shape memory behavior of long life devices are addressed. Finally, a model for design of microactuators using shape memory

  18. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  19. A three-dimensional acoustic Boundary Element Method formulation with viscous and thermal losses based on shape function derivatives

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Andersen, Peter Risby

    2018-01-01

    then be modeled with numerical methods that include losses. In recent years, versions of both the Finite Element Method (FEM) and the Boundary Element Method (BEM) including viscous and thermal losses have been developed. This paper deals with an improved formulation in three dimensions of the BEM with losses...... which avoids the calculation of tangential derivatives on the surface by finite differences used in a previous BEM implementation. Instead, the tangential derivatives are obtained from the element shape functions. The improved implementation is demonstrated using an oscillating sphere, where......Sound waves in fluids are subject to viscous and thermal losses, which are particularly relevant in the so-called viscous and thermal boundary layers at the boundaries, with thicknesses in the micrometer range at audible frequencies. Small devices such as acoustic transducers or hearing aids must...

  20. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes.

    Science.gov (United States)

    Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi

    2016-06-01

    The conformational free energy landscape of a system is a fundamental thermodynamic quantity of importance particularly in the study of soft matter and biological systems, in which the entropic contributions play a dominant role. While computational methods to delineate the free energy landscape are routinely used to analyze the relative stability of conformational states, to determine phase boundaries, and to compute ligand-receptor binding energies its use in problems involving the cell membrane is limited. Here, we present an overview of four different free energy methods to study morphological transitions in bilayer membranes, induced either by the action of curvature remodeling proteins or due to the application of external forces. Using a triangulated surface as a model for the cell membrane and using the framework of dynamical triangulation Monte Carlo, we have focused on the methods of Widom insertion, thermodynamic integration, Bennett acceptance scheme, and umbrella sampling and weighted histogram analysis. We have demonstrated how these methods can be employed in a variety of problems involving the cell membrane. Specifically, we have shown that the chemical potential, computed using Widom insertion, and the relative free energies, computed using thermodynamic integration and Bennett acceptance method, are excellent measures to study the transition from curvature sensing to curvature inducing behavior of membrane associated proteins. The umbrella sampling and WHAM analysis has been used to study the thermodynamics of tether formation in cell membranes and the quantitative predictions of the computational model are in excellent agreement with experimental measurements. Furthermore, we also present a method based on WHAM and thermodynamic integration to handle problems related to end-point-catastrophe that are common in most free energy methods.

  1. Single solid phase extraction method for the simultaneous analysis of polar and non-polar pesticides in urine samples by gas chromatography and ultra high pressure liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Cazorla-Reyes, Rocío; Fernández-Moreno, José Luis; Romero-González, Roberto; Frenich, Antonia Garrido; Vidal, José Luis Martínez

    2011-07-15

    A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C(18) cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L(-1) and limits of quantification (LOQs) from 0.003 to 1.452 μg L(-1). For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L(-1) and LOQs ranged from 0.011 to 3.494 μg L(-1). Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L(-1), whereas methiocarb sulfoxide was detected at trace levels in two samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. An error compensation method for a linear array sun sensor with a V-shaped slit

    International Nuclear Information System (INIS)

    Fan, Qiao-yun; Tan, Xiao-feng

    2015-01-01

    Existing methods of improving measurement accuracy, such as polynomial fitting and increasing pixel numbers, cannot guarantee high precision and good miniaturization specifications of a microsun sensor at the same time. Therefore, a novel integrated and accurate error compensation method is proposed. A mathematical error model is established according to the analysis results of all the contributing factors, and the model parameters are calculated through multi-sets simultaneous calibration. The numerical simulation results prove that the calibration method is unaffected by installation errors introduced by the calibration process, and is capable of separating the sensor’s intrinsic and extrinsic parameters precisely, and obtaining accurate and robust intrinsic parameters. In laboratorial calibration, the calibration data are generated by using a two-axis rotation table and a sun simulator. The experimental results show that owing to the proposed error compensation method, the sun sensor’s measurement accuracy is improved by 30 times throughout its field of view (±60°  ×  ±60°), with a RMS error of 0.1°. (paper)

  3. A Method of Timbre-Shape Synthesis Based On Summation of Spherical Curves

    DEFF Research Database (Denmark)

    Putnam, Lance Jonathan

    2014-01-01

    for simultaneous production of sonic tones and graphical curves based on additive synthesis of spherical curves. The spherical curves are generated from a sequence of elemental 3D rotations, similar to a Euler rotation. We show that this method can produce many important two- and three-dimensional curves directly...

  4. An on-line normal-phase high performance liquid chromatography method for the rapid detection of radical scavengers in non-polar food matrixes

    NARCIS (Netherlands)

    Zhang, Q.; Klift, van der E.J.C.; Janssen, H.G.; Beek, van T.A.

    2009-01-01

    An on-line method for the rapid pinpointing of radical scavengers in non-polar mixtures like vegetable oils was developed. To avoid problems with dissolving the sample, normal-phase chromatography on bare silica gel was used with mixtures of hexane and methyl tert-butyl ether as the eluent. The high

  5. Reaction-Forming Method for Producing Near Net-Shape Refractory Metal Carbides

    Energy Technology Data Exchange (ETDEWEB)

    Palmisiano, Marc N.; Jakubenas, Kevin J.; Baranwal, Rita

    2004-07-20

    A method for reaction forming refractory metal carbides. The method involves the fabrication of a glassy carbon preform by casting an organic, resin-based liquid mixture into a mold and subsequently heat treating it in two steps, which cures and pyrolizes the resin resulting in a porous carbon preform. By varying the amounts of the constituents in the organic, resin-based liquid mixture, control over the density of the carbon preform is obtained. Control of the density and microstructure of the carbon preform allows for determination of the microstructure and properties of the refractory metal carbide material produced. The glassy carbon preform is placed on a bed of refractory metal or refractory metal--silicon alloy. The pieces are heated above the melting point of the metal or alloy. The molten metal wicks inside the porous carbon preform and reacts, forming the refractory metal carbide or refractory metal carbide plus a minor secondary phase.

  6. Hybrid Methods and Atomistic Models to Explore Free Energies, Rates and Pathways of Protein Shape Changes

    DEFF Research Database (Denmark)

    Wang, Yong

    energy well, e.g. the drug residence time. In Chapter 6, we developed an atomistic hybrid model by integration of physics-based and structure-based potentials in the context of Monte Carlo software packages. We showed the ability of our models to distinguish the folding mechanisms of four topologically...... of simulations. By testing in a simple model system and applying in a case of T4L binding/unbinding with two dierent ligands, we showed that the pace adaptive scheme can improve the reliability and accuracy of kinetics estimation, importantly without the need of extra computational resources. So this strategy...... was tested again in the calculation of the unbinding time of T4L-benzene. The results suggest this hybrid method can obtain similar results as infrequent metadynamics but with less computational resources. Thus it is promising to apply this hybrid method to calculate kinetics of escaping from a deep free...

  7. Balancing a U-Shaped Assembly Line by Applying Nested Partitions Method

    Energy Technology Data Exchange (ETDEWEB)

    Bhagwat, Nikhil V. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    In this study, we applied the Nested Partitions method to a U-line balancing problem and conducted experiments to evaluate the application. From the results, it is quite evident that the Nested Partitions method provided near optimal solutions (optimal in some cases). Besides, the execution time is quite short as compared to the Branch and Bound algorithm. However, for larger data sets, the algorithm took significantly longer times for execution. One of the reasons could be the way in which the random samples are generated. In the present study, a random sample is a solution in itself which requires assignment of tasks to various stations. The time taken to assign tasks to stations is directly proportional to the number of tasks. Thus, if the number of tasks increases, the time taken to generate random samples for the different regions also increases. The performance index for the Nested Partitions method in the present study was the number of stations in the random solutions (samples) generated. The total idle time for the samples can be used as another performance index. ULINO method is known to have used a combination of bounds to come up with good solutions. This approach of combining different performance indices can be used to evaluate the random samples and obtain even better solutions. Here, we used deterministic time values for the tasks. In industries where majority of tasks are performed manually, the stochastic version of the problem could be of vital importance. Experimenting with different objective functions (No. of stations was used in this study) could be of some significance to some industries where in the cost associated with creation of a new station is not the same. For such industries, the results obtained by using the present approach will not be of much value. Labor costs, task incompletion costs or a combination of those can be effectively used as alternate objective functions.

  8. Two- and three-dimensional shape fabric analysis by the intercept method in grey levels

    Science.gov (United States)

    Launeau, Patrick; Archanjo, Carlos J.; Picard, David; Arbaret, Laurent; Robin, Pierre-Yves

    2010-09-01

    The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field.

  9. Towards and FVE-FAC Method for Determining Thermocapillary Effects on Weld Pool Shape

    Science.gov (United States)

    Canright, David; Henson, Van Emden

    1996-01-01

    Several practical materials processes, e.g., welding, float-zone purification, and Czochralski crystal growth, involve a pool of molten metal with a free surface, with strong temperature gradients along the surface. In some cases, the resulting thermocapillary flow is vigorous enough to convect heat toward the edges of the pool, increasing the driving force in a sort of positive feedback. In this work we examine this mechanism and its effect on the solid-liquid interface through a model problem: a half space of pure substance with concentrated axisymmetric surface heating, where surface tension is strong enough to keep the liquid free surface flat. The numerical method proposed for this problem utilizes a finite volume element (FVE) discretization in cylindrical coordinates. Because of the axisymmetric nature of the model problem, the control volumes used are torroidal prisms, formed by taking a polygonal cross-section in the (r, z) plane and sweeping it completely around the z-axis. Conservation of energy (in the solid), and conservation of energy, momentum, and mass (in the liquid) are enforced globally by integrating these quantities and enforcing conservation over each control volume. Judicious application of the Divergence Theorem and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads to an implicit algebraic system to be solved at each time step. It is known that near the boundary of the pool, that is, near the solid-liquid interface, the full conduction-convection solution will require extremely fine length scales to resolve the physical behavior of the system. Furthermore, this boundary moves as a function of time. Accordingly, we develop the foundation of an adaptive refinement scheme based on the principles of Fast Adaptive Composite Grid methods (FAC). Implementation of the method and numerical results will appear in a later report.

  10. Geometric Methods for ATR: Shape Spaces, Metrics, Object/Image Relations, and Shapelets

    Science.gov (United States)

    2007-09-30

    and only if Kr - 4 C L r - 3 C H r - l C r This fact and the incidence relations given in Theorem I, §5, Chapter VII of Hodge and Pedoe [4] give us our...Springer-Verlag, 1992. 4. W.V.D. Hodge and D. Pedoe , Methods of Algebraic Geometry, nos. 1, 2, and 3, in Mathematical Library Series, Cambridge...and Pedoe [5] give us our object-image relations. Theorem 2.4. Let Pi = (xi, yi, zi), 1 < i < r be an object configuration with corresponding matrix M

  11. Effects of scan rate on the corrosion behavior SS 304 stainless steel in the nanofluid measured by Tafel polarization methods

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi [PSTNT-BATAN Jl. Tamansari 71 Bandung 40132, Indonesia, djokohp@batan.go.id (Indonesia)

    2015-09-30

    The Effects of scan rate on the Tafel polarization curve that is obtained to determine corrosion rate are conducted. The tafel polarization curves are obtained at different scan rates for Stainless Steel 304 in nanofluids contain 0.01 gpl nano particle ZrO{sub 2}. The corrosion stainless steel in nanofluid contains adm+0.01 gpl ZrO{sub 2} nanoparticles at different scan rate was performed by Tafel polarization. The results show that according corrosion potential examination of the stainless steel in nanofluid media 0.01gpl ZrO{sub 2} nanoparticle was actively corroded. The value of cathodic Tafel slope stainless steel in nanofluid at different scan rate relatively unchanged after polarization testing. Mean while the value of anodic Tafel slope stainless steel in nanofluid increase at different scan rate. The results of Tafel polarization technique show that corrosion rate of stainless steel in nanofluid increase with increasing scan rate. X ray diffraction examination of stainless steel after Tafel polarization depict that γ Fe phase is major phase in the surface of alloy.

  12. A generalized Fellner-Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models.

    Science.gov (United States)

    Wood, Simon N; Fasiolo, Matteo

    2017-12-01

    We consider the optimization of smoothing parameters and variance components in models with a regular log likelihood subject to quadratic penalization of the model coefficients, via a generalization of the method of Fellner (1986) and Schall (1991). In particular: (i) we generalize the original method to the case of penalties that are linear in several smoothing parameters, thereby covering the important cases of tensor product and adaptive smoothers; (ii) we show why the method's steps increase the restricted marginal likelihood of the model, that it tends to converge faster than the EM algorithm, or obvious accelerations of this, and investigate its relation to Newton optimization; (iii) we generalize the method to any Fisher regular likelihood. The method represents a considerable simplification over existing methods of estimating smoothing parameters in the context of regular likelihoods, without sacrificing generality: for example, it is only necessary to compute with the same first and second derivatives of the log-likelihood required for coefficient estimation, and not with the third or fourth order derivatives required by alternative approaches. Examples are provided which would have been impossible or impractical with pre-existing Fellner-Schall methods, along with an example of a Tweedie location, scale and shape model which would be a challenge for alternative methods, and a sparse additive modeling example where the method facilitates computational efficiency gains of several orders of magnitude. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  13. Estimation of wood properties using pin pushing in method with various shapes of the penetration pin

    Directory of Open Access Journals (Sweden)

    Michal Kloiber

    2009-01-01

    Full Text Available The existing penetration methods for the identification of the density of wood that forms a part of structures do not make it possible to describe the density in the entire element profile but only on its surface. However, wood density changes throughout the profile which affects the accuracy of the density determination. The instruments used until now based on the principle of a pin shot into the material thus needed to be supplemented with a test during which the pin would be pushed at least to the centre of the measured element. Pins of 3 mm in diameter were manufactured with a special jig fastening them to a universal testing machine. Using the testing machine, the force required to push the pin in was measured at a constant travel speed. It has been found out that the mechanical work needed for the pin penetration correlates very well with the wood density determined in the surroundings of the place where the pin was pushed in.

  14. Development of X-ray Computed Tomography (CT) Imaging Method for the Measurement of Complex 3D Ice Shapes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — When ice accretes on a wing or other aerodynamic surface, it can produce extremely complex shapes. These are comprised of well-known shapes such as horns and...

  15. Shape Memory Alloy Rock Splitters (SMARS) - A Non-Explosive Method for Fracturing Planetary Rocklike Materials and Minerals

    Science.gov (United States)

    Benafan, Othmane; Noebe, Ronald D.; Halsmer, Timothy J.

    2015-01-01

    A static rock splitter device based on high-force, high-temperature shape memory alloys (HTSMAs) was developed for space related applications requiring controlled geologic excavation in planetary bodies such as the Moon, Mars, and near-Earth asteroids. The device, hereafter referred to as the shape memory alloy rock splitter (SMARS), consisted of active (expanding) elements made of Ni50.3Ti29.7Hf20 (at.%) that generate extremely large forces in response to thermal input. The preshaping (training) of these elements was accomplished using isothermal, isobaric and cyclic training methods, which resulted in active components capable of generating stresses in excess of 1.5 GPa. The corresponding strains (or displacements) were also evaluated and were found to be 2 to 3 percent, essential to rock fracturing and/or splitting when placed in a borehole. SMARS performance was evaluated using a test bed consisting of a temperature controller, custom heaters and heater holders, and an enclosure for rock placement and breakage. The SMARS system was evaluated using various rock types including igneous rocks (e.g., basalt, quartz, granite) and sedimentary rocks (e.g., sandstone, limestone).

  16. How community environment shapes physical activity: perceptions revealed through the PhotoVoice method.

    Science.gov (United States)

    Belon, Ana Paula; Nieuwendyk, Laura M; Vallianatos, Helen; Nykiforuk, Candace I J

    2014-09-01

    A growing body of evidence shows that community environment plays an important role in individuals' physical activity engagement. However, while attributes of the physical environment are widely investigated, sociocultural, political, and economic aspects of the environment are often neglected. This article helps to fill these knowledge gaps by providing a more comprehensive understanding of multiple dimensions of the community environment relative to physical activity. The purpose of this study was to qualitatively explore how people's experiences and perceptions of their community environments affect their abilities to engage in physical activity. A PhotoVoice method was used to identify barriers to and opportunities for physical activity among residents in four communities in the province of Alberta, Canada, in 2009. After taking pictures, the thirty-five participants shared their perceptions of those opportunities and barriers in their community environments during individual interviews. Using the Analysis Grid for Environments Linked to Obesity (ANGELO) framework, themes emerging from these photo-elicited interviews were organized in four environment types: physical, sociocultural, economic, and political. The data show that themes linked to the physical (56.6%) and sociocultural (31.4%) environments were discussed more frequently than the themes of the economic (5.9%) and political (6.1%) environments. Participants identified nuanced barriers and opportunities for physical activity, which are illustrated by their quotes and photographs. The findings suggest that a myriad of factors from physical, sociocultural, economic, and political environments influence people's abilities to be physically active in their communities. Therefore, adoption of a broad, ecological perspective is needed to address the barriers and build upon the opportunities described by participants to make communities more healthy and active. Copyright © 2014 Elsevier Ltd. All rights

  17. Efficient tight focusing of laser beams optimally matched to their thin-film linear-to-radial polarization conversion: Method, implementation, and field near focus

    Science.gov (United States)

    Sedukhin, Andrey G.; Poleshchuk, Alexander G.

    2018-01-01

    A method is proposed for efficient, rotationally symmetric, tight mirror focusing of laser beams that is optimally matched to their thin-film linear-to-radial polarization conversion by a constant near-Brewster angle of incidence of the beams onto a polarizing element. Two optical systems and their modifications are considered that are based on this method and on the use of Toraldo filters. If focusing components of these systems operate in media with refractive indices equal to that of the focal region, they take the form of an axicon and an annular reflector generated by the revolution of an inclined parabola around the optical axis. Vectorial formulas for calculating the diffracted field near the focus of these systems are derived. Also presented are the results of designing a thin-film obliquely illuminated polarizer and a numerical simulation of deep UV laser beams generated by one of the systems and focused in an immersion liquid. The transverse and axial sizes of a needle longitudinally polarized field generated by the system with a simplest phase Toraldo filter were found to be 0.39 λ and 10.5 λ, with λ being the wavelength in the immersion liquid.

  18. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Bonaventure Gustavo

    2009-11-01

    Full Text Available Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA and small polar molecules (e.g., jasmonic acid (JA, salicylic acid (SA containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the

  19. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS.

    Science.gov (United States)

    Kallenbach, Mario; Baldwin, Ian T; Bonaventure, Gustavo

    2009-11-25

    Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at least one free carboxyl group.

  20. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  1. Enhanced Biogeography-based Optimization: A New Method for Size and Shape Optimization of Truss Structures with Natural Frequency Constraints

    Directory of Open Access Journals (Sweden)

    Seyed Heja Seyed Taheri

    Full Text Available Abstract The current study presents an enhanced biogeography-based optimization (EBBO algorithm for size and shape optimization of truss structures with natural frequency constraints. The BBO algorithm is one of the recently developed meta-heuristic algorithms inspired by the mathematical models in biogeography science and is based on the migration behavior of species among the habitats in the nature. In this study, the overall performance of the standard BBO algorithm is enhanced by new migration and mutation operators. The efficiency of the proposed algorithm is demonstrated by utilizing four benchmark truss design examples with frequency constraints. Numerical results show that the proposed EBBO algorithm not only significantly improves the performance of the standard BBO algorithm, but also finds competitive results compared with recently developed optimization methods.

  2. Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides

    Science.gov (United States)

    kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam

    2018-03-01

    The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.

  3. A fuzzy logic-based damage identification method for simply-supported bridge using modal shape ratios

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2012-08-01

    Full Text Available A fuzzy logic system (FLS is established for damage identification of simply supported bridge. A novel damage indicator is developed based on ratios of mode shape components between before and after damage. Numerical simulation of a simply-supported bridge is presented to demonstrate the memory, inference and anti-noise ability of the proposed method. The bridge is divided into eight elements and nine nodes, the damage indicator vector at characteristic nodes is used as the input measurement of FLS. Results reveal that FLS can detect damage of training patterns with an accuracy of 100%. Aiming at other test patterns, the FLS also possesses favorable inference ability, the identification accuracy for single damage location is up to 93.75%. Tests with noise simulated data show that the FLS possesses favorable anti-noise ability.

  4. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  5. Metabolomic method: UPLC-q-ToF polar and non-polar metabolites in the healthy rat cerebellum using an in-vial dual extraction.

    Directory of Open Access Journals (Sweden)

    Amera A Ebshiana

    Full Text Available Unbiased metabolomic analysis of biological samples is a powerful and increasingly commonly utilised tool, especially for the analysis of bio-fluids to identify candidate biomarkers. To date however only a small number of metabolomic studies have been applied to studying the metabolite composition of tissue samples, this is due, in part to a number of technical challenges including scarcity of material and difficulty in extracting metabolites. The aim of this study was to develop a method for maximising the biological information obtained from small tissue samples by optimising sample preparation, LC-MS analysis and metabolite identification. Here we describe an in-vial dual extraction (IVDE method, with reversed phase and hydrophilic liquid interaction chromatography (HILIC which reproducibly measured over 4,000 metabolite features from as little as 3mg of brain tissue. The aqueous phase was analysed in positive and negative modes following HILIC separation in which 2,838 metabolite features were consistently measured including amino acids, sugars and purine bases. The non-aqueous phase was also analysed in positive and negative modes following reversed phase separation gradients respectively from which 1,183 metabolite features were consistently measured representing metabolites such as phosphatidylcholines, sphingolipids and triacylglycerides. The described metabolomics method includes a database for 200 metabolites, retention time, mass and relative intensity, and presents the basal metabolite composition for brain tissue in the healthy rat cerebellum.

  6. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  7. Duality based contact shape optimization

    DEFF Research Database (Denmark)

    Vondrák, Vít; Dostal, Zdenek; Rasmussen, John

    2001-01-01

    An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization.......An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization....

  8. Characterization of textural and hydric heterogeneities in argillaceous geo-materials using induced polarization method: application to the excavation damaged zone (EDZ) of the Tournemire experimental station

    International Nuclear Information System (INIS)

    Okay, Gonca

    2011-01-01

    This Ph-D thesis investigates the potential of clay rocks for deep geological disposal of radioactive waste. Underground excavations are responsible in their vicinity a region, where the clay-rock is damaged or disturbed. This region must to be characterized to ensure the safety of repositories. The extension of the excavation damaged zone (EDZ) and its evolution over time have been investigated thought electrical resistivity and induced polarization methods from three galleries belonging to the French Institute of Radioprotection and Nuclear Safety (IRSN)'s experimental underground research laboratory of Tournemire (Aveyron, France). Time domain induced polarisation indicates the presence of mineralization (e.g., especially pyrite) located in the structural discontinuities such as tectonic fractures (mm-cm), tectonic fault (m) and calcareous nodules (cm). Combined electrical resistivity and Induced Polarization methods show the possibility to delineate textural changes associated to desaturation of the clay-rock induced by the ventilation of galleries. The impact of the desaturation is particularly observed on the gallery's walls. In addition, Spectral Induced Polarization (SIP) tomography results can be used to discriminate the responses of the de-saturated zones from the fractured zones. We have performed laboratory experiments (in the range 1.4 mHz - 12 kHz) using saturated unconsolidated sand-clay mixtures. The results illustrate that the amplitude of polarization is strongly affected by the surface properties of these mixtures (e.g., cation exchange capacity, specific surface area) and by the volumetric clay content. However, the amplitude of polarization is independent of the concentration of electrolyte. The SIP response is also strongly sensitive to the mineralogy of the clays. (author)

  9. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  10. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Stoner, Mary Cecilia; Hehir, Austin R.; Ivanco, Marie L.; Domack, Marcia S.

    2016-01-01

    This cost-benefit analysis assesses the benefits of the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. These preliminary, rough order-of-magnitude results report a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Production cost savings of 35 to 58 percent were reported over the composite manufacturing technique used in this study for comparison; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. A case study compared these three alternatives for manufacturing a cylinder of specified geometry, with particular focus placed on production costs and process complexity, with cost analyses performed by the analogy and parametric methods. Furthermore, a scalability study was conducted for three tank diameters to assess the highest potential payoff of the ANNST process for manufacture of large-diameter cryogenic tanks. The analytical hierarchy process (AHP) was subsequently used with a group of selected subject matter experts to assess the value of the various benefits achieved by the ANNST method for potential stakeholders. The AHP study results revealed that decreased final cylinder mass and quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.

  11. Pair Approximation for Polarization Interaction and Adiabatic Nuclear and Electronic Sampling Method for Fluids with Dipole Polarizability

    Czech Academy of Sciences Publication Activity Database

    Předota, Milan; Cummings, P. T.; Chialvo, A. A.

    2002-01-01

    Roč. 100, č. 16 (2002), s. 2703-2717 ISSN 0026-8976 Grant - others:DE(US) AC05-00OR22725 Keywords : polarization interaction * Monte Carlo Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.617, year: 2002

  12. Pulsed Polarization-Based NOx Sensors of YSZ Films Produced by the Aerosol Deposition Method and by Screen-Printing.

    Science.gov (United States)

    Exner, Jörg; Albrecht, Gaby; Schönauer-Kamin, Daniela; Kita, Jaroslaw; Moos, Ralf

    2017-07-26

    The pulsed polarization technique on solid electrolytes is based on alternating potential pulses interrupted by self-discharge pauses. Since even small concentrations of nitrogen oxides (NO x ) in the ppm range significantly change the polarization and discharge behavior, pulsed polarization sensors are well suited to measure low amounts of NO x . In contrast to all previous investigations, planar pulsed polarization sensors were built using an electrolyte thick film and platinum interdigital electrodes on alumina substrates. Two different sensor layouts were investigated, the first with buried Pt electrodes under the electrolyte and the second one with conventional overlying Pt electrodes. Electrolyte thick films were either formed by aerosol deposition or by screen-printing, therefore exhibiting a dense or porous microstructure, respectively. For screen-printed electrolytes, the influence of the electrolyte resistance on the NO x sensing ability was investigated as well. Sensors with buried electrodes showed little to no response even at higher NO x concentrations, in good agreement with the intended sensor mechanism. Electrolyte films with overlying electrodes, however, allowed the quantitative detection of NO x . In particular, aerosol deposited electrolytes exhibited high sensitivities with a sensor output signal Δ U of 50 mV and 75 mV for 3 ppm of NO and NO₂, respectively. For screen-printed electrolytes, a clear trend indicated a decrease in sensitivity with increased electrolyte resistance.

  13. An investigation of fabric and of particle shape in railway ballast using X-ray CT and the discrete element method

    OpenAIRE

    Ahmed, S.

    2014-01-01

    The mechanical behaviour of uncemented granular matter is influenced by the grain shape (i.e. form, angularity and concavity) and the material’s fabric (i.e. the spatial arrangement of particles and contacts). Discrete element modelling has been used in the past to compare different shaped particles (e.g. spheres, ellipsoids, etc.) but without any clear quantitative link to the shape of real materials. Existing methods of direct observation of fabric are restricted to sands (i.e. in the sub-m...

  14. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  15. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    OpenAIRE

    Kallenbach, Mario; Baldwin, Ian T; Bonaventure, Gustavo

    2009-01-01

    Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enri...

  16. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  17. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.

    Science.gov (United States)

    Horio, Takehiko; Yasuda, Masatoshi; Matsusaka, Shuji

    2014-10-01

    Powder flowability of microcrystalline cellulose particles having different particle shapes, whose aspect ratios ranged from 1.8 to 6.4, was measured using the vibration shear tube method. Particles lubricated with magnesium stearate were also investigated in order to evaluate the effect of surface modification on powder flowability. Particles were discharged through a narrow gap between a vibrating tube edge and a flat bottom surface, where each particle experienced high shear forces, thus, overcoming adhesion and friction forces. Vibration amplitude was increased at a constant rate during measurement and the masses of the discharged particles were measured at consistent time intervals. Flowability profiles, i.e., the relationships between the mass flow rates of the discharged particles and their vibration accelerations, were obtained from these measurements. Critical vibration accelerations and characteristic mass flow rates were then determined from flowability profiles in order to evaluate static and dynamic friction properties. The results were compared with those obtained using conventional methods. It was found that angle of repose and compressibility were related to static and dynamic friction properties. Furthermore, it was found that particle aspect ratio more significantly affects powder flowability than does lubrication with magnesium stearate. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    Science.gov (United States)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  19. Polarized absorption in determination of impurities in olive oil

    Science.gov (United States)

    Alias, A. N.; Zabidi, Z. M.; Yaacob, Y.; Amir, I. S.; Alshurdin, S. H. N.; Aini, N. A.

    2017-08-01

    The effect of impurities in olive oil blending with palm oil was characterized using polarized absorption method. Polarized absorption was based on the absorption of light which vibrating in a particular plane to pass through the sample. This polarized light allowed the molecule to absorb at the specific orientation. There were four samples have been prepared that were 100:0, 70:30, 50:50 and 0:100 with volume ratio of the olives to palm oil. Two linear polarizers were mounting between the samples in order to get linearly polarized. This specific orientation was affected the absorption spectra of the sample. The results have shown that the analyzing polarizer with angle 00 has bell shape spectra. All the orientation of analyzing polarizer had shown the maximum current output at 100% olive oil. Whereas 100% palm oil has shown the minimum current output. The changing in absorption spectra indicates that the anisotropic properties of each sample were different due to the present of impurities.

  20. H-Shaped Multiple Linear Motor Drive Platform Control System Design Based on an Inverse System Method

    NARCIS (Netherlands)

    Qin, Caiyan; Zhang, Chaoning; Lu, H.

    2017-01-01

    Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three) permanent magnet

  1. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  2. The effect of the shape function on small-angle scattering analysis by the maximum entropy method

    Energy Technology Data Exchange (ETDEWEB)

    Jemian, P.R. [Argonne National Lab., IL (United States); Allen, A.J. [Univ. of Maryland, College Park, MD (United States). Department of Physics]|[National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1992-09-15

    Analysis of small-angle scattering data to obtain a particle size distribution is dependent upon the shape function used to model the scattering. Using a maximum entropy analysis of small-angle scattering data, the effect of shape function selection on obtained size distribution is demonstrated using three different shape functions to describe the same scattering data from each of two steels. The alloys have been revealed by electron microscopy to contain a distribution of randomly oriented and mainly non-interacting, irregular, ellipsoidal precipitates. Comparison is made between the different forms of the shape function. Effect of an incident wavelength distribution is also shown. The importance of testing appropriate shape functions and validating these against other microstructural studies is discussed.

  3. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi [Departement of Physics, UniversitasGadjahMada, Yogyakarta, 55281 Indonesia (Indonesia); Departement of Physics, Lampung University, Bandar Lampung (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,; Suharyadi, Edi [Departement of Physics, UniversitasGadjahMada, Yogyakarta, 55281 Indonesia (Indonesia); Nanomaterials Research Group, UniversitasGadjahMada, Yogyakarta, 55281 Indonesia (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  4. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Department of Physics, Lampung University, Bandar Lampung (Indonesia); Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,, E-mail: harsojougm@ugm.ac.id; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  5. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Science.gov (United States)

    Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  6. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    Science.gov (United States)

    Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  7. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  8. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    International Nuclear Information System (INIS)

    Junaidi; Yunus, Muhammad; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  9. Robust wafer identification recognition based on asterisk-shape filter and high-low score comparison method.

    Science.gov (United States)

    Hsu, Wei-Chih; Yu, Tsan-Ying; Chen, Kuan-Liang

    2009-12-10

    Wafer identifications (wafer ID) can be used to identify wafers from each other so that wafer processing can be traced easily. Wafer ID recognition is one of the problems of optical character recognition. The process to recognize wafer IDs is similar to that used in recognizing car license-plate characters. However, due to some unique characteristics, such as the irregular space between two characters and the unsuccessive strokes of wafer ID, it will not get a good result to recognize wafer ID by directly utilizing the approaches used in car license-plate character recognition. Wafer ID scratches are engraved by a laser scribe almost along the following four fixed directions: horizontal, vertical, plus 45 degrees , and minus 45 degrees orientations. The closer to the center line of a wafer ID scratch, the higher the gray level will be. These and other characteristics increase the difficulty to recognize the wafer ID. In this paper a wafer ID recognition scheme based on an asterisk-shape filter and a high-low score comparison method is proposed to cope with the serious influence of uneven luminance and make recognition more efficiently. Our proposed approach consists of some processing stages. Especially in the final recognition stage, a template-matching method combined with stroke analysis is used as a recognizing scheme. This is because wafer IDs are composed of Semiconductor Equipment and Materials International (SEMI) standard Arabic numbers and English alphabets, and thus the template ID images are easy to obtain. Furthermore, compared with the approach that requires prior training, such as a support vector machine, which often needs a large amount of training image samples, no prior training is required for our approach. The testing results show that our proposed scheme can efficiently and correctly segment out and recognize the wafer ID with high performance.

  10. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  11. An Intriguing Method for Fabricating Arbitrarily Shaped “Matreshka” Hydrogels Using a Self-Healing Template

    Directory of Open Access Journals (Sweden)

    Takeshi Sato

    2016-10-01

    Full Text Available This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT. A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA, and then ultraviolet light (UV crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as “Matreshka” boxes were successfully prepared by simply repeating the “self-healing” and “photo-irradiation” processes. We have also explored the potential of the SHT system for the manipulation of cells.

  12. Fast and sensitive method to determine parabens by capillary electrophoresis using automatic reverse electrode polarity stacking mode: application to hair samples.

    Science.gov (United States)

    Sako, Alysson V F; Dolzan, Maressa D; Micke, Gustavo Amadeu

    2015-09-01

    This paper describes a fast and sensitive method for the determination of methyl, ethyl, propyl, and butylparaben in hair samples by capillary electrophoresis using automatic reverse electrode polarity stacking mode. In the proposed method, solutions are injected using the flush command of the analysis software (940 mbar) and the polarity switching is carried out automatically immediately after the sample injection. The advantages compared with conventional stacking methods are the increased analytical frequency, repeatability, and inter-day precision. All analyses were performed in a fused silica capillary (50 cm, 41.5 cm in effective length, 50 μm i.d.), and the background electrolyte was composed of 20 mmol L(-1) sodium tetraborate in 10 % of methanol, pH 9.3. For the reverse polarity, -25 kV/35 s was applied followed by application of +30 kV for the electrophoretic run. Temperature was set at 20 °C, and all analytes were monitored at 297 nm. The method showed acceptable linearity (r (2) > 0.997) in the studied range of 0.1-5.0 mg L(-1), limits of detection below 0.017 mg L(-1), and inter-day, intra-day, and instrumental precision better than 6.2, 3.6, and 4.6 %, respectively. Considering parabens is widely used as a preservative in many products and the reported possibility of damage to the hair and also to human health caused by these compounds, the proposed method was applied to evaluate the adsorption of parabens in hair samples. The results indicate that there is a greater adsorption of methylparaben compared to the other parabens tested and also dyed hairs had a greater adsorption capacity for parabens than natural hairs.

  13. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    Science.gov (United States)

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2018-02-01

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  14. Precision casting into disposable ceramic mold – a high efficiency method of production of castings of irregular shape

    OpenAIRE

    Уваров, Б. И.; Лущик, П. Е.; Андриц, А. А.; Долгий, Л. П.; Заблоцкий, А. В.

    2016-01-01

    The article shows the advantages and disadvantages of precision casting into disposable ceramic molds. The high quality shaped castings produced by modernized ceramic molding process are proved the reliability and prospects of this advanced technology.

  15. PRECISION CASTING INTO DISPOSABLE CERAMIC MOLD – A HIGH EFFICIENCY METHOD OF PRODUCTION OF CASTINGS OF IRREGULAR SHAPE

    Directory of Open Access Journals (Sweden)

    B. I. Uvarov

    2016-01-01

    Full Text Available The article shows the advantages and disadvantages of precision casting into disposable ceramic molds. The high quality shaped castings produced by modernized ceramic molding process are proved the reliability and prospects of this advanced technology.

  16. Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules.

    Science.gov (United States)

    Zhang, D G; Moh, K J; Yuan, X-C

    2010-06-07

    Surface plasmon-coupled emission from shaped PMMA films doped with randomly oriented fluorescence molecules was investigated. Experimental results show that for different shapes, such as triangle or circular structures, the SPCE ring displays different intensity patterns. For a given shape, it was observed that the relative position and polarization of an incident laser spot on the shaped PMMA can be used to adjust the fluorescence intensity distribution of the SPCE ring. The proposed method enables controlling the fluorescence emission in azimuthal direction in addition to the radial angle controlled by common SPCE, which will further enhances the fluorescence collection efficiency and has applications in fluorescence sensing, imaging and so on.

  17. Growth of non-polar (11-20 InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method

    Directory of Open Access Journals (Sweden)

    J. T. Griffiths

    2014-12-01

    Full Text Available Non-polar (11-20 InGaN quantum dots (QDs were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K.

  18. A non-invasive geometric morphometrics method for exploring variation in dorsal head shape in urodeles: sexual dimorphism and geographic variation in Salamandra salamandra.

    Science.gov (United States)

    Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni

    2017-04-01

    The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels

  20. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  1. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint.

    Science.gov (United States)

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-04

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  2. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Sidler, Rolf, E-mail: rsidler@gmail.com [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland); Carcione, José M. [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste (Italy); Holliger, Klaus [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland)

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  3. Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops

    Science.gov (United States)

    Sakamoto, Toshihiro

    2018-04-01

    Crop phenological information is a critical variable in evaluating the influence of environmental stress on the final crop yield in spatio-temporal dimensions. Although the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics product (MCD12Q2) is widely used in place of crop phenological information, the definitions of MCD12Q2-derived phenological events (e.g. green-up date, dormancy date) were not completely consistent with those of crop development stages used in statistical surveys (e.g. emerged date, harvested date). It has been necessary to devise an alternative method focused on detecting continental-scale crop developmental stages using a different approach. Therefore, this study aimed to refine the Shape Model Fitting (SMF) method to improve its applicability to multiple major U.S. crops. The newly-refined SMF methods could estimate the timing of 36 crop-development stages of major U.S. crops, including corn, soybeans, winter wheat, spring wheat, barley, sorghum, rice, and cotton. The newly-developed calibration process did not require any long-term field observation data, and could calibrate crop-specific phenological parameters, which were used as coefficients in estimated equation, by using only freely accessible public data. The calibration of phenological parameters was conducted in two steps. In the first step, the national common phenological parameters, referred to as X0[base], were calibrated by using the statistical data of 2008. The SMF method coupled using X0[base] was named the rSMF[base] method. The second step was a further calibration to gain regionally-adjusted phenological parameters for each state, referred to as X0[local], by using additional statistical data of 2015 and 2016. The rSMF method using the X0[local] was named the rSMF[local] method. This second calibration process improved the estimation accuracy for all tested crops. When applying the rSMF[base] method to the validation data set (2009-2014), the root

  4. Measurement of inclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Woodward, C.E.; Beise, E.J.; Belz, J.E.; Carr, R.W.; Filippone, B.W.; Lorenzon, W.B.; McKeown, R.D.; Mueller, B.; O'Neill, T.G.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Lee, K.; Makins, N.; Milner, R.; Thompson, A.; Tieger, D.; van den Brand, J.; Young, A.; Yu, X.; Zumbro, J.

    1990-01-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target. This measurement represents the first demonstration of a new method for studying electromagnetic nuclear structure: the scattering of polarized electrons from a polarized nuclear target. The measured asymmetry is in good agreement with a Faddeev calculation and supports the picture of spin-dependent quasielastic scattering from polarized 3 He as predominantly scattering from a polarized neutron

  5. A Simultaneous Analytical Method to Profile Non-Volatile Components with Low Polarity Elucidating Differences Between Tobacco Leaves Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Detection

    Directory of Open Access Journals (Sweden)

    Ishida Naoyuki

    2016-04-01

    Full Text Available A comprehensive analytical method using liquid chromatography atmospheric pressure chemical ionization mass spectrometry detector (LC/APCI-MSD was developed to determine key non-volatile components with low polarity elucidating holistic difference among tobacco leaves. Nonaqueous reversed-phase chromatography (NARPC using organic solvent ensured simultaneous separation of various components with low polarity in tobacco resin. Application of full-scan mode to APCI-MSD hyphenated with NARPC enabled simultaneous detection of numerous intense product ions given by APCI interface. Parameters for data processing to filter, feature and align peaks were adjusted in order to strike a balance between comprehensiveness and reproducibility in analysis. 63 types of components such as solanesols, chlorophylls, phytosterols, triacylglycerols, solanachromene and others were determined on total ion chromatograms according to authentic components, wavelength spectrum and mass spectrum. The whole area of identified entities among the ones detected on total ion chromatogram reached to over 60% and major entities among those identified showed favorable linearity of determination coefficient of over 0.99. The developed method and data processing procedure were therefore considered feasible for subsequent multivariate analysis. Data matrix consisting of a number of entities was then subjected to principal component analysis (PCA and hierarchical clustering analysis. Cultivars of tobacco leaves were distributed far from each cultivar on PCA score plot and each cluster seemed to be characterized by identified non-volatile components with low polarity. While fluecured Virginia (FCV was loaded by solanachromene, phytosterol esters and triacylglycerols, free phytosterols and chlorophylls loaded Burley (BLY and Oriental (ORI respectively. Consequently the whole methodology consisting of comprehensive method and data processing procedure proved useful to determine key

  6. 2D wave-front shaping in optical superlattices using nonlinear volume holography.

    Science.gov (United States)

    Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-07-01

    Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.

  7. The Influence of the Shape of the Reaction Chamber on Spheroidisation of Cast Iron Produced in the Lost Foam Casting Process with use of the Inmold Method

    Directory of Open Access Journals (Sweden)

    P. Just

    2012-04-01

    Full Text Available The article presents the results of the research on the influence of the shape of reaction chamber on spheroidisation of cast iron produced with use of the inmold method. The amounts of nodular graphite precipitates in castings produced with the use of different reaction chambers have been compared.

  8. Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods

    OpenAIRE

    MALARD , Benoît; Sittner , Petr; Berveiller , Sophie; Patoor , Etienne

    2012-01-01

    International audience; This article deals with the application of several X-ray and neutron diffraction methods to investigate the mechanics of a stress induced martensitic transformation in Cu-based shape memory alloy polycrystals. It puts experimental results obtained by two different research groups on different length scales into context with the mechanics of stress induced martensitic transformation in polycrystalline environment.

  9. H- ion current from a polarized vapor target

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1984-01-01

    A method of determining the polarization transferred to hydrogen atoms in charge-exchange reactions is outlined. The method also provides a means of determining target polarizations once the polarization transfer function is known

  10. A new quantitative evaluation method of spiral drawing for patients with Parkinson’s disease based on a polar coordinate system with varying origin

    Science.gov (United States)

    Wang, Min; Wang, Bei; Zou, Junzhong; Nakamura, Masatoshi

    2012-09-01

    Parkinson's disease (PD) is a common disease of the central nervous system among the elderly, and its complex symptoms bring up challenges for the clinical diagnosis. In this paper, a new method based on a polar coordinate system with varying origin was proposed in order to quantitatively evaluate the performance in spiral drawing tasks for patients with Parkinson's disease, since this method can assess the movement ability of spiral drawing before and after deep brain stimulation (DBS) among the patients. In this paper, three normal subjects and twelve PD patients participated in spiral drawing experiment. The hand movements of patients, before and after DBS, were recorded by a digitized tablet respectively in this experiment. And the variation of origin, radius, degree and other characteristics of hand movements were evaluated by introducing a set of parameters for feature extraction. The result showed that the proposed polar coordinate system embraced good performance in the quantitative evaluation of spiral drawing. Therefore, the proposed method overcame the limitation of data processes with fixed origin for diagnosis and evaluation, and by combining with extraction and analysis of characteristic parameters it had clinical significance in measuring the effectiveness of operation or treatment for the PD patients.

  11. Magnet pole shape design for reduction of thrust ripple of slotless permanent magnet linear synchronous motor with arc-shaped magnets considering end-effect based on analytical method

    Directory of Open Access Journals (Sweden)

    Kyung-Hun Shin

    2017-05-01

    Full Text Available The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.

  12. Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature's method in sensors to image and diagnose with polarized light.

    Science.gov (United States)

    York, Timothy; Powell, Samuel B; Gao, Shengkui; Kahan, Lindsey; Charanya, Tauseef; Saha, Debajit; Roberts, Nicholas W; Cronin, Thomas W; Marshall, Justin; Achilefu, Samuel; Lake, Spencer P; Raman, Baranidharan; Gruev, Viktor

    2014-10-01

    In this paper, we present recent work on bioinspired polarization imaging sensors and their applications in biomedicine. In particular, we focus on three different aspects of these sensors. First, we describe the electro-optical challenges in realizing a bioinspired polarization imager, and in particular, we provide a detailed description of a recent low-power complementary metal-oxide-semiconductor (CMOS) polarization imager. Second, we focus on signal processing algorithms tailored for this new class of bioinspired polarization imaging sensors, such as calibration and interpolation. Third, the emergence of these sensors has enabled rapid progress in characterizing polarization signals and environmental parameters in nature, as well as several biomedical areas, such as label-free optical neural recording, dynamic tissue strength analysis, and early diagnosis of flat cancerous lesions in a murine colorectal tumor model. We highlight results obtained from these three areas and discuss future applications for these sensors.

  13. Project Analysis of Aerodynamics Configuration of Re-entry Сapsule-shaped Body Based on Numerical Methods for Newtonian Flow Theory

    Directory of Open Access Journals (Sweden)

    V. E. Minenko

    2015-01-01

    Full Text Available The article objective is to review the basic design parameters of space capsule (SC to select a rational shape at the early stages of design.The choice is based on the design parameters such as a volume filling factor (volumetric efficiency of shape, aerodynamic coefficients, margin of stability, and centering characteristics.The aerodynamic coefficients are calculated by a numerical method based on approximate Newton's theory. A proposed engineering technique uses this theory to calculate aerodynamic characteristics of the capsule shapes. The gist of the technique is in using a developed programme to generate capsule shapes and provide numerical calculation of aerodynamic characteristics. The accuracy of the calculation, performed according to proposed technique, tends to the results obtained by analytical integral dependencies according to the Newtonian technique.When considering the stability of the capsule shapes the paper gives a diagram of the aerodynamic forces acting on the SC in the descent phase, and using the aerodynamically-shaped SC "Soyuz" as an example analyses a dangerous moment of flow at adverse angles of attack.After determining a design center-of-mass position to meet the stability requirements it is necessary at the early stage, before starting the SC layout work, to evaluate the complexity of bringing the center-of-mass to the specified point. In this regard have been considered such design parameters of the shape as a volume-centering and surface-centering coefficients.Next, using the above engineering technique are calculated aerodynamic characteristics of capsule shapes similar to the well-known SC "Soyuz", "Zarya 2" and the command module "Apollo".All calculated design parameters are summarized in the table. Currently, among the works cited in foreign publications concerning the contours of winged configuration of the type "Space Shuttle" some papers are close to the proposed technique.Application of the proposed

  14. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  15. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... Cell polarity determines spatial differences in structure, shape and function of the cell. Specific structural ... polarized structure in terms of cellular components from the leading to lagging edge. For instance ..... tissue organization is a hallmark of carcinoma (Royer and. Lu 2011). Invasion and metastasis are ...

  16. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  17. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  18. Polarized neutron reflectometry of magnetic nanostructures

    Science.gov (United States)

    Toperverg, B. P.

    2015-12-01

    Among a number of methods employed to characterize various types of magnetic nano-structures Polarized Neutron Reflectometry (PNR) is shown to be a unique tool providing a scope of quantitative information on magnetization arrangement over relevant scales. Deeply penetrating into materials neutron spins are able to resolve vectorial profile of magnetic induction with accuracy of a fraction of Oersted over a fraction of nano-meters. This property is exploited in measurements of specular PNR which hence constitutes the method of depth resolved vector magnetometry widely used to examine magnetic states in exchange coupled magnetic superlattices, exchange bias systems, spin valves, exchange springs, superconducting/ferromagnetic heterostructure, etc. Off-specular polarized neutron scattering (OS-PNS) measures the in-plane magnetization distribution over scales from hundreds of nanoto hundreds of micrometers providing, in combination with specular PNR, access to lateral long range fluctuations of the magnetization vector and magnetic domains in these systems. OSPNS is especially useful in studies of co-operative magnetization reversal processes in various films and multilayers laterally patterned into periodic arrays of stripes, or islands of various dimentions, shapes, internal structures, etc., representing an interest for e.g. spintronics. Smaller sizes of 10?100 nm are accessed with the method of Polarized Neutrons Grazing Incidence Small Angle Scattering (PN-GISAS), which in a combination with specular PNR and OS-PNS is used to study self-assembling of magnetic nano-particles on flat surfaces, while Polarized Neutron Grazing Incidence Diffraction (PN-GID) complete the scope of magnetic information over wide range of scales in 3D space. The review of recent results obtained employing the methods listed above is preceded by the detailed theoretical consideration and exemplified by new developments addressing with PNR fast magnetic kinetics in nano-systems.

  19. CAD of complex passive devices composed of arbitrarily shaped waveguides using Nyström and BI-RME methods

    OpenAIRE

    Taroncher Calduch, Máriam; Vidal Pantaleoni, Ana; Boria Esbert, Vicente Enrique; Marini, Stephan; Cogollos Borras, Santiago; Gil Raga, Jordi; Gimeno Martínez, Benito

    2004-01-01

    In this paper, a novel computer-aided design (CAD) tool of complex passive microwave devices in waveguide technology is proposed. Such a tool is based on a very efficient integral-equation analysis technique that provides a full-wave characterization of discontinuities between arbitrarily shaped waveguides defined by linear, circular, and/or elliptical arcs. For solving the modal analysis of such arbitrary waveguides, a modified version of the well-known boundary integral-resonant-mode expans...

  20. Study of ciclosporine blood levels in patients after kidney or bone-marrow transplantation. Comparison between the two methods, fluorescence polarization immunoassay and radioimmunoassay

    International Nuclear Information System (INIS)

    Sadeg, N.; Pham Huy, C.; Claude, J.R.; Postaire, M.; Lebrec, H.; Hamon, M.; Broyer, M.; Gagnadoux, M.F.; Fischer, A.

    1989-01-01

    The apparition of ciclosporine, immunodepressive drug, has largely improved the organ transplantations. However, the range of blood concentrations must be defined to allow the efficacity of ciclosporine therapy and to avoid toxic reactions, because there are very important variations for a same dosage according to the individuals and the diseases. Relative to the low concentrations to be determined (about one hundred ng/ml), the most useful methods for ciclosporine measurement are based on immunochemical assays. This work compares the two methods: radioimmunoassay (RIA) and fluorescence polarization immunoassay (FPIA) simultaneously performed on several hundred samples. A very significant correlation exists between the two techniques (r = 0.80). The advantages of immunofluorescent assay consists in rapidity, sensibility and facility to realize emergency analysis [fr

  1. Methods for In-Flight Wing Shape Predictions of Highly Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2010-01-01

    The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.

  2. Evaluation of in vitro antioxidant potential of different polarities stem crude extracts by different extraction methods of Adenium obesum

    Directory of Open Access Journals (Sweden)

    Mohammad Amzad Hossain

    2014-09-01

    Full Text Available Objective: To select best extraction method for the isolated antioxidant compounds from the stems of Adenium obesum. Methods: Two methods used for the extraction are Soxhlet and maceration methods. Methanol solvent was used for both extraction method. The methanol crude extract was defatted with water and extracted successively with hexane, chloroform, ethyl acetate and butanol solvents. The antioxidant potential for all crude extracts were determined by using 1, 1-diphenyl-2- picrylhydrazyl method. Results: The percentage of extraction yield by Soxhlet method is higher compared to maceration method. The antioxidant potential for methanol and its derived fractions by Soxhlet extractor method was highest in ethyl acetate and lowest in hexane crude extracts and found in the order of ethyl acetate>butanol>water>chloroform>methanol>hexane. However, the antioxidant potential for methanol and its derived fractions by maceration method was highest in butanol and lowest in hexane followed in the order of butanol>methanol>chloroform>water>ethyl acetate>hexane. Conclusions: The results showed that isolate antioxidant compounds effected on the extraction method and condition of extraction.

  3. Polarized proton collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W. E-mail: mackay@bnl.govhttp://www.rhichome.bnl.gov/People/waldowaldo@bnl.gov; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to {radical}s=500 GeV.

  4. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1988-01-01

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  5. Polarized light field microscopy: an analytical method using a microlens array to simultaneously capture both conoscopic and orthoscopic views of birefringent objects.

    Science.gov (United States)

    Oldenbourg, R

    2008-09-01

    For the comprehensive analysis of anisotropic materials, a new approach, called 'polarized light field microscopy' is introduced. It uses an LC-PolScope to which a microlens array was added at the image plane of the objective lens. The system is patterned after the 'light field microscope' that achieves both lateral and axial resolution in thick specimens in a single camera exposure. In polarized light field microscopy, the microlens array generates a hybrid image consisting of an array of small conoscopic images, each sampling a different object area. Analysis of the conoscopic images reveals the birefringence of each object area as a function of the propagation direction of transmitted light rays. The principles and utility of the instrument that we are calling 'light field LC-PolScope' are demonstrated with images of a thin, polycrystalline calcite film, revealing the azimuth and inclination angle of the optic axis for many crystals simultaneously, including crystals with diameters as small as 2 microm. Compared to traditional conoscopy and related methods, the vastly improved throughput and quantitative analysis afforded by the light field LC-PolScope make it the instrument of choice for measuring 3D birefringence parameters of complex structures.

  6. Polarized light field microscopy: an analytical method using a microlens array to simultaneously capture both conoscopic and orthoscopic views of birefringent objects

    Science.gov (United States)

    Oldenbourg, Rudolf

    2008-01-01

    For the comprehensive analysis of anisotropic materials, a new approach, called “polarized light field microscopy” is introduced. It uses an LC-PolScope to which a microlens array was added at the image plane of the objective lens. The system is patterned after the “light field microscope” that achieves both lateral and axial resolution in thick specimens in a single camera exposure. In polarized light field microscopy, the microlens array generates a hybrid image consisting of an array of small conoscopic images, each sampling a different object area. Analysis of the conoscopic images reveals the birefringence of each object area as a function of the propagation direction of transmitted light rays. The principles and utility of the instrument that we are calling “light field LC-PolScope” are demonstrated with images of a thin, polycrystalline calcite film, revealing the azimuth and inclination angle of the optic axis for many crystals simultaneously, including crystals with diameters as small as 2 µm. Compared to traditional conoscopy and related methods, the vastly improved throughput and quantitative analysis afforded by the light field LC-PolScope make it the instrument of choice for measuring 3-dimensional birefringence parameters of complex structures. PMID:18754996

  7. V.L. Ginzburg's elliptic screw polarization modes in an optical medium with linear birefringence and twist: Determination of their parameters by the method of Jones matrices

    Science.gov (United States)

    Malykin, G. B.; Pozdnyakova, V. I.

    2017-01-01

    Using the method of Jones matrices, we have calculated parameters of elliptic screw polarization modes (ESPMs). ESPM formalism has been proposed by V.L. Ginzburg for an optical medium with unperturbed linear birefringence and circular birefringence induced by twisting of the medium. The evolution of the polarization state of radiation (PSR) in relation to the length of the examined optical medium has been considered, which is important for twisted single-mode optical fibers and cholesteric liquid crystals. We have shown that the problem can be substantially simplified if the evolution of ESPMs is considered in a screw coordinate system comoving with the twist of the optical medium. In particular, we have shown that a curve on the Poincaré sphere mapping the evolution of the PSR for natural (normal) waves of the examined optical medium in the screw coordinate system degenerates into a point. For comparison, we have found natural waves of this medium in a fixed (laboratory) coordinate system and considered the evolution of their PSR, which is represented by a complex curve on the Poincaré sphere. Also, the evolution of the PSR of improper waves passed through the examined optical medium has been studied in both the fixed and the screw coordinate systems.

  8. A Polarized Atmospheric Radiative Transfer Model for Calculations of Spectra of the Stokes Parameters of Shortwave Radiation Based on the Line-by-Line and Monte Carlo Methods

    Directory of Open Access Journals (Sweden)

    Boris Fomin

    2012-10-01

    Full Text Available This paper presents a new version of radiative transfer model called the Fast Line-by-Line Model (FLBLM, which is based on the Line-by-Line (LbL and Monte Carlo (MC methods and rigorously treats particulate and molecular scattering alongside absorption. The advantage of this model consists in the use of the line-by-line model that allows for the computing of high-resolution spectra quite quickly. We have developed the model by taking into account the polarization state of light and carried out some validations by comparison against benchmark results. FLBLM calculates the Stokes parameters spectra of shortwave radiation in vertically inhomogeneous atmospheres. This update makes the model applicable for the assessment of cloud and aerosol influence on radiances as measured by the SW high-resolution polarization spectrometers. In sample results we demonstrate that the high-resolution spectra of the Stokes parameters contain more detailed information about clouds and aerosols than the medium- and low-resolution spectra wherein lines are not resolved. The presented model is rapid enough for many practical applications (e.g., validations and might be useful especially for the remote sensing. FLBLM is suitable for development of the reliable technique for retrieval of optical and microphysical properties of clouds and aerosols from high-resolution satellites data.

  9. Polar Biomedical Research - An Assessment.

    Science.gov (United States)

    1982-10-01

    to grow more crops in subpolar Alaska. The severity of the polar conditions in Antarctica allow no practical method for providing volumes of plant food...for an expanded population. Any experiments in polar regions in food production involving geothermal heat, solar energy, hydroponics , or aquaculture

  10. Create a Polarized Light Show.

    Science.gov (United States)

    Conrad, William H.

    1992-01-01

    Presents a lesson that introduces students to polarized light using a problem-solving approach. After illustrating the concept using a slinky and poster board with a vertical slot, students solve the problem of creating a polarized light show using Polya's problem-solving methods. (MDH)

  11. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  12. Polar Business Design

    Directory of Open Access Journals (Sweden)

    Sébastien Caisse

    2014-02-01

    Full Text Available Polar business design aims to enable entrepreneurs, managers, consultants, researchers, and business students to better tackle model-based analysis, creation, and transformation of businesses, ventures, and, more generically, collective endeavors of any size and purpose. It is based on a systems-thinking approach that builds on a few interrelated core concepts to create holistic visual frameworks. These core concepts act as poles linked by meaningful dyads, flows, and faces arranged in geometric shapes. The article presents two such polar frameworks as key findings in an ongoing analytic autoethnography: the three-pole Value−Activity−Stakeholder (VAS triquetra and the four-pole Offer−Creation−Character−Stakeholder (OCCS tetrahedron. The VAS triquetra is a more aggregated model of collective endeavors. The OCCS tetrahedron makes a trade-off between a steeper learning curve and deeper, richer representation potential. This article discusses how to use these two frameworks as well as their limits, and explores the potential that polar business design offers for future research.

  13. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  14. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  15. Schapiro Shapes

    Science.gov (United States)

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  16. Characteristic Fingerprint Based on Low Polar Constituents for Discrimination of Wolfiporia extensa according to Geographical Origin Using UV Spectroscopy and Chemometrics Methods

    Science.gov (United States)

    Li, Yan; Zhao, Yanli; Li, Zhimin; Li, Tao

    2014-01-01

    The fungus species Wolfiporia extensa has a long history of medicinal usage and has also been commercially used to formulate nutraceuticals and functional foods in certain Asian countries. In the present study, a practical and promising method has been developed to discriminate the dried sclerotium of W. extensa collected from different geographical sites based on UV spectroscopy together with chemometrics methods. Characteristic fingerprint of low polar constituents of sample extracts that originated from chloroform has been obtained in the interval 250–400 nm. Chemometric pattern recognition methods such as partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were applied to enhance the authenticity of discrimination of the specimens. The results showed that W. extensa samples were well classified according to their geographical origins. The proposed method can fully utilize diversified fingerprint characteristics of sclerotium of W. extensa and requires low-cost equipment and short-time analysis in comparison with other techniques. Meanwhile, this simple and efficient method may serve as a basis for the authentication of other medicinal fungi. PMID:25544933

  17. Characteristic Fingerprint Based on Low Polar Constituents for Discrimination of Wolfiporia extensa according to Geographical Origin Using UV Spectroscopy and Chemometrics Methods

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-01-01

    Full Text Available The fungus species Wolfiporia extensa has a long history of medicinal usage and has also been commercially used to formulate nutraceuticals and functional foods in certain Asian countries. In the present study, a practical and promising method has been developed to discriminate the dried sclerotium of W. extensa collected from different geographical sites based on UV spectroscopy together with chemometrics methods. Characteristic fingerprint of low polar constituents of sample extracts that originated from chloroform has been obtained in the interval 250–400 nm. Chemometric pattern recognition methods such as partial least squares discriminant analysis (PLS-DA and hierarchical cluster analysis (HCA were applied to enhance the authenticity of discrimination of the specimens. The results showed that W. extensa samples were well classified according to their geographical origins. The proposed method can fully utilize diversified fingerprint characteristics of sclerotium of W. extensa and requires low-cost equipment and short-time analysis in comparison with other techniques. Meanwhile, this simple and efficient method may serve as a basis for the authentication of other medicinal fungi.

  18. Investigation on the corner effect of L-shaped tunneling field-effect transistors and their fabrication method.

    Science.gov (United States)

    Kim, Sang Wan; Choi, Woo Young; Sun, Min-Chul; Park, Byung-Gook

    2013-09-01

    In this work, electrical characteristics of L-shaped tunneling field-effect transistors (TFETs) have been studied and optimized by a commercial device simulator: Synopsys Sentaurus. Unlike our previous study performed by using Silvaco Atlas, there exists a kink phenomenon in a transfer curve which degrades the subthreshold swing (SS) and on-current (lon) of TFETs. According to simulation results, the kink results from abrupt source doping. Rounding the source junction edge with gradual doping profile is helpful to alleviate it. Based on those results, a novel fabrication flow has been proposed to suppress the kink effect induced by source corners. It is predicted that the performance of L-shaped TFETs is improved in terms of SS and Ion under the optimized process condition. Furthremore, the effect of high-k gate dielectric and narrow band gap material on device performance has been examined. Using 2-nm-thick HfO2 for gate dielectric and Si0.7Ge0.3 for intrinsic tunneling region, gate controllability to the channel and tunneling probability have been enhanced. As a result, its threshold voltage (Vth), SS and Ion have been improved by 0.13 V, 16 mV/dec, and 3.62 microA/microm, respectively.

  19. A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3D ribbon-shaped structures

    Science.gov (United States)

    Fan, Zhichao; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui

    2018-02-01

    Mechanically-guided 3D assembly based on controlled, compressive buckling represents a promising, emerging approach for forming complex 3D mesostructures in advanced materials. Due to the versatile applicability to a broad set of material types (including device-grade single-crystal silicon) over length scales from nanometers to centimeters, a wide range of novel applications have been demonstrated in soft electronic systems, interactive bio-interfaces as well as tunable electromagnetic devices. Previously reported 3D designs relied mainly on finite element analyses (FEA) as a guide, but the massive numerical simulations and computational efforts necessary to obtain the assembly parameters for a targeted 3D geometry prevent rapid exploration of engineering options. A systematic understanding of the relationship between a 3D shape and the associated parameters for assembly requires the development of a general theory for the postbuckling process. In this paper, a double perturbation method is established for the postbuckling analyses of planar curved beams, of direct relevance to the assembly of ribbon-shaped 3D mesostructures. By introducing two perturbation parameters related to the initial configuration and the deformation, the highly nonlinear governing equations can be transformed into a series of solvable, linear equations that give analytic solutions to the displacements and curvatures during postbuckling. Systematic analyses of postbuckling in three representative ribbon shapes (sinusoidal, polynomial and arc configurations) illustrate the validity of theoretical method, through comparisons to the results of experiment and FEA. These results shed light on the relationship between the important deformation quantities (e.g., mode ratio and maximum strain) and the assembly parameters (e.g., initial configuration and the applied strain). This double perturbation method provides an attractive route to the inverse design of ribbon-shaped 3D geometries, as

  20. Dust models compatible with Planck intensity and polarization data in translucent lines of sight

    Science.gov (United States)

    Guillet, V.; Fanciullo, L.; Verstraete, L.; Boulanger, F.; Jones, A. P.; Miville-Deschênes, M.-A.; Ysard, N.; Levrier, F.; Alves, M.

    2018-02-01

    Context. Current dust models are challenged by the dust properties inferred from the analysis of Planck observations in total and polarized emission. Aims: We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight (0.5 Methods: We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, total and polarized spectral energy distributions (SEDs) with polycyclic aromatic hydrocarbons, astrosilicate and amorphous carbon (a-C) grains. The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. Results: With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio P353/pV derived with Planck data. Successful models are those using prolate astrosilicate grains with an elongation a/b = 3 and an inclusion of 20% porosity. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Conclusions: Dust models based on astrosilicates can be reconciled with data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.

  1. A Class of Numerical Methods for the Solution of Fourth-Order Ordinary Differential Equations in Polar Coordinates

    Directory of Open Access Journals (Sweden)

    Jyoti Talwar

    2012-01-01

    Full Text Available In this piece of work using only three grid points, we propose two sets of numerical methods in a coupled manner for the solution of fourth-order ordinary differential equation uiv(x=f(x,u(x,u′(x,u′′(x,u′′′(x, amethod and tridiagonal solver to obtain the solution in both cases. Convergence analysis is discussed and numerical results are provided to show the accuracy and usefulness of the proposed methods.

  2. Laser beam shaping optical system design methods and their application in edge-emitting semiconductor laser-based LIDAR systems

    Science.gov (United States)

    Serkan, Mert

    LIDAR (Light Detection And Ranging) systems are employed for numerous applications such as remote sensing, military applications, optical data storage, display technology, and material processing. Furthermore, they are superior to other active remote sensing tools such as RADAR systems, considering their higher accuracy and more precise resolution due to their much shorter wavelengths and narrower beamwidth. Several types of lasers can be utilized as the radiation source of several LIDAR systems. Semiconductor laser-based LIDAR systems have several advantages such as low cost, compactness, broad range of wavelengths, and high PRFs (Pulse Repetition Frequency). However, semiconductor lasers have different origins and angles of divergence in the two transverse directions, resulting in the inherent astigmatism and elliptical beam shape. Specifically, elliptical beam shape is not desirable for several laser-based applications including LIDAR systems specifically designed to operate in the far-field region. In this dissertation, two mirror-based and two lens-based beam shapers are designed to circularize, collimate, and expand an edge-emitting semiconductor laser beam to a desired beam diameter for possible application in LIDAR systems. Additionally, most laser beams including semiconductor laser beams have Gaussian irradiance distribution. For applications that require uniform illumination of an extended target area, Gaussian irradiance distribution is undesirable. Therefore, a specific beam shaper is designed to transform the irradiance distribution from Gaussian to uniform in addition to circularizing, collimating, and expanding the semiconductor laser beam. For the design of beam shapers, aperture sizes of the surfaces are preset for desired power transmission and allowed diffraction level, surface parameters of the optical components and the distances between these surfaces are determined. Design equations specific to these beam shaping optical systems are

  3. Prediction of the shape of inline wave force and free surface elevation using First Order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe

    2017-01-01

    In design of substructures for offshore wind turbines, the extreme wave loads which are of interest in Ultimate Limit States are often estimated by choosing extreme events from linear random sea states and replacing them by either stream function wave theory or the NewWave theory of a certain...... as the free surface elevation time series. The discrepancies between the FORM results and the measurements is found to be a result of more nonlinearity in the selected events than second order and negligence of the drag forces above still water level in the present analysis. This paper is one step toward more...... precise prediction of extreme wave shape and loads. Ultimately such waves can be used in the design process of offshore structures. The approach can be generalized to fully nonlinear models....

  4. The dynamics of the polar ionosphere according to measurements made with the D1 method at Loparskaia

    Science.gov (United States)

    Mizun, Iu. G.; Shchegolkova, G. N.; Gorelov, V. Ia.

    The measurements were of wind and drift at the heights of the E and F regions. The method of diversity reception was used at Loparskaia, a station in the auroral zone 40 km south of Murmansk (USSR). Data from the years 1973-1979 are analyzed. The distribution of velocities during magnetospheric substorms is obtained.

  5. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  6. SU-E-I-87: Automated Liver Segmentation Method for CBCT Dataset by Combining Sparse Shape Composition and Probabilistic Atlas Construction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dengwang [Shandong Normal University, Jinan, Shandong Province (China); Liu, Li [Shandong Normal University, Jinan, Shandong (China); Chen, Jinhu; Li, Hongsheng [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2014-06-01

    Purpose: The aiming of this study was to extract liver structures for daily Cone beam CT (CBCT) images automatically. Methods: Datasets were collected from 50 intravenous contrast planning CT images, which were regarded as training dataset for probabilistic atlas and shape prior model construction. Firstly, probabilistic atlas and shape prior model based on sparse shape composition (SSC) were constructed by iterative deformable registration. Secondly, the artifacts and noise were removed from the daily CBCT image by an edge-preserving filtering using total variation with L1 norm (TV-L1). Furthermore, the initial liver region was obtained by registering the incoming CBCT image with the atlas utilizing edge-preserving deformable registration with multi-scale strategy, and then the initial liver region was converted to surface meshing which was registered with the shape model where the major variation of specific patient was modeled by sparse vectors. At the last stage, the shape and intensity information were incorporated into joint probabilistic model, and finally the liver structure was extracted by maximum a posteriori segmentation.Regarding the construction process, firstly the manually segmented contours were converted into meshes, and then arbitrary patient data was chosen as reference image to register with the rest of training datasets by deformable registration algorithm for constructing probabilistic atlas and prior shape model. To improve the efficiency of proposed method, the initial probabilistic atlas was used as reference image to register with other patient data for iterative construction for removing bias caused by arbitrary selection. Results: The experiment validated the accuracy of the segmentation results quantitatively by comparing with the manually ones. The volumetric overlap percentage between the automatically generated liver contours and the ground truth were on an average 88%–95% for CBCT images. Conclusion: The experiment demonstrated

  7. Introducing a novel method to estimate the total heat transfer coefficient inside irregular-shape cavities utilizing thermoelectric modules; Special application in solar engineering

    DEFF Research Database (Denmark)

    Asadi, Amin; Rahbar, Nader; Rezaniakolaei, Alireza

    The main objective of the present study is to introduce a novel method to measure the total heat transfer coefficient inside irregular-shape cavities, used in solar applications, utilizing thermoelectric modules. Applying mathematical and thermodynamics modeling, the governing equations related...... to the total heat transfer coefficient between thermoelectric and glass cover as a function of ambient temperature, glass temperature, and output voltage has been derived. Investigating the accuracy of the proposed equation, an experimental case study has been performed. The experimental setup consists...... transfer coefficient inside irregular-shape cavities. The average deviation between experimental data and the output of the proposed equation is approximately 9 %, which shows the good ability of the equation in estimating the total heat transfer coefficient....

  8. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  9. Monitoring of the Polar Stratospheric Clouds formation and evolution in Antarctica in August 2007 during IPY with the MATCH method applied to lidar data

    Science.gov (United States)

    Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels

    2010-05-01

    The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving

  10. Simplified Analytical Method for Optimized Initial Shape Analysis of Self-Anchored Suspension Bridges and Its Verification

    Directory of Open Access Journals (Sweden)

    Myung-Rag Jung

    2015-01-01

    Full Text Available A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.

  11. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M.; Sakurada, H. [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T. [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1996-10-01

    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  12. Microwave-gated dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bornet, Aurélien; Pinon, Arthur; Jhajharia, Aditya

    2016-01-01

    Dissolution dynamic nuclear polarization (D-DNP) has become a method of choice to enhance signals in nuclear magnetic resonance (NMR). Recently, we have proposed to combine cross-polarization (CP) with D-DNP to provide high polarization P((13)C) in short build-up times. In this paper, we show...

  13. The origin of radio pulsar polarization

    Science.gov (United States)

    Dyks, J.

    2017-12-01

    Polarization of radio pulsar profiles involves a number of poorly understood, intriguing phenomena, such as the existence of comparable amounts of orthogonal polarization modes (OPMs), strong distortions of polarization angle (PA) curves into shapes inconsistent with the rotating vector model (RVM), and the strong circular polarization V which can be maximum (instead of zero) at the OPM jumps. It is shown that the comparable OPMs and large V result from a coherent addition of phase-delayed waves in natural propagation modes, which are produced by a linearly polarized emitted signal. The coherent mode summation implies opposite polarization properties to those known from the incoherent case, in particular, the OPM jumps occur at peaks of V, whereas V changes sign at a maximum linear polarization fraction L/I. These features are indispensable to interpret various observed polarization effects. It is shown that statistical properties of emission and propagation can be efficiently parametrized in a simple model of coherent mode addition, which is successfully applied to complex polarization phenomena, such as the stepwise PA curve of PSR B1913+16 and the strong PA distortions within core components of pulsars B1933+16 and B1237+25. The inclusion of coherent mode addition opens the possibility for a number of new polarization effects, such as inversion of relative modal strength, twin minima in L/I coincident with peaks in V, 45° PA jumps in weakly polarized emission, and loop-shaped core PA distortions. The empirical treatment of the coherency of mode addition makes it possible to advance the understanding of pulsar polarization beyond the RVM model.

  14. SHAPE GENERATION BY MEANS OF A NEW METHOD OF ORTHOGRAPHIC REPRESENTATION ("PROEKTIVOGRAFIYA": DRAWINGS OF MULTI-COMPONENT POLYHEDRA

    Directory of Open Access Journals (Sweden)

    Andrey Ivashchenko Viktorovich

    2012-10-01

    Full Text Available The authors analyze the capabilities of a traditional set of shape generation techniques that employ orthographic representation in the generation of polyhedra with account for the advanced approach to the research of new multi-nuclear structures. In the past, designs based on one nucleus were used in practice. The use of two or more nuclei is considered in the article. In the most common case, the resulting system of planes will constitute multiple orthographic representations. The characteristics of a binuclear system depend on the mutual positions and relation of dimensions of the nuclei. In addition to regular parameters, complete description of the system need particular supplementary parameters that determine the mutual positions of the nuclei. Increase in the number of nuclei causes increase in the number of descriptive parameters. The authors provide examples of binuclear systems composed of tetrahedrons, cubes, and dodecahedrons, implemented in the Delphi medium. The results can be exported into any three-dimensional modeling system with a view to their further study and use.

  15. A correlational method to concurrently measure envelope and temporal fine structure weights: effects of age, cochlear pathology, and spectral shaping.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E

    2012-09-01

    The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.

  16. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  17. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO{sub 4} nanostructures produced by convenient microwave-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China); Gu, Chunchuan [Department of Clinical Laboratory, Hangzhou Cancer Hospital, Zhejiang, Hangzhou 310002 (China); Li, Dujuan; Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China)

    2015-04-15

    Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.

  18. Surface shape memory in polymers

    Science.gov (United States)

    Mather, Patrick

    2012-02-01

    Many crosslinked polymers exhibit a shape memory effect wherein a permanent shape can be prescribed during crosslinking and arbitrary temporary shapes may be set through network chain immobilization. Researchers have extensively investigated such shape memory polymers in bulk form (bars, films, foams), revealing a multitude of approaches. Applications abound for such materials and a significant fraction of the studies in this area concern application-specific characterization. Recently, we have turned our attention to surface shape memory in polymers as a means to miniaturization of the effect, largely motivated to study the interaction of biological cells with shape memory polymers. In this presentation, attention will be given to several approaches we have taken to prepare and study surface shape memory phenomenon. First, a reversible embossing study involving a glassy, crosslinked shape memory material will be presented. Here, the permanent shape was flat while the temporary state consisted of embossed parallel groves. Further the fixing mechanism was vitrification, with Tg adjusted to accommodate experiments with cells. We observed that the orientation and spreading of adherent cells could be triggered to change by the topographical switch from grooved to flat. Second, a functionally graded shape memory polymer will be presented, the grading being a variation in glass transition temperature in one direction along the length of films. Characterization of the shape fixing and recovery of such films utilized an indentation technique that, along with polarizing microscopy, allowed visualization of stress distribution in proximity to the indentations. Finally, very recent research concerning shape memory induced wrinkle formation on polymer surfaces will be presented. A transformation from smooth to wrinkled surfaces at physiological temperatures has been observed to have a dramatic effect on the behavior of adherent cells. A look to the future in research and

  19. Using a Combination of FEM and Perturbation Method in Frequency Split Calculation of a Nearly Axisymmetric Shell with Middle Surface Shape Defect

    Directory of Open Access Journals (Sweden)

    D. S. Vakhlyarskiy

    2016-01-01

    Full Text Available This paper proposes a method to calculate the splitting of natural frequency of the shell of hemispherical resonator gyro. (HRG. The paper considers splitting that arises from the small defect of the middle surface, which makes the resonator different from the rotary shell. The presented method is a combination of the perturbation method and the finite element method. The method allows us to find the frequency splitting caused by defects in shape, arbitrary distributed in the circumferential direction. This is achieved by calculating the perturbations of multiple natural frequencies of the second and higher orders. The proposed method allows us to calculate the splitting of multiple frequencies for the shell with the meridian of arbitrary shape.A developed finite element is an annular element of the shell and has two nodes. Projections of movements are used on the axis of the global cylindrical system of coordinates, as the unknown. To approximate the movements are used polynomials of the second degree. Within the finite element the geometric characteristics are arranged in a series according to the small parameter of perturbations of the middle surface geometry.Movements on the final element are arranged in series according to the small parameter, and in a series according to circumferential angle. With computer used to implement the method, three-dimensional arrays are used to store the perturbed quantities. This allows the use of regular expressions for the mass and stiffness matrices, when building the finite element, instead of analytic dependencies for each perturbation of these matrices of the required order with desirable mathematical operations redefined in accordance with the perturbation method.As a test task, is calculated frequency splitting of non-circular cylindrical resonator with Navier boundary conditions. The discrepancy between the results and semi-analytic solution to this problem is less than 1%. For a cylindrical shell is

  20. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  1. Method and system for laser-based formation of micro-shapes in surfaces of optical elements

    Science.gov (United States)

    Bass, Isaac Louis; Guss, Gabriel Mark

    2013-03-05

    A method of forming a surface feature extending into a sample includes providing a laser operable to emit an output beam and modulating the output beam to form a pulse train having a plurality of pulses. The method also includes a) directing the pulse train along an optical path intersecting an exposed portion of the sample at a position i and b) focusing a first portion of the plurality of pulses to impinge on the sample at the position i. Each of the plurality of pulses is characterized by a spot size at the sample. The method further includes c) ablating at least a portion of the sample at the position i to form a portion of the surface feature and d) incrementing counter i. The method includes e) repeating steps a) through d) to form the surface feature. The sample is free of a rim surrounding the surface feature.

  2. Fiber optic monitoring methods for composite steel-concrete structures based on determination of neutral axis and deformed shape.

    Science.gov (United States)

    2014-01-01

    Structural Health Monitoring has great potential to provide valuable information about the actual structural condition and can help optimize the management activities. However, few effective and robust monitoring methods exist which hinders a nationw...

  3. Studies of AuNi alloys by electron spectroscopies with the aid of the line shape analysis by the pattern recognition method

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Jozwik, A.

    2006-01-01

    Roč. 38, - (2006), s. 1204-1210 ISSN 0142-2421 R&D Projects: GA ČR(CZ) GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : elastic peak electron spectroscopy * EPES * x-ray photoelectron spectroscopy * XPS * line shape analysis * pattern recognition method * fuzzy k-nearest neighbour rule * fkNN rule * AuNi alloys * Au surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.427, year: 2006

  4. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    Science.gov (United States)

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  6. Method for estimating closed-form solutions of the light diffusion equation for turbid media of any boundary shape.

    Science.gov (United States)

    Alqasemi, Umar; Salehi, Hassan S; Zhu, Quing

    2016-02-01

    This paper reports a method of estimating an approximate closed-form solution to the light diffusion equation for any type of geometry involving Dirichlet's boundary condition with known source location. It is based on estimating the optimum locations of multiple imaginary point sources to cancel the fluence at the extrapolated boundary by constrained optimization using a genetic algorithm. The mathematical derivation of the problem to approach the optimum solution for the direct-current type of diffuse optical systems is described in detail. Our method is first applied to slab geometry and compared with a truncated series solution. After that, it is applied to hemispherical geometry and compared with Monte Carlo simulation results. The method provides a fast and sufficiently accurate fluence distribution for optical reconstruction.

  7. Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003

    Directory of Open Access Journals (Sweden)

    R. Spang

    2005-01-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10-3km-1 at 1022nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC

  8. Properties of shaped castings made of modern cast VML18 and VML20 magnesium alloys manufactured by new methods

    Science.gov (United States)

    Leonov, A. A.; Duyunova, V. A.; Uridiya, Z. P.; Trofimov, N. V.

    2016-11-01

    The methods of casting of modern magnesium alloys (corrosion-resistant Mg-Al-Zn VML18 alloy and a high-strength Mg-Zn-Zr VML20 alloy) into the temporary molds made of cold-hardening mixtures and the molds produced by 3D printing are considered. The mechanical properties (ultimate tensile strength, yield strength, impact toughness), the corrosion properties, and the microstructure of the ingots are studied. The experimental results are used to choose the molds and the methods of casting of the parts of the control system of advanced aircrafts, which are made of modern cast magnesium alloys VML18 and VML20.

  9. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology...... of a shape is uniquely embedded in the mesh connectivity of a PAM, enabling both surface and skeletal modeling operations, interchangeably and directly on the mesh itself. We develop an algorithm to convert arbitrary triangle meshes into PAMs as well as techniques to simplify PAMs and a method to convert...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  10. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  11. Polarimetry with azimuthally polarized light

    Science.gov (United States)

    de Sande, Juan Carlos González; Piquero, Gemma; Santarsiero, Massimo

    2018-03-01

    Nonuniformly polarized light can be used for Mueller polarimetry of homogeneous linear samples. In this work, a set up based on using azimuthally polarized input light and a modified commercial light polarimeter is proposed and developed. With this set up, a Mueller submatrix of a sample can be obtained by measuring the Stokes parameters at only three different positions across the output beam section. Symmetry constraints for linear deterministic samples allow the complete Mueller matrix to be deduced for this kind of specimens. The experimental results obtained for phase plates and for a linear polarizer confirm the validity of the proposed method.

  12. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  13. Deducing the form factors for shear used in the calculus of the displacements based on strain energy methods. Mathematical approach for currently used shapes

    Science.gov (United States)

    Constantinescu, E.; Oanta, E.; Panait, C.

    2017-08-01

    The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.

  14. A simple method of extracting the polarization charge density in the AlGaN/GaN heterostructure from current-voltage and capacitance-voltage characteristics

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Lin Zhao-Jun; Yu Ying-Xia; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Wang Zhan-Guo

    2012-01-01

    An Ni Schottky contact on the AlGaN/GaN heterostructure is fabricated. The flat-band voltage for the Schottky contact on the AlGaN/GaN heterostructure is obtained from the forward current—voltage characteristics. With the measured capacitance—voltage curve and the flat-band voltage, the polarization charge density in the AlGaN/GaN heterostructure is investigated, and a simple formula for calculating the polarization charge density is obtained and analyzed. With the approach described in this paper, the obtained polarization charge density agrees well with the one calculated by self-consistently solving Schrodinger's and Poisson's equations

  15. A new method for the measurement of the τ polarization. Application to the τ→a1ντ channel in the ALEPH experiment

    International Nuclear Information System (INIS)

    Duflot, L.

    1993-01-01

    In each decay channel, one can define from the available observables a single variable, denoted ω which contains all the information on the τ polarization. Using the ω variable allows to take into account the six available observables in the τ→a 1 ν channel and gives rise to an important improvement of the sensitivity of this channel to the τ polarization. The τ polarization is thus measured in the a 1 ν channel, with the decay of the a 1 into three charged pions. Results are given

  16. Visual recognition of complex medical lesions using 2D shape

    Science.gov (United States)

    Chodorowski, Artur; Gustavsson, Tomas; Mattsson, Ulf

    2000-06-01

    Different shape representation and classification methods for complex medical lesions were compared using oral lesions as a case study. The problem studied was the discrimination between potentially cancerous lesions, called leukoplakia, and other usually harmless lesions, called lichenoid reactions, which can appear in human oral cavities. The classification problem is difficult because these lesions vary in shape within classes and there are no easily recognizable characteristics. The representations evaluated were the centroidal profile function, the curvature function, and polar and complex coordinate functions. From these representations, translation, scale and rotation independent features were derived using Fourier transformations, auto-regressive modeling, and Zernike moments. A nonparametric kNN classifier with the leave-one-out cross-validation method was used as a classifier. An overall classification accuracy of about 84% was achieved using only the shape properties of the lesions, compared with a human visual classification rate of 65%. The best results were obtained using complex representation and Fourier/Zernike methods. In clinical practice, the preliminary diagnosis is based mainly on the visual inspection of the oral cavity, using both color, shape and texture as differentiating parameters. This study showed that machine analysis of shape could also play an important part in diagnosis and decisions regarding future treatment.

  17. On Characterizing Particle Shape

    Science.gov (United States)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  18. The method of covariant calculation of the amplitudes of processes with polarized spin 1/2 particles and its application to calculation of interference terms in cross sections of these processes

    International Nuclear Information System (INIS)

    Bondarev, A.L.

    1993-01-01

    The method of covariant calculation of the amplitudes of processes with polarized spin 1/2 particles is suggested. It can be used for calculation of interference terms in cross sections of these processes. As an illustration the expressions for the lowest order amplitudes of electron-electron scattering and for electron current with radiation of two bremsstrahlung photons in ultrarelativistic limit are presented

  19. Simultaneous in situ measurements of properties of particulates in rf silane plasmas using a polarization-sensitive laser-light-scattering method

    Science.gov (United States)

    Shiratani, Masaharu; Kawasaki, Hiroharu; Fukuzawa, Tsuyoshi; Yoshioka, Takashi; Ueda, Yoshio; Singh, Sanjay; Watanabe, Yukio

    1996-01-01

    A polarization-sensitive laser-light-scattering method is developed for simultaneous in situ measurements of properties (size, size dispersion, density, and refractive index) of particulates formed in processing plasmas. The developed system is applied to observe the growth processes of particulates in a range of their size larger than about 10 nm in rf silane plasmas. A size, a size dispersion (logarithm of a standard deviation of size), a density, and a refractive index of particulates in the plasmas are found to be 10-200 nm, about 0.1, 107-109 cm-3 and about 3-5i, respectively. The former three of such values agree fairly well with ones deduced from scanning electron microscopic (SEM) observation. These particulates grow through three phases of nucleation and initial growth, rapid growth, and growth saturation. Coexistence of two size groups of particulates with narrow size dispersions during and after the rapid growth phase verified by the SEM observation may be explained by a model taking into account coagulation between oppositely charged particulates.

  20. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  1. Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife.

    Science.gov (United States)

    Pilsner, J Richard; Lazarus, Alicia L; Nam, Dong-Ha; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Basu, Niladri

    2010-01-01

    In this paper we describe a novel approach that may shed light on the genomic DNA methylation of organisms with non-resolved genomes. The LUminometric Methylation Assay (LUMA) is permissive for genomic DNA methylation studies of any genome as it relies on the use of methyl-sensitive and -insensitive restriction enzymes followed by polymerase extension via Pyrosequencing technology. Here, LUMA was used to characterize genomic DNA methylation in the lower brain stem region from 47 polar bears subsistence hunted in central East Greenland between 1999 and 2001. In these samples, average genomic DNA methylation was 57.9% +/- 6.69 (SD; range was 42.0 to 72.4%). When genomic DNA methylation was related to brain mercury (Hg) exposure levels, an inverse association was seen between these two variables for the entire study population (P for trend = 0.17). After dichotomizing animals by gender and controlling for age, a negative trend was seen amongst male animals (P for trend = 0.07) but no associations were found in female bears. Such sexually dimorphic responses have been found in other toxicological studies. Our results show that genomic DNA methylation can be quantitatively studied in a highly reproducible manner in tissue samples from a wild organism with a non-resolved genome. As such, LUMA holds great promise as a novel method to explore consequential questions across the ecological sciences that may require an epigenetic understanding.

  2. Improvements in methods of analyzing dust concentrations, and influence of the storage processes on dust concentrations in polar snow and ice samples

    Directory of Open Access Journals (Sweden)

    Takayuki Miyake

    2014-07-01

    Full Text Available We sought to improve the analytical methods employed when operating a laser particle counter and to evaluate the influence of the storage processes on dust concentrations in polar snow and ice samples. We corrected the particle size ranges and threshold voltage using the new calibration curve, confirmed the analytical precision and dust concentrations of blank of wipers using in a clean room, and managed any variations in the laser sensor's sensitivity by measuring standard particles. The 15 ml glass screw bottles without packing (liner of cap of bottles yielded the lowest dust concentration of the blank among two types of bottles and nine types of packing for dust analysis. Storage of samples of the Dome Fuji ice core (Antarctica in a refrigerator for 1 year resulted in just a 4% decrease in dust concentration, which is within the analytical precision of the laser particle counter. Storage in a freezer resulted in an increase in dust concentrations and a decrease in the ratio of large particles more than 0.98 μm in particle diameter in the samples, suggesting a change in dust particle size during storage and an influence by the materials of the storage bottles. The addition of dispersants to the Antarctic snow samples is not clearly suitable when analyzing dust concentrations after sample storage by refrigeration or freezing.

  3. An automated and highly efficient method for counting and measuring fluorescent foci in rod-shaped bacteria.

    Science.gov (United States)

    Nielsen, H J; Hansen, F G

    2010-09-01

    Direct measurements of cells from photo micrographs are becoming increasingly used when investigating the position and/or distribution of chromosomal loci in bacteria. In general, these measurements have been done manually, and without clear definition of how they are made. Here we present a procedure for standardizing the measurement of cell properties from phase contrast images. Furthermore, we present a program using these standardized methods that can measure the intracellular positions of fluorescent foci in bacterial cells faster and with more precision than manual measurement.

  4. Method to determine full work of fracture from disk shaped compact tension tests on hot-mix asphalt

    CSIR Research Space (South Africa)

    Denneman, E

    2010-08-01

    Full Text Available the embedded discontinuity method (EDM) developed by Sancho et al (2007). Wu et al (2009) implemented the EDM in the open source finite element framework OpenSees (OpenSees, 2008), which is used for the numerical simulation in this paper. The software... was used to model the DSCTT in a previous paper at this conference by Denneman et al (2009a). The EDM approach has further been applied to study fracture mechanics size effect in high performance concrete pavement materials (Denneman et al, 2009b...

  5. Efficient and accurate laser shaping with liquid crystal spatial light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Maxson, Jared M.; Bartnik, Adam C.; Bazarov, Ivan V. [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2014-10-27

    A phase-only spatial light modulator (SLM) is capable of precise transverse laser shaping by either functioning as a variable phase grating or by serving as a variable mask via polarization rotation. As a phase grating, the highest accuracy algorithms, based on computer generated holograms (CGHs), have been shown to yield extended laser shapes with <10% rms error, but conversely little is known about the experimental efficiency of the method in general. In this work, we compare the experimental tradeoff between error and efficiency for both the best known CGH method and polarization rotation-based intensity masking when generating hard-edged flat top beams. We find that the masking method performs comparably with CGHs, both having rms error < 10% with efficiency > 15%. Informed by best practices for high efficiency from a SLM phase grating, we introduce an adaptive refractive algorithm which has high efficiency (92%) but also higher error (16%), for nearly cylindrically symmetric cases.

  6. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino

    2016-05-01

    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  7. Absolute Geostrophic Velocity Inverted from the Polar Science Center Hydrographic Climatology (PHC3.0) of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156425)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called PHC-V) comprises 3D gridded climatological fields of absolute geostrophic velocity of the Arctic Ocean inverted from the Polar science center...

  8. Shape descriptors for mode-shape recognition and model updating

    International Nuclear Information System (INIS)

    Wang, W; Mottershead, J E; Mares, C

    2009-01-01

    The most widely used method for comparing mode shapes from finite elements and experimental measurements is the Modal Assurance Criterion (MAC), which returns a single numerical value and carries no explicit information on shape features. New techniques, based on image processing (IP) and pattern recognition (PR) are described in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD), presented in this article, are the most popular shape descriptors having properties that include efficiency of expression, robustness to noise, invariance to geometric transformation and rotation, separation of local and global shape features and computational efficiency. The comparison of mode shapes is readily achieved by assembling the shape features of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the distances separating them.

  9. Numerical Study of Natural Convection Heat Transfer of Nanofluid in a Square Shaped Porous Media using Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    A. R. Rahmati

    2017-02-01

    0.02 and 0.03. In order to consider the effect of porous media, Darcy-Forchheimer model is used. The results show that the presence of the porous media decreases the velocity of nanofluid and consequently decreases the strength of the flow. With decreasing Darcy number and porosity coefficient, natural convection heat transfer weakens and the mechanism of natural convection of nano-fluids tends to that of thermal conduction. With increasing Rayleigh number, the strength of flow in cavity and average Nusselt number increases. In all cases studied, increase in volume fraction improves heat transfer. In constant properties model, by increasing solid volume fraction, average Nusselt number increases more than that of variable properties model. The results show that Lattice Boltzmann method has the ability to simulate flow in porous media.

  10. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  11. HAWC+/SOFIA Instrumental Polarization Calibration

    Science.gov (United States)

    Michail, Joseph M.; Chuss, David; Dowell, Charles D.; Santos, Fabio; Siah, Javad; Vaillancourt, John; HAWC+ Instrument Team

    2018-01-01

    HAWC+ is a new far-infrared polarimeter for the NASA/DLR SOFIA (Stratospheric Observatory for Infrared Astronomy) telescope. HAWC+ has the capability to measure the polarization of astronomical sources with unprecedented sensitivity and angular resolution in four bands from 50-250 microns. Using data obtained during commissioning flights, we implemented a calibration strategy that separates the astronomical polarization signal from the induced instrumental polarization. The result of this analysis is a map of the instrumental polarization as a function of position in the instrument's focal plane in each band. The results show consistency between bands, as well as with other methods used to determine preliminary instrumental polarization values.

  12. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  13. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  14. [Analysis of influencing factors of snow hyperspectral polarized reflections].

    Science.gov (United States)

    Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin

    2010-02-01

    Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.

  15. Validation of Shape Context Based Image Registration Method Using Digital Image Correlation Measurement on a Rat Stomach

    DEFF Research Database (Denmark)

    Liao, Donghua; Wang, P; Zhao, Jingbo

    2014-01-01

    needs to be further verified by using a feature tracking measurement. Hence, the aim of this study was to verify the SC method-based calculation by using digital image correlation (DIC) measurement on a rat stomach. The rat stomach exposed to distension pressures 0.0, 0.2, 0.4, and 0.6 kPa were studied...... using both 3D DIC system and SC-based image registration calculation. Three different surface sample counts between the reference and the target surfaces were usedto gauge the effect of the surface sample counts on the calculation. Each pair of the surface points between the DIC measured target surface...... and the SC calculated correspondence surface was compared. Compared with DIC measurement, the SC calculated surface had errors from 5% to 23% at pressures from 0.2 to 0.6 kPa with different surface sample counts between the reference surface and the target surface. This indicates good qualitative...

  16. ESTIMATION OF WIDE BAND RADAR CROSS SECTION (RCS OF REGULAR SHAPED OBJECTS USING METHOD OF MOMENTS (MOM

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2012-06-01

    Full Text Available Modern fighter aircrafts, ships, missiles etc need to be very low Radar Cross Section (RCS designs, to avoid detection by hostile radars. Hence accurate prediction of RCS of complex objects like aircrafts is essential to meet this requirement. A simple and efficient numerical procedure for treating problems of wide band RCS prediction Perfect Electric Conductor (PEC objects is developed using Method of Moment (MoM. Implementation of MoM for prediction of RCS involves solving Electric Field Integral Equation (EFIE for electric current using the vector and scalar potential solutions, which satisfy the boundary condition that the tangential electric field at the boundary of the PEC body is zero. For numerical purposes, the objects are modeled using planar triangular surfaces patches. Set of special sub-domain type basis functions are defined on pairs of adjacent triangular patches. These basis functions yield a current representation free of line or point charges at sub-domain boundaries. Once the current distribution is obtained, dipole model is used to find Scattering field in free space. RCS can be calculated from the scattered and incident fields. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth.

  17. A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped droplets using Cox theory

    Science.gov (United States)

    Wörner, M.; Cai, X.; Alla, H.; Yue, P.

    2018-03-01

    The Cox–Voinov law on dynamic spreading relates the difference between the cubic values of the apparent contact angle (θ) and the equilibrium contact angle to the instantaneous contact line speed (U). Comparing spreading results with this hydrodynamic wetting theory requires accurate data of θ and U during the entire process. We consider the case when gravitational forces are negligible, so that the shape of the spreading drop can be closely approximated by a spherical cap. Using geometrical dependencies, we transform the general Cox law in a semi-analytical relation for the temporal evolution of the spreading radius. Evaluating this relation numerically shows that the spreading curve becomes independent from the gas viscosity when the latter is less than about 1% of the drop viscosity. Since inertia may invalidate the made assumptions in the initial stage of spreading, a quantitative criterion for the time when the spherical-cap assumption is reasonable is derived utilizing phase-field simulations on the spreading of partially wetting droplets. The developed theory allows us to compare experimental/computational spreading curves for spherical-cap shaped droplets with Cox theory without the need for instantaneous data of θ and U. Furthermore, the fitting of Cox theory enables us to estimate the effective slip length. This is potentially useful for establishing relationships between slip length and parameters in numerical methods for moving contact lines.

  18. Bayesian Analysis of Systematic Effects in Interferometric Observations of the Cosmic Microwave Background Polarization

    Science.gov (United States)

    Karakci, Ata; Zhang, L.; Sutter, P. M.; Bunn, E. F.; Korotkov, A.; Timbie, P. T.; Tucker, G. S.; Wandelt, B.

    2013-06-01

    The detection of the primordial B-mode spectrum of the polarized cosmic microwave background (CMB) signal may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic errors. Interferometry proves to be a promising approach for overcoming such a challenge. In this thesis we present a complete simulation pipeline of interferometric observations of CMB polarization, including systematic errors. We employ a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. Several categories of systematic errors are considered: instrumental errors, consisting of antenna gain and antenna coupling errors, and beam errors, consisting of antenna pointing errors, beam cross-polarization and beam shape (and size) errors. In order to recover the tensor-to-scalar ratio, r, within a 10% tolerance level, which ensures the experiment is sensitive enough to detect the B-signal at r=0.01 in the multipole range 28 QUBIC-like experiment, Gaussian-distributed systematic errors must be controlled with precisions of |g_rms| = 0.1 for antenna gain, |e_rms| = 5e-4 for antenna coupling, d_rms ~ 0.7 degrees for pointing, z_rms ~ 0.7 degrees for beam shape, and m_rms = 5e-4 for beam cross-polarization.

  19. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  20. Shape-control by microwave-assisted hydrothermal method for the synthesis of magnetite nanoparticles using organic additives

    Energy Technology Data Exchange (ETDEWEB)

    Rizzuti, Antonino [Politecnico di Bari, Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (Italy); Dassisti, Michele [Politecnico di Bari, Dipartimento di Meccanica, Management e Matematica (Italy); Mastrorilli, Piero, E-mail: p.mastrorilli@poliba.it [Politecnico di Bari, Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (Italy); Sportelli, Maria C.; Cioffi, Nicola; Picca, Rosaria A. [Università di Bari, Dipartimento di Chimica (Italy); Agostinelli, Elisabetta; Varvaro, Gaspare [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia (Italy); Caliandro, Rocco [Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (Italy)

    2015-10-15

    A simple and fast microwave-assisted hydrothermal method is proposed for the synthesis of magnetite nanoparticles. The addition of different surfactants (polyvinylpyrrolidone, oleic acid, or trisodium citrate) was studied to investigate the effect on size distribution, morphology, and functionalization of the magnetite nanoparticles. Microwave irradiation at 150 °C for 2 h of aqueous ferrous chloride and hydrazine without additives resulted in hexagonal magnetite nanoplatelets with a facet-to-facet distance of 116 nm and a thickness of 40 nm having a saturation magnetization of ∼65 Am{sup 2} kg{sup −1}. The use of polyvinylpyrrolidone led to hexagonal nanoparticles with a facet-to-facet distance of 120 nm and a thickness of 53 nm with a saturation magnetization of ∼54 Am{sup 2} kg{sup −1}. Additives such as oleic acid and trisodium citrate yielded quasi-spherical nanoparticles of 25 nm in size with a saturation magnetization of ∼70 Am{sup 2} kg{sup −1} and spheroidal nanoparticles of 60 nm in size with a saturation magnetization up to ∼82 Am{sup 2} kg{sup −1}, respectively. A kinetic control of the crystal growth is believed to be responsible for the hexagonal habit of the nanoparticles obtained without additive. Conversely, a thermodynamic control of the crystal growth, leading to spheroidal nanoparticles, seems to occur when additives which strongly interact with the nanoparticle surface are used. A thorough characterization of the materials was performed. Magnetic properties were investigated by Superconducting Quantum Interference Device and Vibrating Sample magnetometers. Based on the observed magnetic properties, the magnetite obtained using citrate appears to be a promising support for magnetically transportable catalysts.