Polarimetric SAR interferometry-based decomposition modelling for reliable scattering retrieval
Agrawal, Neeraj; Kumar, Shashi; Tolpekin, Valentyn
2016-05-01
Fully Polarimetric SAR (PolSAR) data is used for scattering information retrieval from single SAR resolution cell. Single SAR resolution cell may contain contribution from more than one scattering objects. Hence, single or dual polarized data does not provide all the possible scattering information. So, to overcome this problem fully Polarimetric data is used. It was observed in previous study that fully Polarimetric data of different dates provide different scattering values for same object and coefficient of determination obtained from linear regression between volume scattering and aboveground biomass (AGB) shows different values for the SAR dataset of different dates. Scattering values are important input elements for modelling of forest aboveground biomass. In this research work an approach is proposed to get reliable scattering from interferometric pair of fully Polarimetric RADARSAT-2 data. The field survey for data collection was carried out for Barkot forest during November 10th to December 5th, 2014. Stratified random sampling was used to collect field data for circumference at breast height (CBH) and tree height measurement. Field-measured AGB was compared with the volume scattering elements obtained from decomposition modelling of individual PolSAR images and PolInSAR coherency matrix. Yamaguchi 4-component decomposition was implemented to retrieve scattering elements from SAR data. PolInSAR based decomposition was the great challenge in this work and it was implemented with certain assumptions to create Hermitian coherency matrix with co-registered polarimetric interferometric pair of SAR data. Regression analysis between field-measured AGB and volume scattering element obtained from PolInSAR data showed highest (0.589) coefficient of determination. The same regression with volume scattering elements of individual SAR images showed 0.49 and 0.50 coefficients of determination for master and slave images respectively. This study recommends use of
Polarimetric neutron scattering
International Nuclear Information System (INIS)
Tasset, F.
2001-01-01
Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)
Efficient polarimetric BRDF model.
Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D
2015-11-30
The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.
Directory of Open Access Journals (Sweden)
Qinghua Xie
2017-01-01
Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there
Polarimetric scattering and SAR information retrieval
Jin, Ya-Qiu
2013-01-01
Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app
Sai Bharadwaj, P.; Kumar, Shashi; Kushwaha, S. P. S.; Bijker, Wietske
Forests are important biomes covering a major part of the vegetation on the Earth, and as such account for seventy percent of the carbon present in living beings. The value of a forest's above ground biomass (AGB) is considered as an important parameter for the estimation of global carbon content. In the present study, the quad-pol ALOS-PALSAR data was used for the estimation of AGB for the Dudhwa National Park, India. For this purpose, polarimetric decomposition components and an Extended Water Cloud Model (EWCM) were used. The PolSAR data orientation angle shifts were compensated for before the polarimetric decomposition. The scattering components obtained from the polarimetric decomposition were used in the Water Cloud Model (WCM). The WCM was extended for higher order interactions like double bounce scattering. The parameters of the EWCM were retrieved using the field measurements and the decomposition components. Finally, the relationship between the estimated AGB and measured AGB was assessed. The coefficient of determination (R2) and root mean square error (RMSE) were 0.4341 and 119 t/ha respectively.
International Nuclear Information System (INIS)
Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent
2013-01-01
Our work presents computations via a vectorial radiative transfer model of the polarimetric and angular light scattered by a stratified dense medium with small and intermediate optical thickness. We report the validation of this model using analytical results and different computational methods like stochastic algorithms. Moreover, we check the model with experimental data from a specific scatterometer developed at the Onera. The advantages and disadvantages of a radiative approach are discussed. This paper represents a step toward the characterization of particles in dense media involving multiple scattering. -- Highlights: • A vectorial radiative transfer model to simulate the light scattered by stratified layers is developed. • The vectorial radiative transfer equation is solved using an adding–doubling technique. • The results are compared to analytical and stochastic data. • Validation with experimental data from a scatterometer developed at Onera is presented
Polarimetric SAR interferometry applied to land ice: modeling
DEFF Research Database (Denmark)
Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning
2004-01-01
This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...... depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order...
Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model
Energy Technology Data Exchange (ETDEWEB)
Berk, Alexander [Spectral Sciences, Inc., Burlington, MA (United States); Hawes, Frederick [Spectral Sciences, Inc., Burlington, MA (United States); Fox, Marsha [Spectral Sciences, Inc., Burlington, MA (United States)
2016-03-15
Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field
SAR Polarimetric Scattering from Natural Terrains
2017-02-17
land surfaces. In addition, NMM3D will also be useful for C-, X-, and Ku-bands. NMM3D results will also be implemented in the NASA Earth Observing...unlimited. (3) Multiple Scattering Effects with Cyclical Terms in Active Remote Sensing of Vegetated Surface Using Vector Radiative Transfer Theory...IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, pp. 1414-1429 (2016)) The multiple scattering and
Zhan, Hanyu; Voelz, David G.
2016-12-01
The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.
Directory of Open Access Journals (Sweden)
Takashi Shibayama
2015-11-01
Full Text Available This paper addresses the local incidence angle dependence of several polarimetric indices corresponding to landslides in forested areas. Landslide is deeply related to the loss of human lives and their property. Various kinds of remote sensing techniques, including aerial photography, high-resolution optical satellite imagery, LiDAR and SAR interferometry (InSAR, have been available for landslide investigations. SAR polarimetry is potentially an effective measure to investigate landslides because fully-polarimetric SAR (PolSAR data contain more information compared to conventional single- or dual-polarization SAR data. However, research on landslide recognition utilizing polarimetric SAR (PolSAR is quite limited. Polarimetric properties of landslides have not been examined quantitatively so far. Accordingly, we examined the polarimetric scattering properties of landslides by an assessment of how the decomposed scattering power components and the polarimetric correlation coefficient change with the local incidence angle. In the assessment, PolSAR data acquired from different directions with both spaceborne and airborne SARs were utilized. It was found that the surface scattering power and the polarimetric correlation coefficient of landslides significantly decrease with the local incidence angle, while these indices of surrounding forest do not. This fact leads to establishing a method of effective detection of landslide area by polarimetric information.
A polarimetric scattering database for non-spherical ice particles at microwave wavelengths
Lu, Yinghui; Jiang, Zhiyuan; Aydin, Kultegin; Verlinde, Johannes; Clothiaux, Eugene E.; Botta, Giovanni
2016-10-01
The atmospheric science community has entered a period in which electromagnetic scattering properties at microwave frequencies of realistically constructed ice particles are necessary for making progress on a number of fronts. One front includes retrieval of ice-particle properties and signatures from ground-based, airborne, and satellite-based radar and radiometer observations. Another front is evaluation of model microphysics by application of forward operators to their outputs and comparison to observations during case study periods. Yet a third front is data assimilation, where again forward operators are applied to databases of ice-particle scattering properties and the results compared to observations, with their differences leading to corrections of the model state. Over the past decade investigators have developed databases of ice-particle scattering properties at microwave frequencies and made them openly available. Motivated by and complementing these earlier efforts, a database containing polarimetric single-scattering properties of various types of ice particles at millimeter to centimeter wavelengths is presented. While the database presented here contains only single-scattering properties of ice particles in a fixed orientation, ice-particle scattering properties are computed for many different directions of the radiation incident on them. These results are useful for understanding the dependence of ice-particle scattering properties on ice-particle orientation with respect to the incident radiation. For ice particles that are small compared to the wavelength, the number of incident directions of the radiation is sufficient to compute reasonable estimates of their (randomly) orientation-averaged scattering properties. This database is complementary to earlier ones in that it contains complete (polarimetric) scattering property information for each ice particle - 44 plates, 30 columns, 405 branched planar crystals, 660 aggregates, and 640 conical
[Modeling and Simulation of Spectral Polarimetric BRDF].
Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu
2016-01-01
Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.
An analytical model for the description of the full-polarimetric sea surface Doppler signature
Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.
2015-01-01
This paper describes an analytical model of the full-polarimetric sea surface scattering and Doppler signature. The model combines the small-slope-approximation theory (at the second order) with a weak nonlinear sea surface representation. Such a model is used to examine the variation of the Doppler
[Modeling polarimetric BRDF of leaves surfaces].
Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min
2010-12-01
The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.
Ohkura, Hiroshi
Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.
Compact Polarimetric SAR Ship Detection with m-δ Decomposition Using Visual Attention Model
Directory of Open Access Journals (Sweden)
Lu Xu
2016-09-01
Full Text Available A few previous studies have illustrated the potentials of compact polarimetric Synthetic Aperture Radar (CP SAR in ship detection. In this paper, we design a ship detection algorithm of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed cosine transform (PCT visual attention model is proposed to suppress background clutter and highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to CP SAR application. The proposed algorithm is a quick and complete framework for practical use. Polarimetric features—the relative phase δ and volume scattering component—are extracted from m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate (CFAR algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter distribution fitting procedure of the modified saliency map. The proposed method is then tested on three simulated circular-transmit-linear-receive (CTLR mode images, which covering East Sea of China. Compared with the detection results of SPAN and the saliency map with only single-channel amplitude, the proposed method achieves the highest detection rates and the lowest misidentification rate and highest figure of merit, proving the effectiveness of polarimetric information of compact polarimetric SAR ship detection and the enhancement from the visual attention model.
Polarimetric SAR image classification based on discriminative dictionary learning model
Sang, Cheng Wei; Sun, Hong
2018-03-01
Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.
Di Martino, Gerardo; Iodice, Antonio; Natale, Antonio; Riccio, Daniele; Ruello, Giuseppe
2015-04-01
The recently proposed polarimetric two-scale two- component model (PTSTCM) in principle allows us obtaining a reasonable estimation of the soil moisture even in moderately vegetated areas, where the volumetric scattering contribution is non-negligible, provided that the surface component is dominant and the double-bounce component is negligible. Here we test the PTSTCM validity range by applying it to polarimetric SAR data acquired on areas for which, at the same times of SAR acquisitions, ground measurements of soil moisture were performed. In particular, we employ the AGRISAR'06 database, which includes data from several fields covering a period that spans all the phases of vegetation growth.
Yueh, S. H.; Kwok, R.
1993-01-01
In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also
Directory of Open Access Journals (Sweden)
Yasuhiro Nakamura
2012-07-01
Full Text Available The present study introduces the four-component scattering power decomposition (4-CSPD algorithm with rotation of covariance matrix, and presents an experimental proof of the equivalence between the 4-CSPD algorithms based on rotation of covariance matrix and coherency matrix. From a theoretical point of view, the 4-CSPD algorithms with rotation of the two matrices are identical. Although it seems obvious, no experimental evidence has yet been presented. In this paper, using polarimetric synthetic aperture radar (POLSAR data acquired by Phased Array L-band SAR (PALSAR on board of Advanced Land Observing Satellite (ALOS, an experimental proof is presented to show that both algorithms indeed produce identical results.
Directory of Open Access Journals (Sweden)
Li Mianquan
2016-04-01
Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.
Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak
2012-01-01
A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha
The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data
Directory of Open Access Journals (Sweden)
Changcheng Wang
2016-03-01
Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.
Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition
Hong, Sang-Hoon; Wdowinski, Shimon
2013-08-01
Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.
Modelling Hyperboloid Sound Scattering
DEFF Research Database (Denmark)
Burry, Jane; Davis, Daniel; Peters, Brady
2011-01-01
The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....
The Effect of Topography on Target Decomposition of Polarimetric SAR Data
Directory of Open Access Journals (Sweden)
Sang-Eun Park
2015-04-01
Full Text Available Polarimetric target decomposition enables the interpretation of radar images more easily, mostly based on physical assumptions, i.e., fitting physically-based scattering models to the polarimetric SAR observations. However, the model-fitting result cannot be always successful. Particularly, the performance of model-fitting in sloping forests is still an open question. In this study, the effect of ground topography on the model-fitting-based polarimetric decomposition techniques is investigated. The estimation accuracy of each scattering component in the decomposition results are evaluated based on the simulated target matrix by using the incoherent vegetation scattering model that accounts for the tilted scattering surface beneath the forest canopy. Experimental results show that the surface and the double-bounce scattering components can be significantly misestimated due to the topographic slope, even when the volume scattering power is successfully estimated.
Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi
2014-01-01
The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.
Directory of Open Access Journals (Sweden)
Jingjuan Liao
2015-07-01
Full Text Available We developed a polarimetric coherent electromagnetic scattering model for Poyang Lake wetland vegetation. Realistic canopy structures including curved leaves and the lodging situation of the vegetation were taken into account, and the situation at the ground surface was established using an Advanced Integral Equation Model combined with Oh’s 2002 model. This new model can reasonably describe the coherence effect caused by the phase differences of the electromagnetic fields scattered from different particles by different scattering mechanisms. We obtained good agreement between the modeling results and C-band data from the Radarsat-2 satellite. A simulation of scattering from the vegetation in Poyang Lake showed that direct vegetation scattering and the single-ground-bounce mechanism are the dominant scattering mechanisms in the C-band and L-band, while the effects of the double-ground-bounce mechanism are very small. We note that the curvature of the leaves and the lodging characteristics of the vegetation cannot be ignored in the modeling process. Monitoring soil moisture in the Poyang Lake wetland with the C-band data was not feasible because of the density and depth of Poyang Lake vegetation. When the density of Poyang Lake Carex increases, the backscattering coefficient either decreases or remains stable.
Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.
2016-05-01
A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.
Neutron polarimetric test of Leggett's contextual model of quantum mechanics
International Nuclear Information System (INIS)
Schmitzer, C.; Bartosik, H.; Klepp, J.; Sponar, S.; Badurek, G.; Hasegawa, J.
2009-01-01
Full text: The Einstein-Podolsky-Rosen (EPR) argument attempted to dispute quantum theory. With the Bell inequality it was possible to set up an experimental test of the EPR argument. Here, we describe the rebuilding of the measurement station at the tangential beam exit of the TRIGA reactor of the Atominstitut in Vienna. A new polarimeter setup was constructed and adjusted to generate Bell states by entangling a neutron's energy and spin. After accomplishing visibilities of up to 98.7 %, it was possible to test a Leggett-type inequality, which challenges a 'contextual' hidden variable theory. Such a contextual model would have been capable of reproducing former Bell inequality violations. Measurement results of this Leggett inequality and a generalized Clauser-Horne-Shimony-Holt (CHSH) inequality show violations of this hidden variable model. Hence noncontextual and contextual hidden variable theories can be excluded simultaneously and quantum mechanical predictions are confirmed. (author)
Directory of Open Access Journals (Sweden)
Mehmet Siraç Özerdem
2017-04-01
Full Text Available Determining the soil moisture in agricultural fields is a significant parameter to use irrigation systems efficiently. In contrast to standard soil moisture measurements, good results might be acquired in a shorter time over large areas by remote sensing tools. In order to estimate the soil moisture over vegetated agricultural areas, a relationship between Radarsat-2 data and measured ground soil moistures was established by polarimetric decomposition models and a generalized regression neural network (GRNN. The experiments were executed over two agricultural sites on the Tigris Basin, Turkey. The study consists of four phases. In the first stage, Radarsat-2 data were acquired on different dates and in situ measurements were implemented simultaneously. In the second phase, the Radarsat-2 data were pre-processed and the GPS coordinates of the soil sample points were imported to this data. Then the standard sigma backscattering coefficients with the Freeman–Durden and H/A/α polarimetric decomposition models were employed for feature extraction and a feature vector with four sigma backscattering coefficients (σhh, σhv, σvh, and σvv and six polarimetric decomposition parameters (entropy, anisotropy, alpha angle, volume scattering, odd bounce, and double bounce were generated for each pattern. In the last stage, GRNN was used to estimate the regional soil moisture with the aid of feature vectors. The results indicated that radar is a strong remote sensing tool for soil moisture estimation, with mean absolute errors around 2.31 vol %, 2.11 vol %, and 2.10 vol % for Datasets 1–3, respectively; and 2.46 vol %, 2.70 vol %, 7.09 vol %, and 5.70 vol % on Datasets 1 & 2, 2 & 3, 1 & 3, and 1 & 2 & 3, respectively.
Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band
Directory of Open Access Journals (Sweden)
Nuria Duffo
2009-06-01
Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.
Directory of Open Access Journals (Sweden)
Zhi Yang
2016-10-01
Full Text Available Rice growth monitoring is very important as rice is one of the staple crops of the world. Rice variables as quantitative indicators of rice growth are critical for farming management and yield estimation, and synthetic aperture radar (SAR has great advantages for monitoring rice variables due to its all-weather observation capability. In this study, eight temporal RADARSAT-2 full-polarimetric SAR images were acquired during rice growth cycle and a modified water cloud model (MWCM was proposed, in which the heterogeneity of the rice canopy in the horizontal direction and its phenological changes were considered when the double-bounce scattering between the rice canopy and the underlying surface was firstly considered as well. Then, three scattering components from an improved polarimetric decomposition were coupled with the MWCM, instead of the backscattering coefficients. Using a genetic algorithm, eight rice variables were estimated, such as the leaf area index (LAI, rice height (h, and the fresh and dry biomass of ears (Fe and De. The accuracy validation showed the MWCM was suitable for the estimation of rice variables during the whole growth season. The validation results showed that the MWCM could predict the temporal behaviors of the rice variables well during the growth cycle (R2 > 0.8. Compared with the original water cloud model (WCM, the relative errors of rice variables with the MWCM were much smaller, especially in the vegetation phase (approximately 15% smaller. Finally, it was discussed that the MWCM could be used, theoretically, for extensive applications since the empirical coefficients in the MWCM were determined in general cases, but more applications of the MWCM are necessary in future work.
Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.
2016-08-01
Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.
Modeling of light scattering by icy bodies
Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.
2014-07-01
As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM
Retrieval of ice thickness from polarimetric SAR data
Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.
1993-01-01
We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.
A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b
Energy Technology Data Exchange (ETDEWEB)
Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)
2016-01-20
We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.
The classification of ambiguity in polarimetric reconstruction of coronal mass ejection
International Nuclear Information System (INIS)
Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han
2014-01-01
The Thomson scattering theory indicates that there exist explicit and implicit ambiguities in polarimetric analyses of coronal mass ejection (CME) observations. We suggest a classification for these ambiguities in CME reconstruction. Three samples, including double explicit, mixed, and double implicit ambiguity, are shown with the polarimetric analyses of STEREO CME observations. These samples demonstrate that this classification is helpful for improving polarimetric reconstruction.
Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.
2017-08-01
The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest
Neutron scattering and models: Silver
International Nuclear Information System (INIS)
Smith, A.B.
1996-07-01
Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 20 0 → 160 0 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 17 0 and 16 0 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107 Ag and 109 Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β 2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes
Directory of Open Access Journals (Sweden)
David J. Diner
2012-12-01
Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.
Neutron scattering and models: molybdenum
International Nuclear Information System (INIS)
Smith, A.B.
1999-01-01
A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made
Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo
An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.
Directory of Open Access Journals (Sweden)
Ilyas Nurmemet
2018-04-01
Full Text Available Timely monitoring and mapping of salt-affected areas are essential for the prevention of land degradation and sustainable soil management in arid and semi-arid regions. The main objective of this study was to develop Synthetic Aperture Radar (SAR polarimetry techniques for improved soil salinity mapping in the Keriya Oasis in the Xinjiang Uyghur Autonomous Region (Xinjiang, China, where salinized soil appears to be a major threat to local agricultural productivity. Multiple polarimetric target decomposition, optimal feature subset selection (wrapper feature selector, WFS, and support vector machine (SVM algorithms were used for optimal soil salinization classification using quad-polarized PALSAR-2 data. A threefold exercise was conducted. First, 16 polarimetric decomposition methods were implemented and a wide range of polarimetric parameters and SAR discriminators were derived in order to mine hidden information in PolSAR data. Second, the optimal polarimetric feature subset that constitutes 19 polarimetric elements was selected adopting the WFS approach; optimum classification parameters were identified, and the optimal SVM classification model was obtained by employing a cross-validation method. Third, the WFS-SVM classification model was constructed, optimized, and implemented based on the optimal match of polarimetric features and optimum classification parameters. Soils with different salinization degrees (i.e., highly, moderately and slightly salinized soils were extracted. Finally, classification results were compared with the Wishart supervised classification and conventional SVM classification to examine the performance of the proposed method for salinity mapping. Detailed field investigations and ground data were used for the validation of the adopted methods. The overall accuracy and kappa coefficient of the proposed WFS-SVM model were 87.57% and 0.85, respectively that were much higher than those obtained by the Wishart supervised
A Polarimetric First-Order Model of Soil Moisture Effects on the DInSAR Coherence
Directory of Open Access Journals (Sweden)
Simon Zwieback
2015-06-01
Full Text Available Changes in soil moisture between two radar acquisitions can impact the observed coherence in differential interferometry: both coherence magnitude |Υ| and phase Φ are affected. The influence on the latter potentially biases the estimation of deformations. These effects have been found to be variable in magnitude and sign, as well as dependent on polarization, as opposed to predictions by existing models. Such diversity can be explained when the soil is modelled as a half-space with spatially varying dielectric properties and a rough interface. The first-order perturbative solution achieves–upon calibration with airborne L band data–median correlations ρ at HH polarization of 0.77 for the phase Φ, of 0.50 for |Υ|, and for the phase triplets ≡ of 0.56. The predictions are sensitive to the choice of dielectric mixing model, in particular the absorptive properties; the differences between the mixing models are found to be partially compensatable by varying the relative importance of surface and volume scattering. However, for half of the agricultural fields the Hallikainen mixing model cannot reproduce the observed sensitivities of the phase to soil moisture. In addition, the first-order expansion does not predict any impact on the HV coherence, which is however empirically found to display similar sensitivities to soil moisture as the co-pol channels HH and VV. These results indicate that the first-order solution, while not able to reproduce all observed phenomena, can capture some of the more salient patterns of the effect of soil moisture changes on the HH and VV DInSAR signals. Hence it may prove useful in separating the deformations from the moisture signals, thus yielding improved displacement estimates or new ways for inferring soil moisture.
Fatigue and damage tolerance scatter models
Raikher, Veniamin L.
1994-09-01
Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.
RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL
Directory of Open Access Journals (Sweden)
S. F. Kolomiets
2014-01-01
Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.
Electron scattering in the interacting boson model
Dieperink, AEL; Iachello, F; Rinat, A; Creswell, C
1978-01-01
It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 ÷ states inthe transitional Sm-Nd region are discussed
Pyxis handheld polarimetric imager
Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.
2016-05-01
The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.
Crop Classification by Polarimetric SAR
DEFF Research Database (Denmark)
Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming
1999-01-01
Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...
Estimating soil moisture using the Danish polarimetric SAR
DEFF Research Database (Denmark)
Jiankang, Ji; Thomsen, A.; Skriver, Henning
1995-01-01
The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness a...... of surface parameters with the bilinear model, the correlation coefficient between the estimated and measured soil moisture, as well as rms height, is about 0.77. To improve the result, the local incidence angles need to be taken into account......The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...
Modeling small angle scattering data using FISH
International Nuclear Information System (INIS)
Elliott, T.; Buckely, C.E.
2002-01-01
Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc
POLCAL - POLARIMETRIC RADAR CALIBRATION
Vanzyl, J.
1994-01-01
Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the
Directory of Open Access Journals (Sweden)
Jordi J. Mallorqui
2008-12-01
Full Text Available This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vesselsÃ¢Â€Â™ geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.
A polarimetric survey of symbiotic stars
International Nuclear Information System (INIS)
Schulte-Ladbeck, R.E.; Magalhaes, A.M.; Magalhaes, A.M.
1990-01-01
We present optical and near-infrared linear polarization observations of 24 symbiotic stars, 14 observed with polarimetry for the first time. In combination with published data, we find that ∼ 50% of the symbiotics observed polarimetrically show evidence for intrinsic polarization. We discuss the results in the light of previous observations and comment on the temporal variability and wavelength dependence of the polarization. Dust scattering is identified as the dominant mechanism producing polarization in symbiotic stars. While we cannot exclude that some symbiotic systems are completely engulfed in their dust shells our data indicate that the Hα emission line may originate from outside of the dust-scattering envelopes in some systems
A 160 GHZ Polarimetric Compact Range for Scale Model RCS Measurements
National Research Council Canada - National Science Library
Coulombe, Michael J; Horgan, T; Waldman, Jerry; Neilson, J; Carter, S; Nixon, William
1996-01-01
...:16th scale-model targets. The transceiver consists of a fast switching, stepped, continuous wave, X-band synthesizer driving dual X16 transmit multiplier chains and dual X16 local oscillator multiplier chains...
Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types
Directory of Open Access Journals (Sweden)
Sang-Hoon Hong
2015-07-01
Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.
A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section Measurements
2013-10-01
common radar bands. ACKNOWLEDGEMENTS The authors wish to thank David Jillson (UML STL – Electrical Engineer) for efforts involved in RF and DC wiring...Waldman J., Fetterman H.R., Duffy P.E., Bryant T.G., Tannenwald P.E., “Submillimeter Model Measurements and Their Applications to Millimeter Radar
A scattering model for rain depolarization
Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.
1973-01-01
A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.
Light Scatter in Optical Materials: Advanced Haze Modeling
2017-03-31
contrast sensitivity with glare. This study measured angular scatter in the test articles , and showed that the cumulative (total) scatter beyond...Sample under laser illumination for angular scatter measurements ................................4 Figure 3: Scatter measurement system at a small...scatter effects image quality , visual performance and user acceptance. The purpose of the present effort was to develop a computational model that
Initial assessment of an airborne Ku-band polarimetric SAR.
Energy Technology Data Exchange (ETDEWEB)
Raynal, Ann Marie; Doerry, Armin Walter
2013-02-01
Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Electron scattering in the interacting boson model
International Nuclear Information System (INIS)
Dieperink, A.E.L.; Iachello, F.; Creswell, C.
1978-01-01
It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 + states in the transitional Sm-Nd region are discussed. (Auth.)
Comparison of polarimetric cameras
2017-03-01
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget , Paperwork Reduction Project (0704-0188...polarimetric camera, remote sensing, space systems 15. NUMBER OF PAGES 93 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...2016. Hermann Hall, Monterey, CA. The next data in Figure 37. were collected on 01 December 2016 at 1226 PST on the rooftop of the Marriot Hotel in
Folding models for elastic and inelastic scattering
International Nuclear Information System (INIS)
Satchler, G.R.
1982-01-01
The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed
Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis
Kojima, S.; Hensley, S.
2012-12-01
There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume
POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E
Energy Technology Data Exchange (ETDEWEB)
Carciofi, A. C.; Faes, D. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Townsend, R. H. D. [Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States); Bjorkman, J. E., E-mail: carciofi@usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)
2013-03-20
Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.
Laboratory Measurements of Single-Particle Polarimetric Spectrum
Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.
2017-12-01
Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).
Multi-scattering inversion for low model wavenumbers
Alkhalifah, Tariq Ali; Wu, Zedong
2015-01-01
modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most
Three-Component Decomposition Based on Stokes Vector for Compact Polarimetric SAR
Directory of Open Access Journals (Sweden)
Hanning Wang
2015-09-01
Full Text Available In this paper, a three-component decomposition algorithm is proposed for processing compact polarimetric SAR images. By using the correspondence between the covariance matrix and the Stokes vector, three-component scattering models for CTLR and DCP modes are established. The explicit expression of decomposition results is then derived by setting the contribution of volume scattering as a free parameter. The degree of depolarization is taken as the upper bound of the free parameter, for the constraint that the weighting factor of each scattering component should be nonnegative. Several methods are investigated to estimate the free parameter suitable for decomposition. The feasibility of this algorithm is validated by AIRSAR data over San Francisco and RADARSAT-2 data over Flevoland.
Directional Dipole Model for Subsurface Scattering
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim
2014-01-01
Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...
Model potential for electron scattering from rubidium
Energy Technology Data Exchange (ETDEWEB)
Gien, T.E. (Memorial Univ. of Newfoundland, St. John' s, NF (Canada). Dept. of Physics)
1992-11-28
An analytic model potential for the e[sup -]-Rb[sup +] system is generated from experimental data, using an iteration method. The potential obtained can reproduce rather accurately the energy levels of rubidium. We employed it in the calculation of elastic differential cross sections for electron (and positron) scatterings from rubidium in the conventional Glauber approximation. The differential cross sections calculated in the model potential approach are compared to those in the frozen-core approach, employing either the Clementi-Roetti or the Szasz-McGinn wavefunctions. The core correlation and polarization effects are found to significantly affect the cross section results. (author).
Model potential for electron scattering from rubidium
International Nuclear Information System (INIS)
Gien, T.E.
1992-01-01
An analytic model potential for the e - -Rb + system is generated from experimental data, using an iteration method. The potential obtained can reproduce rather accurately the energy levels of rubidium. We employed it in the calculation of elastic differential cross sections for electron (and positron) scatterings from rubidium in the conventional Glauber approximation. The differential cross sections calculated in the model potential approach are compared to those in the frozen-core approach, employing either the Clementi-Roetti or the Szasz-McGinn wavefunctions. The core correlation and polarization effects are found to significantly affect the cross section results. (author)
Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.
2017-09-01
Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification
Directory of Open Access Journals (Sweden)
C.-S. Tao
2017-09-01
Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets’ scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation
Li, Muxingzi
2017-01-01
of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous
Freeman-Durden Decomposition with Oriented Dihedral Scattering
Directory of Open Access Journals (Sweden)
Yan Jian
2014-10-01
Full Text Available In this paper, when the azimuth direction of polarimetric Synthetic Aperature Radars (SAR differs from the planting direction of crops, the double bounce of the incident electromagnetic waves from the terrain surface to the growing crops is investigated and compared with the normal double bounce. Oriented dihedral scattering model is developed to explain the investigated double bounce and is introduced into the Freeman-Durden decomposition. The decomposition algorithm corresponding to the improved decomposition is then proposed. The airborne polarimetric SAR data for agricultural land covering two flight tracks are chosen to validate the algorithm; the decomposition results show that for agricultural vegetated land, the improved Freeman-Durden decomposition has the advantage of increasing the decomposition coherency among the polarimetric SAR data along the different flight tracks.
Practical model for the calculation of multiply scattered lidar returns
International Nuclear Information System (INIS)
Eloranta, E.W.
1998-01-01
An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America
Polarimetric studies of polyethylene terephtalate flexible substrates
Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.
2008-12-01
Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.
First Polarimetric GNSS-R Measurements from a Stratospheric Flight over Boreal Forests
Directory of Open Access Journals (Sweden)
Hugo Carreno-Luengo
2015-10-01
Full Text Available The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space Agency (ESA sponsored Balloon Experiments for University Students (BEXUS 19 stratospheric balloon experiment using the P(Y and C/A Reflect Ometer (PYCARO instrument operated in closed-loop mode. Maps of the polarimetric ratio for L1 and L2 Global Positioning System (GPS and GLObal Navigation Satellite System (GLONASS, and for E1 Galileo signals are derived from the float phase at 27,000 m height, and the specular points are geolocalized on the Earth’s surface. Polarimetric ratio ( maps over boreal forests are shown to be in the range 2–16 dB for the different GNSS codes. This result suggests that the scattering is taking place not only over the soil, but over the different forests elements as well. Additionally to the interpretation of the experimental results a theoretical investigation of the different contributions to the total reflectivity over boreal forests is performed using a bistatic scattering model. The simulated cross- (reflected Left Hand Circular Polarization LHCP and co-polar (reflected Right Hand Circular Polarization RHCP reflectivities are evaluated for the soil, the canopy, and the canopy–soil interactions for three different biomass densities: 725 trees/ha, 150 trees/ha and 72 trees/ha. For elevation angles larger than the Brewster angle, it is found that the cross-polar signal is dominant when just single reflections over the forests are evaluated, while in the case of multiple reflections the co-polar signal becomes the largest one. The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space
Modeling surface roughness scattering in metallic nanowires
Energy Technology Data Exchange (ETDEWEB)
Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
2015-09-28
Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.
Multi-scattering inversion for low model wavenumbers
Alkhalifah, Tariq Ali
2015-08-19
A successful full wavenumber inversion (FWI) implementation updates the low wavenumber model components first for proper wavefield propagation description, and slowly adds the high-wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded data given by direct arrivals or the transmission parts of the single and double-scattering wave-fields developed from a predicted scatter field. We develop a combined inversion of data modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering angle filter is used to divide the gradient of the combined inversion so initially the high wavenumber (low scattering angle) components of the gradient is directed to the perturbation model and the low wavenumber (high scattering angle) components to the velocity model. As our background velocity matures, the scattering angle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model.
Theory and approach of information retrievals from electromagnetic scattering and remote sensing
Jin, Ya-Qiu
2006-01-01
Covers several hot topics in current research of electromagnetic scattering, and radiative transfer in complex and random media, polarimetric scattering and SAR imagery technology, data validation and information retrieval from space-borne remote sensing, computational electromagnetics, etc.Including both forward modelling and inverse problems, analytic theory and numerical approachesAn overall summary of the author's works during most recent yearsAlso presents some insight for future research topics.
Decomposition in aluminium alloys: diffuse scattering and crystal modelling
International Nuclear Information System (INIS)
Aslam-Malik, A.
1995-01-01
In the present study the microstructure of metastable precipitates in Al-Ag and Al-Cu, so called pre-precipitates or Guinier-Preston (GP) zones, was investigated. In both systems important aspects of the microstructure are still controversially discussed. In Al-Ag two forms of GP zones are suggested; depending on the aging temperatures above or below about 443 K, ε- or η-zones should evolve. Differences between these two types of zones may be due to differences in internal order and/or composition. In Al-Cu the characterization of GP I zones is difficult because of the strong atomic displacements around the zones. The proper separation of short-range order and displacement scattering within a diffuse scattering experiment is still under discussion. The technique used to determine the short-range order in both alloys was diffuse scattering with neutrons and X-rays. To separate short-range order and displacement scattering, the methods of Georgopoulos-Cohen (X-ray scattering) and Borie-Sparks (neutron scattering) were used. Of main importance is the optimization of the scattering contrast and thus the scattering contribution due to short-range order. Short-range order scattering is rationalized in terms of pair correlations. Crystals may subsequently be modelled to visualize the microstructure. The Al-Ag system was investigated by diffuse X-ray wide-angle scattering and small-angle neutron scattering. The small-angle neutron scattering measurement was necessary since the GP zones in Al-Ag are almost spherical and the main scattering contribution is found close to the origin of reciprocal space. The small-angle scattering is not that important in the case of Al-Cu because the main scattering extends along (100) owing to the planar character of the GP I zones on (100) lattice planes. (author) 24 figs., 10 tabs., refs
Modeling X-Ray Scattering Process and Applications of the Scattering Model
Al-Jundi, Taher Lutfi
1995-01-01
Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low
KN scattering in the nonrelativistic quark model
International Nuclear Information System (INIS)
Barnes, F.E.
1995-01-01
KN scattering is of interest as a probe of nuclear structure and, more fundamentally, as a laboratory for the study of nonresonant hadron-hadron interactions. KN is a I theoretically attractive channel because of its simplicity, having only S = 1/2, no one pion exchange contributions and no valence q anti q annihilation. It may therefore be useful for the study of short-ranged quark forces analogous to the NN repulsive core. Since there are two isospin states, comparison of two closely related amplitudes is possible. This contribution reviews the experimental status of S-wave KN scattering and related theoretical studies based on quark-gluon dynamics. The experimental low-energy S-wave phase shift is well established for I = 1, but is not yet well determined for I = 0. The ratio of I = 0 to I = 1 scattering lengths is an interesting number theoretically, and may discriminate between different scattering mechanisms. A measurement of these scattering lengths at DAPHNE would be a useful contribution to low energy hadron physics
K correlations and facet models in diffuse scattering
Hoenders, B.J.; Jakeman, E.; Baltes, H.P.; Steinle, B.
1979-01-01
The angular intensity distribution of radiation scattered by a wide range of random media can be accounted for by assuming effective source amplitude correlations involving modified Bessel functions Kv. We investigate how such correlations can be derived from physical models of stochastic scattering
Diffraction scattering and the parton model in QCD
International Nuclear Information System (INIS)
White, A.
1985-01-01
Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described
INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA
Directory of Open Access Journals (Sweden)
P. Srikanth
2012-08-01
Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems
Hyde, M W; Schmidt, J D; Havrilla, M J
2009-11-23
A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.
Feature-Based Nonlocal Polarimetric SAR Filtering
Directory of Open Access Journals (Sweden)
Xiaoli Xing
2017-10-01
Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
Electron scattering studies by means of various nuclear models
International Nuclear Information System (INIS)
Essaniyazov, Sh.; Juraev, Sh.; Ismatov, E.I.
2006-01-01
transition of nucleus into the excited state in the region of the discrete spectrum (ω>0). The study of the scattered electrons energy spectrum directly allows separation of the excited energy levels. The study of the inelastic electrons scattering gives opportunity to establish possible application of various nuclear models. Quasi-elastic scattering. A wide maximum in the energy spectrum of the scattered electrons corresponds to the direct collisions of the electron with particular nucleons in nucleus. (author)
Two-component scattering model and the electron density spectrum
Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.
2010-02-01
In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Escolano, C.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, T.; Baade, D.; Štefl, S.
2015-04-01
Context. A large number of Be stars exhibit intensity variations of their violet and red emission peaks in their H i lines observed in emission. This is the so-called V/R phenomenon, usually explained by the precession of a one-armed spiral density perturbation in the circumstellar disk. That global-disk oscillation scenario was confirmed, both observationally and theoretically, in the previous series of two papers analyzing the Be shell star ζ Tauri. The vertically averaged (2D) global-disk oscillation model used at the time was able to reproduce the V/R variations observed in Hα, as well as the spatially resolved interferometric data from AMBER/VLTI. Unfortunately, that model failed to reproduce the V/R phase of Br15 and the amplitude of the polarization variation, suggesting that the inner disk structure predicted by the model was incorrect. Aims: The first aim of the present paper is to quantify the temporal variations of the shell-line characteristics of ζ Tauri. The second aim is to better understand the physics underlying the V/R phenomenon by modeling the shell-line variations together with the V/R and polarimetric variations. The third aim is to test a new 2.5D disk oscillation model, which solves the set of equations that describe the 3D perturbed disk structure but keeps only the equatorial (i.e., 2D) component of the solution. This approximation was adopted to allow comparisons with the previous 2D model, and as a first step toward a future 3D model. Methods: We carried out an extensive analysis of ζ Tauri's spectroscopic variations by measuring various quantities characterizing its Balmer line profiles: red and violet emission peak intensities (for Hα, Hβ, and Br15), depth and asymmetry of the shell absorption (for Hβ, Hγ, and Hδ), and the respective position (i.e., radial velocity) of each component. We attempted to model the observed variations by implementing in the radiative transfer code HDUST the perturbed disk structure computed with a
Diffuse Scattering Model of Indoor Wideband Propagation
DEFF Research Database (Denmark)
Franek, Ondrej; Andersen, Jørgen Bach; Pedersen, Gert Frølund
2011-01-01
segments in total and approximately 2 min running time on average computer. Frequency independent power levels at the walls around the circumference of the room and at four receiver locations in the middle of the room are observed. It is demonstrated that after finite period of initial excitation the field...... radio coverage predictions.......This paper presents a discrete-time numerical algorithm for computing field distribution in indoor environment by diffuse scattering from walls. Calculations are performed for a rectangular room with semi-reflective walls. The walls are divided into 0.5 x 0.5 m segments, resulting in 2272 wall...
Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.
2016-05-01
The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.
Significance of matrix diagonalization in modelling inelastic electron scattering
Energy Technology Data Exchange (ETDEWEB)
Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)
2017-04-15
Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.
The NASA Polarimetric Radar (NPOL)
Petersen, Walter A.; Wolff, David B.
2013-01-01
Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.
New statistical model of inelastic fast neutron scattering
International Nuclear Information System (INIS)
Stancicj, V.
1975-07-01
A new statistical model for treating the fast neutron inelastic scattering has been proposed by using the general expressions of the double differential cross section in impuls approximation. The use of the Fermi-Dirac distribution of nucleons makes it possible to derive an analytical expression of the fast neutron inelastic scattering kernel including the angular momenta coupling. The obtained values of the inelastic fast neutron cross section calculated from the derived expression of the scattering kernel are in a good agreement with the experiments. A main advantage of the derived expressions is in their simplicity for the practical calculations
Boundary scattering in the ϕ{sup 4} model
Energy Technology Data Exchange (ETDEWEB)
Dorey, Patrick [Department of Mathematical Sciences, Durham University,Durham DH1 3LE (United Kingdom); Halavanau, Aliaksei [Department of Theoretical Physics and Astrophysics,BSU, Minsk Independence Avenue 4 (Belarus); Fermi National Laboratory,Pine St. and Kirk Rd., ZIP 60511, Mail Station 221, Batavia, Illinois (United States); Mercer, James [Department of Mathematical Sciences, Durham University,Durham DH1 3LE (United Kingdom); Deloitte MCS Limited,Hill House, 1 Little New Street, London, EC4A 3TR (United Kingdom); Romanczukiewicz, Tomasz [Institute of Physics, Jagiellonian University,Lojasiewicza 11, 30-348 Krakow (Poland); Shnir, Yasha [Department of Theoretical Physics and Astrophysics,BSU, Minsk Independence Avenue 4 (Belarus); BLTP, JINR,141980 Dubna (Russian Federation); Institute of Physics, Oldenburg University,Postfach 2503 D-26111 Oldenburg (Germany)
2017-05-19
We study boundary scattering in the ϕ{sup 4} model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes of near-elastic scattering, the restoration of a missing scattering window, and the creation of a kink or oscillon through the collision-induced decay of a metastable boundary state. We also study the decay of the vibrational boundary mode, and explore different scenarios for its relaxation and for the creation of kinks.
Chelli, Ali; Hamdi, Rami; Alouini, Mohamed-Slim
2014-01-01
In this paper, we derive a new geometrical blind bend scattering model for vehicle-to- infrastructure (V2I) communications. The proposed model takes into account single-bounce and double- bounce scattering stemming from fixed scatterers located
Development of general X-ray scattering model
International Nuclear Information System (INIS)
Gray, Joe; Wendt, Scott
2015-01-01
X-ray scattering is a complex process made difficult to describe due to the effects of a complex energy spectrum interacting with a wide range of material types in complex geometry. The scattering is further complicated by the volume of material illuminated and the experimental configuration of the data acquisition. The importance of accounting for the key physics in scattering modeling is critical to the viability of the model. For example, scattering in the detector and the speed of the detector, as measured by the absorbed dose needed to produce a signal, are important in capturing undercut effects. Another example is the noise properties of the detectors are dependent on photon energy. We report on a semi-empirical treatment of x-ray scattering that includes a full energy treatment for a wide range of material types. We also include complex geometry effects that the part shape introduces. The treatment is based on experimental measurements using an energy dispersive germanium detector over energies from treatment is showing good results with experimental measurements of the scattering component agreeing with the model results to the 10% level over the range of x-ray energies and materials typical in industrial applications. Computation times for this model are in the 20 keV to 320 keV. Detector stripping routines for detector artifacts were developed. The computation time is in the range of a few minutes on a typical PC
Searching for Jet Emission in LMXBs: A Polarimetric View
Directory of Open Access Journals (Sweden)
Maria Cristina Baglio
2017-10-01
Full Text Available We present results taken from a study aiming at detecting the emission from relativistic particles jets in neutron star-low mass X-ray binaries using optical polarimetric observations. First, we focus on a polarimetric study performed on the persistent LMXB 4U 0614+091. Once corrected for interstellar effects, we measured an intrinsic linear polarization in the r-band of ~3% at a 3σ confidence level. This is in-line with the observation of an infrared excess in the spectral energy distribution (SED of the source, reported in a previous work, which the authors linked to the optically thin synchrotron emission of a jet. We then present a study performed on the transitional millisecond pulsar PSR J1023+0038 during quiescence. We measured a linear polarization of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R-band reveals a hint of a sinusoidal modulation at the source orbital period. The NIR -optical SED of the system did not suggest the presence of a jet. We conclude that the optical linear polarization observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the disc, as also suggested by the hint of the modulation of the R-band linear polarization at the system orbital period.
Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields
Hipp, Susanne
2015-01-01
This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...
Incorporation of intraocular scattering in schematic eye models
International Nuclear Information System (INIS)
Navarro, R.
1985-01-01
Beckmann's theory of scattering from rough surfaces is applied to obtain, from the experimental veiling glare functions, a diffuser that when placed at the pupil plane would produce the same scattering halo as the ocular media. This equivalent diffuser is introduced in a schematic eye model, and its influence on the point-spread function and the modulation-transfer function of the eye is analyzed
Deep inelastic scattering in spontaneously broken gauge models
International Nuclear Information System (INIS)
Goloskokov, S.V.; Mikhov, S.G.; Morozov, P.T.; Stamenov, D.B.
1975-01-01
Deep inelastic lepton hadron scattering in the simplest spontaneously broken symmetry (the Kibble model) is analyzed. A hypothesis that the invariant coupling constant of the quartic selfinteraction for large spacelike momenta tends to a finite asymptotic value without spoiling the asymptotic freedom for the invariant coupling constant of the Yang-Mills field is used. It is shown that Biorken scaling for the moments of the structure functions of the deep inelastic lepton hadron scattering is violated by powers of logarithms
The string model of nuclear scattering: an introduction
International Nuclear Information System (INIS)
Werner, Klaus
1995-01-01
We discuss the string model of hadronic and nuclear scattering at ultrarelativistic energies. The man purpose is to treat theoretical concepts common to essentially all successful models: strings, Pomerons, and their marriage int he string model approach. We stay an introductory level without going into technical details. (author)
Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle.
Xie, Jinwei; Li, Zhenfang; Zhou, Chaowei; Fang, Yuyuan; Zhang, Qingjun
2018-05-12
Polarimetric SAR (PolSAR) scattering characteristics of imagery are always obtained from the second order moments estimation of multi-polarization data, that is, the estimation of covariance or coherency matrices. Due to the extra-paths that signal reflected from separate scatterers within the resolution cell has to travel, speckle noise always exists in SAR images and has a severe impact on the scattering performance, especially on single look complex images. In order to achieve high accuracy in estimating covariance or coherency matrices, three aspects are taken into consideration: (1) the edges and texture of the scene are distinct after speckle filtering; (2) the statistical characteristic should be similar to the object pixel; and (3) the polarimetric scattering signature should be preserved, in addition to speckle reduction. In this paper, a joint restriction principle is proposed to meet the requirement. Three different restriction principles are introduced to the processing of speckle filtering. First, a new template, which is more suitable for the point or line targets, is designed to ensure the morphological consistency. Then, the extent sigma filter is used to restrict the pixels in the template aforementioned to have an identical statistic characteristic. At last, a polarimetric similarity factor is applied to the same pixels above, to guarantee the similar polarimetric features amongst the optional pixels. This processing procedure is named as speckle filtering with joint restriction principle and the approach is applied to GF-3 polarimetric SAR data acquired in San Francisco, CA, USA. Its effectiveness of keeping the image sharpness and preserving the scattering mechanism as well as speckle reduction is validated by the comparison with boxcar filters and refined Lee filter.
A model of diffraction scattering with unitary corrections
International Nuclear Information System (INIS)
Etim, E.; Malecki, A.; Satta, L.
1989-01-01
The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips
Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.
1993-01-01
The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.
A fiber-optic polarimetric demonstration kit
International Nuclear Information System (INIS)
Eftimov, T; Dimitrova, T L; Ivanov, G
2012-01-01
A simple and multifunctional fiber-optic polarimetric kit on the basis of highly birefringent single-mode fibers is presented. The fiber-optic polarimetric kit allows us to perform the following laboratory exercises: (i) fiber excitation and the measurement of numerical aperture, (ii) polarization preservation and (iii) obtain polarization-sensitive fiberized interferometers.
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...
Modelling of classical ghost images obtained using scattered light
International Nuclear Information System (INIS)
Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A
2007-01-01
The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres
POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES
Directory of Open Access Journals (Sweden)
DONGZHI LI
2013-07-01
Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.
Modelling of classical ghost images obtained using scattered light
Energy Technology Data Exchange (ETDEWEB)
Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)
2007-08-15
The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.
International Nuclear Information System (INIS)
Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi
2015-01-01
We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model. (paper)
Memory sparing, fast scattering formalism for rigorous diffraction modeling
Iff, W.; Kämpfe, T.; Jourlin, Y.; Tishchenko, A. V.
2017-07-01
The basics and algorithmic steps of a novel scattering formalism suited for memory sparing and fast electromagnetic calculations are presented. The formalism, called ‘S-vector algorithm’ (by analogy with the known scattering-matrix algorithm), allows the calculation of the collective scattering spectra of individual layered micro-structured scattering objects. A rigorous method of linear complexity is applied to model the scattering at individual layers; here the generalized source method (GSM) resorting to Fourier harmonics as basis functions is used as one possible method of linear complexity. The concatenation of the individual scattering events can be achieved sequentially or in parallel, both having pros and cons. The present development will largely concentrate on a consecutive approach based on the multiple reflection series. The latter will be reformulated into an implicit formalism which will be associated with an iterative solver, resulting in improved convergence. The examples will first refer to 1D grating diffraction for the sake of simplicity and intelligibility, with a final 2D application example.
Polarimetric Edge Detector Based on the Complex Wishart Distribution
DEFF Research Database (Denmark)
Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg
2001-01-01
polarimetric edge detector provides a constant false alarm rate and it utilizes the full polarimetric information. The edge detector has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR. The results show clearly an improved edge detection performance...
The Potential of Polarimetric and Compact SAR Data in Rice Identification
International Nuclear Information System (INIS)
Shao, Y; Li, K; Liu, L; Yang, Z; Brisco, B
2014-01-01
Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research
Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning
Directory of Open Access Journals (Sweden)
Sun Xun
2016-12-01
Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.
Pion-nucleon scattering in the chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
Pion-nucleon scattering in the (3.3) resonance region in the framework of chiral bag model(CBM) is considered. The effective Hamiltonian of πNΔ-system in the framework of the CBM contains πNN, πNΔ, πΔΔ interaction terms with the formfactor which is essentially dependent on the size and shape of the quark bag. The iteration of the Born graphs of this model provides successful description of the (3.3) and (3.1) scattering where the values of the parameters agree with CBM [ru
A diffuse radar scattering model from Martian surface rocks
Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.
1987-01-01
Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.
Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic
2016-04-01
This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].
The elastic scattering between heavy ions using Glauber model
International Nuclear Information System (INIS)
Esmael, E.H.; El-Muhbad, SH.A.
2002-01-01
The differential cross sections of the elastic scattering of 1 2 C+ 12 C at energies 1016, 1449 and 2400 MeV and 1 6O +1 2C at energy 1503 MeV are calculated using high energy folding model. An analytical expression for the optical potential is derived. The effect of introducing imaginary phase and the dependence of the ratio of the real to imaginary parts of the forward nucleon-nucleon scattering amplitude on the square of momentum transfer are taken into consideration. Two different types of nuclear densities of the projectile and the target nuclei are considered. The considered systems of interaction are studied by using both modified Glauber I and modified Glauber II. The results show that the elastic scattering differential cross section for the considered interacting systems can be satisfactorily reproduced by this model
Detailed modeling of the statistical uncertainty of Thomson scattering measurements
International Nuclear Information System (INIS)
Morton, L A; Parke, E; Hartog, D J Den
2013-01-01
The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined
Modeling of detective quantum efficiency considering scatter-reduction devices
Energy Technology Data Exchange (ETDEWEB)
Park, Ji Woong; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)
2016-05-15
The reduction of signal-to-noise ratio (SNR) cannot be restored and thus has become a severe issue in digital mammography.1 Therefore, antiscatter grids are typically used in mammography. Scatter-cleanup performance of various scatter-reduction devices, such as air gaps,2 linear (1D) or cellular (2D) grids,3, 4 and slot-scanning devices,5 has been extensively investigated by many research groups. In the present time, a digital mammography system with the slotscanning geometry is also commercially available.6 In this study, we theoretically investigate the effect of scattered photons on the detective quantum efficiency (DQE) performance of digital mammography detectors by using the cascaded-systems analysis (CSA) approach. We show a simple DQE formalism describing digital mammography detector systems equipped with scatter reduction devices by regarding the scattered photons as additive noise sources. The LFD increased with increasing PMMA thickness, and the amounts of LFD indicated the corresponding SF. The estimated SFs were 0.13, 0.21, and 0.29 for PMMA thicknesses of 10, 20, and 30 mm, respectively. While the solid line describing the measured MTF for PMMA with 0 mm was the result of least-squares of regression fit using Eq. (14), the other lines were simply resulted from the multiplication of the fit result (for PMMA with 0 mm) with the (1-SF) estimated from the LFDs in the measured MTFs. Spectral noise-power densities over the entire frequency range were not much changed with increasing scatter. On the other hand, the calculation results showed that the spectral noise-power densities increased with increasing scatter. This discrepancy may be explained by that the model developed in this study does not account for the changes in x-ray interaction parameters for varying spectral shapes due to beam hardening with increasing PMMA thicknesses.
Quasi-one-dimensional scattering in a discrete model
DEFF Research Database (Denmark)
Valiente, Manuel; Mølmer, Klaus
2011-01-01
We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...
Elastic scattering of surface plasmon polaritons: Modeling and experiment
DEFF Research Database (Denmark)
Bozhevolnyi, Sergey I.; Coello, V.
1998-01-01
excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...
Boson-soliton scattering in the sine-Gordon model
International Nuclear Information System (INIS)
Lowe, M.
1979-01-01
In this paper the author calculates the boson-soliton scattering amplitudes for various processes in the sine-Gordon model to obtain results in agreement with the prediction of no-particle production and equality of ingoing and outgoing sets of momenta. (Auth.)
Hamiltonian model analysis of ππ scattering and production
International Nuclear Information System (INIS)
Obu, Mitsuaki
2000-01-01
A simple Hamiltonian model for ππ scattering and production is presented which incorporates resonant and background interactions. Analysis of isoscalar S wave ππ phase shift indicates that the background interaction plays only a minor role and the σ may be a dynamical resonance which is not originated from a corresponding bare state. (author)
Effective single scattering albedo estimation using regional climate model
CSIR Research Space (South Africa)
Tesfaye, M
2011-09-01
Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
2
cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our. 16 results show ...... frequency regression predicted by equation (21) can be distorted by the effects of multiple scattering. 337 ..... other seismic attributes, at least for the relatively simple geometries of subsurface structure. 449.
Model of K+p elastic scattering at high energies
International Nuclear Information System (INIS)
Fazal-e-Aleem
1985-01-01
Very recent measurements of the angular distribution for K + p elastic scattering which show a structure near -t = 3.8(GeV/c) 2 , together with the total cross section and ratio of the real and imaginary parts of the scattering amplitude for 50 2 , have been fitted by using a simple Regge-pole model with phenomenological residue functions. The break in the slope near -t = 0.5 (GeV/c) 2 observed in the differential cross section has also been explained
K-nucleon scattering and the cloudy bag model
International Nuclear Information System (INIS)
Jennings, B.K.
1986-01-01
The cloudy bag model (CBM) has been applied with considerable success to low energy meson-nucleon scattering. In this talk I will describe in particular calculations for kaon-nucleon and antikaon-nucleon scattering. The main emphasis will be on s-waves with special attention paid to the antikaon-nucleon system in the isospin zero channel where the Λ(1405) is important. In the CBM the Λ(1405) is an antikaon-nucleon bound state and I show that this interpretation is consistent with the antikaon-nucleon scattering in the region of the Λ(1670) and Λ(1800) although ambiguities in the phase shift analysis prevent a definite conclusion
K-nucleon scattering and the cloudy bag model
Jennings, B. K.
1986-10-01
The cloudy bag model (CBM) has been applied with considerable success to low energy meson-nucleon scattering. In this talk I will describe in particular calculations for kaon-nucleon and antikaon-nucleon scattering. The main emphasis will be on s-waves with special attention paid to the antikaon-nucleon system in the isospin zero channel where the Λ(1405) is important. In the CBM the Λ(1405) is an antikaon-nucleon bound state and I show that this interpretation is consistent with the antikaon-nucleon scattering in the region of the Λ(1670) and Λ(1800) although ambiguities in the phase shift analysis prevent a definite conclusion.
Passive Polarimetric Information Processing for Target Classification
Sadjadi, Firooz; Sadjadi, Farzad
Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).
Polarimetric Segmentation Using Wishart Test Statistic
DEFF Research Database (Denmark)
Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg
2002-01-01
A newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic has been used in a segmentation algorithm. The segmentation algorithm is based on the MUM (merge using moments......) approach, which is a merging algorithm for single channel SAR images. The polarimetric version described in this paper uses the above-mentioned test statistic for merging. The segmentation algorithm has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR...
A new model for elastic deuteron-deuteron scattering
International Nuclear Information System (INIS)
Etim, E.; Satta, L.
1988-01-01
Straightforward application of the Glauber multiple scattering theory is drammatically challenged by data on elastic deuteron-deuteron scattering. The challenge has been argued to be met by an improved representation of the ground state wave function of the deuteron as an admixture of S-and D-waves. In the light of the failure of the Glauber and geometrical picture models in general, to explain proton-proton and proton-antiproton scattering data up to and including collider energies and for all momentum transfers, this argument becomes less and less compelling and more and more unconvincing. A model inspired by unitarity and which produces substantial elastic scattering through a unitarity sum over a specific class of intermediate states is presented. The model fits not only deuteron-deuteron, but also proton-proton, proton-antiproton and αN -> αN (N =α, d, He 3 ) data for all energies and momentum transfers. No detailed knowledge of ground state wave functions is required
Impact of Scattering Model on Disdrometer Derived Attenuation Scaling
Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo (Compiler)
2016-01-01
NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 GHz attenuation from the disdrometer and the 20 GHz timeseries as well as to directly measure the 40 GHz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data.In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.
ASTEROID POLARIMETRIC DATABASE V6.0
National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...
Novel Polarimetric SAR Interferometry Algorithms, Phase I
National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...
Barta, András; Horváth, Gábor; Horváth, Ákos; Egri, Ádám; Blahó, Miklós; Barta, Pál; Bumke, Karl; Macke, Andreas
2015-02-10
Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.
Underwater Topography Detection in Coastal Areas Using Fully Polarimetric SAR Data
Directory of Open Access Journals (Sweden)
Xiaolin Bian
2017-06-01
Full Text Available Fully polarimetric synthetic aperture radar (SAR can provide detailed information on scattering mechanisms that could enable the target or structure to be identified. This paper presents a method to detect underwater topography in coastal areas using high resolution fully polarimetric SAR data, while less prior information is required. The method is based on the shoaling and refraction of long surface gravity waves as they propagate shoreward. First, the surface scattering component is obtained by polarization decomposition. Then, wave fields are retrieved from the two-dimensional (2D spectra by the Fast Fourier Transformation (FFT. Finally, shallow water depths are estimated from the dispersion relation. Applicability and effectiveness of the proposed methodology are tested by using C-band fine quad-polarization mode RADARSAT-2 SAR data over the near-shore area of the Hainan province, China. By comparing with the values from an official electronic navigational chart (ENC, the estimated water depths are in good agreement with them. The average relative error of the detected results from the scattering mechanisms based method and single polarization SAR data are 9.73% and 11.53% respectively. The validation results indicate that the scattering mechanisms based methodology is more effective than only using the single polarization SAR data for underwater topography detection, and will inspire further research on underwater topography detection with fully polarimetric SAR data.
Phenomenological models of elastic nucleon scattering and predictions for LHC
Kundrat, V; Lokajicek, M; Prochazka, J
2011-01-01
The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering. (C) 2010 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Chensong Tao
2017-07-01
Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher
Obe approximation of NN scattering in bag-model QCD
International Nuclear Information System (INIS)
Bakker, B.L.G.; Maslow, J.N.; Weber, H.J.
1981-01-01
A partial-wave helicity-state analysis of nucleon-nucleon scattering is carried out in momentum space. Its basis is a one-boson and two-pion exchange amplitude from bag-model quantum chromodynamics. The resulting phase shifts and bound-state parameters of the deuteron are compared with data up to laboratory energies of approx. equal to 350 MeV. (orig.)
DEFF Research Database (Denmark)
Søbjærg, Sten Schmidl; Skou, Niels
2003-01-01
This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...
Singha, Suman; Ressel, Rudolf
2016-11-15
Use of polarimetric SAR data for offshore pollution monitoring is relatively new and shows great potential for operational offshore platform monitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameters were extracted from different types of oil and 'look-alike' spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model
Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo
2018-04-01
PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.
Polarimetric and Structural Properties of a Boreal Forest at P-Band and L-Band
Tebaldini, S.; Rocca, F.
2010-12-01
With this paper we investigate the structural and polarimetric of the boreal forest within the Krycklan river catchment, Northern Sweden, basing on multi-polarimetric and multi-baseline SAR surveys at P-Band and L-Band collected in the framework of the ESA campaign BioSAR 2008. The analysis has been carried out by applying the Algebraic Synthesis (AS) technique, recently introduced in literature, which provides a theoretical framework for the decomposition of the backscattered signal into ground-only and volume-only contributions, basing on both baseline and polarization diversity. The availability of multiple baselines allows the formation of a synthetic aperture not only along the azimuth direction but also in elevation. Accordingly, the backscattered echoes can be focused not only in the slant range, azimuth plane, but in the whole 3D space. This is the rationale of the SAR Tomography (T-SAR) concept, which has been widely considered in the literature of the last years. It follows that, as long as the penetration in the scattering volume is guaranteed, the vertical profile of the vegetation layer is retrieved by separating backscatter contributions along the vertical direction, which is the main reason for the exploitation of Tomographic techniques at longer wavelengths. Still, the capabilities of T-SAR are limited to imaging the global vertical structure of the electromagnetic scattering in a certain polarization. It then becomes important to develop methodologies for the investigation of the vertical structure of different Scattering Mechanisms (SMs), such as ground and volume scattering, in such a way as to derive information that can be delivered also outside the field of Radar processing. This is an issue that may become relevant at longer wavelengths, such as P-Band, where the presence of multiple scattering arising from the interaction with terrain could hinder the correct reconstruction of the forest structure. The availability of multiple polarizations
Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation
Li, Muxingzi
2017-04-24
Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.
Optical model calculation of neutron-nucleus scattering cross sections
International Nuclear Information System (INIS)
Smith, M.E.; Camarda, H.S.
1980-01-01
A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs
Scattering and short-distance properties in field theory models
International Nuclear Information System (INIS)
Iagolnitzer, D.
1987-01-01
The aim of constructive field theory is not only to define models but also to establish their general properties of physical interest. We here review recent works on scattering and on short-distance properties for weakly coupled theories with mass gap such as typically P(φ) in dimension 2, φ 4 in dimension 3 and the (renormalizable, asymptotically free) massive Gross-Neveu (GN) model in dimension 2. Many of the ideas would apply similarly to other (possibly non renormalizable) theories that might be defined in a similar way via phase-space analysis
Testing ion structure models with x-ray Thomson scattering
Directory of Open Access Journals (Sweden)
Wünsch K.
2013-11-01
Full Text Available We investigate the influence of various ionic structure models on the interpretation of the X-ray Thomson scattering signal. For the calculation of the ion structure, classical hypernetted chain equations are used applying different effective inter-particle potentials. It is shown that the different models lead to significant discrepancies in the theoretically predicted weight of the Rayleigh peak, in particular for small k-values where correlation effects are important. Here, we propose conditions which might allow for an experimental verification of the theories under consideration of experimental constraints of k-vector blurring.
The Massive Yang-Mills Model and Diffractive Scattering
Forshaw, J R; Parrinello, C
1999-01-01
We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mechanism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation, we perform in this model explicit calculations of S-matrix elements between quark states, at tree level, one loop, and two loops, and discuss issues of renormalisability and unitarity. In particular, it is shown that the S-matrix element for quark scattering is renormalisable at one-loop order and is only logarithmically non-renormalisable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of this model and those of massless QCD are discussed in detail. In addition, some of the similarities and differences between the massive Yang-Mills model and theories with a Higgs mechanism are analysed at the level of the S-matrix. As an elementary application of the model ...
BUILT-UP AREA DETECTION BASED ON SUBSPACE PROJECTIONS USING POLARIMETRIC SAR DATA
Directory of Open Access Journals (Sweden)
R. Bordbari
2017-09-01
Full Text Available The task of detecting and identifying objects remotely has long been an area of intense interest and active research. Active sensing of objects with radio waves is a whole new domain of target detection which is made available by radar remote sensors. Land cover/use information extraction is one of the most important applications of radar remote sensing, especially in urban areas. In this paper, we take a new look at the built-up area extraction problem in polarimetric SAR (PolSAR data and assume canonical scattering mechanisms as our signal sources which combination of them with appropriate weight fractions formed a scattering vector of each pixel. The set of the scattering mechanisms is divided into two groups: the scattering mechanism of built-up area, and non-objected scattering mechanisms. Then, we describe a technique which simultaneously annihilates the effect of non-objected scattering mechanisms, and detects the presence of a scattering mechanism of interest. The experimental results on several quad-polarimetric datasets show the significant agreement with expected results, while saving computational complexity.
Domain walls and fermion scattering in grand unified models
International Nuclear Information System (INIS)
Steer, D.A.; Vachaspati, T.
2006-01-01
Motivated by grand unification, we study the properties of domain walls formed in a model with SU(5)xZ 2 symmetry which is spontaneously broken to SU(3)xSU(2)xU(1)/Z 6 , and subsequently to SU(3)xU(1)/Z 3 . Even after the first stage of symmetry breaking, the SU(3) symmetry is broken to SU(2)xU(1)/Z 2 on the domain wall. In a certain range of parameters, flux tubes carrying color- and hyper-charge live on the domain wall and appear as 'boojums' when viewed from one side of the domain wall. Magnetic monopoles are also formed in the symmetry breaking and those carrying color and hyper-charge can be repelled from the wall due to the Meissner effect, or else their magnetic flux can penetrate the domain wall in quantized units. After the second stage of symmetry breaking, fermions can transmute when they scatter with the domain wall, providing a simpler version of fermion-monopole scattering: for example, neutrinos can scatter into d-quarks, leaving behind electric charge and color which is carried by gauge field excitations living on the domain wall
Triton: Scattering models and surface/atmosphere constraints
International Nuclear Information System (INIS)
Thompson, W.R.
1989-01-01
Modeling of Triton's spectrum indicates a bright scattering layer of optical depth τ≅3 overlying an optically deep layer of CH 4 with high absorption and little scattering. UV absorption in the spectrum indicates τ≅0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p=0.62 +0.18 -0.12 , radius r = 1480 ± 180 km, and temperature T = 48 ± 6 K. With scattering optical depths of 0.3-3 and ∼1-10 mb of N 2 , a Mars-like atmospheric density and surface visibility pertain. Imaging with the 0.62μm CH 4 filter of the Voyager 2 wide angle camera could show ∼20% contrast between the average surface and clean exposures of CH 4 ice (which is not limited to the polar caps). Low far-infrared atmospheric opacity will in principle allow the detection of thermal gradients in the surface caused by optically transmitting but infrared opaque CH 4 and N 2 ice
Directory of Open Access Journals (Sweden)
Yu Li
2015-01-01
Full Text Available Compact polarimetric (CP synthetic aperture radar (SAR has proven its potential in distinguishing oil slicks and look-alikes. Polarimetric information can be retrieved directly from scattering vector or from reconstructed pseudo-Quad-Pol covariance matrix of CP SAR data. In this paper, we analysed features from Circular Transmit and Linear Receive (CTLR CP SAR data that are derived by taking both of these two methods. K-means clustering followed by accuracy assessment was also implemented for performance evaluation. Through experiments that were conducted based on L-band UAVSAR fully polarimetric data, it was found that optimum extraction methods varied for different features. The histogram analysis and segmentation results also demonstrated the comparable performance of CP SAR features in distinguishing different damping properties within oil slicks. This study proposed a framework of statistically analyzing polarimetric SAR (Pol-SAR features and provided guidelines for determining optimum feature extraction methods from CP SAR data and for marine oil-spills detection and classification.
International Nuclear Information System (INIS)
Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.
2003-01-01
Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at
Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series
Directory of Open Access Journals (Sweden)
Iris Heine
2016-06-01
Full Text Available Synthetic aperture radar polarimetry (PolSAR and polarimetric decomposition techniques have proven to be useful tools for wetland mapping. In this study we classify reed belts and monitor their phenological changes at a natural lake in northeastern Germany using dual-co-polarized (HH, VV TerraSAR-X time series. The time series comprises 19 images, acquired between August 2014 and May 2015, in ascending and descending orbit. We calculated different polarimetric indices using the HH and VV intensities, the dual-polarimetric coherency matrix including dominant and mean alpha scattering angles, and entropy and anisotropy (normalized eigenvalue difference as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The image classifications were performed with the random forest classifier and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes for the double-bounce–sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles and in the dual-polarimetric coherence (amplitude, anisotropy, entropy, and anisotropy-entropy combinations; whereas in summer dense leaves cause volume scattering, in winter, after leaves have fallen, the reed stems cause predominately double-bounce scattering. Our study showed that the five most important parameters for the classification of reed are the intensity difference HH-VV, the mean alpha scattering angle, intensity ratio HH/VV, and the coherence (phase. Due to the better separation of reed and other vegetation (deciduous forest, coniferous forest, meadow, winter acquisitions are preferred for the mapping of reed. Multi-temporal stacks of winter images performed better than summer ones. The combination of ascending and descending images also improved the result as it reduces the influence of the sensor
Modelling Elastic Scattering and Light Transport in 3D Collagen Gel Constructs
National Research Council Canada - National Science Library
Bixio, L
2001-01-01
A model of elastic scattering and light propagation is presented, which can be used to obtain the scattering coefficient, the index of refraction and the distribution of the collagen fibrils in a gel...
Static model calculation of pion-nucleon scattering
International Nuclear Information System (INIS)
Itoh, Takashi
1975-01-01
The p-wave pion-nucleon scattering phase-shifts are computed by the Chew-Low static model for pion incident energy of 0-300 MeV. The square of the unrenormalized coupling constant is taken to be f 2 =0.2, and the cutoff is made at k sub(max)=6μ. The computed 3,3 phase-shift passes through 90 deg about at the right energy. The other phase-shifts computed are small in rough agreement with experiment. (auth.)
On model-independent analyses of elastic hadron scattering
International Nuclear Information System (INIS)
Avila, R.F.; Campos, S.D.; Menon, M.J.; Montanha, J.
2007-01-01
By means of an almost model-independent parametrization for the elastic hadron-hadron amplitude, as a function of the energy and the momentum transfer, we obtain good descriptions of the physical quantities that characterize elastic proton-proton and antiproton-proton scattering (total cross section, r parameter and differential cross section). The parametrization is inferred on empirical grounds and selected according to high energy theorems and limits from axiomatic quantum field theory. Based on the predictive character of the approach we present predictions for the above physical quantities at the Brookhaven RHIC, Fermilab Tevatron and CERN LHC energies. (author)
RAMAN LIGHT SCATTERING IN PSEUDOSPIN-ELECTRON MODEL AT STRONG PSEUDOSPIN-ELECTRON INTERACTION
Directory of Open Access Journals (Sweden)
T.S.Mysakovych
2004-01-01
Full Text Available Anharmonic phonon contributions to Raman scattering in locally anharmonic crystal systems in the framework of the pseudospin-electron model with tunneling splitting of levels are investigated. The case of strong pseudospin-electron coupling is considered. Pseudospin and electron contributions to scattering are taken into account. Frequency dependences of Raman scattering intensity for different values of model parameters and for different polarization of scattering and incident light are investigated.
Science data collection with polarimetric SAR
DEFF Research Database (Denmark)
Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang
1996-01-01
Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...
Directory of Open Access Journals (Sweden)
Jeffrey W. Cable
2014-03-01
Full Text Available The purpose of this research is to analyze how changes in acquisition time and incidence angle affect various C-band synthetic aperture radar (SAR polarimetric intensities, co-polarized phase information, polarimetric response plots and decomposition parameters for various crops typical of Northern Ontario, Canada. We examine how these parameters may be used to monitor the growth stages of five common cash crops, namely, barley (Hordeum vulgare, canola (Brassica napus, oat (Avena sativa, soybean (Glycine max and wheat (Triticum spp.. In total, nine RADARSAT-2 polarimetric images were analyzed across a 14-week period beginning in June and ending in September 2011 using two incidence angles of approximately 26° and 41°. As expected, the backscatter intensities for all targets were found to show a higher response when acquired at the steeper incidence angle (26°. All cash crop targets showed a rise and fall in backscatter response over the course of the growing season, coinciding with changing growth stages. Slight phase differences were observed for cereal crops, possibly due to one of the polarizations penetrating between the rows allowing double-bounce to occur. The polarimetric response plots and decompositions offered insight into the scattering mechanisms of each crop type, generally showing an increase in volume scattering as the crops reached maturity. Specifically, the contributions of the crops increased towards the volume scattering component and zones 4 and 2, as the crops matured in regards to the Freeman-Durden and Cloude-Pottier decompositions respectively. Overall, soybean and canola showed a more similar response in comparison to the cereal cash crops. Although the study focused on Northern Ontario, it is anticipated that these results would be relevant in investigations of multi-temporal RADARSAT-2 for agricultural zones with similar crop types.
A new theoretical model for scattering of electrons by molecules. 1
International Nuclear Information System (INIS)
Peixoto, E.M.A.; Mu-tao, L.; Nogueira, J.C.
1975-01-01
A new theoretical model for electron-molecule scattering is suggested. The e-H 2 scattering is studied and the superiority of the new model over the commonly used Independent Atom Model (IAM) is demonstrated. Comparing theoretical and experimental data for 40keV electrons scattered by H 2 utilizing the new model, its validity is proved, while Partial Wave and First Born calculations, employing the Independent Atom Model, strongly deviated from the experiment [pt
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
Research on Full-polarization Bistatic Scattering Characteristics of Aircraft
Directory of Open Access Journals (Sweden)
Ai Xiaofeng
2016-12-01
Full Text Available Whole space polarimetric bistatic scattering data of full-size aircraft targets were calculated via the mature electromagnetic calculation software. The fluctuation statistics characteristic of the polarimetric bistatic Radar Cross-Section (RCS was carried out. It was found that the statistical properties of the four polarimetric types (HH, HV, VH, VV of polarimetric bistatic RCSs are nearly the same, while the monostatic main and cross polarization RCSs statistical properties were quite different from each other. The characteristics of the distribution statistic for the monostatic and bistatic polarization ratio were carried out. Moreover, it was found that the cross-main polarization ratios were quite different, while the main polarization ratios were similar. The statistical results provide a theoretical reference for fully polarimetric bistatic radar aircraft target detection experiments.
Model-Free Views of Deep Inelastic Scattering
Schwinger, Julian
2014-11-01
Perhaps I should point out first that my choice of topic was dictated by the injunction that the nature of this symposium should revolve around subjects that might be conceivably of interest to Viki. Viki has, along with most high energy physicists been very interested in the subject of deep inelastic electron scattering. With his characteristic attention to directly visualizable approaches to physical phenomena, he has dealt with this in terms of rather specific models, attempting then to give very elementary explanations of these fascinating phenomena. I thought he might be interested to see the other side of the coin, namely, the extent to which one can correlate and comprehend these physical effects without the use of specific models. I think this may lend a certain useful balance to the way things are looked at these days. So my remarks are directed to Viki but you're all welcome to eavesdrop...
Practical methods to define scattering coefficients in a room acoustics computer model
DEFF Research Database (Denmark)
Zeng, Xiangyang; Christensen, Claus Lynge; Rindel, Jens Holger
2006-01-01
of obtaining the data becomes quite time consuming thus increasing the cost of design. In this paper, practical methods to define scattering coefficients, which is based on an approach of modeling surface scattering and scattering caused by limited size of surface as well as edge diffraction are presented...
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.
International Nuclear Information System (INIS)
Ermer, M.; Clement, H.; Frank, G.; Grabmayr, P.; Heberle, N.; Wagner, G.J.
1989-01-01
High-quality data for elastic proton, deuteron and α-particle scattering on 40 Ca and 208 Pb at 26-30 MeV/N have been analyzed in terms of the model-unrestricted Fourier-Bessel concept. While extracted scattering potentials show substantial deviations from Woods-Saxon shapes, their real central parts are well described by folding calculations using a common effective nucleon-nucleon interaction with a weak density dependence. (orig.)
Fitting Data to Model: Structural Equation Modeling Diagnosis Using Two Scatter Plots
Yuan, Ke-Hai; Hayashi, Kentaro
2010-01-01
This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…
Passive Polarimetric Microwave Signatures Observed Over Antarctica
WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
Microphysical retrievals from simultaneous polarimetric and profiling radar observations
Directory of Open Access Journals (Sweden)
M. P. Morris
2009-12-01
Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.
Analysis on Vertical Scattering Signatures in Forestry with PolInSAR
Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.
A model of quasi-free scattering with polarized protons
International Nuclear Information System (INIS)
Teodoro, M.R.
1976-01-01
A quantitative evaluation, based on a simple model for spin-free coplanar and asymmetric reaction in 16 O, for 215 MeV incoming polarized protons confirms the use of the strong effective polarization of the knocked-out proton by the spin-orbit coupling and of the strong dependence of free, medium energy, proton-proton cross section on the relative orientation of the proton spins. Effective polarizations, momentum distributions and correlation cross sections have been calculated for the 1p sub(1/2), 1 p sub(3/2) and 1s sub(1/2) states in 16 O, using protons totally polarized orthogonal to the scattering plane. Harmonic oscillator and square wells have been used to generate the bound state wave functions, whereas the optical potentials have been taken spin-independent and purely imaginary [pt
Study of α-16O scattering by orthogonality condition models
International Nuclear Information System (INIS)
Breitschaft, A.M.; Canto, L.F.; Schechter, H.
1983-01-01
The use of approximate microscopic theories in α- 16 O scattering is investigated. The Orthogonality Condition Model (OCM) with both the direct potential of the Resonating Group Method (RMG) and with an effective local potential, V sub(eff), derived from Kernels of Generator Coordinate Method (GCM) is employed to study collisions at CM energies up to 30 MeV, for all relevant partial waves. Although the predictions of the OCM are consistent with 'exact' RGM results in both cases, the nuclear phase-shifts obtained with the effective potential are better. The presence of ambiguities in the derivation of V sub(eff) is noticed. The nature of such ambiguities is discussed. (Author) [pt
Study of α-16O scattering by orthogonality condition models
International Nuclear Information System (INIS)
Breitschaft, A.M.; Canto, L.F.; Schechter, H.
1982-01-01
The use of approximate microscopic theories in α- 16 O scattering is investigated. The Orthogonality Condition Model (OCM) with the direct potential of the Resonating Group Method (RGM) and with an effective local potential V sub(eff') derived from Kernels of the Generator Coordinate Method (GCM) is employed to study collisions at CM energies up to 30 MeV, for all relevant partial waves. Although the predictions of the OCM are consistent with 'exact' RGM results in both cases, the nuclear phase-shifts obtained with the effective potential are better. It is noticed the presence of ambiguities in the derivation of V sub(eff'). The nature of such ambiguities is discussed. (Author) [pt
G0-WISHART Distribution Based Classification from Polarimetric SAR Images
Hu, G. C.; Zhao, Q. H.
2017-09-01
Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.
Numerical modelling of multiple scattering between two elastical particles
DEFF Research Database (Denmark)
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
in suspension have been studied extensively since Foldy's formulation of his theory for isotropic scattering by randomly distributed scatterers. However, a number of important problems related to multiple scattering are still far from finding their solutions. A particular, but still unsolved, problem......Multiple acoustical signal interactions with sediment particles in the vicinity of the seabed may significantly change the course of sediment concentration profiles determined by inversion from acoustical backscattering measurements. The scattering properties of high concentrations of sediments...... is the question of proximity thresholds for influence of multiple scattering in terms of particle properties like volume fraction, average distance between particles or other related parameters. A few available experimental data indicate a significance of multiple scattering in suspensions where the concentration...
International Nuclear Information System (INIS)
Adams, J.E.
1979-05-01
The difficulty of applying the WKB approximation to problems involving arbitrary potentials has been confronted. Recent work has produced a convenient expression for the potential correction term. However, this approach does not yield a unique correction term and hence cannot be used to construct the proper modification. An attempt is made to overcome the uniqueness difficulties by imposing a criterion which permits identification of the correct modification. Sections of this work are: semiclassical eigenvalues for potentials defined on a finite interval; reactive scattering exchange kernels; a unified model for elastic and inelastic scattering from a solid surface; and selective absorption on a solid surface
Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model
International Nuclear Information System (INIS)
Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.
2015-01-01
The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development
π-π scattering in a consistent relativistic quark model
International Nuclear Information System (INIS)
Micu, L.
1977-12-01
Introducing the expression of the interpolating field of a pion as a product of suitable modified free quark fields and of a scalar unquantified field into the LSZ formalism one deduces the vanishing of the exotic amplitudes and of the π-π scattering lengths. The asymptotic vanishing of the elastic π - π scattering amplitude may also be obtained under special requirements. (author)
Carey, Lawrence D.; Petersen, Walter A.
2011-01-01
The estimation of rain drop size distribution (DSD) parameters from polarimetric radar observations is accomplished by first establishing a relationship between differential reflectivity (Z(sub dr)) and the central tendency of the rain DSD such as the median volume diameter (D0). Since Z(sub dr) does not provide a direct measurement of DSD central tendency, the relationship is typically derived empirically from rain drop and radar scattering models (e.g., D0 = F[Z (sub dr)] ). Past studies have explored the general sensitivity of these models to temperature, radar wavelength, the drop shape vs. size relation, and DSD variability. Much progress has been made in recent years in measuring the drop shape and DSD variability using surface-based disdrometers, such as the 2D Video disdrometer (2DVD), and documenting their impact on polarimetric radar techniques. In addition to measuring drop shape, another advantage of the 2DVD over earlier impact type disdrometers is its ability to resolve drop diameters in excess of 5 mm. Despite this improvement, the sampling limitations of a disdrometer, including the 2DVD, make it very difficult to adequately measure the maximum drop diameter (D(sub max)) present in a typical radar resolution volume. As a result, D(sub max) must still be assumed in the drop and radar models from which D0 = F[Z(sub dr)] is derived. Since scattering resonance at C-band wavelengths begins to occur in drop diameters larger than about 5 mm, modeled C-band radar parameters, particularly Z(sub dr), can be sensitive to D(sub max) assumptions. In past C-band radar studies, a variety of D(sub max) assumptions have been made, including the actual disdrometer estimate of D(sub max) during a typical sampling period (e.g., 1-3 minutes), D(sub max) = C (where C is constant at values from 5 to 8 mm), and D(sub max) = M*D0 (where the constant multiple, M, is fixed at values ranging from 2.5 to 3.5). The overall objective of this NASA Global Precipitation Measurement
Optical model analysis of intermediate energy p-4He scattering
International Nuclear Information System (INIS)
Greben, J.M.; Gourishankar, R.
1983-03-01
Recent Wolfenstein R-parameter data are used to explain and resolve previous problems with optical model descriptions of p- 4 He elastic scattering at 500 MeV. An essential component in this optical model analysis is a qualitative interpretation of different features of the elastic data in terms of the Born approximation. First we show that the R-data require the real spin-orbit potential to have certain geometrical properties which were missing in previous analyses. We can then show that the fast fall-off of the cross-section for small angles, together with the rapid increase and subsequent decrease of the polarization, establishes the need for an attractive tail in the real central potentials can also be inferred from this qualitative analysis, in particular a strong reduction of the spin-orbit potential. Our final potential gives a reduction of the X 2 /datapoint by about 20 in comparison to previous potentials, and underlines the usefulness of the qualitative Born analysis
Perkins, Stephen J; Wright, David W; Zhang, Hailiang; Brookes, Emre H; Chen, Jianhan; Irving, Thomas C; Krueger, Susan; Barlow, David J; Edler, Karen J; Scott, David J; Terrill, Nicholas J; King, Stephen M; Butler, Paul D; Curtis, Joseph E
2016-12-01
The capabilities of current computer simulations provide a unique opportunity to model small-angle scattering (SAS) data at the atomistic level, and to include other structural constraints ranging from molecular and atomistic energetics to crystallography, electron microscopy and NMR. This extends the capabilities of solution scattering and provides deeper insights into the physics and chemistry of the systems studied. Realizing this potential, however, requires integrating the experimental data with a new generation of modelling software. To achieve this, the CCP-SAS collaboration (http://www.ccpsas.org/) is developing open-source, high-throughput and user-friendly software for the atomistic and coarse-grained molecular modelling of scattering data. Robust state-of-the-art molecular simulation engines and molecular dynamics and Monte Carlo force fields provide constraints to the solution structure inferred from the small-angle scattering data, which incorporates the known physical chemistry of the system. The implementation of this software suite involves a tiered approach in which GenApp provides the deployment infrastructure for running applications on both standard and high-performance computing hardware, and SASSIE provides a workflow framework into which modules can be plugged to prepare structures, carry out simulations, calculate theoretical scattering data and compare results with experimental data. GenApp produces the accessible web-based front end termed SASSIE-web , and GenApp and SASSIE also make community SAS codes available. Applications are illustrated by case studies: (i) inter-domain flexibility in two- to six-domain proteins as exemplified by HIV-1 Gag, MASP and ubiquitin; (ii) the hinge conformation in human IgG2 and IgA1 antibodies; (iii) the complex formed between a hexameric protein Hfq and mRNA; and (iv) synthetic 'bottlebrush' polymers.
Polarimetric LIDAR with FRI sampling for target characterization
Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan
2017-09-01
Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.
Directory of Open Access Journals (Sweden)
Yuta Izumi
2017-04-01
Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.
CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1
National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...
1D energy transport in a strongly scattering laboratory model
International Nuclear Information System (INIS)
Wijk, Kasper van; Scales, John A.; Haney, Matthew
2004-01-01
Radiative transfer (RT) theory is often invoked to describe energy propagation in strongly scattering media. Fitting RT to measured wave field intensities is rather different at late times, when the transport is diffusive, than at intermediate times (around one extinction mean free time), when ballistic and diffusive behavior coexist. While there are many examples of late-time RT fits, we describe ultrasonic multiple scattering measurements with RT over the entire range of times--from ballistic to diffusive. In addition to allowing us to retrieve the scattering and absorption mean free paths independently, our results also support theoretical predictions in 1D that suggest an intermediate regime of diffusive (nonlocalized) behavior
Simulated x-ray scattering of protein solutions using explicit-solvent models
International Nuclear Information System (INIS)
Park, Sanghyun; Bardhan, Jaydeep P.; Makowski, Lee; Roux, Benoit
2009-01-01
X-ray solution scattering shows new promise for the study of protein structures, complementing crystallography and nuclear magnetic resonance. In order to realize the full potential of solution scattering, it is necessary to not only improve experimental techniques but also develop accurate and efficient computational schemes to relate atomistic models to measurements. Previous computational methods, based on continuum models of water, have been unable to calculate scattering patterns accurately, especially in the wide-angle regime which contains most of the information on the secondary, tertiary, and quaternary structures. Here we present a novel formulation based on the atomistic description of water, in which scattering patterns are calculated from atomic coordinates of protein and water. Without any empirical adjustments, this method produces scattering patterns of unprecedented accuracy in the length scale between 5 and 100 A, as we demonstrate by comparing simulated and observed scattering patterns for myoglobin and lysozyme.
Analysis of inelastic neutron scattering results on model compounds ...
Indian Academy of Sciences (India)
Vibrational spectroscopy; nitrogenous bases; inelastic neutron scattering. PACS No. ... obtain good quality, high resolution results in this region. Here the .... knowledge of the character of each molecular transition as well as the calculated.
Expansions for model-independent analyses of inelastic electron scattering
International Nuclear Information System (INIS)
Jackson, D.F.; Hilton, J.M.; Roberts, A.C.M.
1977-01-01
It is noted that the commonly-used Fourier-Bessel expansion for the transition density for inelastic electron scattering depends sensitively on an arbitrary parameter and is not realistic at large distances. Alternative expansions are suggested. (author)
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
A M Ekanem
2018-04-05
Apr 5, 2018 ... scattering characteristics in fractured media and thus, validate the practical utility of using anisotropic .... to fluid flow. ... account the porosity of the host rock and assumes .... The free surface boundary conditions generally.
A relativistic, meson exchange model of pion-nucleon scattering
International Nuclear Information System (INIS)
Pearces, B.C.; Jennings, B.K.
1990-06-01
A relativistic meson exchange approach to the pion-nucleon interaction is developed using a three-dimensional relativistic two-body propagator, and the results using different propagators are compared. The relativistic approach is able to describe low energy scattering up to 400 MeV above threshold, while preserving the soft pion theorems. The different propagators give similar results, as the form factors necessary to get a fit suppress much of the multiple scattering. (Author) (24 refs., 4 tabs., 6 figs.)
Quantum graphs: a simple model for chaotic scattering
International Nuclear Information System (INIS)
Kottos, Tsampikos; Smilansky, Uzy
2003-01-01
We connect quantum graphs with infinite leads, and turn them into scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduces quite well the predictions of the appropriately defined random matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between random matrix theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the forefront of the research in chaotic scattering and related fields
Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.
Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua
2018-02-01
Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.
Rakotonarivo , Sandrine; Walker , S.C.; Kuperman , W. A.; Roux , Philippe
2011-01-01
International audience; A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interact...
2017-08-01
Current Vivaldi Elements and Replacement Antennas Considered The majority of the design process was conducted through modeling and simulation ...ARL-TR-8111 ● AUG 2017 US Army Research Laboratory Modeling, Simulation , and Measurement of Balanced Antipodal Vivaldi (BAV...ARL-TR-8111 ● AUG 2017 US Army Research Laboratory Modeling, Simulation , and Measurement of Balanced Antipodal Vivaldi (BAV) Antennas for
Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering
International Nuclear Information System (INIS)
Ponomarev, L.A.; Smorodinskaya, N.Ya.
1985-01-01
It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei
Polarimetric signatures of sea ice in the Greenland Sea
DEFF Research Database (Denmark)
Skriver, Henning; Pedersen, Leif Toudal
1995-01-01
Polarimetric SAR data of sea ice have been acquired by the Danish polarimetric SAR (EMISAR) during a mission at the Greenland Sea in August 1994. Video recordings from a low-altitude acquisition have been used for interpretation of the SAR data. Also, ERS-1 SAR data and NOAA AVHRR-data have been...
EMISAR: A Dual-frequency, Polarimetric Airborne SAR
DEFF Research Database (Denmark)
Dall, Jørgen; Christensen, Erik Lintz
2002-01-01
EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry....
Kernel integration scatter model for parallel beam gamma camera and SPECT point source response
International Nuclear Information System (INIS)
Marinkovic, P.M.
2001-01-01
Scatter correction is a prerequisite for quantitative single photon emission computed tomography (SPECT). In this paper a kernel integration scatter Scatter correction is a prerequisite for quantitative SPECT. In this paper a kernel integration scatter model for parallel beam gamma camera and SPECT point source response based on Klein-Nishina formula is proposed. This method models primary photon distribution as well as first Compton scattering. It also includes a correction for multiple scattering by applying a point isotropic single medium buildup factor for the path segment between the point of scatter an the point of detection. Gamma ray attenuation in the object of imaging, based on known μ-map distribution, is considered too. Intrinsic spatial resolution of the camera is approximated by a simple Gaussian function. Collimator is modeled simply using acceptance angles derived from the physical dimensions of the collimator. Any gamma rays satisfying this angle were passed through the collimator to the crystal. Septal penetration and scatter in the collimator were not included in the model. The method was validated by comparison with Monte Carlo MCNP-4a numerical phantom simulation and excellent results were obtained. The physical phantom experiments, to confirm this method, are planed to be done. (author)
Eikonal multiple scattering model within the framework of Feynman's positron theory
International Nuclear Information System (INIS)
Tekou, A.
1986-07-01
The Bethe Salpeter equation for nucleon-nucleon, nucleon-nucleus and nucleus-nucleus scattering is eikonalized. Multiple scattering series is obtained. Contributions of three body interations are included. The model presented below may be used to investigate atomic collisions. (author)
An application of the Dipole Pomeron model to the pion-proton elastic scattering
International Nuclear Information System (INIS)
Covolan, R.J.M.; Leite, E.E.; Montanha, J.; Soares, M.S.
1994-01-01
The Pomeron model is applied to the pion-proton elastic scattering aiming to describe the total and differential cross sections and the ρ ratio between the scattering amplitude real and imaginary parts. It is also discussed how far the present available experimental results lead to the necessity of adopting a (α 0 > 1) supercritical trajectory. (author). 3 refs., 4 figs
Models for electromagnetic scattering from the sea at extremely low grazing angles
Wetzel, Lewis B.
1987-12-01
The present state of understanding in the field of low-grazing-angle sea scatter is reviewed and extended. The important concept of shadowing is approached from the point of view of diffraction theory, and limits in wind speed and radar frequency are found for the application of shadowing theories based on geometrical optics. The implications of shadowing function based on illumination thresholding are shown to compare favorably with a variety of experimental results. Scattering from the exposed surface peaks is treated by a composite-surface Bragg model, and by wedge models using both physical optics and the method of equivalent currents. Curiously, the scattering levels predicted by these widely different approximations are all in fairly good agreement with experimental values for moderately low grazing angles (about 5 deg), with the physical optics wedge model being superior at 1 deg. A new scattering feature, the slosh, is introduced, with scattering behavior that resembles the temporal and polarization dependence of observed low angle returns from calm water. The plume model of scattering from breaking waves (from earlier work) is discussed as a source of high-intensity Sea Spikes. It is emphasized that the prediction of low angle scattering from the sea will require considerably more information about the shape, size, and distribution of the actual scattering features.
Optical model theory of elastic electron- and positron-atom scattering at intermediate energies
International Nuclear Information System (INIS)
Joachain, C.J.
1977-01-01
It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)
Optical-potential model for electron-atom scattering
International Nuclear Information System (INIS)
Callaway, J.; Oza, D.H.
1985-01-01
It is proposed that the addition of a matrix optical potential to a close-coupling calculation should lead to improved results in studies of electron-atom scattering. This procedure is described with use of a pseudostate expansion to evaluate the optical potential. The integro-differential equations are solved by a linear-algebraic method. As a test case, applications are made to electron-hydrogen scattering, and the results are compared with those obtained by other calculational procedures, and with experiment
Modeling traveling-wave Thomson scattering using PIConGPU
Energy Technology Data Exchange (ETDEWEB)
Debus, Alexander; Schramm, Ulrich; Cowan, Thomas; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Steiniger, Klaus; Pausch, Richard; Huebl, Axel [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden (Germany)
2016-07-01
Traveling-wave Thomson scattering (TWTS) laser pulses are pulse-front tilted and dispersion corrected beams that enable all-optical free-electron lasers (OFELs) up to the hard X-ray range. Electrons in such a side-scattering geometry experience the TWTS laser field as a continuous plane wave over centimeter to meter interaction lengths. After briefly discussing which OFEL scenarios are currently numerically accessible, we detail implementation and tests of TWTS beams within PIConGPU (3D-PIC code) and show how numerical dispersion and boundary effects are kept under control.
The CASLEO Polarimetric Survey of Main Belt Asteroids: Updated results
Gil-Hutton, R.; Cellino, A.; Cañada-Assandri, M.
2011-10-01
We present updated results of the polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina, using the 2.15 m telescope and the Torino and CASPROF polarimeters. The goals of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. The survey began in 2003, and data for a sample of more than 170 asteroids have been obtained, most of them having been polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for several taxonomic classes.
Double folding model analysis of elastic scattering of halo nucleus ...
Indian Academy of Sciences (India)
carried out which provide valuable insight for improving our understanding of nuclear reactions. One of the interesting aspects is to understand the effect of the halo structure, on elastic scattering cross-sections at near-Coulomb barrier energies in reactions induced by neutron halo nuclei and weakly bound radioactive ...
Phenomenological models of elastic nucleon scattering and predictions for LHC
Czech Academy of Sciences Publication Activity Database
Kašpar, J.; Kundrát, Vojtěch; Lokajíček, Miloš; Procházka, J.
2010-01-01
Roč. 843, č. 1 (2010), s. 84-106 ISSN 0550-3213 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502 Keywords : high energy elastic hadron scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.642, year: 2010
P11 πN scattering in a potential model and in the cloudy bag model
International Nuclear Information System (INIS)
Rinat, A.S.
1982-01-01
We discuss P 11 πN scattering in a model where the π is coupled to quark bags for baryons N, R, Δ. From the underlying qqπ couplings we derive B'Bπ vertices which are used in a solution of a πN, πΔ two-channel scattering problem. Using one bag radius from a fit to P 33 πN data, we are unable to reproduce delta 11 . A fit requires a Roper radius Rsub(R) > Rsub(N). We discuss the sensitivity of the fit to small variations in other bag parameters. The theory is compared with a simple potential model and with field theories employing baryons instead of quark fields. (orig.)
Polarimetric Imaging using Two Photoelastic Modulators
Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat
2009-01-01
A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.
International Nuclear Information System (INIS)
Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G
2008-01-01
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity
Energy Technology Data Exchange (ETDEWEB)
Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)
2008-04-21
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.
Gong, Jie; Wu, Dongliang
2017-01-01
Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166GHz channels. It is the first study on global frozen particle microphysical properties that uses the dual-frequency microwave polarimetric signals. From the ice cloud scenes identified by the 183.3 3GHz channel brightness temperature (TB), we find that the scatterings of frozen particles are highly polarized with V-H polarimetric differences (PD) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166GHz TBs, as well as the PD at 640GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow region (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would result in as large as 30 error in ice water path retrievals. There is a universal bell-curve in the PD TB relationship, where the PD amplitude peaks at 10K for all three channels in the tropics and increases slightly with latitude. Moreover, the 166GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89GHz PD is less sensitive than 166GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors. Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, changes in the ice microphysical habitats or orientation due to turbulence mixing can also lead to a reduced PD in the deep
Evaluation of attenuating materials: model for the distribution of scattered radiation
International Nuclear Information System (INIS)
Costa, Paulo R.
1996-01-01
A mathematical model for the behaviour of the distribution of photon scattered by attenuating media is presented. Shielding barriers or attenuating materials used in tests of quality control in radiology are proposed. Comparative results for Lucite are reported
International Nuclear Information System (INIS)
Balagyra, V.S.; Ryabka, P.M.
1999-01-01
For measuring the charged particle energy calculations of mean square angles of electron beam multiple Coulomb scattering at output combined accelerator target were undertaken according to seven theoretical models. Mollier method showed the best agreement with experiments
Interstitial integrals in the multiple-scattering model
International Nuclear Information System (INIS)
Swanson, J.R.; Dill, D.
1982-01-01
We present an efficient method for the evaluation of integrals involving multiple-scattering wave functions over the interstitial region. Transformation of the multicenter interstitial wave functions to a single center representation followed by a geometric projection reduces the integrals to products of analytic angular integrals and numerical radial integrals. The projection function, which has the value 1 in the interstitial region and 0 elsewhere, has a closed-form partial-wave expansion. The method is tested by comparing its results with exact normalization and dipole integrals; the differences are 2% at worst and typically less than 1%. By providing an efficient means of calculating Coulomb integrals, the method allows treatment of electron correlations using a multiple scattering basis set
Model independent dispersion approach to proton Compton scattering
International Nuclear Information System (INIS)
Caprini, I.; Radescu, E.E.
1980-12-01
The proton Compton scattering at low and intermediate energies is studied by means of a dispersion framework which exploits in an optimal way the (fixed momentum transfer) analyticity properties of the amplitudes in conjunction with the consequences of the (s-channel) unitarity. The mathematical background of the work consists of methods specific to boundary value problems for analytic vector-valued functions and interpolation theory. In comparison with previous related work, the external problems to be solved now are much more difficult because of the inclusion of the photoproduction input and also lead to additional computational complications. The lower bounds on the differential cross-section, obtained without any reference to subtractions and annihilation channel contributions, appear sufficiently restrictive to evidentiate rigorously some inconsistencies between results of single pion photoproduction multipole extractions and proton Compton scattering data. (author)
IMPROVED SEARCH OF PRINCIPAL COMPONENT ANALYSIS DATABASES FOR SPECTRO-POLARIMETRIC INVERSION
International Nuclear Information System (INIS)
Casini, R.; Lites, B. W.; Ramos, A. Asensio; Ariste, A. López
2013-01-01
We describe a simple technique for the acceleration of spectro-polarimetric inversions based on principal component analysis (PCA) of Stokes profiles. This technique involves the indexing of the database models based on the sign of the projections (PCA coefficients) of the first few relevant orders of principal components of the four Stokes parameters. In this way, each model in the database can be attributed a distinctive binary number of 2 4n bits, where n is the number of PCA orders used for the indexing. Each of these binary numbers (indices) identifies a group of ''compatible'' models for the inversion of a given set of observed Stokes profiles sharing the same index. The complete set of the binary numbers so constructed evidently determines a partition of the database. The search of the database for the PCA inversion of spectro-polarimetric data can profit greatly from this indexing. In practical cases it becomes possible to approach the ideal acceleration factor of 2 4n as compared to the systematic search of a non-indexed database for a traditional PCA inversion. This indexing method relies on the existence of a physical meaning in the sign of the PCA coefficients of a model. For this reason, the presence of model ambiguities and of spectro-polarimetric noise in the observations limits in practice the number n of relevant PCA orders that can be used for the indexing
Accounting for scattering in the Landauer-Datta-Lundstrom transport model
Directory of Open Access Journals (Sweden)
Юрій Олексійович Кругляк
2015-03-01
Full Text Available Scattering of carriers in the LDL transport model during the changes of the scattering times in the collision processes is considered qualitatively. The basic relationship between the transmission coefficient T and the average mean free path is derived for 1D conductor. As an example, the experimental data for Si MOSFET are analyzed with the use of various models of reliability.
Kundrát, Vojtech; Kaspar, Jan; Procházka, Jirí
2010-01-01
The standard description of common influence of both the Coulomb and hadronic elastic scattering in the proton - proton elastic collisions at high energies with the help of West and Yennie complete amplitude is shown to be theoretically inconsistent. The approach being based on the eikonal model amplitude removes these troubles. The preference of its applica- tion to the analysis of experimental data and in obtaining the predictions of contemporary models for proton - proton high energy elastic hadronic scattering are discussed.
14O+p elastic scattering in a microscopic cluster model
International Nuclear Information System (INIS)
Descouvemont, P.; Baye, D.; Leo, F.
2006-01-01
The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed
A unified model for diffractive and inelastic scattering of a light atom from a solid surface
International Nuclear Information System (INIS)
Adams, J.E.; Miller, W.H.
1979-01-01
A simple model for gas-surface scattering is presented which permits treatment of inelastic effects in diffractive systems. The model, founded on an impulsive collision assumption, leads to an intensity distribution which is just a sum of contributions from n-phonon scattering events. Furthemore, by using a convenient form for the repulsive interaction potential, analytic expressions are obtained for the elastic and one-phonon intensities that are in qualitative agreement with experimental results. (Auth.)
Polarimetric Remote Sensing of Atmospheric Particulate Pollutants
Li, Z.; Zhang, Y.; Hong, J.
2018-04-01
Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.
POLARIMETRIC REMOTE SENSING OF ATMOSPHERIC PARTICULATE POLLUTANTS
Directory of Open Access Journals (Sweden)
Z. Li
2018-04-01
Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.
Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.
2017-12-01
POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With
International Nuclear Information System (INIS)
Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T
2006-01-01
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware
Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign
Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick
2015-04-01
The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically
Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign
Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick
2015-01-01
The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically
Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales
International Nuclear Information System (INIS)
Knoops, Harm C. M.; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana
2015-01-01
In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific
Stochastic modelling of fusion-product transport and thermalization with nuclear elastic scattering
International Nuclear Information System (INIS)
Deveaux, J.C.
1983-01-01
Monte Carlo methods are developed to model fusion-product (fp) transport and thermalization with both Rutherford scattering and nuclear elastic scattering (NES) in high-temperature (T/sub i/, T/sub e-/ > 50 keV), advanced-fuel (e.g. Cat-D, D- 3 He) plasmas. A discrete-event model is used to superimpose NES collisions on a Rutherford scattering model that contains the Spitzer coefficients of drag, velocity diffusion (VD), and pith-angle scattering (PAS). The effects of NES on fp transport and thermalization are investigated for advanced-fuel, Field-Reversed Mirror (FRM) plasmas that have a significant Hamiltonian-canonical angular momentum (H-Ptheta) space loss cone which scales with the characteristic size (S identical with R/sub HV//3p/sub i/) and applied vacuum magnetic field (B 0 )
International Nuclear Information System (INIS)
Otero, F A; Frontini, G L; Elicabe, G E
2011-01-01
An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.
STUDY ON THE CLASSIFICATION OF GAOFEN-3 POLARIMETRIC SAR IMAGES USING DEEP NEURAL NETWORK
Directory of Open Access Journals (Sweden)
J. Zhang
2018-04-01
Full Text Available Polarimetric Synthetic Aperture Radar（POLSAR） imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.
Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network
Zhang, J.; Zhang, J.; Zhao, Z.
2018-04-01
Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.
A Path Loss Model for Non-Line-of-Sight Ultraviolet Multiple Scattering Channels
Directory of Open Access Journals (Sweden)
Sadler BrianM
2010-01-01
Full Text Available An ultraviolet (UV signal transmission undergoes rich scattering and strong absorption by atmospheric particulates. We develop a path loss model for a Non-Line-of-Sight (NLOS link. The model is built upon probability theory governing random migration of photons in free space, undergoing scattering, in terms of angular direction and distance. The model analytically captures the contributions of different scattering orders. Thus it relaxes the assumptions of single scattering theory and provides more realistic results. This allows us to assess the importance of high-order scattering, such as in a thick atmosphere environment, where short range NLOS UV communication is enhanced by hazy or foggy weather. By simulation, it is shown that the model coincides with a previously developed Monte Carlo model. Additional numerical examples are presented to demonstrate the effects of link geometry and atmospheric conditions. The results indicate the inherent tradeoffs in beamwidth, pointing angles, range, absorption, and scattering and so are valuable for NLOS communication system design.
Evaluation of the Wishart test statistics for polarimetric SAR data
DEFF Research Database (Denmark)
Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut
2003-01-01
A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....
Scattering function for a model of interacting surfaces
International Nuclear Information System (INIS)
Colangelo, P.; Gonnella, G.; Maritan, A.
1993-01-01
The two-point correlation function of an ensemble of interacting closed self-avoiding surfaces on a cubic lattice is analyzed in the disordered phase, which corresponds to the paramagnetic region in a related spin formulation. Mean-field theory and Monte Carlo simulations predict the existence of a disorder line which corresponds to a transition from an exponential decay to an oscillatory damped behavior of the two-point correlation function. The relevance of the results for the description of amphiphilic systems in a microemulsion phase is discussed. The scattering function is also calculated for a bicontinuous phase coexisting with the paramagnetic phase
Light-scattering models applied to circumstellar dust properties
International Nuclear Information System (INIS)
Koehler, Melanie; Mann, Ingrid
2004-01-01
Radiation pressure force, Poynting-Robertson effect, and collisions are important to determine the size distribution of dust in circumstellar debris disks with the two former parameters depending on the light-scattering properties of grains. We here present Mie and discrete-dipole approximation (DDA) calculations to describe the optical properties of dust particles around β Pictoris, Vega, and Fomalhaut in order to study the influence of the radiation pressure force. We find that the differences between Mie and DDA calculations are lower than 30% for all porosities. Therefore, Mie calculations can be used to determine the cut-off limits which contribute to the size distribution for the different systems
Small angle neutron scattering modeling of copper-rich precipitates in steel
International Nuclear Information System (INIS)
Spooner, S.
1997-11-01
The magnetic to nuclear scattering intensity ratio observed in the scattering from copper rich precipitates in irradiated pressure vessel steels is much smaller than the value of 11.4 expected for a pure copper precipitate in iron. A model for precipitates in pressure vessel steels which matches the observed scattering typically incorporates manganese, nickel, silicon and other elements and it is assumed that the precipitate is non-magnetic. In the present work consideration is given to the effect of composition gradients and ferromagnetic penetration into the precipitate on the small angle scattering cross section for copper rich clusters as distinguished from conventional precipitates. The calculation is an extension of a scattering model for micelles which consist of shells of varying scattering density. A discrepancy between recent SANS scattering experiments on pressure vessel steels was found to be related to applied magnetic field strength. The assumption of cluster structure and its relation to atom probe FIM findings as well as the effects of insufficient field for magnetic saturation is discussed
Comparison of models and measurements of angle-resolved scatter from irregular aerosols
International Nuclear Information System (INIS)
Milstein, Adam B.; Richardson, Jonathan M.
2015-01-01
We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 µm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement. - Highlights: • We model elastic scattering of biological and inert aerosols of irregular shape. • We calculate cross sections and Mueller matrix using random particle shape model. • Scatter models employ refractive index and measured size distribution as inputs. • Discrete dipole approximation (DDA) with parallelization enables model calculations. • DDA-modeled cross section and Mueller matrix agree well with measurements at 1.55 μm
Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.
1991-01-01
A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.
Photo-polarimetric sensitivities to layering and mixing of absorbing aerosols
Directory of Open Access Journals (Sweden)
O. V. Kalashnikova
2011-09-01
Full Text Available We investigate to what extent multi-angle polarimetric measurements are sensitive to vertical mixing/layering of absorbing aerosols, adopting calibration uncertainty of 1.5% in intensity and 0.5% in the degree of linear polarization of Multiangle Spectro-Polarimetric Imager (MSPI. Employing both deterministic and Monte Carlo radiative transfer codes with polarization, we conduct modeling experiments to determine how the measured Stokes vector elements are affected at UV and short visible wavelengths by the vertical distribution, mixing and layering of smoke and dust aerosols for variety of microphysical parameters. We find that multi-angular polarimetry holds the potential to infer dust-layer heights and thicknesses at blue visible channel due to its lesser sensitivity to changes in dust coarse mode optical properties, but higher sensitivity to the dust vertical profiles. Our studies quantify requirements for obtaining simultaneous information on aerosol layer height and absorption under MSPI measurement uncertainties.
Picture book of nucleon--nucleon scattering: amplitudes, models, double- and triple-spin observables
International Nuclear Information System (INIS)
Field, R.D.; Stevens, P.R.
1975-01-01
A comprehensive study of nucleon-nucleon scattering is presented with particular emphasis on the underlying amplitude structure. The five complex NN amplitudes are determined as a function of energy and momentum transfer from existing pp, anti pp, and np elastic scattering data and np and anti pp CHEX data. Some constraints determined from meson-baryon fits are imposed. The resulting amplitudes are used to make predictions of forthcoming double- and triple-spin measurements, and are also compared with the model amplitudes of Kane and Seidl. In addition, the usefulness of transversity amplitudes in NN scattering is discussed, the status of our present knowledge concerning them is examined, and model predictions of these amplitudes are displayed. The paper is presented in a ''picture book'' form so that the reader can get a good overview of NN scattering by studying the figures and reading the tables and figure captions
Qi, Ji; He, Honghui; Lin, Jianyu; Dong, Yang; Chen, Dongsheng; Ma, Hui; Elson, Daniel S
2018-04-01
Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
K. Roychowdhury
2016-06-01
Full Text Available Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July and winter (December months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC data of the region while ground range detected (GRD data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70% was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI and Normalized Difference Vegetation Index (NDVI obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.
Roychowdhury, K.
2016-06-01
Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July) and winter (December) months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC) data of the region while ground range detected (GRD) data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70%) was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.
MCM Polarimetric Radiometers for Planar Arrays
Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd
2007-01-01
A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase
Nonlinear Polarimetric Microscopy for Biomedical Imaging
Samim, Masood
A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical
Moghaddam, Mahta
2000-01-01
The addition of interferometric backscattering pairs to the conventional polarimetric SAR data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of vegetation parameters. Without regard to the sensitivity of these data to vegetation scattering parameters, this paper poses the question: Will increasing the data channels as such result in a one-to-one increase in the number of parameters that can be estimated, or do vegetation and data properties inherently limit that number otherwise? In this paper, the complete polarimetric interferometric covariance matrix is considered and various symmetry properties of the scattering medium are used to study whether any of the correlation pairs can be eliminated. The number of independent pairs has direct consequences in their utility in parameter estimation schemes, since the maximum number of parameters that can be estimated cannot exceed the number of unique measurements. The independent components of the polarimetric interferometric SAR (POL/INSAR) data are derived for media with reflection, rotation, and azimuth symmetries, which are often encountered in vegetated surfaces. Similar derivations have been carried out before for simple polarimetry, i.e., zero baseline. This paper extends those to the interferometric case of general nonzero baselines. It is shown that depending on the type of symmetries present, the number of independent available measurements that can be used to estimate medium parameters will vary. In particular, whereas in the general case there are 27 mathematically independent measurements possible from a polarimetric interferometer, this number can be reduced to 15, 9, and 6 if the medium has reflection, rotation, or azimuthal symmetries, respectively. The results can be used in several ways in the interpretation of SAR data and the development of parameter estimation schemes, which will be discussed at the
The scattering matrix is non-trivial for weakly coupled P(phi)2 models
International Nuclear Information System (INIS)
Osterwalder, K.; Seneor, R.
1976-01-01
It is shown that for sufficiently small coupling constant lambda the lambdaP(phi) 2 quantum field theory models have a scattering matrix which is different from 1. The other method is to write the scattering matrix elements as polynomials in lambda, whose coefficients, though themselves functions of lamda, are uniformly bounded for lambda sufficiently small. The first order term in that expansion is the one given by perturbation theory. (Auth.)
International Nuclear Information System (INIS)
Calloo, A.A.
2012-01-01
In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law using Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy respectively). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with non-zero values for a very small range of the cosine of the scattering angle. Besides, the finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of this cross section. As such, the Legendre expansion is less suited to represent the scattering law. Furthermore, this model induces negative values which are non-physical. In this work, various scattering laws are briefly described and the limitations of the existing model are pointed out. Hence, piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. The discrete ordinates method which is widely employed to solve the transport equation has been adapted. Thus, the finite volume method for angular discretization has been developed and implemented in Paris environment which hosts the S n solver, Snatch. The angular finite volume method has been compared to the collocation method with Legendre moments to ensure its proper performance. Moreover, unlike the latter, this method is adapted for both the Legendre moments and the piecewise-constant functions representations of the scattering cross section. This hybrid-source method has been validated for different cases: fuel cell in infinite lattice
Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.
2018-05-01
Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized
Interpretation of the quasi-elastic neutron scattering on PAA by rotational diffusion models
International Nuclear Information System (INIS)
Bata, L.; Vizi, J.; Kugler, S.
1974-10-01
First the most important data determined by other methods for para azoxy anisolon (PAA) are collected. This molecule makes a rotational oscillational motion around the mean molecular direction. The details of this motion can be determined by inelastic neutron scattering. Quasielastic neutron scattering measurements were carried out without orienting magnetic field on a time-of-flight facility with neutron beam of 4.26 meV. For the interpretation of the results two models, the spherical rotation diffusion model and the circular random walk model are investigated. The comparison shows that the circular random walk model (with N=8 sites, d=4A diameter and K=10 10 s -1 rate constant) fits very well with the quasi-elastic neutron scattering, while the spherical rotational diffusion model seems to be incorrect. (Sz.N.Z.)
Analysis of pp scattering at the CERN ISR energies in the multiple Regge pole model
International Nuclear Information System (INIS)
Bugrij, A.I.; Kobylinsky, N.A.
1976-01-01
The simple Regge model is suggested for describing data on proton-proton elastic scattering at high energies. The simplest variant of the Regge model can be formulated as a sum of two pomerons, the first being a moving double pole and the second - a fixed simple pole. Comparison with known data is given. The model gives an infinite rise of the total cross section of pp-scattering. The differential cross section changes slowly with energy. The models of two pomerons reproduce many features of the geometric scaling, in particular, the shift of the dip and rise of scattering total cross section at the second maximum. The considered model is rather simple and is well consistent with experiment
NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1
National Aeronautics and Space Administration — The NAMMA NASA Polarimetric Doppler Weather Radar (NPOL) dataset used the NPOL, developed by a research team from Wallops Flight Facility, is a fully transportable...
The effect of orbital eccentricity on polarimetric binary diagnostics
International Nuclear Information System (INIS)
Aspin, C.; Brown, J.C.; Simmons, J.F.L.
1980-01-01
The polarimetric variation from a binary system with an eccentric orbit, thus non-corotating, are calculated and the effect on determining the system parameters is discussed, relative to the circular case. (Auth.)
Simulation of complete neutron scattering experiments: from model systems to liquid germanium
International Nuclear Information System (INIS)
Hugouvieux, V.
2004-11-01
In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)
Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P
2011-12-01
A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path. © 2011 Acoustical Society of America
CRAPONE, Optical Model Potential Fit of Neutron Scattering Data
International Nuclear Information System (INIS)
Fabbri, F.; Fratamico, G.; Reffo, G.
2004-01-01
1 - Description of problem or function: Automatic search for local and non-local optical potential parameters for neutrons. Total, elastic, differential elastic cross sections, l=0 and l=1 strength functions and scattering length can be considered. 2 - Method of solution: A fitting procedure is applied to different sets of experimental data depending on the local or non-local approximation chosen. In the non-local approximation the fitting procedure can be simultaneously performed over the whole energy range. The best fit is obtained when a set of parameters is found where CHI 2 is at its minimum. The solution of the system equations is obtained by diagonalization of the matrix according to the Jacobi method
Change detection in polarimetric SAR data over several time points
DEFF Research Database (Denmark)
Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning
2014-01-01
A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points.......A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points....
Pulse-based internal calibration of polarimetric SAR
DEFF Research Database (Denmark)
Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz
1994-01-01
Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...
Polarimetry of Solar System Objects: Observations vs. Models
Yanamandra-Fisher, P. A.
2014-04-01
The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and
A vehicle-to-infrastructure channel model for blind corner scattering environments
Chelli, Ali
2013-09-01
In this paper, we derive a new geometrical blind corner scattering model for vehicle-to-infrastructure (V2I) communications. The proposed model takes into account single-bounce and double-bounce scattering stemming from fixed scatterers located on both sides of the curved street. Starting from the geometrical blind corner model, the exact expression of the angle of departure (AOD) is derived. Based on this expression, the probability density function (PDF) of the AOD and the Doppler power spectrum are determined. Analytical expressions for the channel gain and the temporal autocorrelation function (ACF) are provided under non-line-of-sight (NLOS) conditions. Moreover, we investigate the impact of the position of transmitting vehicle relatively to the receiving road-side unit on the channel statistics. The proposed channel model is useful for the design and analysis of future V2I communication systems. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.
Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering
Tockstein, Jameson
2017-09-01
When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.
Light scattering in plane dielectric layers: Modeling in the 2d reciprocal space
International Nuclear Information System (INIS)
Shcherbakov, Alexey A.; Tishchenko, Alexandre V.
2012-01-01
The generalized source method previously developed for the light diffraction calculation on periodic dielectric structures is applied for the light scattering calculation in non-periodic planar media. This significantly enlarges the domain of applicability of Fourier-methods in light scattering modeling since the generalized source method is of much less numerical complexity than other rigorous methods used. -- Highlights: ► Method for light scattering simulation in planar layers. ► The approach is fairly independent of scattering particles’ shape. ► The method is based on the rigorous solution of Maxwell's equations. ► Each calculation stage allows the accuracy control by the convergence monitoring. ► Possibility to consider any practically possible dielectric materials.
Efficient scatter model for simulation of ultrasound images from computed tomography data
D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.
2015-12-01
Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.
Elastic pion-nucleon P-wave scattering in soliton models
International Nuclear Information System (INIS)
Holzwarth, G.
1990-01-01
The equivalence of low-energy P-wave πN scattering in soliton models with the well-established Δ-isobar model is shown to hold even if all constraints on redundant collective variables are ignored. This provides strong support for the unusual (time-derivative) form of meson-baryon coupling in such models, and for the expectation that the soliton description of πN-scattering can be reliably extended down to pion threshold energies in a technically simple way. (orig.)
The effect of roughness model on scattering properties of ice crystals
International Nuclear Information System (INIS)
Geogdzhayev, Igor; Diedenhoven, Bastiaan van
2016-01-01
We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5° to 20°, where the uniform roughness model produces a plateau while the Weibull model does not. - Highlights: • We compare scattering by hexagonal crystals for uniform and Weibull roughness models. • The Weibull shape parameter has a stronger effect on the phase function at backscattering. • DoLP is mostly affected at the side-scattering angles. • For high roughness, the two models are in relatively close agreement for a given roughness. • A plateau from 5° to 20° is observed in the phase function when using the uniform model.
Directory of Open Access Journals (Sweden)
Tobias Ullmann
2016-12-01
Full Text Available This study investigates a two component decomposition technique for HH/VV-polarized PolSAR (Polarimetric Synthetic Aperture Radar data. The approach is a straight forward adaption of the Yamaguchi decomposition and decomposes the data into two scattering contributions: surface and double bounce under the assumption of a negligible vegetation scattering component in Tundra environments. The dependencies between the features of this two and the classical three component Yamaguchi decomposition were investigated for Radarsat-2 (quad and TerraSAR-X (HH/VV data for the Mackenzie Delta Region, Canada. In situ data on land cover were used to derive the scattering characteristics and to analyze the correlation among the PolSAR features. The double bounce and surface scattering features of the two and three component scattering model (derived from pseudo-HH/VV- and quad-polarized data showed similar scattering characteristics and positively correlated-R2 values of 0.60 (double bounce and 0.88 (surface scattering were observed. The presence of volume scattering led to differences between the features and these were minimized for land cover classes of low vegetation height that showed little volume scattering contribution. In terms of separability, the quad-polarized Radarsat-2 data offered the best separation of the examined tundra land cover types and will be best suited for the classification. This is anticipated as it represents the largest feature space of all tested ones. However; the classes “wetland” and “bare ground” showed clear positions in the feature spaces of the C- and X-Band HH/VV-polarized data and an accurate classification of these land cover types is promising. Among the possible dual-polarization modes of Radarsat-2 the HH/VV was found to be the favorable mode for the characterization of the aforementioned tundra land cover classes due to the coherent acquisition and the preserved co-pol. phase. Contrary, HH/HV-polarized and VV
Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids
Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.
2017-03-01
Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.
Chelli, Ali
2014-01-01
In this paper, we derive a new geometrical blind bend scattering model for vehicle-to- infrastructure (V2I) communications. The proposed model takes into account single-bounce and double- bounce scattering stemming from fixed scatterers located on both sides of a curved street. Starting from the geometrical blind bend model, the exact expression of the angle of departure (AOD) is derived. Based on this expression, the probability density function (PDF) of the AOD and the Doppler power spectrum are determined. Analytical expressions for the channel gain and the temporal autocorrelation function (ACF) are provided under non-line-of-sight (NLOS) conditions. Additionally, we investigate the impact of the position of transmitting vehicle relatively to the receiving road-side unit on the channel statistics. Moreover, we study the performance of different digital modulations over a sum of singly and doubly scattered (SSDS) channel. Note that the proposed V2I channel model falls under the umbrella of SSDS channels since the transmitted signal undergoes a combination of single-bounce and double-bounce scattering. We study some characteristic quantities of SSDS channels and derive expressions for the average symbol error probability of several modulation schemes over SSDS channels with and without diversity combining. The validity of these analytical expressions is confirmed by computer-based simulations.
Directory of Open Access Journals (Sweden)
E DU
2014-01-01
Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.
Scattering of topological solitons on barriers and holes of deformed Sine-Gordon models
International Nuclear Information System (INIS)
Al-Alawi, Jassem H; Zakrzewski, Wojtek J
2008-01-01
We study various scattering properties of topological solitons in two classes of models, which are the generalizations of the Sine-Gordon model and which have recently been proposed by Bazeia et al. These two classes of models depend on a positive real nonzero parameter n but in this paper we consider the models only for its integer values as when n = 2 (for the first class) and n = 1 (for the second class), the model reduces to the Sine-Gordon one. We take the soliton solutions of these models (generalizations of the 'kink' solution of the Sine-Gordon model) and consider their scattering on potential holes and barriers. We present our results for n = 1, ..., 6. We find that, like in the Sine-Gordon models, the scattering on the barrier is very elastic while the scattering on the hole is inelastic and can, at times, lead to a reflection. We discuss the dependence of our results on n and find that the critical velocity for the transmission through the hole is lowest for n = 3
Simulated small-angle scattering patterns for a plastically deformed model composite material
Shenoy, V.B.; Cleveringa, H.H.M.; Phillips, R.; Giessen, E. van der; Needleman, A.
2000-01-01
The small-angle scattering patterns predicted by discrete dislocation plasticity versus local and non-local continuum plasticity theory are compared in a model problem. The problem considered is a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to
Study of light scattering by a granulated coated sphere - a model of granulated blood cells
Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.
2008-01-01
We performed extensive simulations of light scattering by granulated coated sphere model using the discrete dipole approximation and varying model parameters in the ranges of sizes and refractive indices of granulated blood cells. We compared these results with predictions of Maxwell-Garnett
A simplified mathematical model for scattered transmission of X-rays in raw brown coal
International Nuclear Information System (INIS)
Braune, M.
1983-01-01
A simplified mathematical model is presented which renders it possible to calculate the ash content of lignite from scattered transmission of X radiation taking into account two grain classes, the bulk density, and the fill height. The fine grain is assigned to sand and the coarse one to lignite. The model provides a correlation between the fine grain content and the counting rate
A Spectral Geometrical Model for Compton Scatter Tomography Based on the SSS Approximation
DEFF Research Database (Denmark)
Kazantsev, Ivan G.; Olsen, Ulrik Lund; Poulsen, Henning Friis
2016-01-01
The forward model of single scatter in the Positron Emission Tomography for a detector system possessing an excellent spectral resolution under idealized geometrical assumptions is investigated. This model has the form of integral equations describing a flux of photons emanating from the same ann...
Soft and diffractive scattering with the cluster model in Herwig
Energy Technology Data Exchange (ETDEWEB)
Gieseke, Stefan; Loshaj, Frasher; Kirchgaesser, Patrick [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany)
2017-03-15
We present a new model for soft interactions in the event-generator Herwig. The model consists of two components. One to model diffractive final states on the basis of the cluster hadronization model and a second component that addresses soft multiple interactions as multiple particle production in multiperipheral kinematics. We present much improved results for minimum-bias measurements at various LHC energies. (orig.)
An introduction to some mathematical aspects of scattering theory in models of quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1974-01-01
An elementary introduction is given to some results, problems and methods of the recent study of scattering in models developed in connection with constructive quantum field theory. A deliberate effort has been made to be understandable also for mathematicians having some notions of non-relativistic quantum mechanics but no specific previous knowledge of quantum field theory. The Fock space, the free fields and the free Hamiltonian are introduced and the singular perturbation problem posed by local relativistic interaction is discussed. Scattering theory is first discussed for the simplified cases of space cut-off interactions and of translation invariant interactions with persistent vacuum. The Wightman-Haag-Ruelle axiomatic framework is given as a guide for the construction of models with local, relativistic interactions and of the corresponding scattering theory. The verification of the axioms is carried through in a class of models with local relativistic interactions in two-dimensional space-time. (Auth.)
Radius anomaly in the diffraction model for heavy-ion elastic scattering
Pandey, L. N.; Mukherjee, S. N.
1984-04-01
The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.
Off-critical statistical models: factorized scattering theories and bootstrap program
International Nuclear Information System (INIS)
Mussardo, G.
1992-01-01
We analyze those integrable statistical systems which originate from some relevant perturbations of the minimal models of conformal field theories. When only massive excitations are present, the systems can be efficiently characterized in terms of the relativistic scattering data. We review the general properties of the factorizable S-matrix in two dimensions with particular emphasis on the bootstrap principle. The classification program of the allowed spins of conserved currents and of the non-degenerate S-matrices is discussed and illustrated by means of some significant examples. The scattering theories of several massive perturbations of the minimal models are fully discussed. Among them are the Ising model, the tricritical Ising model, the Potts models, the series of the non-unitary minimal models M 2,2n+3 , the non-unitary model M 3,5 and the scaling limit of the polymer system. The ultraviolet limit of these massive integrable theories can be exploited by the thermodynamics Bethe ansatz, in particular the central charge of the original conformal theories can be recovered from the scattering data. We also consider the numerical method based on the so-called conformal space truncated approach which confirms the theoretical results and allows a direct measurement of the scattering data, i.e. the masses and the S-matrix of the particles in bootstrap interaction. The problem of computing the off-critical correlation functions is discussed in terms of the form-factor approach
Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model
Nemes, F.; Csanád, M.
2015-01-01
The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...
Directory of Open Access Journals (Sweden)
Xi Chen
2017-02-01
Full Text Available Aerosol scattering is an important source of error in CO2 retrievals from satellite. This paper presents an analysis of aerosol information content from the Cloud and Aerosol Polarimetric Imager (CAPI onboard the Chinese Carbon Dioxide Observation Satellite (TanSat to be launched in 2016. Based on optimal estimation theory, aerosol information content is quantified from radiance and polarization observed by CAPI in terms of the degrees of freedom for the signal (DFS. A linearized vector radiative transfer model is used with a linearized Mie code to simulate observation and sensitivity (or Jacobians with respect to aerosol parameters. In satellite nadir mode, the DFS for aerosol optical depth is the largest, but for mode radius, it is only 0.55. Observation geometry is found to affect aerosol DFS based on the aerosol scattering phase function from the comparison between different viewing zenith angles or solar zenith angles. When TanSat is operated in target mode, we note that multi-angle retrieval represented by three along-track measurements provides additional 0.31 DFS on average, mainly from mode radius. When adding another two measurements, the a posteriori error decreases by another 2%–6%. The correlation coefficients between retrieved parameters show that aerosol is strongly correlated with surface reflectance, but multi-angle retrieval can weaken this correlation.
International Nuclear Information System (INIS)
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2018-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Energy Technology Data Exchange (ETDEWEB)
Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)
2016-05-16
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of
Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.
Larriba, Carlos; Hogan, Christopher J
2013-05-16
Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from
Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.
2017-09-01
Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant ice-free areas in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier ice. The overall accuracy of the results was estimated at 81%, a significant value when mapping areas that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the ice-free areas. These are results that form the basis for an extensive monitoring of the ice-free areas throughout the northern Antarctic Peninsula region.
Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir
2016-01-01
Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.
International Nuclear Information System (INIS)
Drozdowicz, K.
1995-01-01
A comprehensive unified description of the application of Granada's Synthetic Model to the slow-neutron scattering by the molecular systems is continued. Detailed formulae for the zero-order energy transfer kernel are presented basing on the general formalism of the model. An explicit analytical formula for the total scattering cross section as a function of the incident neutron energy is also obtained. Expressions of the free gas model for the zero-order scattering kernel and for total scattering kernel are considered as a sub-case of the Synthetic Model. (author). 10 refs
SCT: a suite of programs for comparing atomistic models with small-angle scattering data.
Wright, David W; Perkins, Stephen J
2015-06-01
Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.
Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy
Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael
2009-01-01
Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760
Change Detection with Polarimetric SAR Imagery for Nuclear Verification
International Nuclear Information System (INIS)
Canty, M.
2015-01-01
This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)
Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik
2014-11-01
We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.
Full polarimetric millimetre wave radar for stand-off security screening
Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew
2017-10-01
The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.
Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm
De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.
2017-10-01
To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.
Directory of Open Access Journals (Sweden)
Cheol-Hwan You
2014-01-01
Full Text Available To assess the performance of rainfall estimation using specific differential phase observed by Bislsan radar, the first polarimetric radar in Korea, three rainfall cases occurring in 2011 were selected, each caused by different conditions: the first is the Changma front and typhoon, the second is only the Changma front, and the third is only a typhoon. For quantitative use of specific differential phase (KDP, a data quality algorithm was developed for differential phase shift (ΦDP, composed of two steps; the first involves removal of scattered noise and the second is unfolding of ΦDP. This order of the algorithm is necessary so as not to remove unfolded areas, which are the real meteorological target. All noise was removed and the folded ΦDP were unfolded successfully for this study. RKDP relations for S-band radar were calculated for 84,754 samples of observed drop size distribution (DSD using different drop shape assumptions. The relation for the Bringi drop shape showed the best statistics: 0.28 for normalized error, and 6.7 mm for root mean square error for rainfall heavier than 10 mm h-1. Because the drop shape assumption affects the accuracy of rainfall estimation differently for different rainfall types, such characteristics should be taken into account to estimate rainfall more accurately using polarimetric variables.
Deeply virtual Compton scattering in a relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Spitzenberg, T.
2007-09-15
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N{yields}N and N{yields}{delta} transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N{yields}{delta} GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)
Further Examination of a Simplified Model for Positronium-Helium Scattering
DiRienzi, J.; Drachman, Richard J.
2012-01-01
While carrying out investigations on Ps-He scattering we realized that it would be possible to improve the results of a previous work on zero-energy scattering of ortho-positronium by helium atoms. The previous work used a model to account for exchange and also attempted to include the effect of short-range Coulomb interactions in the close-coupling approximation. The 3 terms that were then included did not produce a well-converged result but served to give some justification to the model. Now we improve the calculation by using a simple variational wave function, and derive a much better value of the scattering length. The new result is compared with other computed values, and when an approximate correction due to the van der Waals potential is included the total is consistent with an earlier conjecture.
Three particle scattering at high energies in a model with eikonal Hamiltonian
International Nuclear Information System (INIS)
Kharchenko, V.F.; Kuzmichev, V.E.
1980-04-01
The three particle collision process 3 → 3 with relative motion of each pair of particles described by a model with eikonal Hamiltonian is investigated. No additional restrictions on the motion of the particles (such as the fixed scattering centre approximation) are imposed. A unique, exact analytical solution of the three-particle problem is then shown to exist. An explicit expression for the 3 → 3 amplitude in the general case off the energy shell is obtained as the result of the exact summation of the multiple scattering series. It is shown that this series terminates on the energy shell. A new formula for the mutual cancellation of terms in the multiple scattering series in a model with eikonal Hamiltonian is found. (orig.)
Resonance-sum model for Reggeization in the scattering of particles with arbitrary spin
International Nuclear Information System (INIS)
King, M.J.; Durand, L.; Wali, K.C.
1976-01-01
Using a field-theoretic description of nonzero-spin particles, center-of-mass helicity amplitudes have been obtained which correspond to pole terms in four-particle reactions with arbitrary-spin external particles. Construction of a van Hove-Durand--type model starting from these helicity amplitudes (which have a well specified kinematic structure in the field-theoretic description) is discussed. Special attention has been paid to boson-fermion scattering. Straightforward Reggeization of helicity amplitudes assuming linear trajectories is known to produce parity doubling. One cannot have a pure fermion Regge pole unaccompanied by cuts. This conclusion has important consequences on both fitting data using Regge formulas in, say, backward scattering in boson-fermion scattering and theoretical considerations such as dual bootstrap models
A successive order of scattering model for solving vector radiative transfer in the atmosphere
International Nuclear Information System (INIS)
Min Qilong; Duan Minzheng
2004-01-01
A full vector radiative transfer model for vertically inhomogeneous plane-parallel media has been developed by using the successive order of scattering approach. In this model, a fast analytical expansion of Fourier decomposition is implemented and an exponent-linear assumption is used for vertical integration. An analytic angular interpolation method of post-processing source function is also implemented to accurately interpolate the Stokes vector at arbitrary angles for a given solution. It has been tested against the benchmarks for the case of randomly orientated oblate spheroids, illustrating a good agreement for each stokes vector (within 0.01%). Sensitivity tests have been conducted to illustrate the accuracy of vertical integration and angle interpolation approaches. The contribution of each scattering order for different optical depths and single scattering albedos are also analyzed
Simultaneous Differential Polarimetric Measurements and Co-Polar Correlation Coefficient Measurement
National Oceanic and Atmospheric Administration, Department of Commerce — A polarimetric Doppler weather radar system which allows measurement of linear orthogonal polarimetric variables without a switch by using simultaneous transmission...
K-correlation power spectral density and surface scatter model
Dittman, Michael G.
2006-08-01
The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.
Simulation on scattering features of biological tissue based on generated refractive-index model
International Nuclear Information System (INIS)
Wang Baoyong; Ding Zhihua
2011-01-01
Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition [1] is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry [2] , and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.
Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model
Directory of Open Access Journals (Sweden)
Nurilla Avazov
2012-01-01
Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.
The Glauber model and heavy ion reaction and elastic scattering cross sections
Energy Technology Data Exchange (ETDEWEB)
Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)
2017-05-15
We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.
Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio
2013-04-01
based on the asymmetry between the vertical and horizontal axis of the rain droplets, especially when intense rates of precipitation occur. As a first approximation, the RO signals propagate across the precipitation-volume tangentially, that is, along the local horizontal axis of the droplets. Forward scattering models have been implemented to quantify the sensitivity of L-band signals to different rain rates and precipitation extension being crossed by the signals. The observable considered so far is the polarimetric phase shift: difference between the phase delay suffered by the H- and V-polarizations. Real RO events have been collocated with TRMM precipitation data. The path traveled by the RO signal under a given altitude has been projected on the TRMM grid of observations, to obtain a profile of the precipitation being crossed by the RO link at a given moment of the occultation event. This mechanism has been used to feed the propagation models and thus estimate the polarimetric phase shift that each precipitation event would have induced into the occultation observation. This simulation exercise permits to determine the detectability thresholds and the expected statistics of such collocated events. Methodology and results will be presented.
Improved quantitative 90 Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling.
Dewaraja, Yuni K; Chun, Se Young; Srinivasa, Ravi N; Kaza, Ravi K; Cuneo, Kyle C; Majdalany, Bill S; Novelli, Paula M; Ljungberg, Michael; Fessler, Jeffrey A
2017-12-01
In 90 Y microsphere radioembolization (RE), accurate post-therapy imaging-based dosimetry is important for establishing absorbed dose versus outcome relationships for developing future treatment planning strategies. Additionally, accurately assessing microsphere distributions is important because of concerns for unexpected activity deposition outside the liver. Quantitative 90 Y imaging by either SPECT or PET is challenging. In 90 Y SPECT model based methods are necessary for scatter correction because energy window-based methods are not feasible with the continuous bremsstrahlung energy spectrum. The objective of this work was to implement and evaluate a scatter estimation method for accurate 90 Y bremsstrahlung SPECT/CT imaging. Since a fully Monte Carlo (MC) approach to 90 Y SPECT reconstruction is computationally very demanding, in the present study the scatter estimate generated by a MC simulator was combined with an analytical projector in the 3D OS-EM reconstruction model. A single window (105 to 195-keV) was used for both the acquisition and the projector modeling. A liver/lung torso phantom with intrahepatic lesions and low-uptake extrahepatic objects was imaged to evaluate SPECT/CT reconstruction without and with scatter correction. Clinical application was demonstrated by applying the reconstruction approach to five patients treated with RE to determine lesion and normal liver activity concentrations using a (liver) relative calibration. There was convergence of the scatter estimate after just two updates, greatly reducing computational requirements. In the phantom study, compared with reconstruction without scatter correction, with MC scatter modeling there was substantial improvement in activity recovery in intrahepatic lesions (from > 55% to > 86%), normal liver (from 113% to 104%), and lungs (from 227% to 104%) with only a small degradation in noise (13% vs. 17%). Similarly, with scatter modeling contrast improved substantially both visually and in
Pion-nucleon scattering in the Chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
The effective hamiltonian of the πNΔ-system in the framework of the Chiral Bag Model (CBM) contains πNN-, πNΔ-, πΔΔ-interaction terms with a form factor which is esstentially dependent on the size and shape of the quark bag. The interation of the Born graphs of this model provides successful description of the (3,3) and (3,1) phase shifts [in the (3,3) resonance region] where the values of the paramters agree with the CBM. (orig.)
Simple Regge pole model for Compton scattering of protons
International Nuclear Information System (INIS)
Saleem, M.; Fazal-e-Aleem
1978-01-01
It is shown that by a phenomenological choice of the residue functions, the differential cross section for ν p → ν p, including the very recent measurements up to - t=4.3 (GeV/c) 2 , can be explained at all measured energies greater than 2 GeV with simple Regge pole model
Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry
Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram
2011-04-01
Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.
International Nuclear Information System (INIS)
Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.
1976-01-01
Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)
Additive quark model and double scattering of pions and protons in deuterium
International Nuclear Information System (INIS)
Bialas, A.; Czyz, W.; Kisielewska, D.
1981-01-01
It is shown that the additive quark model is compatible with the data on double scattering of pions and protons in deuterium. The cross-section for interaction of the hadrons created in the first collision with the second nucleon of the target is determined to be 20-25 mb. (author)
Deep-inelastic lepton scattering in an SU(3) x U(1) gauge model
International Nuclear Information System (INIS)
Maharana, K.; Sastry, C.V.
1976-01-01
Linear relations and sum rules for deep-inelastic lepton scattering are derived in the light-cone algebra approach from a set of weak, neutral, and electromagnetic currents based on an SU(3) x U(1) gauge model proposed by Schechter and Ueda
Spectral scattering is useful for nondestructive sensing of fruit firmness. Prediction models, however, are typically built using multivariate statistical methods such as partial least squares regression (PLSR), whose performance generally depends on the characteristics of the data. The aim of this ...
A study on basic theory for CDCC method for three-body model of deuteron scattering
International Nuclear Information System (INIS)
Kawai, Mitsuji
1988-01-01
Recent studies have revealed that the CDCC method is valid for treating the decomposition process involved in deuteron scattering on the basis of a three-body model. However, theoretical support has not been developed for this method. The present study is aimed at determining whether a solution by the CDCC method can be obtained 'correctly' from a 'realistic' model Hamiltonian for deuteron scattering. Some researchers have recently pointed out that there are some problems with the conventional CDCC calculation procedure in view of the general scattering theory. These problems are associated with asymptotic froms of the wave functions, convergence of calculations, and boundary conditions. Considerations show that the problem with asymptotic forms of the wave function is not a fatal defect, though some compromise is necessary. The problem with the convergence of calculations is not very serious either. Discussions are made of the handling of boundary conditions. Thus, the present study indicates that the CDCC method can be applied satisfactorily to actual deuteron scattering, and that the model wave function for the CDCC method is consistent with the model Hamiltonian. (Nogami, K.)
A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices
International Nuclear Information System (INIS)
Ionescu, M.
1977-01-01
An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)
Channel Parameter Estimation for Scatter Cluster Model Using Modified MUSIC Algorithm
Directory of Open Access Journals (Sweden)
Jinsheng Yang
2012-01-01
Full Text Available Recently, the scatter cluster models which precisely evaluate the performance of the wireless communication system have been proposed in the literature. However, the conventional SAGE algorithm does not work for these scatter cluster-based models because it performs poorly when the transmit signals are highly correlated. In this paper, we estimate the time of arrival (TOA, the direction of arrival (DOA, and Doppler frequency for scatter cluster model by the modified multiple signal classification (MUSIC algorithm. Using the space-time characteristics of the multiray channel, the proposed algorithm combines the temporal filtering techniques and the spatial smoothing techniques to isolate and estimate the incoming rays. The simulation results indicated that the proposed algorithm has lower complexity and is less time-consuming in the dense multipath environment than SAGE algorithm. Furthermore, the estimations’ performance increases with elements of receive array and samples length. Thus, the problem of the channel parameter estimation of the scatter cluster model can be effectively addressed with the proposed modified MUSIC algorithm.
Ion-reversibility studies in amorphous solids using the two-atom scattering model
International Nuclear Information System (INIS)
Oen, O.S.
1981-06-01
An analytical two-atom scattering model has been developed to treat the recent discovery of the enhancement near 180 0 of Rutherford backscattering yields from disordered solids. In contrast to conventional calculations of Rutherford backscattering that treat scattering from a single atom only (the backscattering atom), the present model includes the interaction of a second atom lying between the target surface and the backscattering plane. The projectile ion makes a glancing collision with this second atom both before and after it is backscattered. The model predicts an enhancement effect whose physical origin arises from the tolerance of path for those ions whose inward and outward trajectories lie in the vicinity of the critical impact parameter. Results using Moliere scattering show how the yield enhancement depends on ion energy, backscattering depth, exit angle, scattering potential, atomic numbers of the projectile and target, and target density. In the model the critical impact parameter and critical angle play important roles. It is shown that these quantities depend on a single dimensionless parameter and analytical expressions for them are given which are accurate to better than 1%
Folding model analysis of the nucleus–nucleus scattering based on ...
Indian Academy of Sciences (India)
... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 6. Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates. F PAKDEL A A RAJABI L NICKHAH. Regular Volume 87 Issue 6 December 2016 Article ID 90 ...
Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei
International Nuclear Information System (INIS)
Dupuis, M.
2006-01-01
When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)
Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea
DEFF Research Database (Denmark)
Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.
1998-01-01
The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...
Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James
1992-01-01
Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.
High-energy pp and p-barp scattering and the model of geometric scaling
International Nuclear Information System (INIS)
Fischer, J.; Jakes, P.; Novak, M.
1982-10-01
The model of geometric scaling is used to predict the evolution of the diffractive dip-peak structure of pp and p-barp differential cross-sections with increasing energy. Previous calculation for pp scattering made by Dias de Deus and Kroll is carried out with new data and their predictions confirmed. Recent data on p-barp scattering are used to make an analogous analysis for this process as well. It turns out that the p-barp differential cross-section behaves analogously, the main difference being that, in the p-barp case, the dip-peak structure should not completely disappear with increasing energy. (author)
Density model for medium range order in amorphous materials: application to small angle scattering
International Nuclear Information System (INIS)
Boucher, B.; Tournarie, M.; Chieux, P.; Convert, P.
1983-06-01
We consider a family of randomly spaced parallel planes, each plane dressed with a density function, h(x), where x is the distance from the plane. An expression for the volume scattering power from a system of N such families with random orientations in space is derived from Fourier transform of h(x), which can subsequently be determined from experimental observations. This density model is used to interpret the small angle neutron scattering (SANS) results for the amorphous alloy TbCusub(3.54)
Wave packet formulation of the boomerang model for resonant electron--molecule scattering
International Nuclear Information System (INIS)
McCurdy, C.W.; Turner, J.L.
1983-01-01
A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra
High energy charge exchange np and antipp scattering using the dual fermion model
International Nuclear Information System (INIS)
Weigt, G.
1976-01-01
The five independent helicity amplitudes Phisub(i)(s, t) calculated by Mandelstam from the Neveu-Schwarz-Ramond model for fermion-antifermion scattering are used in the Regge limit for a phenomenological description of high energy np and antipp charge exchange scattering. A forward spike which widens with increasing energy as well as an energy dependence changing from lower to higher energy data are reproduced by these non-evasive dual Born amplitudes using π, A 2 and rho Regge pole t-channel exchanges. (author)
Inelastic scattering in a local polaron model with quadratic coupling to bosons
DEFF Research Database (Denmark)
Olsen, Thomas
2009-01-01
We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...
Separating form factor and nuclear model effects in quasielastic neutrino-nucleus scattering
Wieske, Joseph
2017-09-01
When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. In the past, CCQE data from the MiniBooNE experiment was analyzed assuming the Relativistic Fermi Gas (RFG) nuclear model, an axial dipole form factor in, and using the the z-expansion for the axial form factor in. We present the first analysis that combines a non-RFG nuclear model, in particular the Correlated Fermi Gas nuclear model (CFG) of, and the z expansion for the axial form factor. This will allow us to separate form factor and nuclear model effects in CCQE scattering. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.
Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models
Low, Ian; Yin, Zhewei
2018-02-01
We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries, without introducing current algebra or coset space. The Ward identity constrains correlation functions of the sigma model such that the Adler's zero is guaranteed for S -matrix elements, and gives rise to a subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents corresponding to the generalized shift symmetry.
Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar
Pauli, Mario; Wiesbeck, Werner
2015-04-01
Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been
International Nuclear Information System (INIS)
Marleau, G.; Debos, E.
1998-01-01
One of the main problems encountered in cell calculations is that of spatial homogenization where one associates to an heterogeneous cell an homogeneous set of cross sections. The homogenization process is in fact trivial when a totally reflected cell without leakage is fully homogenized since it involved only a flux-volume weighting of the isotropic cross sections. When anisotropic leakages models are considered, in addition to homogenizing isotropic cross sections, the anisotropic scattering cross section must also be considered. The simple option, which consists of using the same homogenization procedure for both the isotropic and anisotropic components of the scattering cross section, leads to inconsistencies between the homogeneous and homogenized transport equation. Here we will present a method for homogenizing the anisotropic scattering cross sections that will resolve these inconsistencies. (author)
Particle size distribution models of small angle neutron scattering pattern on ferro fluids
International Nuclear Information System (INIS)
Sistin Asri Ani; Darminto; Edy Giri Rachman Putra
2009-01-01
The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)
The practical implementation of a scatter model for portal imaging at 10
International Nuclear Information System (INIS)
Partridge, Mike; Evans, Philip M.
1998-01-01
A detailed validation of a physical model for scattered radiation in portal images at 10 MV is presented. The ratio of the signal due to scattered radiation to the signal due to primary radiation (SPR) in an electronic portal image is defined. A simple physical model for SPR on the central axis (SPR*) was presented by Swindell and Evans for 6 MV and validated for field sizes up to 320 cm 2 . In this paper, the model is extended to 10 MV and validated for field sizes up to 625 cm 2 . The model is first compared with Monte Carlo modelled data for field areas A from 40 to 320 cm 2 , scatterer thicknesses d of 5 to 35 cm water and scatterer to detector distances L 2 of 40 to 100 cm. The physical model has one free parameter, which is fitted empirically using these data. Second, experimental measurements are performed with A from 40 to 625 cm 2 , d from 4.6 to 27.4 cm and L 2 fixed at 100 cm. The root mean square (rms) difference between the physical model and the Monte Carlo calculations was less than 0.001 for all L 2 greater than 60 cm. Agreement between experimentally measured and physically modelled data amounts to a radiological thickness error of at best 0.7 mm in 273.6 mm and at worst 0.4 in 45.6 mm. The model performs equally well at all field sizes tested. This study shows that the Swindell and Evans SPR* model is accurate at 10 MV for L 2 greater than 60 cm for all A up to 625 cm 2 . (author)
Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data
Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo
2018-04-01
To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.
Kaon-Nucleon scattering in a constituent quark model
International Nuclear Information System (INIS)
Lemaire, S.
2002-06-01
We have investigated Kaon-Nucleon (KN) interaction in a constituent quark model in the momentum range for the Kaon between 0 and 1 GeV/c in the laboratory frame. This study has been motivated by the fact that in an approach relying on a boson exchange mechanism the Bonn group was forced, in order to obtain good agreement with I = 0 s-wave phase shifts, to add the exchange of a short range fictitious repulsive scalar meson. This need for repulsion, whose range (∼ 0.2 fm) is smaller than the nucleon radius, clearly shows that the quark substructure of the nucleons and K + mesons cannot be neglected. The Kaon-Nucleon phase shifts are calculated in a quark potential model using the resonating group method (RGM). We have to cope with a five body problem with antisymmetrization with respect to the four ordinary quarks of the Kaon-Nucleon system. One requirement of our approach is that the quark-quark interaction must give a quite good description of the hadron spectra. One goal of the present work aims at determining the influence of a relativistic kinematics, in this constituent quark model, for the calculation of KN phase shifts. We have also investigated s, p, d, f, g waves KN elastic phase shifts and we have included a spin-orbit term in the quark-quark interaction. Then we have studied the influence of medium and long range exchange mechanism in the quark quark interaction on KN phase shifts. (author)
Modeling higher twist contributions to deep inelastic scattering with diquarks
International Nuclear Information System (INIS)
Anselmino, M.
1994-01-01
The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by color forces are expected to be a natural explanation for such effects; indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author)
Modelling higher twist contributions to deep inelastic scattering with diquarks
International Nuclear Information System (INIS)
Anselmino, M.; Caruso, F.; Penna Firme, A.; Soares, J.; Mello Neto, J.R.T. de
1994-08-01
The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by colour forces are expected to be a natural explanation for such effects: indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author). 15 refs, 5 figs
Testing the constituent quark model in KN scattering
Energy Technology Data Exchange (ETDEWEB)
Lemaire, S. E-mail: lemaire@cenbg.in2p3.fr; Labarsouque, J.; Silvestre-Brac, B
2003-02-10
The kaon-nucleon S, P, D, F, G waves phase shifts have been calculated using a non-relativistic quark potential model and the resonating group method (RGM). The calculation has been performed using quark-quark potential which both includes gluon, pion and sigma exchanges and reproduces as well as possible the meson spectrum. The agreement obtained with the existing experimental phase shifts is quite poor. The results are also compared with a previous calculation based only on gluon exchanges at the quark level.
Testing the constituent quark model in KN scattering
International Nuclear Information System (INIS)
Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.
2003-01-01
The kaon-nucleon S, P, D, F, G waves phase shifts have been calculated using a non-relativistic quark potential model and the resonating group method (RGM). The calculation has been performed using quark-quark potential which both includes gluon, pion and sigma exchanges and reproduces as well as possible the meson spectrum. The agreement obtained with the existing experimental phase shifts is quite poor. The results are also compared with a previous calculation based only on gluon exchanges at the quark level
Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri
2017-10-01
We combine numerical tools to analyze the reflectance spectra of granular materials. Our motivation comes from the lack of tools when it comes to intimate mixing of materials and modeling space-weathering effects with nano- or micron-sized inclusions. The current practice is to apply a semi-physical models such as the Hapke models (e.g., Icarus 195, 2008). These are expressed in a closed form so that they are fast to apply. The problem is that the validity of the model is not guaranteed, and the derived properties related to particle scattering can be unrealistic (JQSRT 113, 2012).Our pipeline consists of individual scattering simulation codes and a main program that chains them together. The chain for analyzing a macroscopic target with space-weathered mineral would go as: (1) Scattering properties of small inclusions inside a host matrix are derived using exact Maxwell equation solvers. From the scattering properties, we use the so-called incoherent fields and Mueller matrices as input for the next step; (2) Scattering by a regolith grain is solved using a geometrical optics method with surface reflections, internal absorption, and internal diffuse scattering; (3) The radiative transfer simulation is executed inputting the regolith grains from the previous step as the scatterers in a macroscopic planar volume element.For the most realistic asteroid reflectance model, the chain would produce the properties of a planar surface element. Then, a shadowing simulation over the surface elements would be considered, and finally the asteroid phase function would be solved by integrating the bidirectional reflectance distribution function of the planar element over the object's realistic shape model.The tools in the proposed chain already exist, and practical task for us is to tie these together into an easy-to-use public pipeline. We plan to open the pipeline as a web-based open service a dedicated server, using Django application server and Python environment for the
Directory of Open Access Journals (Sweden)
M. J. Alvarado
2016-07-01
Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass
Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke
Johnson, Lee James
2001-08-01
The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-E-Aleem; Azhar, I.A.
1988-06-01
The various characteristics of pp and antipp elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting colliding particles. The model is also used to extract the form factor and radius of the ..lambda.. particle.
Knowledge-based sea ice classification by polarimetric SAR
DEFF Research Database (Denmark)
Skriver, Henning; Dierking, Wolfgang
2004-01-01
Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...
A General Model of the Atmospheric Scattering in the Wavelength Interval 300 - 1100nm
Directory of Open Access Journals (Sweden)
K. Dimitrov
2009-12-01
Full Text Available We have presented and developed new theoretic-empirical models of the extinction coefficients of the molecular scattering in the lower, close to the ground troposphere. We have included the indicatrices of backscattering. The models have been presented using general analytical functions valid for the whole wavelength interval 300-1100 nm and for the whole interval of visibility from 0.1 km up to 50 km. The results have been compared in quantity with the model and experimental data of other authors. The modeling of troposphere scattering is necessary for the analysis and design of all optoelectronic free space systems: atmospheric optical communication systems, location systems for atmospheric research (LIDAR, optical radiometric systems.
The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility
Energy Technology Data Exchange (ETDEWEB)
Morneau, Rachel Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-09
The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.
π- -12C elastic scattering above the Δ resonance using diffraction model
International Nuclear Information System (INIS)
Arafah, M.R.
2008-01-01
Phenomenological analysis of the π - - 12 C elastic scattering differential cross-section at 400, 486, 500, 584, 663, 672 and 766 MeV is presented. The analysis is made in the diffraction model framework using recently proposed parameterization of the phase-shift function. Good description of the experimental data is achieved at all energies. Microscopic interpretation of the parameters of the phase-shift function is provided in terms of Helm's model density parameters. (author)
International Nuclear Information System (INIS)
Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P
2005-01-01
In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model
Snapshot spectral and polarimetric imaging; target identification with multispectral video
Bartlett, Brent D.; Rodriguez, Mikel D.
2013-05-01
As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.
Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures.
Carnicer, Artur; Arteaga, Oriol; Suñé-Negre, Josep M; Javidi, Bahram
2016-10-01
The counterfeiting of pharmaceutical products represents concerns for both industry and the safety of the general public. Falsification produces losses to companies and poses health risks for patients. In order to detect fake pharmaceutical tablets, we propose producing film-coated tablets with gold nanoparticle encoding. These coated tablets contain unique polarimetric signatures. We present experiments to show that ellipsometric optical techniques, in combination with machine learning algorithms, can be used to distinguish genuine and fake samples. To the best of our knowledge, this is the first report using gold nanoparticles encoded with optical polarimetric classifiers to prevent the counterfeiting of pharmaceutical products.
The Next Generation Airborne Polarimetric Doppler Radar
Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.
2013-04-01
NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130
Structural model of the 50S subunit of E.Coli ribosomes from solution scattering
Energy Technology Data Exchange (ETDEWEB)
Svergun, D.I.; Koch, M.H.J. [Hamburg Outstation (Germany); Pedersen, J.S. [Riso National Laboratory, Roskilde (Denmark); Serdyuk, I.N. [Inst. of Protein Research, Moscow (Russian Federation)
1994-12-31
The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA.
Structural model of the 50S subunit of E.Coli ribosomes from solution scattering
International Nuclear Information System (INIS)
Svergun, D.I.; Koch, M.H.J.; Pedersen, J.S.; Serdyuk, I.N.
1994-01-01
The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA
Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix
2016-07-01
Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We
A fully microscopic model of 200 MeV proton-12C elastic and inelastic scattering
International Nuclear Information System (INIS)
Karataglidis, S.; Dortmans, P.J.; Amos, K.; de Swiniarski, R.
1996-01-01
An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton- 12 C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p') calculations is found from a full (0 + 2) ℎω shell model evaluation of the positive parity states while a restricted (1 + 3)ℎω has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of 12 C. Using those models of the structure of 12 C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs
An evaluation of the ENDF/GASKET model for thermal neutron scattering in heavy water
International Nuclear Information System (INIS)
Abbate, M.J.; Antunez, H.M.
1977-06-01
The ENDF/GASKET model for computing thermal neutron scattering was selected for studies undertaken with the purpose of getting thoroughly acquainted with the behavior of the heavy water as a moderator. As a first step in its evaluation, the scattering law S(α,β) was computed with ENDF/GASKET. A comparison of the values so obtained with others previously measured or computed showed that the model is not completely satisfactory in this respect. This is attributed to coherent scattering not included in the model and to the need of improving its frequency spectrum. Any way, the experimental values show serious descrepancies and it is difficult to reach definitive conclusions. The Legendre moments of the double differential cross section and its microscopic values were also computed. As it was found by other authors, the incoherent approximation of ENDF/GASKET results in a drastic departure from the measured total cross section below 0,006 eV. In addition, the discrepancies between measured and calculated average μ, might also imply that the coherence effects are appreciable at higher energies. Also decay constance and diffusion parameters were computed for D 2 O (100%), and these agree well with values of other sources. The measurement and computation of neutron spectra in heavy water is presently intented for the sake of completing evaluation. So far two alternatives are foreseen for further work: the improvement of ENDF/GASKET, or the evaluation of the more recent Jarvis model. (author) [es
Note on neutron scattering and the optical model near A = 208
International Nuclear Information System (INIS)
Guenther, P.; Havel, D.; Smith, A.
1976-09-01
Elastic neutron scattering cross sections of 206 Pb, 207 Pb, 208 Pb and 209 Bi are measured at incident neutron energy intervals of approx. 25 keV from 0.6 to 1.0 MeV with resolutions of approx. 25 keV. Optical model parameters are obtained from the energy-averaged experimental results for each of the isotopes. The observed elastic-neutron-scattering distributions and derived parameters for the lead isotopes (doubly magic or neutron holes in the closed shell) tend to differ from those of 209 Bi (doubly closed shell plus a proton). These potentials, derived in the approx. spherical region of A approximately 208, are extrapolated for the analysis of total and scattering cross sections of 238 U introducing only a small N-Z/A dependence and the known deformation of 238 U. Good descriptions of 238 U total cross sections are obtained from a few hundred keV to 10.0 MeV and the prediction of measured scattering distributions in the low MeV region are as suitable as frequently reported with other specially developed potentials
The complete electroweak effect and perfection of Bhabha scattering in the standard model
International Nuclear Information System (INIS)
Shi Chengye; Fang Zhenyun; Chen Xuewen
2013-01-01
In this paper, we make a close and systematic research on Bhabha scattering in the electroweak unification of the standard model (SM). In concrete research methods we make the quantum field theory of perturbation theory in a new computing mode -renormalization chain propagation theory, and do an application to the Bhabha scattering calculation research. In SM, in order to consider complete electrical weak effect about Bhabha scattering internal process, we seek out the complex renormalization mixing-loop chain propagators constituted by photon y and intermediate boson Z 0 , and then calculate the Bhabha scattering cross section about this kind of propagator by transfer complete electrical weak reaction. Within the observed errors, the calculation results are in good agreement with the experimental values. Also, the main research results not only confirm the action of the particle reaction accuracy by SM theory for describing the electrical weak effect; but also suggests the SM theory may be a per ect theory and that the theory prophecy's Higgs 'mysterious particles' (which is of particular concern in the field of academic) have the large possibility to be eventually found. (authors)
Microscopic cluster model analysis of 14O+p elastic scattering
International Nuclear Information System (INIS)
Baye, D.; Descouvemont, P.; Leo, F.
2005-01-01
The 14 O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14 O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the 15 C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the 14 O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in 15 F are discussed
Scattering data for modelling positron tracks in gaseous and liquid water
International Nuclear Information System (INIS)
Blanco, F; Roldán, A M; Krupa, K; García, G; McEachran, R P; Machacek, J R; Buckman, S J; Sullivan, J P; White, R D; Marjanović, S; Petrović, Z Lj; Brunger, M J; Chiari, L; Limão-Vieira, P
2016-01-01
We present in this study a self-consistent set of scattering cross sections for positron collisions with water molecules, in the energy range 0.1–10 000 eV, with the prime motivation being to provide data for modelling purposes. The structure of the database is based on a new model potential calculation, including interference terms, which provides differential and integral elastic as well as integral inelastic positron scattering cross sections for water molecules over the whole energy range considered here. Experimental and theoretical data available in the literature have been integrated into the database after a careful analysis of their uncertainties and their self-consistency. These data have been used as input parameters for a step-by-step Monte Carlo simulation procedure, providing valuable information on energy deposition, positron range, and the relative percentages of specific interactions (e.g. positronium formation, direct ionisation, electronic, vibrational and rotational excitations) in gaseous and liquid water. (paper)
Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models
Energy Technology Data Exchange (ETDEWEB)
Smith, A.B.; Guenther, P.T.; Whalen, J.F. (Argonne National Lab., IL (United States)); Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)
1991-07-01
The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.
Smith, James A.
1992-01-01
The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI 1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.
Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling
International Nuclear Information System (INIS)
Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka
2013-01-01
Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems
Modelling small-angle scattering data from complex protein-lipid systems
DEFF Research Database (Denmark)
Kynde, Søren Andreas Røssell
This thesis consists of two parts. The rst part is divided into five chapters. Chapter 1 gives a general introduction to the bio-molecular systems that have been studied. These are membrane proteins and their lipid environments in the form of phospholipid nanodiscs. Membrane proteins...... the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... combine the bene ts of each of the methods and give unique structural information about relevant bio-molecular complexes in solution. Chapter 4 describes the work behind a proposal of a small-angle neutron scattering instrument for the European Spallation Source under construction in Lund. The instrument...
Alterations to the relativistic Love-Franey model and their application to inelastic scattering
International Nuclear Information System (INIS)
Zeile, J.R.
1989-01-01
The fictitious axial-vector and tensor mesons for the real part of the relativistic Love-Franey interaction are removed. In an attempt to make up for this loss, derivative couplings are used for the π and ρ mesons. Such derivative couplings require the introduction of axial-vector and tensor contact term corrections. Meson parameters are then fit to free nucleon-nucleon scattering data. The resulting fits are comparable to those of the relativistic Love-Franey model provided that the contact term corrections are included and the fits are weighted over the physically significant quantity of twice the tensor minus the axial-vector Lorentz invariants. Failure to include contact term corrections leads to poor fits at higher energies. The off-shell behavior of this model is then examined by looking at several applications from inelastic proton-nucleus scattering
Spectro-polarimetric observation in UV with CLASP to probe the chromosphere and transition region
Kano, Ryouhei; Ishikawa, Ryohko; Winebarger, Amy R.; Auchère, Frédéric; Trujillo Bueno, Javier; Narukage, Noriyuki; Kobayashi, Ken; Bando, Takamasa; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-Nosuke; Giono, Gabriel; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Tsuneta, Saku; Ichimoto, Kiyoshi; Goto, Motoshi; Cirtain, Jonathan W.; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca; Carlsson, Mats
2016-05-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a NASA sounding-rocket experiment that was performed in White Sands in the US on September 3, 2015. During its 5-minute ballistic flight, CLASP successfully made the first spectro-polarimetric observation in the Lyman-alpha line (121.57 nm) originating in the chromosphere and transition region. Since the Lyman-alpha polarization is sensitive to magnetic field of 10-100 G by the Hanle effect, we aim to infer the magnetic field information in such upper solar atmosphere with this experiment.The obtained CLASP data showed that the Lyman-alpha scattering polarization is about a few percent in the wings and the order of 0.1% in the core near the solar limb, as it had been theoretically predicted, and that both polarization signals have a conspicuous spatio-temporal variability. CLASP also observed another upper-chromospheric line, Si III (120.65 nm), whose critical field strength for the Hanle effect is 290 G, and showed a measurable scattering polarization of a few % in this line. The polarization properties of the Si III line could facilitate the interpretation of the scattering polarization observed in the Lyman-alpha line.In this presentation, we would like to show how the upper chromosphere and transition region are seen in the polarization of these UV lines and discuss the possible source of these complicated polarization signals.
The zig-zag walk with scattering and absorption on the real half line and in a lattice model
Wuttke, Joachim
2014-05-01
The Darwin-Hamilton equations, describing one-dimensional transport with scattering and absorption, are expanded into a recursion. The solution involves ballot numbers. The recurrence probability as function of scattering order is given by Catalan numbers. To reproduce this analytical result in a lattice model, a novel relation between Narayana and Catalan numbers is derived.
International Nuclear Information System (INIS)
Williams, M.M.R.
1985-01-01
A multigroup formalism is developed for the backward-forward-isotropic scattering model of neutron transport. Some exact solutions are obtained in two-group theory for slab and spherical geometry. The results are useful for benchmark problems involving multigroup anisotropic scattering. (author)
Convergent J-matrix calculation of the Poet-Temkin model of electron-hydrogen scattering
International Nuclear Information System (INIS)
Konovalov, D.A.; McCarthy, I.E.
1994-01-01
It is shown that the Poet-Temkin model of electron-hydrogen scattering could be solved to any required accuracy using the J-matrix method. The convergence in the basis size is achieved to an accuracy of better than 2% with the inclusion of 37 basis L 2 functions. Previously observed pseudoresonances in the J-matrix calculation naturally disappear with an increase in basis size. No averaging technique is necessary to smooth the convergent J-matrix results. (Author)
Cluster folding-model for quasi-elastic scattering of 23Na from 208Pb
International Nuclear Information System (INIS)
Kabir, A.; Johnson, R.C.; Tostevin, M.H.
1991-01-01
A cluster model of 23 Na is used to calculate the 23 Na-target interaction potentials by folding the cluster wavefunction with the cluster-target interaction potentials. Coupled channels calculations are carried out for the quasi-elastic scattering of polarized 23 Na from 208 Pb at 170 MeV and compared with recent experiments. Qualitative agreement with experiment is obtained when the interaction is adjusted by a single overall normalization constant. (author)
Cloudy bag model calculation of P11 πN scattering
International Nuclear Information System (INIS)
Rinat, A.S.
1981-05-01
πN, πΔ scattering in the cloudy bag model (CBM) is considered using an elementary π field and bare bag states for N, Δ, Nsup(*)(1470). The resulting 2-channel problem is solved neglecting intermediate states with anti-baryons and states with more than a single pion. It is shown that delta 11 may be reproduced for parameters close to their theoretical values. The fit thus provides a test for the CBM. (author)
Thermodynamic model for the elastic form factor in diffraction scattering of protons
International Nuclear Information System (INIS)
Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.
1988-01-01
An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials
Ice sheet anisotropy measured with polarimetric ice sounding radar
DEFF Research Database (Denmark)
Dall, Jørgen
2010-01-01
For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...
Mapping mountain meadow with high resolution and polarimetric SAR data
International Nuclear Information System (INIS)
Tian, Bangsen; Li, Zhen; Xu, Juan; Fu, Sitao; Liu, Jiuli
2014-01-01
This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first extend the theory of SAR terrain correction to the polarimetric case, to utilize the entire available polarimetric signature, where correction is performed explicitly based on a matrix format like covariance matrix. (2) Next, the orthoectified PolSAR is applied to classify mountain meadow and investigate the potential of PolSAR in mapping grassland. In this paper, the gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product. Secondly, the impact of radiometric correction upon classification accuracy is investigated. A supervised classification is performed on the orthorectified Radarsat-2 PolSAR to map the spatial distribution of meadow and evaluate monitoring capabilities of mountain meadow
Reconfigurable digital receiver design and application for instantaneous polarimetric measurement
Wang, Z.; Krasnov, O.A.; Babur, G.P.; Ligthart, L.P.; Van der Zwan, F.
2011-01-01
This paper presents the development of a reconfigurable receiver to undertake challenging signal processing tasks for a novel polarimetric radar system. The field-programmable gate arrays (FPGAs)-based digital receiver samples incoming signals at intermediate frequency (IF) and processes signals
Polarimetric synthetic aperture radar data and the complex Wishart distribution
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning
2003-01-01
distribution. Based on this distribution a test statistic for equality of two such matrices and an associated asymptotic probability for obtaining a smaller value of the test statistic are given and applied to segmentation, change detection and edge detection in polarimetric SAR data. In a case study EMISAR L...
Multi-look polarimetric SAR image filtering using simulated annealing
DEFF Research Database (Denmark)
Schou, Jesper
2000-01-01
Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...
The Danish polarimetric SAR for remote sensing applications
DEFF Research Database (Denmark)
Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen
1994-01-01
Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...
L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling
DEFF Research Database (Denmark)
Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels
2001-01-01
A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...
Processing of dual-orthogonal cw polarimetric radar signals
Babur, G.
2009-01-01
The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated
A novel L-band polarimetric radiometer featuring subharmonic sampling
DEFF Research Database (Denmark)
Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels
2003-01-01
A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...
Project PHARUS: Towards a polarimetric C-band airborne SAR
Hoogeboom, P.; Koomen, P.J.; Otten, M.P.G.; Pouwels, H.; Snoeij, P.
1989-01-01
A few years ago three institutes in the Netherlands developed a plan to design and build a polarimetric C-band aircraft SAR system of a novel design, called PHARUS (PHased Array Universal SAR), meant as a replacement for our current digital SLAR system. These institutes are the Physics and
Generalized Veneziano model for pion scattering off isovector currents and the scaling limit
Rothe, H J; Rolhe, K D
1972-01-01
Starting from a local one-particle approximation scheme for the commutator of two conserved currents, the authors construct a generalized Veneziano model for pion scattering off neutral and charged isovector currents, satisfying the constraints of current conservation and current algebra. The model factorizes correctly on the leading Regge trajectories and incorporates the proper Regge behaviour for strong amplitudes. Fixed poles are found to be present in the s and t channels of the one- and two-current amplitudes. Furthermore, the model makes definite predictions about the structure of Schwinger terms and of the 'seagull' terms in the retarded commutator. (13 refs).
Integrative structural modeling with small angle X-ray scattering profiles
Directory of Open Access Journals (Sweden)
Schneidman-Duhovny Dina
2012-07-01
Full Text Available Abstract Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.
Asymmetric dark matter and CP violating scatterings in a UV complete model
Energy Technology Data Exchange (ETDEWEB)
Baldes, Iason; Bell, Nicole F.; Millar, Alexander J.; Volkas, Raymond R. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, The University of Melbourne, Victoria, 3010 (Australia)
2015-10-21
We explore possible asymmetric dark matter models using CP violating scatterings to generate an asymmetry. In particular, we introduce a new model, based on DM fields coupling to the SM Higgs and lepton doublets, a neutrino portal, and explore its UV completions. We study the CP violation and asymmetry formation of this model, to demonstrate that it is capable of producing the correct abundance of dark matter and the observed matter-antimatter asymmetry. Crucial to achieving this is the introduction of interactions which violate CP with a T{sup 2} dependence.
Asymmetric dark matter and CP violating scatterings in a UV complete model
Energy Technology Data Exchange (ETDEWEB)
Baldes, Iason; Bell, Nicole F.; Millar, Alexander J.; Volkas, Raymond R., E-mail: i.baldes@student.unimelb.edu.au, E-mail: n.bell@unimelb.edu.au, E-mail: amillar@student.unimelb.edu.au, E-mail: raymondv@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria, 3010 Australia (Australia)
2015-10-01
We explore possible asymmetric dark matter models using CP violating scatterings to generate an asymmetry. In particular, we introduce a new model, based on DM fields coupling to the SM Higgs and lepton doublets, a neutrino portal, and explore its UV completions. We study the CP violation and asymmetry formation of this model, to demonstrate that it is capable of producing the correct abundance of dark matter and the observed matter-antimatter asymmetry. Crucial to achieving this is the introduction of interactions which violate CP with a T{sup 2} dependence.
Memory effects in microscopic traffic models and wide scattering in flow-density data
Treiber, Martin; Helbing, Dirk
2003-10-01
By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.
An assessment of the DORT method on simple scatterers using boundary element modelling.
Gélat, P; Ter Haar, G; Saffari, N
2015-05-07
The ability to focus through ribs overcomes an important limitation of a high-intensity focused ultrasound (HIFU) system for the treatment of liver tumours. Whilst it is important to generate high enough acoustic pressures at the treatment location for tissue lesioning, it is also paramount to ensure that the resulting ultrasonic dose on the ribs remains below a specified threshold, since ribs both strongly absorb and reflect ultrasound. The DORT (décomposition de l'opérateur de retournement temporel) method has the ability to focus on and through scatterers immersed in an acoustic medium selectively without requiring prior knowledge of their location or geometry. The method requires a multi-element transducer and is implemented via a singular value decomposition of the measured matrix of inter-element transfer functions. The efficacy of a method of focusing through scatterers is often assessed by comparing the specific absorption rate (SAR) at the surface of the scatterer, and at the focal region. The SAR can be obtained from a knowledge of the acoustic pressure magnitude and the acoustic properties of the medium and scatterer. It is well known that measuring acoustic pressures with a calibrated hydrophone at or near a hard surface presents experimental challenges, potentially resulting in increased measurement uncertainties. Hence, the DORT method is usually assessed experimentally by measuring the SAR at locations on the surface of the scatterer after the latter has been removed from the acoustic medium. This is also likely to generate uncertainties in the acoustic pressure measurement. There is therefore a strong case for assessing the efficacy of the DORT method through a validated theoretical model. The boundary element method (BEM) applied to exterior acoustic scattering problems is well-suited for such an assessment. In this study, BEM was used to implement the DORT method theoretically on locally reacting spherical scatterers, and to assess its focusing
Directory of Open Access Journals (Sweden)
L. Yang
2018-04-01
Full Text Available Due to the forward scattering and block of radar signal, the water, bare soil, shadow, named low backscattering objects (LBOs, often present low backscattering intensity in polarimetric synthetic aperture radar (PolSAR image. Because the LBOs rise similar backscattering intensity and polarimetric responses, the spectral-based classifiers are inefficient to deal with LBO classification, such as Wishart method. Although some polarimetric features had been exploited to relieve the confusion phenomenon, the backscattering features are still found unstable when the system noise floor varies in the range direction. This paper will introduce a simple but effective scene classification method based on Bag of Words (BoW model using Support Vector Machine (SVM to discriminate the LBOs, without relying on any polarimetric features. In the proposed approach, square windows are firstly opened around the LBOs adaptively to determine the scene images, and then the Scale-Invariant Feature Transform (SIFT points are detected in training and test scenes. The several SIFT features detected are clustered using K-means to obtain certain cluster centers as the visual word lists and scene images are represented using word frequency. At last, the SVM is selected for training and predicting new scenes as some kind of LBOs. The proposed method is executed over two AIRSAR data sets at C band and L band, including water, bare soil and shadow scenes. The experimental results illustrate the effectiveness of the scene method in distinguishing LBOs.
Gong, J.; Zeng, X.; Wu, D. L.; Li, X.
2017-12-01
Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the
Finite difference modelling of scattered hydrates and its implications in gas-hydrate exploration
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Ramprasad, T.; Ramana, M.V.
coming from individual scatterers 12 . However, the scatterers which lie within the first Fresnel zone interfere constructively. Therefore, the BSR ampli- tude in a zero-offset section represents all the scatterers lying within the first Fresnel zone...
International Nuclear Information System (INIS)
Dupuis, M.; Karataglidis, S.; Bauge, E.; Delaroche, J.P.; Gogny, D.
2006-01-01
The random phase approximation (RPA) long-range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e,e ' ) and (e,e ' p) measurements. Here the RPA theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e., Hartree-Fock) and correlated (i.e., RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Agreement between the parameter free scattering predictions and measurements is good for incident proton energies ranging from 200 MeV down to approximately 60 MeV and becomes gradually worse in the lower energy range. Those features point unambiguously to the relevance of the g-matrix method to build microscopic optical model potentials at medium energies, and emphasize the need to include nucleon-phonon coupling, that is, a second-order component of the Feshbach type in the potential at lower energies. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16 O, 40 Ca, 48 Ca, and 208 Pb target nuclei
Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models
Directory of Open Access Journals (Sweden)
Stovgaard Kasper
2010-08-01
Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for
Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique
Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.
2011-01-01
The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between
International Nuclear Information System (INIS)
Navelet, H.
1998-01-01
We compute the onium-onium scattering amplitude at fixed impact parameter in the framework of the perturbative QCD dipole model. Relying on the conformal properties of the dipole cascade and of the elementary dipole-dipole scattering amplitude, we obtain an exact result for this onium-onium scattering amplitude, which is proved to be identical to the BFKL result, and which exhibits the frame invariance of the calculation. The asymptotic expression for this amplitude and for the dipole distribution in an onium at fixed impact parameter agree with previous numerical simulations. We show how it is possible to describe onium-e ± deep inelastic scattering in the dipole model, relying on k T -factorization properties. The elementary scattering amplitudes involved in the various processes are computed using eikonal techniques. (orig.)
Bai, Nan
A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have
Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models.
Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C; Noé, Frank
2013-11-07
The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.
Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model
Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang
2018-02-01
Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.
Magnetic corrections to π -π scattering lengths in the linear sigma model
Loewe, M.; Monje, L.; Zamora, R.
2018-03-01
In this article, we consider the magnetic corrections to π -π scattering lengths in the frame of the linear sigma model. For this, we consider all the one-loop corrections in the s , t , and u channels, associated to the insertion of a Schwinger propagator for charged pions, working in the region of small values of the magnetic field. Our calculation relies on an appropriate expansion for the propagator. It turns out that the leading scattering length, l =0 in the S channel, increases for an increasing value of the magnetic field, in the isospin I =2 case, whereas the opposite effect is found for the I =0 case. The isospin symmetry is valid because the insertion of the magnetic field occurs through the absolute value of the electric charges. The channel I =1 does not receive any corrections. These results, for the channels I =0 and I =2 , are opposite with respect to the thermal corrections found previously in the literature.
Study of elastic scattering of polarized proton with 6He by folding model
International Nuclear Information System (INIS)
Iseri, Y.; Tanifuji, M.; Ishikawa, S.; Hiyama, E.; Yamamoto, Y.
2005-01-01
Experimental data of the elastic scattering of 6 He with polarized proton target has been analyzed using a simple folding model. As we regard 6 He as three bodies consisting of 4 He+n+n, the potential between the proton and 6 He is obtained by folding the two potentials, one between a proton and 4 He and another between a proton and a neutron, with the density distribution of 6 He. Calculated results of both the differential cross section and the vector analyzing power reproduce the experimental data satisfactorily. It is shown that the vector analyzing power of the p- 6 He scattering is mainly due to the spin orbit interaction between the proton and 4 He. (S. Funahashi)
Models for Surface Roughness Scattering of Electrons in a 2DEG
International Nuclear Information System (INIS)
Yarar, Z.
2004-01-01
In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for different auto-correlation tions and potential forms. Gaussian, exponentiaI and lorentsian auto-correlation tions are used to represent surface roughness. Both an infinitely deep triangular potential model and the potential that is found from the numerical solution of Poisson Shrodinger equations self consistently are used as the potential that holds 2DEG at the hetero Interface. Using the wave functions appropriate for the potentials just mentioned and the auto-correlation functions indicated above, the scattering rates due to surface roughness are calculated. The calculations were repeated when the effect of screening is also included for the case of triangular potential
Scattering amplitude and bosonization duality in general Chern-Simons vector models
Yokoyama, Shuichi
2016-09-01
We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.
New results for antiproton-proton elastic scattering and various theoretical models
International Nuclear Information System (INIS)
Fazal-e-Aleem; Saleem, M.; Yodh, G.B.
1991-01-01
The most recent measurements of the ratio ρ of the real and imaginary parts of the forward-scattering amplitudes at 0.546 TeV, the total and elastic differential cross sections at 0.546 and 1.8 TeV for proton-antiproton scattering, are compared to the predictions of the generalized Chou-Yang and other theoretical models. For 1.8 TeV, the presence or absence of the break near -t∼0.15 (GeV/c) 2 and of the dip in the vicinity of 0.6 (GeV/c) 2 are also discussed in the light of various predictions. The possibility of a further rise of the ratio ρ at 1.8 TeV is also probed
Modelling Thomson scattering for systems with non-equilibrium electron distributions
Directory of Open Access Journals (Sweden)
Chapman D.A.
2013-11-01
Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.
Fung, A. K.; Dome, G.; Moore, R. K.
1977-01-01
The paper compares the predictions of two different types of sea scatter theories with recent scatterometer measurements which indicate the variations of the backscattering coefficient with polarization, incident angle, wind speed, and azimuth angle. Wright's theory (1968) differs from that of Chan and Fung (1977) in two major aspects: (1) Wright uses Phillips' sea spectrum (1966) while Chan and Fung use that of Mitsuyasu and Honda, and (2) Wright uses a modified slick sea slope distribution by Cox and Munk (1954) while Chan and Fung use the slick sea slope distribution of Cox and Munk defined with respect to the plane perpendicular to the look direction. Satisfactory agreements between theory and experimental data are obtained when Chan and Fung's model is used to explain the wind and azimuthal dependence of the scattering coefficient.
Scattering from Model Nonspherical Particles Theory and Applications to Environmental Physics
Borghese, Ferdinando; Saija, Rosalba
2007-01-01
The scattering of electromagnetic radiation by nonspherical particles has become an increasingly important research topic over the past 20 years. Instead of handling anisotropic particles of arbitrary shape, the authors consider the more amenable problem of aggregates of spherical particles. This is often a very satisfactory approach as the optical response of nonspherical particles depends more on their general symmetry and the quantity of refractive material than on the precise details of their shape. The book addresses a wide spectrum of applications, ranging from scattering properties of water droplets containing pollutants, atmospheric aerosols and ice crystals to the modeling of cosmic dust grains as aggregates. In this extended second edition the authors have encompassed all the new topics arising from their recent studies of cosmic dust grains. Thus many chapters were deeply revised and new chapters were added. The new material spans The description of the state of polarization of electromagnetic wave...
Gil-Hutton, R.; García-Migani, E.
2017-11-01
Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry and to estimate the diversity in the polarimetric properties of asteroids that belong to different taxonomic classes. Methods: The data were obtained using the CASPOL polarimeter at the 2.15 m telescope. CASPOL is a polarimeter based on a CCD detector and a Savart plate. The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. Results: We present and analyze the unpublished results for 128 asteroids of different taxonomic types, 55 of them observed for the first time. The observational data allowed us to find probable new cases of Barbarian objects but also two D-type objects, (565) Marbachia and (1481) Tubingia, that seem to have phase-polarization curves with a large inversion angle. The data obtained combined with data from the literature enabled us to find phase-polarization curves for 121 objects of different taxonomic types and to study the relations between several polarimetric and physical parameters. Using an approximation for the phase-polarization curve we found the index of refraction of the surface material and the scatter separation distance for all the objects with known polarimetric parameters. We also found that the inversion angle is a function of the index of refraction of the surface, while the phase angle where the minimum of polarization is produced provides information about the distance between scatter particles or, to some extent, the porosity of the surface. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la
Intercomparison of lepton-nucleus scattering models in the quasielastic region
Sobczyk, Joanna E.
2017-10-01
I present a discussion of the models of nuclear effects used to describe the inclusive electron-nucleus scattering in the quasielastic (QE) peak region, aiming to compare them and to draw conclusions about their reliability when applied in neutrino-nucleus interactions. A basic motivation is to reduce the systematic errors in the neutrino oscillation experiments. I concentrate on the neutrino energy profile of the T2K experiment, which provides me with a region of the greatest importance in terms of the highest contribution to the charge-current quasielastic (CCQE) cross section. Only electron-nucleus data that overlap with this region is chosen. In order to clarify the analysis, I split the data sets into three groups and draw conclusions separately from each one of them. Six models are selected for this comparison: Benhar's spectral function with and without the final-state interactions (Benhar's SF + FSI); the Valencia spectral function (Valencia SF), for higher energy transfers only with the hole spectral function; the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) model; and the local and global Fermi gas models. The latter two are included as a benchmark to quantify the roles of various nuclear effects. All six models are often used in neutrino scattering studies. A short theoretical description of each model is given. Although in the selected data sets the QE mechanism dominates, I also discuss the possible impact of the 2p2h and the Δ contributions.
The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model
Tong, Hao; Xu, Ren-Xin; Song, Li-Ming
2011-12-01
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
Coupled channel folding model description of α scattering from 9Be
International Nuclear Information System (INIS)
Roy, S.; Chatterjee, J.M.; Majumdar, H.; Datta, S.K.; Banerjee, S.R.; Chintalapudi, S.N.
1995-01-01
Alpha scattering from 9 Be at E α = 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of 9 Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2 - (g.s.) and 5/2 - (2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries
Coupled channel folding model description of {alpha} scattering from {sup 9}Be
Energy Technology Data Exchange (ETDEWEB)
Roy, S.; Chatterjee, J.M.; Majumdar, H. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Datta, S.K. [Nuclear Science Centre, P.O.10502, New Delhi 110067 (India); Banerjee, S.R. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Calcutta 700064 (India); Chintalapudi, S.N. [Inter-University Consortium, Department of Atomic Energy Facilities, Bidhannagar, Calcutta 700064 (India)
1995-09-01
Alpha scattering from {sup 9}Be at {ital E}{sub {alpha}}= 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of {sup 9}Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2{sup {minus}}(g.s.) and 5/2{sup {minus}}(2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries.
Scattering effects on the performance of carbon nanotube field effect transistor in a compact model
Hamieh, S. D.; Desgreys, P.; Naviner, J. F.
2010-01-01
Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.
(16) {C}16C-elastic scattering examined using several models at different energies
El-hammamy, M. N.; Attia, A.
2018-05-01
In the present paper, the first results concerning the theoretical analysis of the ^{16}C + p reaction by investigating two elastic scattering angular distributions measured at high energy compared to low energy for this system are reported. Several models for the real part of the nuclear potential are tested within the optical model formalism. The imaginary potential has a Woods-Saxon shape with three free parameters. Two types of density distribution and three different cluster structures for ^{16}C are assumed in the analysis. The results are compared with each other as well as with the experimental data to give evidence of the importance of these studied items.
Time-dependent approach to electron scattering and ionization in the s-wave model
International Nuclear Information System (INIS)
Ihra, W.; Draeger, M.; Handke, G.; Friedrich, H.
1995-01-01
The time-dependent Schroedinger equation is integrated for continuum states of two-electron atoms in the framework of the s-wave model, in which both electrons are restricted to having vanishing individual orbital angular momenta. The method is suitable for studying the time evolution of correlations in the two-electron wave functions and yields probabilities for elastic and inelastic electron scattering and for electron-impact ionization. The spin-averaged probabilities for electron-impact ionization of hydrogen in the s-wave model reproduce the shape of the experimentally observed integrated ionization cross section remarkably well for energies near and above the maximum
Weber, N; Monnin, P; Elandoy, C; Ding, S
2015-12-01
Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Stjernman, A.
1995-05-01
The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab
Energy Technology Data Exchange (ETDEWEB)
Stjernman, A
1995-05-01
The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab.
National Research Council Canada - National Science Library
Sabry, R
2007-01-01
Considering the exploitation needs associated with the Synthetic Aperture Radar (SAR) applications involving moving and non-stationary targets, a fundamental spectral domain model for moving point and distribution of scatterers is presented...
Wu, Zedong
2017-07-04
Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.
Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics
Directory of Open Access Journals (Sweden)
Darren J. Goossens
2016-02-01
Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.
Quark compound Bag model for NN scattering up to 1 GeV
International Nuclear Information System (INIS)
Fasano, C.; Lee, T.S.H.
1987-01-01
A Quark Compound Bag model has been constructed to describe NN s-wave scattering up to 1 GeV. The model contains a vertex interaction H/sub D/leftrightarrow/NN/ for describing the excitation of a confined six-quark Bag state, and a meson-exchange interaction obtained from modifying the phenomenological core of the Paris potential. Explicit formalisms and numerical results are presented to reveal the role of the Bag excitation mechanism in determining the relative wave function, P- and S-matrix of NN scattering. We explore the merit as well as the shortcoming of the Quark Compound Bag model developed by the ITEP group. It is shown that the parameters of the vertex interaction H/sub D/leftrightarrow/NN/ can be more rigorously determined from the data if the notation of the Chiral/Cloudy Bag model is used to allow the presence of the background meson-exchange interaction inside Bag excitation region. The application of the model in the study of quark degrees of freedom in nuclei is discussed. 41 refs., 6 figs., 3 tabs
International Nuclear Information System (INIS)
Baron, H.E.; Zakrzewski, W.J.
2016-01-01
We investigate the validity of collective coordinate approximations to the scattering of two solitons in several classes of (1+1) dimensional field theory models. We consider models which are deformations of the sine-Gordon (SG) or the nonlinear Schrödinger (NLS) model which posses soliton solutions (which are topological (SG) or non-topological (NLS)). Our deformations preserve their topology (SG), but change their integrability properties, either completely or partially (models become ‘quasi-integrable’). As the collective coordinate approximation does not allow for the radiation of energy out of a system we look, in some detail, at how the approximation fares in models which are ‘quasi-integrable’ and therefore have asymptotically conserved charges (i.e. charges Q(t) for which Q(t→−∞)=Q(t→∞)). We find that our collective coordinate approximation, based on geodesic motion etc, works amazingly well in all cases where it is expected to work. This is true for the physical properties of the solitons and even for their quasi-conserved (or not) charges. The only time the approximation is not very reliable (and even then the qualitative features are reasonable, but some details are not reproduced well) involves the processes when the solitons come very close together (within one width of each other) during their scattering.
Universal quantum computation by scattering in the Fermi–Hubbard model
International Nuclear Information System (INIS)
Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel
2015-01-01
The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)
Scattering matrices for Φ1,2 perturbed conformal minimal models in absence of kink states
International Nuclear Information System (INIS)
Koubek, A.; Martins, M.J.; Mussardo, G.
1991-05-01
We determine the spectrum and the factorizable S-matrices of the massive excitations of the nonunitary minimal models M 2,2n+1 perturbed by the operator Φ 1,2 . These models present no kinks as asymptotic states, as follows from the reduction of the Zhiber-Mikhailov-Shabat model with respect to the quantum group SL(2) q found by Smirnov. We also give the whole set of S-matrices of the nonunitary minimal model M 2,9 perturbed by the operator Φ 1,4 , which is related to a RSOS reduction for the Φ 1.2 operator of the unitary model M 8,9 . The thermodynamical Bethe ansatz and the truncated conformal space approach are applied to these scattering theories in order to support their interpretation. (orig.)
International Nuclear Information System (INIS)
Blevin, H.A.; Fletcher, J.; Hunter, S.R.
1978-05-01
In a recent paper, a Monte-Carlo simulation of electron swarms in hydrogen using an isotropic scattering model was reported. In this previous work discrepancies between the predicted and measured electron transport parameters were observed. In this paper a far more realistic anisotropic scattering model is used. Good agreement between predicted and experimental data is observed and the simulation code has been used to calculate various parameters which are not directly measurable
Neutron scattering from elemental indium, the optical model, and the bound-state potential
Energy Technology Data Exchange (ETDEWEB)
Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))
1990-06-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.
Neutron scattering from elemental indium, the optical model, and the bound-state potential
International Nuclear Information System (INIS)
Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.
1990-01-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs
Directory of Open Access Journals (Sweden)
Wasaye Muhammad Abdul
2017-01-01
Full Text Available An algorithm for the Monte Carlo simulation of electron multiple elastic scattering based on the framework of SuperMC (Super Monte Carlo simulation program for nuclear and radiation process is presented. This paper describes efficient and accurate methods by which the multiple scattering angular deflections are sampled. The Goudsmit-Saunderson theory of multiple scattering has been used for sampling angular deflections. Differential cross-sections of electrons and positrons by neutral atoms have been calculated by using Dirac partial wave program ELSEPA. The Legendre coefficients are accurately computed by using the Gauss-Legendre integration method. Finally, a novel hybrid method for sampling angular distribution has been developed. The model uses efficient rejection sampling method for low energy electrons (500 mean free paths. For small path lengths, a simple, efficient and accurate analytical distribution function has been proposed. The later uses adjustable parameters determined from the fitting of Goudsmith-Saunderson angular distribution. A discussion of the sampling efficiency and accuracy of this newly developed algorithm is given. The efficiency of rejection sampling algorithm is at least 50 % for electron kinetic energies less than 500 keV and longer path lengths (>500 mean free paths. Monte Carlo Simulation results are then compared with measured angular distributions of Ross et al. The comparison shows that our results are in good agreement with experimental measurements.
Theoretical model of x-ray scattering as a dense matter probe.
Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L
2003-02-01
We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.
Analyses of the energy-dependent single separable potential models for the NN scattering
International Nuclear Information System (INIS)
Ahmad, S.S.; Beghi, L.
1981-08-01
Starting from a systematic study of the salient features regarding the quantum-mechanical two-particle scattering off an energy-dependent (ED) single separable potential and its connection with the rank-2 energy-independent (EI) separable potential in the T-(K-) amplitude formulation, the present status of the ED single separable potential models due to Tabakin (M1), Garcilazo (M2) and Ahmad (M3) has been discussed. It turned out that the incorporation of a self-consistent optimization procedure improves considerably the results of the 1 S 0 and 3 S 1 scattering phase shifts for the models (M2) and (M3) up to the CM wave number q=2.5 fm -1 , although the extrapolation of the results up to q=10 fm -1 reveals that the two models follow the typical behaviour of the well-known super-soft core potentials. It has been found that a variant of (M3) - i.e. (M4) involving one more parameter - gives the phase shifts results which are generally in excellent agreement with the data up to q=2.5 fm -1 and the extrapolation of the results for the 1 S 0 case in the higher wave number range not only follows the corresponding data qualitatively but also reflects a behaviour similar to the Reid soft core and Hamada-Johnston potentials together with a good agreement with the recent [4/3] Pade fits. A brief discussion regarding the features resulting from the variations in the ED parts of all the four models under consideration and their correlations with the inverse scattering theory methodology concludes the paper. (author)
Model-based design evaluation of a compact, high-efficiency neutron scatter camera
Weinfurther, Kyle; Mattingly, John; Brubaker, Erik; Steele, John
2018-03-01
This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light is collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCP-PM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x , y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar's (x , y) position in the scintillator "block", and the z-position (the position along the pillar's long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron's incident direction and energy is estimated from the (x , y , z) -positions of two sequential neutron-proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x , y , z) -position of neutron-proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors' response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS), studying the effect of
A model for pion-pion scattering in large-N QCD
Energy Technology Data Exchange (ETDEWEB)
Veneziano, G. [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Collège de France,11 place M. Berthelot, 75005 Paris (France); Yankielowicz, S. [Raymond and Beverly Sackler School of Physics Tel-Aviv University,Ramat-Aviv 69978 (Israel); Onofri, E. [I.N.F.N., Gruppo Collegato di Parma, c/o Department of Mathematical,Physical and Computer Sciences, Università di Parma,Parco Area delle Scienze 7/a, Parma, 43124 (Italy)
2017-04-26
Following up on recent work by Caron-Huot et al. we consider a generalization of the old Lovelace-Shapiro model as a toy model for ππ scattering satisfying (most of) the properties expected to hold in (’t Hooft’s) large-N limit of massless QCD. In particular, the model has asymptotically linear and parallel Regge trajectories at positive t, a positive leading Regge intercept α{sub 0}<1, and an effective bending of the trajectories in the negative-t region producing a fixed branch point at J=0 for t
Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons.
Makarova, Anastasia; Gottschalk, Bernard; Sauerwein, Wolfgang
2017-07-06
Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Molière/Fano/Hanson variant of Molière theory (Gottschalk et al 1993 Nucl. Instrum. Methods Phys. Res. B 74 467-90). For transverse spreading of the beam in the target itself, the theory of Preston and Koehler (Gottschalk (2012 arXiv:1204.4470)) holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.
Directory of Open Access Journals (Sweden)
Cleber G. Oliveira
2013-06-01
Full Text Available This study evaluates the potential of C- and L-band polarimetric SAR data for the discrimination of iron-mineralized laterites in the Brazilian Amazon region. The study area is the N1 plateau located on the northern border of the Carajás Mineral Province, the most important Brazilian mineral province which has numerous mineral deposits, particularly the world’s largest iron deposits. The plateau is covered by low-density savanna-type vegetation (campus rupestres which contrasts visibly with the dense equatorial forest. The laterites are subdivided into three units: chemical crust, iron-ore duricrust, and hematite, of which only the latter two are of economic interest. Full polarimetric data from the airborne R99B sensor of the SIVAM/CENSIPAM (L-band system and the RADARSAT-2 satellite (C-band were evaluated. The study focused on an assessment of distinct schemes for digital classification based on decomposition theory and hybrid approach, which incorporates statistical analysis as input data derived from the target decomposition modeling. The results indicated that the polarimetric classifications presented a poor performance, with global Kappa values below 0.20. The accuracy for the identification of units of economic interest varied from 55% to 89%, albeit with high commission error values. In addition, the results using L-band were considered superior compared to C-band, which suggest that the roughness scale for laterite discrimination in the area is nearer to L than to C-band.
Directory of Open Access Journals (Sweden)
Lalitha Dabbiru
2017-03-01
Full Text Available This article reviews the use of synthetic aperture radar remote sensing data for earthen levee mapping with an emphasis on finding the slump slides on the levees. Earthen levees built on the natural levees parallel to the river channel are designed to protect large areas of populated and cultivated land in the Unites States from flooding. One of the signs of potential impending levee failure is the appearance of slump slides. On-site inspection of levees is expensive and time-consuming; therefore, a need to develop efficient techniques based on remote sensing technologies is mandatory to prevent failures under flood loading. Analysis of multi-polarized radar data is one of the viable tools for detecting the problem areas on the levees. In this study, we develop methods to detect anomalies on the levee, such as slump slides and give levee managers new tools to prioritize their tasks. This paper presents results of applying the National Aeronautics and Space Administration (NASA Jet Propulsion Lab (JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR quad-polarized L-band data to detect slump slides on earthen levees. The study area encompasses a portion of levees of the lower Mississippi River in the United States. In this paper, we investigate the performance of polarimetric and texture features for efficient levee classification. Texture features derived from the gray level co-occurrence (GLCM matrix and discrete wavelet transform were computed and analyzed for efficient levee classification. The pixel-based polarimetric decomposition features, such as entropy, anisotropy, and scattering angle were also computed and applied to the support vector machine classifier to characterize the radar imagery and compared the results with texture-based classification. Our experimental results showed that inclusion of textural features derived from the SAR data using the discrete wavelet transform (DWT features and GLCM features provided
submitter A model for the accurate computation of the lateral scattering of protons in water
Bellinzona, EV; Embriaco, A; Ferrari, A; Fontana, A; Mairani, A; Parodi, K; Rotondi, A; Sala, P; Tessonnier, T
2016-01-01
A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.
Directory of Open Access Journals (Sweden)
Simon Plank
2016-04-01
Full Text Available Mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Most synthetic aperture radar (SAR data-based landslide detection approaches reported in the literature use change detection techniques, requiring very high resolution (VHR SAR imagery acquired shortly before the landslide event, which is commonly not available. Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically cover the entire world, due to limitations in onboard disk space and downlink transmission rates. Here, we present a fast and transferable procedure for mapping of landslides, based on change detection between pre-event optical imagery and the polarimetric entropy derived from post-event VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to two landslide events of different characteristics: A rotational slide near Charleston, West Virginia, USA and a mining waste earthflow near Bolshaya Talda, Russia.
International Nuclear Information System (INIS)
Bansil, Arun
2016-01-01
Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering-density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization-to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.
Directory of Open Access Journals (Sweden)
Gao Jingkun
2018-02-01
Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.
Optical model analysis for 30MeV polarized proton elastic scattering
International Nuclear Information System (INIS)
Pham, D.-L.; Swiniarski, R. de.
1977-05-01
The proton elastic scattering cross sections and analyzing powers at 30MeV have been used to derive optical model parameters for ten elements from 10 B to 32 S. A set of average geometrical parameters (rsub(o)=1.10fm, rsub(LS)=1.0fm and asub(I)=0.60fm) is found to give good fits to the entire data, the other geometrical parameters being rsub(I)=(1.35+-0.15)fm, asub(o)=(0.75+-0.10)fm and asub(LS)=(0.35+-0.07)fm. The dynamical parameters with fixed geometry are presented
Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering
International Nuclear Information System (INIS)
Dube, L.; Herzenberg, A.
1979-01-01
The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section
International Nuclear Information System (INIS)
Dymski, T.C.
1976-01-01
For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature
The S-wave model for electron-hydrogen scattering revisited
International Nuclear Information System (INIS)
Bartschat, K.; Bray, I.
1996-03-01
The R-matrix with pseudo-states (RMPS) and convergent close-coupling (CCC) methods are applied to the calculation of elastic, excitation, and total as well as single-differential ionization cross sections for the simplified S-wave model of electron-hydrogen scattering. Excellent agreement is obtained for the total cross section results obtained at electron energies between 0 and 100 eV. The two calculations also agree on the single-differential ionization cross section at 54.4 eV for the triplet spin channel, while discrepancies are evident in the singlet channel which shows remarkable structure. 18 refs., 3 figs
Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment
DEFF Research Database (Denmark)
Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth
1996-01-01
Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under conditions...... of temperature for the lamellar repeat distance, the hydrophobic bilayer thickness, as well as the thickness of the aqueous and polar head group region. In addition to these geometric parameters the analysis permits determination of molecular cross-sectional area, number of interlamellar water molecules, as well...
Angular distributions of neutrino and antineutrino scatterings by electrons and gauge models
International Nuclear Information System (INIS)
Dass, G.V.
1976-01-01
Assuming a nonderivative point interaction, and Born approximation, the complete angular distributions for the scatterings of neutrinos and antineutrinos by electrons are obtained from only simple general considerations, without explicit calculation; generalisation to parton targets is noted. Two pairs of simple constraints on the angular distributions can be violated only if the interaction has a helicity-flipping component; this can serve to disfavour the large class of models which are purely helicity-conserving. Comparison is made with some explicit calculations done for some special cases of some of the results. (author)
The orbital inclination of Cygnus XR-1 measured polarimetrically
International Nuclear Information System (INIS)
Dolan, J.F.; Tapia, S.
1989-01-01
The X-ray binary Cyg XR-1/HDE 226868 was observed polarimetrically over one orbit at three different optical wavelengths. The standard theory of Brown, et al. (1978) is used to derive an orbital inclination i = 62 deg (+5 deg, -37 deg), where the error is the 90-percent-confidence interval derived by the method of Simmons, et al. (1980). The value of the orbital inclination is significantly lower than values based on polarimetric observations. The difference is a result of the observational protocols used. A bias toward larger values of the inclination caused by the tidal distortion of the primary is still found in the present result. The inclination derived corresponds to a mass of the compact component of 6.3 solar masses, above the maximum mass of any degenerate configuration consistent with general relativity except a black hole. 37 refs
Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells
Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.
2014-05-01
Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.
Multispectral and polarimetric photodetection using a plasmonic metasurface
Pelzman, Charles; Cho, Sang-Yeon
2018-01-01
We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Bag-model analyses of proton-antiproton scattering and atomic bound states
International Nuclear Information System (INIS)
Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.
1983-01-01
We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model
Effects of quark structure on NN scattering: relevance to current data and bag models
International Nuclear Information System (INIS)
Lomon, E.L.
1984-01-01
The applicability of the R-matrix method to the transition from asymptotic freedom to confinement depends on the overlap of the regions in which asymptotic freedom is a good approximation and the region well described by hadronic field theory. This enables a quantitative description of hadron-hadron interactions at low and intermediate energies. ''Compound'' and ''Cloudy'' bag models and the P-matrix method are shown to be special or approximate versions of the R-matrix method in its f-matrix form. The f-matrix condition is applied to S-state nucleon-nucleon scattering where it (i) overcomes the deficiencies of the P-matrix applications, (ii) shows that some of the bag models which have had some success in describing mesons and baryons are inconsistent when applied to nucleon-nucleon scattering, and (iii) that the bag models which are consistent with that data predict inelastic resonant structures of 50-100 MeV width at barycentric energies between 2.3 GeV and 3.5 GeV
Custo, Anna; Wells, William M., III; Barnett, Alex H.; Hillman, Elizabeth M. C.; Boas, David A.
2006-07-01
An efficient computation of the time-dependent forward solution for photon transport in a head model is a key capability for performing accurate inversion for functional diffuse optical imaging of the brain. The diffusion approximation to photon transport is much faster to simulate than the physically correct radiative transport equation (RTE); however, it is commonly assumed that scattering lengths must be much smaller than all system dimensions and all absorption lengths for the approximation to be accurate. Neither of these conditions is satisfied in the cerebrospinal fluid (CSF). Since line-of-sight distances in the CSF are small, of the order of a few millimeters, we explore the idea that the CSF scattering coefficient may be modeled by any value from zero up to the order of the typical inverse line-of-sight distance, or approximately 0.3 mm-1, without significantly altering the calculated detector signals or the partial path lengths relevant for functional measurements. We demonstrate this in detail by using a Monte Carlo simulation of the RTE in a three-dimensional head model based on clinical magnetic resonance imaging data, with realistic optode geometries. Our findings lead us to expect that the diffusion approximation will be valid even in the presence of the CSF, with consequences for faster solution of the inverse problem.
Acoustic Scattering from Munitions in the Underwater Environment: Measurements and Modeling
Williams, K.; Kargl, S. G.; Espana, A.
2017-12-01
Acoustical scattering from elastic targets has been a subject of research for several decades. However, the introduction of those targets into the ocean environment brings new complexities to quantitative prediction of that scattering. The goal of our work has been to retain as much of the target physics as possible while also handling the propagation to and from the target in the multi-path ocean environment. Testing of the resulting predictions has been carried out via ocean experiments in which munitions are deployed on and within the sediment. We will present the overall philosophy used in the modeling and then compare model results to measurements. A 60 cm long 30 cd diameter aluminum cylinder will be used as a canonical example and then a sample of results for a variety of munitions will be shown. Finally, we will discuss the use of both the models and measurements in assessing the ability of sonar to discriminate munitions from other man-made targets. The difficulty of this challenge will be made apparent via results from a recent experiment in which both munitions and man-made "clutter" were deployed on a rippled sand interface.
Otsuki, Soichi
2018-04-01
Polarimetric imaging of absorbing, strongly scattering, or birefringent inclusions is investigated in a negligibly absorbing, moderately scattering, and isotropic slab medium. It was proved that the reduced effective scattering Mueller matrix is exactly calculated from experimental or simulated raw matrices even if the medium is anisotropic and/or heterogeneous, or the outgoing light beam exits obliquely to the normal of the slab surface. The calculation also gives a reasonable approximation of the reduced matrix using a light beam with a finite diameter for illumination. The reduced matrix was calculated using a Monte Carlo simulation and was factorized in two dimensions by the Lu-Chipman polar decomposition. The intensity of backscattered light shows clear and modestly clear differences for absorbing and strongly scattering inclusions, respectively, whereas it shows no difference for birefringent inclusions. Conversely, some polarization parameters, for example, the selective depolarization coefficients exhibit only a slight difference for the absorbing inclusions, whereas they showed clear difference for the strongly scattering or birefringent inclusions. Moreover, these quantities become larger with increasing the difference in the optical properties of the inclusions relative to the surrounding medium. However, it is difficult to recognize inclusions that buried at the depth deeper than 3 mm under the surface. Thus, the present technique can detect the approximate shape and size of these inclusions, and considering the depth where inclusions lie, estimate their optical properties. This study reveals the possibility of the polarization-sensitive imaging of turbid inhomogeneous media using a pencil beam for illumination.
Polarimetric neutron spin echo: Feasibility and first results
Energy Technology Data Exchange (ETDEWEB)
Pappas, C. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany)], E-mail: pappas@hmi.de; Lelievre-Berna, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); Bourgeat-Lami, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Thomas, M. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Grigoriev, S.; Dyadkin, V. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)
2008-07-21
Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL.
Polarimetric neutron spin echo: Feasibility and first results
International Nuclear Information System (INIS)
Pappas, C.; Lelievre-Berna, E.; Bentley, P.; Bourgeat-Lami, E.; Moskvin, E.; Thomas, M.; Grigoriev, S.; Dyadkin, V.
2008-01-01
Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL
A model for soft high-energy scattering: Tensor pomeron and vector odderon
Energy Technology Data Exchange (ETDEWEB)
Ewerz, Carlo, E-mail: C.Ewerz@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Maniatis, Markos, E-mail: mmaniatis@ubiobio.cl [Departamento de Ciencias Básicas, Universidad del Bío-Bío, Avda. Andrés Bello s/n, Casilla 447, Chillán 3780000 (Chile); Nachtmann, Otto, E-mail: O.Nachtmann@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)
2014-03-15
A model for soft high-energy scattering is developed. The model is formulated in terms of effective propagators and vertices for the exchange objects: the pomeron, the odderon, and the reggeons. The vertices are required to respect standard rules of QFT. The propagators are constructed taking into account the crossing properties of amplitudes in QFT and the power-law ansätze from the Regge model. We propose to describe the pomeron as an effective spin 2 exchange. This tensor pomeron gives, at high energies, the same results for the pp and pp{sup -bar} elastic amplitudes as the standard Donnachie–Landshoff pomeron. But with our tensor pomeron it is much more natural to write down effective vertices of all kinds which respect the rules of QFT. This is particularly clear for the coupling of the pomeron to particles carrying spin, for instance vector mesons. We describe the odderon as an effective vector exchange. We emphasise that with a tensor pomeron and a vector odderon the corresponding charge-conjugation relations are automatically fulfilled. We compare the model to some experimental data, in particular to data for the total cross sections, in order to determine the model parameters. The model should provide a starting point for a general framework for describing soft high-energy reactions. It should give to experimentalists an easily manageable tool for calculating amplitudes for such reactions and for obtaining predictions which can be compared in detail with data. -- Highlights: •A general model for soft high-energy hadron scattering is developed. •The pomeron is described as effective tensor exchange. •Explicit expressions for effective reggeon–particle vertices are given. •Reggeon–particle and particle–particle vertices are related. •All vertices respect the standard C parity and crossing rules of QFT.
Abdellah, Marwan
2017-02-15
Background We present a visualization pipeline capable of accurate rendering of highly scattering fluorescent neocortical neuronal models. The pipeline is mainly developed to serve the computational neurobiology community. It allows the scientists to visualize the results of their virtual experiments that are performed in computer simulations, or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build biologically accurate models of the brain. These models result from computer simulations of physical experiments that use fluorescence imaging to understand the structural and functional aspects of the brain. Due to the limited capabilities of the current visualization workflows to handle fluorescent volumetric datasets, we propose a physically-based optical model that can accurately simulate light interaction with fluorescent-tagged scattering media based on the basic principles of geometric optics and Monte Carlo path tracing. We also develop an automated and efficient framework for generating dense fluorescent tissue blocks from a neocortical column model that is composed of approximately 31000 neurons. Results Our pipeline is used to visualize a virtual fluorescent tissue block of 50 μm3 that is reconstructed from the somatosensory cortex of juvenile rat. The fluorescence optical model is qualitatively analyzed and validated against experimental emission spectra of different fluorescent dyes from the Alexa Fluor family. Conclusion We discussed a scientific visualization pipeline for creating images of synthetic neocortical neuronal models that are tagged virtually with fluorescent labels on a physically-plausible basis. The pipeline is applied to analyze and validate simulation data generated from neuroscientific in silico experiments.
International Nuclear Information System (INIS)
Dahmen, Bernd
1994-01-01
A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))
Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun
2010-10-01
In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.
Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model
Karak, Bidya Binay; Miesch, Mark
2017-09-01
We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.
Excess noise in Lidar Thomson scattering methods
International Nuclear Information System (INIS)
Smith, R J; Drake, L A P; Lestz, J B
2012-01-01
Fundamental detection limits for the Lidar Thomson scattering technique and in particular pulsed polarimetry are presented for the first time for the long wavelength limit of incoherent Thomson scattering. Pulsed polarimetry generalizes Lidar Thomson scattering to include local magnetic field sensing. The implication for these techniques is explored for two experimental regimes where shot limited detection no longer applies: tokamaks of ITER size and cm-size wire Z pinch plasmas of High Energy Density (HED) science. The utility and importance of developing Lidar Thomson scattering at longer wavelengths for the magnetic fusion program is illustrated by a study of sightline (local) polarimetry measurements on a 15MA ITER scenario. Polarimetric measurements in the far infrared regime are shown to reach sensitivities that are instructive and useful but with a complex behaviour that make spatially resolved measurements all but mandatory.
Simplified models for new physics in vector boson scattering. Input for Snowmass 2013
International Nuclear Information System (INIS)
Reuter, Juergen; Kilian, Wolfgang; Sekulla, Marco
2013-07-01
In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.
Simplified models for new physics in vector boson scattering. Input for Snowmass 2013
Energy Technology Data Exchange (ETDEWEB)
Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kilian, Wolfgang; Sekulla, Marco [Siegen Univ. (Germany). Theoretische Physik I
2013-07-15
In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.
Higher order spin-dependent terms in D0-brane scattering from the matrix model
International Nuclear Information System (INIS)
McArthur, I.N.
1998-01-01
The potential describing long-range interactions between D0-branes contains spin-dependent terms. In the matrix model, these should be reproduced by the one-loop effective action computed in the presence of a non-trivial fermionic background ψ. The v 3 ψ 2 /r 8 term in the effective action has been computed by Kraus and shown to correspond to a spin-orbit interaction between D0-branes, and the ψ 8 /r 11 term in the static potential has been obtained by Barrio et al. In this paper, the v 2 ψ 4 /r 9 term is computing in the matrix model and compared with the corresponding results of Morales et al. obtained using string theoretic methods. The technique employed is adapted to the underlying supersymmetry of the matrix model, and should be useful in the calculation of spin-dependent effects in more general Dp-brane scatterings. (orig.)
Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A
2010-10-11
We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse
2016-12-13
Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.
International Nuclear Information System (INIS)
Amado, R.D.; Sparrow, D.A.
1984-01-01
The importance of inelastic channels in proton-nucleus scattering grows with momentum transfer, q, so that for large q coupled channels are required. This happens when the elastic and inelastic cross sections become comparable. We incorporate these ideas in a simple analytic framework to explain the large angle p- 208 Pb elastic scattering data at 800 MeV for which standard optical model calculations have failed completely
Structural evaluation of an amyloid fibril model using small-angle x-ray scattering
Dahal, Eshan; Choi, Mina; Alam, Nadia; Bhirde, Ashwinkumar A.; Beaucage, Serge L.; Badano, Aldo
2017-08-01
Amyloid fibrils are highly structured protein aggregates associated with a wide range of diseases including Alzheimer’s and Parkinson’s. We report a structural investigation of an amyloid fibril model prepared from a commonly used plasma protein (bovine serum albumin (BSA)) using small-angle x-ray scattering (SAXS) technique. As a reference, the size estimates from SAXS are compared to dynamic light scattering (DLS) data and the presence of amyloid-like fibrils is confirmed using Congo red absorbance assay. Our SAXS results consistently show the structural transformation of BSA from spheroid to rod-like elongated structures during the fibril formation process. We observe the elongation of fibrils over two months with fibril length growing from 35.9 ± 3.0 nm to 51.5 ± 2.1 nm. Structurally metastable fibrils with distinct SAXS profiles have been identified. As proof of concept, we demonstrate the use of such distinct SAXS profiles to detect fibrils in the mixture solutions of two species by estimating their volume fractions. This easily detectable and well-characterized amyloid fibril model from BSA can be readily used as a control or standard reference to further investigate SAXS applications in the detection of structurally diverse amyloid fibrils associated with protein aggregation diseases.
Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C
2013-11-07
Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.
Vehicle license plate recognition in dense fog based on improved atmospheric scattering model
Tang, Chunming; Lin, Jun; Chen, Chunkai; Dong, Yancheng
2018-04-01
An effective method based on improved atmospheric scattering model is proposed in this paper to handle the problem of the vehicle license plate location and recognition in dense fog. Dense fog detection is performed firstly by the top-hat transformation and the vertical edge detection, and the moving vehicle image is separated from the traffic video image. After the vehicle image is decomposed into two layers: structure and texture layers, the glow layer is separated from the structure layer to get the background layer. Followed by performing the mean-pooling and the bicubic interpolation algorithm, the atmospheric light map of the background layer can be predicted, meanwhile the transmission of the background layer is estimated through the grayed glow layer, whose gray value is altered by linear mapping. Then, according to the improved atmospheric scattering model, the final restored image can be obtained by fusing the restored background layer and the optimized texture layer. License plate location is performed secondly by a series of morphological operations, connected domain analysis and various validations. Characters extraction is achieved according to the projection. Finally, an offline trained pattern classifier of hybrid discriminative restricted boltzmann machines (HDRBM) is applied to recognize the characters. Experimental results on thorough data sets are reported to demonstrate that the proposed method can achieve high recognition accuracy and works robustly in the dense fog traffic environment during 24h or one day.
Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto
2016-09-01
Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.
Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun
2017-11-01
Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.
Directory of Open Access Journals (Sweden)
A. H. Nasr
2016-06-01
Full Text Available In fully polarized SAR (PolSAR data the returned signal from a target contains all polarizations. More information about this target may be inferred with respect to single-polarization. Distinct polarization separates targets due to its different backscattering responses. A Radarsat-2 PolSAR image acquired on December 2013 of part of Halayib area (Egypt was used in this study. Polarimetric signatures for various features (Wadi deposits, Tonalite, Chlorite schist, and Radar penetrated areas were derived and identified. Their Co-polarized and Cross-polarized signatures were generated, based on the calculation of the backscattered power at various ellipticity and orientation angles. Graphical 3D-representation of these features was provided and more details of their physical information are depicted according to their different polarization bases. The results illustrate that polarimetric signatures, obtained due to factors like surface roughness, dielectric constant and feature orientation, can be an effective representation for analyzing various features. The shape of the signature is significant and can also indicate the scattering mechanisms dominating the features response.
Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.
2018-05-01
A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.
CSIR Research Space (South Africa)
Kong, M
2015-08-01
Full Text Available of winter, dry). Sample plots were classified into two broad Lowveld site types (herbaceous-dominated and shrub and tree-dominated). Linear and circular polarized backscatters, polarimetric discriminators and polarimetric decomposition parameters were...
Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi
2017-11-01
Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.
Hu, Shuai; Gao, Taichang; Li, Hao; Yang, Bo; Jiang, Zidong; Liu, Lei; Chen, Ming
2017-10-01
The performance of absorbing boundary condition (ABC) is an important factor influencing the simulation accuracy of MRTD (Multi-Resolution Time-Domain) scattering model for non-spherical aerosol particles. To this end, the Convolution Perfectly Matched Layer (CPML), an excellent ABC in FDTD scheme, is generalized and applied to the MRTD scattering model developed by our team. In this model, the time domain is discretized by exponential differential scheme, and the discretization of space domain is implemented by Galerkin principle. To evaluate the performance of CPML, its simulation results are compared with those of BPML (Berenger's Perfectly Matched Layer) and ADE-PML (Perfectly Matched Layer with Auxiliary Differential Equation) for spherical and non-spherical particles, and their simulation errors are analyzed as well. The simulation results show that, for scattering phase matrices, the performance of CPML is better than that of BPML; the computational accuracy of CPML is comparable to that of ADE-PML on the whole, but at scattering angles where phase matrix elements fluctuate sharply, the performance of CPML is slightly better than that of ADE-PML. After orientation averaging process, the differences among the results of different ABCs are reduced to some extent. It also can be found that ABCs have a much weaker influence on integral scattering parameters (such as extinction and absorption efficiencies) than scattering phase matrices, this phenomenon can be explained by the error averaging process in the numerical volume integration.
International Nuclear Information System (INIS)
Al-Ghorabie, F.H.H.
2003-01-01
In this paper a computer model based on the use of the well-known Monte Carlo simulation code EGS4 was developed to simulate the scattering of polyenergetic X-ray beams through some materials. These materials are: lucite, polyethylene, polypropylene and aluminium. In particular, the ratio of the scattered to total X-ray fluence (scatter fraction) has been calculated for X-ray beams in the energy region 30-120 keV. In addition scatter fractions have been determined experimentally using a polyenergetic superficial X-ray unit. Comparison of the measured and the calculated results has been performed. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer. Good agreement (estimated statistical error < 5%) was obtained between the measured and the calculated values of the scatter fractions for materials with Z < 20 that were studied in this paper. Copyright (2003) Australasian College of Physical Scientists and Engineers in Medicine
Comparison of the UAF Ionosphere Model with Incoherent-Scatter Radar Data
McAllister, J.; Maurits, S.; Kulchitsky, A.; Watkins, B.
2004-12-01
The UAF Eulerian Parallel Polar Ionosphere Model (UAF EPPIM) is a first-principles three-dimensional time-dependent representation of the northern polar ionosphere (>50 degrees north latitude). The model routinely generates short-term (~2 hours) ionospheric forecasts in real-time. It may also be run in post-processing/batch mode for specific time periods, including long-term (multi-year) simulations. The model code has been extensively validated (~100k comparisons/model year) against ionosonde foF2 data during quiet and moderate solar activity in 2002-2004 with reasonable fidelity (typical relative RMS 10-20% for summer daytime, 30-50% winter nighttime). However, ionosonde data is frequently not available during geomagnetic disturbances. The objective of the work reported here is to compare model outputs with available incoherent-scatter radar data during the storm period of October-November 2003. Model accuracy is examined for this period and compared to model performance during geomagnetically quiet and moderate circumstances. Possible improvements are suggested which are likely to boost model fidelity during storm conditions.
International Nuclear Information System (INIS)
Doll, P.
1990-02-01
Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de
Model independence of scattering of three identical bosons in two dimensions
International Nuclear Information System (INIS)
Adhikari, S.K.; Tomio, L.; Delfino, A.; Frederico, T.
1992-05-01
Within the framework of scattering integral equations in momentum space we present numerical results of scattering of three-identical bosons at low energies in two dimensions for short-range separable potentials. An analysis of the present numerical results reveal the three-particle scattering observables to be independent of potential shape provided the low-energy two-particle binding energy and scattering length are held fixed throughout the investigation. (author)
Nielsen, Allan A.; Conradsen, Knut; Skriver, Henning
2016-10-01
., Skriver, H., Nielsen, A. A., and Conradsen, K., "CFAR edge detector for polarimetric SAR images," IEEE Transactions on Geoscience and Remote Sensing 41(1): 20-32, 2003. [4] van Zyl, J. J. and Ulaby, F. T., "Scattering matrix representation for simple targets," in Radar Polarimetry for Geoscience Applications, Ulaby, F. T. and Elachi, C., eds., Artech, Norwood, MA (1990). [5] Canty, M. J., Image Analysis, Classification and Change Detection in Remote Sensing,with Algorithms for ENVI/IDL and Python, Taylor & Francis, CRC Press, third revised ed. (2014). [6] Nielsen, A. A., Conradsen, K., and Skriver, H., "Change detection in full and dual polarization, single- and multi-frequency SAR data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(8): 4041-4048, 2015. [7] Conradsen, K., Nielsen, A. A., and Skriver, H., "Determining the points of change in time series of polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing 54(5), 3007-3024, 2016. [9] Christensen, E. L., Skou, N., Dall, J., Woelders, K., rgensen, J. H. J., Granholm, J., and Madsen, S. N., "EMISAR: An absolutely calibrated polarimetric L- and C-band SAR," IEEE Transactions on Geoscience and Remote Sensing 36: 1852-1865 (1998).
Threshold properties of Veneziano model for ππ, πK, and KK scattering
International Nuclear Information System (INIS)
Wong, N.N.; Kamal, A.N.
1975-01-01
The S and P partial waves are projected out at low energies for ππ, πK, K anti K, and KK scatterings from the Veneziano amplitude. The scattering lengths and the effective ranges are compared with the current-algebra predictions. Using ππ scattering as an example one can project out an arbitrary partial wave
Tong, Hao; Xu, Renxin
2013-03-01
The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.