WorldWideScience

Sample records for polarization momentum transport

  1. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  2. Overview of toroidal momentum transport

    International Nuclear Information System (INIS)

    Peeters, A.G.; Hornsby, W.A.; Angioni, C.; Hein, T.; Kluy, N.; Strintzi, D.; Tardini, G.; Bortolon, A.; Camenen, Y.; Casson, F.J.; Snodin, A.P.; Szepesi, G.; Duval, B.; Fiederspiel, L.; Idomura, Y.; Mantica, P.; Parra, F.I.; Tala, T.; De Vries, P.; Weiland, J.

    2011-01-01

    Toroidal momentum transport mechanisms are reviewed and put in a broader perspective. The generation of a finite momentum flux is closely related to the breaking of symmetry (parity) along the field. The symmetry argument allows for the systematic identification of possible transport mechanisms. Those that appear to lowest order in the normalized Larmor radius (the diagonal part, Coriolis pinch, E x B shearing, particle flux, and up-down asymmetric equilibria) are reasonably well understood. At higher order, expected to be of importance in the plasma edge, the theory is still under development.

  3. Momentum transport in gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Rico

    2016-07-01

    In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}

  4. Angular-momentum transport in nuclear collisions

    International Nuclear Information System (INIS)

    Wolschin, G.; Ayik, S.; Noerenberg, W.

    1978-01-01

    Among the various relaxation processes that can be observed in heavy-ion collisions, the dissipation of relative angular momentum into intrinsic angular momentum of the fragments attracts increasing attention. Here we present a transport theoretical description of angular-momentum and mass transport that allows for a transparent interpretation of the data. (orig.) [de

  5. Angular momentum of circularly polarized light in dielectric media

    OpenAIRE

    Mansuripur, Masud

    2014-01-01

    A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell's equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when...

  6. Turbulent momentum transport due to neoclassical flows

    International Nuclear Information System (INIS)

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I; Belli, Emily; Candy, Jeff

    2015-01-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality. (paper)

  7. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  8. Anomalous momentum transport from drift waves

    International Nuclear Information System (INIS)

    Dominguez, R.R.; Staebler, G.M.

    1993-01-01

    A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks

  9. Method of measuring the polarization of high momentum proton beams

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1976-01-01

    A method of measuring the polarization of high momentum proton beams is proposed. This method utilizes the Primakoff effect and relates asymmetries at high energy to large asymmetries already measured at low energy. Such a new method is essential for the success of future experiments at energies where present methods are no longer feasible

  10. Hyperion polarization and transverse momentum properties in proton fragmentation

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Maansson, O.

    1982-11-01

    A dynamical mechanism for proton interaction in hadronic collisions is presented which provides a verification of the model with an essentially one-dimensional colour force field in the proton fragmentation region, proposed earlier. We include here a discussion of the transverse momentum properties of the final state particles and polarization properties for hyperions in proton fragmentation. (Author)

  11. Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution

    NARCIS (Netherlands)

    Boer, Daniel; den Dunnen, Wilco J.; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner

    2012-01-01

    We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine

  12. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  13. Transport of momentum in full f gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I.; Catto, Peter J.

    2010-01-01

    Full f electrostatic gyrokinetic formulations employ two gyrokinetic equations, one for ions and the other for electrons, and quasineutrality to obtain the ion and electron distribution functions and the electrostatic potential. We demonstrate with several examples that the long wavelength radial electric field obtained with full f approaches is extremely sensitive to errors in the ion and electron density since small deviations in density give rise to large, nonphysical deviations in the conservation of toroidal angular momentum. For typical tokamak values, a relative error of 10 -7 in the ion or electron densities is enough to obtain the incorrect toroidal rotation. Based on the insights gained with the examples considered, three simple tests to check transport of toroidal angular momentum in full f simulations are proposed.

  14. Angular momentum of circularly polarized light in dielectric media

    Science.gov (United States)

    Mansuripur, Masud

    2005-07-01

    A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell’s equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when the propagation directions of the four beams come into alignment. We proceed to use this four-beam technique to analyze the conservation of angular momentum when a plane-wave enters a dielectric slab from the free space. The angular momentum of the beam is shown to decrease upon entering the dielectric medium, by virtue of the fact that the incident beam exerts a torque on the slab surface at the point of entry. When the beam leaves the slab, it imparts an equal but opposite torque to the exit facet, thus recovering its initial angular momentum upon re-emerging into the free-space. Along the way, we derive an expression for the outward-directed force of a normally incident, finite-diameter beam on a dielectric surface; the possible relationship between this force and the experimentally observed bulging of a liquid surface under intense illumination is explored.

  15. Ionization in elliptically polarized pulses: Multielectron polarization effects and asymmetry of photoelectron momentum distributions

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    2012-01-01

    In the tunneling regime we present a semiclassical model of above-threshold ionization with inclusion of the Stark shift of the initial state, the Coulomb potential, and a polarization induced dipole potential. The model is used for the investigation of the photoelectron momentum distributions...... in close to circularly polarized light, and it is validated by comparison with ab initio results and experiments. The momentum distributions are shown to be highly sensitive to the tunneling exit point, the Coulomb force, and the dipole potential from the induced dipole in the atomic core...

  16. Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport

    International Nuclear Information System (INIS)

    Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.; Cowley, S. C.

    2011-01-01

    The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.

  17. Membrane Transport across Polarized Epithelia.

    Science.gov (United States)

    Garcia-Castillo, Maria Daniela; Chinnapen, Daniel J-F; Lencer, Wayne I

    2017-09-01

    Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Angular Momentum Transport in Quasi-Keplerian Accretion Disks ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi &. Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, ...

  19. Edge momentum transport by neutrals: an interpretive numerical framework

    Science.gov (United States)

    Omotani, J. T.; Newton, S. L.; Pusztai, I.; Viezzer, E.; Fülöp, T.; The ASDEX Upgrade Team

    2017-06-01

    Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6-2 \\text{N} \\text{m} are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.

  20. Anomalous transport and holographic momentum relaxation

    Science.gov (United States)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio

    2017-09-01

    The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.

  1. Angular momentum transport by tidal acoustic wave

    International Nuclear Information System (INIS)

    Sakurai, T.

    1976-01-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed. (Auth.)

  2. Angular momentum transport by tidal acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Kyoto Univ. (Japan). Faculty of Engineering

    1976-05-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed.

  3. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  4. Transverse momentum dependent quark distributions and polarized Drell-Yan processes

    OpenAIRE

    Zhou, Jian; Yuan, Feng; Liang, Zuo-Tang

    2009-01-01

    We study the spin-dependent quark distributions at large transverse momentum. We derive their transverse momentum behaviors in the collinear factorization approach in this region. We further calculate the angular distribution of the Drell-Yan lepton pair production with polarized beams and present the results in terms of the collinear twist-three quark-gluon correlation functions. In the intermediate transverse momentum region, we find that the two pproaches: the collinear factorization and t...

  5. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  7. Angular momentum transport and evolution of lopsided galaxies

    Science.gov (United States)

    Saha, Kanak; Jog, Chanda J.

    2014-10-01

    The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, Ω - κ, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow in the disc leading to an unphysical behaviour. We show that this problem is overcome in the presence of a dark matter halo, which sets the angular momentum flow outwards as required for disc evolution, provided the lopsidedness is leading in nature. This, plus the well-known angular momentum transport in the inner parts due to spiral arms, can facilitate an inflow of gas from outside perhaps through the cosmic filaments.

  8. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  9. 1D equation for toroidal momentum transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V A; Senichenkov, I Yu

    2010-01-01

    A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.

  10. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  11. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  12. Fast ions and momentum transport in JET tokamak plasmas

    International Nuclear Information System (INIS)

    Salmi, A.

    2012-01-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  13. Fast ions and momentum transport in JET tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, A.

    2012-07-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  14. The momentum transfer cross section and transport coefficients for low energy electrons in mercury

    International Nuclear Information System (INIS)

    McEachran, R P; Elford, M T

    2003-01-01

    The momentum transfer cross section for electrons incident on mercury atoms has been determined from the solution of Dirac-Fock scattering equations which included both static and dynamic multipole polarization potentials as well as full anti-symmetrization to incorporate exchange effects. This cross section is in excellent agreement between 0.2 and 3.0 eV with the cross section derived from the most recent experimental measurements. The discrepancy below 0.2 eV has been investigated using two-term transport theory

  15. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  16. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  17. Momentum transport studies from multi-machine comparisons

    International Nuclear Information System (INIS)

    Yoshida, M.; Kamada, Y.; Sakamoto, Y.; Kaye, S.; Solomon, W.; Bell, R.E.; Rice, J.; Podpaly, Y.; Reinke, M.L.; Tala, T.; Salmi, A.; Burrell, K.H.; Ferreira, J.; McDonald, D.; Mantica, P.

    2012-01-01

    A database of toroidal momentum transport on five tokamaks, Alcator C-Mod, DIII-D, JET, NSTX and JT-60U, has been constructed under a wide range of conditions in order to understand the characteristics of toroidal momentum transport coefficients, namely the toroidal momentum diffusivity (χ φ ) and the pinch velocity (V pinch ). Through an inter-machine comparison, the similarities and differences in the properties of χ φ and V pinch among the machines have been clarified. Parametric dependences of these momentum transport coefficients have been investigated over a wide range of plasma parameters taking advantage of the different operation regimes in machines. The approach offers insights into the parametric dependences as follows. The toroidal momentum diffusivity (χ φ ) generally increases with increasing heat diffusivity (χ i ). The correlation is observed over a wide range of χ φ , covering roughly two orders of magnitude, and within each of the machines over the whole radius. Through the inter-machine comparison, it is found that χ φ becomes larger in the outer region of the plasma. Also observed is a general trend for V pinch in tokamaks; the inward pinch velocity (−V pinch ) increases with increasing χ φ . The results that are commonly observed in machines will support a toroidal rotation prediction in future devices. On the other hand, differences among machines have been observed. The toroidal momentum diffusivity, χ φ , is larger than or equal to χ i in JET and JT-60U; on the other hand, χ φ is smaller than or equal to χ i in NSTX, DIII-D and Alcator C-Mod. In DIII-D, the ratio −RV pinch /χ φ at r/a = 0.5–0.6 is about 2, which is small compared with that in other tokamaks (−RV pinch /χ φ ≈ 5). Based on these different observations, parametric dependences of χ φ /χ i , RV pinch /χ φ and χ φ have been investigated in H-mode plasmas. Across the dataset from all machines, the ratio χ φ /χ i tends to be larger in low

  18. Resummation for polarized semi-inclusive deep-inelastic scattering at small transverse momentum

    International Nuclear Information System (INIS)

    Koike, Yuji . E-mail koike@nt.sc.niigata-u.ac.jp; Nagashima, Junji; Vogelsang, Werner

    2006-01-01

    We study the transverse-momentum distribution of hadrons produced in semi-inclusive deep-inelastic scattering (SIDIS). We consider cross sections for various combinations of polarizations of the initial lepton and nucleon or the produced hadron, for which we perform the resummation of large double-logarithmic perturbative corrections arising at small transverse momentum. We present phenomenological results for the processes lp->lπX with longitudinally polarized leptons and protons. We discuss the impact of the perturbative resummation and of estimated non-perturbative contributions on the corresponding cross sections and their spin asymmetry. Our results should be relevant for ongoing studies in the COMPASS experiment at CERN, and for future experiments at the proposed eRHIC collider at BNL

  19. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    International Nuclear Information System (INIS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-01-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  20. Angular momentum transport and dynamo action in the sun - Implications of recent oscillation measurements

    International Nuclear Information System (INIS)

    Gilman, P. A.; Morrow, C. A.; Deluca, E. E.

    1989-01-01

    The implications of a newly proposed picture of the sun's internal rotation (Brown et al., 1989; Morrow, 1988) for the distribution and transport of angular momentum and for the solar dynamo are considered. The new results, derived from an analysis of solar acoustic oscillations, affect understanding of how momentum is cycled in the sun and provide clues as to how and where the solar dynamo is driven. The data imply that the only significant radial gradient of angular velocity exists in a transitional region between the bottom of the convection zone, which is rotating like the solar surface, and the top of the deep interior, which is rotating rigidly at a rate intermediate between the equatorial and polar rates at the surface. Thus the radial gradient must change sign at the latitude where the angular velocity of the surface matches that of the interior. These inferences suggest that the cycle of angular momentum that produces the observed latitudinal differential rotation in the convection zone may be coupled to layers of the interior beneath the convection zone. 35 refs

  1. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  2. Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Mehlmann, F.; Naulin, Volker

    2012-01-01

    A reciprocating probe was used for localized measurements of the radial transport of poloidal momentum in the scrape-off layer (SOL) of ASDEX Upgrade (AUG). The probe measured poloidal and radial electric field components and density. We concentrate on three components of the momentum transport: ......: Reynolds stress, convective momentum flux and triple product of the fluctuating components of density, radial and poloidal electric field. For the evaluation we draw mainly on the probability density functions (PDFs)....

  3. Inclusive spin-momentum analysis and new physics at a polarized electron-positron collider

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayan, B. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India); Rindani, Saurabh D. [Physical Research Laboratory, Theoretical Physics Division, Ahmedabad (India)

    2018-02-15

    We consider the momentum distribution and the polarization of an inclusive heavy fermion in a process assumed to arise from standard-model (SM) s-channel exchange of a virtual γ or Z with a further contribution from physics beyond the standard model involving s-channel exchanges. The interference of the new-physics amplitude with the SM γ or Z exchange amplitude is expressed entirely in terms of the space-time signature of such new physics. Transverse as well as longitudinal polarizations of the electron and positron beams are taken into account. Similarly, we consider the cases of the polarization of the observed final-state fermion along longitudinal and two transverse spin-quantization axes, which are required for a full reconstruction of the spin dependence of the process. We show how these model-independent distributions can be used to deduce some general properties of the nature of the interaction and some of their properties in prior work which made use of spin-momentum correlations. (orig.)

  4. Heat and momentum transport scalings in vertical convection

    Science.gov (United States)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr > 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  5. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; Beedoe, S.; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; Dow, K.; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; Lu, L.; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; Mohring, R.; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-01-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q 2 the deuteron charge form factors G C and G Q . They are in good agreement with relativistic calculations and disagree with pQCD predictions

  6. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    International Nuclear Information System (INIS)

    Li, Yunyun; Li, Nianbei; Hänggi, Peter; Li, Baowen; Liu, Sha

    2015-01-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  7. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    Science.gov (United States)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  8. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  9. Impact of GFZ's Effective Angular Momentum Forecasts on Polar Motion Prediction

    Science.gov (United States)

    Dill, Robert; Dobslaw, Henryk

    2017-04-01

    The Earth System Modelling group at GeoForschungsZentrum (GFZ) Potsdam offers now 6-day forecasts of Earth rotation excitation due to atmospheric, oceanic, and hydrologic angular momentum changes that are consistent with its 40 years-long EAM series. Those EAM forecasts are characterized by an improved long-term consistency due to the introduction of a time-invariant high-resolution reference topography into the AAM processing that accounts for occasional NWP model changes. In addition, all tidal signals from both atmosphere and ocean have been separated, and the temporal resolution of both AAM and OAM has been increased to 3 hours. Analysis of an extended set of EAM short-term hindcasts revealed positive prediction skills for up to 6 days into the future when compared to a persistent forecast. Whereas UT1 predictions in particular rely on an accurate AAM forecast, skillfull polar motion prediction requires high-quality OAM forecasts as well. We will present in this contribution the results from a multi-year hindcast experiment, demonstrating that the polar motion prediction as currently available from Bulletin A can be improved in particular for lead-times between 2 and 5 days by incorporating OAM forecasts. We will also report about early results obtained at Observatoire de Paris to predict polar motion from the integration of GFZ's 6-day EAM forecasts into the Liouville equation in a routine setting, that fully takes into account the operational latencies of all required input products.

  10. Momentum transport during reconnection events in the MST reversed field pinch

    Science.gov (United States)

    Kuritsyn, Alexey

    2008-11-01

    During reconnection events in the MST reversed field pinch momentum parallel to the magnetic field is observed to be suddenly transported from the core to the edge. This occurs simultaneous with a surge in multiple resistive tearing instabilities. From measurements of the plasma flow and the forces arising from tearing instability (Maxwell and Reynolds stresses) we have established that tearing instabilities induce strong momentum transport. Comparison with nonlinear MHD computation of tearing fluctuations supports this conclusion, although it also indicates that effects beyond single-fluid MHD are likely to be important. The radial profile of the parallel velocity is reconstructed from a combination of diagnostics: Rutherford scattering of injected neutral atoms (for majority ions), charge exchange recombination spectroscopy (for minority ions), and Mach probes (for edge majority ion flow). Maxwell stress has been measured previously in the core by laser Faraday rotation, and both stresses are measured in the edge with probes. A surprising observation is that both the Maxwell and Reynolds stresses are each ten times larger than needed to account for the observed momentum transport (i.e., larger than the inertial and viscous terms in the momentum balance equation). However, they are oppositely directed such that their difference is approximately equal to the rate of change of plasma momentum. The large magnitude of the individual stresses is not predicted by MHD theory; the Maxwell stress also produces a Hall dynamo effect, implying that a two-fluid theory might be necessary for a complete description of momentum transport. To test further the relation between momentum transport and tearing fluctuations, momentum transport was measured perturbatively, by altering plasma rotation with inserted biased electrodes. Biasing is applied in plasmas with large tearing activity and improved confinement plasmas in which tearing activity is reduced by inductive current profile

  11. Momentum Transport Studies in High E x B Shear Plasmas in NSTX

    International Nuclear Information System (INIS)

    Solomon, W.M.; Kaye, S.M.; Bell, S.M.; LeBlanc, B.P.; Menard, B.P.; Rewoldt, B.P.; Wang, W.; Levinton, F.M.; Yuh, H.; Sabbagh, S.A.

    2008-01-01

    Experiments have been conducted on NSTX to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with E x B shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after non-resonant magnetic perturbations are applied to brake the plasma

  12. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  13. Implementation of neoclassical effects in momentum transport analysis at LHD

    NARCIS (Netherlands)

    Beckers, J.P.; Ida, K.; Yoshinuma, M.; Emoto, M.; Seki, R.; Yokoyama, M.; Jaspers, R.J.E.

    2017-01-01

    Plasma rotation plays an important role in the suppression of turbulence, leading to an increase in energy and particle confinement. Significant rotation also leads to a stabilisation of the resistive wall mode. The external momentum input from Neutral Beam Injection (NBI) in current generation

  14. Final Report for the Center for Momentum Transport and Flow Organization (CMTFO)

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, George R. [Univ. of California, San Diego, CA (United States)

    2018-01-25

    The Center for Momentum Transport and Flow Organization (CMTFO) was established in 2009 as a multi-institutional U.S. DOE Plasma Science Center, with a focus on the fundamental physics mechanisms that lead to the transport of momentum within fusion and astrophysical plasma systems, and the subsequent formation of ordered behavior in such systems. It was funded in two tranches; this report covers the activities supported by the second period of funding which ran from May 2012 through May 2016.

  15. Role of Reynolds stress and toroidal momentum transport in the dynamics of internal transport barriers

    International Nuclear Information System (INIS)

    Kim, S. S.; Jhang, Hogun; Diamond, P. H.

    2012-01-01

    We study the interplay between intrinsic rotation and internal transport barrier (ITB) dynamics through the dynamic change of the parallel Reynolds stress. Global flux-driven gyrofluid simulations are used for this study. In particular, we investigate the role of parallel velocity gradient instability (PVGI) in the ITB formation and the back transition. It is found that the excitation of PVGI is followed by a change in the Reynolds stress which drives a momentum redistribution. This significantly influences E×B shear evolution and subsequent ITB dynamics. Nonlocal interactions among fluctuations are also observed during the PVGI excitation, resulting in turbulence suppression at the ITB.

  16. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

    International Nuclear Information System (INIS)

    Paoletti, M. S.; Lathrop, D. P.

    2011-01-01

    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].

  17. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525...

  18. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  19. GYRO Simulations of Core Momentum Transport in DIII-D and JET Plasmas

    International Nuclear Information System (INIS)

    Budny, R.V.; Candy, J.; Waltz, R.E.

    2005-01-01

    Momentum, energy, and particle transport in DIII-D and JET ELMy H-mode plasmas is simulated with GYRO and compared with measurements analyzed using TRANSP. The simulated transport depends sensitively on the nabla(T(sub)i) turbulence drive and the nabla(E(sub)r) turbulence suppression inputs. With their nominal values indicated by measurements, the simulations over-predict the momentum and energy transport in the DIII-D plasmas, and under-predict in the JET plasmas. Reducing |nabla(T(sub)i)| and increasing |nabla(E(sub)r)| by up to 15% leads to approximate agreement (within a factor of two) for the DIII-D cases. For the JET cases, increasing |nabla(T(sub)i)| or reducing |nabla(E(sub)r)| results in approximate agreement for the energy flow, but the ratio of the simulated energy and momentum flows remains higher than measurements by a factor of 2-4

  20. Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Peeters, Arthur G.

    2011-01-01

    Two symmetries of the local nonlinear δf gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.

  1. Charge transport in non-polar and semi-polar III-V nitride heterostructures

    International Nuclear Information System (INIS)

    Konar, Aniruddha; Verma, Amit; Fang, Tian; Zhao, Pei; Jana, Raj; Jena, Debdeep

    2012-01-01

    Compared to the intense research focus on the optical properties, the transport properties in non-polar and semi-polar III-nitride semiconductors remain relatively unexplored to date. The purpose of this paper is to discuss charge-transport properties in non-polar and semi-polar orientations of GaN in a comparative fashion to what is known for transport in polar orientations. A comprehensive approach is adopted, starting from an investigation of the differences in the electronic bandstructure along different polar orientations of GaN. The polarization fields along various orientations are then discussed, followed by the low-field electron and hole mobilities. A number of scattering mechanisms that are specific to non-polar and semi-polar GaN heterostructures are identified, and their effects are evaluated. Many of these scattering mechanisms originate due to the coupling of polarization with disorder and defects in various incarnations depending on the crystal orientation. The effect of polarization orientation on carrier injection into quantum-well light-emitting diodes is discussed. This paper ends with a discussion of orientation-dependent high-field charge-transport properties including velocity saturation, instabilities and tunneling transport. Possible open problems and opportunities are also discussed. (paper)

  2. Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2010-11-01

    The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.

  3. Toroidal and poloidal momentum transport studies in JET

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Crombe, K.

    2007-01-01

    that the carbon poloidal velocity can be an order of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E x B flow shear used for example in transport simulations. Both the Weiland model and GLF23 reproduce the onset......, location and strength of the ITB well when the experimental poloidal velocity is used while they do not predict the formation of the ITB using the neo-classical poloidal velocity in time-dependent transport simulation. The most plausible explanation for the generation of the anomalous poloidal velocity...... is the turbulence driven flow through the Reynolds stress. Both CUTIE and TRB turbulence codes show the existence of an anomalous poloidal velocity, being significantly larger than the neo-classical values. And similarly to experiments, the poloidal velocity profiles peak in the vicinity of the ITB and seem...

  4. One-way quantum computation via manipulation of polarization and momentum qubits in two-photon cluster states

    International Nuclear Information System (INIS)

    Vallone, G; Pomarico, E; De Martini, F; Mataloni, P

    2008-01-01

    Four-qubit cluster states of two photons entangled in polarization and linear momentum have been used to realize a complete set of single qubit rotations and the C-NOT gate for equatorial qubits with high values of fidelity. By the computational equivalence of the two degrees of freedom our result demonstrate the suitability of two photon cluster states for rapid and efficient one-way quantum computing

  5. Toroidal and poloidal momentum transport studies in Tokamaks

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Giroud, C.

    2007-01-01

    to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly...... codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly by the flow due to the Reynold's stress. It is worth noting that these codes and models treat the equilibrium in a simplified way and this affects...... the geodesic curvature effects and geodesic acoustic modes. The neo-classical equilibrium is calculated more accurately in the GEM code and the simulations suggest that the spin-up of poloidal velocity is a consequence of the plasma profiles steepening when the ITB grows, following in particular the growth...

  6. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  7. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    Science.gov (United States)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  8. Ubiquity of non-diffusive momentum transport in JET H-modes

    NARCIS (Netherlands)

    Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.; JET-EFDA Contributors,

    2012-01-01

    A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient R

  9. Modelling the turbulent transport of angular momentum in tokamak plasmas - A quasi-linear gyrokinetic approach

    International Nuclear Information System (INIS)

    Cottier, Pierre

    2013-01-01

    The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author) [fr

  10. Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks

    DEFF Research Database (Denmark)

    Diamond, P.H.; McDevitt, C.J.; Güran, Ö.D.

    2009-01-01

    Recent results in the theory of turbulent momentum transport and the origins of intrinsic rotation are summarized. Special attention is focused on aspects of momentum transport critical to intrinsic rotation, namely the residual stress and the edge toroidal flow velocity pinch. Novel results...

  11. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins-Soper-Sterman formalism

    Science.gov (United States)

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel; Prokudin, Alexei

    2018-06-01

    We extend the improved Collins-Soper-Sterman (iCSS) W + Y construction recently presented in [1] to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) qT-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu-Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarized spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.

  12. ipole: Semianalytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Moscibrodzka, Monika; Gammie, Charles F.

    2018-04-01

    ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

  13. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  14. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  15. Measurement of the polarized forward-backward asymmetry of B quarks using momentum-weighted track charge at SLD

    International Nuclear Information System (INIS)

    Junk, T.R.

    1995-11-01

    This thesis presents a direct measurement of the parity-violating parameter A b by analyzing the polarized forward-backward asymmetry of b quarks in e + e - → Z 0 → b bar b. Data were taken at the Stanford Linear Accelerator Center (SLAC), with the Stanford Large Detector (SLD), which records the products of e + e - interactions at a center of mass energy √s = 91.2 GeV/c 2 at the SLAC Linear Collider (SLC). The SLC/SLD experimental apparatus provides a unique and ideal environment for measuring electroweak asymmetries. Heavy flavor decays of the Z 0 were identified inclusively by taking advantage of the long lifetime of B hadrons, the small, stable SLC beam spot, and SLD's precise tracking detectors. Two analysis techniques for measuring A b are presented: a binned fit to the left-right forward-backwards asymmetry of tagged events signed with momentum-weighted track charge, and a self-calibrating maximum-likelihood technique using momentum-weighted charge from the two hemispheres in each tagged event. From our 1994-1995 sample of 3.6 pb -1 , having a luminosity-weighted average e - polarization of 77.3%, and our 1993 sample of 1.8 pb -1 , having a luminosity-weighted polarization of 63.1%, we obtain A b = 0.848 ± 0.046(stat.) ± 0.050(syst.)

  16. Measurement of the polarization parameter in 24 GeV/c pp elastic scattering at large momentum transfers

    CERN Document Server

    Antille, J; Dick, Louis; Gonidec, A; Kuroda, K; Kyberd, P; Michalowicz, A; Perret-Gallix, D; Salmon, G L; Werlen, M

    1981-01-01

    A measurement of the polarization parameter P/sub 0/ in pp elastic scattering has been made 24 GeV/c over the range of momentum transfer squared 0.7< mod t mod <5.0 (GeV/c)/sup 2/. The structure of P/sub 0/ has changed compared to typical lower energy data. The second peak is suppressed and a dip has appeared at mod t mod =3.6 (GeV/c)/sup 2/. (31 refs).

  17. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  18. Momentum-energy transport from turbulence driven by parallel flow shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Horton, W.; Bengtson, R.D.; Li, G.X.

    1994-04-01

    The low frequency E x B turbulence driven by the shear in the mass flow velocity parallel to the magnetic field is studied using the fluid theory in a slab configuration with magnetic shear. Ion temperature gradient effects are taken into account. The eigenfunctions of the linear instability are asymmetric about the mode rational surfaces. Quasilinear Reynolds stress induced by such asymmetric fluctuations produces momentum and energy transport across the magnetic field. Analytic formulas for the parallel and perpendicular Reynolds stress, viscosity and energy transport coefficients are given. Experimental observations of the parallel and poloidal plasma flows on TEXT-U are presented and compared with the theoretical models

  19. Electron spin polarization induced by spin Hall effect in semiconductors with a linear in the momentum spin-orbit splitting of conduction band

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that spin Hall effect creates uniform spin polarization of electrons in semiconductor with a linear in the momentum spin splitting of conduction band. In turn, the profile of the non-uniform spin polarization accumulated at the edge of the sample oscillates in space even in the absence of an external magnetic field.

  20. IPOLE - semi-analytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Mościbrodzka, M.; Gammie, C. F.

    2018-03-01

    We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.

  1. Holographic perfect fluidity, Cotton energy-momentum duality and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Ayan [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Institut de Physique Théorique, CEA, CNRS URA 2306,91191 Gif-sur-Yvette (France); Petkou, Anastasios C. [Institute of Theoretical Physics, Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece); Petropoulos, P. Marios; Pozzoli, Valentina [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Siampos, Konstadinos [Service de Mécanique et Gravitation, Université de Mons, UMONS,20 Place du Parc, 7000 Mons (Belgium)

    2014-04-23

    We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D{sub t}. Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality.

  2. Holographic perfect fluidity, Cotton energy-momentum duality and transport properties

    International Nuclear Information System (INIS)

    Mukhopadhyay, Ayan; Petkou, Anastasios C.; Petropoulos, P. Marios; Pozzoli, Valentina; Siampos, Konstadinos

    2014-01-01

    We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D t . Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality

  3. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-28

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  4. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    Science.gov (United States)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The

  5. Measurement of the polarized forward-backward asymmetry of B quarks using momentum-weighted track charge at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Junk, Thomas Robert [Stanford Univ., CA (United States)

    1995-11-01

    This thesis presents a direct measurement of the parity-violating parameter Ab by analyzing the polarized forward-backward asymmetry of b quarks in e+e- → Z0 → b$\\bar{b}$. Data were taken at the Stanford Linear Accelerator Center (SLAC), with the Stanford Large Detector (SLD), which records the products of e+e- interactions at a center of mass energy √s = 91.2 GeV/c2 at the SLAC Linear Collider (SLC). The SLC/SLD experimental apparatus provides a unique and ideal environment for measuring electroweak asymmetries. Heavy flavor decays of the Z0 were identified inclusively by taking advantage of the long lifetime of B hadrons, the small, stable SLC beam spot, and SLD`s precise tracking detectors. Two analysis techniques for measuring Ab are presented: a binned fit to the left-right forward-backwards asymmetry of tagged events signed with momentum-weighted track charge, and a self-calibrating maximum-likelihood technique using momentum-weighted charge from the two hemispheres in each tagged event. From our 1994-1995 sample of 3.6 pb-1, having a luminosity-weighted average e- polarization of 77.3%, and our 1993 sample of 1.8 pb-1, having a luminosity-weighted polarization of 63.1%, we obtain Ab = 0.848 ± 0.046(stat.) ± 0.050(syst.).

  6. Non-local two phase flow momentum transport in S BWR

    International Nuclear Information System (INIS)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A.

    2015-09-01

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  7. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  8. Momentum and scalar transport at the turbulent/non-turbulent interface of a jet

    DEFF Research Database (Denmark)

    Westerweel, J.; Fukushima, C.; Pedersen, Jakob Martin

    2009-01-01

    and well-defined bounding interface between the turbulent and non-turbulent regions of flow. The jet carries a fluorescent dye measured with planar laser-induced fluorescence (LIF), and the surface discontinuity in the scalar concentration is identified as the fluctuating turbulent jet interface. Thence...... velocity and mean scalar and a tendency towards a singularity in mean vorticity. These actual or asymptotic discontinuities are consistent with the conditional mean momentum and scalar transport equations integrated across the interface. Measurements of the fluxes of turbulent kinetic energy and enstrophy...

  9. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Vrhovac, S.B.; Petrovic, Z.Lj.

    1995-01-01

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m 0 0 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  10. Momentum transport process in the quasi self-similar region of free shear mixing layer

    Science.gov (United States)

    Takamure, K.; Ito, Y.; Sakai, Y.; Iwano, K.; Hayase, T.

    2018-01-01

    In this study, we performed a direct numerical simulation (DNS) of a spatially developing shear mixing layer covering both developing and developed regions. The aim of this study is to clarify the driving mechanism and the vortical structure of the partial counter-gradient momentum transport (CGMT) appearing in the quasi self-similar region. In the present DNS, the self-similarity is confirmed in x/L ≥ 0.67 (x/δU0 ≥ 137), where L and δU0 are the vertical length of the computational domain and the initial momentum thickness, respectively. However, the trend of CGMT is observed at around kδU = 0.075 and 0.15, where k is the wavenumber, δU is the normalized momentum thickness at x/L = 0.78 (x/δU0 = 160), and kδU = 0.075 corresponds to the distance between the vortical/stretching regions of the coherent structure. The budget analysis for the Reynolds shear stress reveals that it is caused by the pressure diffusion term at the off-central region and by -p (∂ u /∂ y ) ¯ in the pressure-strain correlation term at the central region. As the flow moves toward the downstream direction, the appearance of those terms becomes random and the unique trend of CGMT at the specific wavenumber bands disappears. Furthermore, we investigated the relationship between the CGMT and vorticity distribution in the vortex region of the mixing layer, in association with the spatial development. In the upstream location, the high-vorticity region appears in the boundary between the areas of gradient momentum transport and CGMT, although the high-vorticity region is not actively producing turbulence. The negative production area gradually spreads by flowing toward the downstream direction, and subsequently, the fluid mass with high-vorticity is transported from the forehead stretching region toward the counter-gradient direction. In this location, the velocity fluctuation in the high-vorticity region is large and turbulence is actively produced. In view of this, the trend of

  11. On the Momentum Transported by the Radiation Field of a Long Transient Dipole and Time Energy Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-11-01

    Full Text Available The paper describes the net momentum transported by the transient electromagnetic radiation field of a long transient dipole in free space. In the dipole a current is initiated at one end and propagates towards the other end where it is absorbed. The results show that the net momentum transported by the radiation is directed along the axis of the dipole where the currents are propagating. In general, the net momentum P transported by the electromagnetic radiation of the dipole is less than the quantity U / c , where U is the total energy radiated by the dipole and c is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective wavelength of the current decreases with respect to the length of the dipole (or the duration of the current decreases with respect to the travel time of the current along the dipole, the net momentum transported by the radiation field becomes closer and closer to U / c , and for effective wavelengths which are much shorter than the length of the dipole, P ≈ U / c . The results show that when the condition P ≈ U / c is satisfied, the radiated fields satisfy the condition Δ t Δ U ≥ h / 4 π where Δ t is the duration of the radiation, Δ U is the uncertainty in the dissipated energy and h is the Plank constant.

  12. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures o...

  13. Production of the associated J/ψ+γ with high transverse momentum in polarized proton-proton collisions at √s = 50-500 GeV

    International Nuclear Information System (INIS)

    Usubov, Z.U.

    1996-01-01

    The paper considers a possibility to investigate the associated production of J/ψ+γ with high transverse momentum in polarized pp-interactions at Relativistic Heavy Ion Collider energies. The differential cross sections and their asymmetries are evaluated. The accuracy which can be achieved in the gluon distribution function measurement is discussed. 16 refs., 4 figs., 1 tab

  14. A FORMALISM FOR COVARIANT POLARIZED RADIATIVE TRANSPORT BY RAY TRACING

    International Nuclear Information System (INIS)

    Gammie, Charles F.; Leung, Po Kin

    2012-01-01

    We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N αβ ≡ (a α k a* β k ), where a k is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k μ ∇ μ N αβ = 0. We show that this is equivalent to Broderick and Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.

  15. Mini-conference on Angular Momentum Transport in Laboratory and Nature

    International Nuclear Information System (INIS)

    Ji, Hantao; Kronberg, Philipp; Prager, Stewart C.; Uzdensky, Dmitri A.

    2008-01-01

    This paper provides a concise summary of the current status of the research and future perspectives discussed in the Mini-Conference on Angular Momentum Transport in Laboratory and Nature. This Mini-conference, sponsored by the Topical Group on Plasma Astrophysics, was held as part of the American Physical Society's Division of Plasma Physics 2007 Annual Meeting (November 12-16, 2007). This Mini-conference covers a wide range of phenomena happening in fluids and plasmas, either in laboratory or in nature. The purpose of this paper is not to comprehensively review these phenomena, but to provide a starting point for interested readers to refer to related research in areas other than their own

  16. Transport of energy and momentum due to spatial Landau damping and growth of electrostatic waves

    International Nuclear Information System (INIS)

    Lacina, J.

    1994-01-01

    It is shown that Landau damping in space (LDS), occuring for time-periodic electrostatic waves, does not lead to any deposition of energy in plasmas. A steady-state balance and a steady-state transport of energy, momentum and particles take place both for damped and growing waves. Because of the phase interference of coherent free and forced particle oscillations, the oscillatory energy of particles increases in the direction of wave propagation; the time-averaged flow of plasma kinetic energy being constant in space for these waves, the LDS must take place for a Maxwellian plasma in order to compensate for the growth of the particle oscillatory energy in space. (Author)

  17. An exact model for airline flight network optimization based on transport momentum and aircraft load factor

    Directory of Open Access Journals (Sweden)

    Daniel Jorge Caetano

    2017-12-01

    Full Text Available The problem of airline flight network optimization can be split into subproblems such as Schedule Generation (SG and Fleet Assignment (FA, solved in consecutive steps or in an integrated way, usually based on monetary costs and revenue forecasts. A linear pro­gramming model to solve SG and FA in an integrated way is presented, but with an al­ternative approach based on transport momentum and aircraft load factor. This alterna­tive approach relies on demand forecast and allows obtaining solutions considering min­imum average load factors. Results of the proposed model applications to instances of a regional Brazilian airline are presented. The comparison of the schedules generated by the proposed approach against those obtained by applying a model based on mone­tary costs and revenue forecasts demonstrates the validity of this alternative approach for airlines network planning.

  18. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  19. Cytokinins and polar transport of auxin in axillary pea buds

    Directory of Open Access Journals (Sweden)

    Petr Kalousek

    2010-01-01

    Full Text Available The influence of cytokinin on auxin transport during release of axillary buds from apical dominance was studied. Expression of auxin-carrier coding genes PsAUX1 (AUXIN RESISTANT 1 and PsPIN1 (PIN-FORMED 1 was explored in axillary buds of the 2nd node of 7-day pea plants (Pisum sativum L. cv. Vladan after decapitation or after exogenous application of benzyladenine (6-benzylaminopurine onto axillary buds of intact plants. Localization of the PsPIN1 protein, the key factor for polar transport of auxin in axillary buds, was visualised by immunohistochemistry. After exogenous application of cytokinin the expression of PsAUX1 and PsPIN1 rapidly increased with a simultaneous rapid decrease in PsDRM1 and PsAD1 expression – genes related to bud dormancy. The same changes in expression were observed after decapitation, however they were markedly slower. The PsPIN1 auxin efflux carrier in the inhibited axillary buds of intact plants was localised in a non-polar manner. After exogenous application of cytokinin gradual polarisation of the PsPIN1 protein occurred on the basal pole of polar auxin transport competent cells. Despite the fact that direct auxin application to buds of intact plants led to an increase in PsAUX1 and PsPIN1 expression, the buds remained dormant (non-growing what was accompanied by persistent expression of the dormancy markers PsDRM1 and PsAD1. The results indicate a possible effect of cytokinins on biosynthesis, and/or transport of auxin in axillary buds and they highlight the importance of auxin-cytokinin crosstalk in the regulation of bud outgrowth after breaking of apical dominance.

  20. Center for Momentum Transport and Flow Organization (CMTFO). Final technical report

    International Nuclear Information System (INIS)

    Tynan, George R.; Diamond, P. H.; Ji, H.; Forest, C. B.; Terry, P. W.; Munsat, T.; Brummell, N.

    2013-01-01

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tachocline physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the

  1. Center for Momentum Transport and Flow Organization (CMTFO). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, George R. [University of California, San Diego, CA (United States); Diamond, P. H. [University of California, San Diego, CA (United States); Ji, H. [Princeton Plasma Physics Lab., NJ (United States); Forest, C. B. [Univ. of Wisconsin, Madison, WI (United States); Terry, P. W. [Univ. of Wisconsin, Madison, WI (United States); Munsat, T. [Univ. of Colorado, Boulder, CO (United States); Brummell, N. [Univ. of California, Santa Cruz (United States)

    2013-07-29

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tachocline physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the

  2. Final Technical Report for the Center for Momentum Transport and Flow Organization (CMTFO)

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Cary B. [University of Wisconsin-Madison; Tynan, George R. [University of California San Diego

    2013-07-29

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tacholine physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the

  3. SPREADING LAYERS IN ACCRETING OBJECTS: ROLE OF ACOUSTIC WAVES FOR ANGULAR MOMENTUM TRANSPORT, MIXING, AND THERMODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M., E-mail: sashaph@princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2016-01-20

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  4. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch

    International Nuclear Information System (INIS)

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.; Brower, D. L.; Ding, W. X.

    2009-01-01

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.

  5. Experimentally testing the dependence of momentum transport on second derivatives using Gaussian process regression

    Science.gov (United States)

    Chilenski, M. A.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Lee, J. P.; Marzouk, Y. M.; Rice, J. E.; White, A. E.

    2017-12-01

    It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n{e} and T{e} between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.

  6. Concentration polarization: Electrodeposition and transport phenomena at overlimiting current

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder

    a numerical sharp-interface model describing the electrode growth. This model differs from the established phase-field models, in that it is applicable at overlimiting current and implements electrode reactions in a consistent way. Comparison of the sharp-interface model to the results of the stability...... methods. The initial study concerns a fundamental problem in the study of concentration polarization at overlimiting current, namely the emergence of an extended space-charge region near the ion-selective interface. Based on the so-called quasi-uniform charge density assumption (QCD), we develop...... this coupled chemical and transport effect using two simple models of the reaction kinetics. The principal investigations are performed using numerical simulations, but in addition we derive an analytical model for the transport in the system. The analytical model reveals an important link between the current...

  7. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont

    2012-07-01

    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar

  8. Manganese Transport and Toxicity in Polarized WIF-B Hepatocytes.

    Science.gov (United States)

    Thompson, Khristy J; Hein, Jennifer; Baez, Andrew; Sosa, Jose Carlo; Wessling-Resnick, Marianne

    2018-05-24

    Mn toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains while ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to > 250 M MnCl2. However, the hepatocytes were resistant to 4 h exposures of up to 500 M MnCl2 despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor brefeldin A did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile.

  9. Experimental Evidence of Momentum Transport Induced by an Up-Down Asymmetric Magnetic Equilibrium in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Szepesi, G.; Bortolon, A.; Duval, B. P.; Federspiel, L.; Karpushov, A. N.; Piras, F.; Sauter, O.

    2010-01-01

    The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak a Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.

  10. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  11. Tuning spin-polarized transport in organic semiconductors

    Science.gov (United States)

    Mattana, Richard; Galbiati, Marta; Delprat, Sophie; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Petroff, Frederic

    Molecular spintronics is an emerging research field at the frontier between organic chemistry and the spintronics. Compared to traditional inorganic materials molecules are flexible and can be easily tailored by chemical synthesis. Due to their theoretically expected very long spin lifetime, they were first only seen as the ultimate media for spintronics devices. It was recently that new spintronics tailoring could arise from the chemical versatility brought by molecules. The hybridization between a ferromagnet and molecules induces a spin dependent broadening and energy shifting of the molecular orbitals leading to an induced spin polarization on the first molecular layer. This spin dependent hybridization can be used to tailor the spin dependent transport in organic spintronics devices. We have studied vertical Co/Alq3/Co organic spin valves. The negative magnetoresistance observed is the signature of different coupling strengths at the top and bottom interfaces. We have then inserted an inorganic tunnel barrier at the bottom interface in order to suppress the spin-dependent hybridization. In this case we restore a positive magnetoresistance. This demonstrates that at the bottom Co/Alq3 interface a stronger coupling occurs which induces an inversion of the spin polarization.

  12. Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current

    Directory of Open Access Journals (Sweden)

    A. A. Slepyshev

    2017-08-01

    Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than

  13. Transport and sorting of sphingolipids in polarized cells : the involvement of the sub-apical compartment

    NARCIS (Netherlands)

    IJzendoorn, Sven Christian David van

    1999-01-01

    The work described in this thesis has provided a novel insight into the process of sphingolipid transport and sorting in polarized cells. We have used HepG2 cells as a model system to study polarized traffic in hepatic cells. Under specific culture conditions, HepG2 cells acquire a polarized

  14. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias

    2010-01-01

    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions...

  15. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  16. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  17. Achievement of transportable polarized D, in solid HD, with a one day passively maintained polarization

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Wei, X.; Yu, Y.Y.

    1993-01-01

    At a previous workshop, we discussed evaporating solid HD with spin-polarized deuterons to produce a high density polarized deuteron gaseous internal target. Since then, we have achieved in solid HD 38% polarized D, whose spin-lattice relaxation time at 1.5 K in a field of 0.1 T is of the order of a day. Optimization of the procedure with the present apparatus should result in 60% D polarization, and longer polarization holding times. The polarized sample of approximately 0.2 cm 3 volume used here is extractable from the dilution refrigerator with a cold-transfer apparatus which maintains the sample at or below 5 K, insuring retention of the high polarization. It is subsequently insertable into a variety of systems, and employable as a polarized solid, liquid, or gas. We are exploring the possibility of extending the polarization maintenance time to about a month (with a matched 1 month preparation time), of polarizing metastably H as well as D, and of producing much larger samples, of the order of 100 cm 3

  18. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  19. Transport of Mars atmospheric water into high northern latitudes during a polar warming

    Science.gov (United States)

    Barnes, J. R.; Hollingsworth, J. L.

    1988-01-01

    Several numerical experiments were conducted with a simplified tracer transport model in order to attempt to examine the poleward transport of Mars atmospheric water during a polar warming like that which occurred during the winter solstice dust storm of 1977. The flow for the transport experiments was taken from numerical simulations with a nonlinear beta-plane dynamical model. Previous studies with this model have demonstrated that a polar warming having essential characteristics like those observed during the 1977 dust storm can be produced by a planetary wave mechanism analogous to that responsible for terrestrial sudden stratospheric warmings. Several numerical experiments intended to simulate water transport in the absence of any condensation were carried out. These experiments indicate that the flow during a polar warming can transport very substantial amounts of water to high northern latitudes, given that the water does not condense and fall out before reaching the polar region.

  20. Thermo-electric transport in gauge/gravity models with momentum dissipation

    Science.gov (United States)

    Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele

    2014-09-01

    We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.

  1. Gyrokinetic Studies on Turbulence-Driven and Neoclassical Nondiffusive Toroidal-Momentum Transport and the Effect of Residual Fluctuations in Strong ExB Shear

    International Nuclear Information System (INIS)

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Lee, W. W.; Tang, W. M.; Kaye, S. M.; Diamond, P. H.

    2009-01-01

    A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also show a significant off-diagonal element associated with the ion temperature gradient in the neoclassical momentum flux, while the overall neoclassical flux is small. In addition, the residual turbulence found in the presence of strong ExB flow shear may account for neoclassical-level ion heat and anomalous momentum transport widely observed in experiments

  2. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2012-01-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  3. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport

    NARCIS (Netherlands)

    Huang, F.; Kemel Zago, M.; Abas, L.; van Marion, A.; Galván-Ampudia, C.S.; Offringa, R.

    2010-01-01

    Polar cell-to-cell transport of auxin by plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of

  4. ZGS beam transport for transverse or longitudinally polarized protons

    International Nuclear Information System (INIS)

    Colton, E.; Auer, I.P.; Beretvas, A.

    1977-01-01

    A combination of dipole magnets and a superconducting solenoid is utilized to transform the spin direction of transversely polarized protons from the Argonne ZGS for use in proton-proton scattering experiments

  5. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    Science.gov (United States)

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  6. Transverse momentum spectra of hadrons in p + p collisions at CERN SPS energies from the UrQMD transport model

    Science.gov (United States)

    Ozvenchuk, V.; Rybicki, A.

    2018-05-01

    The UrQMD transport model, version 3.4, is used to study the new experimental data on transverse momentum spectra of π±, K±, p and p bar produced in inelastic p + p interactions at SPS energies, recently published by the NA61/SHINE Collaboration. The comparison of model predictions to these new measurements is presented as a function of collision energy for central and forward particle rapidity intervals. In addition, the inverse slope parameters characterizing the transverse momentum distributions are extracted from the predicted spectra and compared to the corresponding values obtained from NA61/SHINE distributions, as a function of particle rapidity and collision energy. A complex pattern of deviations between the experimental data and the UrQMD model emerges. For charged pions, the fair agreement visible at top SPS energies deteriorates with the decreasing energy. For charged K mesons, UrQMD significantly underpredicts positive kaon production at lower beam momenta. It also underpredicts the central rapidity proton yield at top collision energy and overpredicts antiproton production at all considered energies. We conclude that the new experimental data analyzed in this paper still constitute a challenge for the present version of the model.

  7. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  8. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang, Z L; Chen, Y P; Xie, Y E; Zhang, M; Zhong, J X

    2011-01-01

    The spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons (ZGNRs) are investigated using the density-functional theory in combination with the nonequilibrium Green's function method. We find that the Fe chain has drastic effects on spin-polarized transport properties of ZGNRs compared with a single Fe atom adsorbed on the ZGNRs. When the Fe chain is adsorbed on the centre of the ZGNR, the original semiconductor transforms into metal, showing a very wide range of spin-polarized transport. Particularly, the spin polarization around the Fermi level is up to 100%. This is because the adsorbed Fe chain not only induces many localized states but also has effects on the edge states of ZGNR, which can effectively modulate the spin-polarized transports. The spin polarization of ZGNRs is sensitive to the adsorption site of the Fe chain. When the Fe chain is adsorbed on the edge of ZGNR, the spin degeneracy of conductance is completely broken. The spin polarization is found to be more pronounced because the edge state of one edge is destroyed by the additional Fe chain. These results have direct implications for the control of the spin-dependent conductance in ZGNRs with the adsorption of Fe chains.

  9. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    Science.gov (United States)

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  10. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  11. Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling

    DEFF Research Database (Denmark)

    Mantica, P.; Tala, T.; Ferreira, J.S.

    2010-01-01

    Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power...... or by modulating in antiphase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modeled using time-dependent transport simulations in order to extract empirical profiles of momentum...

  12. Alpha Momentum and Price Momentum

    Directory of Open Access Journals (Sweden)

    Hannah Lea Hühn

    2018-05-01

    Full Text Available We analyze a novel alpha momentum strategy that invests in stocks based on three-factor alphas which we estimate using daily returns. The empirical analysis for the U.S. and for Europe shows that (i past alpha has power in predicting the cross-section of stock returns; (ii alpha momentum exhibits less dynamic factor exposures than price momentum and (iii alpha momentum dominates price momentum only in the U.S. Connecting both strategies to behavioral explanations, alpha momentum is more related to an underreaction to firm-specific news while price momentum is primarily driven by price overshooting due to momentum trading.

  13. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    Science.gov (United States)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  14. Polarized recombination of acoustically transported carriers in GaAs nanowires

    Science.gov (United States)

    Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.

    2012-05-01

    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

  15. Crossover from ballistic to normal heat transport in the ϕ4 lattice: If nonconservation of momentum is the reason, what is the mechanism?

    Science.gov (United States)

    Xiong, Daxing; Saadatmand, Danial; Dmitriev, Sergey V.

    2017-10-01

    Anomalous (non-Fourier) heat transport is no longer just a theoretical issue since it has been observed experimentally in a number of low-dimensional nanomaterials, such as SiGe nanowires, carbon nanotubes, and others. To understand these anomalous behaviors, exploring the microscopic origin of normal (Fourier) heat transport is a fascinating theoretical topic. However, this issue has not yet been fully understood even for one-dimensional (1D) model chains, in spite of a great amount of thorough studies done to date. From those studies, it has been widely accepted that the conservation of momentum is a key ingredient to induce anomalous heat transport, while momentum-nonconserving systems usually support normal heat transport where Fourier's law is valid. But if the nonconservation of momentum is the reason, what is the underlying microscopic mechanism for the observed normal heat transport? Here we carefully revisit a typical 1D momentum-nonconserving ϕ4 model, and we present evidence that the mobile discrete breathers, or, in other words, the moving intrinsic localized modes with frequency components above the linear phonon band, can be responsible for that.

  16. Tuning polarity and improving charge transport in organic semiconductors

    Science.gov (United States)

    Oh, Joon Hak; Han, A.-Reum; Yu, Hojeong; Lee, Eun Kwang; Jang, Moon Jeong

    2013-09-01

    Although state-of-the-art ambipolar polymer semiconductors have been extensively reported in recent years, highperformance ambipolar polymers with tunable dominant polarity are still required to realize on-demand, target-specific, high-performance organic circuitry. Herein, dithienyl-diketopyrrolopyrrole (TDPP)-based polymer semiconductors with engineered side-chains have been synthesized, characterized and employed in ambipolar organic field-effect transistors, in order to achieve controllable and improved electrical properties. Thermally removable tert-butoxycarbonyl (t-BOC) groups and hybrid siloxane-solubilizing groups are introduced as the solubilizing groups, and they are found to enable the tunable dominant polarity and the enhanced ambipolar performance, respectively. Such outstanding performance based on our molecular design strategies makes these ambipolar polymer semiconductors highly promising for low-cost, large-area, and flexible electronics.

  17. Momentum and scalar transport in a localised synthetic turbulence in a channel flow with a short contraction

    Energy Technology Data Exchange (ETDEWEB)

    Lefeuvre, N; Djenidi, L [University of Newcastle, NSW Australia (Australia); Tardu, S, E-mail: nathan.lefeuvre@uon.edu.au [Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), Grenoble (France)

    2011-12-22

    A numerical simulation is undertaken to investigate the transport of momentum and a passive scalar in a localised turbulence in a channel with a contraction. The simulation is carried out using a hybrid method which combines the lattice Boltzmann method (LBM, for the velocity field) and the energy equation (for the temperature field). The localised turbulence is generated through pulsed jets issued in the Poiseuille flow developing in the channel at a Reynolds number of about 1000. The aim of the study is twofold : i) determine effect of the contraction on the localised turbulence, and ii) study how the passive scalar behaves in such contracted localised turbulence. The contraction increase the averaged vorticity in the channel flow, which is accompanied by an increase in the averaged kinetic energy. The contraction also tends to reduce the Reynolds stresses. These results are similar those obtained in turbulent pipe flow with an axisymmetric contraction and in a turbulent boundary layer subjected to a favourable pressure gradient. However, it is found that the heat transport in the normal to the wall direction is more dramatically affected (reduced) than that in the direction of the flow.

  18. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    Science.gov (United States)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  19. Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction

    Science.gov (United States)

    Qiu, Xuejun; Lv, Qiang; Cao, Zhenzhou

    2018-05-01

    In this work, we have theoretically investigated the influence of velocity barrier on the spin-valley polarized transport in monolayer (ML) WSe2 junction with a large spin-orbit coupling (SOC). Both the spin-valley resolved transmission probabilities and conductance are strong dependent on the velocity barrier, as the velocity barrier decreases to 0.06, a spin-valley polarization of exceeding 90% is observed, which is distinct from the ML MoS2 owing to incommensurable SOC. In addition, the spin-valley polarization is further increased above 95% in a ML WSe2 superlattice, in particular, it's found many extraordinary velocity barrier-dependent transport gaps for multiple barrier due to evanescent tunneling. Our results may open an avenue for the velocity barrier-controlled high-efficiency spin and valley polarizations in ML WSe2-based electronic devices.

  20. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew [Northern Illinois U.; Syphers, Michael [Fermilab

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  1. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  2. Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble

    Directory of Open Access Journals (Sweden)

    R. D. Russotto

    2018-02-01

    Full Text Available The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2. Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP, in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5 abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.

  3. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    asymmetry for a longitudinally polarized target in semi-inclusive deep inelastic scattering. Keywords. .... integrate out ξ and perform the momentum integration over the diquark momentum ...... [53] European Muon: M Arneodo et al, Z. Phys. C34 ...

  4. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  5. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  6. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  7. Polarized sphingolipid transport from the subapical compartment : Evidence for distinct sphingolipid domains

    NARCIS (Netherlands)

    van Ijzendoorn, SCD; Hoekstra, D

    1999-01-01

    In polarized HepG2 cells, the sphingolipids glucosylceramide and sphingomyelin (SM), transported along the reverse transcytotic pathway, are sorted in subapical compartments (SACs), and subsequently targeted to either apical or basolateral plasma membrane domains, respectively. In the present study,

  8. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  9. Lidar Orbital Angular Momentum Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...

  10. Exospheric transport restrictions on water ice in lunar polar traps

    Science.gov (United States)

    Hodges, R. R., Jr.

    1991-01-01

    There is little doubt that at least 10 exp 17 g of water has accreted on the moon as a result of the reduction of ferric iron at the regolith surface by solar wind protons, the vaporization of chondrites, and perhaps comet impacts. Lacking an efficient escape mechanism, most of this water (or its progeny) is probably on the moon now. If the water were to have migrated to permanently shaded cold traps near the lunar poles, ice deposts with densities greater than 1000 g/sq cm would cover the traps, providing accessible resources. However, exospheric transport considerations suggest that the actual amount of water ice in the cold traps is probably too small to be of practical interest. The alternative is global assimilation of most of the water into the regolith, a process that must account for about 30 micromoles of water per gram of soil.

  11. Spin-polarized quantum transport properties through flexible phosphorene

    Science.gov (United States)

    Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin

    2016-10-01

    We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.

  12. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  13. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  14. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    Science.gov (United States)

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  15. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    Science.gov (United States)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  16. Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak

    International Nuclear Information System (INIS)

    Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Angioni, C.

    2009-01-01

    The paper derives the gyro-kinetic equation in the comoving frame of a toroidally rotating plasma, including both the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)] as well as the centrifugal force. The relation with the laboratory frame is discussed. A low field side gyro-fluid model is derived from the gyro-kinetic equation and applied to the description of parallel momentum transport. The model includes the effects of the Coriolis and centrifugal force as well as the parallel dynamics. The latter physics effect allows for a consistent description of both the Coriolis drift effect as well as the ExB shear effect [R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] on the momentum transport. Strong plasma rotation as well as parallel dynamics reduce the Coriolis (inward) pinch of momentum and can lead to a sign reversal generating an outward pinch velocity. Also, the ExB shear effect is, in a similar manner, reduced by the parallel dynamics and stronger rotation.

  17. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    Science.gov (United States)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  18. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon.

    Science.gov (United States)

    Farías, Ginny G; Guardia, Carlos M; De Pace, Raffaella; Britt, Dylan J; Bonifacino, Juan S

    2017-04-04

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.

  19. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon

    Science.gov (United States)

    Farías, Ginny G.; Guardia, Carlos M.; De Pace, Raffaella; Britt, Dylan J.; Bonifacino, Juan S.

    2017-01-01

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes. PMID:28320970

  20. Boundary and interface conditions for polarized radiation transport in a multilayer medium

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    2011-01-01

    In many applications of radiation transport, it is important to consider the changes in the index of refraction that occur when the physical domain being studied consists of material regions with distinct electromagnetic properties. When polarization effects are taken into account, the radiation eld is characterized by a vector of four components known as Stokes vector. At an interface between two different material regions, the reflected and transmitted Stokes vectors are related to the incident Stokes vector by means of reflection and transmission matrices, which are derived from the Fresnel formulas for the amplitude coefficients of reflection and transmission. Having seen that most works on polarized radiation transport that allow for changes in the index of refraction exhibit discrepancies in their expressions for the transmission matrix, we present in this work a careful derivation of the relations between the reflected and transmitted Stokes vectors and the Stokes vector incident on an interface. We obtain a general form of a transmission factor that is required to ensure conservation of energy and we show that most of the discrepancies encountered in existing works are due to the use of improper forms of this factor. In addition, we derive explicit and compact expressions for the Fresnel boundary and interface conditions appropriate to the study of polarized radiation transport in a multilayer medium. (author)

  1. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    NARCIS (Netherlands)

    Lindsay, A.; Anderson, C.; Slikboer, E.T.; Shannon, S.; Graves, D.

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge;

  2. Spin transport at the international linear collider and its impact on the measurement of polarization

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Moritz

    2013-12-15

    At the planned International Linear Collider (ILC), the longitudinal beam polarization needs to be determined with an unprecedented precision. For that purpose, the beam delivery systems (BDS) are equipped with two laser Compton polarimeters each, which are foreseen to achieve a systematic uncertainty of {<=} 0.25 %. The polarimeters are located 1.6 km upstream and 150 m downstream of the e{sup +}e{sup -} interaction point (IP). The average luminosity-weighted longitudinal polarization P{sup lumi}{sub z}, which is the decisive quantity for the experiments, has to be determined from these measurements with the best possible precision. Therefore, a detailed understanding of the spin transport in the BDS is mandatory to estimate how precise the longitudinal polarization at the IP is known from the polarimeter measurements. The envisaged precision for the propagation of the measurement value is {<=} 0.1 %. This thesis scrutinizes the spin transport in view of the achievable precision. A detailed beamline simulation for the BDS has been developed, including the simulation of the beam-beam collisions at the IP. The following factors which might limit the achievable precision is investigated: a variation of the beam parameters, the beam alignment precision at the polarimeters and the IP, the bunch rotation at the IP, the detector magnets, the beam-beam collisions, the emission of synchrotron radiation and misalignments of the beamline elements. In absence of collisions, a precision of 0.085% on the propagation of the measured longitudinal polarization has been found achievable. This result however depends mainly on the presumed precisions for the parallel alignment of the beam at the polarimeters and for the alignment of polarization vector. In presence of collisions, the measurement at the downstream polarimeter depends strongly on the intensity of the collision and the size of the polarimeter laser spot. Therefore, a more detailed study of the laser-bunch interaction is

  3. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  4. ICNTS. Benchmarking of momentum correction techniques

    International Nuclear Information System (INIS)

    Beidler, Craig D.; Isaev, Maxim Yu.; Kasilov, Sergei V.

    2008-01-01

    In the traditional neoclassical ordering, mono-energetic transport coefficients are evaluated using the simplified Lorentz form of the pitch-angle collision operator which violates momentum conservation. In this paper, the parallel momentum balance with radial parallel momentum transport and viscosity terms is analysed, in particular with respect to the radial electric field. Next, the impact of momentum conservation in the stellarator lmfp-regime is estimated for the radial transport and the parallel electric conductivity. Finally, momentum correction techniques are described based on mono-energetic transport coefficients calculated e.g. by the DKES code, and preliminary results for the parallel electric conductivity and the bootstrap current are presented. (author)

  5. Measurements of the turbulent transport of heat and momentum in convexly curved boundary layers - Effects of curvature, recovery and free-stream turbulence

    Science.gov (United States)

    Kim, J.; Simon, T. W.

    1987-01-01

    The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

  6. Polarization-induced transport in organic field-effect transistors: the role of ferroelectric dielectrics

    Science.gov (United States)

    Guha, Suchismita; Laudari, Amrit

    2017-08-01

    The ferroelectric nature of polymer ferroelectrics such as poly(vinylidene fluoride) (PVDF) has been known for over 45 years. However, its role in interfacial transport in organic/polymeric field-effect transistors (FETs) is not that well understood. Dielectrics based on PVDF and its copolymers are a perfect test-bed for conducting transport studies where a systematic tuning of the dielectric constant with temperature may be achieved. The charge transport mechanism in an organic semiconductor often occurs at the intersection of band-like coherent motion and incoherent hopping through localized states. By choosing two small molecule organic semiconductors - pentacene and 6,13 bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) - along with a copolymer of PVDF (PVDF-TrFe) as the dielectric layer, the transistor characteristics are monitored as a function of temperature. A negative coefficient of carrier mobility is observed in TIPS-pentacene upwards of 200 K with the ferroelectric dielectric. In contrast, TIPS-pentacene FETs show an activated transport with non-ferroelectric dielectrics. Pentacene FETs, on the other hand, show a weak temperature dependence of the charge carrier mobility in the ferroelectric phase of PVDF-TrFE, which is attributed to polarization fluctuation driven transport resulting from a coupling of the charge carriers to the surface phonons of the dielectric layer. Further, we show that there is a strong correlation between the nature of traps in the organic semiconductor and interfacial transport in organic FETs, especially in the presence of a ferroelectric dielectric.

  7. Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads

    International Nuclear Information System (INIS)

    Wang Xianchao; Xin Zihua; Feng Liya

    2010-01-01

    The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Nguyen Thanh, E-mail: nttien@ctu.edu.vn; Thao, Pham Thi Bich [College of Natural Sciences, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Thao, Dinh Nhu [Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Quang, Doan Nhat [Institute of Physics, Vietnamese Academy of Science and Technology, 10 Dao Tan Street, Hanoi (Viet Nam)

    2016-06-07

    We present a study of the lateral transport of a two-dimensional electron gas (2DEG) in a modulation-doped polar heterojunction (HJ). In contrast to previous studies, we assume that the Coulomb correlation among ionized impurities and among charged dislocations in the HJ is so strong that the 2DEG low-temperature mobility is not limited by impurity and dislocation scattering. The mobility, however, is specified by alloy disorder scattering and combined roughness scattering, which is the total effect induced by both the potential barrier and polarization roughness. The obtained results show that the alloy disorder and combined roughness scattering strongly depend on the alloy content and on the near-interface electron distribution. Our theory is capable of explaining the bell-shaped dependence of the lateral mobility on alloy content observed in AlGaN/GaN and on 2DEG density observed in AlN/GaN, which have not previously been explained.

  9. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue.

    Science.gov (United States)

    Gupta, Deepak; Varghese Gupta, Sheeba; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2013-02-04

    Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) 30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and showed that the l-valyl prodrug (P(app) = 1.7 × 10(-6) cm/s) has the potential to be rapidly transported across the epithelial cell apical membrane. Significantly, only the parent drug (GOCarb) appeared in the basolateral

  10. Analysis of the Momentum and Pollutant Transport at the Roof Level of 2D Idealized Street Canyons: a Large-Eddy Simulation Solution

    Science.gov (United States)

    Cheng, Wai Chi; Liu, Chun-Ho

    2010-05-01

    To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant along the roof level were performed to compare the contributions of different events/scales to the transport processes. The roof of the street canyon is divided into five segments, namely leeward side, upwind shift, center core, downwind shift and windward side in the streamwise direction. Among the four quadrants considered, the sweeps/ejections, which correspond to the downward/upward motions, dominate the momentum/pollutant transfer. The inward/outward interactions play relatively minor roles. While studying the events in detail, the contribution from the sweeps is mainly large-scale fluctuation compared with that of ejections. Moreover, most of the momentum and pollutant transports take place on the windward side. The strong shear at the roof level initiates instability that in turn promotes the increasing turbulent transport from the leeward side to the windward side. At the same time, the roof-level fluctuations grow linearly in the streamwise direction leading to the vigorous turbulent

  11. Realizing stable fully spin polarized transport in SiC nanoribbons with dopant

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xixi; Wang, Xianlong; Zheng, Xiaohong, E-mail: xhzheng@theory.issp.ac.cn; Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Hao, Hua [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-06

    Intrinsic half-metallicity recently reported in zigzag edged SiC nanoribbons is basically undetectable due to negligible energy difference between the antiferromagnetic (AFM) and ferromagnetic (FM) configurations. In this Letter, by density functional theory calculations, we demonstrate a scheme of N doping at the carbon edge to selectively close the edge state channel at this edge and achieve 100% spin filtering, no matter whether it is in an AFM state or FM state. This turns SiC nanoribbon into a promising material for obtaining stable and completely spin polarized transport and may find application in spintronic devices.

  12. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Drdová, Edita; Synek, Lukáš; Pečenková, Tamara; Hála, Michal; Kulich, I.; Fowler, J.E.; Murphy, A.S.; Žárský, Viktor

    2013-01-01

    Roč. 73, č. 5 (2013), s. 709-719 ISSN 0960-7412 R&D Projects: GA ČR GPP501/11/P853; GA ČR(CZ) GAP305/11/1629; GA MŠk(CZ) LC06034; GA AV ČR KJB600380802 Grant - others:GA MŠk(CZ) ME10033 Institutional research plan: CEZ:AV0Z50380511 Keywords : exocyst * polar auxin transport * PIN recycling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.815, year: 2013

  13. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  14. Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2014-07-01

    Full Text Available Effects of auxin polar transport inhibitors, 2,3,5-triio-dobenzoic acid (TIBA, 1-N-naphthylphthalamic acid (NPA and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456, as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport.

  15. Spectroscopic imaging studies of nanoscale polarity and mass transport phenomena in self-assembled organic nanotubes.

    Science.gov (United States)

    Xu, Hao; Nagasaka, Shinobu; Kameta, Naohiro; Masuda, Mitsutoshi; Ito, Takashi; Higgins, Daniel A

    2017-08-02

    Synthetic organic nanotubes self-assembled from bolaamphiphile surfactants are now being explored for use as drug delivery vehicles. In this work, several factors important to their implementation in drug delivery are explored. All experiments are performed with the nanotubes immersed in ethanol. First, Nile Red (NR) and a hydroxylated Nile Red derivative (NR-OH) are loaded into the nanotubes and spectroscopic fluorescence imaging methods are used to determine the apparent dielectric constant of their local environment. Both are found in relatively nonpolar environments, with the NR-OH molecules preferring regions of relatively higher dielectric constant compared to NR. Unique two-color imaging fluorescence correlation spectroscopy (imaging FCS) measurements are then used along with the spectroscopic imaging results to deduce the dielectric properties of the environments sensed by mobile and immobile populations of probe molecules. The results reveal that mobile NR molecules pass through less polar regions, likely within the nanotube walls, while immobile NR molecules are found in more polar regions, possibly near the nanotube surfaces. In contrast, mobile and immobile NR-OH molecules are found to locate in environments of similar polarity. The imaging FCS results also provide quantitative data on the apparent diffusion coefficient for each dye. The mean diffusion coefficient for the NR dye was approximately two-fold larger than that of NR-OH. Slower diffusion by the latter could result from its additional hydrogen bonding interactions with polar triglycine, amine, and glucose moieties near the nanotube surfaces. The knowledge gained in these studies will allow for the development of nanotubes that are better engineered for applications in the controlled transport and release of uncharged, dipolar drug molecules.

  16. The design and performance of the FNAL high-energy polarized-beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Grosnick, D P; Hill, D A; Laghai, M R; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab. (USA); Lehar, F; Lesquen, A de; Rossum, L van [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires; Carey, D C; Coleman, R N; Cossairt, J D; Read, A L; Schailey, R [Fermi National Accelerator Lab., Batavia, IL (USA); Derevschikov, A A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Rzaev, R A; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Tamura, N; Yoshida, T [Kyoto Univ. (Japan). Dept. of Physics; Takashima, R [Kyoto Univ. of Education, Fushimi (Japan); Takeutchi, F [Kyoto Sangyo Univ. (Japan); Maki, T [University of Occupational and Environmental; FNAL-E581/704 Collaboration

    1990-05-10

    A new polarized-proton and -antiproton beam with 185 GeV/c momentum has been built at Fermilab. The design uses the parity-nonconserving decays of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively, a beam-transport system that minimizes depolarization effects, and a set of twelve dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles. This allows a selection of particles in definite intervals of momentum and polarization. Measurements performed by two different polarimeters showed that the beam is polarized and the determination of polarization by beam-particle tagging is verified. A new measurement of the analyzing power of large-x{sub F} {pi}{sup 0} production may lead to another beam polarimeter.

  17. Modeling and simulation of spin-polarized transport at the kinetic and diffusive level

    International Nuclear Information System (INIS)

    Possanner, S.

    2012-01-01

    The aim of this thesis is to contribute to the understanding of spin-induced phenomena in electron motion. These phenomena arise when electrons move through a (partially) magnetic environment, in such a way that its magnetic moment (spin) may interact with the surroundings. The pure quantum nature of the spin requires transport models that deal with effects like quantum coherence, entanglement (correlation) and quantum dissipation. On the meso- and macroscopic level it is not yet clear under which circumstances these quantum effects may transpire. The purpose of this work is, on the one hand, to derive novel spin transport models from basic principles and, on the other hand, to develop numerical algorithms that allow for a solution of these new and other existing model equations. The thesis consists of four parts. The first part comprises an overview of fundamental spin-related concepts in electronic transport such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metallic magnetic multilayers and the matrix-character of transport equations that take spin-coherent electron states into account. In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-torque model that consists of the Landau-Lifshitz equation and a heuristic matrix spin-diffusion equation. A finite difference scheme based on Strang operator splitting is developed that enables a numerical, self-consistent solution of this non-linear system within multilayer structures. Finally, the model is tested by comparison of numerical results to recent experimental data. In part two we propose a matrix-Boltzmann equation that allows for the description of spin-coherent electron transport on a kinetic level. The novelty here is a linear collision operator in which the transition rates from momentum k to momentum k' are modeled by a 2x2 Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are represented by the eigenvalues of this

  18. Simulation of organ patterning on the floral meristem using a polar auxin transport model.

    Directory of Open Access Journals (Sweden)

    Simon van Mourik

    Full Text Available An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.

  19. Design process for applying the nonlocal thermal transport iSNB model to a Polar-Drive ICF simulation

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques; Collins, Timothy

    2014-10-01

    A design process is presented for the nonlocal thermal transport iSNB (implicit Schurtz, Nicolai, and Busquet) model to provide reliable nonlocal thermal transport in polar-drive ICF simulations. Results from the iSNB model are known to be sensitive to changes in the SNB ``mean free path'' formula, and the latter's original form required modification to obtain realistic preheat levels. In the presented design process, SNB mean free paths are first modified until the model can match temperatures from Goncharov's thermal transport model in 1D temperature relaxation simulations. Afterwards the same mean free paths are tested in a 1D polar-drive surrogate simulation to match adiabats from Goncharov's model. After passing the two previous steps, the model can then be run in a full 2D polar-drive simulation. This research is supported by the University of Rochester Laboratory for Laser Energetics.

  20. Modelling for reactor-style aerobic composting based on coupling theory of mass-heat-momentum transport and Contois equation.

    Science.gov (United States)

    He, Xueqin; Han, Lujia; Ge, Jinyi; Huang, Guangqun

    2018-04-01

    This study establishes an optimal mathematical modelling to rationally describe the dynamic changes and spatial distribution of temperature and oxygen concentration in the aerobic composting process using coupling mass-heat-momentum transfer based on the microbial mechanism. Two different conditional composting experiments, namely continuous aeration and intermittent aeration, were performed to verify the proposed model. The results show that the model accurately predicted the dynamic changes in temperature (case I: R 2  = 0.93, RMSE = 1.95 K; case II: R 2  = 0.86, RMSE = 4.69 K) and oxygen concentration (case I: R 2  = 0.90, RMSE = 1.26%; case II: R 2  = 0.75, RMSE = 2.93%) in the central point of compost substrates. It also systematically simulated fluctuations in oxygen concentration caused by boundary conditions and the spatial distribution of the actual temperature and oxygen concentration. The proposed model exhibits good applicability in simulating the actual working conditions of aerobic composting process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  2. Sublimation and transport of water from the north residual polar cap on Mars

    Science.gov (United States)

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  3. Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction

    International Nuclear Information System (INIS)

    Tian Hong-Yu; Wang Jun

    2012-01-01

    We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions. The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon. It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived, the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG, while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect, in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations. Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Tuning the properties of an MgO layer for spin-polarized electron transport

    Science.gov (United States)

    Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua

    2014-08-01

    The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.

  5. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard; Pemmaraju, C. D.; Sanvito, Stefano; Ruiz, Eliseo

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green's function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  6. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    Science.gov (United States)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  7. Monitoring transport and equilibrium of heavy metals in soil using induced polarization

    Science.gov (United States)

    Shalem, T.; Huisman, J. A.; Zimmermann, E.; Furman, A.

    2017-12-01

    Soil and groundwater pollution in general, and by heavy metals in particular, is a major threat to human health, and especially in rapidly developing regions, such as China. Fast, accurate and low-cost measurement of heavy metal contamination is of high desire. Spectral induced polarization (SIP) may be an alternative to the tedious sampling techniques typically used. In the SIP method, an alternating current at a range of low frequencies is injected into the soil and the resultant potential is measured along the current's path. SIP is a promising method for monitoring heavy metals, because it is sensitive to the chemical composition of both the absorbed ions on the soil minerals and the pore fluid and to the interface between the two. The high sorption affinity of heavy metals suggests that their electrical signature may be significant, even at relatively low concentrations. The goal of this research is to examine the electrical signature of soil contaminated by heavy metals and of the pollution transport and remediation processes, in a non-tomographic fashion. Specifically, we are looking at the SIP response of various heavy metals in several settings: 1) at equilibrium state in batch experiments; 2) following the progress of a pollution front along a soil column through flow experiments and 3) monitoring the extraction of the contaminant by a chelating agent. Using the results, we develop and calibrate a multi-Cole-Cole model to separate the electrochemical and the interfacial components of the polarization. Last, we compare our results to the electrical signature of contaminated soil from southern China. Results of single metals from both batch and flow experiments display a shift of the relaxation time and a decrease in the phase response of the soil with increase of the metal concentration, suggesting strong sorption of the metals on the stern layer. Preliminary results also show evidence of electrodic polarization, assuming to be related to the formation of

  8. Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Yu.

    2006-01-01

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed

  9. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Yu

    2006-07-28

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.

  10. Potential spin-polarized transport in gold-doped armchair graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pankaj, E-mail: pankajs@iiitm.ac.in [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015, MP (India); Dhar, Subhra [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015, MP (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM), Jabalpur 482005 (India)

    2015-04-17

    Based on NEGF-DFT computations, systematic investigation of electronic, magnetic and transport properties of AGNRs are done by employing Au through different doping mechanisms. Remarkable Au–AGNR bonding is observed in case of substitution due to the presence of impurity at the edges. Both substitution and adsorption of Au on AGNR surface induce significant changes in the electronic spin transport of the sp{sup 2} hybridized carbon sheets. AGNRs are semiconducting with lower total energy for the FM configuration, and the I–V characteristics reveal semiconductor to metal transition of Au-doped AGNR. The spin injection is voltage controlled in all the investigated Au-doped AGNRs. - Highlights: • Edge Au-substitution promotes semiconductor–metal transition in AGNR. • NDR due to bias-dependent transmission in Au-substituted AGNRs. • Voltage controlled spin injection in all investigated Au-doped AGNRs. • Strong spin polarization occurs at 0.5 V in Au-hole adsorbed AGNRs.

  11. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    Science.gov (United States)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  12. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  13. Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current

    Science.gov (United States)

    Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.

    2018-06-01

    With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.

  14. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    Science.gov (United States)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  15. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  16. Laser-assisted spin-polarized transport in graphene tunnel junctions

    International Nuclear Information System (INIS)

    Ding Kaihe; Zhu Zhengang; Berakdar, Jamal

    2012-01-01

    The Keldysh nonequilibrium Green’s function method is utilized to theoretically study spin-polarized transport through a graphene spin valve irradiated by a monochromatic laser field. It is found that the bias dependence of the differential conductance exhibits successive peaks corresponding to the resonant tunneling through the photon-assisted sidebands. The multi-photon processes originate from the combined effects of the radiation field and the graphene tunneling properties, and are shown to be substantially suppressed in a graphene spin valve which results in a decrease of the differential conductance for a high bias voltage. We also discuss the appearance of a dynamical gap around zero bias due to the radiation field. The gap width can be tuned by changing the radiation electric field strength and the frequency. This leads to a shift of the resonant peaks in the differential conductance. We also demonstrate numerically the dependences of the radiation and spin valve effects on the parameters of the external fields and those of the electrodes. We find that the combined effects of the radiation field, the graphene and the spin valve properties bring about an oscillatory behavior in the tunnel magnetoresistance, and this oscillatory amplitude can be changed by scanning the radiation field strength and/or the frequency. (paper)

  17. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  18. Momentum confinement at low torque

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W M [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Budny, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mikkelsen, D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Politzer, P A [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Scott, S D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Zarnstorff, M C [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2007-12-15

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E x B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

  19. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    Science.gov (United States)

    2017-11-09

    Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene Report Term: 0-Other Email ...Principal: Y Name: Jay A Gupta Email : gupta.208@osu.edu Name: Roland K Kawakami Email : kawakami.15@osu.edu RPPR Final Report as of 13-Nov-2017...studies on films and devices. Optimization of the Cr tip will be the next important step to establish this technique. We are writing up these early

  20. Parametric dependences of momentum pinch and Prandtl number in JET

    NARCIS (Netherlands)

    Tala, T.; Salmi, A.; Angioni, C.; Casson, F. J.; Corrigan, G.; Ferreira, J.; Giroud, C.; Mantica, P.; Naulin, V.; Peeters, A.G.; Solomon, W. M.; Strintzi, D.; Tsalas, M.; Versloot, T. W.; de Vries, P. C.; Zastrow, K. D.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density

  1. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells

    NARCIS (Netherlands)

    Zegers, MMP; Zaal, KJM; van Ijzendoorn, SCD; Klappe, K; Hoekstra, D

    In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and

  2. Momentum Confinement at Low Torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; deGrassie, J.S.; Budny, R.; Groebner, R.J.; Heidbrink, W.W.; Kinsey, J.E.; Kramer, G.J.; Makowski, M.A.; Mikkelsen, D.; Nazikian, R.; Petty, C.C.; Politzer, P.A.; Scott, S.D.; Van Zeeland, M.A.; Zarnstorff, M.C.

    2007-01-01

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized β N , by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q min show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  3. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  4. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  5. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Science.gov (United States)

    Petrie, Gordon; McMaken, Tyler C.

    2017-08-01

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  6. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  7. Calculation and construction of a beam-transport system for polarized electrons

    International Nuclear Information System (INIS)

    Marschke, G.

    1987-09-01

    In the framework of the ELSA-SAPHIR project a transfer channel between ELSA and the large-space detector SAPHIR was calculated and constructed. Existing optical elements were modified corresponding to their application and the missing racks constructed and ordered for fabrication. Furthermore the vacuum system was designed as the whole as well as in the single components. Starting from the architectonic conditions and the optics to be realized the coordinates of the elements were calculated as preconditions fo the geodetic measurements and calibrations. It was shown that both for a polarized and for an unpolarized electron beam an optic was realized corresponding to the requirements up to an energy of 3.5 GeV. Under the given conditions, the applied method of the rotation of the polarization vector, and the geometrical preconditions up to 3.0 GeV also an acceptable longitudinal polarization was reached. (orig./HSI) [de

  8. The Martian polar caps: Stability and water transport at low obliquities

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1992-01-01

    The seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.

  9. The influence of firn air transport processes and radiocarbon production on gas records from polar firn and ice

    DEFF Research Database (Denmark)

    Buizert, Christo

    Air bubbles found in polar ice cores preserve a record of past atmospheric composition up to 800 kyr back in time. The composition of the bubbles is not identical to the ancient atmosphere, as it is influenced by processes prior to trapping, within the ice sheet itself, and during sampling...... does not vanish completely in the lock-in zone, as is commonly assumed. Six state-of-the-art firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1 Gaussian distribution. We present the first intercomparison study of firn air models, where we...

  10. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  11. Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, D.C., E-mail: sosfizix@gmail.com

    2017-07-15

    Highlights: • 100% spin-polarized material important for the application in spintronics. • It is ferromagnetic and ductile in nature. • Shows semiconducting behavior with a band gap of 1.06 eV. • Possibly efficient high temperature thermoelectric material. - Abstract: We present a preliminary investigation of band structure and thermoelectric properties of new quaternary CoVTiAl Heusler alloy. Structural, magnetic property and 100% spin polarization of equiatomic CoVTiAl predicts ferromagnetic stable ground state. Band profile outlines the indirect semiconducting behavior in spin down channel with band gap of 1.06 eV, and the magnetic moment of 3 µ{sub B} in accordance with Slater-Pauling rule. To evaluate the accuracy of different approximations in predicting thermoelectric properties, the comparison with available experimental data is made which shows fair agreement for the transport coefficients. The high temperature (800 K) positive Seebeck coefficient of 73.71 µV/K describes the p-type character of the material with high efficiency due to highly influential semiconducting behavior around the Fermi level. Considering the combination of 100% spin-polarization, high Seebeck coefficient and large figure of merit, ferromagnetic semiconducting CoVTiAl may prove as a potential candidate for high temperature thermoelectrics and an ideal spin source material for spintronic applications.

  12. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-08-01

    Highlights: • 100% spin-polarized material important for the application in spintronics. • Ferromagnetic nature. • Ductile in nature for mechanical applications. • Semiconducting behavior with a band gap of 0.55 eV in minority spin channel. • Possibly efficient thermoelectric material. - Abstract: The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y{sub 1} type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK{sup −1} at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  13. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Energy Technology Data Exchange (ETDEWEB)

    McMaken, Tyler C. [National Solar Observatory REU Program, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States); Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu [National Solar Observatory, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States)

    2017-05-10

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  14. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  15. Investigation of spin-polarized transport in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, B D; Day, T E; Goodnick, S M [Department of Electrical Engineering and Center for Solid State Electronics Research Arizona State University, Tempe, AZ 85287-5706 (United States)], E-mail: brian.tierney@asu.edu

    2008-03-15

    A spin field effect transistor (spin-FET) has been fabricated that employs nanomagnets as components of quantum point contact (QPC) structures to inject spin-polarized carriers into the high-mobility two-dimensional electron gas (2DEG) of a GaAs quantum well and to detect them. A centrally-placed non-magnetic Rashba gate controls both the density of electrons in the 2DEG and the electronic spin precession. Initial results are presented for comparable device structures modeled with an ensemble Monte Carlo (EMC) method. In the EMC the temporal and spatial evolution of the ensemble carrier spin polarization is governed by a spin density matrix formalism that incorporates the Dresselhaus and Rashba contributions to the D'yakanov-Perel spin-flip scattering mechanism, the predominant spin scattering mechanism in AlGaAs/GaAs heterostructures from 77-300K.

  16. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.

    OpenAIRE

    Ding Zhaojun; Galván-Ampudia Carlos S; Demarsy Emilie; Langowski Lukasz; Kleine-Vehn Jürgen; Fan Yuanwei; Morita Miyo T; Tasaka Masao; Fankhauser Christian; Offringa Remko; Friml Jirí

    2011-01-01

    Phototropism is an adaptation response through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells resulting in changes in auxin distribution and d...

  17. Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport

    Science.gov (United States)

    Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.

    2004-01-01

    The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.

  18. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2010-01-01

    , cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower

  19. Transverse-momentum spectra and nuclear modification factor using Boltzmann Transport Equation with flow in Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sushanta; Khuntia, Arvind; Tiwari, Swatantra Kumar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India)

    2017-05-15

    In the continuation of our previous work, the transverse-momentum (p{sub T}) spectra and nuclear modification factor (R{sub AA}) are derived using the relaxation time approximation of Boltzmann Transport Equation (BTE). The initial p{sub T}-distribution used to describe p + p collisions has been studied with the perturbative-Quantum Chromodynamics (pQCD) inspired power-law distribution, Hagedorn's empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse-momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the p{sub T}-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, K{sup *0} and φ. It is observed that the present formalism while explaining the transverse-momentum spectra up to 5 GeV/c, explains the nuclear modification factor very well up to 8 GeV/c in p{sub T} for all these particles except for protons. R{sub AA} is found to be independent of the degree of non-extensivity, q{sub pp} after p{sub T} ∝ 8 GeV/c. (orig.)

  20. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    Science.gov (United States)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  1. Acidic and uncharged polar residues in the consensus motifs of the yeast Ca2+ transporter Gdt1p are required for calcium transport.

    Science.gov (United States)

    Colinet, Anne-Sophie; Thines, Louise; Deschamps, Antoine; Flémal, Gaëlle; Demaegd, Didier; Morsomme, Pierre

    2017-07-01

    The UPF0016 family is a recently identified group of poorly characterized membrane proteins whose function is conserved through evolution and that are defined by the presence of 1 or 2 copies of the E-φ-G-D-[KR]-[TS] consensus motif in their transmembrane domain. We showed that 2 members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and are likely to form a new group of Ca 2+ transporters. Mutations in TMEM165 have been demonstrated to cause a new type of rare human genetic diseases denominated as Congenital Disorders of Glycosylation. Using site-directed mutagenesis, we generated 17 mutations in the yeast Golgi-localized Ca 2+ transporter Gdt1p. Single alanine substitutions were targeted to the highly conserved consensus motifs, 4 acidic residues localized in the central cytosolic loop, and the arginine at position 71. The mutants were screened in a yeast strain devoid of both the endogenous Gdt1p exchanger and Pmr1p, the Ca 2+ -ATPase of the Golgi apparatus. We show here that acidic and polar uncharged residues of the consensus motifs play a crucial role in calcium tolerance and calcium transport activity and are therefore likely to be architectural components of the cation binding site of Gdt1p. Importantly, we confirm the essential role of the E53 residue whose mutation in humans triggers congenital disorders of glycosylation. © 2017 John Wiley & Sons Ltd.

  2. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport1[OPEN

    Science.gov (United States)

    Mason, Michael G.; Beveridge, Christine A.

    2015-01-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background. PMID:26111543

  3. Momentum scale in the HARP TPC

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M

    2007-01-01

    Recently a claim was made that the reconstruction of the large angle tracks in the HARP TPC was affected by a momentum bias as large as 15% at 500 MeV/c transverse momentum. In the following we recall the main issues with the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. Proton-proton elastic scattering data off the hydrogen target are used to alibrate the momentum of charged particles with a precision evaluated to be 3.5%. A full description of the time development of the dynamic distortions in the TPC during physics spills is now available together with a correction algorithm. This allows a new cross-check using an enlarged data set made by comparing positive and negative pion elasticscattering data collected with negative polarity of the solenoid magnet. These data confirm the absence of a bias in the sagitta measurement. The dE/dx versus momentum curves are revisited, and shown to provide a confirmation that the HARP momentum calibration is correc...

  4. Vesicular transport protein Arf6 modulates cytoskeleton dynamics for polar body extrusion in mouse oocyte meiosis.

    Science.gov (United States)

    Duan, Xing; Zhang, Hao-Lin; Pan, Meng-Hao; Zhang, Yu; Sun, Shao-Chen

    2018-02-01

    Arf6 (ADP-ribosylation factor 6) is known to play important roles in membrane dynamics through the regulation of actin filament reorganization for multiple cellular processes such as cytokinesis, phagocytosis, cell migration and tumor cell invasion. However, the functions of Arf6 in mammalian oocyte meiosis have not been clarified. In present study we showed that Arf6 expressed in mouse oocytes and was mainly distributed around the spindle during meiosis. Depletion of Arf6 by morpholino microinjection caused oocytes failing to extrude first polar body. Further analysis indicated that Arf6 knock down caused the aberrant actin distribution, which further induced the failure of meiotic spindle movement. And the loss of oocyte polarity also confirmed this. The regulation of Arf6 on actin filaments in mouse oocytes might be due to its effects on the phosphorylation level of cofilin and the expression of Arp2/3 complex. Moreover, we found that the decrease of Arf6 caused the disruption of spindle formation, indicating the multiple roles of Arf6 on cytoskeleton dynamics in meiosis. In summary, our results indicated that Arf6 was involved in mouse oocyte meiosis through its functional roles in actin-mediated spindle movement and spindle organization. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation

    Directory of Open Access Journals (Sweden)

    Susanne Cranz-Mileva

    2015-08-01

    Full Text Available Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.

  6. Electrical detection of spin-momentum locking in Bi2Se3(Conference Presentation)

    Science.gov (United States)

    Jonker, Berend T.; Li, Connie H.; van't Erve, Olaf M.; Liu, Y.; Li, Y. Y.; Li, Lian

    2016-10-01

    Topological insulators (TIs) exhibit topologically protected metallic surface states populated by massless Dirac fermions with spin-momentum locking - the carrier spin lies in-plane, locked at right angle to the carrier momentum. An unpolarized charge current should thus create a net spin polarization. Here we show direct electrical detection of this bias current induced spin polarization as a voltage measured on a ferromagnetic (FM) metal tunnel barrier surface contact [1]. The voltage measured at this contact is proportional to the projection of the TI spin polarization onto this axis, and similar data are obtained for two different FM contact structures, Fe/Al2O3 and Co/MgO/graphene. From measurements of the carrier type and sign of the spin voltage for n-Bi2Se3 and p-Sb2Te3, we show that transport measurements can be used to determine the chirality of the spin texture [2]. The chirality inverts as one crosses the Dirac point, so that the carrier spin-momentum locking follows a left-hand rule (clockwise chirality) when the Fermi level is above the Dirac point, and right-hand rule below (counter-clockwise chirality). These results demonstrate simple and direct electrical access to the TI Dirac surface state spin system, provide clear evidence for the spin-momentum locking and bias current-induced spin polarization, and enable utilization of these remarkable properties for future technological applications. [1] C. H. Li, O. M. J. van `t Erve, J. T. Robinson, Y. Liu, L. Li , and B. T. Jonker, Nature Nanotech. 9, 218 (2014). [2] C. H. Li, O. M. J. van `t Erve, Y. Y. Li, L. Li and B. T. Jonker, under review.

  7. Overall momentum balance and redistribution of the lost energy in asymmetric dijet events in 2.76 A TeV Pb-Pb collisions with a multiphase transport model

    Science.gov (United States)

    Gao, Zhan; Luo, Ao; Ma, Guo-Liang; Qin, Guang-You; Zhang, Han-Zhong

    2018-04-01

    The overall transverse momentum balance and the redistribution of the lost energy from hard jets for asymmetric dijet events in PbPb collisions at 2.76 A TeV at the LHC is studied within a multiphase transport (AMPT) model. A detailed analysis is performed for the projected transverse momentum 〈p/T ||〉 contributed from the final charged hadrons carrying different transverse momenta and emitted from different angular directions. We find that the transverse momentum projection 〈p/T ||〉 in the leading jet direction is mainly contributed by hard hadrons (pT>8.0 GeV /c ) in both peripheral and central PbPb collisions, while the opposite direction in central collisions is dominated by soft hadrons (pT=0.5 -2.0 GeV /c ). The study of in-cone and out-of-cone contributions to 〈p/T ||〉 shows that these soft hadrons are mostly emitted at large angles away from the dijet axis. Our AMPT calculation is in qualitative agreement with the CMS measurements and the primary mechanism for the energy transported to large angles in the AMPT model is the elastic scattering at the partonic stage. Future studies including also inelastic processes should be helpful in understanding the overestimation of the magnitudes of in-cone and out-of-cone imbalances from our AMPT calculations, and shed light on different roles played by radiative and collisional processes in the redistribution of the lost energy from hard jets.

  8. Shot noise as a probe of spin-polarized transport through single atoms

    DEFF Research Database (Denmark)

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels...

  9. Magnetic and electric control of spin- and valley-polarized transport across tunnel junctions on monolayer WSe2

    Science.gov (United States)

    Tahir, M.; Krstajić, P. M.; Vasilopoulos, P.

    2017-06-01

    The recent experimental realization of high-quality WSe2 leads to the possibility of an efficient manipulation of its spin and valley degrees of freedom. Its electronic properties comprise a huge spin-orbit coupling, a direct band gap, and a strong anisotropic lifting of the degeneracy of the valley degree of freedom in a magnetic field. We evaluate its band structure and study ballistic electron transport through single and double junctions (or barriers) on monolayer WSe2 in the presence of spin Ms and valley Mv Zeeman fields and of an electric potential U . The conductance versus the field Ms or Mv decreases in a fluctuating manner. For a single junction, the spin Ps and valley Pv polarizations rise with M =Mv=2 Ms , reach a value of more than 55 % , and become perfect above U ≈45 meV while for a double junction this change can occur for U ≥50 meV and M ≥5 meV. In certain regions of the (M ,U ) plane Pv becomes perfect. The conductance gc, its spin-up and spin-down components, and both polarizations oscillate with the barrier width d . The ability to isolate various carrier degrees of freedom in WSe2 may render it a promising candidate for new spintronic and valleytronic devices.

  10. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  11. Spin-polarized charge transport in HgTe/CdTe quantum well topological insulator under a ferromagnetic metal strip

    Science.gov (United States)

    Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong

    2018-02-01

    Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.

  12. Polarization effects in coherent and incoherent photon scattering: survey of measurements and theory relevant to radiation transport calculations

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1993-01-01

    This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs

  13. A fluid model for the edge pressure pedestal height and width in tokamaks based on the transport constraint of particle, energy, and momentum balance

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M., E-mail: weston.stacey@nre.gatech.edu [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2016-06-15

    A fluid model for the tokamak edge pressure profile required by the conservation of particles, momentum and energy in the presence of specified heating and fueling sources and electromagnetic and geometric parameters has been developed. Kinetics effects of ion orbit loss are incorporated into the model. The use of this model as a “transport” constraint together with a “Peeling-Ballooning (P-B)” instability constraint to achieve a prediction of edge pressure pedestal heights and widths in future tokamaks is discussed.

  14. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Energy Technology Data Exchange (ETDEWEB)

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  15. Polarization in pp → p(baryon)

    International Nuclear Information System (INIS)

    Castillo-Vallejo, Victor M.; Felix, Julian

    2003-01-01

    It's introduced a calculation, which is based on symmetries followed by high energy hadronic interactions, of resonance polarization and specific angular momentum state polarization created in pp → p(baryon)

  16. RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅵ)-CONSERVATION LAWS OF MASS AND INERTIA

    Institute of Scientific and Technical Information of China (English)

    戴安民

    2003-01-01

    The purpose is to reestablish the coupled conservation laws, the local conservation equations and the jump conditions of mass and inertia for polar continuum theories. In this connection the new material derivatives of the deformation gradient, the line element, the surface element and the volume element were derived and the generalized Reynolds transport theorem was presented. Combining these conservation laws of mass and inertia with the balance laws of momentum, angular momentum and energy derived in our previous papers of this series, a rather complete system of coupled basic laws and principles for polar continuum theories is constituted on the whole. From this system the coupled nonlocal balance equations of mass, inertia, momentum, angular momentum and energy may be obtained by the usual localization.

  17. Introducing Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  18. Attention and Representational Momentum

    OpenAIRE

    Hayes, Amy; Freyd, Jennifer J

    1995-01-01

    Representational momentum, the tendency for memory to be distorted in the direction of an implied transformation, suggests that dynamics are an intrinsic part of perceptual representations. We examined the effect of attention on dynamic representation by testing for representational momentum under conditions of distraction. Forward memory shifts increase when attention is divided. Attention may be involved in halting but not in maintaining dynamic representations.

  19. A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Science.gov (United States)

    Casini, R.; del Pino Alemán, T.; Manso Sainz, R.

    2017-02-01

    We discuss the implementation of physically meaningful branching ratios between the CRD and partial redistribution contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is {\\boldsymbol{\\varepsilon }}=[{{\\boldsymbol{\\varepsilon }}}(1)-{{\\boldsymbol{\\varepsilon }}}{{f}.{{s}}.}(2)]+{{\\boldsymbol{\\varepsilon }}}(2), where {{\\boldsymbol{\\varepsilon }}}(1) and {{\\boldsymbol{\\varepsilon }}}(2) are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where “f.s.” implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation. This result is shown to be in agreement with prior literature on the subject in the limit of the unpolarized multi-level atom.

  20. On momentum conservation

    International Nuclear Information System (INIS)

    Karastoyanov, A.

    1990-01-01

    The relativistic law of momentum transformation shows that the sum of momenta of even isolated particles is not invariable in all inertial reference systems. This is connected with the relativistic change of kinetic energy and mass of a system of particles in result of internal interactions. The paper proposes a short and simple proof on the necessity of potential momentum. The momentum conservation law (for all interactions in the Minkowski world) is expressed in a generalized form. The constancy of the sum of kinetic and potential momentum of closed system of particles is shown. The energy conservation is a necessary condition. The potential momentum is defined as usual (e.g. as in the Berkeley Physics Course). (author). 13 refs

  1. Piezoelectric polarization and quantum size effects on the vertical transport in AlGaN/GaN resonant tunneling diodes

    International Nuclear Information System (INIS)

    Dakhlaoui, H; Almansour, S

    2016-01-01

    In this work, the electronic properties of resonant tunneling diodes (RTDs) based on GaN-Al x Ga (1−x) N double barriers are investigated by using the non-equilibrium Green functions formalism (NEG). These materials each present a wide conduction band discontinuity and a strong internal piezoelectric field, which greatly affect the electronic transport properties. The electronic density, the transmission coefficient, and the current–voltage characteristics are computed with considering the spontaneous and piezoelectric polarizations. The influence of the quantum size on the transmission coefficient is analyzed by varying GaN quantum well thickness, Al x Ga (1−x) N width, and the aluminum concentration x Al . The results show that the transmission coefficient more strongly depends on the thickness of the quantum well than the barrier; it exhibits a series of resonant peaks and valleys as the quantum well width increases. In addition, it is found that the negative differential resistance (NDR) in the current–voltage ( I – V) characteristic strongly depends on aluminum concentration x Al . It is shown that the peak-to-valley ratio (PVR) increases with x Al value decreasing. These findings open the door for developing vertical transport nitrides-based ISB devices such as THz lasers and detectors. (paper)

  2. Effect of Nonlocal Electron Transport in Both Directions on the Symmetry of Polar-Drive--Ignition Targets

    Science.gov (United States)

    Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.

    2012-10-01

    A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  3. Modelling of charge carrier transport in conjugated polymers doped by polar additives

    Czech Academy of Sciences Publication Activity Database

    Toman, Petr; Nešpůrek, Stanislav; Bartkowiak, W.

    2009-01-01

    Roč. 27, č. 3 (2009), s. 797-812 ISSN 0137-1339. [International Conference on Electrical and Related Properties of Organic Solids /11./. Piechowice, 13.07.2008-17.07.2008] R&D Projects: GA ČR GA203/06/0285; GA AV ČR KAN400720701; GA MŠk MEB050815 Institutional research plan: CEZ:AV0Z40500505 Keywords : conjugated polymers * charge carrier transport * molecular electronics Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.384, year: 2009

  4. Influence of the electric polarization on carrier transport and recombinaton dynamics in ZnO-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Matthias

    2010-08-16

    The present thesis deals with the influence of the electric polarization on properties of free carriers in ZnO-based semiconductor heterostructures. Thereby especially transport properties of free carriers as well as their recombination dynamics are studied. The thesis treats four main topics. The first main topic lies on the phsical properties of the applied materials, here the connection of the band gap and the lattice constant of thin Mg{sub x}Zn{sub 1-x}O films and their magnesium content is described. Furthermore the morphology of such films is discussed. Different substrates and deposition conditions are thereby detailedly considered. The second main topic treats the properties of undoped and phosphorus doped thin ZnO and Mg{sub x}Zn{sub 1-x}O films. The structural, transport, and luminescence properties are here compared and conclusions drawn on the growth conditions. In the third main topic quantum effects on ZnO/Mg{sub x}Zn{sub 1-x}O interfaces are treated. Hereby especially the influence of the electric polarization is considered. The presence of a two-dimensional electron gas is proved, and the necessary conditions for the generation of the so-called confined Stark effect are explained. Especially the growth-relevant parameters are considered. The fourth main topic represent coupling phenomena in ZnO/BaTiO{sub 3} heterostructures. Thereby first the experimentally observed properties of different heterostructures are shown, which were grown on different substrates. Here structural and transport properties hold the spotlight. A model for the description of the formation of space-charge zones in such heterostructures is introduced and applied for the description of the experimental results. The usefulness of the ferroelectric properties of the material BaTiO{sub 3} in combination with semiconducting ZnO were studied. For this ferroelectric field effect transistors were fabricated under application of both materials. The principle suitedness of the

  5. Universal spin-momentum locked optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  6. Momentum fractionation on superstrata

    International Nuclear Information System (INIS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-01-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  7. Electroproduction of polarized Λ's

    International Nuclear Information System (INIS)

    Kunne, R.A.

    1992-01-01

    Lambdas are a powerful tool to explore spin effects of QCD. The λ polarization is self analyzing, as it is measurable from the angular distribution of the decay products. Two applications of polarized electroproduced λ's are suggested: the measurement of λ polarization at large transverse momentum as a possible test of QCD and the measurement of transversely polarized parton distributions

  8. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  9. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport.

    Science.gov (United States)

    Clay, Nicole K; Nelson, Timothy

    2005-06-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.

  10. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Transverse momentum distributions and nuclear effects

    Directory of Open Access Journals (Sweden)

    Pace Emanuele

    2015-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered to take care of the final state interaction in the extraction of the quark transverse-momentum distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers. The generalization of the analysis in a Poincaré covariant framework within the light-front dynamics is outlined. The definition of the light-front spin-dependent spectral function for a J=1/2 system, as the nucleon, allows us to show that within the light-front dynamics and in the valence approximation only three of the six leading twist T-even transverse-momentum distributions are independent.

  12. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  13. Momentum, March 2016

    OpenAIRE

    2016-01-01

    Momentum is the quarterly magazine of the Department of Mechanical Engineering at Virginia Tech. In this issue: Lead-free piezoelectric material in development; Harnessing the energy of ocean waves; Meet the Hyperloop team; Maleshia Jones - Graduate student with focus.

  14. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  15. Effects of polarization field on vertical transport in GaN/AlGaN resonant tunneling diodes

    International Nuclear Information System (INIS)

    Park, Seoung-Hwan; Shim, Jong-In

    2012-01-01

    Polarization-field effects on the vertical transport in GaN/AlGaN resonant tunneling diodes (RTDs) were theoretically investigated by using the transfer matrix formalism. The self-consistent model shows that the resonant peaks are shifted toward higher energies with increasing Al composition in the AlGaN barrier, and the transmission probability values are shown to decrease rapidly. In the case of the flat-band model, on the other hand, the shift of the resonant peaks is smaller than it is for the self-consistent model and the variation of transmission probability values with increasing Al composition is relatively smaller than that of the self-consistent model. The current voltage characteristics of the self-consistent model are asymmetric while those of the flat-band model are symmetric for positive and negative current directions. The peak-to-valley ratio (PVR) of the self-consistent model is shown to be slightly smaller than that of the flat-band model for Al = 0.3.

  16. The design and performance of the FNAL high-energy polarized beam facility

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki.

    1989-01-01

    We describe a new polarized-proton and -antiproton beam with 185-GeV/c momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-conserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. Another experiment measured the π 0 production asymmetry of large-x F values; this process may now be used as an on-line beam polarimeter. 9 refs., 9 figs

  17. Probing Transverse Momentum Dependent Parton Distributions in Charmonium and Bottomonium Production

    OpenAIRE

    Mukherjee, Asmita; Rajesh, Sangem

    2015-01-01

    We propose the study of unpolarized transverse momentum dependent gluon parton distributions as well as the effect of linearly polarized gluons on transverse momentum and rapidity distributions of $J/\\psi$ and $\\Upsilon$ production within the framework of transverse momentum dependent factorization employing color evaporation model (CEM) in unpolarized proton-proton collision. We estimate the transverse momentum and rapidity distributions of $J/\\psi$ and $\\Upsilon$ at LHCb, RHIC and AFTER ene...

  18. Spatiotemporal polarization gradients in phase-bearing light

    International Nuclear Information System (INIS)

    Lembessis, V. E.; Babiker, M.

    2010-01-01

    It is shown how the interference of two circularly polarized laser beams endowed with orbital angular momentum can give rise to spatial and temporal polarization gradients, displaying axial as well as angular symmetry properties. Illustrations are given with reference to circularly polarized Laguerre-Gaussian beams as typical light beams carrying orbital angular momentum.

  19. Momentum and mass relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-01-01

    The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems

  20. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    Science.gov (United States)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  1. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...... and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers....

  2. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene

    1986-01-01

    It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)

  3. Electron momentum spectroscopy

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1986-03-01

    For electron energies greater than a few hundred eV and recoil momenta less than a few atomic units, the differential cross section for the non-coplanar symmetric (e,2e) reaction on an atom or molecule depends on the target and ion structure only through the target-ion overlap. Experimental criteria for the energy and momentum are that the apparent structure information does not change when the energy and momentum are varied. The plane-wave impulse approximation is a sufficient description of the reaction mechanism for determining spherically-averaged squares of momentum-space orbitals for atoms and molecules and for coefficients describing initial and final state correlations

  4. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  5. Value and Momentum Everywhere

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    across asset classes than passive exposures to the asset classes themselves. However, value and momentum are negatively correlated both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three factor model. Global funding liquidity risk...... is a partial source of these patterns, which are identifiable only when examining value and momentum simultaneously across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities....

  6. Non-physical momentum sources in slab geometry gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We investigate momentum transport in the Hamiltonian electrostatic gyrokinetic formulation of Dubin et al (1983 Phys. Fluids 26 3524). We prove that the long wavelength electric field obtained from the gyrokinetic quasineutrality introduces a non-physical momentum source in the low flow ordering.

  7. Ejectile polarization and nuclear orbitals

    International Nuclear Information System (INIS)

    Ohnishi, A.; Maruyama, T.; Horiuchi, H.

    1992-01-01

    Ejectile polarization phenomena are studied by the use of 'Quantum Molecular Dynamics plus external mean field' model. It is shown that the far-side contribution increases as the incident energy increases or the target charge decreases. The incident energy and the target dependence of ejectile polarization data is reproduced qualitatively. The near- and far-side contributions themselves are calculated to be almost monotone functions of ejectile momentum as is predicted in a simple projectile fragmentation scheme without the assumption that the linear and angular momentum transfers are negligible, and their statistical average results in various shapes in ejectile polarization

  8. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  9. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  10. Momentum, Fall 2016

    OpenAIRE

    2016-01-01

    Momentum is the quarterly magazine of the Department of Mechanical Engineering at Virginia Tech. In this issue: Nano engineering - Scaling up; Coating 3D objects quickly Energy Harvesting - from soldier's backpacks to nuclear monitoring Hyperloop - team readies pod, university to build test track.

  11. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes.

    Science.gov (United States)

    Dorda, Antonius; Schürrer, Ferdinand

    2015-03-01

    We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.

  12. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  13. Fragment separator momentum compression schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  14. Fragment separator momentum compression schemes

    International Nuclear Information System (INIS)

    Bandura, Laura; Erdelyi, Bela; Hausmann, Marc; Kubo, Toshiyuki; Nolen, Jerry; Portillo, Mauricio; Sherrill, Bradley M.

    2011-01-01

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  15. A non-local-thermodynamic equilibrium formulation of the transport equation for polarized light in the presence of weak magnetic fields. Doctoral thesis

    International Nuclear Information System (INIS)

    McNamara, D.J.

    1977-01-01

    The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated

  16. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  17. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    Science.gov (United States)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  18. Large transverse momentum phenomena

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1977-09-01

    It is pointed out that it is particularly significant that the quantum numbers of the leading particles are strongly correlated with the quantum numbers of the incident hadrons indicating that the valence quarks themselves are transferred to large p/sub t/. The crucial question is how they get there. Various hadron reactions are discussed covering the structure of exclusive reactions, inclusive reactions, normalization of inclusive cross sections, charge correlations, and jet production at large transverse momentum. 46 references

  19. A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF)

    Science.gov (United States)

    Tulich, S. N.

    2015-06-01

    This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.

  20. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  1. Momentum distributions: opening remarks

    International Nuclear Information System (INIS)

    Weigold, E.

    1982-01-01

    The problem of the hydrogen atom has played a central role in the development of quantum mechanics, beginning with Bohr's daring speculations. It was also the first problem tackled by Schroedinger with his new wave mechanics and similarly it was used by Heisenberg in his first papers as a prime example of the success of quantum mechanics. It has always played a central role in the teaching of quantum physics and has served as a most important heuristic tool, shaping our intuition and inspiring many expositions. The Schroedinger equation for the hydrogen atom is usually solved in the position representation, the solution to the equation being the wave functions psi/sub nlm/(r). If Schroedinger's equation is solved in the momentum representation instead of the coordinate representation, the absolute square of the corresponding momentum state wave function phi/sub nlm/(p) would give the momentum probability distribution of the electron in the state defined by the quantum numbers n, l and m. Three different types of collisions which can take place in the (e,2e) reaction on atomic hydrogen, which is a three body problem, are discussed

  2. Momentum transfer dependence of generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Neetika [Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab (India)

    2016-11-15

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution. (orig.)

  3. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  4. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  5. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species.

    Science.gov (United States)

    Sonne, Christian

    2010-07-01

    The aim of this review is to provide a thorough overview of the health effects from the complexed biomagnified mixture of long-range transported industrial organochlorines (OCs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs) and mercury (Hg) on polar bear (Ursus maritimus) health. Multiple scientific studies of polar bears indicate negative relationships between exposure to these contaminants and health parameters; however, these are all of a correlative nature and do not represent true cause-and-effects. Therefore, information from controlled studies of farmed Norwegian Arctic foxes (Vulpes lagopus) and housed East and West Greenland sledge dogs (Canis familiaris) were included as supportive weight of evidence in the clarification of contaminant exposure and health effects in polar bears. The review showed that hormone and vitamin concentrations, liver, kidney and thyroid gland morphology as well as reproductive and immune systems of polar bears are likely to be influenced by contaminant exposure. Furthermore, exclusively based on polar bear contaminant studies, bone density reduction and neurochemical disruption and DNA hypomethylation of the brain stem seemed to occur. The range of tissue concentration, at which these alterations were observed in polar bears, were ca. 1-70,000 ng/g lw for OCs (blood plasma concentrations of some PCB metabolites even higher), ca. 1-1000 ng/g lw for PBDEs and for PFCs and Hg 114-3052 ng/g ww and 0.1-50 microg/g ww, respectively. Similar concentrations were found in farmed foxes and housed sledge dogs while the lack of dose response designs did not allow an estimation of threshold levels for oral exposure and accumulated tissue concentrations. Nor was it possible to pinpoint a specific group of contaminants being more important than others nor analyze their interactions. For East Greenland polar bears the corresponding daily SigmaOC and SigmaPBDE oral exposure was estimated to be 35 and 0.34 microg/kg body

  6. Tunnelling of orbital angular momentum in parallel optical waveguides

    International Nuclear Information System (INIS)

    Alexeyev, C N; Fadeyeva, T A; Yavorsky, M A; Boklag, N A

    2011-01-01

    We study the evolution of circularly polarized optical vortices (OVs) in the system of two coupled few-mode optical fibres. We demonstrate that upon propagation OVs tunnel into the adjacent fibre as a complex superposition of OVs that comprise also OVs of opposite polarization and topological charge. The initial OV may tunnel into the other fibre as the same vortex state of lesser energy. The evolution of the orbital angular momentum in coupled fibres is studied

  7. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  8. DRP1-Dependent Endocytosis is Essential for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in Arabidopsis thaliana.

    Science.gov (United States)

    Yoshinari, Akira; Fujimoto, Masaru; Ueda, Takashi; Inada, Noriko; Naito, Satoshi; Takano, Junpei

    2016-09-01

    Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Polarization and charge-transfer effect on the transport properties in two-dimensional electron gases/LaNiO3 heterostructure

    Science.gov (United States)

    Chen, M. J.; Ning, X. K.; Wang, Z. J.; Liu, P.; Wang, S. F.; Wang, J. L.; Fu, G. S.; Ma, S.; Liu, W.; Zhang, Z. D.

    2018-01-01

    The film thickness dependent transport properties of the LaNiO3 (LNO) layer epitaxially grown on LaAlO3/SrTiO3 (LAO) 2-dimensional electronic gas (2DEG) have been investigated. The ultrathin LNO films grown on the 2DEG have a sheet resistance below the values of h/e2 in all temperature ranges. The electron density is enhanced by more than one order of magnitude by capping LNO films. X-ray photoelectron spectroscopy shows that the interface undergoes unambiguous charge transfer and electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. The polar-catastrophe of the 2DEG is directly linked to the electronic structure and transport properties of the LNO. The transport properties can be well modulated by the thickness of the LAO in the 2DEG, and the data can be well fitted with the polar-catastrophe scenario. These results suggest a general approach to tunable functional films in oxide heterostructures with the 2DEG.

  10. Seamless service: maintaining momentum.

    Science.gov (United States)

    Grinstead, N; Timoney, R

    1994-01-01

    Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff management forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.

  11. Time Series Momentum

    DEFF Research Database (Denmark)

    Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse

    2012-01-01

    We document significant “time series momentum” in equity index, currency, commodity, and bond futures for each of the 58 liquid instruments we consider. We find persistence in returns for one to 12 months that partially reverses over longer horizons, consistent with sentiment theories of initial...... under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...

  12. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  13. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios

    2007-01-01

    We present a scaling law that predicts the values of the stresses obtained in numerical simulations of saturated MRI-driven turbulence in non-stratified shearing boxes. It relates the turbulent stresses to the strength of the vertical magnetic field, the sound speed, the vertical size of the box......, and the numerical resolution and predicts accurately the results of 35 numerical simulations performed for a wide variety of physical conditions. We use our result to show that the saturated stresses in simulations with zero net magnetic flux depend linearly on the numerical resolution and would become negligible...

  14. Coulomb plus strong interaction bound states - momentum space numerical solutions

    International Nuclear Information System (INIS)

    Heddle, D.P.; Tabakin, F.

    1985-01-01

    The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)

  15. Flavor decomposition of transverse momentum dependent parton distributions

    Directory of Open Access Journals (Sweden)

    Dotto Alessio Del

    2014-06-01

    Full Text Available We present an improved description of the semi-inclusive deep inelastic electron scattering off polarized 3He, providing information on the neutron single spin asymmetries. The analysis at finite momentum transfers in a Poincaré covariant framework is outlined and a quantitative estimate of the nuclear effects is presented.

  16. Transverse momentum distributions inside the nucleon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Musch, Bernhard Ulrich

    2009-05-29

    Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)

  17. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  18. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus).

    Science.gov (United States)

    Gutleb, Arno C; Cenijn, Peter; Velzen, Martin van; Lie, Elisabeth; Ropstad, Erik; Skaare, Janneche Utne; Malmberg, Tina; Bergman, Ake; Gabrielsen, Geir W; Legler, Juliette

    2010-04-15

    Persistent chemicals accumulate in the arctic environment due to their chemical reactivity and physicochemical properties and polychlorinated biphenyls (PCBs) are the most concentrated pollutant class in polar bears (Ursus maritimus). Metabolism of PCB and polybrominated biphenyl ether (PBDE) flame-retardants alter their toxicological properties and these metabolites are known to interfere with the binding of thyroid hormone (TH) to transthyretin (TTR) in rodents and humans. In polar bear plasma samples no binding of [125I]-T(4) to TTR was observed after incubation and PAGE separation. Incubation of the plasma samples with [14C]-4-OH-CB107, a compound with a higher binding affinity to TTR than the endogenous ligand T(4) resulted in competitive binding as proven by the appearance of a radio labeled TTR peak in the gel. Plasma incubation with T(4) up to 1 mM, a concentration that is not physiologically relevant anymore did not result in any visible competition. These results give evidence that the binding sites on TTR for T(4) in wild living polar bears are completely saturated. Such saturation of binding sites can explain observed lowered levels of THs and could lead to contaminant transport into the developing fetus.

  19. On the observability of the quark orbital angular momentum distribution

    Energy Technology Data Exchange (ETDEWEB)

    Courtoy, Aurore, E-mail: aurore.courtoy@ulg.be [IFPA, AGO Department, Université de Liège, Bât. B5, Sart Tilman, B-4000 Liège (Belgium); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Goldstein, Gary R., E-mail: gary.goldstein@tufts.edu [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Osvaldo Gonzalez Hernandez, J., E-mail: jog4m@virginia.edu [Istituto Nazionale di Fisica Nucleare (INFN) – Sezione di Torino, via P. Giuria, 1, 10125 Torino (Italy); Liuti, Simonetta, E-mail: sl4y@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Rajan, Abha, E-mail: ar5xc@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States)

    2014-04-04

    We argue that due to parity constraints, the helicity combination of the purely momentum space counterparts of the Wigner distributions – the generalized transverse momentum distributions – that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon can enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final state interaction. The relevant matrix elements in turn involve light-cone operators projections in the transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three. Orbital angular momentum or the spin structure of the nucleon was a major reason for these various distributions and amplitudes to have been introduced. We show that the twist three contributions associated with orbital angular momentum are related to the target-spin asymmetry in deeply virtual Compton scattering, already measured at HERMES.

  20. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  1. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  2. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  3. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  4. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  5. Importance of high order momentum terms in SLC optics

    International Nuclear Information System (INIS)

    Kozanecki, W.

    1985-01-01

    The evaluation of background levels at the SLC relies, in several cases, on the proper representation of how low momentum electrons propagate through the Arcs and the Final Focus System (FFS). For example, beam - gas bremsstrahlung in the arcs causes electrons of up to 6% energy loss to be transported through to the IP; secondary showers on edges of masks and collimators yield debris with a very wide momentum spectrum. This note is a naive attempt at checking the validity of TRANSPORT and TURTLE calculations, by evaluating the contributions of the momentum terms to increasingly higher order, and checking the mutual consistency of the results produced by the two methods on a beam of wide momentum spread. 8 refs., 4 figs., 1 tab

  6. Momentum density maps for molecules

    International Nuclear Information System (INIS)

    Cook, J.P.D.; Brion, C.E.

    1982-01-01

    Momentum-space and position-space molecular orbital density functions computed from LCAO-MO-SCF wavefunctions are used to rationalize the shapes of some momentum distributions measured by binary (e,2e) spectroscopy. A set of simple rules is presented which enable one to sketch the momentum density function and the momentum distribution from a knowledge of the position-space wavefunction and the properties and effects of the Fourier Transform and the spherical average. Selected molecular orbitals of H 2 , N 2 and CO 2 are used to illustrate this work

  7. Force As A Momentum Current

    International Nuclear Information System (INIS)

    Munera, Hector A.

    2010-01-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  8. Observation of spin-polarized electron transport in Alq3 by using a low work function metal

    Science.gov (United States)

    Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.

    2012-09-01

    We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.

  9. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  10. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers.

    Science.gov (United States)

    Primavera, Rosita; Palumbo, Paola; Celia, Christian; Cinque, Benedetta; Carata, Elisabetta; Carafa, Maria; Paolino, Donatella; Cifone, Maria Grazia; Di Marzio, Luisa

    2018-06-01

    PEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution. The NR-NSVs did not modify Caco-2 cell viability, which remained unaltered in vitro up to a concentration of 1 mM. The transport studies demonstrated that the NR-NSVs moved across the Caco-2 monolayers without affecting the transepithelial electrical resistance. These results were supported by flow cytometry analysis, which demonstrated that NR-NSVs were internalized inside the Caco-2 cells. Nanoparticle tracking and Transmission Electron Microscopy (TEM) analysis showed the presence of NR-NSVs in the basolateral side of the Caco-2 monolayers. TEM images also showed that NSVs were transported intact across the Caco-2 monolayers, thus demonstrating a predominant transcytosis mechanism of transport through endocytosis. The NSVs did not affect the integrity of the membrane barrier in vitro, and can potentially be used in clinics to increase the oral bioavailability and delivery of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    Science.gov (United States)

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  12. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    Science.gov (United States)

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  13. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  14. Angular momentum of dwarf galaxies

    Science.gov (United States)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  15. Angular momentum from tidal torques

    International Nuclear Information System (INIS)

    Barnes, J.; Efstathiou, G.; Cambridge Univ., England)

    1987-01-01

    The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references

  16. Angular Momentum in Dwarf Galaxies

    Directory of Open Access Journals (Sweden)

    Del Popolo A.

    2014-06-01

    Full Text Available We study the “angular momentum catastrophe” in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009 model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001, and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the “angular momentum catastrophe” can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  17. Higgs boson transverse momentum distribution

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will review  the recent progress in understanding Higgs boson transverse momentum distribution focusing on effects that go beyond the point-like approximation for the Higgs-glue interaction vertex.

  18. Chirality and angular momentum in optical radiation

    Science.gov (United States)

    Coles, Matt M.; Andrews, David L.

    2012-06-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.

  19. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    International Nuclear Information System (INIS)

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki; Kondoh, Masuo; Yagi, Kiyohito; Gao, Jian-Qing; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticles were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.

  20. Forecast Accuracy Uncertainty and Momentum

    OpenAIRE

    Bing Han; Dong Hong; Mitch Warachka

    2009-01-01

    We demonstrate that stock price momentum and earnings momentum can result from uncertainty surrounding the accuracy of cash flow forecasts. Our model has multiple information sources issuing cash flow forecasts for a stock. The investor combines these forecasts into an aggregate cash flow estimate that has minimal mean-squared forecast error. This aggregate estimate weights each cash flow forecast by the estimated accuracy of its issuer, which is obtained from their past forecast errors. Mome...

  1. Role of transverse-momentum currents in the optical Magnus effect in free space

    OpenAIRE

    Luo, Hailu; Wen, Shuangchun; Shu, Weixing; Fan, Dianyuan

    2010-01-01

    We establish a general vector field model to describe the role of transverse-momentum currents in the optical Magnus effect in free space. As an analogy of the mechanical Magnus effect, the circularly polarized wave packet in our model acts as the rotating ball, and its rotation direction depends on the polarization state. Based on this model, we demonstrate the existence of an optical polarization-dependent Magnus effect which is significantly different from the conventional optical Magnus e...

  2. Serach for polarization effects in the antiproton production process

    CERN Multimedia

    It is proposed to study polarization effects in the production of antiprotons at the PS test beam line T11 at 3.5 GeV/c momentum. A polarization in the production process has never been studied but if existing it would allow for a rather simple and cheap way to generate a polarized antiproton beam with the existing facilities at CERN.

  3. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density...... gradient length, with an experimental scaling for the pinch number being -Rvpinch/χφ = 1.2R/Ln +1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend...... either on R/Ln, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/Ln, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement...

  4. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  5. Soybean polar lipids differently impact adipose tissue inflammation and the endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets.

    Science.gov (United States)

    Lecomte, Manon; Couëdelo, Leslie; Meugnier, Emmanuelle; Loizon, Emmanuelle; Plaisancié, Pascale; Durand, Annie; Géloën, Alain; Joffre, Florent; Vaysse, Carole; Michalski, Marie-Caroline; Laugerette, Fabienne

    2017-05-01

    Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Concentration polarization effects on the macromolecular transport in the presence of non-uniform magnetic field: A numerical study using a lumen-wall model

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpourfard, M., E-mail: Mohammadpour@azaruniv.edu [Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz 53751-71379 (Iran, Islamic Republic of); Aminfar, H., E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Khajeh, K., E-mail: khajeh.k.2005@gmail.com [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-04-01

    In this paper, the concentration polarization phenomena in a two dimensional tube under steady state conditions containing ferrofluid (blood and 4 vol% Fe{sub 3}O{sub 4}) is reported in the presence of non-uniform magnetic field. Lumen-wall model has been used for solving the mass transport equation. Hemodynamics parameters such as flow rate, viscosity, wall shear stress (WSS) and the macromolecules surface concentration which accumulate on the blood vessel wall, influenced the formation and progression of atherosclerosis disease. Effective parameters on the low density lipoprotein (LDL) surface concentration (LSC) such as: the wall filtration velocity, inlet Reynolds number and WSS under applied non-uniform magnetic field have been examined. Numerical solution of governing equations of the flow field have been obtained by using the single-phase model and the control volume technique. Magnetic field is generated by an electric current going through a thin and straight wire oriented perpendicular to the tube. Results show WSS in the vicinity of magnetic field source increased and LSC decreased along the wall. - Highlights: • In this paper the concentration polarization phenomena of blood flow is reported in the presence of non-uniform magnetic field. • In presence of non-uniform magnetic field LSC will decrease along the wall due to the increasing the velocity gradients near the magnetic source. • When non-uniform magnetic field intensity increases, LSC along the wall becomes lower. • Non-uniform magnetic field can affects the flow more in low Reynolds numbers.

  7. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  8. Photofragment angular momentum distribution beyond the axial recoil approximation: Predissociation

    International Nuclear Information System (INIS)

    Kuznetsov, Vladislav V.; Vasyutinskii, Oleg S.

    2007-01-01

    We present the quantum mechanical expressions for the angular momentum distribution of the photofragments produced in slow predissociation. The paper is based on our recent theoretical treatment [J. Chem. Phys. 123, 034307 (2005)] of the recoil angle dependence of the photofragment multipole moments which explicitly treat the role of molecular axis rotation on the electronic angular momentum polarization of the fragments. The electronic wave function of the molecule was used in the adiabatic body frame representation. The rigorous expressions for the fragment state multipoles which have been explicitly derived from the scattering wave function formalism have been used for the case of slow predissociation where a molecule lives in the excited quasibound state much longer than a rotation period. Possible radial nonadiabatic interactions were taken into consideration. The optical excitation of a single rotational branch and the broadband incoherent excitation of all possible rotational branches have been analyzed in detail. The angular momentum polarization of the photofragments has been treated in the high-J limit. The polarization of the photofragment angular momenta predicted by the theory depends on photodissociation mechanism and can in many cases be significant

  9. Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport1

    Science.gov (United States)

    Clay, Nicole K.; Nelson, Timothy

    2005-01-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process. PMID:15894745

  10. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  11. A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites

    Directory of Open Access Journals (Sweden)

    E. Witrant

    2012-12-01

    Full Text Available Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning. The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process. We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted δ15N. It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of δ15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases.

  12. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  13. Polar localization of a tripartite complex of the two-component system DcuS/DcuR and the transporter DctA in Escherichia coli depends on the sensor kinase DcuS.

    Directory of Open Access Journals (Sweden)

    Patrick D Scheu

    Full Text Available The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units. Here it is shown by fluorescence microscopy with fusion proteins that DcuS has a dynamic and preferential polar localization, even at very low expression levels. Single assemblies of DcuS had high mobility in fast time lapse acquisitions, and fast recovery in FRAP experiments, excluding polar accumulation due to aggregation. DctA and DcuR fused to derivatives of the YFP protein are dispersed in the membrane or in the cytosol, respectively, when expressed without DcuS, but co-localize with DcuS when co-expressed at appropriate levels. Thus, DcuS is required for location of DctA and DcuR at the poles and formation of tripartite DctA/DcuS/DcuR sensor/regulator complexes. Vice versa, DctA, DcuR and the alternative succinate transporter DauA were not essential for polar localization of DcuS, suggesting that the polar trapping occurs by DcuS. Cardiolipin, the high curvature at the cell poles, and the cytoskeletal protein MreB were not required for polar localization. In contrast, polar localization of DcuS required the presence of the cytoplasmic PAS(C and the kinase domains of DcuS.

  14. Momentum-Space Josephson Effects

    Science.gov (United States)

    Hou, Junpeng; Luo, Xi-Wang; Sun, Kuei; Bersano, Thomas; Gokhroo, Vandna; Mossman, Sean; Engels, Peter; Zhang, Chuanwei

    2018-03-01

    The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely studied in superconductors and superfluids. Typical Josephson junctions consist of two real-space superconductors (superfluids) coupled through a weak tunneling barrier. Here we propose a momentum-space Josephson junction in a spin-orbit coupled Bose-Einstein condensate, where states with two different momenta are coupled through Raman-assisted tunneling. We show that Josephson currents can be induced not only by applying the equivalent of "voltages," but also by tuning tunneling phases. Such tunneling-phase-driven Josephson junctions in momentum space are characterized through both full mean field analysis and a concise two-level model, demonstrating the important role of interactions between atoms. Our scheme provides a platform for experimentally realizing momentum-space Josephson junctions and exploring their applications in quantum-mechanical circuits.

  15. Electric field and substrate–induced modulation of spin-polarized transport in graphene nanoribbons on A3B5 semiconductors

    International Nuclear Information System (INIS)

    Ilyasov, Victor V.; Nguyen, Chuong V.; Ershov, Igor V.; Hieu, Nguyen N.

    2015-01-01

    In this work, we present the density functional theory calculations of the effect of an oriented electric field on the electronic structure and spin-polarized transport in a one dimensional (1D) zigzag graphene nanoribbon (ZGNR) channel placed on a wide bandgap semiconductor of the A3B5 type. Our calculations show that carrier mobility in the 1D semiconductor channel of the ZGNR/A3B5(0001) type is in the range from 1.7×10 4 to 30.5×10 4 cm 2 /Vs and can be controlled by an electric field. In particular, at the critical value of the positive potential, even though hole mobility in an one-dimensional 8-ZGNR/h-BN semiconductor channel for spin down electron subsystems is equal to zero, hole mobility can be increased to 4.1×10 5 cm 2 /Vs for spin up electron subsystems. We found that band gap and carrier mobility in a 1D semiconductor channel of the ZGNR/A3B5(0001) type depend strongly on an external electric field. With these extraordinary properties, ZGNR/A3B5(0001) can become a promising materials for application in nanospintronic devices

  16. Theoretical Analysis of Thermal Transport in Graphene Supported on Hexagonal Boron Nitride: The Importance of Strong Adhesion Due to π -Bond Polarization

    Science.gov (United States)

    Pak, Alexander J.; Hwang, Gyeong S.

    2016-09-01

    One important attribute of graphene that makes it attractive for high-performance electronics is its inherently large thermal conductivity (κ ) for the purposes of thermal management. Using a combined density-functional theory and classical molecular-dynamics approach, we predict that the κ of graphene supported on hexagonal boron nitride (h -BN) can be as large as 90% of the κ of suspended graphene, in contrast to the significant suppression of κ (more than 70% reduction) on amorphous silica. Interestingly, we find that this enhanced thermal transport is largely attributed to increased lifetimes of the in-plane acoustic phonon modes, which is a notable contrast from the dominant contribution of out-of-plane acoustic modes in suspended graphene. This behavior is possible due to the charge polarization throughout graphene that induces strong interlayer adhesion between graphene and h -BN. These findings highlight the potential benefit of layered dielectric substrates such as h -BN for graphene-based thermal management, in addition to their electronic advantages. Furthermore, our study brings attention to the importance of understanding the interlayer interactions of graphene with layered dielectric materials which may offer an alternative technological platform for substrates in electronics.

  17. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  18. Automated Angular Momentum Recoupling Algebra

    Science.gov (United States)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  19. Momentum anisotropy at freeze out

    International Nuclear Information System (INIS)

    Feld, S.; Borghini, N.; Lang, C.

    2017-01-01

    The transition from a hydrodynamical modeling to a particle-based approach is a crucial element of the description of high-energy heavy-ion collisions. Assuming this “freeze out” happens instantaneously at each point of the expanding medium, we show that the local phase-space distribution of the emitted particles is asymmetric in momentum space. This suggests the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how observables depend on the amount of momentum-space anisotropy at freeze out and how smaller or larger anisotropies allow for different values of the freeze-out temperature. (paper)

  20. Bound-state momentum distributions

    International Nuclear Information System (INIS)

    Alexander, Y.; Redish, E.F.; Wall, N.S.

    1977-01-01

    Proposed forms for nuclear momentum distributions are investigated. Calculations of (p,p') reactions using those forms are done in a plane-wave impulse approximation at angles where the quasielastic peak is seen and also at back angles. The parameters used are derived from (e,e') data, where the nuclear momenta probed overlap with those of the low angle (p,p') experiment. Although there is reasonable agreement for the (p,p') data at 180 0 , the inclusion of distortion necessitates a different parameter set to obtain agreement for the quasifree process. We conclude that the (p,p') reaction cannot be readily understood with a simple momentum distribution

  1. A plasma solenoid driven by an Orbital Angular Momentum laser beam

    OpenAIRE

    Nuter, R.; Korneev, Ph.; Thiele, I.; Tikhonchuk, V.

    2018-01-01

    A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that par...

  2. Vacuum polarization and renormalized charge in ν-dimensions

    International Nuclear Information System (INIS)

    Marinho Junior, R.M.; Lucinda, J.

    1984-01-01

    The expression for the vacuum polarization is obtained for any momentum transfer in ν dimensions. Using the Wilson loop for QED, the renormalized electric charge in ν dimensions is calculated. (Author) [pt

  3. Multi-photon resonant effects in strong-field ionization: origin of the dip in experimental longitudinal momentum distributions

    International Nuclear Information System (INIS)

    Alnaser, A S; Maharjan, C M; Wang, P; Litvinyuk, I V

    2006-01-01

    We studied ionization of neon and argon by intense linearly polarized femtosecond laser pulses of different wavelengths (400 nm and 800 nm) and peak intensities, and by measuring momentum distributions of singly charged positive ions in the direction parallel to laser polarization. For Ne the momentum distributions exhibited a characteristic dip at zero momentum at 800 nm and a complex multipeak structure at 400 nm. Similarly, for Ar the momentum distributions evolved from a complex multipeak structure with a pronounced dip in the centre at 400 nm, to a smooth distribution characteristic of pure tunneling ionization (800 nm, high intensities). In the intermediate regime (800 nm, medium to low intensities), for both atoms we observed recoil ion momentum distributions modulated by quasi-periodic structures usually seen in the photoelectron energy spectra in a multi-photon regime (ATI spectra). Ne did show a characteristic 'dip' at low momentum, while the longitudinal momentum distribution for Ar exhibited a spike at zero momentum instead. The spectra did dramatically change at 400 nm, where both ions show the pronounced dip near zero momentum. Based on our results, we conclude that the structures observed in Ne and Ar momentum distributions reflect the specifics of atomic structure of the two targets and should not be attributed to effects of electron recollision, as was suggested earlier. Instead, as our results indicate, they are due to the effects of multi-photon resonant enhancement of strong-field ionization. (letter to the editor)

  4. Momentum analyticity of the holographic electric polarizability in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lei [Institute of Physics, Academic Sinica,No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei, R.O.C. (China); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China); Ren, Hai-cang [Physics Department, The Rockefeller University,1230 York Avenue, New York, 10021-6399 (United States); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China); Lee, Ting-Kuo [Institute of Physics, Academic Sinica,No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei, Taiwan (China); Hou, Defu [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China)

    2017-04-21

    The static electric polarization of a holographic field theory dual to the Einstein-Maxwell theory in the background of AdS{sub 4} with a Reissner-Nordström (AdS-RN) black hole is investigated. We prove that the holographic polarization is a meromorphic functions in complex momentum plane and locate analytically the asymptotic distribution of the poles along two straight lines parallel to the imaginary axis for a large momentum magnitude. The results are compared with the numerical result on Friedel-like poles of the same holographic model reported in the literature and with the momentum singularities of the one-loop polarization in weak-coupling spinor QED{sub 3} and scalar QED{sub 3} with the similarities and differences discussed.

  5. Nucleon-nucleon momentum correlation function for light nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.

    2007-01-01

    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics

  6. A Study of Polarization in Hyperon Production Processes

    Energy Technology Data Exchange (ETDEWEB)

    Woods, David McDill [Minnesota U.

    1995-01-01

    The polarization of $\\Xi^-$ and $\\Omega^-$ hyperons produced from both polarized and unpolarized neutral particle beams has been studied. The unpolarized neutral beam production studies are the first measurements made using this production technique. The neutral beam consisted of neutrons, $\\Lambda^0$s, $\\Xi^0$s, $K^0$s, and photons. No polarization was observed in the sample of 1.4 x $10^7 \\Xi^-$s produced by an unpolarized neutral beam. For n-s produced by an unpolarized neutral beam, a sample of 1.7 x $10^5$ events with an average momentum of 394. GeV/c had a polarization of +0.044 $\\pm$ 0.008 and a sample of 5 x 104 events with an average momentum of 304. GeV /c had a polarization of +0.036 $\\pm$ 0.015. The polarization of 7.1 x $10^5 \\Xi^- s$ produced by a polarized neutral beam was -0.118±0.004 at an average momentum of 393. GeV/c. 1.8 x $10^4 \\Omega^- s$ produced by the polarized neutral beam had a polarization of -0.069 $\\pm$ 0.023 at an average momentum of 394. GeV /c. The measurements for production from a polarized neutral beam are in agreement with a previous measurement.

  7. Dividing Attention Increases Operational Momentum

    Directory of Open Access Journals (Sweden)

    Koleen McCrink

    2017-12-01

    Full Text Available When adding or subtracting two quantities, adults often compute an estimated outcome that is larger or smaller, respectively, than the actual outcome, a bias referred to as “operational momentum”. The effects of attention on operational momentum were investigated. Participants viewed a display in which two arrays of objects were added, or one array was subtracted from another array, and judged whether a subsequent outcome (probe array contained the correct or incorrect number of objects. In a baseline condition, only the arrays to be added or subtracted were viewed. In divided attention conditions, participants simultaneously viewed a sequence of colors or shapes, and judged which color (a non-spatial judgment or shape (a spatial judgment was repeated. Operational momentum occurred in all conditions, but was higher in divided attention conditions than in the baseline condition, primarily for addition problems. This pattern suggests that dividing attention, rather than decreasing operational momentum by decreasing attentional shifts, actually increased operational momentum. These results are consistent with a heightened use of arithmetic heuristics under conditions of divided attention.

  8. Angular momentum projection with Pfaffian

    International Nuclear Information System (INIS)

    Oi, M.

    2011-01-01

    Recent developments to rewrite the Onishi formula for an evaluation of the so-called norm overlap kernel necessary in angular momentum projection are to be discussed. The essential ingredients in the development, that is, the Fermion coherent states, the Grassmann numbers, and the Pfaffian, are explained. (author)

  9. Representational Momentum in Older Adults

    Science.gov (United States)

    Piotrowski, Andrea S.; Jakobson, Lorna S.

    2011-01-01

    Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…

  10. Polarized coincidence electroproduction

    International Nuclear Information System (INIS)

    Heimann, R.L.

    1975-03-01

    A study is made of the inclusive electroproduction of single hadrons off a polarized target. Bjorken scaling laws and the hadron azimuthal distribution are derived from the quark parton model. The polarization asymmetries scale when the target spin is along the direction of the virtual photon, and (apart from significant exception) vanish for transverse spin. These results have a simple explanation; emphasis is given both to the general mathematical formalism and to intuitive physical reasoning. Through this framework other cases are considered: quarks with anomalous magnetic moment; renormalization group effects and asymptotic freedom; production of vector mesons (whose spin state is analysed by their decay); relation to large transverse momentum hadron production; and a covariant parton model calculation. Spin 0 partons and Regge singularities are also considered. All of these cases (apart from the last two) modify the pattern of conclusions. Vector meson production shows polarization enhancements in the density matrix element rhosub(0+); the renormalization group approach does not lead to any significant suppressions. They are also less severe in parton models for large Psub(T) hadrons, and are not supported by the covariantly formulated calculation. The origins of these differences are isolated and used to exemplify the sensitivity polarized hadron electroproduction has to delicate detail that is otherwise concealed. (author)

  11. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  12. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Prior, C.R.

    1977-01-01

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state. (author)

  13. Orbital angular momentum of a high-order Bessel light beam

    International Nuclear Information System (INIS)

    Volke-Sepulveda, K; Garces-Chavez, V; Chavez-Cerda, S; Arlt, J; Dholakia, K

    2002-01-01

    The orbital angular momentum density of Bessel beams is calculated explicitly within a rigorous vectorial treatment. This allows us to investigate some aspects that have not been analysed previously, such as the angular momentum content of azimuthally and radially polarized beams. Furthermore, we demonstrate experimentally the mechanical transfer of orbital angular momentum to trapped particles in optical tweezers using a high-order Bessel beam. We set transparent particles of known dimensions into rotation, where the sense of rotation can be reversed by changing the sign of the singularity. Quantitative results are obtained for rotation rates. This paper's animations are available from the Multimedia Enhancements page

  14. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  15. Magnetic excitations and polarized neutrons

    International Nuclear Information System (INIS)

    Shirane, G.

    1985-01-01

    We review the historical development of polarized beam techniques for studies of condensed matter physics. In particular we describe, in some detail, the recent advance of the triple axis technique with polarization analysis. It is now possible to carry out quantitative characterization of magnetic cross sections S(Q,ω), in absolute units, for a wide range of energy and momentum transfers. We will discuss some examples of recent inelastic measurements on 3d ferromagnets and heavy Fermions. 35 refs., 11 figs., 2 tabs

  16. Energy, momentum and angular momentum conservations in de Sitter gravity

    International Nuclear Information System (INIS)

    Lu, Jia-An

    2016-01-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)

  17. Geomorphology of Triton's polar materials

    Science.gov (United States)

    Croft, Steven K.

    1993-01-01

    One of Triton's most debated puzzles is the nature, distribution, and transport of its atmospheric volatiles. The full potential of constraints provided by detailed observations of the morphology and distribution of the polar deposits has not been realized. The objective of this study is characterization of the morphology, distribution, stratigraphy, and geologic setting of Triton's polar materials.

  18. Angular Momentum and Galaxy Formation Revisited

    Science.gov (United States)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf

  19. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  20. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  1. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  2. Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses

    Science.gov (United States)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing

    2018-04-01

    We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.

  3. Momentum

    DEFF Research Database (Denmark)

    Korsbek, Lisa; Tønder, Esben Sandvik

    2016-01-01

    OBJECTIVE: The aim of the pilot study was to examine the use of a smartphone application as a modern decision aid to support shared decision making in mental health. METHOD: 78 people using mental health services and 116 of their providers participated in a 4-month pilot study. At the end...... FOR PRACTICE: The results indicate the relevance of using modern technology to support shared decision making (SDM) and the recovery model, though raise the question of how the actual use in the study is to be understood. The study thereby points to a need of further research into the understanding...... relating to the power asymmetry between people using mental health services and staff. Contrary to our hypothesis that peer support would be crucial, the use of the application was most widespread when it was presented to consumers by providers who found it was a useful tool. CONCLUSIONS AND IMPLICATIONS...

  4. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  5. Field momentum, inertial momentum and gravitational momentum of a system of bodies in the post-Newtonian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)

    1980-01-01

    It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.

  6. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  7. Angular momentum content of galaxies

    International Nuclear Information System (INIS)

    Shaya, E.J.; Tully, R.B.

    1984-01-01

    A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material

  8. Blade-element/momentum theory

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....

  9. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  10. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  11. Transverse Momentum Distributions for Heavy Quark Pairs

    OpenAIRE

    Berger, Edmond L.; Meng, Ruibin

    1993-01-01

    We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...

  12. Helicon modes in uniform plasmas. III. Angular momentum

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B 0 . These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B 0 . The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B 0 are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work

  13. Momentum in Transformation of Technical Infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    Current infrastructure holds a considerable momentum and this momentum is a barrier of transformation towards more sustainable technologies and more sustainable styles of network management. Using the sewage sector in Denmark as an example of a technical infrastructure system this paper argues...... that there are technical, economical and social aspects of the current infrastructures momentum....

  14. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  15. Wigner Functions and Quark Orbital Angular Momentum

    OpenAIRE

    Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar

    2014-01-01

    Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  16. Cyclic transformation of orbital angular momentum modes

    International Nuclear Information System (INIS)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-01-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states. (paper)

  17. Effects of finite coverage on global polarization observables in heavy ion collisions

    Science.gov (United States)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  18. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  19. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus)

    NARCIS (Netherlands)

    Gutleb, A.C.; Cenijn, P.H.; van Velzen, P.; Lie, E.; Ropstad, E.; Skaare, J.U.; Malmberg, T.; Bergman, A.; Gabrielsen, G. W.; Legler, J.

    2010-01-01

    Persistent chemicals accumulate in the arctic environment due to their chemical reactivity and physicochemical properties and polychlorinated biphenyls (PCBs) are the most concentrated pollutant class in polar bears (Ursus maritimus). Metabolism of PCB and polybrominated biphenyl ether (PBDE)

  20. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  1. On the energy-momentum density of gravitational plane waves

    International Nuclear Information System (INIS)

    Dereli, T; Tucker, R W

    2004-01-01

    By embedding Einstein's original formulation of general relativity into a broader context, we show that a dynamic covariant description of gravitational stress-energy emerges naturally from a variational principle. A tensor T G is constructed from a contraction of the Bel tensor with a symmetric covariant second degree tensor field Φ and has a form analogous to the stress-energy tensor of the Maxwell field in an arbitrary spacetime. For plane-fronted gravitational waves helicity-2 polarized (graviton) states can be identified carrying non-zero energy and momentum

  2. Parity violation in pp collisions at high momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Missimer, J; Wolfenstein, L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Gunion, J [California Univ., Davis (USA)

    1976-08-23

    Estimates are given for the parity-violating asymmetry A(..pi../sup + -/) for the inclusive reaction p+p..--> pi../sup + -/+X at high momentum transfer, psub(T), using longitudinally polarized protons. The most reliable estimate is derived from a weak amplitude calculated by inserting a weak interaction in place of a hard scattering in the constituent interchange model of high psub(T) events. For values of psub(T) as large as 8 GeV/c, asymmetries A(..pi..) are expected to be of the order 10/sup -4/ or less.

  3. On the Classical and Quantum Momentum Map

    DEFF Research Database (Denmark)

    Esposito, Chiara

    In this thesis we study the classical and quantum momentum maps and the theory of reduction. We focus on the notion of momentum map in Poisson geometry and we discuss the classification of the momentum map in this framework. Furthermore, we describe the so-called Poisson Reduction, a technique...... that allows us to reduce the dimension of a manifold in presence of symmetries implemented by Poisson actions. Using techniques of deformation quantization and quantum groups, we introduce the quantum momentum map as a deformation of the classical momentum map, constructed in such a way that it factorizes...

  4. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  5. Interstellar propulsion using a pellet stream for momentum transfer

    International Nuclear Information System (INIS)

    Singer, C.E.

    1979-10-01

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan

  6. Accessing the distribution of linearly polarized gluons in unpolarized hadrons

    NARCIS (Netherlands)

    Boer, Daniël; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian

    2011-01-01

    Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos(2 phi) asymmetries in heavy quark pair or dijet production in electron-hadron

  7. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  8. Angular distribution coefficients for γ-ray polarization produced in polarized capture reactions

    International Nuclear Information System (INIS)

    Wulf, E.A.; Guillemette, J.; Weller, H.R.; Seyler, R.G.

    1999-01-01

    The previous publications have dealt with the angular momentum formalism of both linear and circularly polarized photons in (γ, x) reactions on both polarized and unpolarized targets, and the inverse (capture) reactions initiated by polarized beams. In the present work, utilizing the general formalism of Welton, the authors deal with the linear polarization of the γ-rays which are produced in capture reactions on unpolarized targets, including the possibility of having incident polarized spin 1/2 projectiles. These capture reactions are denoted by a(rvec x, rvec L)c, where rvec x is the incident polarized spin 1/2 projectile and rvec L represents the outgoing polarized γ-ray. They present here the formalism in a convenient form, display a sample table of coefficients, and illustrate its use by means of several examples. A FORTRAN code will be made available for generating similar coefficients for other reactions

  9. Recoil-ion momentum spectroscopy

    International Nuclear Information System (INIS)

    Ullrich, J.; Moshammer, R.; Doerner, R.; Jagutzki, O.; Mergel, V.; Schmidt-Boecking, H.; Spielberger, L.

    1996-10-01

    High-resolution recoil-ion momentum spectroscopy (RIMS) is a novel technique to determine the charge state and the complete final momentum vector P R of a recoiling target ion emerging from an ionising collision of an atom with any kind of radiation. It offers a unique combination of superior momentum resolution in all three spatial directions of ΔP R = 0.07 a.u. with a large detection solid angle of ΔΩ R /4π≥ 98%. Recently, low-energy electron analysers based on rigorously new concepts and reaching similar specifications were successfully integrated into RIM spectrometers yielding so-called ''reaction microscopes''. Exploiting these techniques, a large variety of atomic reactions for ion, electron, photon and antiproton impact have been explored in unprecedented detail and completeness. Among them first kinematically complete experiments on electron capture, single and double ionisation in ion-atom collisions at projectile energies between 5 keV and 1.4 GeV. Double photoionisation of He has been investigated at energies E γ close to the threshold (E γ = 80 eV) up to E γ = 58 keV. At E γ >8 keV the contributions to double ionisation after photoabsorption and Compton scattering were kinematically separated for the first time. These and many other results will be reviewed in this article. In addition, the experimental technique is described in some detail and emphasis is given to envisage the rich future potential of the method in various fields of atomic collision physics with atoms, molecules and clusters. (orig.)

  10. Workshop on momentum distributions: Summary

    International Nuclear Information System (INIS)

    Simmons, R.O.

    1988-01-01

    This has been an extraordinary Workshop touching many branches of physics. The Workshop has treated momentum distributions in fluid and solid condensed matter, in nuclei, and in electronic systems. Both theoretical and experimental concepts and methods have been considered in all these branches. A variety of specific illustrations and applications in physical systems have been presented. One finds that some common unifying themes emerge. One finds, also, that some examples are available to illustrate where one branch is more mature than others and to contrast where expectations for future progress may be most encouraged. 6 refs., 2 figs

  11. Orbital Propagation of Momentum Exchange Tether Systems

    Science.gov (United States)

    Westerhoff, John

    2002-01-01

    An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The system acts as a large momentum wheel, imparting a Av to a payload in low earth orbit (LEO) at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth's magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ,ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions.1 One of the technical hurdles to be overcome with the MXER concept is the rendezvous maneuver. The rendezvous window for the capture of the payload is on the order of a few seconds, as opposed to traditional docking maneuvers, which can take as long ets necessary to complete a precise docking. The payload, therefore, must be able to match its orbit to meet up with the capture device on the end of the tether at a specific time and location in the future. In order to be able to determine that location, the MXER system must be numerically propagated forward in time to predict where the capture device will be at that instant. It should be kept in mind that the propagation computation must be done faster than real-time. This study focuses on the efforts to find and/or build the tools necessary to numerically propagate the motion of the MXER system as accurately as possible.

  12. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  13. Orbital momentum distribution and binding energies for the complete valence shell of molecular bromine

    International Nuclear Information System (INIS)

    Frost, L.; Grisogono, A.M.; Weigold, E.

    1987-08-01

    The binding energy spectrum of Br 2 has been recorded in both the outer and inner valence regions using electron momentum spectroscopy. The measurements are compared with the results of several Green's function calculations using different approximations and based on both polarized and unpolarized wave functions. The inner valence region, observed for the first time, is found to exhibit complex structure that is shown to be due to many-body effects, thus indicating a breakdown of the simple MO picture for ionization in this region. Momentum distributions for the three outer valence orbitals are also measured and compared with spherically averaged calculations using the target Hartree-Fock and plane wave impulse approximations. The effect of polarization functions in the basis set is investigated. Orbital density maps in both momentum and position space have been calculated and compared with the experimental measurements

  14. Large transverse momentum hadronic processes

    International Nuclear Information System (INIS)

    Darriulat, P.

    1977-01-01

    The possible relations between deep inelastic leptoproduction and large transverse momentum (psub(t)) processes in hadronic collisions are usually considered in the framework of the quark-parton picture. Experiments observing the structure of the final state in proton-proton collisions producing at least one large transverse momentum particle have led to the following conclusions: a large fraction of produced particles are uneffected by the large psub(t) process. The other products are correlated to the large psub(t) particle. Depending upon the sign of scalar product they can be separated into two groups of ''towards-movers'' and ''away-movers''. The experimental evidence are reviewed favouring such a picture and the properties are discussed of each of three groups (underlying normal event, towards-movers and away-movers). Some phenomenological interpretations are presented. The exact nature of away- and towards-movers must be further investigated. Their apparent jet structure has to be confirmed. Angular correlations between leading away and towards movers are very informative. Quantum number flow, both within the set of away and towards-movers, and between it and the underlying normal event, are predicted to behave very differently in different models

  15. Polarization in heavy quark decays

    Energy Technology Data Exchange (ETDEWEB)

    Alimujiang, K.

    2006-07-01

    In this thesis I concentrate on the angular correlations in top quark decays and their next.to.leading order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)

  16. Polarized proton acceleration at the Brookhaven AGS

    International Nuclear Information System (INIS)

    Ahrens, L.A.

    1986-01-01

    At the conclusion of polarized proton commissioning in February 1986, protons with an average polarization of 45%, momentum of 21.7 GeV/c, and intensity of 2 x 10 10 protons per pulse, were extracted to an external polarimeter at the Brookhaven AGS. In order to maintain this polarization, five intrinsic and nearly forty imperfection depolarizing resonances had to be corrected. An apparent interaction between imperfection and intrinsic resonances occurring at very nearly the same energy was observed and the correction of imperfection resonances using ''beat'' magnetic harmonics discovered in the previous AGS commissioning run was further confirmed

  17. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  18. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Leader, Elliot, E-mail: e.leader@imperial.ac.uk

    2016-05-10

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  19. Momentum dependence of the symmetry potential and its influence on nuclear reactions

    International Nuclear Information System (INIS)

    Feng Zhaoqing

    2011-01-01

    A Skyrme-type momentum-dependent nucleon-nucleon force distinguishing isospin effect is parametrized and further implemented in the Lanzhou quantum molecular dynamics model, which leads to a splitting of nucleon effective mass in nuclear matter. Based on the isospin- and momentum-dependent transport model, we investigate the influence of momentum-dependent symmetry potential on several isospin-sensitive observables in heavy-ion collisions. It is found that symmetry potentials with and without the momentum dependence but corresponding to the same density dependence of the symmetry energy result in different distributions of the observables. The midrapidity neutron/proton ratios at high transverse momenta and the excitation functions of the total π - /π + and K 0 /K + yields are particularly sensitive to the momentum dependence of the symmetry potential.

  20. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light.

    Science.gov (United States)

    Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong

    2016-04-18

    We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.

  1. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  2. APORT: a program for the area-based apportionment of county variables to cells of a polar grid. [Airborne pollutant transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D.E.; Little, C.A.

    1978-11-01

    The APORT computer code was developed to apportion variables tabulated for polygon-structured civil districts onto cells of a polar grid. The apportionment is based on fractional overlap between the polygon and the grid cells. Centering the origin of the polar system at a pollutant source site yields results that are very useful for assessing and interpreting the effects of airborne pollutant dissemination. The APOPLT graphics code, which uses the same data set as APORT, provides a convenient visual display of the polygon structure and the extent of the polar grid. The APORT/APOPLT methodology was verified by application to county summaries of cattle population for counties surrounding the Oyster Creek, New Jersey, nuclear power plant. These numerical results, which were obtained using approximately 2-min computer time on an IBM System 360/91 computer, compare favorably to results of manual computations in both speed and accuracy.

  3. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  4. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  5. Measurement of transverse momentum dependent asymmetries with COMPASS experimental at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, Girisan

    2007-07-01

    The COMPASS experiment, which started running at the European Council for Nuclear Research, CERN, in Geneva in 2001, is currently investigating in a wide ranging programme the spin structure of the nucleon through deep-inelastic scattering (DIS). The experiment uses a polarized muon beam and a polarized deuterium target, which together allow access to all terms of the polarized DIS cross-section. Two of the most important functions which COMPASS is designed to full are a precision measurement of the gluon polarization {delta}G and the investigation of the transverse spin effects, specially extracting the transverse polarized quark distribution functions {delta}{sub T}q. In Semi-Inclusive DIS of polarized leptons on a transversely polarized target, eight azimuthal modulations appear in the cross-section. Within the QCD parton model, four azimuthal asymmetries can be interpreted at leading order, two of them being the Collins and Sivers asymmetries. The other two leading twist asymmetries are related to different transverse momentum dependent quark distribution functions. There are four additional asymmetries which can be interpreted as twist-three contributions. This thesis describes the analysis with the data taken with transverse spin configuration during the COMPASS beam-time 2002-2004, resulting in the extraction of the eight Transverse Momentum Dependent (TMD) asymmetries. (orig.)

  6. Measurement of transverse momentum dependent asymmetries with COMPASS experimental at CERN

    International Nuclear Information System (INIS)

    Venugopal, Girisan

    2007-01-01

    The COMPASS experiment, which started running at the European Council for Nuclear Research, CERN, in Geneva in 2001, is currently investigating in a wide ranging programme the spin structure of the nucleon through deep-inelastic scattering (DIS). The experiment uses a polarized muon beam and a polarized deuterium target, which together allow access to all terms of the polarized DIS cross-section. Two of the most important functions which COMPASS is designed to full are a precision measurement of the gluon polarization ΔG and the investigation of the transverse spin effects, specially extracting the transverse polarized quark distribution functions Δ T q. In Semi-Inclusive DIS of polarized leptons on a transversely polarized target, eight azimuthal modulations appear in the cross-section. Within the QCD parton model, four azimuthal asymmetries can be interpreted at leading order, two of them being the Collins and Sivers asymmetries. The other two leading twist asymmetries are related to different transverse momentum dependent quark distribution functions. There are four additional asymmetries which can be interpreted as twist-three contributions. This thesis describes the analysis with the data taken with transverse spin configuration during the COMPASS beam-time 2002-2004, resulting in the extraction of the eight Transverse Momentum Dependent (TMD) asymmetries. (orig.)

  7. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-01-01

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  8. Momentum management strategy during Space Station buildup

    Science.gov (United States)

    Bishop, Lynda; Malchow, Harvey; Hattis, Philip

    1988-01-01

    The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.

  9. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  10. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  11. Force law in material media, hidden momentum and quantum phases

    International Nuclear Information System (INIS)

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2016-01-01

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.

  12. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  13. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  14. Polarized tagged photons

    International Nuclear Information System (INIS)

    Maximon, L.C.; Ganz, Eric; Aniel, Thierry; Miniac, Arlette de.

    1982-03-01

    We consider in detail the differential cross section for polarized bremsstrahlung for angles and energies in the range of interest for a tagging system and derive a high energy, small angle approximation for this cross section. We use these approximations to determine the maxima and minima of the cross sections for these two polarization states, dσperpendicular and dσparallel, and to evaluate these cross sections at the extrema. It is shown that both dσperpendicular and dσparallel have a very sharp dip in the region of small momentum transfers. However, their behavior in the region of the dip, as a function of the azimuthal angle phi, is quite different over most of the photon spectrum. The cross section dσperpendicular behaves similarly to the cross section for unpolarized photons in that as phi increases, the sharp dip vanishes, the minimum fuses with the second maximum, and the cross section then has only a single maximum. In contrast, the sharp dip in the cross section dσparallel remains as phi increases. Coulomb corrections to the Born approximation are considered, and do not fill in these dips

  15. Spin transport anisotropy in (110)GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Odilon, D.D.C. Jr.; Rudolph, Joerg; Hey, Rudolf; Santos, Paulo V. [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany); Iikawa, Fernando [Universidade Estadual de Campinas, IFGW, Campinas SP (Brazil)

    2007-07-01

    Mobile piezoelectric potentials are used to coherently transport electron spins in GaAs(110) quantum wells (QW) over distances exceeding 60{mu}m. We demonstrate that the dynamics of mobile spins under external magnetic fields depends on the direction of motion in the QW plane. The weak piezoelectric fields impart a non-vanishing average velocity to the carriers, allowing for the direct observation of the carrier momentum dependence of the spin polarization dynamics. While transport along [001] direction presents high in-plane spin relaxation rates, transport along [ anti 110] shows a much weaker external field dependence due to the non-vanishing internal magnetic field. We show that the anisotropy is an intrinsic property of the underling GaAs matrix, associated with the bulk inversion asymmetry contribution to the LS-coupling.

  16. Σ+ and Σ- production polarizations

    International Nuclear Information System (INIS)

    Cooper, P.S.; Anderson, E.W.; Ankenbrandt, C.

    1982-11-01

    We report preliminary results from Fermilab experiment E497 on the production polarizations of Σ + and Σ - hyperons. Hyperons were produced inclusively at non zero production angles by 400 GeV/c protons incident on a Cu target. The polarization was analyzed by the weak decay asymmetry in the hadronic decay modes Σ + → pπ 0 and Σ - → nπ - . Based upon samples of 38,000 Σ + and 317,000 Σ - decays we observe polarizations as a function of P/sub t/ which average 22% at an X of 0.53 for Σ + and 40% at X of 0.68 and 0.78 for Σ - . The direction of polarization for both Σ + and Σ - is in the direction of K/sub -p/ x K/sub Σ/ where the K's are the momentum vectors of the incident proton and produced hyperon respectively. This is opposite to the direction of polarization of inclusively produced lambdas

  17. Strong-field non-sequential ionization: The vector momentum distribution of multiply charged Ne ions

    International Nuclear Information System (INIS)

    Rottke, H.; Trump, C.; Wittmann, M.; Korn, G.; Becker, W.; Hoffmann, K.; Sandner, W.; Moshammer, R.; Feuerstein, B.; Dorn, A.; Schroeter, C.D.; Ullrich, J.; Schmitt, W.

    2000-01-01

    COLTRIMS (COLd Target Recoil-Ion Momentum Spectroscopy) was used to measure the vector momentum distribution of Ne n+ (n=1,2,3) ions formed in ultrashort (30 fsec) high-intensity (≅10 15 W/cm 2 ) laser pulses with center wavelength at 795 nm. To a high degree of accuracy the length of the Ne n+ ion momentum vector is equal to the length of the total momentum vector of the n photoelectrons released, with both vectors pointing into opposite directions. At a light intensity where non-sequential ionization of the atom dominates the Ne 2+ and Ne 3+ momentum distributions show distinct maxima at 4.0 a.u. and 7.5 a.u. along the polarization axis of the linearly polarized light beam. First, this is a clear signature of non-sequential multiple ionization. Second, it indicates that instantaneous emission of two (or more) electrons at electric field strength maxima of the light wave can be ruled out as main mechanism of non-sequential strong-field multiple ionization. In contrast, this experimental result is in accordance with the kinematical constraints of the 'rescattering model'

  18. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  19. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  20. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    We assume that the transverse momentum distributions of identified particles measured in final state are contributed by a few energy sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an ...

  1. Momentum sum rules for fragmentation functions

    International Nuclear Information System (INIS)

    Meissner, S.; Metz, A.; Pitonyak, D.

    2010-01-01

    Momentum sum rules for fragmentation functions are considered. In particular, we give a general proof of the Schaefer-Teryaev sum rule for the transverse momentum dependent Collins function. We also argue that corresponding sum rules for related fragmentation functions do not exist. Our model-independent analysis is supplemented by calculations in a simple field-theoretical model.

  2. Momentum and hamiltonian in complex action theory

    DEFF Research Database (Denmark)

    Nagao, Keiichi; Nielsen, Holger Frits Bech

    2012-01-01

    $-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...

  3. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  4. Angular momentum projected wave-functions

    International Nuclear Information System (INIS)

    Bengtsson, R.; Haakansson, H.B.

    1978-01-01

    Angular momentum projection has become a vital link between intrinsic model-wavefunctions and the physical states one intends to describe. We discuss in general terms some aspects of angular momentum projection and present results from projection on e.g. cranking wavefunctions. Mass densities and spectroscopic factors are also presented for some cases. (author)

  5. Essays on Momentum Strategies in Finance

    NARCIS (Netherlands)

    J.A. van Oord (Arco)

    2016-01-01

    textabstractThis section briefly summarizes in which way we have investigated momentum in this thesis. In Chapter 2 we alter the momentum strategy to improve its performance, while in Chapter 3 we leave the strategy as is, but aim at improving its performance by hedging. In Chapter 4 we develop a

  6. Interface and transport properties of metallization contacts to flat and wet-etching roughed N-polar n-type GaN.

    Science.gov (United States)

    Wang, Liancheng; Liu, Zhiqiang; Guo, Enqing; Yang, Hua; Yi, Xiaoyan; Wang, Guohong

    2013-06-26

    The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that of F-sample (~1.3 × 10(-6) Ω·cm(2), ~0.154 eV). Reasons accounting for this discrepancy has been detail investigated and discussed: for R-sample, wet-etching process caused surface state and spontaneous polarization variation will degraded its electrical characteristics. Metal on R-sample shows smoother morphology, however, the effect of metal deposition state on electrical characteristics is negligible. Metallization contact area for both samples has also been further considered. Electrical characteristics of metallization contact to both samples show degradation upon annealing. The VLED chip (1 mm × 1 mm), which was fabricated on the basis of a hybrid scheme, coupling the advantage of F- and R-sample, shows the lowest forward voltage (2.75 V@350 mA) and the highest light output power.

  7. Modeling all-electrical detection of the inverse Edelstein effect by spin-polarized tunneling in a topological-insulator/ferromagnetic-metal heterostructure

    Science.gov (United States)

    Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2018-04-01

    The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.

  8. Population momentum across vertebrate life histories

    Science.gov (United States)

    Koons, D.N.; Grand, J.B.; Arnold, J.M.

    2006-01-01

    Population abundance is critically important in conservation, management, and demographic theory. Thus, to better understand how perturbations to the life history affect long-term population size, we examined population momentum for four vertebrate classes with different life history strategies. In a series of demographic experiments we show that population momentum generally has a larger effect on long-term population size for organisms with long generation times than for organisms with short generation times. However, patterns between population momentum and generation time varied across taxonomic groups and according to the life history parameter that was changed. Our findings indicate that momentum may be an especially important aspect of population dynamics for long-lived vertebrates, and deserves greater attention in life history studies. Further, we discuss the importance of population momentum in natural resource management, pest control, and conservation arenas. ?? 2006 Elsevier B.V. All rights reserved.

  9. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  10. Momentum of the Pure Radiation Field

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2007-01-01

    Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.

  11. Measuring the momentum distribution of the unpaired spin electrons in ferromagnets using synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1988-12-01

    The dominant term in the x-ray Compton cross-section of an electron is the interaction of the photon and the electron's charge. Platzman and Tsoar many years ago pointed out that there is also an interaction between an x-ray and the electron's spin and in principle this interaction can give information on the momentum distribution of the unpaired spin electrons in the solid. Unfortunately, the spin sensitive term is not only small compared to the charge term, but in addition couples to the photons in first order only with that components of the x-ray beam that is circularly polarized. A lack of intense sources of circularly polarized x-rays combined with the relative small size of the spin sensitive term makes measurements of the momentum distributions of unpaired spin electrons difficult, resulting in little experiment progress initially made in spin or magnetic Compton scattering. In the past several years, interest in spin sensitive Compton scattering has been revived due in large part to the availability of intense beams of high energy photons from synchrotron radiation sources. The radiation from storage ring sources has well defined polarization states; highly linearly polarized in the orbital plane and elliptically polarized above and below the plane of the orbit of the circulating particles. The high flux and unique polarization properties of synchrotron radiation sources have greatly facilitated measurements of the momentum distributions of the unpaired spin electrons in ferromagnetic solids. Recent results of the work of several groups will be presented, along with some thoughts on the impact that the next generation of storage rings, such as the Advanced Photon Source, and insertion devices specifically designed to produce circularly polarized x-ray beams will have on the field of magnetic Compton scattering. 21 refs., 6 figs

  12. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  13. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  14. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    International Nuclear Information System (INIS)

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-01-01

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering

  15. Role of transverse-momentum currents in the optical Magnus effect in free space

    International Nuclear Information System (INIS)

    Luo Hailu; Wen Shuangchun; Shu Weixing; Fan Dianyuan

    2010-01-01

    We establish a general vector field model to describe the role of transverse-momentum currents in the optical Magnus effect in free space. As an analogy of the mechanical Magnus effect, the circularly polarized wave packet in our model acts as the rotating ball, and its rotation direction depends on the polarization state. Based on this model, we demonstrate the existence of an optical polarization-dependent Magnus effect which is significantly different from the conventional optical Magnus effect in that light-matter interaction is not required. Further, we reveal the relation between transverse-momentum currents and the optical Magnus effect, and find that such a polarization-dependent rotation is unavoidable when the wave packet possesses transverse-momentum currents. The physics underlying this intriguing effect is the combined contributions of transverse spin and orbital currents. We predict that this effect may be observed experimentally even in the propagation direction. These findings provide further evidence for the optical Magnus effect in free space and can be extrapolated to other physical systems.

  16. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  17. Physical approach to price momentum and its application to momentum strategy

    Science.gov (United States)

    Choi, Jaehyung

    2014-12-01

    We introduce various quantitative and mathematical definitions for price momentum of financial instruments. The price momentum is quantified with velocity and mass concepts originated from the momentum in physics. By using the physical momentum of price as a selection criterion, the weekly contrarian strategies are implemented in South Korea KOSPI 200 and US S&P 500 universes. The alternative strategies constructed by the physical momentum achieve the better expected returns and reward-risk measures than those of the traditional contrarian strategy in weekly scale. The portfolio performance is not understood by the Fama-French three-factor model.

  18. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    Science.gov (United States)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  19. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  20. Vacuum polarization of massless fields in black holes

    International Nuclear Information System (INIS)

    Zel'nikov, A.I.; Frolov, V.P.

    1987-01-01

    This chapter contains a detailed survey of the fundamental results from an investigation of the contribution of massless fields to vacuum polarization near black holes. A method is developed for calculating the vacuum average energy-momentum tensor for the electromagnetic field on the surface of a black hole. An explicit value is derived for the renormalized energy-momentum tensor of an electromagnetic field near the event horizon of a rotating black hole

  1. Photon momentum and optical forces in cavities

    DEFF Research Database (Denmark)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani

    2016-01-01

    During the past century, the electromagnetic field momentum in material media has been under debate in the Abraham-Minkowski controversy as convincing arguments have been advanced in favor of both the Abraham and Minkowski forms of photon momentum. Here we study the photon momentum and optical....... When describing the steady-state nonequilibrium field distributions we use the recently developed quantized fluctuational electrodynamics (QFED) formalism. While allowing detailed studies of light propagation and quantum field fluctuations in interfering structures, our methods also provide practical...

  2. Angular momentum conservation for uniformly expanding flows

    International Nuclear Information System (INIS)

    Hayward, Sean A

    2007-01-01

    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around the spacetime due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses the rate of the change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation

  3. Pengembangan Alat Peraga Momentum dengan Sistem Sensor

    Directory of Open Access Journals (Sweden)

    Upik Rahma

    2015-12-01

    Full Text Available Abstract This research aims to develop the props with the concept of momentum by using motion sensors. The method used is a method of research and development (Research and Development. In the implementation of the study outlines the development of research carried out in two stages: Theoretical and Empirical. Results of this research is a props momentum that has been developed and can be used by high school teachers who will perform physical demonstration of the momentum of an object. This tool can also be used as a media demonstration teacher for high school students to explain the physics of matter other. From the test results Viewer tool development momentum in SMAN 100 Jakarta indicate that the tool has been able to meet the expectations of teachers and learners in the orientation of the development of the various needs of props for high school students in the learning process of physics. Based on the results of this study concluded that, with the development of props momentum sensor system has met the criteria of props as a medium of learning physics. Keywords: learning media devlopment, learning media momentum with sensor systems, instructional media. Abstrak Penelitian ini bertujuan mengembangkan alat peraga dengan konsep momentum dengan menggunakan sensor gerak. Metode penelitian yang digunakan adalah metode penelitian pengembangan (Research and Development. Dalam pelaksanaan penelitian secara garis besar penelitian pengembangan dilaksanakan dalam dua tahap yaitu Teoritik dan Empiris. Hasil penelitian ini adalah sebuah alat peraga momentum yang sudah dikembangkan dan dapat digunakan oleh guru SMA yang akan melakukan peragaan fisika tentang momentum suatu benda. Alat ini juga dapat dipakai guru sebagai media demonstrasi bagi siswa SMA untuk menjelaskan materi fisika lainnya. Dari hasil uji coba pengembangan Alat Peraga Momentum di SMAN 100 Jakarta menunjukan bahwa alat telah mampu memenuhi harapan bagi guru dan peserta didik dalam

  4. The electromagnetic impulse pendulum and momentum conservation

    International Nuclear Information System (INIS)

    Graneau, P.; Graneau, P.N.

    1986-01-01

    Largely quantitative experiments by Pappas have indicated that the momentum imparted to an electrodynamic impulse pendulum was not balanced by an equal and opposite momentum change of field energy as required by the special theory of relativity. The authors repeated Pappas' experiment using discharge currents from a capacitor bank which contained a known amount of stored energy. It turned out that, for momentum conservation, the magnetic-field energy required would have been 1000 to 2000 times as large as the energy that was actually stored in the capacitors. In the second part of the paper the pendulum experiments are interpreted in terms of Ampere's force law

  5. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  6. Vacuum polarization in Coulomb field revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zamastil, J., E-mail: zamastil@karlov.mff.cuni.cz; Šimsa, D.

    2017-04-15

    Simplified derivation of Wichmann–Kroll term is presented. The derivation uses two formulas for hypergeometric functions, but otherwise is elementary. It is found that Laplace transform of the vacuum charge density diverges at zero momentum transfer. This divergence has nothing to do with known ultraviolet divergence. The latter is related to the large momentum behavior of the pertinent integral, while the former to the small momentum behavior. When these divergences are removed, the energy shift caused by vacuum polarization for an ordinary hydrogen obtained here is in an exact agreement with the result obtained by Wichmann and Kroll. Also, for muonic hydrogen the result obtained here reasonably agrees with that given in literature.

  7. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  8. Relativistic polarized neutrons at the Laboratory of High Energy Physics, JINR

    International Nuclear Information System (INIS)

    Kirillov, A.; Komolov, L.; Kovalenko, A.; Matyushevskij, E.; Nomofilov, A.; Rukoyatkin, P.; Sharov, V.; Starikov, A.; Strunov, L.; Svetov, A.

    1996-01-01

    Using slowly extracted polarized deuterons, available at the accelerator facility of the Laboratory of High Energy Physics, JINR, polarized quasi-monochromatic neutrons with momenta from 1.1 to 4.5 GeV/c have been generated. Depending on momentum, from 10 4 to 10 6 polarized neutrons per accelerator cycle were produced. At present, the polarized neutrons are mainly intended for measuring the (n vec, p vec) total cross section differences. 6 refs., 2 figs

  9. Electron transport in wurtzite InN

    Indian Academy of Sciences (India)

    InN transport; mobility; energy and momentum relaxation; impurity scattering. ... future generation solar cell because the nitride alloys can cover the whole ... We apply the ensemble Monte Carlo method to investigate the electron transport in.

  10. A way for evaluating parameters of electron transport in non-polar molecular liquids derived from analysis of the trapped electron recombination kinetics

    International Nuclear Information System (INIS)

    Lukin, L.V.

    2012-01-01

    The geminate recombination kinetics of electron-ion pairs produced by high energy radiation in liquid hydrocarbons is considered in the two state model of electron transport. The purpose of the study is to relate the trapped electron transient optical absorption, observed in the pulse radiolysis experiments, to fundamental parameters of electron transport in liquid. It is shown that measurements of the half-life time and amplitude of the trapped electron decay curve allow one to find the electron life time in a localized state. - Highlights: ► A two state electron model is applied to geminate charge recombination. ► Time dependence of trapped electrons is computed for liquid isooctane and squalane. ► Electron decay kinetics depends on electron life time in a localized state. ► Key parameters of electron transport are found from the pulse radiolysis studies.

  11. Note on polarized RHIC bunch arrangement

    International Nuclear Information System (INIS)

    Underwood, D.

    1996-01-01

    We discuss what combinations of bunch polarization in the two RHIC rings are necessary to do the physics measurements at various interaction regions. We also consider the bunches for both the pion inclusive and p-p elastic polarization measurements. Important factors to consider are the direction of the polarization with respect to the momentum in each bunch, the beam gas backgrounds, and the simulation of zero - polarization in one beam by averaging + and - helicity, and luminosity monitoring for normalization. These considerations can be addressed by setting the relative number of each of the 9 combinations possible at each of the 6 interaction regions. The combinations are (+ empty -) yellow X (+ empty -)blue, where yellow and blue are the counter-rotating rings

  12. QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q(T)-distribution

    NARCIS (Netherlands)

    Garcia, M.; Kasemets, T.; Mulders, P.J.G.; Pisano, C.

    2015-01-01

    Abstract: We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms

  13. Origin of transverse momentum in relativistic heavy-ion collisions: Microscopic study

    International Nuclear Information System (INIS)

    Blaettel, B.; Koch, V.; Lang, A.; Weber, K.; Cassing, W.; Mosel, U.

    1991-01-01

    We study the origin of the transverse momentum distribution in heavy-ion collisions within a relativistic transport approach. To achieve a better understanding of the reaction dynamics, we decompose the total p t distribution into a mean-field, N-N collision, and Fermi-momentum part. We find that the origin of the transverse momentum strongly depends on the rapidity region. Our investigation of the impact-parameter and mass dependence suggests that peripheral collisions may be useful to investigate the momentum dependence of the mean-field in the nucleus-nucleus case, whereas the mass dependence could give hints about the N-N-collision part. Only after these two issues are settled it may be possible to extract information about the density dependence in central collisions, which may, however, necessitate reactions at even higher energies than the 800 MeV/nucleon considered in this work

  14. Opportunities for Polarized He-3 in RHIC and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  15. Morse Potential in the Momentum Representation

    Institute of Scientific and Technical Information of China (English)

    孙国华; 董世海

    2012-01-01

    The momentum representation of the Morse potential is presented analytically by hypergeometric function. The properties with respect to the momentum p and potential parameter β are studied. Note that [q2(p)l is a nodeless function and the mutual orthogonality of functions is ensured by the phase functions arg[(p)], It is interesting to see that the [~ (p)[ is symmetric with respect to the axis p = 0 and the number of wave crest of [ (p)[ is equal to n + 1. We also study the variation of ]k(p)l with respect to . The arnplitude of |ψ(p)] first increases with the quantum number n and then deceases. Finally, we notice that the discontinuity in phase occurs at some points of the momentum p and the position and momentum probability densities are symmetric with respect to their arguments.

  16. Photon-momentum transfer in molecular photoionization

    Science.gov (United States)

    Chelkowski, Szczepan; Bandrauk, André D.

    2018-05-01

    In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the (nondipole) three-dimensional time-dependent Schrödinger equation for one electron in a H2+ molecular ion we investigate the effect the photon-momentum transfer to the photoelectron in an H2+ ion in various regimes. We find that the photon-momentum transfer in a molecule is very different from the transfer in atoms due to two-center interference effects. The photon-momentum transfer is very sensitive to the symmetry of the initial electronic state and is strongly dependent on the internuclear distance and on the ellipticity of the laser.

  17. Amplitude damping channel for orbital angular momentum

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-03-01

    Full Text Available Since the pioneering work on the entanglement of the orbital angular momentum (OAM) states of light, much attention has been devoted to the subject, with particular attention into the quantum aspects of information processing using OAM. Furthermore...

  18. Energy-momentum tensor in scalar QED

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1988-01-01

    We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE

  19. Morse Potential in the Momentum Representation

    International Nuclear Information System (INIS)

    Sun Guohua; Dong Shihai

    2012-01-01

    The momentum representation of the Morse potential is presented analytically by hypergeometric function. The properties with respect to the momentum p and potential parameter β are studied. Note that |Ψ(p)| is a nodeless function and the mutual orthogonality of functions is ensured by the phase functions arg[Ψ(p)]. It is interesting to see that the |Ψ(p)| is symmetric with respect to the axis p = 0 and the number of wave crest of |Ψ(p)| is equal to n + 1. We also study the variation of |Ψ(p)| with respect to β. The amplitude of |Ψ(p)| first increases with the quantum number n and then deceases. Finally, we notice that the discontinuity in phase occurs at some points of the momentum p and the position and momentum probability densities are symmetric with respect to their arguments.

  20. Constituent models and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-01-01

    The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions

  1. Orbital-angular-momentum entanglement in turbulence

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available The turbulence-induced decay of orbital-angular-momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our resultswith previouswork,we simulate the turbulent atmosphere with a single phase screen...

  2. Momentum sharing in imbalanced Fermi systems

    Science.gov (United States)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  3. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  4. Exclusive processes at high momentum transfer

    CERN Document Server

    Radyushkin, Anatoly; Stoker, Paul

    2002-01-01

    This book focuses on the physics of exclusive processes at high momentum transfer and their description in terms of generalized parton distributions, perturbative QCD, and relativistic quark models. It covers recent developments in the field, both theoretical and experimental.

  5. Locking of intrinsic angular momentum in collision complexes

    International Nuclear Information System (INIS)

    Berengolts, Alexander.

    1995-04-01

    A concept of locking of the intrinsic angular momentum of a fragment of a collision complex to a body-fixed axis is widely used in the description of heavy-particle dynamics. The aim of this work is to provide a semiclassical description of the locking phenomenon which occur in diatomic and three atomic collision complexes. The first part of this work is devoted to the semiclassical study of the locking of the electronic angular momentum that occurs in slow collisions of two atoms, one in the spherically symmetric state and the other in state with j= 1. Here we calculate explicitly the complete locking matrix for different types of interatomic interactions. The elements of this matrix directly enter into the semiclassical expression for the different cross sections of polarized atoms. Limitations to the notion of the the locking radius and slipping probability are discussed in connection with the steepness of the interaction. Numerical calculations confirm analytical result: the optimal criterion for determination of the locking radius is a condition for the accumulated phase difference between two molecular states. Analytical expressions are suggested for the locking angle and the slipping probability. Implication of the locking approximation for calculation of the quasiclassical scattering matrix is discussed. The second part considers the locking of the rotational angular momentum of a diatom in the decomposition of a triatomic complexes. We discuss here cases J = 1,2,3 and 4, but restrict ourselves to calculation of the so-called dynamic orientation of the diatomic fragment. The letter represents one of the characteristics of the locking matrix which in principle can be measured experimentally. The orientation is created as a result of the interplay between the adiabatic interaction in the atom- diatom exit channel and the rotationally non adiabatic coupling in the perturbed rotor region

  6. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  7. Do Momentum Strategies Work?: - Australian Evidence

    OpenAIRE

    Michael E. Drew; Madhu Veeraraghavan; Min Ye

    2004-01-01

    This paper investigates the profitability of momentum investment strategy and the predictive power of trading volume for equities listed in the Australian Stock Exchange. Recent research finds that momentum and trading volume appear to predict subsequent returns in U.S. market and past volume helps to reconcile intermediate-horizon “under reaction” and long-horizon “overreaction” effects. However, bulk of the evidence on this important relationship between past returns and future returns is l...

  8. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. [Washington Univ., St. Louis, MO (United States). Dept. of Physics; Parrinello, C. [New York Univ., NY (United States). Dept. of Physics]|[Brookhaven National Lab., Upton, NY (United States); Soni, A. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    We consider quenched QCD on a 16{sup 3}{times}40 lattice at {beta}=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  9. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); Parrinello, C. (New York Univ., NY (United States). Dept. of Physics Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    We consider quenched QCD on a 16[sup 3][times]40 lattice at [beta]=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  10. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Dept. of Physics, Washington Univ., St. Louis, MO (United States)); Parrinello, C. (Physics Dept., New York Univ., NY (United States) Physics Dept., Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Physics Dept., Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    We consider quenched QCD on a 16[sup 3] x 40 lattice at [beta] = 6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others. (orig.)

  11. Behavioral momentum in the treatment of noncompliance.

    OpenAIRE

    Mace, F C; Hock, M L; Lalli, J S; West, B J; Belfiore, P; Pinter, E; Brown, D K

    1988-01-01

    Behavioral momentum refers to the tendency for behavior to persist following a change in environmental conditions. The greater the rate of reinforcement, the greater the behavioral momentum. The intervention for noncompliance consisted of issuing a sequence of commands with which the subject was very likely to comply (i.e., high-probability commands) immediately prior to issuing a low-probability command. In each of five experiments, the high-probability command sequence resulted in a "moment...

  12. Momentum distribution in the nucleus. II

    International Nuclear Information System (INIS)

    Amado, R.D.; Woloshyn, R.M.

    1977-01-01

    We calculate the single particle momentum distribution n(q) for a one-dimensional model with delta forces. There is a domain of q for which n(q) has an exponential falloff; but, after allowance is made for the nonsaturation in the model, that domain does not grow significantly with particle number. The relation of this result to large momentum scattering from the nucleus and to the Hartree approximation is briefly discussed

  13. The gluon propagator in momentum space

    International Nuclear Information System (INIS)

    Bernard, C.; Soni, A.

    1992-01-01

    We consider quenched QCD on a 16 3 x40 lattice at β=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others

  14. Average Transverse Momentum Quantities Approaching the Lightfront

    OpenAIRE

    Boer, Daniel

    2015-01-01

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of su...

  15. Status and future plans of polarized beams at COSY

    Science.gov (United States)

    Lorentz, B.; Gebel, R.; Lehrach, A.; Maier, R.; Prasuhn, D.; Stockhorst, H.

    2011-05-01

    In this paper we report on the present status and future plans of polarized beams in the COSY synchrotron ring. COSY is a synchrotron ring in the momentum range from 295 to 3700 MeV/c. Polarized deuterons and protons are routinely delivered to experiments over the whole momentum range. No depolarization occurs during the acceleration of deuterons in COSY. For polarized protons many depolarizing resonances are crossed without polarization loss. At imperfection resonances, vertical steerer magnets are used to increase the resonance strength, leading to a complete polarization reversal. At intrinsic resonances a fast tune jump quadrupole is used to quickly cross the resonances without loss of polarization. Typical proton polarizations are close to 0.8 below 2.1 GeV/c and about 0.6 for higher momenta. During recent operation an induced depolarizing resonance was used for accurate determination of the relative momentum spread dp/p of the stored beam yielding an accuracy of better than 10-4. For spin filter studies of the PAX collaboration a low beta target section was installed in 2009 and was successfully put into operation early 2010. An upgrade of the EDDA polarimeter electronics and data acquisition system is underway to ensure continued availability of the polarimeter, which is essential for the polarized proton operation of COSY. In the near future it is planned to install a Siberian snake solenoid of 4.5 Tm to be able to provide in addition to vertically polarized protons, longitudinal polarization as well. This solenoid will allow the preparation of a longitudinally polarized beam up to a kinetic energy of 500 MeV.

  16. Angular momentum effects in electron scattering from atoms

    International Nuclear Information System (INIS)

    Williams, J F; Cvejanovie, D; Samarin, S; Pravica, L; Napier, S; Sergeant, A

    2007-01-01

    This paper concerns angular momentum-dependent phenomena in excited gas-phase atoms using incident photons or electrons in scattering experiments. A brief overview indicates the main capabilities of experimental techniques and the information which can be deduced about atomic structure and dynamics from conservation of momenta with measurement of polarization and detection of the number of emerging electrons, photons and ions. Maximum information may be obtained when the incident particles and the targets are state-selected both before and after scattering. The fundamental scattering amplitudes and their relative phases, and consequently derived quantities such as the parameters describing the electron charge cloud of the atomic target, have enabled significant advances of understanding of collision mechanisms. The angular momentum-dependent scattering probabilities change when, for example, the spin-orbit interaction for the target electrons becomes large compared with the Coulomb electron-electron interactions and also when electron exchange and the relative orientation of the electron spins change. Several examples are discussed to indicate significant principles and recent advances. Major contributions to this field from the technology associated with electron spin production and detection time, as well as time-coincidence detection, are discussed. New results from the authors' laboratory are presented

  17. On the quantum field theory in the momentum space with the constant curvature

    International Nuclear Information System (INIS)

    Gadzhiev, S.A.; Petrosyan, V.A.

    1981-01-01

    Model of polarization operator in the approximation of ''opalescent'' diagrams in the momentum space of constant curvature is investigated. Integral equation for an absorptive part of the hadron polarization operator has been obtained in stereographic parametrization of the de Sitter space. Integral equation for the case of zero mass of an exchange particle has been solved, cross section and mean multiplicity of hadron production in the e + e - annihilation have been calculated. Infrared divergences arising during exact summation of the considered diagram class are separated to a multiplicative constant of renormalization [ru

  18. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  19. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  20. A Key Experiment of Quantum Optics: The Transfer of Spin Angular Momentum from Photons to a Birefringent Particle

    Energy Technology Data Exchange (ETDEWEB)

    Frins, E [Universidad de la Republica, Montevideo (Uruguay); Dultz, W [J.W.v.Goethe Universitaet Frankfurt/Main (Germany); Schmitzer, H, E-mail: requalivahanus@t-online.de [Xavier University, Cincinnati (United States)

    2011-01-01

    Rotating small birefringent particles with the spin angular momentum of light is a key experiment of quantum optics. We derive the equation of motion of small retarders in viscose liquids, demonstrate their some times irregular rotation in polarized light, and discuss possible technical applications.

  1. Mixing height determination from the momentum balance of the neutral or stable PBL

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, J.C. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    The mixing height is defined by the top of the layer of turbulent mixing. This height is equal to the height H of turbulent vertical momentum transport (fiction) in neutral or stable stratification. In very stable cases, the wave induced momentum transport must be excluded if the waves do not have mixing effects (e.g. break) within the frictional layer. Thus the conditions provided by the momentum balance determine the mixing height in most cases of mechanical turbulence. Mixing is a time dependent process and depends also on the height of release of substance to be mixed. It depends on the specific form of the exchange coefficient function whether the mixing time for the mixed layer is finite of infinite. If this time is infinite, an additional mixing time criterion for a substance released close to the ground must be applied for the determination of the corresponding mixing height. (au)

  2. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  3. Global and regional axial ocean angular momentum signals and length-of-day variations (1985-1996)

    Science.gov (United States)

    Ponte, Rui M.; Stammer, Detlef

    2000-07-01

    Changes in ocean angular momentum M about the polar axis are related to fluctuations in zonal currents (relative component Mr) and latitudinal shifts in mass (planetary component MΩ). Output from a 1° ocean model is used to calculate global Mr, MΩ, and M time series at 5 day intervals for the period January 1985 to April 1996. The annual cycle in Mr, MΩ, and M is larger than the semiannual cycle, and MΩ amplitudes are nearly twice those of Mr. Year-to-year modulation of the seasonal cycle is present, but interannual variability is weak. The spectrum of M is red (background slope between ω-1 and ω-2) at subseasonal periods, implying a white or blue spectrum for the external torque on the ocean. Comparisons with previous studies indicate the importance of direct atmospheric forcing in inducing subseasonal M signals, relative to instabilities and other internal sources of rapid oceanic signals. Regional angular momentum estimates show that seasonal variability tends to be larger at low latitudes, but many local maxima exist because of the spatial structure of zonal current and mass variability. At seasonal timescales, latitudes ~20°S-10°N contribute substantial variability to MΩ, while signals in Mr can be traced to Antarctic Circumpolar Current transports and associated circulation. Variability in M is found to be small when compared with similar time series for the atmosphere and the solid Earth, but ocean signals are significantly coherent with atmosphere-solid Earth residuals, implying a measurable oceanic impact on length-of-day variations.

  4. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    Science.gov (United States)

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  6. Vector correlation analysis for inelastic and reactive collisions between partners possessing spin and orbital angular momentum.

    Science.gov (United States)

    Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S

    2009-12-31

    A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.

  7. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    Directory of Open Access Journals (Sweden)

    H. Sodemann

    2011-04-01

    Full Text Available During the POLARCAT summer campaign in 2008, two episodes (2–5 July and 7–10 July 2008 occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications.

    Here we compare transport simulations of carbon monoxide (CO from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are.

    The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO

  8. Dynamical evolution of angular momentum in damped nuclear reactions. I. Accumulation of angular momentum by nucleon transfer

    International Nuclear Information System (INIS)

    Doessing, T.; Randrup, J.

    1984-01-01

    An important goal in the theory of nuclear dynamics is to understand the observed transport phenomena in terms of the basic microscopic processes in the system. For this purpose a model was developed in which the dissipative mechanism responsible for the transport process is the transfer of nucleons between the two reacting nuclides. Until now, most efforts to confront that theory with data have concentrated on the evolution of the charge and mass distribution with energy loss, and overall good agreement has been obtained for a variety of features. While this success lends strong support to the theory, it is important to broaden the contact with experiment by considering also other aspects of the data. Therefore the authors have undertaken a comprehensive study of the angular momentum variables which represent six additional observables (three for each fragment spin) and thus provide a rich testing ground for the theory

  9. Fiber transport of spatially entangled photons

    Science.gov (United States)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  10. Impact of momentum anisotropy and turbulent chromo-fields on thermal particle production in quark-gluon-plasma medium

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Vinod [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India); Sreekanth, V. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India)

    2017-06-15

    Momentum anisotropy present during the hydrodynamic evolution of the Quark-Gluon Plasma (QGP) in RHIC may lead to the chromo-Weibel instability and turbulent chromo-fields.The dynamics of the quark and gluon momentum distributions in this case is governed by an effective diffusive Vlasov equation (linearized). The solution of this linearized transport equation for the modified momentum distribution functions lead to the mathematical form of non-equilibrium momentum distribution functions of quarks/antiquarks and gluons. The modifications to these distributions encode the physics of turbulent color fields and momentum anisotropy. In the present manuscript, we employ these distribution functions to estimate the thermal dilepton production rate in the QGP medium. The production rate is seen to have appreciable sensitivity to the strength of the anisotropy. (orig.)

  11. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  12. Nucleon internal structure: a new set of quark, gluon momentum, angular momentum operators and parton distribution functions

    International Nuclear Information System (INIS)

    Wang Fan; Sun Weimin; Chen Xiangsong; Lu Xiaofu; Goldman, T.

    2009-01-01

    It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)

  13. A measurement of spin asymmetries in quasi-real photo-production of hadrons with high transverse momentum at COMPASS

    International Nuclear Information System (INIS)

    Kuhn, R.

    2007-07-01

    During 2002-2004, the COMPASS experiment at the CERN SPS has recorded 1.5 fb -1 of deep inelastic scattering events with polarized muon beam and polarized deuterium target. The cross section for single-inclusive charged hadron production in dependence on the hadron's transverse momentum p T is extracted. A PYTHIA and GEANT simulation is used to obtain the acceptance correction factors. The double spin asymmetry A LL b,d is measured in the region 1 GeV/c T T dependence of which is connected to the gluon polarization ΔG. (orig.)

  14. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  15. Mass and momentum conservation for fluid simulation

    KAUST Repository

    Lentine, Michael; Aanjaneya, Mridul; Fedkiw, Ronald

    2011-01-01

    Momentum conservation has long been used as a design principle for solid simulation (e.g. collisions between rigid bodies, mass-spring elastic and damping forces, etc.), yet it has not been widely used for fluid simulation. In fact, semi-Lagrangian advection does not conserve momentum, but is still regularly used as a bread and butter method for fluid simulation. In this paper, we propose a modification to the semi-Lagrangian method in order to make it fully conserve momentum. While methods of this type have been proposed earlier in the computational physics literature, they are not necessarily appropriate for coarse grids, large time steps or inviscid flows, all of which are common in graphics applications. In addition, we show that the commonly used vorticity confinement turbulence model can be modified to exactly conserve momentum as well. We provide a number of examples that illustrate the benefits of this new approach, both in conserving fluid momentum and passively advected scalars such as smoke density. In particular, we show that our new method is amenable to efficient smoke simulation with one time step per frame, whereas the traditional non-conservative semi-Lagrangian method experiences serious artifacts when run with these large time steps, especially when object interaction is considered. Copyright © 2011 by the Association for Computing Machinery, Inc.

  16. Momentum considerations on the New MEXICO experiment

    Science.gov (United States)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  17. The amplituhedron from momentum twistor diagrams

    International Nuclear Information System (INIS)

    Bai, Yuntao; He, Song

    2015-01-01

    We propose a new diagrammatic formulation of the all-loop scattering amplitudes/Wilson loops in planar N=4 SYM, dubbed the “momentum-twistor diagrams”. These are on-shell-diagrams obtained by gluing trivalent black and white vertices in momentum twistor space, which, in the reduced diagram case, are known to be related to diagrams in the original twistor space. The new diagrams are manifestly Yangian invariant, and they naturally represent factorization and forward-limit contributions in the all-loop BCFW recursion relations in momentum twistor space, in a fashion that is completely different from those in momentum space. We show how to construct and evaluate momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and loop-level integrands; in particular the latter involve isolated bubble-structures for loop variables arising from forward limits, or the entangled removal of particles. From each diagram, the generalized “boundary measurement” directly gives the C, D matrices, thus a cell in the amplituhedron associated with the amplitude, and we expect that our diagrammatic representations of the amplitude provide triangulations of the amplituhedron. To demonstrate the computational power of the formalism, we give explicit results for general two-loop integrands, and the cells of the amplituhedron for two-loop MHV amplitudes.

  18. Acoustically induced spin transport in (110)GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Odilon D.D. Jr.

    2008-09-29

    In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 m is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D'yakonov-Perel' spin relaxation mechanism for z-oriented spins in (110) IIIV QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (B{sub ext}) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1 anti 10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (B{sub int}), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around B{sub ext}. In contrast, for transport along the [1 anti 10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of B{sub int}. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D'yakonov-Perel' mechanism for the (110) system. (orig.)

  19. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  20. Momentum flux associated with gravity waves in the low-latitude troposphere

    Directory of Open Access Journals (Sweden)

    S. R. Prabhakaran Nayar

    Full Text Available The vertical fluxes of horizontal momentum at tropospheric heights are calculated for four days, 25–28 August 1999. The mean zonal wind during these days show the presence of strong westward wind at the upper troposphere. Both the symmetric beam radar method and the power spectral method of evaluation of vertical flux of zonal and meridional momentum shows nearly the same result for quiet conditions. The temporal evolution of the momentum flux is estimated for a day with strong zonal shear and convection. These results indicate that on 28 August 1999, the strong downward vertical wind in the lower altitude range is associated with upward vertical flux of zonal momentum, and strong upward vertical wind is associated with downward vertical flux. Similarly, the strong shear in zonal wind is associated with the increase in negative values in vertical flux in the upper troposphere. Analysis of the role of wave periods in the transport of momentum flux indicates that the vertical momentum flux magnitude is not evenly distributed in all wave periods, but instead it peaks at certain wave periods in the range 10 to 100 min.

    Key words. Meteorology and atmospheric dynamics (convective process; tropical meteorology; precipitation