WorldWideScience

Sample records for polarimetric radar observations

  1. Bird Migration Echoes Observed by Polarimetric Radar

    OpenAIRE

    MINDA, Haruya; FURUZAWA, Fumie A.; SATOH, Shinsuke; NAKAMURA, Kenji

    2008-01-01

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  2. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  3. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  4. Polarimetric Radar Characteristics of Simulated and Observed Intense Convection Between Continental and Maritime Environment

    Science.gov (United States)

    Matsui, T.; Dolan, B.; Tao, W. K.; Rutledge, S. A.; Iguchi, T.; Barnum, J. I.; Lang, S. E.

    2017-12-01

    This study presents polarimetric radar characteristics of intense convective cores derived from observations as well as a polarimetric-radar simulator from cloud resolving model (CRM) simulations from Midlatitude Continental Convective Clouds Experiment (MC3E) May 23 case over Oklahoma and a Tropical Warm Pool-International Cloud Experiment (TWP-ICE) Jan 23 case over Darwin, Australia to highlight the contrast between continental and maritime convection. The POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a state-of-art T-matrix-Mueller-Matrix-based polarimetric radar simulator that can generate synthetic polarimetric radar signals (reflectivity, differential reflectivity, specific differential phase, co-polar correlation) as well as synthetic radar retrievals (precipitation, hydrometeor type, updraft velocity) through the consistent treatment of cloud microphysics and dynamics from CRMs. The Weather Research and Forecasting (WRF) model is configured to simulate continental and maritime severe storms over the MC3E and TWP-ICE domains with the Goddard bulk 4ICE single-moment microphysics and HUCM spectra-bin microphysics. Various statistical diagrams of polarimetric radar signals, hydrometeor types, updraft velocity, and precipitation intensity are investigated for convective and stratiform precipitation regimes and directly compared between MC3E and TWP-ICE cases. The result shows MC3E convection is characterized with very strong reflectivity (up to 60dBZ), slight negative differential reflectivity (-0.8 0 dB) and near-zero specific differential phase above the freezing levels. On the other hand, TWP-ICE convection shows strong reflectivity (up to 50dBZ), slight positive differential reflectivity (0 1.0 dB) and differential phase (0 0.8 dB/km). Hydrometeor IDentification (HID) algorithm from the observation and simulations detect hail-dominant convection core in MC3E, while graupel-dominant convection core in TWP-ICE. This land-ocean contrast

  5. Polarimetric optimization for clutter suppression in spectral polarimetric weather radar

    NARCIS (Netherlands)

    Yin, J.; Unal, C.M.H.; Russchenberg, H.W.J.

    2017-01-01

    For the polarimetric-Doppler weather radar, sometimes there are artifacts caused by radar system itself or external sources displaying in the radar plan position indicator (PPI). These artifacts are not confined to specific range bins and also they are non-stationary when observed in the Doppler

  6. Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A; Gatlink, Patrick N.

    2013-01-01

    Estimation of rainfall integral parameters, including radar observables, and empirical relations between them are sensitive to the truncation of the drop size distribution (DSD), particularly at the large drop end. The sensitivity of rainfall integral parameters to the maximum drop diameter (D(sub max)) is exacerbated at C-band since resonance effects are pronounced for large drops in excess of 5 mm diameter (D). Due to sampling limitations, it is often difficult to reliably estimate D(sub max) with disdrometers. The resulting uncertainties in D(sub max0 potentially increase errors in radar retrieval methods, particularly at C-band, that rely on disdrometer observations for DSD input to radar models. In fact, D(sub max) is typically an assumed DSD parameter in the development of radar retrieval methods. Because of these very uncertainties, it is difficult to independently confirm disdrometer estimates of D(sub max) with polarimetric radar observations. A couple of approaches can be taken to reduce uncertainty in large drop measurement. Longer integration times can be used for the collection of larger disdrometer samples. However, integration periods must be consistent with a radar resolution volume (RRV) and the temporal and spatial scales of the physical processes affecting the DSD therein. Multiple co-located disdrometers can be combined into a network to increase the sample size within a RRV. However, over a reasonable integration period, a single disdrometer sample volume is many orders of magnitudes less than a RRV so it is not practical to devise a network of disdrometers that has an equivalent volume to a typical RRV. Since knowledge of DSD heterogeneity and large drop occurrence in time and space is lacking, the specific accuracy or even general representativeness of disdrometer based D(sub max) and large drop concentration estimates within a RRV are currently unknown. To address this complex issue, we begin with a simpler question. Is the frequency of

  7. A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations

    Science.gov (United States)

    Tan, H.; Chandra, C. V.; Chen, H.

    2016-12-01

    Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge

  8. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  9. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  10. Full Polarimetric Synthetic Aperture Radar (SAR) Data for ionosphere observation - A comparative study

    Science.gov (United States)

    Mohanty, S.; Singh, G.

    2017-12-01

    Ionosphere, predominantly, govern the propagation of radio waves, especially at L-band and lower frequencies. Small-scale, rapid fluctuations in the electron density, termed as scintillation phenomenon, cause rapid variations in signal amplitude and phase. Scintillation studies have been done using ground-based radio transmitter and beacon GPS signals. In this work, attempt has been made to utilize full polarimetric synthetic aperture radar (SAR) satellite signal at L-band (1.27 GHz) to develop a new measurement index for SAR signal intensity fluctuation. Datasets acquired from Japan's latest Advanced Land Observation Satellite (ALOS)-2 over the Indian subcontinent on two different dates, with varying ionospheric activities, have been utilized to compare the index. A 20% increase in the index values for a scintillation-affected day has been observed. The result coincides with the nature of ionospheric scintillation pattern typically observed over the equatorial belt. Total electron content values, for the two dates of acquisition, obtained from freely available Ionosphere Exchange (IONEX) data have been used to validate the varying ionospheric activities as well as the trend in index results. Another interesting finding of the paper is the demarcation of the equatorial anomaly belt. The index values are comparatively higher at these latitudes on a scintillation-affected day. Furthermore, the SAR signal intensity fluctuation index has great potential in being used as a preliminary measurement index to identify low frequency SAR data affected by ionospheric scintillation.

  11. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations

    Science.gov (United States)

    Wang, Mingjun; Zhao, Kun; Xue, Ming; Zhang, Guifu; Liu, Su; Wen, Long; Chen, Gang

    2016-10-01

    The evolution of microphysical characteristics of a rainband in Typhoon Matmo (2014) over eastern China, through its onset, developing, mature, and dissipating stages, is documented using observations from an S band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD). The drop size distributions observed by the 2DVD and retrieved from the polarimetric radar measurements indicate that the convection in the rainband generally contains smaller drops and higher number concentrations than the typical maritime type convection described in Bringi et al. (2003). The average mass-weighted mean diameter (Dm) of convective precipitation in the rainband is about 1.41 mm, and the average logarithmic normalized intercept (Nw) is 4.67 log10 mm-1 m-3. To further investigate the dominant microphysical processes, the evolution of the vertical structures of polarimetric variables is examined. Results show that complex ice processes are involved above the freezing level, while it is most likely that the accretion and/or coalescence processes dominate below the freezing level throughout the rainband life cycle. A combined examination of the polarimetric measurements and profiles of estimated vertical liquid and ice water contents indicates that the conversion of cloud water into rainwater through cloud water accretion by raindrops plays a dominant role in producing heavy rainfall. The high estimated precipitation efficiency of 50% also suggests that cloud water accretion is the dominant mechanism for producing heavy rainfall. This study represents the first time that radar and 2DVD observations are used together to characterize the microphysical characteristics and precipitation efficiency for typhoon rainbands in China.

  12. High-resolution polarimetric X-band weather radar observations at the Cabauw Experimental Site for Atmospheric Research

    NARCIS (Netherlands)

    Otto, T.; Russchenberg, H.W.J.

    2013-01-01

    In 2007, the horizontally scanning polarimetric X-band radar IDRA (IRCTR Drizzle Radar) was installed on top of the 213 m high mast at the Dutch meteorological observatory Cabauw Experimental Site for Atmospheric Research (CESAR) at Netherlands. This radar complements a large variety of measurement

  13. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  14. Using polarimetric radar observations and probabilistic inference to develop the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), a novel microphysical parameterization framework

    Science.gov (United States)

    van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.

    2016-12-01

    Microphysical parameterization schemes have reached an impressive level of sophistication: numerous prognostic hydrometeor categories, and either size-resolved (bin) particle size distributions, or multiple prognostic moments of the size distribution. Yet, uncertainty in model representation of microphysical processes and the effects of microphysics on numerical simulation of weather has not shown a improvement commensurate with the advanced sophistication of these schemes. We posit that this may be caused by unconstrained assumptions of these schemes, such as ad-hoc parameter value choices and structural uncertainties (e.g. choice of a particular form for the size distribution). We present work on development and observational constraint of a novel microphysical parameterization approach, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), which seeks to address these sources of uncertainty. Our framework avoids unnecessary a priori assumptions, and instead relies on observations to provide probabilistic constraint of the scheme structure and sensitivities to environmental and microphysical conditions. We harness the rich microphysical information content of polarimetric radar observations to develop and constrain BOSS within a Bayesian inference framework using a Markov Chain Monte Carlo sampler (see Kumjian et al., this meeting for details on development of an associated polarimetric forward operator). Our work shows how knowledge of microphysical processes is provided by polarimetric radar observations of diverse weather conditions, and which processes remain highly uncertain, even after considering observations.

  15. Evaluating the potential use of a high-resolution X-band polarimetric radar observations in Urban Hydrology

    Science.gov (United States)

    Anagnostou, Marios N.; Kalogiros, John; Marzano, Frank S.; Anagnostou, Emmanouil N.; Baldini, Luca; Nikolopoulos, EfThymios; Montopoli, Mario; Picciotti, Errico

    2014-05-01

    operational, low-frequency (C-band or S-ban) and high-power weather radars. The above hypothesis is examined using data collected during the HyMEX 2012 Special Observation Period (Nov-Feb) the urban and sub-urban complex terrain area in the Central Italy (CI). The area is densely populated and it includes the high-density populated urban and industrial area of Rome. The orography of CI is quite complex, going from sea level to nearly 3000 m in less than 150 km. The CI area involves many rivers, including two major basins: the Aniene-Tiber basin (1000 km long) and the Aterno-Pescara basin (300 km long), respectively on the west and on the east side of the Apennines ridge. Data include observations from i) the National Observatory of Athens' X-band polarimetric weather radar (XPOL), ii) two X-band miniradars (WR25X located in CNR, WR10X located in Rome Sapienza), iii) a dense network of raingauges and disdrometers (i.e. Parsivel type and 2D-video type). In addition, the experimental area is also covered from the nearby the National Research Council (CNR)'s C-band dual-polarization weather radar (Polar55C), which were involved also in the analysis. A number of storm events are selected and compared with the nearby C-band radar to investigate the potential of using high-resolution and microphysically-derived rainfall based on X-band polarimetric radar observations. Events have been discriminated on the basis of rainfall intensity and hydrological response. Results reveal that in contrast with the other two rainfall sources (in situ and C-band radar), X-band radar rainfall estimates offer an improved representation of the local precipitation variability, which turns to have a significant impact in simulating the peak flows associated with these events.

  16. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    Energy Technology Data Exchange (ETDEWEB)

    van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.

  17. Some OFDM waveforms for a fully polarimetric weather radar

    NARCIS (Netherlands)

    Van Genderen, P.; Krasnov, O.A.; Wang, Z.; Tigrek, R.F.

    2012-01-01

    Retrieval of cloud parameters in weather radar benefits from polarimetric measurements. Most polarimetric radars measure the full backscatter matrix (BSM) using a few alternating polarized sounding signals. Using specially encoded orthogonal frequency division multiplexing (OFDM) signals however,

  18. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    Science.gov (United States)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  19. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China

    Science.gov (United States)

    Wen, Jing; Zhao, Kun; Huang, Hao; Zhou, Bowen; Yang, Zhonglin; Chen, Gang; Wang, Mingjun; Wen, Long; Dai, Huaning; Xu, Lili; Liu, Su; Zhang, Guifu; Lee, Wen-Chau

    2017-08-01

    The evolution of the microphysical structures of a subtropical squall line observed during the Observation, Prediction and Analysis of Severe Convection of China (OPACC) field campaign in Eastern China is documented in this paper. The data collected from a C-band, polarimetric Doppler radar (reflectivity Z, differential reflectivity ZDR, and specific differential phase KDP) and a disdrometer are used to investigate the variations of microphysical characteristics within the convective region during the formative, intensifying, and mature stages of the squall line. The microphysical characteristics of the squall line are noticeably different among these three stages. When the squall line develops from the formative stage to the mature stage, its radar-derived drop size distribution (DSD) in the convective region evolves from continental-like convection to more maritime-like convection. Contrary to previous studies, the DSD characteristics of a convective line may not be simply locked to a geographical location but varied extensively throughout its life cycle. The polarimetric radar-derived liquid water content below the freezing level in the convective region is 3 times higher than the ice water content above the freezing level. This, in conjunction with a low cloud base ( 0.68 km) and a high freezing level ( 5 km), indicates a deep warm cloud layer and the dominance of the warm rain process within this squall line.

  20. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    OpenAIRE

    Raupach, Timothy H.; Berne, Alexis

    2016-01-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observation...

  1. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Polarimetric Radar (NPOL), developed by a research team from Wallops Flight Facility, is a fully transportable and self-contained S-band research radar that...

  2. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    Science.gov (United States)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  3. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    Science.gov (United States)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  4. NAMMA NASA POLARIMETRIC DOPPLER WEATHER RADAR (NPOL) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA NASA Polarimetric Doppler Weather Radar (NPOL) dataset used the NPOL, developed by a research team from Wallops Flight Facility, is a fully transportable...

  5. Polarimetric Radar Retrievals in Southeast Texas During Hurricane Harvey

    Science.gov (United States)

    Wolff, D. B.; Petersen, W. A.; Tokay, A.; Marks, D. A.; Pippitt, J. L.; Kirstetter, P. E.

    2017-12-01

    Hurricane Harvey hit the Texas Gulf Coast as a major hurricane on August 25, 2017 before exiting the state as a tropical storm on September 1, 2017. In its wake, it left a flood of historic proportions, with some areas measuring 60 inches of rain over a five-day period. Although the storm center stayed west of the immediate Houston area training bands of precipitation impacted the Houston area for five full days. The National Weather Service (NWS) WSR88D dual-polarimetric radar (KHGX), located southeast of Houston, maintained operations for the entirety of the event. The Harris County Flood Warning System (HCFWS) had 150 rain gauges deployed in its network and seven NWS Automated Surface Observing Systems (ASOS) rain gauges are also located in the area. In this study, we used the full radar data set to retrieve daily and event-total precipitation estimates within 120 km of the KHGX radar for the period August 25-29, 2017. These estimates were then compared to the HCFWS and ASOS gauges. Three different polarimetric hybrid rainfall retrievals were used: Ciffeli et al. 2011; Bringi et al. 2004; and, Chen et al. 2017. Each of these hybrid retrievals have demonstrated robust performance in the past. However, both daily and event-total comparisons from each of these retrievals compared to those of HCFWS and ASOS rain gauge networks resulted in significant underestimates by the radar retrievals. These radar underestimates are concerning. Sources of error and variance will be investigated to understand the source of radar-gauge disagreement. One current hypothesis is that due to the large number of small drops often found in hurricanes, the differential reflectivity and specific differential phase are relatively small so that the hybrid algorithms use only the reflectivity/rain rate procedure (so called Z-R relationships), and hence rarely invoke the ZDR or KDP procedures. Thus, an alternative Z-R relationship must be invoked to retrieve accurate rain rate estimates.

  6. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars

    Directory of Open Access Journals (Sweden)

    Roberto Cremonini

    2010-11-01

    Full Text Available Piemonte region, in the north-western Italy, is characterized by complex orography and Mediterranean influence that often causes extreme rainfall event, during the warm season. Although the region is monitored by a dense gauge network (more than one gauge per 100 km2, the ground measurements are often inadequate to properly observe intense and highly variable precipitations. Polarimetric weather radars provide a unique way to monitor rainfall over wide areas, with the required spatial detail and temporal resolution. Nevertheless, most European weather radar networks are operating at C-band, which may seriously limit quantitative precipitation estimation in heavy rainfall due to relevant power signal attenuation. Phase measurements, unlike power measurements, are not affected by signal attenuation. For this reason, polarimetric radars, for which the differential phase shift measurements are available, provide an additional way in which to estimate precipitation, which is immune to signal attenuation. In this work differential phase based rainfall estimation techniques are applied to analyze two flash-floods: the first one occurred on the Ligurian Apennines on 16 August 2006 and the second occurred on 13 September 2008, causing rain accumulations above 270 mm in few hours.

  7. Polarimetric radar characteristics of storms with and without lightning activity

    Science.gov (United States)

    Mattos, Enrique V.; Machado, Luiz A. T.; Williams, Earle R.; Albrecht, Rachel I.

    2016-12-01

    This paper analyzes the cloud microphysics in different layers of storms as a function of three-dimensional total lightning density. A mobile X-band polarimetric radar and very high frequency (VHF) sources from Lightning Mapping Array (LMA) observations during the 2011/2012 Brazil spring-summer were used to determine the microphysical signatures of radar vertical profiles and lightning density. This study quantified the behavior of 5.3 million vertical profiles of the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and correlation coefficient (ρHV). The principal changes in the polarimetric variables occurred only for VHF source rate density greater than 14 VHF sources per km2 in 4 min. These storms showed an enhanced positive KDP in the mixed 1 layer (from 0 to -15°C) probably associated with supercooled liquid water signatures, whereas regions with negative ZDR and KDP and moderate ZH in the mixed 2 layer (from -15 to -40°C) were possibly associated with the presence of conical graupel. The glaciated (above -40°C) and upper part of the mixed 2 layers showed a significant trend to negative KDP with an increase in lightning density, in agreement with vertical alignment of ice particle by the cloud electric field. A conceptual model that presents the microphysical signatures in storms with and without lightning activity was constructed. The observations documented in this study provide an understanding of how the combinations of polarimetric variables could help to identify storms with different lightning density and vice versa.

  8. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 Mobile X-Band Polarimetric Weather Radar dataset was collected by the Mobile X-band Polarimetric Weather Radar on Wheels (X-POW), which is a Doppler...

  9. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Directory of Open Access Journals (Sweden)

    T. H. Raupach

    2017-07-01

    Full Text Available A new technique for estimating the raindrop size distribution (DSD from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  10. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Science.gov (United States)

    Raupach, Timothy H.; Berne, Alexis

    2017-07-01

    A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  11. Polarimetric synthetic aperture radar data and the complex Wishart distribution

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2003-01-01

    When working with multi-look fully polarimetric synthetic aperture radar (SAR) data an appropriate way of representing the backscattered signal consists of the so-called covariance matrix. For each pixel this is a 3 by 3 Hermitian, positive definite matrix which follows a complex Wishart distribu...

  12. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  13. Radar Measurement of Human Polarimetric Micro-Doppler

    Directory of Open Access Journals (Sweden)

    David Tahmoush

    2013-01-01

    Full Text Available We use polarimetric micro-Doppler for the detection of arm motion, especially for the classification of whether someone has their arms swinging and is thus unloaded. The arm is often bent at the elbow, providing a surface somewhat similar to a dihedral. This is distinct from the more planar surfaces of the body which allows us to isolate the signals of the arm (and knee. The dihedral produces a double bounce that can be seen in polarimetric radar data by measuring the phase difference between HH and VV. This measurement can then be used to determine whether the subject is unloaded.

  14. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    Full Text Available SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height

  15. Millimeter Wave Polarimetric Radar Remote Sensing of Ice Clouds.

    Science.gov (United States)

    Tang, Chengxian

    Ice clouds play important roles in many practical and theoretical researches. This thesis investigates the electromagnetic scattering properties of ice crystals at 94 and 220 GHz, and polarimetric radar techniques for ice crystal type discrimination and ice mass content estimation. The scattering amplitude matrix is computed for pristine ice crystals of different sizes and from different incidence directions using the Finite Difference Time Domain method. Hexagonal plates, stellar crystals, and hexagonal columns with empirical aspect ratios are considered. The results show that the co-polarized scattering amplitudes are not sensitive to the azimuthal incidence angle but dependent on the polar incidence angle theta as functions of costheta or sintheta raised to a power which depends on particle size. Cross-polarized scattering amplitudes are negligible when the wave polarization is aligned with respect to the particle symmetry axis. Numerical computations are performed to examine the dependence of polarimetric radar parameters on the parameters in the gamma size and Gaussian canting angle distributions, and on radar elevation angle. The computed Mueller matrix elements related to the cross-correlation of the co-polarized and cross-polarized scattering amplitudes are less than 5% of the total irradiance. The linear depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found depolarization ratio, circular depolarization ratio, and dual-frequency ratio are found useful for differentiating between planar ice crystals and columns. Five relationships between ice mass content and polarimetric radar parameters are derived based on numerical simulations representing various assumed ice mass contents and gamma size distributions. The specific differential phase at incidence angles away from the zenith, and effective reflectivity factor together with dual-frequency ratio can provide reasonable estimates for ice mass content. Simulations based on in

  16. Identification of hydrometeor mixtures in polarimetric radar measurements and their linear de-mixing

    Science.gov (United States)

    Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis

    2017-04-01

    The issue of hydrometeor mixtures affects radar sampling volumes without a clear dominant hydrometeor type. Containing a number of different hydrometeor types which significantly contribute to the polarimetric variables, these volumes are likely to occur in the vicinity of the melting layer and mainly, at large distance from a given radar. Motivated by potential benefits for both quantitative and qualitative applications of dual-pol radar, we propose a method for the identification of hydrometeor mixtures and their subsequent linear de-mixing. This method is intrinsically related to our recently proposed semi-supervised approach for hydrometeor classification. The mentioned classification approach [1] performs labeling of radar sampling volumes by using as a criterion the Euclidean distance with respect to five-dimensional centroids, depicting nine hydrometeor classes. The positions of the centroids in the space formed by four radar moments and one external parameter (phase indicator), are derived through a technique of k-medoids clustering, applied on a selected representative set of radar observations, and coupled with statistical testing which introduces the assumed microphysical properties of the different hydrometeor types. Aside from a hydrometeor type label, each radar sampling volume is characterized by an entropy estimate, indicating the uncertainty of the classification. Here, we revisit the concept of entropy presented in [1], in order to emphasize its presumed potential for the identification of hydrometeor mixtures. The calculation of entropy is based on the estimate of the probability (pi ) that the observation corresponds to the hydrometeor type i (i = 1,ṡṡṡ9) . The probability is derived from the Euclidean distance (di ) of the observation to the centroid characterizing the hydrometeor type i . The parametrization of the d → p transform is conducted in a controlled environment, using synthetic polarimetric radar datasets. It ensures balanced

  17. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    Directory of Open Access Journals (Sweden)

    J. Grazioli

    2015-01-01

    Full Text Available A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number of hydrometeor classes (nopt that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a priori, but they are learned from data. The approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (from which about 50 precipitation events are used in the present study. Seven hydrometeor classes (nopt = 7 have been found in the data set, and they have been identified as light rain (LR, rain (RN, heavy rain (HR, melting snow (MS, ice crystals/small aggregates (CR, aggregates (AG, and rimed-ice particles (RI.

  18. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobile X-band Polarimetric Weather Radar on Wheels (X-POW)is a Doppler scanning radar operating at 9.3 GHz.with horizontal and vertical polarization. Used for...

  19. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick

    2015-04-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  20. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    Science.gov (United States)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  1. Spectral Polarimetric Features Analysis of Wind Turbine Clutter in Weather Radar

    NARCIS (Netherlands)

    Yin, J.; Krasnov, O.A.; Unal, C.M.H.; Medagli, S.; Russchenberg, H.W.J.

    2017-01-01

    Wind turbine clutter has gradually become a concern for the radar community for its increasing size and quantity worldwide. Based on the S-band polarimetric Doppler PARSAX radar measurements, this paper demonstrates the micro-Doppler features and spectral-polarimetric characteristic of wind turbine

  2. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  3. Beaconless search and rescue using polarimetric synthetic aperture radar

    Science.gov (United States)

    McCandless, Samuel W.; Huxtable, Barton D.; Mansfield, Arthur W.; Wallace, Ronald; Larsen, Rudolph; Rais, Houra

    1996-03-01

    In developing a beaconless search and rescue capability to quickly locate small aircraft that have crashed in remote areas, NASA's Search and Rescue (S&R) Program brings together advanced polarimetric synthetic aperture radar processing, field and laboratory tests, and state-of-the-art automated target detection algorithms. This paper provides the status of this program, which began with experiments conducted in concert with the JPL DC-8 AirSAR in 1989 at the Duke University Forest. The program is being conducted by NASA's Goddard Space Flight Center (GSFC) under the auspices of the Search and Rescue Office.

  4. Algorithm for wind speed estimate with polarimetric radar

    Directory of Open Access Journals (Sweden)

    Ю. А. Авер’янова

    2013-07-01

    Full Text Available The connection of wind speed and drops behavior is substantiated as well as the drop behavior influence onto the polarization characteristics of electromagnetic waves. The expression to calculate the wind speed taking into account the Weber number for the critical regime of drop deformation is obtained. The critical regime of drop deformation is the regime when drop is divided into two parts. The dependency of critical wind speed on the drop diameter is calculated and shown. The concept o polarization spectrum that is introduced in the previous papers is used to estimate the dynamic processes in the atmosphere. At the moment when the drop is under the influence of the wind that is equal to the critical wind speed the drop will be divided into two parts. This process will be reflected as the appearance of the two equal components of polarization spectra of reflected electromagnetic waves at the orthogonal antennas of Doppler Polarimetric Radar. Owing the information about the correspondence of the polarization component energy level to the drop diameter it is possible to estimate the wind speed with the obtained dependency. The process of the wind speed estimate with polarimetric radar is presented with the developed common algorithm

  5. Investigation of hydrometeor classification uncertainties through the POLARRIS polarimetric radar simulator

    Science.gov (United States)

    Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.

    2017-12-01

    POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With

  6. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  7. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  8. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Science.gov (United States)

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  9. Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Bambang Trisasongko

    2009-09-01

    Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.

  10. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  11. GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar OLYMPEX V2 dataset consists of rain rate, reflectivity, Doppler velocity, and other...

  12. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as...

  13. GPM GROUND VALIDATION IOWA X-BAND POLARIMETRIC MOBILE DOPPLER WEATHER RADARS IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Iowa X-band Polarimetric Mobile Doppler Weather Radars IFloodS dataset was gathered during the IFloodS campaign from April to June 2013...

  14. GPM Ground Validation NOAA X-band Polarimetric Radar (NOXP) IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA X-band dual-Polarimetric radar (NOXP) IPHEx dataset consists of differential reflectivity, differential phase shift, co-polar cross...

  15. Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar

    Directory of Open Access Journals (Sweden)

    Branislav M. Notaroš

    2016-06-01

    Full Text Available This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC, image processing methodology, advanced method-of-moments scattering computations, and state-of-the-art polarimetric radars. The article also describes the newly built and established MASCRAD (MASC + Radar in-situ measurement site, under the umbrella of CSU-CHILL Radar, as well as the MASCRAD project and 2014/2015 winter campaign. We apply a visual hull method to reconstruct 3D shapes of ice particles based on high-resolution MASC images, and perform “particle-by-particle” scattering computations to obtain polarimetric radar observables. The article also presents and discusses selected illustrative observation data, results, and analyses for three cases with widely-differing meteorological settings that involve contrasting hydrometeor forms. Illustrative results of scattering calculations based on MASC images captured during these events, in comparison with radar data, as well as selected comparative studies of snow habits from MASC, 2D video-disdrometer, and CHILL radar data, are presented, along with the analysis of microphysical characteristics of particles. In the longer term, this work has potential to significantly improve the radar-based quantitative winter-precipitation estimation.

  16. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance

    Directory of Open Access Journals (Sweden)

    Zhang Jie

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR, an important earth observation sensor, has been used in a wide range of applications for land and marine surveillance. Polarimetric SAR (PolSAR can obtain abundant scattering information of a target to improve the ability of target detection, classification, and quantitative inversion. In this paper, the important role of PolSAR in ocean monitoring is discussed with factors such as sea ice, ships, oil spill, waves, internal waves, and seabed topography. Moreover, the future development direction of PolSAR is put forward to get an inspiration for further research of PolSAR in marine surveillance applications.

  17. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    Science.gov (United States)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  18. Empirical Soil Moisture Estimation with Spaceborne L-band Polarimetric Radars: Aquarius, SMAP, and PALSAR-2

    Science.gov (United States)

    Burgin, M. S.; van Zyl, J. J.

    2017-12-01

    Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.

  19. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    Science.gov (United States)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  20. Development and Testing of Operational Dual-Polarimetric Radar Based Lightning Initiation Forecast Techniques

    Science.gov (United States)

    Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.

    2011-01-01

    Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.

  1. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-band Dual Polarimetric (NPOL) Doppler Radar MC3E dataset was collected by the NASA NPOL radar, which was developed by a research...

  2. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  3. Applications of Polarimetric Radar to the Hydrometeorology of Urban Floods in St. Louis

    Science.gov (United States)

    Chaney, M. M.; Smith, J. A.; Baeck, M. L.

    2017-12-01

    Predicting and responding to flash flooding requires accurate spatial and temporal representation of rainfall rates. The polarimetric upgrade of all US radars has led to optimism about more accurate rainfall rate estimation from the NEXRAD network of WSR-88D radars in the US. Previous work has proposed different algorithms to do so, but significant uncertainties remain, especially for extreme short-term rainfall rates that control flash floods in urban settings. We will examine the relationship between radar rainfall estimates and gage rainfall rates for a catalog of 30 storms in St. Louis during the period of polarimetric radar measurements, 2012-2016. The storms are selected to provide a large sample of extreme rainfall measurements at the 15-minute to 3-hour time scale. A network of 100 rain gages and a lack of orographic or coastal effects make St. Louis an interesting location to study these relationships. A better understanding of the relationships between polarimetric radar measurements and gage rainfall rates will aid in refining polarimetric radar rainfall algorithms, in turn helping hydrometeorologists predict flash floods and other hazards associated with severe rainfall. Given the fact that St. Louis contains some of the flashiest watersheds in the United States (Smith and Smith, 2015), it is an especially important urban area in which to have accurate, real-time rainfall data. Smith, Brianne K, and James A Smith. "The Flashiest Watersheds in the Contiguous United States." American Meteorological Society (2015): 2365-2381. Web.

  4. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  5. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  6. Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR

    Directory of Open Access Journals (Sweden)

    Cathleen E. Jones

    2011-12-01

    Full Text Available The National Aeronautics and Space Administration’s airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD and Cloude-Pottier (CP decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  7. An Icon-Based Synoptic Visualization of Fully Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Iain H. Woodhouse

    2012-03-01

    Full Text Available The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy decomposition of polarimetric data. The resulting image allows the following five variables to be displayed simultaneously: unpolarized power, alpha angle, polarimetric entropy, anisotropy and orientation angle. Examples are given for both airborne and laboratory-based imaging.

  8. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Science.gov (United States)

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  9. Design of a Small, Low Cost, P-Band Airborne Polarimetric Synthetic Aperture Radar

    NARCIS (Netherlands)

    Figueras i Ventura, J.; Hoogeboom, P.

    2004-01-01

    A preliminary study of the design of a small, low cost, P-band airborne, polarimetric Synthetic Aperture Radar desired by the Wageningen University and the Borneo Orangutan Survival Foundation (BOS) to carry out forest biomass monitoring in Indonesia is presented. The requirements of the application

  10. The PHARUS Project; Real Time Digital Processing of Airborne Polarimetric Radar Signals

    NARCIS (Netherlands)

    Pouwels, H.; Hoogeboom, P.; Koomen, P.J.; Snoeij, P.

    1992-01-01

    The Dutch PHARUS project aims for the developrlenÈ of a polarimetric C-band aircraft SAR, to be finalized in 1994. The PHARUS systen consists of three subsystens: the radar, the subsystem for the onboard data processing and recording and the ground-based subsystem for SAR processing. PHARUS is a

  11. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    Science.gov (United States)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  12. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, A. C.; Faes, D. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Townsend, R. H. D. [Department of Astronomy, University of Wisconsin-Madison, Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States); Bjorkman, J. E., E-mail: carciofi@usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  13. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  14. Complex Wishart distribution based analysis of polarimetric synthetic aperture radar data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Skriver, Henning; Conradsen, Knut

    2007-01-01

    Multi-look, polarimetric synthetic aperture radar (SAR) data are often worked with in the so-called covariance matrix representation. For each pixel this representation gives a 3x3 Hermitian, positive definite matrix which follows a complex Wishart distribution. Based on this distribution a test ...... covering agricultural fields near Foulum, Denmark, are used. Soon the Japanese ALOS, the German TerraSAR-X and the Canadian RADARSAT-2 will acquire space-borne, polarimetric data making analysis based on these methods important....

  15. Basics and first experiments demonstrating isolation improvements in the agile polarimetric FM-CW radar – PARSAX

    NARCIS (Netherlands)

    Krasnov, O.A.; Babur, G.P.; Wang, Z.; Ligthart, L.P.; Van der Zwan, F.

    2010-01-01

    The article describes the IRCTR PARSAX radar system, the S-band high-resolution Doppler polarimetric frequency modulated continuous wave (FM-CW) radar with dual-orthogonal sounding signals, which has the possibility to measure all elements of the radar target polarization scattering matrix

  16. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China

    Science.gov (United States)

    Wu, Chong; Liu, Liping; Wei, Ming; Xi, Baozhu; Yu, Minghui

    2018-03-01

    A modified hydrometeor classification algorithm (HCA) is developed in this study for Chinese polarimetric radars. This algorithm is based on the U.S. operational HCA. Meanwhile, the methodology of statistics-based optimization is proposed including calibration checking, datasets selection, membership functions modification, computation thresholds modification, and effect verification. Zhuhai radar, the first operational polarimetric radar in South China, applies these procedures. The systematic bias of calibration is corrected, the reliability of radar measurements deteriorates when the signal-to-noise ratio is low, and correlation coefficient within the melting layer is usually lower than that of the U.S. WSR-88D radar. Through modification based on statistical analysis of polarimetric variables, the localized HCA especially for Zhuhai is obtained, and it performs well over a one-month test through comparison with sounding and surface observations. The algorithm is then utilized for analysis of a squall line process on 11 May 2014 and is found to provide reasonable details with respect to horizontal and vertical structures, and the HCA results—especially in the mixed rain-hail region—can reflect the life cycle of the squall line. In addition, the kinematic and microphysical processes of cloud evolution and the differences between radar-detected hail and surface observations are also analyzed. The results of this study provide evidence for the improvement of this HCA developed specifically for China.

  17. Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar

    Directory of Open Access Journals (Sweden)

    G. Vulpiani

    2015-11-01

    It is based on an iterative approach that uses a very short-length (1 km moving window, allowing proper capture of the observed high radial gradients of the differential phase. The parameterization of the attenuation correction algorithm, which uses the reconstructed differential phase shift, is derived from electromagnetic simulations based on 3 years of drop size distribution (DSD observations collected in Rome (Italy. A fuzzy logic hydrometeor classification algorithm was also adopted to support the analysis of the storm characteristics. The precipitation field amounts were reconstructed using a combined polarimetric rainfall algorithm based on reflectivity and specific differential phase. The first storm was observed on 21 February when a winter convective system that originated in the Tyrrhenian Sea, marginally hit the central-eastern coastline of Sicily, causing a flash flood in Catania. Due to an optimal location (the system is located a few kilometers from the city center, it was possible to retrieve the storm characteristics fairly well, including the amount of rainfall field at the ground. Extemporaneous signal extinction, caused by close-range hail core causing significant differential phase shift in a very short-range path, is documented. The second storm, on 21 August 2013, was a summer mesoscale convective system that originated from a Mediterranean low pressure system lasting a few hours that eventually flooded the city of Syracuse. The undergoing physical process, including the storm dynamics, is inferred by analyzing the vertical sections of the polarimetric radar measurements. The high registered amount of precipitation was fairly well reconstructed, although with a trend toward underestimation at increasing distances. Several episodes of signal extinction were clearly manifested during the mature stage of the observed supercells.

  18. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  19. Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field

    Science.gov (United States)

    Shi, Junfei; Li, Lingling; Liu, Fang; Jiao, Licheng; Liu, Hongying; Yang, Shuyuan; Liu, Lu; Hao, Hongxia

    2016-04-01

    Markov random field (MRF) model is an effective tool for polarimetric synthetic aperture radar (PolSAR) image classification. However, due to the lack of suitable contextual information in conventional MRF methods, there is usually a contradiction between edge preservation and region homogeneity in the classification result. To preserve edge details and obtain homogeneous regions simultaneously, an adaptive MRF framework is proposed based on a polarimetric sketch map. The polarimetric sketch map can provide the edge positions and edge directions in detail, which can guide the selection of neighborhood structures. Specifically, the polarimetric sketch map is extracted to partition a PolSAR image into structural and nonstructural parts, and then adaptive neighborhoods are learned for two parts. For structural areas, geometric weighted neighborhood structures are constructed to preserve image details. For nonstructural areas, the maximum homogeneous regions are obtained to improve the region homogeneity. Experiments are taken on both the simulated and real PolSAR data, and the experimental results illustrate that the proposed method can obtain better performance on both region homogeneity and edge preservation than the state-of-the-art methods.

  20. Sensitivity of C-Band Polarimetric Radar-Based Drop Size Distribution Measurements to Maximum Diameter Assumptions

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A.

    2011-01-01

    The estimation of rain drop size distribution (DSD) parameters from polarimetric radar observations is accomplished by first establishing a relationship between differential reflectivity (Z(sub dr)) and the central tendency of the rain DSD such as the median volume diameter (D0). Since Z(sub dr) does not provide a direct measurement of DSD central tendency, the relationship is typically derived empirically from rain drop and radar scattering models (e.g., D0 = F[Z (sub dr)] ). Past studies have explored the general sensitivity of these models to temperature, radar wavelength, the drop shape vs. size relation, and DSD variability. Much progress has been made in recent years in measuring the drop shape and DSD variability using surface-based disdrometers, such as the 2D Video disdrometer (2DVD), and documenting their impact on polarimetric radar techniques. In addition to measuring drop shape, another advantage of the 2DVD over earlier impact type disdrometers is its ability to resolve drop diameters in excess of 5 mm. Despite this improvement, the sampling limitations of a disdrometer, including the 2DVD, make it very difficult to adequately measure the maximum drop diameter (D(sub max)) present in a typical radar resolution volume. As a result, D(sub max) must still be assumed in the drop and radar models from which D0 = F[Z(sub dr)] is derived. Since scattering resonance at C-band wavelengths begins to occur in drop diameters larger than about 5 mm, modeled C-band radar parameters, particularly Z(sub dr), can be sensitive to D(sub max) assumptions. In past C-band radar studies, a variety of D(sub max) assumptions have been made, including the actual disdrometer estimate of D(sub max) during a typical sampling period (e.g., 1-3 minutes), D(sub max) = C (where C is constant at values from 5 to 8 mm), and D(sub max) = M*D0 (where the constant multiple, M, is fixed at values ranging from 2.5 to 3.5). The overall objective of this NASA Global Precipitation Measurement

  1. ESA'S POLarimetric Airborne Radar Ice Sounder (POLARIS): design and first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kristensen, Steen Savstrup; Krozer, Viktor

    2010-01-01

    -of-concept campaign was conducted in Greenland. This study outlines the design and implementation of the system, and based on first results it is concluded that in the central dry snow zone of Greenland, POLARIS can resolve shallow and deep internal ice layers, penetrate the thickest ice encountered and detect......The Technical University of Denmark has developed and tested a P-band ice sounding radar for European Space Agency (ESA). With the recent by the International Telecommunication Union (ITU) allocation of a radar band at 435 MHz, increased interest in space-based sounding of the Earth s ice caps has...... been encountered. ESA s POLarimetric Airborne Radar Ice Sounder (POLARIS) is intended to provide a better understanding of P-band scattering and propagation through ice sheets and to verify novel surface clutter suppression techniques in preparation for a potential space-based ice sounding mission...

  2. Polarimetric synthetic aperture radar application for tropical peatlands classification: a case study in Siak River Transect, Riau Province, Indonesia

    Science.gov (United States)

    Novresiandi, Dandy Aditya; Nagasawa, Ryota

    2017-01-01

    Mapping spatial distributions of tropical peatlands is important for properly estimating carbon emissions and for providing information that aids in the sustainable management of tropical peatlands, particularly in Indonesia. This study evaluated the performance of phased array type L-band synthetic aperture radar (SAR) (PALSAR) dual-polarization and fully polarimetric data for tropical peatlands classification. The study area was in Siak River Transect, Riau Province, Indonesia, a rapidly developing region, where the peatland has been intensively converted mostly into oil palm plantations over the last two decades. Thus, polarimetric features derived after polarimetric decompositions, backscatter coefficients measurements, and the radar vegetation index were evaluated to classify tropical peatlands using the decision tree classifier. Overall, polarimetric features generated by the combination of dual-polarization and fully polarimetric data yielded an overall accuracy (OA) of 69% and a kappa coefficient (K) of 0.57. The integration of an additional feature, "distance to river," to the algorithm increased the OA to 76% and K to 0.66. These results indicated that the methodology in this study might serve as an efficient tool in tropical peatlands classification, especially when involving the use of L-band SAR dual-polarization and fully polarimetric data.

  3. Full polarimetric millimetre wave radar for stand-off security screening

    Science.gov (United States)

    Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew

    2017-10-01

    The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.

  4. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  5. HAWC+/SOFIA Polarimetric Observations of OMC-1

    Science.gov (United States)

    Chuss, David; Andersson, B.-G.; Bally, John; Dowell, Charles D.; Harper, Doyal; Lazarian, Alex; Michail, Joseph M.; Morris, Mark; Novak, Giles; Siah, Javad; Vaillancourt, John; Werner, Michael; HAWC+ Science Team

    2018-01-01

    Astrophysical dust grains become partially aligned due to magnetic fields that permeate the interstellar medium. Measurements of far-infrared polarized emission provide a tool to characterize magnetic fields and test their effect on star formation in molecular clouds. The HAWC+ camera provides polarimetric imaging capability for SOFIA in four bands between 50 and 300 microns. As part of the science commissioning of the instrument, HAWC+ has obtained more than 1000 independent measurements of polarization in the OMC-1 star forming region. The observations were made at a wavelength of 89 microns with an angular resolution of 8 arcseconds. We present these preliminary data and initial analysis.

  6. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    Science.gov (United States)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem

  7. Efficient Estimation of Spectral Moments and the Polarimetric Variables on Weather Radars, Sonars, Sodars, Acoustic Flow Meters, Lidars, and Similar Active Remote Sensing Instruments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method for estimation of Doppler spectrum, its moments, and polarimetric variables on pulsed weather radars which uses over sampled echo components at a rate...

  8. IHW COMET HALLEY POLARIMETRIC OBSERVATIONS, V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the polarimetric results reported to the International Halley Watch (IHW) Photometry and Polarimetry Network (PPN) by the various...

  9. The Impact of Warm-Rain Microphysical Processes on Rain Rate and Polarimetric Observables at X-Band

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Troemel, Silke; Simmer, Clemens

    2015-04-01

    Microphysical processes govern the evolution of drop size distribution (DSD) during the development of precipitating systems. Thus, an accurate knowledge on precipitating systems from a microphysical perspective is required for better quantitative precipitation estimates (QPE). Additionally, detection of microphysical processes in 3D polarimetric radar volumes paves the way for better parameterizations in numerical weather predictions (NWP). In this study, we focus on the impact of different microphysical processes on rain rate (RR) and polarimetric observables at X band. Microphysical processes during the evolution of warm-rain precipitating systems, including size sorting, evaporation, coalescence and breakup, are taken into account. Assuming that vertical rain shaft is composed of liquid spheroids distributed in a normalized Gamma size distribution, microphysical processes are reconstructed. The variation of RR governed by microphysical processes is also examined. Unique fingerprints caused by microphysical processes have been identified in polarimetric radar observations. For size sorting, large rain drops concentrating near ground surface or at leading edge induce strong Zdr (differential reflectivity) accompanied by small Zh (reflectivity). A larger mean size in DSD results in stronger Zdr during size sorting. The increasing mean size due to evaporation and coalescence enhances Zdr, while Zh during evaporation is reduced by the depletion of small rain drops. The reduction of Zh ranges between -10 dB and 0 dB considering different DSDs during evaporation. Zh, Zdr and Kdp (specific differential phase) all decrease when large rain drops break up. The evolution of DSD which depends on the ongoing microphysical processes results in a variation in RR. Though size sorting due to differential sedimentation occurs, RR approaches stable within 15 min. Suffering from vertical wind shear, RR is reduced because of the categorization of rain drops with different terminal

  10. Radar Observation of Insects - Mosquitoes

    Science.gov (United States)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  11. Spectral Analysis of Polarimetric Weather Radar Data With Multiple Processes in a Resolution Volume

    National Research Council Canada - National Science Library

    Bachmann, Svetlana; DeBrunner, Victor; Zrnic, Dusan; Yeary, Mark

    2007-01-01

    .... An example of clear air observed using an S-band dual polarization radar is presented. Heretofore, migrating birds and wind-blown insects that are mixed within each resolution volume caused such data to be unusable for meteorological interpretation...

  12. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  13. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    Science.gov (United States)

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  14. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    Alisa L. Gallant

    2014-03-01

    Full Text Available Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  15. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes

    Science.gov (United States)

    Ramsey, Elijah W.; Meyer, Buffy M.; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore–interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy.

  16. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes.

    Science.gov (United States)

    Ramsey, Elijah; Meyer, Buffy M; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E; Bannister, Terri

    2014-12-15

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore-interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy. Published by Elsevier Ltd.

  17. Observations on the polarimetric imagery collection experiment database

    Science.gov (United States)

    Woolley, Mark; Michalson, Jacob; Romano, Joao

    2011-10-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is an ongoing collaborative effort that commenced in February 2010 between the US Army ARDEC and Army Research Laboratory (ARL). SPICE is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The overall objective of SPICE is to collect a comprehensive database of the different modalities spanning multiple years to capture sensor performance encompassing a wide variety of meteorological (MET) conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Utilizing the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors are autonomously collecting the desired data around the clock at multiple ranges containing surrogate 2S3 Self-Propelled Howitzer targets positioned at different orientations in an open woodland field. This database allows for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will revisit the SPICE data collection objectives and the sensors deployed. We will present, in a statistical sense, the integrity of the data in the long-wave infrared (LWIR) polarimetric database collected from February through September 2010 and issues and lessons learned associated with a fully autonomous, around the clock data collection. We will also demonstrate sample LWIR polarimetric imagery and the performance of the Stokes parameters under adverse weather conditions.

  18. Screening Mississippi River Levees Using Texture-Based and Polarimetric-Based Features from Synthetic Aperture Radar Data

    Directory of Open Access Journals (Sweden)

    Lalitha Dabbiru

    2017-03-01

    Full Text Available This article reviews the use of synthetic aperture radar remote sensing data for earthen levee mapping with an emphasis on finding the slump slides on the levees. Earthen levees built on the natural levees parallel to the river channel are designed to protect large areas of populated and cultivated land in the Unites States from flooding. One of the signs of potential impending levee failure is the appearance of slump slides. On-site inspection of levees is expensive and time-consuming; therefore, a need to develop efficient techniques based on remote sensing technologies is mandatory to prevent failures under flood loading. Analysis of multi-polarized radar data is one of the viable tools for detecting the problem areas on the levees. In this study, we develop methods to detect anomalies on the levee, such as slump slides and give levee managers new tools to prioritize their tasks. This paper presents results of applying the National Aeronautics and Space Administration (NASA Jet Propulsion Lab (JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR quad-polarized L-band data to detect slump slides on earthen levees. The study area encompasses a portion of levees of the lower Mississippi River in the United States. In this paper, we investigate the performance of polarimetric and texture features for efficient levee classification. Texture features derived from the gray level co-occurrence (GLCM matrix and discrete wavelet transform were computed and analyzed for efficient levee classification. The pixel-based polarimetric decomposition features, such as entropy, anisotropy, and scattering angle were also computed and applied to the support vector machine classifier to characterize the radar imagery and compared the results with texture-based classification. Our experimental results showed that inclusion of textural features derived from the SAR data using the discrete wavelet transform (DWT features and GLCM features provided

  19. Probabilistic discrimination between liquid rainfall events, hailstorms, biomass burning and industrial fires from C-Band Radar Polarimetric Variables

    Science.gov (United States)

    Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.

    2017-12-01

    Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.

  20. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Chrstopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedlovec, Gary J.; Darden, Christopher B.

    2012-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores The use of dual-polarimetric tornadic debris

  1. Microphysics in West African squall line with an Xband polarimetric radar and an Hydrometeor Identification Scheme: comparison with in situ measurements

    Science.gov (United States)

    Cazenave, F.; Gosset, M.; Kacou, M.; Alcoba, M.; Fontaine, E.

    2015-12-01

    A better knowledge on the microphysics of tropical continental convective systems is needed in order to improve quantitative precipitation measurements in the Tropics. Satellite passive microwave estimation of tropical rainfall could be improved with a better parameterization of the icy hydrometeors in the Bayesian RAIN estimation algorithm (BRAIN, Viltard et al., 2006) used over continental tropics. To address this important issue specific campaigns that combine aircraft based in situ microphysics probing and polarimetric radar have been organized as part of the CNES/ISRO satellite mission Megha-Tropiques. The first microphysics validation campaign was set up in Niamey in August 2010. The field deployment included the AMMA-CATH 56 rain gages, 3 disdrometers, 2 meteorological radars including the C-band MIT and the Xport X-band dual polarisation radar, and a 4 weeks campaign with the instrumented Falcon 20 from the french operator for environmental research aircrafts equipped with several microphysics probes and the 94Ghz cloud radar RASTA. The objective is to combine scales and methods to converge towards a parameterization of the ice size, mass and density laws inside continental Mesoscale Convective System (MCS). The Particle IDentification algorithm (PID) developed by the Colorado State University (CSU) adapted to the band X by B. Dolan (Dolan et al. 2009) is used to classify seven kind of particles: drizzle or light rain, moderate to heavy rain, wet and dry graupel, wet and dry aggregates and ice crystals. On a limited number of systems, the airborne microphysics sensors provide a detailed in situ reference on the Particle Size Distribution (PSD) that can be compared with the radar PID in the radar pixels located along the flight trajectory. An original approach has been developed for the radar - in situ comparison: it consists in simulating synthetic radar variables from the microphysics probe information and compare the 2 data sets in a common 'radar space

  2. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover

    Science.gov (United States)

    Yueh, Simon; Cline, Donald; Elder, Kelly

    2008-01-01

    Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radarechoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar resposnes are similar, while the corss-polarized (VH or HV) echoes showedgreater resposne to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, whichcreated large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

  3. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  4. Meteor observation by the Kyoto meteor radar

    International Nuclear Information System (INIS)

    Kato, S.; Tsuda, T.

    1987-01-01

    The Kyoto Meteor Radar is a monostatic coherent pulsed Doppler radar operating on the frequency of 31.57 MH. The system is computer controlled and uses radio interferometry for echo height determination. The antenna, an improvement, can be directed either to the north or the east. The system has been continuously collecting data on winds at meteor heights by radar observation. The meteor echo rate was also measured, the echo rate distribution with height and the daily variation in height integrated echo rate are discussed. Investigations of atmospheric tides are being pursued by cooperative observations. A novel approach to the study of gravity waves was attempted using the meteor radar which is able to detect the horizontal propagation of the waves by observing the changing phase through the region illuminated by the radar

  5. Ice crystal properties retrieval using radar spectral polarimetric measurements within ice/mixed-phase clouds

    NARCIS (Netherlands)

    Dufournet, Y.

    2010-01-01

    In the field of atmospheric research, ground-based radar systems are often employed to study ice/mixed-phase cloud properties based on retrieval techniques. These techniques convert the radar signal backscattered by each bulk of ice crystals being probed within the same radar resolution volume to

  6. Radar observations of asteroid 1986 JK

    Science.gov (United States)

    Ostro, S. J.; Yeomans, D. K.; Chodas, P. W.; Goldstein, R. M.; Jurgens, R. F.; Thompson, T. W.

    1989-01-01

    The asteroid 1986 JK was observed with a 3.5 cm-wavelength radar in May and June, 1986, at less than 0.029 AU; its radar echo power circular polarization ratio indicates single backscattering from smooth surface elements. A working model constructed for the asteroid in light of these radar data postulates a 1-2 km object whose shape has little elongation and some polar flattening. Orbital and physical characteristics are rather cometlike. The radar astrometric data obtained are noted to be extremely powerful for orbit-improvement, so that a search ephemeris whose uncertainty is an order-of-magnitude smaller than that based on relevant optical data alone can be prepared by combining optical and radar data.

  7. Ice fall streaks in a warm front . An S-band polarimetric radar study

    Science.gov (United States)

    Keppas, Stavros; Crosier, Jonathan; Choularton, Thomas; Bower, Keith

    2017-04-01

    On 21st January 2009, a maturing low pressure system approached the UK along with several associated systems. An observational research flight (part of the APPRAISE-Clouds project) took place in southern England, sampling the leading warm front of this system. During the flight, the Warm Conveyor Belt (WCB) was well depicted by the radar Doppler velocity parameter. Simultaneously, extensive ice fall streaks appeared on ZDR RHI scans as long slanted zones of high ZDR. It seems that there is a connection between the WCB activity and the formation and structure of the ice fall streaks. The Kelvin-Helmholtz instability caused by the WCB played a key role on their formation. Moreover, in-situ measurements showed that the ice fall streaks had a very specific substance and they can affect the surface precipitation.

  8. Multifractal Comparison of Reflectivity and Polarimetric Rainfall Data from C- and X-Band Radars and Respective Hydrological Responses of a Complex Catchment Model

    Directory of Open Access Journals (Sweden)

    Igor Paz

    2018-03-01

    Full Text Available This paper presents a comparison between C-band and X-band radar data over an instrumented and regulated catchment of the Paris region. We study the benefits of polarimetry and the respective hydrological impacts with the help of rain gauge and flow measurements using a semi-distributed hydrological model. Both types of radar confirm the high spatial variability of the rainfall down to their space resolution (1 km and 250 m, respectively. Therefore, X-band radar data underscore the limitations of simulations using a semi-distributed model with sub-catchments of an average size of 2 km. The use of the polarimetric capacity of the Météo-France C-band radar was limited to corrections of the horizontal reflectivity, and its rainfall estimates are adjusted with the help of a rain gauge network. On the contrary, no absolute calibration and scanning optimisation were performed for the polarimetric X-band radar of the Ecole des Ponts ParisTech (hereafter referred to as the ENPC X-band radar. In spite of this and the fact that the catchment is much closer to the C-band radar than to the X-band radar (average distance of 15 km vs. 35 km, respectively, the latter seems to perform at least as well as the former, but with a higher spatial resolution. This was best highlighted with the help of a multifractal analysis, which also shows that the X-band radar was able to pick up a few rainfall extremes that were smoothed out by the C-band radar.

  9. Vertical and Horizontal Polarization Observations of Slowly Varying Solar Emissions from Operational Swiss Weather Radars

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2014-12-01

    Full Text Available The electromagnetic power that arrives from the Sun in the C-band has been used to check the quality of the polarimetric, Doppler weather radar network that has recently been installed in Switzerland. The operational monitoring of this network is based on the analysis of Sun signals in the polar volume data produced during the MeteoSwiss scan program. It relies on a method that has been developed to: (1 determine electromagnetic antenna pointing; (2 monitor receiver stability; and (3 assess the differential reflectivity offset. Most of the results from such a method had been derived using data acquired in 2008, which was a period of quiet solar flux activity. Here, it has been applied, in simplified form, to the currently active Sun period. This note describes the results that have been obtained recently thanks to an inter-comparison of three polarimetric operational radars and the Sun’s reference signal observed in Canada in the S-band by the Dominion Radio Astrophysical Observatory (DRAO. The focus is on relative calibration: horizontal and vertical polarization are evaluated versus the DRAO reference and mutually compared. All six radar receivers (three systems, two polarizations are able to capture and describe the monthly variability of the microwave signal emitted by the Sun. It can be concluded that even this simplified form of the method has the potential to routinely monitor dual-polarization weather radar networks during periods of intense Sun activity.

  10. DSD Characteristics of a Mid-Winter Tornadic Storm Using C-Band Polarimetric Radar and Two 2D-Video Disdrometers

    Science.gov (United States)

    Thurai, M.; Petersen, W. A.; Carey, L. A.

    2010-01-01

    Drop size distributions in an evolving tornadic storm are examined using C-band polarimetric radar observations and two 2D-video disdrometers. The E-F2 storm occurred in mid-winter (21 January 2010) in northern Alabama, USA, and caused widespread damage. The evolution of the storm occurred within the C-band radar coverage and moreover, several minutes prior to touch down, the storm passed over a site where several disdrometers including two 2D video disdrometers (2DVD) had been installed. One of the 2DVDs is a low profile unit and the other is a new next generation compact unit currently undergoing performance evaluation. Analyses of the radar data indicate that the main region of precipitation should be treated as a "big-drop" regime case. Even the measured differential reflectivity values (i.e. without attenuation correction) were as high as 6-7 dB within regions of high reflectivity. Standard attenuation-correction methods using differential propagation phase have been "fine tuned" to be applicable to the "big drop" regime. The corrected reflectivity and differential reflectivity data are combined with the co-polar correlation coefficient and specific differential phase to determine the mass-weighted mean diameter, Dm, and the width of the mass spectrum, (sigma)M, as well as the intercept parameter , Nw. Significant areas of high Dm (3-4 mm) were retrieved within the main precipitation areas of the tornadic storm. The "big drop" regime assumption is substantiated by the two sets of 2DVD measurements. The Dm values calculated from 1-minute drop size distributions reached nearly 4 mm, whilst the maximum drop diameters were over 6 mm. The fall velocity measurements from the 2DVD indicate almost all hydrometeors to be fully melted at ground level. Drop shapes for this event are also being investigated from the 2DVD camera data.

  11. Accurate sea-land segmentation using ratio of average constrained graph cut for polarimetric synthetic aperture radar data

    Science.gov (United States)

    She, Xiaoqiang; Qiu, Xiaolan; Lei, Bin

    2017-04-01

    Separating sea surface and land areas in synthetic aperture radar (SAR) images is challenging yet of great importance to coastline extraction and subsequent coastal classification. Results of the previous state-of-art methods often suffer from a number of limitations that arise from the presence of the speckle effect and the inadequate returned signal around the boundaries. We propose a graph cut (GC)-based approach to tackle these limitations and achieve accurate sea-land segmentation results. To be more specific, as the first step, three powerful multipolarization features are extracted from the polarimetric SAR data as descriptors to fully characterize the sea area and land area. Starting from that, seeds of the sea and land are selected automatically to build the prior model for GC. Based on the prior model, we construct the undirected graph in GC using the multipolarization descriptors. Finally, we incorporate the ratio of average operator to eliminate the speckle effect and get finer results for some finer structures. Experiments on Radarsat-2 quad-polarization images demonstrate significantly improved results of our proposed algorithms compared with several state-of-the-art methods in terms of both quantitative and visual performance.

  12. Temporal Decorrelation Effect in Carbon Stocks Estimation Using Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR (Case Study: Southeast Sulawesi Tropical Forest

    Directory of Open Access Journals (Sweden)

    Laode M Golok Jaya

    2017-07-01

    Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.

  13. Telescopic observations - Visual, photographic, polarimetric. [of planet Mars

    Science.gov (United States)

    Martin, Leonard J.; James, Philip B.; Dollfus, Audouin; Iwasaki, Kyosuke; Beish, Jeffrey D.

    1992-01-01

    The paper divides the high points of telescopic observations of Mars into three time periods: historical, missions support (recent), and present. Particular attention is given to visual and photographic observations, with brief discussions of spectroscopic and polarization studies. Major topics of Martian phenomena included are albedo features, polar caps, dust storms, and white clouds. The interannual variability of the recessions of seasonal polar caps has been compared to dust storm activity, but this relationship remains uncertain. Only a very limited number of canals can be related to markings on the Viking images. The remainder are argued to be optical illusions created by observers pushing their perceived resolution beyond practical limits.

  14. Multi-wavelength and polarimetric observations of Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Eckart, A [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Schodel, R [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Meyer, L [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Trippe, S [Max Planck Institut fur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Ott, T [Max Planck Institut fur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Genzel, R [Max Planck Institut fur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Muzic, K [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Moultaka, J [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Straubmeier, C [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Baganoff, F K [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 021 39-4307 (United States); Morris, M [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Bower, G C [Department of Astronomy and Radio Astronomy Laboratory, University of California at Berkeley, Campbell Hall, Berkeley, CA 94720 (United States)

    2006-12-15

    We summarize the results of some of the latest NIR/sub-millimeter/X-ray observing campaigns. Those include the latest simultaneous observations as well as the most recent results from VLT NACO observations of polarized NIR, flare emission of Sgr A*. We interpret the new NIR, polarimetry results using a model in which spots are on relativistic orbits around Sgr A*, which is associated with the massive 3.6 million solar mass black hole at the Galactic Center. In the NIR, the observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope. In the X-ray and radio domains we used the ACIS-I instrument aboard the Chandra X-ray Observatory and the Submillimeter Array on Mauna Kea, Hawaii, as well as the Very Large Array in New Mexico, respectively.

  15. Supervised Classification of Natural Targets Using Millimeter-Wave Multifrequency Polarimetric Radar Measurements.

    Science.gov (United States)

    Lohmeier, Stephen Paul

    This dissertation classifies trees, snow, and clouds using multiparameter millimeter-wave radar data at 35, 95, and 225 GHz. Classification techniques explored include feedforward multilayer perceptron neural networks trained with standard backpropagation, Gaussian and minimum distance statistical classifiers, and rule-based classifiers. Radar data products, serving as features for classification, are defined, radar and in situ data are presented, scattering phenomenology is discussed, and the effect of data biases are analyzed. A neural network was able to discriminate between white pine trees and other broader-leaved trees with an accuracy of 97% using normalized Mueller matrix data at 225 GHz; wet, dry, melting, and freezing snow could be discriminated 89% of the time using 35, 95, and 225 GHz Mueller matrix data; and metamorphic and fresh snow could be differentiated 98% of the time using either the copolarized complex correlation coefficient or normalized radar cross section at three frequencies. A neural network was also able to discriminate ice clouds from water clouds using vertical and horizontal 95 GHz airborne reflectivity measurements with a success rate of 82% and 86% when viewing the clouds from the side and below respectively. Using 33 and 95 GHz data collected from the ground, a neural net was able to discriminate between ice clouds, liquid clouds, mixed phase clouds, rain, and insects 95% of the time using linear depolarization ratio, velocity, and range. As a precursor to this classification, a rule-based classifier was developed to label training pixels, since in situ data was not available for this particular data set. Attenuation biases in reflectivity were also removed with the aid of the rule-based classifier. A neural network using reflectivity in addition to other features was able to classify pixels correctly 96% of the time.

  16. Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system

    Science.gov (United States)

    Biggerstaff, Michael I.; Zounes, Zackery; Addison Alford, A.; Carrie, Gordon D.; Pilkey, John T.; Uman, Martin A.; Jordan, Douglas M.

    2017-08-01

    A series of vertical cross sections taken through a small mesoscale convective system observed over Florida by the dual-polarimetric SMART radar were combined with VHF radiation source locations from a lightning mapping array (LMA) to examine the lightning channel propagation paths relative to the radar-observed ice alignment signatures associated with regions of negative specific differential phase (KDP). Additionally, charge layers inferred from analysis of LMA sources were related to the ice alignment signature. It was found that intracloud flashes initiated near the upper zero-KDP boundary surrounding the negative KDP region. The zero-KDP boundary also delineated the propagation path of the lightning channel with the negative leaders following the upper boundary and positive leaders following the lower boundary. Very few LMA sources were found in the negative KDP region. We conclude that rapid dual-polarimetric radar observations can diagnose strong electric fields and may help identify surrounding regions of charge.

  17. Dual-Polarimetric Radar-Based Tornado Debris Signatures and Paths Associated with Tornadoes Over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedloved, Gary J.; Carcione, Brian C.; Darden, Christopher B.; hide

    2012-01-01

    A historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by 40 tornadoes, including 6 that reached EF-4 to EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Many of these tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures in 6 tornadoes in North Alabama on April 27, 2011. Several of these debris signatures were disseminated in real-time to the NWS Huntsville and local media to confirm storm spotter reports, confidence to enhance wording within warnings, and accurately pinpoint the locations of tornadoes for residents downstream of the storm. Also, the debris signature locations were used in post-event storm surveys to help locate areas of damage in regions where damage went unreported, or to help separate tornado tracks that were in close proximity to each other. Furthermore, the relative locations of the debris and damage paths for long track EF-4 and EF-5 tornadoes will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys.

  18. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    Science.gov (United States)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  19. Novel Polarimetric SAR Interferometry Algorithms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  20. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    Science.gov (United States)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  1. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched

  2. New Radar Observations of Terra Meridiani, Mars.

    Science.gov (United States)

    Larsen, K. W.; Haldemann, A. F.; Jurgens, R. F.; Arvidson, R. E.; Slade, M. A.

    2001-12-01

    Over the course of three months bracketing the latest Mars opposition (June 21, 2001) a series of fourteen ground-based radar observation sequences were performed. An X-band (3.5 cm) radar signal was transmitted from the main 70-meter telescope (DSS-14) at the Goldstone Deep Space Network complex and the reflected signal recorded by four radio telescopes (DSS-12, DSS-13, DSS-14, and DSS-25). The observation tracks fall within four regions on Mars; Isidis Planitia, Syrtis Major, the "Stealth" region, and Terra Meridiani. Our processing has focused on the Terra Meridiani tracks as this is currently an area of great interest due to the detection of gray hematite, from Mars Global Surveyor Thermal Emission Spectrometer results [Christensen, 2000], and its status as a leading landing site candidate for the 2003 Mars Exploration Rover (MER) mission. We are using a Maximum Likelihood Function (MLF) algorithm that models the backscatter radiation according to Hagfors' model and allows determination of the local surface roughness, or RMS slope on the scale of several wavelengths, and the surface dielectric constant. New to this analysis is the use of four recording stations, which doubles the number of observational baselines available to earlier three-station interferometry and thus the number of cross-power inputs into the probabilistic MLF formulation. We also have incorporated the Mars Global Surveyor MOLA topographic data set which eliminated range as an unknown in our solution, allowing for a more precise determination of the RMS slope and dielectric constants. We will present maps of the RMS slope and dielectric constant for the Terra Meridiani observations.

  3. Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations

    Science.gov (United States)

    Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir

    2016-01-01

    Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.

  4. Lightning and Radar Observations of the 29 May 2004 Tornadic HP Supercell during TELEX

    Science.gov (United States)

    Macgorman, D. R.; Kuhlman, K. M.

    2006-12-01

    On 29 May 2004, a tornadic heavy-precipitation (HP) supercell storm moved through central Oklahoma and through the Thunderstorm Electrification and Lightning Experiment (TELEX) domain. Three dimensional lightning location data from the Oklahoma Lightning Mapping Array (OK-LMA) depict the evolution of the storm, including convective surges, overshooting tops, and the formation and dissipation of lightning weak holes. In addition to the OK-LMA, the storm was also observed by two C-band mobile radars (SMART-R radars) providing three-minute volume scans and by the KOUN polarimetric S-band radar. Analysis of a lightning weak hole showed that it was co-located horizontally with a core of strong updrafts and with a bounded weak echo region. The majority of the cloud-to-ground lightning detected in the storm by the National Lightning Detection Network lowered negative charge to ground. However, during genesis of the strongest tornado, the dominant polarity of ground flashes near the reflectivity core of the storm evolved to positive. Also at approximately this time, negative ground strikes began occurring under the anvil, tens of kilometers from the reflectivity core, as lightning activity surged roughly 100 km into the anvil. Observations from these platforms provide insight into HP supercell evolution and structure and into relationships of lightning with other properties of the storm.

  5. AirMOSS: L1 S-0 Polarimetric Data from AirMOSS P-band SAR, La Selva, 2012-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides level 1 (L1) polarimetric radar backscattering coefficient (sigma-0), multilook complex, polarimetrically calibrated, and georeferenced data...

  6. Is 67P/Churyumov-Gerasimenko a Classical JFC? Clues from Recent Polarimetric Observations

    Science.gov (United States)

    Hadamcik, Edith; Levasseur-Regourd, A.; Sen, A.; Gupta, R.; Lasue, J.

    2009-09-01

    Remote observations of the light scattered by comet 67P/Churyumov-Gerasimenko dust coma are of major importance to determine the physical properties of the particles and prepare the rendezvous with the ESA/Rosetta spacecraft in 2014. While dust observations have been made during different apparitions, polarization measurements were only obtained during the 1982 apparition by spectropolarimetry [1-2]. Recent imaging polarimetric observations were conducted at Haute-Provence observatory (France) on 2009 March 17-19 at 35 deg. phase angle and at IUCAA Girawali observatory (India) on 2008 December 25-27 at 36 deg. phase angle and on 2009 April 30-May 1 at 29 deg. phase angle. The imaging technique allows us to follow the intensity and polarization variations through the coma and their evolution. The decrease in intensity as a function of the distance to nucleus in log-log scale is close to -1 on average but important variations with values down to -1.5 are observed in agreement with previous observations in 1982-83 and 1995-96 [3]. Aperture polarization values are nominal before perihelion. Nevertheless, after perihelion, the increase in polarization suggests that an outburst occurred. Finally, comet 67P/C-G results will be compared to those obtained for other comets, including Jupiter Family Comets [4,5]. Polarization and intensity variations in the coma are reminiscent of those noticed for 9P/Tempel 1 (before Deep Impact) and comet C/2000 WM1 [5]. The presence of rather large particles can thus be suggested before and after perihelion. The properties of the particles ejected during post-perihelion will be discussed. [1] Myers and Nordsieck, Icarus 58, 431 (1984) [2] Levasseur-Regourd et al., The New Rosetta Targets, Kluwer, 111 (2004) [3] Schleicher, Icarus 181, 442 (2006) [4] Hadamcik and Levasseur-Regourd, PSS 57, 1118 (2009) [5] Hadamcik and Levasseur-Regourd, JQSRT, 79-80, 661 (2003)

  7. 46 CFR 11.305 - Radar-Observer certificates and qualifying courses.

    Science.gov (United States)

    2010-10-01

    ... (Unlimited). (2) Radar Observer (Inland Waters and Gulf-Intracoastal Waterway ). (3) Radar Observer (Rivers...) Radar Observer (Rivers: Renewal). (c) A school with an approved Radar-Observer course may issue a... indirect echoes, and other radar phenomena. (C) Effects of sea return, weather, and other environmental...

  8. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NPOL radar, developed by a research team from Wallops Flight Facility, is a fully transportable and self-contained S-band (10 cm), scanning...

  9. Investigation of Polarimetric and Electrical Characteristics of Natural and Triggered Lightning Strikes

    Science.gov (United States)

    Hyland, P. T.; Biggerstaff, M. I.; Uman, M. A.; Jordan, D. M.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Blakeslee, R. J.; Krehbiel, P. R.; Rison, W.; Winn, W. P.; Eack, K.; Trueblood, J.; Edens, H. E.

    2013-12-01

    For the past three summers, the University of Oklahoma has deployed three mobile, polarimetric radars to the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida and Langmuir Laboratory near Socorro, New Mexico for the purpose of investigating the relationship between cloud structure and the propagation of triggered and natural lightning channels. This presentation will highlight observations from select natural and triggered events at these two facilities. During the summer of 2012, University of Oklahoma radar operators made a launch recommendation to the ICLRT during the passage of Tropical Storm Debby over northeast Florida that resulted in a successful triggered flash with 11 return strokes. The trigger was attempted as precipitation streamers within the stratiform rainbands of Tropical Storm Debby approached the launch site. According to the National Lightning Detection Network (NLDN), there were no reported natural cloud-to-ground (CG) flashes within 60 km of the ICLRT 20 hours before and eight hours after the triggered flash. The recommendation was made based on previous analyses of the storm structure of trigger attempts from the ICLRT that indicated the coincidence of several successful triggers with descending regions of enhanced radar reflectivity, or descending precipitation packets (DePPs). Polarimetric data from the frequency-agile Rapid-scanning X-band Polarimetric (RaXPol) radar as well as data from the lightning mapping array (LMA) and electric field meter (EFM) networks from the ICLRT for this event will be presented. Past analyses also revealed ice alignment signatures in differential phase and specific differential phase as strong electric fields near the top of electrified clouds cause small ice particles to become vertically aligned. These signatures are especially noticeable for circularly polarized radars. Polarimetric data from the Shared Mobile Atmospheric Research & Teaching (SMART) radar and Ra

  10. CLEAN Technique for Polarimetric ISAR

    Directory of Open Access Journals (Sweden)

    M. Martorella

    2008-01-01

    Full Text Available Inverse synthetic aperture radar (ISAR images are often used for classifying and recognising targets. To reduce the amount of data processed by the classifier, scattering centres are extracted from the ISAR image and used for classifying and recognising targets. This paper addresses the problem of estimating the position and the scattering vector of target scattering centres from polarimetric ISAR images. The proposed technique is obtained by extending the CLEAN technique, which was introduced in radar imaging for extracting scattering centres from single-polarisation ISAR images. The effectiveness of the proposed algorithm, namely, the Polarimetric CLEAN (Pol-CLEAN is tested on simulated and real data.

  11. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  12. Combined radar observations of equatorial electrojet irregularities at Jicamarca

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2007-03-01

    Full Text Available Daytime equatorial electrojet plasma irregularities were investigated using five distinct radar diagnostics at Jicamarca including range-time-intensity (RTI mapping, Faraday rotation, radar imaging, oblique scattering, and multiple-frequency scattering using the new AMISR prototype UHF radar. Data suggest the existence of plasma density striations separated by 3–5 km and propagating slowly downward. The striations may be caused by neutral atmospheric turbulence, and a possible scenario for their formation is discussed. The Doppler shifts of type 1 echoes observed at VHF and UHF frequencies are compared and interpreted in light of a model of Farley Buneman waves based on kinetic ions and fluid electrons with thermal effects included. Finally, the up-down and east-west asymmetries evident in the radar observations are described and quantified.

  13. Polarimetric Intensity Parameterization of Radar and Other Remote Sensing Sources for Advanced Exploitation and Data Fusion: Theory

    Science.gov (United States)

    2008-10-01

    En se basant sur ce qui précède, on étudie les caractéristiques communes, l’interfonctionnement et la fusion de divers produits de capteurs ...polarimétriques dans diverses régions du spectre, p. ex. le radar classique ou le radar à synthèse d’ouverture et des capteurs électro-optiques, et on formule...électromagnétiques rétrodiffusées fournit davantage de données pour la reconnaissance des objectifs que les capteurs de télédétection monovoie classiques. Nous voulons

  14. Theoretical assessment of the potential to deduce microphysical characteristics of ice clouds from polarimetric radar measurements at 95 GHz; Theoretische Untersuchungen zur Ableitung mikrophysikalischer Parameter von Eiswolken aus polarimetrischen Radarmessungen bei 95 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, H.M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2000-07-01

    The potential of polarimetric radar measurements at 95 GHz to derive microphysical cloud characteristics is assessed. Scattering by atmospheric ice crystals is calculated applying the discrete dipole approximation (DDA) for single crystals of various shape, size, and orientation. The results are combined to acquire radar signals for collections of particles representing the radar volume. Expressing the particle size with respect to the radius of a volume equivalent sphere, the co-plar reflectivity is only slightly affected by particle shape variations. Thus, keeping the limitations of such an approach in mind, the simplified representation of crystals as spheres is applicable. On the other hand, the signal is strongly influenced by the particle size and the total ice water content. Polarimetric radar parameters like linear depolarisation ratio and differential reflectivity are almost independent of size and ice water content. They are predominantly affected by the crystal shape and orientation and therefore have a potential to deduce information about ice crystal habits. Unfortunately, to date such measurements are subject to technical restrictions. (orig.)

  15. Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Science.gov (United States)

    Mishra, Kumar Vijay

    The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi

  16. Shuttle Imaging Radar-C mission operations - Technology test bed for Earth Observing System synthetic aperture radar

    Science.gov (United States)

    Trimble, J. P.; Collins, C. E.

    1992-01-01

    The mission operations for the Space Radar Lab (SRL), particularly in the areas of real-time replanning and science activity coordination, are presented. The two main components of SRL are the Shuttle Imaging Radar-C and the X-Band Synthetic Aperture Radar. The Earth Observing System SAR will be a multispectral, multipolarization radar satellite that will provide information over an entire decade, permitting scientists to monitor large-scale changes in the earth's environment over a long period of time.

  17. Status Of Imaging Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.

    1991-01-01

    Report pulls together information on imaging radar polarimetry from a variety of sources. Topics include theory, equipment, and experimental data. Reviews state of the art, examines current applicable developments in radar equipment, describes recording and processing of radar polarimetric measurements, and discusses interpretation and application of resulting polarimetric images.

  18. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  19. Bistatic Radar Observations of the Moon using MINI-RF on LRO and the Arecibo Observatory

    Science.gov (United States)

    Patterson, G.; Bussey, B.

    2013-12-01

    The Mini-RF team is acquiring bistatic radar measurements of the lunar surface to understand the scattering properties of materials as a function of phase angle. These observations have produced the first lunar bistatic radar images ever collected with non-zero phase angles. The goal of these observations is to differentiate between scatter-ing indicative of surfaces that are rough versus surfaces that harbor water ice in quantities detectible by a radar sys-tem operating at a wavelength of 12.6 cm. Radar observations of planetary surfaces provide unique information on the structure (i.e., roughness) and dielec-tric properties of surface and buried materials. These data can be acquired using a monostatic architecture, where a single antenna serves as the signal transmitter and receiver, or they can be acquired using a bistatic architecture, where a signal is transmitted from one location and received at another. The former provides information on the scattering properties of a target surface at zero phase. The latter provides the same information over a variety of phase angles. NASA's Mini-RF instrument on the Lunar Reconnaissance Orbiter and the Arecibo Observatory in Puerto Rico are currently operating in a bistatic architecture (the Arecibo Observatory serves as the transmitter and Mini-RF serves as the receiver). This architecture maintains the hybrid dual-polarimetric nature of the Mini-RF in-strument and, therefore, allows for the calculation of the Stokes parameters (S1, S2, S3, S4) that characterize the backscattered signal (and the products derived from those parameters). A common product derived from the Stokes parameters is the Circular Polarization Ratio (CPR). High CPR val-ues can serve as an indicator of rough surfaces or as an indicator of the presence of water ice. Recent work using monostatic radar data and inferences from surface geology suggests that anomalously high CPR values associated with some polar lunar craters are indicative of the

  20. PMSE Observations With the Tri-Static EISCAT VHF Radars

    Science.gov (United States)

    Mann, I.; Tjulin, A.; Häggström, I.

    2013-12-01

    The polar mesospheric summer echoes (PMSE) are generated in the ionosphere at roughly 80 to 90 altitude by electron irregularities in the presence of charged solid particles and PMSE are most likely observed when ice particles form onto nanodust. PMSE formation is an important part in understanding mesospheric processes, but is also an interesting example for dusty plasma phenomena occurring in space. To investigate the phenomena that lead to formation of PMSE it is helpful to study the radar reflectivity of the mesosphere at different angles. PMSE were previously studied at different aspect angles in order to better understand the scattering process. Another way is observing PMSE from multiple sites simultaneously. During this summer the EISCAT radars that are located in Northern Scandinavia could for the first time be used for tri-static observations in the VHF band and we carried out observations during three subsequent days in June 2013. The radar signal was transmitted in zenith direction with the EISCAT VHF antenna near Tromsø (69.59 deg N, 19.23 deg E) and the scattered signal was measured from Tromsø, Kiruna (67.86 deg N, 20.44 deg E) and Sodankylä (67.36 deg N, 26.63 deg E). Zenith observations were simultaneously carried out with the Tromsø UHF radar (933 MHz). Other groups have previously reported the observations of PMSE simultaneously with the EISCAT VHF and UHF radars, but with a much lower occurrence rate for the UHF. UHF observations made during this campaign are dominated by incoherent scatter. The VHF system in Tromsø detected PMSE for a large fraction of the observation time. The VHF receivers in Kiruna and Sodankylä were pointed at typical PMSE heights above the Tromsø transmitter and detected radar reflections at the same time and altitude as the Tromsø radar. These observations are among the first tri-static observations of PMSE. Preliminary results from the campaign will be presented and discussed.

  1. Automatic Classification of Offshore Wind Regimes With Weather Radar Observations

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    and amplitude) using reflectivity observations from a single weather radar system. A categorical sequence of most likely wind regimes is estimated from a wind speed time series by combining a Markov-Switching model and a global decoding technique, the Viterbi algorithm. In parallel, attributes of precipitation...... systems are extracted from weather radar images. These attributes describe the global intensity, spatial continuity and motion of precipitation echoes on the images. Finally, a CART classification tree is used to find the broad relationships between precipitation attributes and wind regimes...

  2. Planetary surface characterization from dual-polarization radar observations

    Science.gov (United States)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  3. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    2001-08-01

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  4. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  5. Assessment of GF-3 Polarimetric SAR Data for Physical Scattering Mechanism Analysis and Terrain Classification.

    Science.gov (United States)

    Yin, Junjun; Yang, Jian; Zhang, Qingjun

    2017-12-01

    On 10 August 2016 China launched the GF-3, its first C-band polarimetric synthetic aperture radar (SAR) satellite, which was put into operation at the end of January, 2017. GF-3 polarimetric SAR has many advantages such as high resolution and multi-polarization imaging capabilities. Polarimetric SAR can fully characterize the backscatter property of targets, and thus it is of great interest to explore the physical scattering mechanisms of terrain types, which is very important in interpreting polarimetric SAR imagery and for its further usages in Earth observations. In this paper, focusing on target scattering characterization and feature extraction, we generalize the Δ α B / α B method, which was proposed under the reflection symmetric assumption, for the general backscatter process to account for both the reflection symmetry and asymmetry cases. Then, we evaluate the performances of physical scattering mechanism analysis methods for GF-3 polarimetric SAR imagery. Radarsat-2 data acquired over the same area is used for cross validation. Results show that GF-3 polarimetric SAR data has great potential for target characterization, especially for ocean area observation.

  6. Polarimetric and Interferometric Synthetic Aperture Radar (Pol-InSAR); a new way to quantify three-dimensional structure of Earth and planetary surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will employ a three phased approach: SAR image formation and calibration. DBSAR polarimetric and interferometric data analysis. PolInSAR algorithm...

  7. Exploring inner structure of Titan's dunes from Cassini Radar observations

    Science.gov (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  8. Traveling Ionospheric Disturbances Observed by Midlatitude SuperDARN Radars

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; West, M. L.; Bristow, W. A.

    2012-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min, and are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars since 1989, and are typically attributed to auroral sources and propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. North American radar data from November 2010 - November 2011 were searched for signatures of MSTIDs. Initial results suggest that MSTIDs are observed at high latitudes primarily in the fall/winter months, which is consistent with published results. This search also reveals that mid-latitude MSTIDs often appear concurrently with high-latitude MSTIDs and share similar wave parameters. During the fall/winter months, SuperDARN mid-latitude MSTIDs appear more often than high-latitude MSTIDs, likely due to calmer ionospheric conditions at mid-latitudes. In the springtime, SuperDARN-observed MSTIDs are less likely to be seen at high-latitudes, but still appear at mid-latitudes. Selected events are analyzed for wave parameters using the Multiple Signal Classification (MUSIC) technique.

  9. Arecibo Radar Observation of Near-Earth Asteroids: Expanded Sample Size, Determination of Radar Albedos, and Measurements of Polarization Ratios

    Science.gov (United States)

    Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.

    2017-10-01

    The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we

  10. Imaging Radar Polarimetry

    Science.gov (United States)

    vanZyl, J. J.; Zebker, H. A.

    1993-01-01

    In this paper, we review the state of the art in imaging radar polarimetry, examine current developments in sensor technology and implementation for recording polarimetric measurements, and describe techniques and areas of application for the new remote sensing data.

  11. Cassini radar and radiometry observations of Saturn's airless icy satellites

    Science.gov (United States)

    Le Gall, A. A.; West, R.; Janssen, M. A.; Leyrat, C.; Bonnefoy, L.; Lellouch, E.

    2017-12-01

    The Cassini Radar is a multimode microwave sensor operating in the Ku-band, at a wavelength of 2.2 cm. While it was initially designed to examine the surface of Titan through the veil of its optically-opaque atmosphere, it is occasionally used to observe airless Saturn's moons from long ranges (>50 000 km) and, less frequently, during targeted flybys. In its active mode, the instrument measures the surface reflectivity in the backscattering direction. In its passive mode - or radiometry mode - it records the microwave thermal emission from the near-surface (typically few meters). Doing so, it provides insights into the degree of purity and maturity of the water-ice regolith of the investigated objects. In particular, it can reveal hemispheric dichotomies or regional anomalies and satellite-to-satellite variabilities which give clues into what is common and what is specific to the history of each satellite and to the processes that have shaped their surface/subsurface. In this paper, we will give an overview of the Cassini radar/radiometry observations of Saturnian icy moons, most of which have not been published yet. Now that the mission has come to an end, we will describe how the radio investigation of these objects can be pursued from Earth-based radiotelescopes.

  12. Preliminary Results from the Cassini RADAR Ring Observations

    Science.gov (United States)

    West, Richard D.; Janssen, Michael A.; Zhang, Zhimeng; Cuzzi, Jeffrey N.; Anderson, Yanhua; Hamilton, Gary; Elachi, Charles; Cassini RADAR Science Team

    2017-10-01

    In its last year of operation, the Cassini spacecraft executed a series of short highly inclined orbits that brought it close to Saturn’s rings. The Cassini RADAR instrument collected active and passive data of the rings in five separate observations. These observations provided a unique opportunity to obtain backscatter measurements and relatively high-resolution brightness temperature measurements from the rings. Such measurements were never before possible from the spacecraft or the Earth due to high range. Preliminary examination of the active data shows major ring structural features such as the Cassini Division, the Encke Gap, and the Keeler Gap. This presentation will show preliminary processing results from the radar rings scans and discuss the calibration and processing issues. These ring scan measurements provide a 1-D profile of backscatter obtained at 2.2 cm wavelength that complements similar passive profiles obtained at optical, infrared, and microwave wavelengths. Such measurements can further constrain and inform models of the ring particle composition and structure, and the local vertical structure of the rings. This work is supported by the NASA Cassini Program at JPL - CalTech.

  13. Waves from Radar and Optical Observations of the MLT region

    Science.gov (United States)

    Reid, Iain

    Over the past few years we have developed the Australian MLT radar network and established a Rayleigh Lidar system at Buckland Park (BP). In 2009 we obtained funding for a SuperDARN class radar to be installed at BP. This will occur in 2010. Our interest is in the use of this dual frequency radar (typical operating frequencies are between 8 and 12 MHz) for meteor studies of the MLT region. The relatively low operating frequencies of these radars result in an increase the count rates of detected usable meteors (because count rate is proportional to the square root of the transmitted power, and the wavelength raised to 1.5th power), and hence the quality of the derived winds. Most meteor radars operate in the 30 to 55 MHz frequency range. The height coverage is also extended upwards by using a lower frequency because of the larger initial radius of the meteor trails at greater heights. Data from existing SuperDARN radars is available from the Bruny Island radar in Tasmania (available from 1999 -present), and the Unwin radar in southern NZ (available form 2004 -present). While not ideal because of the limited height discrimination available with these older radars, the results extend the information of the dynamics of the MLT region to latitudes below 50S. Opportunities for siting radars on land in this latitude band are limited, and it is a correspondingly very sparse data region. Preliminary results from the radar network will be presented and discussed.

  14. Observing convection with satellite, radar, and lightning measurements

    Science.gov (United States)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  15. The ROHP-PAZ mission and the polarimetric and non-polarimetric effects of rain and other fozen hydrometeors on GNSS Radio-Occultation signals.

    Science.gov (United States)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.; Oliveras, S.; Rius, A.

    2015-12-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) will test, for the first time, the new polarimetric radio occultation (RO) concept. This is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) RO payload on board of the Spanish Earth Observation satellite PAZ. The launch of the satellite is scheduled for October 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years.The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric components of the received signal, although in this case we will use the forward scattering geometry instead of the backscattering one. It will allow us to retrieve precipitation and other hydrometeors information, and simultaneous thermodynamic vertical profiles which will help to the understanding of the thermodynamic processes beyond heavy rain events. A sensitivity analysis has been performed, showing that the rain-induced effect is above PAZ detectability threshold in 90% of the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. The measurements from the campaign have shown the first experimental evidences that precipitation and frozen hydrometeors induce a noticeable effect into the polarimetric RO observables. We will present here the actual status of the mission and the results from the field campaign. We will also discuss the results of the theoretical study of the thermodynamics and the effects of rain and frozen hydrometeors into standard and polarimetric RO, based on a large collocation exercise of COSMIC and TerrasSar-X with TRMM, GPM and CloudSat.

  16. The ionosphere disturbances observation on the Kharkiv incoherent scatter radar

    Science.gov (United States)

    Cherniak, Iu.; Lysenko, V.

    2009-04-01

    he ionosphere plasma characteristics are responding on variations of solar and magnetic activity. The research of an ionosphere structure and dynamics is important as for understanding physics of processes and for radiophysical problems solution. The method incoherent scatter (IS) of radio waves allows determining experimentally both regular variations of the basic parameters ionosphere, and their behavior during perturbation. The equipment and measurement technique, developed by authors, are allows obtaining certain data about behavior of an ionosphere during various origin and intensity ionosphere perturbations. The Institute of Ionsphere IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6oN, 36.3oE, geomagnetic coordinates: 45.7oN, 117.8oE) was used to observe the processes in the ionosphere. The radar is operate with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power of ~2.0 MW. The double-frequency measuring channel mode with compound sounding signal was employed for experiments. That provided ~ 20-km resolution in range ~100-400 km and ~100-km in range ~200-1100 km. Over a period of series of experiment are obtained data about variations of electron density simultaneous in the heights interval 100-1000 km, including three sun eclipses, two superstrong and a few moderate magnetic storms, as well as disturbance, is caused by powerful rockets starts. During strong geomagnetic storm on November 8-12, 2004 was observed night time increasing of electronic temperature up to 3000 Љ and ions temperature up to 2000K. Usually at this time temperature of ions is equal to temperature of electrons. During negative ionosphere storm was observed decreasing of electronic density at maximum F2 layer. The height of a F2 layer maximum was increased by 150 km and 70 km at daytime. The interesting phenomenon - high-power backscatter signal coherent backscatter was observed first time during geogeomagnetic storm 29-30 may 2003. A usually

  17. Aerosol retrievals from multi-angle, multi-wavelength, photo-polarimetric observations near clouds

    NARCIS (Netherlands)

    Stap, F.A.

    2016-01-01

    Aerosol plays a complex but important role in the Earth's climate. Better global coverage of aerosol observations and more information on the aerosol microphysical parameters are needed to improve our understanding of the climate. This book contains 3 studies of improving the global coverage of

  18. Investigating the Innermost Jet Structures of Blazar S5 0716+714 Using Uniquely Dense Intra-day Photo-polarimetric Observations

    Directory of Open Access Journals (Sweden)

    Gopal Bhatta

    2016-10-01

    Full Text Available The sub-hour timescale variability commonly observed in blazars—widely known as intra-day or microvariability—has been extensively studied in optical photo-polarimetric bands over the past 25–30 years. In addition, there have been comprehensive theoretical discussions on the topic, with various models and scenarios proposed; however, the phenomenon still remains relatively poorly understood. Here we present the summary of our optical microvariability studies over the past few years based on multi-frequency photo-polarimetric Whole Earth Blazar Telescope (WEBT observation campaigns. The primary objective of the study was to explore the characteristics of the source microvariability on timescales of a few minutes to a few days using exceptionally dense photo-polarimetric observations. The results show that the source often displays fast variability with an amplitude as large as 0.3 mag within a few hours, as well as color variability on similar time scales often characterized by “bluer-when-brighter” trend. Similarly, the correlation between variability in flux and polarization appears to depend upon the configuration of the optical polarization angle relative to the positional angle of the innermost radio core of the jet. Other fascinating observations include a sudden and temporary disappearance in the observed variability lasting for ∼6 h. In addition, the modeling of individual microflares strongly suggests that the phenomenon of microvariability can be best explained by convolved emission from compact emission sites distributed stochastically in the turbulent jet. Besides, analysis of some of the well resolved micro-flares exhibiting high degrees of polarization points towards a complex magnetic geometry pervading the jet with the possible presence of small-scale regions of highly ordered and enhanced magnetic field similar to so-called “magnetic islands”.

  19. Comparison of Lightning Activity and Radar-Retrieved Microphysical Properties in EULINOX Storms

    OpenAIRE

    Fehr, T.; Dotzek, N.; Höller, H.

    2005-01-01

    A combined analysis of microphysical thunderstorm properties derived by C-band polarimetric Doppler radar measurements and lightning observations from two ground-based systems are presented. Three types of storms, a multicell, a supercell, and a squall line, that were observed during the European Lightning Nitrogen Oxides project (EULINOX) are investigated. Correlations are sought between the mass of rain, graupel, hail, and snow derived form radar observations at different height levels and ...

  20. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  1. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations: Cloud Microphysics over Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Pacific Northwest National Laboratory, Richland Washington USA; Sui, Chung-Hsiung [Department of Atmospheric Sciences, National Taiwan University, Taipei Taiwan; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Hu, Zhiqun [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Zhong, Lingzhi [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China

    2016-11-27

    Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolution of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.

  2. Multifractal Comparison of Reflectivity and Polarimetric Rainfall Data from C- and X-Band Radars and Respective Hydrological Responses of a Complex Catchment Model

    OpenAIRE

    Igor Paz; Bernard Willinger; Auguste Gires; Abdellah Ichiba; Laurent Monier; Christophe Zobrist; Bruno Tisserand; Ioulia Tchiguirinskaia; Daniel Schertzer

    2018-01-01

    This paper presents a comparison between C-band and X-band radar data over an instrumented and regulated catchment of the Paris region. We study the benefits of polarimetry and the respective hydrological impacts with the help of rain gauge and flow measurements using a semi-distributed hydrological model. Both types of radar confirm the high spatial variability of the rainfall down to their space resolution (1 km and 250 m, respectively). Therefore, X-band radar data underscore the limitatio...

  3. VHF radar observations of gravity waves at a low latitude

    Directory of Open Access Journals (Sweden)

    G. Dutta

    1999-08-01

    Full Text Available Wind observations made at Gadanki (13.5°N by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6 h from the power spectral density (PSD spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  4. Improved observations of turbulence dissipation rates from wind profiling radars

    Directory of Open Access Journals (Sweden)

    K. McCaffrey

    2017-07-01

    Full Text Available Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiple post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. The optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well (R2 = 0. 54 and 0. 41 with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.

  5. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  6. Observations and modeling of fog by cloud radar and optical sensors

    OpenAIRE

    Li, Y.; Hoogeboom, P.; Russchenberg, H.

    2014-01-01

    Fog is a significant factor affecting the public traffic because visibility is reduced to a large extent. Therefore the determination of optical visibility in fog from radar instruments has received much interest. To observe fog with radar, high frequency bands (millimeter waves) have the best option. A 35 GHz cloud radar at the Cabauw Experimental Site for Atmospheric Research in the Netherlands has been used to make fog measurements in the "fog mode". Meanwhile, in-situ visibility sensors (...

  7. Assimilation of Doppler weather radar observations in a mesoscale ...

    Indian Academy of Sciences (India)

    ) Doppler radar data in a numerical model for the prediction of mesoscale convective complexes around Chennai and Kolkata. Three strong convective events both over Chennai and Kolkata have been considered for the present study.

  8. Directional Properties of Surface Waves Observed With HF Radar

    National Research Council Canada - National Science Library

    Wyatt, Lucy

    2003-01-01

    The goal of the work at Sheffield is to demonstrate that wave measurements obtained using HF radars are of sufficient accuracy and availability for them to contribute to the investigation of changes...

  9. APR-2 Dual-frequency Airborne Radar Observations, Wakasa Bay

    Data.gov (United States)

    National Aeronautics and Space Administration — In January and February 2003, the Airborne Second Generation Precipitation Radar (APR-2) collected data in the Wakasa Bay AMSR-E validation campaign over the sea of...

  10. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    Science.gov (United States)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  11. Retrieval of ice thickness from polarimetric SAR data

    Science.gov (United States)

    Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.

    1993-01-01

    We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.

  12. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  13. Observations and modeling of fog by cloud radar and optical sensors

    NARCIS (Netherlands)

    Li, Y.; Hoogeboom, P.; Russchenberg, H.

    2014-01-01

    Fog is a significant factor affecting the public traffic because visibility is reduced to a large extent. Therefore the determination of optical visibility in fog from radar instruments has received much interest. To observe fog with radar, high frequency bands (millimeter waves) have the best

  14. Bistatic Radar Observations of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Andert, T.; Remus, S.; Simpson, R. A.; Paetzold, M.; Häusler, B.; Tellmann, S.; González Peytavi, G.; Bird, M. K.

    2017-12-01

    Objectives of the Rosetta Radio Science investigations included determining the dielectric properties, small-scale roughness, and rotational state of the nucleus of comet 67P/Churyumov-Gerasimenko (67P/C-G) from bistatic radar (BSR) measurements. The radio transmitter and high gain antenna (HGA) on the spacecraft beamed right circularly polarized (RCP) radio signals at two wavelengths - 3.6 cm (X-Band) and 13 cm (S-Band) - toward the nucleus surface. Part of the impinging radiation was then scattered toward a 70-m ground station of the NASA Deep Space Network (DSN) on Earth where it was received and recorded coherently in both RCP and left circular polarization (LCP). Between late September and mid-December 2014 six BSR experiments at 67P/C-G were successfully conducted. Such measurements had never before been attempted at such a small body in interplanetary space. The distances between the spacecraft and the comet varied from 10 km (September) to 30 km (December) and the incident angles ranged from 42° to 56°. In five experiments the HGA footprint was close to the equator; on 29 November the footprint was close to the rotation axis. Both RCP and LCP echoes were detected at X-band during the experiments; the echoes on 29 November were strongest. Rosetta's ultra-stable oscillator provided a very stable frequency reference for transmission; such stability was required because the direct and reflected signals were separated during the experiments by only a fraction of 1 Hz. For a known incidence angle and measured RCP/LCP power ratio, the surface dielectric constant may be obtained by applying Fresnel theory if the surface is sufficiently smooth. In the Rosetta case the resulting power ratios on 29 November yielded non-physical dielectric constants, possibly because of the irregularly shaped surface. The paper will investigate the possibility that a cloud of discrete scatters might be responsible for the observed RCP/LCP ratios.

  15. Polarimetric Multispectral Imaging Technology

    Science.gov (United States)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  16. Radar Observations and Simulation of the Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, Wim

    1988-01-01

    The melting layer in precipitation is physically modeled and compared with high resolution Doppler radar data. The model includes a new formulation of the dielectric properties and can handle all ice particles with densities ranging from pure snow to hail. The air temperature is calculated from the

  17. Goldstone Radar Observations of the 1999 Mars Opposition and other Observing Opportunities

    Science.gov (United States)

    Slade, M. A.

    1997-07-01

    As part of the International Mars Watch, Goldstone radar observations of Mars are planned during the 1999 Opposition ( Feb.'99-Aug'99). While some observing time is already allocated, a number of tracks could be made available for well-focused scientific objectives. Since the Deep Space Network plans far in advance, now is the time to develop your plans. During the next Mars opposition, the sub-Earth latitudes are in Mars' Northern hemisphere over the most northerly terrain accessible, which has not been previously examined with current sensitivity. The North residual ice cap is of particular interest. As a reminder to the Planetary Science community, observing proposals from any scientist with peer-reviewed planetary funding are solicited and should be forwarded to Martin.A.Slade@jpl.nasa.gov by email. Data reduction can, in principle, be carried out over the Internet. A graduate student or postdoctoral fellow resident at JPL for short period is recommended, however, to become familiar with suite of software for data analysis. Unfortunately, JPL cannot guarantee travel reimbursement due to funding limitations. We urge your consideration of becoming involved with the acquisition and analysis of Goldstone radar data. In the recent past, P.I.'s or co-I.s from Cornell, Arecibo/NAIC, Washington State University, Univ. Cal. Berkeley, Harvard -Smithsonian Center for Astrophysics, Univ. of Chicago, the DLR, Kashima SRC, ISAS, the Russian Academy of Science, the Russian Space Agency, and the USGS, have participated in radar experiments with Goldstone transmitting. This work is supported by the California Institute of Technology, under contract with NASA.

  18. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  19. Quality characterization of reflectivity and radial velocity observed by Indian Doppler weather radars

    Science.gov (United States)

    Amarjyothi, Kasimahanthi; Dutta, Devajyoti; Devarajan, Preveen Kumar; George, John P.; Rajagopal, Ekkattil N.

    2017-07-01

    Static and dynamic quality index (QI) maps are generated as the base products of Doppler weather radar (DWR). The quality characterization of radar reflectivity and radial velocity in terms of their QI is presented for the operational DWRs in India. A static composite QI has been generated using the maximum method. These static maps enable the detection of a low QI region in advance for the Indian radars. The QI of reflectivity is above 0.5 in all regions except in the regions of blockage, high attenuation due to rain, and beam broadening, whereas the QI of radial velocity is good for values >0.8 except for the ambiguous region and the region affected by nonmeteorological echoes. This shall help in the quick preprocessing of radar observations, since the regions of low QI can be masked. A sample case of gridded radar rainfall is presented by employing the QI scheme.

  20. Robust Sparse Sensing Using Weather Radar

    Science.gov (United States)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  1. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  2. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  3. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  4. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  5. Lunar Crater Ejecta: Physical Properties Revealed by Radar and Thermal Infrared Observations

    Science.gov (United States)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Udovicic, C. J. Tai; Campbell, B. A.

    2015-01-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for greater than 3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages greater than 3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  6. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2003-04-01

    Full Text Available Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105–250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80–100 km altitudes with elevation angles of 20°–60°. Echo power (< 16 dB, Doppler velocity (between –30 and + 30 ms-1 and spectral width (< 60 ms-1 fluctuate with periods of several to 20 min, perhaps due to short–period atmospheric gravity waves. When the HF radar detected the echoes, a vertical incidence MST radar, located at Esrange in Sweden (650 km north of the HF radar site, observed polar mesosphere summer echoes (PMSE at altitudes of 80–90 km. This fact suggests that the near range HF echoes are PMSE at HF band, although both radars did not probe a common volume. With increasing radar frequency, HF echo ranges are closer to the radar site and echo power becomes weaker. Possible mechanisms to explain these features are discussed.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides; instruments and techniques

  7. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    Full Text Available Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105–250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80–100 km altitudes with elevation angles of 20°–60°. Echo power (< 16 dB, Doppler velocity (between –30 and + 30 ms-1 and spectral width (< 60 ms-1 fluctuate with periods of several to 20 min, perhaps due to short–period atmospheric gravity waves. When the HF radar detected the echoes, a vertical incidence MST radar, located at Esrange in Sweden (650 km north of the HF radar site, observed polar mesosphere summer echoes (PMSE at altitudes of 80–90 km. This fact suggests that the near range HF echoes are PMSE at HF band, although both radars did not probe a common volume. With increasing radar frequency, HF echo ranges are closer to the radar site and echo power becomes weaker. Possible mechanisms to explain these features are discussed.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides; instruments and techniques

  8. Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales

    Science.gov (United States)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M.; Markowitz, A.; Akitaya, H.; Arkharov, A. A.; Bachev, R.; Benítez, E.; Borman, G. A.; Carosati, D.; Cason, A. D.; Chanishvili, R.; Damljanovic, G.; Dhalla, S.; Frasca, A.; Hiriart, D.; Hu, S.-M.; Itoh, R.; Jableka, D.; Jorstad, S.; Jovanovic, M. D.; Kawabata, K. S.; Klimanov, S. A.; Kurtanidze, O.; Larionov, V. M.; Laurence, D.; Leto, G.; Marscher, A. P.; Moody, J. W.; Moritani, Y.; Ohlert, J. M.; Di Paola, A.; Raiteri, C. M.; Rizzi, N.; Sadun, A. C.; Sasada, M.; Sergeev, S.; Strigachev, A.; Takaki, K.; Troitsky, I. S.; Ui, T.; Villata, M.; Vince, O.; Webb, J. R.; Yoshida, M.; Zola, S.

    2016-11-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models. ).

  9. MULTIFREQUENCY PHOTO-POLARIMETRIC WEBT OBSERVATION CAMPAIGN ON THE BLAZAR S5 0716+714: SOURCE MICROVARIABILITY AND SEARCH FOR CHARACTERISTIC TIMESCALES

    Energy Technology Data Exchange (ETDEWEB)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M. [Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Markowitz, A. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Akitaya, H. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Arkharov, A. A. [Main (Pulkovo) Astronomical Observatory of RAS, Pulkovskoye shosse, 60, 196140 St. Petersburg (Russian Federation); Bachev, R. [Institute of Astronomy, Bulgarian Academy of Sciences, 72, Tsarigradsko Shosse Blvd., 1784 Sofia (Bulgaria); Benítez, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico DF (Mexico); Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny, Crimea, 298409 (Russian Federation); Carosati, D. [EPT Observatories, Tijarafe, La Palma (Spain); Cason, A. D. [Private address, 105 Glen Pine Trail, Dawnsonville, GA 30534 (United States); Chanishvili, R. [Abastumani Observatory, Mt. Kanobili, 0301 Abastumani, Georgia (United States); Damljanovic, G. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Dhalla, S. [Florida International University, Miami, FL 33199 (United States); Frasca, A. [INAF—Osservatorio Astrofisico di Catania (Italy); Hiriart, D. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada (Mexico); Hu, S-M., E-mail: gopalbhatta716@gmail.com [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University at Weihai, 264209 Weihai (China); and others

    2016-11-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.

  10. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  11. Processing and Analysis of Polarimetric Ship Signatures from MARSIE: Report on Results for Polar Epsilon

    Science.gov (United States)

    2006-10-01

    observations de la surface équivalente radar de navires cibles pour les canaux de copolarisation et de polarisation croisée, la réduction de la...motion, environmental conditions, etc. on the observed polarimetric signatures; • The differences in the elemental scatterer distributions among the...calculée pour plusieurs navires. Les valeurs estimées de SER totale pour les canaux HV et VH étaient d’environ 10 dB inférieures aux valeurs

  12. Distributions of Orbital Elements for Meteoroids on Near-Parabolic Orbits According to Radar Observational Data

    Science.gov (United States)

    Kolomiyets, S. V.

    2011-01-01

    Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.

  13. Arctic and Antarctic polar mesosphere summer echoes observed with oblique incidence HF radars: analysis using simultaneous MF and VHF radar data

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2004-12-01

    Full Text Available Polar mesosphere summer echoes (PMSEs have been well studied using vertical incidence VHF radars at northern high-latitudes. In this paper, two PMSE events detected with the oblique incidence SuperDARN HF radars at Hankasalmi, Finland (62.3° N and Syowa Station, Antarctica (69.0° S, are analyzed, together with simultaneous VHF and medium-frequency (MF radar data. Altitude resolutions of the HF radars in the mesosphere and the lower thermosphere are too poor to know exact PMSE altitudes. However, a comparison of Doppler velocity from the HF radar and neutral wind velocity from the MF radar shows that PMSEs at the HF band appeared at altitudes within 80-90km, which are consistent with those from previous vertical incidence HF-VHF radar results. The HF-VHF PMSE occurrences exhibit a semidiurnal behavior, as observed by other researchers. It is found that in one event, PMSEs occurred when westward semidiurnal winds with large amplitude at 85-88km altitudes attained a maximum. When the HF-VHF PMSEs were observed at distances beyond 180km from MF radar sites, the MF radars detected no appreciable signatures of echo enhancement. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides

  14. Arctic and Antarctic polar mesosphere summer echoes observed with oblique incidence HF radars: analysis using simultaneous MF and VHF radar data

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2004-12-01

    Full Text Available Polar mesosphere summer echoes (PMSEs have been well studied using vertical incidence VHF radars at northern high-latitudes. In this paper, two PMSE events detected with the oblique incidence SuperDARN HF radars at Hankasalmi, Finland (62.3° N and Syowa Station, Antarctica (69.0° S, are analyzed, together with simultaneous VHF and medium-frequency (MF radar data. Altitude resolutions of the HF radars in the mesosphere and the lower thermosphere are too poor to know exact PMSE altitudes. However, a comparison of Doppler velocity from the HF radar and neutral wind velocity from the MF radar shows that PMSEs at the HF band appeared at altitudes within 80-90km, which are consistent with those from previous vertical incidence HF-VHF radar results. The HF-VHF PMSE occurrences exhibit a semidiurnal behavior, as observed by other researchers. It is found that in one event, PMSEs occurred when westward semidiurnal winds with large amplitude at 85-88km altitudes attained a maximum. When the HF-VHF PMSEs were observed at distances beyond 180km from MF radar sites, the MF radars detected no appreciable signatures of echo enhancement.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides

  15. Japan Tsunami Current Flows Observed by HF Radars on Two Continents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Awaji

    2011-08-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no detailed verification of flow patterns nor area measurements have been possible. Here we present unique HF-radar area observations of the tsunami signal seen in current velocities as the wave train approaches the coast. Networks of coastal HF-radars are now routinely observing surface currents in many countries and we report clear results from five HF radar sites spanning a distance of 8,200 km on two continents following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. We confirm the tsunami signal with three different methodologies and compare the currents observed with coastal sea level fluctuations at tide gauges. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. Data from these and other radars around the Pacific rim can be used to further develop radar as an important tool to aid in tsunami observation and warning as well as post-processing comparisons between observation and model predictions.

  16. Digital hf radar observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Argo, P.E.

    1984-01-01

    Modern digital ionosondes, with both direction finding and doppler capabilities can provide large scale pictures of the Spread-F irregularity regions. A morphological framework has been developed that allows interpretation of the hf radar data. A large scale irregularity structure is found to be nightward of the dusk terminator, stationary in the solar reference frame. As the plasma moves through this foehn-wall-like structure it descends, and irregularities may be generated. Localized upwellings, or bubbles, may be produced, and they drift with the background plasma. The spread-F irregularity region is found to be best characterized as a partly cloudy sky, due to the patchiness of the substructures. 13 references, 16 figures

  17. Shuttle imaging radar - Research sensor for earth resources observation

    Science.gov (United States)

    Elachi, C.

    The operating characteristics of the Shuttle Imaging Radar (SIR) and intended experimentation to study the effects of the incidence angle, look direction, frequency, and polarization are described. SIR will be flown in 1984-1986, operate in the L- and C-bands, and have a look angle which can be varied through 15-75 deg. Polarizations of HH on the L-band and HH, VV, HV, and VH on the C-band are possible. The SIR will provide 10 and 30 m resolutions in the high and low resolution modes, respectively, with a swatch width between 35-125 km. Real-time to ground and on-board optical recording will be available, together with digital and optical processing. The antennas will be rotated in the Shuttle bay in 5 deg increments, permitting the formation of stereo pictures during several overpasses. Viewing at 1275 MHz is intended for imaging, while the 5300 MHz band can sense soil moisture

  18. Simultaneous observations of ESF irregularities over Indian region using radar and GPS

    Directory of Open Access Journals (Sweden)

    S. Sripathi

    2008-10-01

    Full Text Available In this paper, we present simultaneous observations of temporal and spatial variability of total electron content (TEC and GPS amplitude scintillations on L1 frequency (1.575 GHz during the time of equatorial spread F (ESF while the MST radar (53 MHz located at Gadanki (13.5° N, 79.2° E, Dip latitude 6.3° N, a low latitude station, made simultaneous observations. In particular, the latitudinal and longitudinal extent of TEC and L-band scintillations was studied in the Indian region for different types of ESF structures observed using the MST radar during the low solar activity period of 2004 and 2005. Simultaneous radar and GPS observations during severe ESF events in the pre-midnight hour reveal that significant GPS L band scintillations, depletions in TEC, and the double derivative of the TEC index (DROTI, which is a measure of fluctuations in TEC, obtained at low latitudes coincide with the appearance of radar echoes at Gadanki. As expected, when the irregularities reach higher altitudes as seen in the radar map during pre-midnight periods, strong scintillations on an L-band signal are observed at higher latitudes. Conversely, when radar echoes are confined to only lower altitudes, weak scintillations are found and their latitudinal extent is small. During magnetically quiet periods, we have recorded plume type radar echoes during a post-midnight period that is devoid of L-band scintillations. Using spectral slopes and cross-correlation index of the VHF scintillation observations, we suggest that these irregularities could be "dead" or "fossil" bubbles which are just drifting in from west. This scenario is consistent with the observations where suppression of pre-reversal enhancement (PRE in the eastward electric field is indicated by ionosonde observations of the height of equatorial F layer and also occurrence of low spectral width in the radar observations relative to pre-midnight period. However, absence of L-band scintillations during

  19. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    Science.gov (United States)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  20. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  1. Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling

    Directory of Open Access Journals (Sweden)

    H. Kalesse

    2016-03-01

    Full Text Available Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.

  2. Development and Observation of the Phase Array Radar at X band

    Science.gov (United States)

    Ushio, T.; Shimamura, S.; Wu, T.; Kikuchi, H.; Yoshida, S.; Kawasaki, Z.; Mizutani, F.; Wada, M.; Satoh, S.; Iguchi, T.

    2013-12-01

    A new Phased Array Radar (PAR) system for thunderstorm observation has been developed by Toshiba Corporation and Osaka University under a grant of NICT, and installed in Osaka University, Japan last year. It is now well known that rapidly evolving severe weather phenomena (e.g., microbursts, severe thunderstorms, tornadoes) are a threat to our lives particularly in a densely populated area and is closely related to the production of lightning discharges. Over the past decade, mechanically rotating radar systems at the C-band or S-band have been proved to be effective for weather surveillance especially in a wide area more than 100 km in range. However, severe thunderstorm sometimes develops rapidly on the temporal and spatial scales comparable to the resolution limit (-10 min. and -500m) of typical S-band or C-band radar systems, and cannot be fully resolved with these radar systems. In order to understand the fundamental process and dynamics of such fast changing weather phenomena like lightning and tornado producing thunderstorm, volumetric observations with both high temporal and spatial resolution are required. The phased array radar system developed has the unique capability of scanning the whole sky with 100m and 10 to 30 second resolution up to 60 km. The system adopts the digital beam forming technique for elevation scanning and mechanically rotates the array antenna in azimuth direction within 10 to 30 seconds. The radar transmits a broad beam of several degrees with 24 antenna elements and receives the back scattered signal with 128 elements digitizing at each elements. Then by digitally forming the beam in the signal processor, the fast scanning is realized. After the installation of the PAR system in Osaka University, the initial observation campaign was conducted in Osaka urban area with Ku-band Broad Band Radar (BBR) network, C-band weather radar, and lightning location system. The initial comparison with C band radar system shows that the developed

  3. High-frequency radar observations of PMSE modulation by radio heating

    Science.gov (United States)

    Senior, Andrew; Rietveld, Michael; Mahmoudian, Alireza; La Hoz, Cesar; Kosch, Michael; Scales, Wayne; Pinedo, Henry

    The first observations using high-frequency (8 MHz) radar of modulation of polar mesospheric summer echoes (PMSE) by radio heating of the ionosphere are presented. The experiment was performed at the EISCAT facility near Tromsø, Norway. The observations are compared with simultaneous radar measurements at 224 MHz and with a model of the dusty plasma response to electron heating. Agreement between the model and observations is good considering technical limitations on the 8 MHz radar measurements. Predictions made about the response of high-frequency PMSE to heating where dust charging dominates over diffusion, opposite to the situation at very high-frequencies are confirmed. Suggestions are made about improving the 8 MHz observations to overcome the current limitations.

  4. Counter electrojet features in the Brazilian sector: simultaneous observation by radar, digital sounder and magnetometers

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2009-04-01

    Full Text Available In the present work we show new results regarding equatorial counter electrojet (CEJ events in the Brazilian sector, based on the RESCO radar, two set of fluxgate magnetometer systems and a digital sounder. RESCO radar is a 50 MHz backscatter coherent radar installed in 1998 at São Luís (SLZ, 2.33° S, 44.60° W, an equatorial site. The Digital sounder routinely monitors the electron density profile at the radar site. The magnetometer systems are fluxgate-type installed at SLZ and Eusébio (EUS, 03.89° S, 38.44° W. From the difference between the horizontal component of magnetic field at SLZ station and the same component at EUS (EEJ ground strength several cases of westward morning electrojet and its normal inversion to the eastward equatorial electrojet (EEJ have been observed. Also, the EEJ ground strength has shown some cases of CEJ events, which been detected with the RESCO radar too. Detection of these events were investigated with respect to their time and height of occurrence, correlation with sporadic E (Es layers at the same time, and their spectral characteristics as well as the radar echo power intensity.

  5. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    1998-10-01

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  6. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

    Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  7. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  8. Meridian-scanning photometer, coherent HF radar, and magnetometer observations of the cusp: a case study

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    1999-02-01

    Full Text Available The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB. In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, "braiding" of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.Key words. Ionosphere (auroral ionosphere; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  9. PRELIMINARY RESULTS OF ESTIMATING SOIL MOISTURE OVER BARE SOIL USING FULL-POLARIMETRIC ALOS-2 DATA

    Directory of Open Access Journals (Sweden)

    A. Sekertekin

    2016-10-01

    Full Text Available Synthetic Aperture Radar (SAR imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR data. Full-polarimetric (HH, HV, VV, VH ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE.

  10. Radar Observations of Asteroid 101955 Bennu and the OSIRIS-REx Sample Return Mission

    Science.gov (United States)

    Nolan, M. C.; Benner, L.; Giorgini, J. D.; Howell, E. S.; Kerr, R.; Lauretta, D. S.; Magri, C.; Margot, J. L.; Scheeres, D. J.

    2017-12-01

    On September 24, 2023, the OSIRIS-REx spacecraft will return a sample of asteroid (101955) Bennu to the Earth. We chose the target of this mission in part because of the work we did over more than a decade using the Arecibo and Goldstone planetary radars to observe this asteroid. We observed Bennu (then known as 1999 RQ36) at Arecibo and Goldstone in 1999 and 2005, and at Arecibo in 2011. Radar imaging from the first two observing epochs provided a shape and size for Bennu, which greatly simplified mission planning. We know that the spacecraft will encounter a roundish asteroid 500 m in diameter with a distinct equatorial ridge [Nolan et al., 2013]. Bennu does not have the dramatic concavities seen in Itokawa and comet 67P/Churyumov-Gerasimenko, the Hayabusa and Rosetta mission targets, respectively, which would have been obvious in radar imaging. Further radar ranging in 2011 provided a detection of the Yarkovsky effect, allowing us to constrain Bennu's mass and bulk density from radar measurement of non-gravitational forces acting on its orbit [Chesley et al., 2014]. The 2011 observations were particularly challenging, occurring during a management transition at the Arecibo Observatory, and would not have been possible without significant extra cooperation between the old and new managing organizations. As a result, we can predict Bennu's position to within a few km over the next 100 years, until its close encounter with the Earth in 2135. We know its shape to within ± 10 m (1σ) on the long and intermediate axes and ± 52 m on the polar diameter, and its pole orientation to within 5 degrees. The bulk density is 1260 ± 70 kg/m3 and the rotation is retrograde with a 4.297 ± 0.002 h period The OSIRIS-REx team is using these constraints to preplan the initial stages of proximity operations and dramatically reduce risk. The Figure shows the model and Arecibo radar images from 1999 (left), 2005 (center), and 2011 (right). Bennu is the faint dot near the center of

  11. A comparison of field-line resonances observed at the Goose Bay and Wick radars

    Directory of Open Access Journals (Sweden)

    G. Provan

    Full Text Available Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.

  12. A comparison of field-line resonances observed at the Goose Bay and Wick radars

    Directory of Open Access Journals (Sweden)

    G. Provan

    1997-02-01

    Full Text Available Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.

  13. Estimating radar reflectivity - snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations

    Science.gov (United States)

    Souverijns, Niels; Gossart, Alexandra; Lhermitte, Stef; Gorodetskaya, Irina; Kneifel, Stefan; Maahn, Maximilian; Bliven, Francis; van Lipzig, Nicole

    2017-04-01

    The Antarctic Ice Sheet (AIS) is the largest ice body on earth, having a volume equivalent to 58.3 m global mean sea level rise. Precipitation is the dominant source term in the surface mass balance of the AIS. However, this quantity is not well constrained in both models and observations. Direct observations over the AIS are also not coherent, as they are sparse in space and time and acquisition techniques differ. As a result, precipitation observations stay mostly limited to continent-wide averages based on satellite radar observations. Snowfall rate (SR) at high temporal resolution can be derived from the ground-based radar effective reflectivity factor (Z) using information about snow particle size and shape. Here we present reflectivity snowfall rate relations (Z = aSRb) for the East Antarctic escarpment region using the measurements at the Princess Elisabeth (PE) station and an overview of their uncertainties. A novel technique is developed by combining an optical disdrometer (NASA's Precipitation Imaging Package; PIP) and a vertically pointing 24 GHz FMCW micro rain radar (Metek's MRR) in order to reduce the uncertainty in SR estimates. PIP is used to obtain information about snow particle characteristics and to get an estimate of Z, SR and the Z-SR relation. For PE, located 173 km inland, the relation equals Z = 18SR1.1. The prefactor (a) of the relation is sensitive to the median diameter of the particles. Larger particles, found closer to the coast, lead to an increase of the value of the prefactor. More inland locations, where smaller snow particles are found, obtain lower values for the prefactor. The exponent of the Z-SR relation (b) is insensitive to the median diameter of the snow particles. This dependence of the prefactor of the Z-SR relation to the particle size needs to be taken into account when converting radar reflectivities to snowfall rates over Antarctica. The uncertainty on the Z-SR relations is quantified using a bootstrapping approach

  14. Science Drivers for Polarimetric Exploration

    Science.gov (United States)

    Yanamandra-Fisher, Padma

    2017-04-01

    The versatility of polarimetric exploration is exploited to address: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Polarized light occurs in three states: unpolarized, linear and circularized. Each mode of polarized light provides information about the scattering medium, from atmospheres to search for signatures of habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Atmospheric phenomena such as rainbows, clouds and haloes exhibit polarimetric signatures that can be used as diagnostics to probe the atmosphere and may be possible to extend this approach to other planets and exoplanets. Biological molecules exhibit an inherent handedness or circular polarization or chirality, assisting in search for the identification of astrobiological material in the solar system. Polarimetry is also utilized in the exploration of comets, asteroids, dust/regoliths. Renewed efforts for ground-based polarimetry are emerging, from probing planetary atmospheres to the study of magnetic field lines and taxonomy of asteroids. While imaging and spectroscopy are routinely performed by amateurs, there is growing interest and progress in developing polarimetric exploration amongst the amateur community, with encouraging results.I will present a review of these efforts and the goal to create a global " PACA* Polarimetry Network" of observers, modelers and instrument experts to fully

  15. Characterization of VHF radar observations associated with equatorial Spread F by narrow-band optical measurements

    Directory of Open Access Journals (Sweden)

    R. Sekar

    2004-09-01

    Full Text Available The VHF radars have been extensively used to investigate the structures and dynamics of equatorial Spread F (ESF irregularities. However, unambiguous identification of the nature of the structures in terms of plasma depletion or enhancement requires another technique, as the return echo measured by VHF radar is proportional to the square of the electron density fluctuations. In order to address this issue, co-ordinated radar backscatter and thermospheric airglow intensity measurements were carried out during March 2003 from the MST radar site at Gadanki. Temporal variations of 630.0-nm and 777.4-nm emission intensities reveal small-scale ("micro" and large-scale ("macro" variations during the period of observation. The micro variations are absent on non-ESF nights while the macro variations are present on both ESF and non-ESF nights. In addition to the well-known anti-correlation between the base height of the F-region and the nocturnal variation of thermospheric airglow intensities, the variation of the base height of the F-layer, on occasion, is found to manifest as a bottomside wave-like structure, as seen by VHF radar on an ESF night. The micro variations in the airglow intensities are associated with large-scale irregular plasma structures and found to be in correspondence with the "plume" structures obtained by VHF radar. In addition to the commonly observed depletions with upward movement, the observation unequivocally reveals the presence of plasma enhancements which move downwards. The observation of enhancement in 777.4-nm airglow intensity, which is characterized as plasma enhancement, provides an experimental verification of the earlier prediction based on numerical modeling studies.

  16. Orbital bistatic radar observations of asteroid Vesta by the Dawn mission.

    Science.gov (United States)

    Palmer, Elizabeth M; Heggy, Essam; Kofman, Wlodek

    2017-09-12

    We present orbital bistatic radar observations of a small-body, acquired during occultation by the Dawn spacecraft at asteroid Vesta. The radar forward-scattering properties of different reflection sites are used to assess the textural properties of Vesta's surface at centimeter-to-decimeter scales and are compared to subsurface hydrogen concentrations observed by Dawn's Gamma Ray and Neutron Detector to assess potential volatile occurrence in the surface and shallow subsurface. We observe significant differences in surface radar reflectivity, implying substantial spatial variations in centimeter-to-decimeter-scale surface roughness. Our results suggest that unlike the Moon, Vesta's surface roughness variations cannot be explained by cratering processes only. In particular, the occurrence of heightened hydrogen concentrations within large smoother terrains (over hundreds of square kilometers) suggests that potential ground-ice presence may have contributed to the formation of Vesta's current surface texture. Our observations are consistent with geomorphological evidence of transient water flow from Dawn Framing Camera images.The Dawn spacecraft has provided orbital bistatic radar observations of a small body in the solar system. Here, the authors present results from Vesta suggesting that smooth terrains with heightened hydrogen concentrations indicate that ground-ice presence potentially helped shape Vesta's current surface texture.

  17. Near-surface bulk densities of asteroids derived from dual-polarization radar observations

    Science.gov (United States)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.

    2017-09-01

    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  18. Observations of Mesospheric Turbulence by Rocket Probe and VHF Radar, Part 2.4A

    Science.gov (United States)

    Royrvik, O.; Smith, L. G.

    1984-01-01

    Data from the Jicamarca VHF radar and from a Languir probe fine-structure on a Nike Orion rocket launched from Punto Lobos, Peru, have been compared. A single mesospheric scattering layer was observed by the radar. The Langmuir probe detected irregularities in the electron-density profile in a narrow region between 85.2 and 86.6 km. It appears from a comparison between these two data sets that turbulence in the neutral atmosphere is the mechanism generating the refractive index irregularities.

  19. Typical disturbances of the daytime equatorial F region observed with a high-resolution HF radar

    Directory of Open Access Journals (Sweden)

    E. Blanc

    1998-06-01

    Full Text Available HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°24'63''N–5°37'38''W during the International Equatorial Electrojet Year (1993–1994. The HF radar is a high-resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.

  20. Ondřejov radar observations of Leonid shower activity in 2000-2002

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Pecinová, Drahomíra

    2004-01-01

    Roč. 426, č. 3 (2004), s. 1111-1117 ISSN 0004-6361 R&D Projects: GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z1003909 Keywords : Leonid meteor * radar observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.694, year: 2004

  1. Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera

    NARCIS (Netherlands)

    Lundgren, P.; Usai, S.; Sansosti, E.; Lanari, R.; Tesauro, M.; Fornaro, G.; Berardino, P.

    2001-01-01

    Satellite radar interferometry of Campi Flegrei caldera, Italy, reveals a pattern of subsidence during the period 1993–1998. Interferograms spanning the first half of the observation period (1993–1995) have a lower amplitude and average rate of subsidence than those spanning either the second half

  2. Initial observations of lunar impact melts and ejecta flows with the Mini-RF radar

    Science.gov (United States)

    Carter, Lynn M.; Neish, Catherine D.; Bussey, D. B. J.; Spudis, Paul D.; Patterson, G. Wesley; Cahill, Joshua T.; Raney, R. Keith

    2012-02-01

    The Mini-RF radar on the Lunar Reconnaissance Orbiter spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7 and 1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.

  3. Relationships between Vertical Profiles of Radar Observed Vertical Velocity and Reflectivity in Convective Storms

    Science.gov (United States)

    Barnes, H.; Hagos, S. M.; Feng, Z.; Williams, C. R.; Protat, A.

    2017-12-01

    Complex relationships exist between vertical motions and microphysical processes. One source of data that provides insight into microphysical processes within convection is radar reflectivity. This study provides insight into the dynamical-microphysical interactions by evaluating several theoretical explanations that describe the relationship between vertical profiles of vertical velocity and radar reflectivity. These theoretical explanations are evaluated using data from convective storms observed near Darwin, Australia. This study first evaluates whether the vertical profile of vertical velocity can be used to describe characteristics of the vertical radar reflectivity profile. Then, the reverse is considered and this study investigates whether the vertical profile of radar reflectivity can be used to provide insight into the vertical profile of vertical velocity. These theoretical explanations are important since they provide a means to compare simulated and observed dynamical-microphysical interactions and aid in the development of future cumulus and microphysical parameterizations. Additionally, they may increase our ability observe the statistical characteristics of vertical velocity, which is highly desired by the modeling community.

  4. Abhilash S Assimilation of Doppler weather radar observations in a ...

    Indian Academy of Sciences (India)

    The effects of attenuation and site on the spectra of microearthquakes in the ... 2004 earthquake. 215. Debao Wen. Monitoring the three-dimensional ionospheric elec- tron density distribution using GPS observations over China. 235. Eronat Canan ... Fairweather atmospheric electricity at Antarctica during local summer as ...

  5. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    Science.gov (United States)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  6. E-region decameter-scale plasma waves observed by the dual TIGER HF radars

    Directory of Open Access Journals (Sweden)

    B. A. Carter

    2009-01-01

    Full Text Available The dual Tasman International Geospace Environment Radar (TIGER HF radars regularly observe E-region echoes at sub-auroral magnetic latitudes 58°–60° S including during geomagnetic storms. We present a statistical analysis of E-region backscatter observed in a period of ~2 years (late 2004–2006 by the TIGER Bruny Island and Unwin HF radars, with particular emphasis on storm-time backscatter. It is found that the HF echoes normally form a 300-km-wide band at ranges 225–540 km. In the evening sector during geomagnetic storms, however, the HF echoes form a curved band joining to the F-region band at ~700 km. The curved band lies close to the locations where the geometric aspect angle is zero, implying little to no refraction during geomagnetic storms, which is an opposite result to what has been reported in the past. The echo occurrence, Doppler velocity, and spectral width of the HF echoes are examined in order to determine whether new HF echo types are observed at sub-auroral latitudes, particularly during geomagnetic storms. The datasets of both TIGER radars are found to be dominated by low-velocity echoes. A separate population of storm-time echoes is also identified within the datasets of both radars with most of these echoes showing similar characteristics to the low-velocity echo population. The storm-time backscatter observed by the Bruny Island radar, on the other hand, includes near-range echoes (r<405 km that exhibit some characteristics of what has been previously termed the High Aspect angle Irregularity Region (HAIR echoes. We show that these echoes appear to be a storm-time phenomenon and further investigate this population by comparing their Doppler velocity with the simultaneously measured F- and E-region irregularity velocities. It is suggested that the HAIR-like echoes are observed only by HF radars with relatively poor geometric aspect angles when electron density is low and when the electric field is particularly

  7. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  8. Compact polarimetric SAR product and calibration considerations for target analysis

    Science.gov (United States)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  9. The CASLEO Polarimetric Survey of Main Belt Asteroids: Updated results

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Cañada-Assandri, M.

    2011-10-01

    We present updated results of the polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina, using the 2.15 m telescope and the Torino and CASPROF polarimeters. The goals of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. The survey began in 2003, and data for a sample of more than 170 asteroids have been obtained, most of them having been polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for several taxonomic classes.

  10. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    1997-01-01

    Full Text Available Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter.

  11. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter.

  12. Cirrus Cloud Properties from a Cloud-Resolving Model Simulation Compared to Cloud Radar Observations.

    Science.gov (United States)

    Luo, Yali; Krueger, Steven K.; Mace, Gerald G.; Xu, Kuan-Man

    2003-02-01

    Cloud radar data collected at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains site were used to evaluate the properties of cirrus clouds that occurred in a cloud-resolving model (CRM) simulation of the 29-day summer 1997 intensive observation period (IOP). The simulation was `forced' by the large-scale advective temperature and water vapor tendencies, horizontal wind velocity, and turbulent surface fluxes observed at the Southern Great Plains site. The large-scale advective condensate tendency was not observed. The correlation of CRM cirrus amount with Geostationary Operational Environmental Satellite (GOES) high cloud amount was 0.70 for the subperiods during which cirrus formation and decay occurred primarily locally, but only 0.30 for the entire IOP. This suggests that neglecting condensate advection has a detrimental impact on the ability of a model (CRM or single-column model) to properly simulate cirrus cloud occurrence.The occurrence, vertical location, and thickness of cirrus cloud layers, as well as the bulk microphysical properties of thin cirrus cloud layers, were determined from the cloud radar measurements for June, July, and August 1997. The composite characteristics of cirrus clouds derived from this dataset are well suited for evaluating CRMs because of the close correspondence between the timescales and space scales resolved by the cloud radar measurements and by CRMs. The CRM results were sampled at eight grid columns spaced 64 km apart using the same definitions of cirrus and thin cirrus as the cloud radar dataset. The composite characteristics of cirrus clouds obtained from the CRM were then compared to those obtained from the cloud radar.Compared with the cloud radar observations, the CRM cirrus clouds occur at lower heights and with larger physical thicknesses. The ice water paths in the CRM's thin cirrus clouds are similar to those observed. However, the corresponding cloud-layer-mean ice water contents are

  13. First wind shear observation in PMSE with the tristatic EISCAT VHF radar

    OpenAIRE

    Mann, Ingrid; Häggström, I.; Tjulin, A; Rostami, S; Anyairo, CC; Dalin, P

    2016-01-01

    (c) American Geophysical Union, reprinted with permission. Article also available at source: https://doi.org/10.1002/2016JA023080 The Polar Summer Mesosphere has the lowest temperatures that occur in the entire Earth system. Water ice particles below the optically observable size range participate there in the formation of strong radar echoes (Polar Mesospheric Summer Echoes, PMSE). To study PMSE we carried out observations with the European Incoherent Scatter (EISCAT) VHF and EIS...

  14. Observation of Polar Mesosphere Summer Echoes using the Northernmost MST Radar at Eureka (80 deg N)

    Science.gov (United States)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-01-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northern most geographically located MST radar at Eureka (80 deg N, 86 deg W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69 deg N, 16 deg E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  15. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  16. Impact of frequency and polarization diversity on a terahertz radar's imaging performance

    Science.gov (United States)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria

    2011-05-01

    The Jet Propulsion Laboratory's 675 GHz, 25 m standoff imaging radar can achieve >1 Hz real time frame rates over 40x40 cm fields of view for rapid detection of person-borne concealed weapons. In its normal mode of operation, the radar generates imagery based solely on the time-of-flight, or range, between the radar and target. With good clothing penetration at 675 GHz, a hidden object will be detectable as an anomaly in the range-to-surface profile of a subject. Here we report on results of two modifications in the radar system that were made to asses its performance using somewhat different detection approaches. First, the radar's operating frequency and bandwidth were cut in half, to 340 GHz and 13 GHz, where there potential system advantages include superior transmit power and clothing penetration, as well as a lower cost of components. In this case, we found that the twofold reduction in range and cross-range resolution sharply limited the quality of through-clothes imagery, although some improvement is observed for detection of large targets concealed by very thick clothing. The second radar modification tested involved operation in a fully polarimetric mode, where enhanced image contrast might occur between surfaces with different material or geometric characteristics. Results from these tests indicated that random speckle dominates polarimetric power imagery, making it an unattractive approach for contrast improvement. Taken together, the experiments described here underscore the primary importance of high resolution imaging in THz radar applications for concealed weapons detection.

  17. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  18. Eddy turbulence parameters inferred from radar observations at Jicamarca

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2007-03-01

    Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.

  19. Eddy turbulence parameters inferred from radar observations at Jicamarca

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2007-03-01

    Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.

  20. Polarimetric microlensing of circumstellar discs

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  1. Frequency domain interferometry mode observations of PMSE using the EISCAT VHF radar

    Directory of Open Access Journals (Sweden)

    P. B. Chilson

    2000-12-01

    Full Text Available During the summer of 1997 investigations into the nature of polar mesosphere summer echoes (PMSE were conducted using the European incoherent scatter (EISCAT VHF radar in Norway. The radar was operated in a frequency domain interferometry (FDI mode over a period of two weeks to study the frequency coherence of the returned radar signals. The operating frequencies of the radar were 224.0 and 224.6 MHz. We present the first results from the experiment by discussing two 4-h intervals of data collected over two consecutive nights. During the first of the two days an enhancement of the FDI coherence, which indicates the presence of distinct scattering layers, was found to follow the lower boundary of the PMSE. Indeed, it is not unusual to observe that the coherence values are peaked around the heights corresponding to both the lower- and upper-most boundaries of the PMSE layer and sublayers. A Kelvin-Helmholtz mechanism is offered as one possible explanation for the layering structure. Additionally, our analysis using range-time-pseudocolor plots of signal-to-noise ratios, spectrograms of Doppler velocity, and estimates of the positions of individual scattering layers is shown to be consistent with the proposition that upwardly propagating gravity waves can become steepened near the mesopause.Key words: Ionosphere (polar ionosphere · Meteorology and Atmospheric Dynamics (middle atmosphere dynamics · Radio Science (Interferometry

  2. Frequency domain interferometry mode observations of PMSE using the EISCAT VHF radar

    Directory of Open Access Journals (Sweden)

    P. B. Chilson

    Full Text Available During the summer of 1997 investigations into the nature of polar mesosphere summer echoes (PMSE were conducted using the European incoherent scatter (EISCAT VHF radar in Norway. The radar was operated in a frequency domain interferometry (FDI mode over a period of two weeks to study the frequency coherence of the returned radar signals. The operating frequencies of the radar were 224.0 and 224.6 MHz. We present the first results from the experiment by discussing two 4-h intervals of data collected over two consecutive nights. During the first of the two days an enhancement of the FDI coherence, which indicates the presence of distinct scattering layers, was found to follow the lower boundary of the PMSE. Indeed, it is not unusual to observe that the coherence values are peaked around the heights corresponding to both the lower- and upper-most boundaries of the PMSE layer and sublayers. A Kelvin-Helmholtz mechanism is offered as one possible explanation for the layering structure. Additionally, our analysis using range-time-pseudocolor plots of signal-to-noise ratios, spectrograms of Doppler velocity, and estimates of the positions of individual scattering layers is shown to be consistent with the proposition that upwardly propagating gravity waves can become steepened near the mesopause.

    Key words: Ionosphere (polar ionosphere · Meteorology and Atmospheric Dynamics (middle atmosphere dynamics · Radio Science (Interferometry

  3. Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available The purpose of this research is to analyze how changes in acquisition time and incidence angle affect various C-band synthetic aperture radar (SAR polarimetric intensities, co-polarized phase information, polarimetric response plots and decomposition parameters for various crops typical of Northern Ontario, Canada. We examine how these parameters may be used to monitor the growth stages of five common cash crops, namely, barley (Hordeum vulgare, canola (Brassica napus, oat (Avena sativa, soybean (Glycine max and wheat (Triticum spp.. In total, nine RADARSAT-2 polarimetric images were analyzed across a 14-week period beginning in June and ending in September 2011 using two incidence angles of approximately 26° and 41°. As expected, the backscatter intensities for all targets were found to show a higher response when acquired at the steeper incidence angle (26°. All cash crop targets showed a rise and fall in backscatter response over the course of the growing season, coinciding with changing growth stages. Slight phase differences were observed for cereal crops, possibly due to one of the polarizations penetrating between the rows allowing double-bounce to occur. The polarimetric response plots and decompositions offered insight into the scattering mechanisms of each crop type, generally showing an increase in volume scattering as the crops reached maturity. Specifically, the contributions of the crops increased towards the volume scattering component and zones 4 and 2, as the crops matured in regards to the Freeman-Durden and Cloude-Pottier decompositions respectively. Overall, soybean and canola showed a more similar response in comparison to the cereal cash crops. Although the study focused on Northern Ontario, it is anticipated that these results would be relevant in investigations of multi-temporal RADARSAT-2 for agricultural zones with similar crop types.

  4. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring

    Science.gov (United States)

    Hoblitt, R. P.; Schneider, D. J.

    2009-12-01

    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector

  5. From Bursts to Back-Projection: Signal Processing Techniques for Earth and Planetary Observing Radars

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    Discusses: (1) JPL Radar Overview and Historical Perspective (2) Signal Processing Needs in Earth and Planetary Radars (3) Examples of Current Systems and techniques (4) Future Perspectives in signal processing for radar missions

  6. Algorithm Development for the Optimum Rainfall Estimation Using Polarimetric Variables in Korea

    Directory of Open Access Journals (Sweden)

    Cheol-Hwan You

    2015-01-01

    Full Text Available In this study, to get an optimum rainfall estimation using polarimetric variables observed from Bislsan radar which is the first polarimetric radar in Korea, rainfall cases for 84 hours caused by different conditions, which are Changma front and typhoon, Changma front only, and typhoon only, occurred in 2011, were analyzed. And rainfall algorithms were developed by using long period drop size distributions with six different raindrop axis ratio relations. The combination of the relations between R and Z, ZDR, R and KDP, ZDR, and R and KDP with different rainfall intensity would be an optimum rainfall algorithm if the reference of rainfall would be defined correctly. In the case the reference is not defined adequately, the relation between R and Z, ZDR, KDP, AH and R and Z, KDP, AH can be used as a representative rainfall relation. Particularly if the qualified ZDR is not available, the relation between R and Z, KDP, AH can be used as an optimum rainfall relation in Korea.

  7. Spatial observations by the CUTLASS coherent scatter radar of ionospheric modification by high power radio waves

    Directory of Open Access Journals (Sweden)

    G. E. Bond

    Full Text Available Results are presented from an experimental campaign in April 1996, in which the new CUTLASS (Co-operative UK twin-located Auroral Sounding System coherent scatter radar was employed to observe artificial field aligned irregularities (FAI generated by the EISCAT (European Incoherent SCATter heating facility at Tromsø, Norway. The distribution of backscatter intensity from within the heated region has been investigated both in azimuth and range with the Finland component of CUTLASS, and the first observations of artificial irregularities by the Iceland radar are also presented. The heated region has been measured to extend over a horizontal distance of 170±50km, which by comparison with a model of the heater beam pattern corresponds to a threshold electric field for FAI of between 0.1 and 0.01V/m. Differences between field-aligned and vertical propagation heating are also presented.

  8. Spatial observations by the CUTLASS coherent scatter radar of ionospheric modification by high power radio waves

    Directory of Open Access Journals (Sweden)

    G. E. Bond

    1997-11-01

    Full Text Available Results are presented from an experimental campaign in April 1996, in which the new CUTLASS (Co-operative UK twin-located Auroral Sounding System coherent scatter radar was employed to observe artificial field aligned irregularities (FAI generated by the EISCAT (European Incoherent SCATter heating facility at Tromsø, Norway. The distribution of backscatter intensity from within the heated region has been investigated both in azimuth and range with the Finland component of CUTLASS, and the first observations of artificial irregularities by the Iceland radar are also presented. The heated region has been measured to extend over a horizontal distance of 170±50km, which by comparison with a model of the heater beam pattern corresponds to a threshold electric field for FAI of between 0.1 and 0.01V/m. Differences between field-aligned and vertical propagation heating are also presented.

  9. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order......This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...

  10. Goldstone/VLA 3.5cm Mars Radar Observations - "Stealths" and South Polar Regions

    Science.gov (United States)

    Butler, Bryan; Chizek, M. R.; Slade, M. A.; Haldemann, A. F.; Muhleman, D. O.; Mao, T. F.

    2006-09-01

    The opposition of Mars in 2003 provided a fantastic opportunity to use the combined Goldstone/VLA radar to probe the surface with the highest resolution ever obtained on Mars with that instrument (as good as 70 km). Observations were made on August 11, 19, 28, and September 8. Details of data reduction and analysis of the radar echoes from the volcanic regions of the planet are presented in a companion paper in these proceedings (Chizek et al.). We will present results related to "Stealth" (and other radar-dark regions of the planet, including the Argyre and Hellas Planitiae, and a region to the west of the Elysium Mons caldera), and the south polar residual and seasonal ice caps. The size, shape, and reflectivity characteristics of Stealth and "mega-Stealth" (Edgett et al. 1997) are reaffirmed, with a better viewing geometry of the western extent of the feature than had been obtained previously. It had been speculated previously that Hellas Planitia should also be radar dark - this is confirmed by our imaging, though the reflectivity is not as low as for Stealth. We find a new radar dark area to the west of Elysium Mons, which is likely an ash fall from that volcano (similar to the relationship between Stealth and the Tharsis volcanoes). The south polar residual ice cap is a very bright reflector, as seen previously, but we now also see a very bright reflection from the seasonal cap, not seen previously. The cap is not uniformly bright, however, and the extent of the bright reflection does not correspond to that expected from the retreat of the cap as measured either from albedo or thermal emission characteristics. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  12. Multi-radar observations of polar mesosphere summer echoes during the PHOCUS campaign on 20-22 July 2011

    Science.gov (United States)

    Belova, E.; Kirkwood, S.; Latteck, R.; Zecha, M.; Pinedo, H.; Hedin, J.; Gumbel, J.

    2014-10-01

    During the PHOCUS rocket campaign, on 20-22 July 2011, the observations of polar mesosphere summer echoes (PMSE) were made by three mesosphere-stratosphere-troposphere radars, operating at about 50 MHz. One radar, ESRAD is located at Esrange in Sweden, where the rocket was launched, two other radars, MAARSY and MORRO, are located 250 km north-west and 200 km north of the ESRAD, respectively, on the other side of the Scandinavian mountain ridge. We compared PMSE as measured by these three radars in terms of their strength, spectral width and wave modulation. Time-altitude maps of PMSE strength look very similar for all three radars. Cross-correlations with maximum values 0.5-0.6 were found between the signal powers over the three days of observations for each pair of radars. By using cross-spectrum analysis of PMSE signals, we show that some waves with periods of a few hours were observed by all three radars. Unlike the strengths, simultaneous values of PMSE spectral width, which is related to turbulence, sometimes differ significantly between the radars. For interpretation of the results we suggested that large-scale fields of neutral temperature, ice particles and electron density, which are more or less uniform over 150-250 km horizontal extent were ‘modulated’ by waves and smaller patches of turbulence.

  13. Radar and optical observations and physical modeling of triple near-Earth Asteroid (136617) 1994 CC

    Czech Academy of Sciences Publication Activity Database

    Brozovic, M.; Benner, L. A. M.; Taylor, P.A.; Nolan, M. C.; Howell, E. S.; Magri, C.; Scheeres, D.J.; Giorgini, J. D.; Pollock, J.; Pravec, Petr; Galád, Adrián; Fang, J.; Margot, J. L.; Busch, M.W.; Shepard, M.K.; Reichart, D. E.; Ivarsen, K.M.; Haislip, J.B.; LaCluyze, A.; Jao, J.; Slade, M. A.; Lawrence, K. J.; Hicks, M. D.

    2011-01-01

    Roč. 216, č. 1 (2011), s. 241-256 ISSN 0019-1035 R&D Projects: GA ČR GA205/09/1107 Grant - others:SAV(SK) Vega 2/0016/09 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroid s * radar observations * near-Earth objects * satellites of asteroid s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.385, year: 2011

  14. Study of equatorial Kelvin waves using the MST radar and radiosonde observations

    Directory of Open Access Journals (Sweden)

    P. Kishore

    2005-06-01

    Full Text Available In this paper an attempt has been made to study equatorial Kelvin waves using a high power coherent VHF radar located at Gadanki (13.5° N, 79.2° E, a tropical station in the Indian sub-continent. Simultaneous radiosonde observations taken from a nearby meteorological station located in Chennai (13.04° N, 80.17° E were also used to see the coherence in the observed structures. These data sets were analyzed to study the mean winds and equatorial waves in the troposphere and lower stratosphere. Equatorial waves with different periodicities were identified. In the present study, particular attention has been given to the fast Kelvin wave (6.5-day and slow Kelvin wave (16-day. Mean zonal wind structures were similar at both locations. The fast Kelvin wave amplitudes were somewhat similar in both observations and the maximum amplitude is about 8m/s. The phase profiles indicated a slow downward progression. The slow Kelvin wave (16-day amplitudes shown by the radiosonde measurements are a little larger than the radar derived amplitudes. The phase profiles showed downward phase progression and it translates into a vertical wavelength of ~10-12km. The radar and radiosonde derived amplitudes of fast and slow Kelvin waves are larger at altitudes near the tropopause (15-17km, where the mean wind attains westward maximum.

  15. Bistatic Radar Observations of the Moon Using Mini-RF on LRO and the Arecibo Observatory

    Science.gov (United States)

    Patterson, G. W.; Stickle, A. M.; Turner, F. S.; Jensen, J. R.; Bussey, D. B. J.; Spudis, P.; Espiritu, R. C.; Schulze, R. C.; Yocky, D. A.; Wahl, D. E.; hide

    2016-01-01

    The Miniature Radio Frequency (Mini-RF) instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) that operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar nearside from 2012 to 2015. The purpose of this bistatic campaign was to characterize the radar scattering properties of the surface and near-surface, as a function of bistatic angle, for a variety of lunar terrains and search for a coherent backscatter opposition effect indicative of the presence of water ice. A variety of lunar terrain types were sampled over a range of incidence and bistatic angles; including mare, highland, pyroclastic, crater ejecta, and crater floor materials. Responses consistent with an opposition effect were observed for the ejecta of several Copernican-aged craters and the floor of the south-polar crater Cabeus. The responses of ejecta material varied by crater in a manner that suggests a relationship with crater age. The response for Cabeus was observed within the portion of its floor that is not in permanent shadow. The character of the response differs from that of crater ejecta and appears unique with respect to all other lunar terrains observed. Analysis of data for this region suggests that the unique nature of the response may indicate the presence of near-surface deposits of water ice.

  16. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Science.gov (United States)

    Milan, S. E.; Jones, T. B.; Robinson, T. R.; Thomas, E. C.; Yeoman, T. K.

    1997-01-01

    Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north) of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Correspondence to :P. Francia->

  17. Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar

    Science.gov (United States)

    Carter, Lynn M.; Neish, Catherine D.; Bussey, D. B. J.; Spudis, Paul D.; Patterson, G. Wesley; Cahill, Joshua T.; Raney, R. Keith

    2011-01-01

    The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.

  18. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  19. An integrated approach to monitoring the calibration stability of operational dual-polarization radars

    Directory of Open Access Journals (Sweden)

    M. Vaccarono

    2016-11-01

    Full Text Available The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetric radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish

  20. Tomographic Observation and Bedmapping of Glaciers in Western Greenland with IceBridge Sounding Radar

    Science.gov (United States)

    Wu, Xiaoqing; Paden, John; Jezek, Ken; Rignot, Eric; Gim, Young

    2013-01-01

    We produced the high resolution bedmaps of several glaciers in western Greenland from IceBridge Mission sounding radar data using tomographic sounding technique. The bedmaps cover 3 regions: Russell glaciers, Umanaq glaciers and Jakobshavn glaciers of western Greenland. The covered areas is about 20x40 km(sup 2) for Russell glaciers and 300x100 sq km, and 100x80 sq km for Jakobshavn glaciers. The ground resolution is 50 meters and the average ice thickness accuracy is 10 to 20 meters. There are some void areas within the swath of the tracks in the bedmaps where the ice thickness is not known. Tomographic observations of these void areas indicate that the surface and shallow sub-surface pockets, likely filled with water, are highly reflective and greatly weaken the radar signal and reduce the energy reaching and reflected from the ice sheet bottom.

  1. Observation of Zenneck-Like Waves over a Metasurface Designed for Launching HF Radar Surface Wave

    Directory of Open Access Journals (Sweden)

    Florent Jangal

    2016-01-01

    Full Text Available Since the beginning of the 20th century a controversy has been continuously revived about the existence of the Zenneck Wave. This wave is a theoretical solution of Maxwell’s equations and might be propagated along the interface between the air and a dielectric medium. The expected weak attenuation at large distance explains the constant interest for this wave. Notably in the High Frequency band such a wave had been thought as a key point to reduce the high attenuation observed in High Frequency Surface Wave Radar. Despite many works on that topic and various experiments attempted during one century, there is still an alternation of statements between its existence and its nonexistence. We report here an experiment done during the optimisation of the transmitting antennas for Surface Wave Radars. Using an infrared method, we visualize a wave having the structure described by Zenneck above a metasurface located on a dielectric slab.

  2. Evolution of the Detached Westward Flow Channel as Observed by the Unwin HF Radar

    Science.gov (United States)

    Makarevich, R. A.; Dyson, P. L.

    2005-12-01

    We examine the spatial and temporal evolution of latitudinally narrow regions with enhanced Doppler velocity observed by the Unwin TIGER HF radar equatorward of Auroral Westward Flow Channels. AWFCs were detected by both the Bruny Island and New Zealand (Unwin) TIGER radars as regions with enhanced westward convection, at about -62 deg MLAT. A second, more equatorward (~ -60 deg MLAT) channel with enhanced westward convection was detected only by the Unwin radar. The spatio-temporal behaviour of the second channel and its characteristics were found to be significantly different from those of AWFCs, e.g. both the channel and flow directions were significantly non-L-shell-aligned. We also investigate the relationship between the flow speeds within the two types of flow channels. In all cases, the second channel appeared to originate within or close to the AWFC, with the flow deviation from the magnetic L-shell direction and latitudinal separation between channels increasing with time. In sharp contrast to the AWFC that persisted for 2-3 hours, the second channel was recognizable only for 30-50 min. A relation between multiple flow channels and other subauroral phenomena such as subauroral ion drifts (SAID) and subauroral polarization streams (SAPS), and the implications of observations for models of SAID and SAPS formation are discussed.

  3. Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk Around PDS 70: Observations of the Disk

    Science.gov (United States)

    Hashimoto, J.; Dong, R.; Kudo, T.; Honda, M.; McClure, M. K.; Zhu, Z.; Muto, T.; Wisniewski, J.; Abe, L.; Brandner, W.; hide

    2012-01-01

    We present high-resolution H-band polarized intensity (FWHM=0".1:14AU) and L'-band imaging data(FWHM= 0".11:15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0".2) up to 210 AU (1".5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is approx.70 AU. Our data show that the geometric center of the disk shifts by approx.6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of spectral energy distribution fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit of approx.30 to approx.50 M(sub J) on the mass of companions within the gap. Taking into account the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap. Key words: planetary systems - polarization - protoplanetary disks - stars: individual (PDS 70) - stars: pre-main sequence.

  4. VenSAR on EnVision: Taking earth observation radar to Venus

    Science.gov (United States)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  5. First wind shear observation in PMSE with the tristatic EISCAT VHF radar

    Science.gov (United States)

    Mann, I.; Häggström, I.; Tjulin, A.; Rostami, S.; Anyairo, C. C.; Dalin, P.

    2016-11-01

    The Polar Summer Mesosphere has the lowest temperatures that occur in the entire Earth system. Water ice particles below the optically observable size range participate there in the formation of strong radar echoes (Polar Mesospheric Summer Echoes, PMSE). To study PMSE we carried out observations with the European Incoherent Scatter (EISCAT) VHF and EISCAT UHF radar simultaneously from a site near Tromsø (69.58°N, 19.2272°E) and observed VHF backscattering also with the EISCAT receivers in Kiruna (67.86°N, 20.44°E) and Sodankylä (67.36°N, 26.63°E). This is one of the first tristatic measurements with EISCAT VHF, and we therefore describe the observations and geometry in detail. We present observations made on 26 June 2013 from 7:00 to 13:00 h UT where we found similar PMSE patterns with all three VHF receivers and found signs of wind shear in PMSE. The observations suggest that the PMSE contains sublayers that move in different directions horizontally, and this points to Kelvin-Helmholtz instability possibly playing a role in PMSE formation. We find no signs of PMSE in the UHF data. The electron densities that we derive from observed incoherent scatter at UHF are at PMSE altitudes close to the noise level but possibly indicate reduced electron densities directly above the PMSE.

  6. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)] [and others

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  7. First observations of polar mesosphere summer echoes by SuperDARN Zhongshan radar

    Science.gov (United States)

    Liu, E. X.; Hu, H. Q.; Hosokawa, K.; Liu, R. Y.; Wu, Z. S.; Xing, Z. Y.

    2013-11-01

    We report the first observations of PMSE by SuperDARN Zhongshan radar in Antarctica and present a statistical analysis of PMSE from 2010 to 2012. The seasonal variations of occurrence are consistent with those before, with an obvious enhancement at the beginning of summer and a maximum several days after summer solstice. The special features of diurnal variations were observed because of high geomagnetic latitude of Zhongshan Station, which is that the maximum is near local midnight and the secondary maximum appears 1-2 h after the local noon. The results proved that the auroral particle precipitation plays a fairly important role in the PMSE occurrence.

  8. Saturation and hysteresis effects in ionospheric modification experiments observed by the CUTLASS and EISCAT radars

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2006-03-01

    Full Text Available The results of high latitude ionospheric modification experiments utilising the EISCAT heating facility at Tromsø are presented. As a result of the interaction between the high power pump waves and upper hybrid waves in the ionosphere, field-aligned electron density irregularities are artificially excited. Observations of these structures with the CUTLASS coherent HF radars and the EISCAT incoherent UHF radar exhibit hysteresis effects as the heater output power is varied. These are explained in terms of the two-stage mechanism which leads to the growth of the irregularities. Experiments which involve preconditioning of the ionosphere also indicate that hysteresis could be exploited to maximise the intensity of the field-aligned irregularities, especially where the available heater power is limited.

    In addition, the saturation of the irregularity amplitude is considered. Although, the rate of irregularity growth becomes less rapid at high heater powers it does not seem to fully saturate, indicating that the amplification would continue beyond the capabilities of the Tromsø heater - currently the most powerful of its kind. It is shown that the CUTLASS radars are sensitive to irregularities produced by very low heater powers (effective radiated powers <4 MW. This fact is discussed from the perspective of a new heating facility, SPEAR, located on Spitzbergen and capable of transmitting high frequency radio waves with an effective radiated power ~10% of that of the Tromsø heater (28MW.

  9. Range imaging observations of PMSE using the EISCAT VHF radar: Phase calibration and first results

    Directory of Open Access Journals (Sweden)

    J. R. Fernandez

    2005-01-01

    Full Text Available A novel phase calibration technique for use with the multiple-frequency Range IMaging (RIM technique is introduced based on genetic algorithms. The method is used on data collected with the European Incoherent SCATter (EISCAT VHF radar during a 2002 experiment with the goal of characterizing the vertical structure of Polar Mesosphere Summer Echoes (PMSE over northern Norway. For typical Doppler measurements, the initial phases of the transmitter and receiver are not required to be the same. The EISCAT receiver systems exploit this fact, allowing a multi-static configuration. However, the RIM method relies on the small phase differences between closely spaced frequencies. As a result, the high-resolution images produced by the RIM method can be significantly degraded if not properly calibrated. Using an enhanced numerical radar simulator, in which data from multiple sampling volumes are simultaneously generated, the proposed calibration method is validated. Subsequently, the method is applied to preliminary data from the EISCAT radar, providing first results of RIM images of PMSE. Data using conventional analysis techniques, and confirmed by RIM, reveal an often-observed double-layer structure with higher stability in the lower layer. Moreover, vertical velocity oscillations exhibit a clear correlation with the apparent motion of the layers shown in the echo power plots.

  10. Observations of the April 2002 geomagnetic storm by the global network of incoherent scatter radars

    Directory of Open Access Journals (Sweden)

    L. P. Goncharenko

    2005-01-01

    Full Text Available This paper describes the ionospheric response to a geomagnetic storm beginning on 17 April 2002. We present the measurements of ionospheric parameters in the F-region obtained by the network of eight incoherent scatter radars. The main effects of this storm include a deep decrease in the electron density observed at high and middle latitudes in the pre-noon sector, and a minor enhancement in the density observed in the daytime sector at middle latitudes. Extreme plasma heating (>1000-3000 K is observed at high latitudes, subsiding to 200-300K at subauroral latitudes. The western hemisphere radar chain observed the prompt penetration of the electric field from auroral to equatorial latitudes, as well as the daytime enhancement of plasma drift parallel to the magnetic field line, which is related to the enhancement in the equatorward winds. We suggest that in the first several hours after the storm onset, a negative phase above Millstone Hill (pre-noon sector results from counteracting processes - penetration electric field, meridional wind, and electrodynamic heating, with electrodynamic heating being the dominant mechanism. At the lower latitude in the pre-noon sector (Arecibo and Jicamarca, the penetration electric field becomes more important, leading to a negative storm phase over Arecibo. In contrast, in the afternoon sector at mid-latitudes (Kharkov, Irkutsk, effects of penetration electric field and meridional wind do not counteract, but add up, leading to a small (~15%, positive storm phase over these locations. As the storm develops, Millstone Hill and Irkutsk mid-latitude radars observe further depletion of electron density due to the changes in the neutral composition.

  11. Spaceborne weather radar

    Science.gov (United States)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  12. Effects of Tunable Data Compression on Geophysical Products Retrieved from Surface Radar Observations with Applications to Spaceborne Meteorological Radars

    Science.gov (United States)

    Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee

    2013-01-01

    This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.

  13. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    International Nuclear Information System (INIS)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab

  14. Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Stjernman, A.

    1995-05-01

    The main topic of this research report is the design and development of a multifrequency, polarimetric scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth or rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. 50 refs, 56 figs, 1 tab.

  15. A polar cap absorption event observed using the Southern Hemisphere SuperDARN radar network.

    Science.gov (United States)

    Breed, A.; Morris, R.; Parkinson, M.; Duldig, M.; Dyson, P.

    A large X5 class solar flare and coronal mass ejection were observed emanating from the sun on July 14, 2000. Approximately 10 minutes later a large cosmic ray ground level enhancement was observed using neutron monitors located at Mawson station (70.5°S CGM), Antarctica; Large increases in proton flux were also observed using satellites during this time. This marked the start of a large polar cap absorption event with cosmic noise absorption peaking at 30 dB, as measured by a 30 MHz riometer located at Casey station (80.4°S CGM), Antarctica. The spatial evolution of this event and its subsequent recovery were studied using the Southern Hemisphere SuperDARN radar network, including the relatively low latitude observation provided by the Tasman International Geospace Environment Radar (TIGER) located on Bruny Island (54.6°S GGM), Tasmania. When the bulk of the CME arrived at the Earth two days later it triggered an intense geomagnetic storm. This paper presents observations of the dramatic sequence of events.

  16. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  17. Polarimetric imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Felton, Melvin; Chenault, David; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL that is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives in an open field. The database will allow for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  18. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...... out in order to identify an eventual dependence of the Stokes vector on the look-direction. Results indicate a clear signature, for bare soil as well as for the crop-covered surface, and variations of more than 10 K are observed....

  19. Concept Development for Advanced Spaceborne Synthetic Aperture Radar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The effort will focus on P-Band and L-band polarimetric radar architectures that employ advanced and innovative techniques to increase the science value of the...

  20. Digital Conically Scanned L-Band Radar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort seeks to develop a digitally steered polarimetric phased array L-Band radar utilizing a novel, high performance architecture leveraging recent...

  1. Digital Conically Scanned L-Band Radar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort seeks to develop a digitally steered polarimetric phased array L-Band radar utilizing a novel, high performance architecture leveraging recent...

  2. Phase Error Correction for Approximated Observation-Based Compressed Sensing Radar Imaging.

    Science.gov (United States)

    Li, Bo; Liu, Falin; Zhou, Chongbin; Lv, Yuanhao; Hu, Jingqiu

    2017-03-17

    Defocus of the reconstructed image of synthetic aperture radar (SAR) occurs in the presence of the phase error. In this work, a phase error correction method is proposed for compressed sensing (CS) radar imaging based on approximated observation. The proposed method has better image focusing ability with much less memory cost, compared to the conventional approaches, due to the inherent low memory requirement of the approximated observation operator. The one-dimensional (1D) phase error correction for approximated observation-based CS-SAR imaging is first carried out and it can be conveniently applied to the cases of random-frequency waveform and linear frequency modulated (LFM) waveform without any a priori knowledge. The approximated observation operators are obtained by calculating the inverse of Omega-K and chirp scaling algorithms for random-frequency and LFM waveforms, respectively. Furthermore, the 1D phase error model is modified by incorporating a priori knowledge and then a weighted 1D phase error model is proposed, which is capable of correcting two-dimensional (2D) phase error in some cases, where the estimation can be simplified to a 1D problem. Simulation and experimental results validate the effectiveness of the proposed method in the presence of 1D phase error or weighted 1D phase error.

  3. Phase Error Correction for Approximated Observation-Based Compressed Sensing Radar Imaging

    Directory of Open Access Journals (Sweden)

    Bo Li

    2017-03-01

    Full Text Available Defocus of the reconstructed image of synthetic aperture radar (SAR occurs in the presence of the phase error. In this work, a phase error correction method is proposed for compressed sensing (CS radar imaging based on approximated observation. The proposed method has better image focusing ability with much less memory cost, compared to the conventional approaches, due to the inherent low memory requirement of the approximated observation operator. The one-dimensional (1D phase error correction for approximated observation-based CS-SAR imaging is first carried out and it can be conveniently applied to the cases of random-frequency waveform and linear frequency modulated (LFM waveform without any a priori knowledge. The approximated observation operators are obtained by calculating the inverse of Omega-K and chirp scaling algorithms for random-frequency and LFM waveforms, respectively. Furthermore, the 1D phase error model is modified by incorporating a priori knowledge and then a weighted 1D phase error model is proposed, which is capable of correcting two-dimensional (2D phase error in some cases, where the estimation can be simplified to a 1D problem. Simulation and experimental results validate the effectiveness of the proposed method in the presence of 1D phase error or weighted 1D phase error.

  4. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  5. ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations

    Science.gov (United States)

    Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II

    2017-12-01

    E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then

  6. Combined flatland ST radar and digital-barometer network observations of mesoscale processes

    Science.gov (United States)

    Clark, W. L.; Vanzandt, T. E.; Gage, K. S.; Einaudi, F. E.; Rottman, J. W.; Hollinger, S. E.

    1991-01-01

    The paper describes a six-station digital-barometer network centered on the Flatland ST radar to support observational studies of gravity waves and other mesoscale features at the Flatland Atmospheric Observatory in central Illinois. The network's current mode of operation is examined, and a preliminary example of an apparent group of waves evident throughout the network as well as throughout the troposphere is presented. Preliminary results demonstrate the capabilities of the current operational system to study wave convection, wave-front, and other coherent mesoscale interactions and processes throughout the troposphere. Unfiltered traces for the pressure and horizontal zonal wind, for days 351 to 353 UT, 1990, are illustrated.

  7. The use of radar and visual observations to characterize the surface structure of the planet Mercury

    Science.gov (United States)

    Clark, P. E.; Kobrick, M.; Jurgens, R. F.

    1985-01-01

    An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.

  8. Cassini RADAR Observations at Titan : Results at the End of the Nominal Mission

    Science.gov (United States)

    Lorenz, Ralph

    This talk will review some recent results of the Cassini RADAR investigations at Titan. In particular, the first half of 2008 includes three low-latitude flybys with SAR observations of Xanadu, the Huygens Landing site, and in particular three areas that may be associated with cryovolcanic features - Tortola Facula, Hotei Arcus, and Tui Regio. In addition to providing SAR coverage (which will include further mapping of dunes in the Shangri-La dark areas as well as the features above), these new flybys will permit refinement of the apparently dynamic Titan rotational state, as well as expanding our topographic knowledge.

  9. Meteor Wind Radar Observations of Gravity Wave Momentum Fluxes at Middle and Lower Latitudes at Brazil

    Science.gov (United States)

    Fátima Andrioli, Vânia; Clemesha, Barclay; Prado Batista, Paulo; Schuch, Nelson Jorge; Buriti, Ricardo

    It is well known that the upward propagation of internal gravity waves from the lower atmo-sphere to the mesosphere plays an important role in the dynamics and energy balance of this region. Hocking (2005) developed a technique to calculate gravity wave momentum flux using meteor radar data. This technique is a generalization of the 2-beam technique of Vincent and Reid (1983). Hocking's technique uses radial velocity variances, from 80 to 100 km, which are mainly caused by gravity waves, to determine the gravity wave momentum fluxes. We apply this technique to data from a SKiMET meteor radar located at Santa Maria (29.7S, 53.7o W) during 2005. The data were analyzed in 3-km/2-h bins centered on 82, 85, 88 km etc. and 1, 3, 5 UT etc., generating monthly means. It was found that the meridional variances showed a fairly constant behavior throughout the year, with maximum at around 90 km. The zonal and vertical variances were less consistent. The monthly means of the horizontal momentum flux, uv, showed an oscillatory behavior with phase decreasing with increasing altitude and similar behavior was observed in the v'w' component. Although the behavior of u'w' was observed to be oscillatory, its phase did not show altitude propagation. In order to study the features of gravity wave activity in different latitude these results will be compared with two other radars located at São João do Cariri (7.3S, 36.4W) and Cachoeira Paulista (22.7S, 45.0W) for the a a same period.

  10. Towards a radar- and observation-based hail climatology for Germany

    Directory of Open Access Journals (Sweden)

    Thomas Junghänel

    2016-09-01

    Full Text Available In the German Strategy for Adaptation to Climate Change hail is identified as one of the major subjects of concern regarding transport infrastructure. Moreover hailstorms are a major threat to e.g. agriculture and the automobile industry causing significant economical damages and losses. Despite these significant hail-related meteorological risks no comprehensive observation-based hail climatology for Germany exists. In this study we present a new approach to this task, combining radar data with different kinds of hail reports, such as ground observation and agricultural insurance data. Preprocessing ensures the applicability of the radar data for the presented climatological analysis. In this sense a number of detection methods are applied to filter artefacts, especially clutter pixels and spokes that disrupt radar measurements. To construct a reliable hail climatology for Germany we process all information into a 10‑year based annual average number of hail days on a 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$ grid using a two-path hail criterion. While the first path combines a threshold of 50 dBZ with a hail report, the second path is based on a 55 dBZ threshold only. By adding radar data we increase the spatial representativity of the ground based hail reports and gain additional information in regions which lack observational data. Overall, the results are mainly determined by events derived from the first path (68 %. A validation of our dataset at 65 stations of Deutscher Wetterdienst shows that the method slightly underestimates the number of hail days, especially for mountainous regions. This results in a better adaption of the hail criterion to lowlands. The resulting hail frequency map shows an increase in the average number of hail days per year from north to south. In particular, hailstorms occur less frequently in the Central North German Plain and the Mecklenburg Coastal Lowland, whereas the highest number of hail days

  11. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  12. Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings

    Science.gov (United States)

    Jorgensen, David P.; Hanshaw, Maiana N.; Schmidt, Kevin M.; Laber, Jayme L; Staley, Dennis M.; Kean, Jason W.; Restrepo, Pedro J.

    2011-01-01

    A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables

  13. Polarisation basis transformation of weather radar measurements in the power domain

    NARCIS (Netherlands)

    Otto, T.; Lu, J.; Chandra, M.

    2009-01-01

    Polarisation diversity in radar remote sensing proved to be very successful in a variety of applications. Hydrometeors as raindrops or ice crystals are anisotropic radar targets giving rise to the use of polarisation diversity in weather radars. One advanced polarimetric weather radar is DLR's

  14. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application

    Directory of Open Access Journals (Sweden)

    Chen Siwei

    2017-10-01

    Full Text Available Backscattering of radar targets is sensitive to the relative geometry between target orientations and the radar line of sight. This scattering diversity makes imaging radar represented by polarimetric Synthetic Aperture Radar (SAR information processing and applications very difficult. This situation has become one of the main bottlenecks in the interpretation of the target scattering mechanism and quantitative applications. In this work, we review and introduce a new interpretation of the target scattering mechanism in the rotation domain along the radar line of sight. This concept includes the recently established uniform polarimetric matrix rotation theory and polarimetric coherence pattern visualization and interpretation in the rotation domain. The core idea of target scattering interpretation in the rotation domain is to extend the amount of target information acquired at a given geometry to the rotation domain, which then provides fundamentals for the deep mining and utilization of target scattering information. This work mainly focuses on the investigation of derived new polarimetric feature sets and application demonstrations. Comparison study results validate the promising potential for the application of the established interpretation framework in the rotation domain with respect to target discrimination and classification.

  15. PMSE long term observations using SuperDARN SANAE HF radar measurements

    Directory of Open Access Journals (Sweden)

    Olakunle Ogunjobi

    2017-01-01

    Full Text Available It is known that the presence of nanometre-scale ice particles and neutral air turbulence in the Polar summer mesosphere modify the D-region plasma, resulting in strong backscatter. These strong backscatters are referred to as Polar Mesosphere Summer Echoes (PMSE. Although studies on PMSE have been ongoing for over three decades, aspects revealed by various instruments are still the subject of discussion. As a sequel to the paper by Ogunjobi et al. (2015, we report on the long term trends and variations in PMSE occurrence probability from Super Dual Auroral Radar Network (SuperDARN high frequency (HF radar measurements over the South African National Antarctic Expedition IV (SANAE IV. In this current paper, a simple multiple-filter technique is employed to obtain the occurrence probability rate for SuperDARN-PMSE during the summer periods for the years 1998 - 2007. The SuperDARN-PMSE occurrence probability rate in relation to geomagnetic activity is examined. The mesospheric neutral winds and temperature trends during these periods, are further studied and presented in this paper. Both the monthly and diurnal variations in occurrence are consistent with previous reports, confirming the presence of PMSE from SuperDARN SANAE IV radar measurements and the influence of pole to pole mesospheric transport circulation. The special mesospheric mean flow observed prior to the year 2002 is ascribed to the influence of solar activity. The SuperDARN-PMSE occurrence probability peaks with lowered geomagnetic activity. These present results support the hypothesis that the particle precipitation also plays an important role in SuperDARN-PMSE occurrence.

  16. Partly cloudy with a chance of migration: Weather, radars, and aeroecology

    Science.gov (United States)

    Chilson, Phillip B.; Frick, Winifred F.; Kelly, Jeffrey F.; Howard, Kenneth W.; Larkin, Ronald P.; Diehl, Robert H.; Westbrook, John K.; Kelly, T. Adam; Kunz, Thomas H.

    2012-01-01

    Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.

  17. Simultaneous fine structure observation of wind and temperature profiles by the Arecibo 430-MHz radar and in situ measurements

    Science.gov (United States)

    Thomas, D.; Bertin, F.; Petitdidier, M.; Teitelbaum, H.; Woodman, R. F.

    1986-01-01

    A simultaneous campaign of balloon and radar measurements took place on March 14 to 16, 1984, above the Arecibo 430-MHz radar. This radar was operating with a vertical resolution of 150 m following two antenna beam directions: 15 deg. from the zenith, respectively, in the N-S and E-W directions. The main results concerning the comparison between the flight and simultaneous radar measurements obtained on March 15, 1984 are analyzed. The radar return power profile (S/N ratio in dB) exhibits maxima which are generally well correlated with step-like structures in the potential temperature profile. These structures are generally considered as the consequence of the mixing processes induced by the turbulence. A good correlation appears in the altitude range 12.5 to 19 km between wind shears induced by a wave structure observed in the meridional wind and the radar echo power maxima. This wave structure is characterized by a vertical wavelength of about 2.5 km, and a period in the range 30 to 40 hours. These characteristics are deduced from the twice daily rawinsonde data launched from the San Juan Airport by the National Weather Service. These results pointed out an example of the interaction between wave and turbulence in the upper troposphere and lower stratosphere. Turbulent layers are observed at locations where wind shears related to an internal inertia-gravity wave are maxima.

  18. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    Science.gov (United States)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  19. Observations of meteor-head echoes using the Jicamarca 50MHz radar in interferometer mode

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2004-01-01

    Full Text Available We present results of recent observations of meteor-head echoes obtained with the high-power large-aperture Jicamarca 50MHz radar (11.95°S, 76.87°W in an interferometric mode. The large power-aperture of the system allows us to record more than 3000 meteors per hour in the small volume subtended by the 1° antenna beam, albeit when the cluttering equatorial electrojet (EEJ echoes are not present or are very weak. The interferometry arrangement allows the determination of the radiant (trajectory and speed of each meteor. It is found that the radiant distribution of all detected meteors is concentrated in relative small angles centered around the Earth's Apex as it transits over the Jicamarca sky, i.e. around the corresponding Earth heading for the particular observational day and time, for all seasons observed so far. The dispersion around the Apex is ~18° in a direction transverse to the Ecliptic plane and only 8.5° in heliocentric longitude in the Ecliptic plane both in the Earth inertial frame of reference. No appreciable interannual variability has been observed. Moreover, no population related to the optical (larger meteors Leonid showers of 1998-2002 is found, in agreement with other large power-aperture radar observations. A novel cross-correlation detection technique (adaptive match-filtering is used in combination with a 13 baud Barker phase-code. The technique allows us to get good range resolution (0.75km without any sensitivity deterioration for the same average power, compared to the non-coded long pulse scheme used at other radars. The matching Doppler shift provides an estimation of the velocity within a pulse with the same accuracy as if a non-coded pulse of the same length had been used. The velocity distribution of the meteors is relatively narrow and centered around 60kms-1. Therefore most of the meteors have an almost circular retrograde orbit around the Sun. Less than 8% of the velocities correspond to interstellar orbits

  20. Doppler radar observation of thunderstorm circulation in the 1977 trip program. [triple Doppler radar network for lightning detection and ranging

    Science.gov (United States)

    Lhermitte, R. M.; Conte, D.; Pasqualucci, F.; Lennon, C.; Serafin, R. J.

    1978-01-01

    Storm data obtained on August 1, 1977 are examined in an attempt to interpret the relationship between lightning occurrence and the thunderstorm inner dynamics and precipitation processes. Horizontal maps are presented which indicated the position of radiation sources detected by the Lightning Detection and Ranging (LDAR) network, together with the horizontal motion fields and radar reflectivity data. Detailed inspection of these fields showed that, although radiation sources are found in the vicinity of precipitation cells, they are not located in the heavy precipitation areas, but rather on their rear side in regions where the configuration of the wind fields suggests the presence of updrafts.

  1. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  2. Tidal wind oscillations in the tropical lower atmosphere as observed by Indian MST Radar

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    2001-08-01

    Full Text Available Diurnal tidal components in horizontal winds measured by MST radar in the troposphere and lower stratosphere over a tropical station Gadanki (13.5° N, 79.2° E are presented for the autumn equinox, winter, vernal equinox and summer seasons. For this purpose radar data obtained over many diurnal cycles from September 1995 to August 1996 are used. The results obtained show that although the seasonal variation of the diurnal tidal amplitudes in zonal and meridional winds is not strong, vertical phase propagation characteristics show significant seasonal variation. An attempt is made to simulate the diurnal tidal amplitudes and phases in the lower atmosphere over Gadanki using classical tidal theory by incorporating diurnal heat sources, namely, solar radiation absorption by water vapour, planetary boundary layer (PBL heat flux, latent heat release in deep convective clouds and short wave solar radiation absorption by clouds. A comparison of the simulated amplitudes and phases with the observed ones shows that agreement between the two is quite good for the equinox seasons, especially the vertical structure of the phases of the meridional wind components.Key words. Meteorology and atmospheric dynamics (tropical meteorology; waves and tides

  3. Tidal wind oscillations in the tropical lower atmosphere as observed by Indian MST Radar

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    Full Text Available Diurnal tidal components in horizontal winds measured by MST radar in the troposphere and lower stratosphere over a tropical station Gadanki (13.5° N, 79.2° E are presented for the autumn equinox, winter, vernal equinox and summer seasons. For this purpose radar data obtained over many diurnal cycles from September 1995 to August 1996 are used. The results obtained show that although the seasonal variation of the diurnal tidal amplitudes in zonal and meridional winds is not strong, vertical phase propagation characteristics show significant seasonal variation. An attempt is made to simulate the diurnal tidal amplitudes and phases in the lower atmosphere over Gadanki using classical tidal theory by incorporating diurnal heat sources, namely, solar radiation absorption by water vapour, planetary boundary layer (PBL heat flux, latent heat release in deep convective clouds and short wave solar radiation absorption by clouds. A comparison of the simulated amplitudes and phases with the observed ones shows that agreement between the two is quite good for the equinox seasons, especially the vertical structure of the phases of the meridional wind components.

    Key words. Meteorology and atmospheric dynamics (tropical meteorology; waves and tides

  4. Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar

    Science.gov (United States)

    Samsonov, Sergey V.; Lantz, Trevor C.; Kokelj, Steven V.; Zhang, Yu

    2016-04-01

    Advancements in radar technology are increasing our ability to detect Earth surface deformation in permafrost environments. In this paper we use satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) to describe the growth of a large, relatively young pingo in the Tuktoyaktuk Coastlands. High-resolution RADARSAT-2 imagery (2011-2014) analyzed with the Multidimensional Small Baseline Subset (MSBAS) DInSAR revealed a maximum 2.7 cm yr-1 of domed uplift located in a drained lake basin. Satellite measurements suggest that this feature is one of the largest diameter pingos in the region that is presently growing. Observed changes in elevation were modeled as a 348 × 290 m uniformly loaded elliptical plate with clamped edge. Analysis of historical aerial photographs suggested that ground uplift at this location initiated sometime between 1935 and 1951 following drainage of the residual pond. Uplift is largely due to the growth of intrusive ice, because the 9 % expansion of pore water associated with permafrost aggradation into saturated sands is not sufficient to explain the observed short- and long-term deformation rates. The modeled thickness of ice-rich permafrost using the Northern Ecosystem Soil Temperature (NEST) was consistent with the maximum height of this feature. Modeled permafrost aggradation from 1972 to 2014 approximated elevation changes estimated from aerial photographs for that time period. Taken together, these lines of evidence indicate that uplift is at least in part a result of freezing of the sub-pingo water lens. Seasonal variations in the uplift rate seen in the DInSAR data closely match the modeled seasonal pattern in the deepening rate of freezing front. This study demonstrates that interferometric satellite radar can detect and contribute to understanding the dynamics of terrain uplift in response to permafrost aggradation and ground ice development in remote polar environments. The present-day growth rate is smaller than

  5. SOCIB HF radar, a key contribution to multi-platform ocean observation

    Science.gov (United States)

    Orfila, A.; Marmain, J.; Heslop, E. E.; Lana, A.; Fernandez, V.; Mourre, B.; Juza, M.; Troupin, C.; Tintore, J.

    2016-02-01

    The Balearic Islands Coastal Observing and Forecasting System (SOCIB) is a multi-platform, distributed and integrated system located in the North Western Mediterranean sea that responds to science and society needs. The High-Frequency radar (HFR) facility is based on two 13.5 MHz Coastal Ocean Dynamics Applications Radar (CODAR) SeaSonde system monitoring the surface circulation in the Ibiza Channel (IC). It provides in real-time hourly state of the art quality controlled surface velocity observations since June 2012. The accuracy of velocities have been investigated using a comprehensive data set based on current-meter and surface drifters. Good agreements with previous studies are obtained. The circulation patterns and their variability in the IC have been investigated based on a multi-platform analysis combining HFR with Gliders, SARAL/AltiKa satellite altimeter, ADCP/current meter and wind. Surface currents clearly show signatures of Atlantic water inflow (respectively Northern Current outflow) in the eastern (respectively western) part of the IC. The surface current is highly variable with no prevailing direction of variability. More than 60% of the surface current variability is explained by wind, with significant presence of inertial motion. Wind breezes and tide induced surface currents have also important spectral signatures. Good agreement between HFR and geostrophic current is found under low wind conditions. These preliminary results underline the oceanic circulation complexity in the IC. HFR velocities are used to validate the SOCIB Western Mediterranean Operational forecasting system (WMOP) simulation, with the aim to implement in the near future operational data assimilation methodologies based on HFR velocities and other available observations. Some initial results will be shown concerning the comparison performed between the model surface currents and the HFR observations.

  6. OIL DETECTION IN A COASTAL MARSH WITH POLARIMETRIC SAR

    Directory of Open Access Journals (Sweden)

    E. Ramsey III

    2012-09-01

    Full Text Available The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities specifically, oil detection and characterization, oil extent mapping in wetlands, coastal resource impact detection, and ecosystem recovery. The UAVSAR platform demonstrated enhanced capability to act rapidly and provide targeted mapping response. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band Synthetic Aperture Radar (PolSAR for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana. Barataria Bay contained a numerous site observations confirming spatially extensive shoreline oil impacts, multiple oil spill UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC calibrated radar cross sections representing the complex elements of the scattering matrix. Initial analyses results found that shoreline marsh structural damage as well as oil on marsh plants and sediments without canopy structural damage were exhibited as anomalous features on post-spill SLC scenes but were not evident on the pre-spill SLC scene collected in 2009. Pre-spill and post-spill Freeman-Durden (FD and Cloude-Pottier (CP decompositions and the Wishart classifications seeded with the FD and CP classes (Wishart-FD also highlighted these nearshore features as a change in dominate scatter from pre-spill to post-spill. SLC analyses also indicated penetration of oil ladened waters into interior marshes well past the immediate shorelines; however, these post-spill SLC analyses results could not be validated due to the lack of observational data and possible flooding in the pre-spill SLC scene.

  7. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.

    2007-07-01

    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  8. On auroral dynamics observed by HF radar: 1. Equatorward edge of the afternoon-evening diffuse luminosity belt

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    2000-12-01

    Full Text Available Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range and persistent region of auroral F- and (later E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5–10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.Key words: Ionsophere (ionospheric irregularities · Magnetospheric physics (auroral phenomena; magnetosphere–ionosphere interactions

  9. On auroral dynamics observed by HF radar: 1. Equatorward edge of the afternoon-evening diffuse luminosity belt

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    Full Text Available Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range and persistent region of auroral F- and (later E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5–10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.

    Key words: Ionsophere (ionospheric irregularities · Magnetospheric physics (auroral phenomena; magnetosphere–ionosphere interactions

  10. Atmospheric and precipitation sounding with polarimetric radio-occultations aboard PAZ LEO

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomás, Sergio; Oliveras, Santi; Rius, Antonio; de la Torre, Manuel; Turk, Joseph; Ao, Chi; Kursinski, Robert; Shreiner, Bill; Ector, Dave; Cucurull, Lidia; Wickert, Jens

    2015-04-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of the precipitation through simultaneous thermodynamic and vertical rain profiles. The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric antennas, although here we will use the forward scattering geometry instead of the backscattering.The depolarization effect increases as the propagation line aligns with the plane of the drops' flattening (nominally perpendicular to the local gravity, i.e., parallel to the local horizon). The RO signals cross the lower troposphere tangentially, i.e., along the local horizon, which should maximize the depolarization effect. The satellite launch is scheduled for March 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years. A sensitivity analysis have been performed, showing that we should be able to detect the 90% of all the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. Results from the campaign also show a good correlation between phase shifts increases and heavy rain events. We will present here the status of the mission, which will have been launched few weeks before the EGU, together with some preliminary data analysis from both the actual satellite data and the prior-to-launch work.

  11. Final Cassini RADAR Observation of Titan's Magic Island Region and Ligeia Mare

    Science.gov (United States)

    Hofgartner, J. D.; Hayes, A.; Lunine, J. I.; Stiles, B. W.; Malaska, M. J.; Wall, S. D.

    2017-12-01

    Cassini arrived in the Saturn system shortly after the Oct. 2002 northern winter solstice and the mission will end shortly after the May 2017 northern summer solstice. A main objective of the Cassini Solstice mission is to study seasonal and temporal changes and at Titan this includes changes of the hydrocarbon lakes/seas. Titan's Magic Islands are transient bright features in the north polar sea, Ligeia Mare that were observed to be temporal changes in Cassini RADAR images. The Magic Islands were discovered in a July 2013 image as anomalously bright features that were not present in four previous observations from Feb. 2007 - May 2013. The region of the Magic Islands was again anomalously bright in an Aug. 2014 image and the total areal extent of the anomalously bright region had increased by more than a factor of three. The transient features were not, however, observed in a Jan. 2015 image. Thus in seven observations spanning much of the Cassini mission the bright features were observed to appear, increase in extent, and then disappear. They are referred to as Titan's Magic Islands because of their appearing/disappearing behavior and resemblance in appearance to islands. These transient bright features are not actually islands. The transients were concluded to be most consistent with waves, floating solids, suspended solids, and bubbles. Tides, sea level changes, and seafloor changes are unlikely to be the primary cause of these temporal changes. Whether these temporal changes are also seasonal changes was unclear. The final Cassini RADAR imaging observation of Titan in Apr. 2017 included the region of the Magic Islands. The transient bright features were not present during this observation. The geometry of the observation was such that, had the transients been present, their brightness may have ruled out some of the remaining hypotheses. Their absence however, is less constraining but consistent with their transient nature. Waves, floating solids, suspended

  12. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2006-12-01

    Full Text Available At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003. At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a

  13. Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available For successful applications of microwave remote sensing endeavors it is essential to understand how surface targets respond to changing synthetic aperture radar (SAR parameters. The purpose of the study is to examine how two particular parameters, acquisition time and incidence angle, influences the response from various land use/land cover types (forests, urban infrastructure, surface water and marsh wetland targets using nine RADARSAT-2 C-band fine-beam (FQ7 and FQ21 fully polarimetric SAR data acquired during the 2011 growing season over northern Ontario, Canada. The results indicate that backscatter from steep incidence angle acquisitions was typically higher than shallow angles. Wetlands showed an increase in HH and HV intensity due to the growth of emergent vegetation over the course of the summer. The forest and urban targets displayed little variation in backscatter over time. The surface water target showed the greatest difference with respect to incidence angle, but was also determined to be the most affected by wind conditions. Analysis of the co-polarized phase difference revealed the urban target as greatly influenced by the incidence angle. The observed phase differences of the wetland target for all acquisitions also suggested evidence of double-bounce interactions, while the forest and surface water targets showed little to no phase difference. In addition, Cloude-Pottier and Freeman-Durden decompositions, when analyzed in conjunction with polarimetric response plots, provided supporting information to confidently identify the various targets and their scattering mechanisms.

  14. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  15. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    Science.gov (United States)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar

  16. Turbulence as observed by concurrent measurements made at NSSL using weather radar, Doppler radar, Doppler lidar and aircraft

    Science.gov (United States)

    Lee, Jean T.

    1987-01-01

    As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.

  17. Polarimetric studies of polyethylene terephtalate flexible substrates

    Science.gov (United States)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  18. Use of coincident radar and radiometer observations from GPM, ATMS, and CloudSat for global spaceborne snowfall observation assessment

    Science.gov (United States)

    Panegrossi, Giulia; Casella, Daniele; Sanò, Paolo; Cinzia Marra, Anna; Dietrich, Stefano; Johnson, Benjamin T.; Kulie, Mark S.

    2017-04-01

    Snowfall is the main component of the global precipitation amount at mid and high latitudes, and improvement of global spaceborne snowfall quantitative estimation is one of the main goals of the Global Precipitation Measurement (GPM) mission. Advancements in snowfall detection and retrieval accuracy at mid-high latitudes are expected from both instruments on board the GPM Core Observatory (GPM-CO): the GMI, the most advanced conical precipitation radiometer with respect to both channel assortment and spatial resolution; and the Dual-frequency Precipitation Radar (DPR) (Ka and Ku band). Moreover, snowfall monitoring is now possible by exploiting the high frequency channels (i.e. >100 GHz) available from most of the microwave radiometers in the GPM constellation providing good temporal coverage at mid-high latitudes (hourly or less). Among these, the Advanced Technology Microwave Sounder (ATMS) onboard Suomi-NPP is the most advanced polar-orbiting cross track radiometer with 5 channels in the 183 GHz oxygen absorption band. Finally, CloudSat carries the W-band Cloud Profiling Radar (CPR) that has collected data since its launch in 2006. While CPR was primarily designed as a cloud remote sensing mission, its high-latitude coverage (up to 82° latitude) and high radar sensitivity ( -28 dBZ) make it very suitable for snowfall-related research. In this work a number of global datasets made of coincident observations of snowfall producing clouds from the spaceborne radars DPR and CPR and from the most advanced radiometers available (GMI and ATMS) have been created and analyzed. We will show the results of a study where CPR is used to: 1) assess snowfall detection and estimate capabilities of DPR; 2) analyze snowfall signatures in the high frequency channels of the passive microwave radiometers in relation to fundamental environmental conditions. We have estimated that DPR misses a very large fraction of snowfall precipitation (more than 90% of the events and around 70% of

  19. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    2001-04-01

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms–1 , while the other group had significantly larger velocities, of the order of 700 ms–1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms–1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms–1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm–1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  20. Radar observations in the vicinity of pre-noon auroral arcs

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2005-07-01

    Full Text Available A combination of EISCAT incoherent scatter radar measurements, optical and magnetometer data is used to study the plasma in and around pre-noon structured precipitation and auroral arcs. Particular attention is paid to regions of comparatively low E-region density observed adjacent to arcs or structured precipitation in the EISCAT Svalbard radar field-aligned measurements. Comparison between luminosity and incoherent scatter electron density measurements shows that the low-density regions occur primarily due to the absence of diffuse precipitation rather than to a cavity formation process. Two cases of arcs and low density/luminosity regions are identified. The first is related to a strong Pc5 pulsation event, and the absence of diffuse precipitation is due to a large-scale modulation of the diffuse precipitation. In the second case the equatormost arc is on a shielding boundary and the low-density region coincides with a strong flow region just poleward of this arc. Regions of high electric field and low luminosity and conductance are observed prior to intensification of the structured precipitation in both cases. The ionospheric current is enhanced in the low conductance region, indicating that the strong electric fields do not result solely from ionospheric polarization electric fields, and thus are mainly driven by magnetospheric processes. The average energy of the precipitating electrons in the arcs and structured precipitation is, according to EISCAT measurements, 500eV and the energy spectra are similar for the pulsation and shielding cases. The average energy is thus significantly less than in the diffuse precipitation region which shows central CPS-like energy spectra. We suggest that the low ionospheric conductance of 0.7S in the low density regions is favorable for the arc formation process. This is in quantitative agreement with recent simulations of the ionospheric feedback instability. Keywords. Magnetospheric physics (Auroral

  1. Characterizing frontal eddies along the East Australian Current from HF radar observations

    Science.gov (United States)

    Schaeffer, Amandine; Gramoulle, A.; Roughan, M.; Mantovanelli, A.

    2017-05-01

    The East Australian Current (EAC) dominates the ocean circulation along south-eastern Australia, however, little is known about the submesoscale frontal instabilities associated with this western boundary current. One year of surface current measurements from HF radars, in conjunction with mooring and satellite observations, highlight the occurrence and propagation of meanders and frontal eddies along the inshore edge of the EAC. Eddies were systematically identified using the geometry of the high spatial resolution (˜1.5 km) surface currents, and tracked every hour. Cyclonic eddies were observed irregularly, on average every 7 days, with inshore radius ˜10 km. Among various forms of structures, frontal eddies associated with EAC meanders were characterized by poleward advection speeds of ˜0.3-0.4 m/s, migrating as far as 500 km south, based on satellite imagery. Flow field kinematics show that cyclonic eddies have high Rossby numbers (0.6-1.9) and enhance particle dispersion. Patches of intensified surface divergence at the leading edge of the structures are expected to generate vertical uplift. This is confirmed by subsurface measurements showing temperature uplift of up to 55 m over 24 h and rough estimates of vertical velocities of 10s of meters per day. While frontal eddies propagate through the radar domain independently of local wind stress, upfront wind can influence their stalling and growth, and can also generate large cold core eddies through intense shear. Such coherent structures are a major mechanism for the transport and entrainment of nutrient rich coastal or deep waters, influencing physical and biological dynamics, and connectivity over large distances.

  2. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar

    Science.gov (United States)

    Hao, Zhenhua; Drake, V. Alistair; Sidhu, Leesa; Taylor, John R.

    2017-12-01

    Based on previous investigations, adult Australian plague locusts are believed to migrate on warm nights (with evening temperatures >25 °C), provided daytime flight is suppressed by surface winds greater than the locusts' flight speed, which has been shown to be 3.1 m s-1. Moreover, adult locusts are believed to undertake briefer `dispersal' flights on nights with evening temperature >20 °C. To reassess the utility of these conditions for forecasting locust flight, contingency tests were conducted comparing the nights selected on these bases (predicted nights) for the months of November, January, and March and the nights when locust migration were detected with an insect monitoring radar (actual nights) over a 7-year period. In addition, the wind direction distributions and mean wind directions on all predicted nights and actual nights were compared. Observations at around 395 m above ground level (AGL), the height at which radar observations have shown that the greatest number of locusts fly, were used to determine the actual nights. Tests and comparisons were also made for a second height, 990 m AGL, as this was used in the previous investigation. Our analysis shows that the proposed criteria are successful from predicting migratory flight only in March, when the surface temperature is effective as a predicting factor. Surface wind speed has no predicting power. It is suggested that a strong daytime surface wind speed requirement should not be considered and other meteorological variables need to be added to the requirement of a warm surface temperature around dusk for the predictions to have much utility.

  3. A comparison of overshoot modelling with observations of polar mesospheric summer echoes at radar frequencies of 56 and 224 MHz

    Science.gov (United States)

    Havnes, O.; Pinedo, H.; La Hoz, C.; Senior, A.; Hartquist, T. W.; Rietveld, M. T.; Kosch, M. J.

    2015-06-01

    We have compared radar observations of polar mesospheric summer echoes (PMSEs) modulated by artificial electron heating, at frequencies of 224 MHz (EISCAT VHF) and 56 MHz (MORRO). We have concentrated on 1 day of observation, lasting ~ 3.8 h. The MORRO radar, with its much wider beam, observes one or more PMSE layers all the time while the VHF radar observes PMSEs in 69% of the time. Statistically there is a clear difference between how the MORRO and the VHF radar backscatter reacts to the heater cycling (48 s heater on and 168 s heater off). While MORRO often reacts by having its backscatter level increased when the heater is switched on, as predicted by Scales and Chen (2008), the VHF radar nearly always sees the "normal" VHF overshoot behaviour with an initial rapid reduction of backscatter. However, in some heater cycles we do see a substantial recovery of the VHF backscatter after its initial reduction to levels several times above that just before the heater was switched on. For the MORRO radar a recovery during the heater-on phase is much more common. The reaction when the heater was switched off was a clear overshoot for nearly all VHF cases but less so for MORRO. A comparison of individual curves for the backscatter values as a function of time shows, at least for this particular day, that in high layers above ~ 85 km height, both radars see a reduction of the backscatter as the heater is switched on, with little recovery during the heater-on time. These variations are well described by present models. On the other hand, the backscatter in low layers at 81-82 km can be quite different, with modest or no reduction in backscatter as the heater is switched on, followed by a strong recovery for both radars to levels several times above that of the undisturbed PMSEs. This simultaneous, nearly identical behaviour at the two very different radar frequencies is not well described by present modelling.

  4. A comparison of overshoot modelling with observations of polar mesospheric summer echoes at radar frequencies of 56 and 224 MHz

    Directory of Open Access Journals (Sweden)

    O. Havnes

    2015-06-01

    Full Text Available We have compared radar observations of polar mesospheric summer echoes (PMSEs modulated by artificial electron heating, at frequencies of 224 MHz (EISCAT VHF and 56 MHz (MORRO. We have concentrated on 1 day of observation, lasting ~ 3.8 h. The MORRO radar, with its much wider beam, observes one or more PMSE layers all the time while the VHF radar observes PMSEs in 69% of the time. Statistically there is a clear difference between how the MORRO and the VHF radar backscatter reacts to the heater cycling (48 s heater on and 168 s heater off. While MORRO often reacts by having its backscatter level increased when the heater is switched on, as predicted by Scales and Chen (2008, the VHF radar nearly always sees the "normal" VHF overshoot behaviour with an initial rapid reduction of backscatter. However, in some heater cycles we do see a substantial recovery of the VHF backscatter after its initial reduction to levels several times above that just before the heater was switched on. For the MORRO radar a recovery during the heater-on phase is much more common. The reaction when the heater was switched off was a clear overshoot for nearly all VHF cases but less so for MORRO. A comparison of individual curves for the backscatter values as a function of time shows, at least for this particular day, that in high layers above ~ 85 km height, both radars see a reduction of the backscatter as the heater is switched on, with little recovery during the heater-on time. These variations are well described by present models. On the other hand, the backscatter in low layers at 81–82 km can be quite different, with modest or no reduction in backscatter as the heater is switched on, followed by a strong recovery for both radars to levels several times above that of the undisturbed PMSEs. This simultaneous, nearly identical behaviour at the two very different radar frequencies is not well described by present modelling.

  5. Observations of Phobos by the Mars Express radar MARSIS: Description of the detection techniques and preliminary results

    Science.gov (United States)

    Cicchetti, A.; Nenna, C.; Plaut, J. J.; Plettemeier, D.; Noschese, R.; Cartacci, M.; Orosei, R.

    2017-11-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005) is a synthetic aperture low frequency radar altimeter, onboard the ESA Mars Express orbiter, launched in June 2003. It is the first and so far the only spaceborne radar that has observed the Martian moon Phobos. Radar echoes were collected on different flyby trajectories. The primary aim of sounding Phobos is to prove the feasibility of deep sounding, into its subsurface. MARSIS is optimized for deep penetration investigations and is capable of transmitting at four different bands between 1.3 MHz and 5.5 MHz with a 1 MHz bandwidth. Unfortunately the instrument was originally designed to operate exclusively on Mars, assuming that Phobos would not be observed. Following this assumption, a protection mechanism was implemented in the hardware (HW) to maintain a minimum time separation between transmission and reception phases of the radar. This limitation does not have any impact on Mars observation but it prevented the observation of Phobos. In order to successfully operate the instrument at Phobos, a particular configuration of the MARSIS onboard software (SW) parameters, called ;Range Ambiguity,; was implemented to override the HW protection zone, ensuring at the same time a high level of safety of the instrument. This paper describes the principles of MARSIS onboard processing, and the procedure through which the parameters of the processing software were tuned to observe targets below the minimum distance allowed by hardware. Some preliminary results of data analysis will be shown, with the support of radar echo simulations. A qualitative comparison between the simulated results and the actual data, does not support the detection of subsurface reflectors.

  6. Probe-Fed Stacked Microstrip Patch Antenna for High-Resolution Polarimetric C-Band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes a C-band, dual-linear polarization wideband antenna for use in the next-generation of the Danish high-resolution, airborne polarimetric synthetic aperture radar (SAR) system, EMISAR. The design and performance of a probe-fed, stacked microstrip patch element, operating from 4...

  7. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    Science.gov (United States)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  8. Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden

    Science.gov (United States)

    Berg, Peter; Norin, Lars; Olsson, Jonas

    2016-10-01

    Hydrological forecasting systems require accurate initial conditions, particularly for real time precipitation data, which are problematic to retrieve. This is especially difficult for high temporal and spatial resolutions, e.g. sub-daily and less than 10-20 km. Forecasting fast processes such as flash flood are, however, dependent on such high resolution data. Gridded gauge data produces too smooth fields and underestimates small scale phenomena, such as convection, whereas radar composites contain the small scale information, but suffer from inconsistencies between individual radars and have poor long term statistics. Here, we present a method to merge a radar composite with daily resolution gridded gauge data for Sweden for the time period 2009-2014 to produce a one hourly 4 × 4 km2 data set. The method consists of a main step where monthly accumulations of the radar data are scaled by those retrieved from the gridded data for each month. An optional quantile mapping based bias correction step makes sure that the daily intensity distribution agrees with the gridded observations. Finally, the data are dis-aggregated to an hourly time resolution. This results in a data set which has the same long-term spatial properties as the gridded observations, but with the spatial and temporal details of the radar data. Validation of the method is performed with high resolution gauge data, and shows a high quality of the derived product.

  9. Observations on syntactic landmine detection using impulse ground-penetrating radar

    Science.gov (United States)

    Nasif, Ahmed O.; Hintz, Kenneth J.

    2011-06-01

    We discuss some results and observations on applying syntactic pattern recognition (SPR) methodology for landmine detection using impulse ground-penetrating radar (GPR). In the SPR approach, the GPR A-scans are first converted into binary-valued strings by inverse filtering, followed by concavity detection to identify the peaks and valleys representing the locations of impedance discontinuities in the return signal. During the training phase, the characteristic binary strings for a particular landmine are found by looking at all the exemplars of that mine and selecting the collection of strings that yield the best detection results on these exemplars. These characteristic strings can be detected very efficiently using finite state machines (FSMs). Finally, the FSM detections are clustered to assign confidence to each detection, and discard sparse detections. Provided that the impulse GPR provides enough resolution in range, the SPR method can be a robust and high-speed solution for landmine detection and classification, because it aims to exploit the impedance discontinuity profile of the target, which is a description of the internal material structure of the target and little affected by external clutter. To evaluate the proposed methodology, the SPR scheme is applied to a set of impulse GPR data taken at a government test site. We suggest that coherent frequency-agile radar may be a better option for the SPR approach, since it addresses some of the drawbacks of a non-coherent impulse GPR caused by internally non-coherent within-channel signals which necessitate non-coherent integration and its attendant longer integration times, and non-coherent adjacent channels which severely limit the ability to do spatial, or at a minimum, cross-range processing if the GPR is in a linear array antenna.

  10. Determining Best Method for Estimating Observed Level of Maximum Convective Detrainment based on Radar Reflectivity

    Science.gov (United States)

    Carletta, N.; Mullendore, G. L.; Xi, B.; Feng, Z.; Dong, X.

    2013-12-01

    Convective mass transport is the transport of mass from near the surface up to the upper troposphere and lower stratosphere (UTLS) by a deep convective updraft. This transport can alter the chemical makeup and water vapor balance of the UTLS, which can affect cloud formation and the radiative properties of the atmosphere. It is therefore important to understand the exact altitudes at which mass is detrained from convection. The purpose of this study is to improve upon previously published methodologies for estimating the level of maximum detrainment (LMD) within convection using data from individual radars. Three methods were used to identify the LMD and validated against dual-Doppler derived vertical mass divergence fields. The best method for locating the LMD was determined to be the method that uses a horizontal reflectivity texture-based technique to determine convective cores and a multi-layer echo identification to determine anvil locations. The methodology was found to work in many but not all cases. The methodology works best when applied to convective systems with mature updrafts, and is most accurate with convective lines and single cells. A time lag is present in the reflectivity based LMD compared to the vertical mass divergence based LMD because the reflectivity method is dependent on anvil growth. This methodology was then applied to archived NEXRAD 3D mosaic radar data. The regions of analysis were chosen to coincide with the observation regions for the Deep Convective Clouds and Chemistry Experiment (DC3): the Colorado Foothills, Southern Plains (OK/TX), and Southeast US (AL). These three regions provide a wide variety of convection. The dates analyzed were from May and June of 2012 so the results can be compared to future DC3 studies. The variability of detrainment heights for the early convective season for these different geographical regions will be presented.

  11. Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar

    Directory of Open Access Journals (Sweden)

    T. Maruyama

    2006-03-01

    Full Text Available During the SEEK 2 rocket campaign, ionograms were recorded every minute at the Yamagawa Radio Observatory at about 90km west of the region monitored by a VHF (very high frequency coherent backscatter radar. Sporadic E-layer parameters, which include the critical (foEs and blanketing (fbEs frequencies, the layer height (h'Es, and the width of the range spread of sporadic E-traces, were compared with RTI (range-time-intensity plots of VHF quasi-periodic (QP and continuous coherent backscatter echoes. A close relationship was found between the appearance of QP echoes in the RTI plots and the level of spatial inhomogeneity in sporadic E plasma, signified here by the difference between foEs and fbEs. During QP echo events, foEs increased while fbEs decreased, so that the difference foEs-fbEs was enhanced, indicating the development of strong spatial structuring in electron density within a sporadic E-layer. On the other hand, increases in sporadic E range spreading also correlated with the occurrence of QP echoes but the degree of correlation varied from event to event. Continuous radar echoes were observed in association with low altitude sporadic E-layers, located well below 100 km and at times as low as 90 km. During the continuous echo events, both foEs and fbEs were less variable, and the difference foEs-fbEs was small and not as dynamic as in the QP echoes. On the other hand, the Es-layer spread intensified during continuous echoes, which means that some patchiness or corrugation in those low altitude layers is also necessary for the continuous backscatter echoes to take place.

  12. Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar

    Directory of Open Access Journals (Sweden)

    T. Maruyama

    2006-03-01

    Full Text Available During the SEEK 2 rocket campaign, ionograms were recorded every minute at the Yamagawa Radio Observatory at about 90km west of the region monitored by a VHF (very high frequency coherent backscatter radar. Sporadic E-layer parameters, which include the critical (foEs and blanketing (fbEs frequencies, the layer height (h'Es, and the width of the range spread of sporadic E-traces, were compared with RTI (range-time-intensity plots of VHF quasi-periodic (QP and continuous coherent backscatter echoes. A close relationship was found between the appearance of QP echoes in the RTI plots and the level of spatial inhomogeneity in sporadic E plasma, signified here by the difference between foEs and fbEs. During QP echo events, foEs increased while fbEs decreased, so that the difference foEs-fbEs was enhanced, indicating the development of strong spatial structuring in electron density within a sporadic E-layer. On the other hand, increases in sporadic E range spreading also correlated with the occurrence of QP echoes but the degree of correlation varied from event to event. Continuous radar echoes were observed in association with low altitude sporadic E-layers, located well below 100 km and at times as low as 90 km. During the continuous echo events, both foEs and fbEs were less variable, and the difference foEs-fbEs was small and not as dynamic as in the QP echoes. On the other hand, the Es-layer spread intensified during continuous echoes, which means that some patchiness or corrugation in those low altitude layers is also necessary for the continuous backscatter echoes to take place.

  13. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    . The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key......EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry...

  14. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    Science.gov (United States)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  15. HF Radar observations of the Dardanelles outflow current in North Eastern Aegean using validated WERA HF radar data

    Directory of Open Access Journals (Sweden)

    Z. KOKKINI

    2014-12-01

    Full Text Available A two-site WERA HF radar station was installed in November 2009 at the eastern coast of Lemnos Island in North Aegean Sea, aiming to monitor the surface inflow of Black Sea waters exiting from the Dardanelles Strait, as well as to constitute a coastal management tool for incidents of oil-pollution or save-and-rescue operations. Strong interference by foreign transmissions is a source of noise deteriorating the quality of the backscattered signal, thus significantly reducing the HF radar’s effective data return rate. In order to ameliorate this problem, further quality-control and data gap interpolating procedures have been developed and applied, to be used in addition to the procedures incorporated and used by the manufacturer’s signal processing software. The second-level processing involves traditional despiking in the temporal domain, preceding Empirical Orthogonal Function analysis. The latter is used not only to filter high-frequency noise but also to fill data gaps in time and space. The data reconstruction procedure has been assessed via comparison of (a HF radial with CODE-type drifter radial velocities as well as (b HF-derived virtual drifter tracks with actual drifter tracks. The main circulation features and their variability, as revealed by the reconstructed fields, are presented.

  16. Performance of the high-resolution atmospheric model HRRR-AK for correcting geodetic observations from spaceborne radars.

    Science.gov (United States)

    Gong, W; Meyer, F J; Webley, P; Morton, D

    2013-10-27

    [1] Atmospheric phase delays are considered to be one of the main performance limitations for high-quality satellite radar techniques, especially when applied to ground deformation monitoring. Numerical weather prediction (NWP) models are widely seen as a promising tool for the mitigation of atmospheric delays as they can provide knowledge of the atmospheric conditions at the time of Synthetic Aperture Radar data acquisition. However, a thorough statistical analysis of the performance of using NWP production in radar signal correction is missing to date. This study provides a quantitative analysis of the accuracy in using operational NWP products for signal delay correction in satellite radar geodetic remote sensing. The study focuses on the temperate, subarctic, and Arctic climate regions due to a prevalence of relevant geophysical signals in these areas. In this study, the operational High Resolution Rapid Refresh over the Alaska region (HRRR-AK) model is used and evaluated. Five test sites were selected over Alaska (AK), USA, covering a wide range of climatic regimes that are commonly encountered in high-latitude regions. The performance of the HRRR-AK NWP model for correcting absolute atmospheric range delays of radar signals is assessed by comparing to radiosonde observations. The average estimation accuracy for the one-way zenith total atmospheric delay from 24 h simulations was calculated to be better than ∼14 mm. This suggests that the HRRR-AK operational products are a good data source for spaceborne geodetic radar observations atmospheric delay correction, if the geophysical signal to be observed is larger than 20 mm.

  17. Incoherent scatter radar observations of AGW/TID events generated by the moving solar terminator

    Directory of Open Access Journals (Sweden)

    V. G. Galushko

    1998-07-01

    Full Text Available Observations of traveling ionospheric disturbances (TIDs associated with atmospheric gravity waves (AGWs generated by the moving solar terminator have been made with the Millstone Hill incoherent scatter radar. Three experiments near 1995 fall equinox measured the AGW/TID velocity and direction of motion. Spectral and cross-correlation analysis of the ionospheric density observations indicates that ST-generated AGWs/TIDs were observed during each experiment, with the more-pronounced effect occurring at sunrise. The strongest oscillations in the ionospheric parameters have periods of 1.5 to 2 hours. The group and phase velocities have been determined and show that the disturbances propagate in the horizontal plane perpendicular to the terminator with the group velocity of 300-400 m s-1 that corresponds to the ST speed at ionospheric heights. The high horizontal group velocity seems to contradict the accepted theory of AGW/TID propagation and indicates a need for additional investigation.Key words. Ionosphere (wave propagation · Meteorology and atmospheric dynamics (waves and tides

  18. Height dependence of the observed spectrum of radar backscatter from HF-induced ionospheric Langmuir turbulence

    Science.gov (United States)

    Fejer, J. A.; Sulzer, M. P.; Djuth, F. T.

    1991-09-01

    Results are presented of observations of the spectrum of the 430-MHz radar backscatter from HF-induced Langmuir turbulence with height discrimination. During very stable ionospheric conditions under which the height of the below-threshold backscatter spectrum changed by less than 300 m during a 7-min period, a 20-s-long temporary increase in the HF power from 3 MW ERP to 38-MW-equivalent-radiated HF power is found to result in subsequent strong above-threshold spectra extending to heights up to 1200 m greater than the height of the below-threshold spectrum for more than a minute. The generation of irregularities in the plasma density during the 20 s of enhanced HF power is suggested as a possible cause of this persistence of strong above-threshold spectra at greater heights. The initial temporal evolution of the backscatter spectrum from Langmuir turbulence after the start of HF transmissions is observed for different heights. The observational results are compared with the predictions of existing theories of Langmuir turbulence.

  19. HF Doppler and VHF radar observations of upper atmospheric disturbances caused by weak cold front during winter time

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Gao, M.; Johnson, D. L.; Yang, F. W.

    1990-01-01

    The simultaneous use of the Taiwan VHF radar and the HF Doppler sounder for remote measurement of three-dimensional winds, gravity waves, and density perturbations at mesospheric and thermospheric heights is demonstrated. A special event of atmospheric disturbances caused by propagating gravity waves excited by weak convective motions in winter time were investigated. The three-dimensional wind velocities at different heights were determined, and the frequency, horizontal wavelength, vertical wavelength, and phase velocity of the gravity waves were measured. The subtropical, low-latitude site makes the VHF radar and HF Doppler array systems unique, and the observations especially valuable for space projects dealing with low-latitude atmosphere.

  20. Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer

    NARCIS (Netherlands)

    Boers, R.; Baltink, K.H.; Hemink, H.J.; Bosveld, F.C.; Moerman, M.

    2013-01-01

    The development of a radiation fog layer at the Cabauw Experimental Site for Atmospheric Research(51.97°N, 4.93°E) on 23 March 2011 was observed with ground-based in situ and remote sensing observationsto investigate the relationship between visibility and radar reflectivity. The fog layer thickness

  1. Radar and photometric observations and shape modeling of contact binary near-Earth Asteroid 1996 HW1

    NARCIS (Netherlands)

    Magri, Christopher; Howell, Ellen S.; Nolan, Michael C.; Taylor, Patrick A.; Fernández, Yanga R.; Mueller, Michael; Vervack, Ronald J.; Benner, Lance A. M.; Giorgini, Jon D.; Ostro, Steven J.; Scheeres, Daniel J.; Hicks, Michael D.; Rhoades, Heath; Somers, James M.; Gaftonyuk, Ninel M.; Kouprianov, Vladimir V.; Krugly, Yurij N.; Molotov, Igor E.; Busch, Michael W.; Margot, Jean-Luc; Benishek, Vladimir; Protitch-Benishek, Vojislava; Galád, Adrian; Higgins, David; Kušnirák, Peter; Pray, Donald P.

    2011-01-01

    We observed near-Earth Asteroid (8567) 1996 HW1 at the Arecibo Observatory on six dates in September 2008, obtaining radar images and spectra. By combining these data with an extensive set of new lightcurves taken during 2008-2009 and with previously published lightcurves from 2005, we were able to

  2. The potential of linear discriminative Laplacian eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas

    Science.gov (United States)

    Shi, Lei; Zhang, Lefei; Zhao, Lingli; Yang, Jie; Li, PingXiang; Zhang, Liangpei

    2013-12-01

    In this paper, the linear discriminative Laplacian eigenmaps (LDLE) dimensionality reduction (DR) algorithm is introduced to C-band polarimetric synthetic aperture radar (PolSAR) agricultural classification. A collection of homogenous areas of the same crop class usually presents physical parameter variation, such as the biomass and soil moisture. Furthermore, the local incidence angle also impacts a lot on the same crop category when the vegetation layer is penetrable with C-band radar. We name this phenomenon as the "observed variation of the same category" (OVSC). The most common PolSAR features, e.g., the Freeman-Durden and Cloude-Pottier decompositions, show an inadequate performance with OVSC. In our research, more than 40 coherent and incoherent PolSAR decomposition models are stacked into the high-dimensionality feature cube to describe the various physical parameters. The LDLE algorithm is then performed on the observed feature cube, with the aim of simultaneously pushing the local samples of the same category closer to each other, as well as maximizing the distance between local samples of different categories in the learnt subspace. Finally, the classification result is obtained by nearest neighbor (NN) or Wishart classification in the reduced feature space. In the simulation experiment, eight crop blocks are picked to generate a test patch from the 1991 Airborne Synthetic Aperture Radar (AIRSAR) C-band fully polarimetric data from of Flevoland test site. Locality preserving projections (LPP) and principal component analysis (PCA) are then utilized to evaluate the DR results of the proposed method. The classification results show that LDLE can distinguish the influence of the physical parameters and achieve a 99% overall accuracy, which is better than LPP (97%), PCA (88%), NN (89%), and Wishart (88%). In the real data experiment, the Chinese Hailaer nationalized farm RadarSat2 PolSAR test set is used, and the classification accuracy is around 94%, which

  3. Doppler Radar and Cloud-to-Ground Lightning Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Buechler, Dennis; Cammarata, Michael; Arnold, James E. (Technical Monitor)

    2002-01-01

    Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.

  4. Use of NEXRAD radar-based observations for quality control of in-situ rain gauge measurements

    Science.gov (United States)

    Nelson, B. R.; Prat, O.; Leeper, R.

    2017-12-01

    Rain gauge quality control is an often over looked important step in the archive of historical precipitation estimates. We investigate the possibilities that exist for using ground based radar networks for quality control of rain gauge measurements. This process includes the point to pixel comparisons of the rain gauge measurements with NEXRAD observations. There are two NEXRAD based data sets used for reference; the NCEP stage IV and the NWS MRMS gridded data sets. The NCEP stage IV data set is available at 4km hourly for the period 2002-present and includes the radar-gauge bias adjusted precipitation estimate. The NWS MRMS data set includes several different variables such as reflectivity, radar-only estimates, precipitation flag, and radar-gauge bias adjusted precipitation estimates. The latter product provides for much more information to apply quality control such as identification of precipitation type, identification of storm type and Z-R relation. In addition, some of the variables are available at 5-minute scale. The rain gauge networks that are investigated are the Climate Reference Network (CRN), the Fischer-Porter Hourly Precipitation Database (HPD), and the Hydrometeorological Automated Data System (HADS). The CRN network is available at the 5-minute scale, the HPD network is available at the 15-minute and hourly scale, and HADS is available at the hourly scale. The varying scales present challenges for comparisons. However given the higher resolution radar-based products we identify an optimal combination of rain gauge observations that can be compared to the radar-based information. The quality control process focuses on identifying faulty gauges in direct comparison while a deeper investigation focuses on event-based differences from light rain to extreme storms.

  5. Error and Uncertainty Quantification in Precipitation Retrievals from GPM/DPR Using Ground-based Dual-Polarization Radar Observations

    Science.gov (United States)

    Chandra, Chandrasekar V.; Chen*, Haonan; Petersen, Walter

    2017-04-01

    The active Dual-frequency Precipitation Radar (DPR) and passive radiometer onboard Global Precipitation Measurement (GPM) mission's Core Observatory extend the observation range attained by Tropical Rainfall Measuring Mission (TRMM) from tropical to most of the globe [1]. Through improved measurements of precipitation, the GPM mission is helping to advance our understanding of Earth's water and energy cycle, as well as climate changes. Ground Validation (GV) is an indispensable part of the GPM satellite mission. In the pre-launch era, several international validation experiments had already generated a substantial dataset that could be used to develop and test the pre-launch GPM algorithms. After launch, more ground validation field campaigns were conducted to further evaluate GPM precipitation data products as well as the sensitivities of retrieval algorithms. Among various validation equipment, ground based dual-polarization radar has shown great advantages to conduct precipitation estimation over a wide area in a relatively short time span. Therefore, radar is always a key component in all the validation field experiments. In addition, the radar polarization diversity has great potential to characterize precipitation microphysics through the identification of raindrop size distribution and different hydrometeor types [2]. Currently, all the radar sites comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88DP) network are operating in dual-polarization mode. However, most of the operational radar based precipitation products are produced at coarse resolution typically on 1 km by 1 km spatial grids, focusing on precipitation accumulations at temporal scales of 1-h, 3-h, 6-h, 12-h, and/or 24-h (daily). Their capability for instantaneous GPM product validation is severely limited due to the spatial and temporal mismatching between observations from the ground and space. This paper first presents the rationale and

  6. HF Radar Observations of Current, Wave and Wind Parameters in the South Australian Gulf

    Science.gov (United States)

    Middleditch, A.; Cosoli, S.

    2016-12-01

    The Australian Coastal Ocean Radar Network (ACORN) has been measuring metocean parameters from an array of HF radar systems since 2007. Current, wave and wind measurements from a WERA phased-array radar system in the South Australian Gulf are evaluated using current meter, wave buoy and weather station data over a 12-month period. The spatial and temporal scales of the radar deployment have been configured for the measurement of surface currents from the first order backscatter spectra. Quality control procedures are applied to the radar currents that relate to the geometric configurations, statistical properties, and diagnostic variables provided by the analysis software. Wave measurements are obtained through an iterative inversion algorithm that provides an estimate of the directional frequency spectrum. The standard static configurations and data sampling strategies are not optimised for waves and so additional signal processing steps need to be implemented in order to provide reliable estimates. These techniques are currently only applied in offline mode but a real-time approach is in development. Improvements in the quality of extracted wave data are found through increased averaging of the raw radar data but the impact of temporal non-stationarity and spatial inhomogeneities in the WERA measurement region needs to be taken into account. Validations of wind direction data from a weather station on Neptune Island show the potential of using HF radar to combat the spread of bushfires in South Australia.

  7. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  8. The 3-D Tropical Convective Cloud Spectrum in AMIE Radar Observations and Global Climate Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Courtney [Texas A & M Univ., College Station, TX (United States). Dept. of Atmospheric Sciences

    2015-08-31

    During the three years of this grant performance, the PI and her research group have made a number of significant contributions towards determining properties of tropical deep convective clouds and how models depict and respond to the heating associated with tropical convective systems. The PI has also been an active ARM/ASR science team member, including playing a significant role in AMIE and GoAmazon2014/5. She served on the DOE ASR radar science steering committee and was a joint chair of the Mesoscale Convective Organization group under the Cloud Life Cycle working group. This grant has funded a number of graduate students, many of them women, and the PI and her group have presented their DOE-supported work at various universities and national meetings. The PI and her group participated in the AMIE (2011-12) and GoAmazon2014/5 (2014-15) DOE field deployments that occurred in the tropical Indian Ocean and Brazilian Amazon, respectively. AMIE observational results (DePasquale et al. 2014, Feng et al. 2014, Ahmed and Schumacher 2015) focus on the variation and possible importance of Kelvin waves in various phases of the Madden-Julian Oscillation (MJO), on the synergy of the different wavelength radars deployed on Addu Atoll, and on the importance of humidity thresholds in the tropics on stratiform rain production. Much of the PIs GoAmazon2014/5 results to date relate to overviews of the observations made during the field campaign (Martin et al. 2015, 2016; Fuentes et al. 2016), but also include the introduction of the descending arm and its link to ozone transport from the mid-troposphere to the surface (Gerken et al. 2016). Vertical motion and mass flux profiles from GoAmazon (Giangrande et al. 2016) also show interesting patterns between seasons and provide targets for model simulations. Results from TWP-ICE (Schumacher et al. 2015), which took place in Darwin, Australia in 2006 show that vertical velocity retrievals from the profilers provide structure to

  9. P-band radar ice sounding in Antarctica

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders; Kristensen, Steen Savstrup

    2012-01-01

    In February 2011, the Polarimetric Airborne Radar Ice Sounder (POLARIS) was flown in Antarctica in order to assess the feasibility of a potential space-based radar ice sounding mission. The campaign has demonstrated that the basal return is detectable in areas with up to 3 km thick cold ice, in a...

  10. Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season

    Directory of Open Access Journals (Sweden)

    Y. Umemoto

    2004-11-01

    Full Text Available A special observation campaign (X-BAIU, using various instruments (wind profilers, C-band weather radars, X-band Doppler radars, rawinsondes, etc., was carried out in Kyushu (western Japan during the Baiu season, from 1998 to 2002. In the X-BAIU-99 and -02 observations, a line-shaped orographic rainband extending northeastward from the Koshikijima Islands appeared in the low-level strong wind with warm-moist airs. The weather radar observation indicated that the rainband was maintained for 11h. The maximum length and width of the rainband observed in 1999 was ~200km and ~20km, respectively. The rainband observed in 2002 was not so developed compared with the case in 1999. The Froude number averaged from sea level to the top of the Koshikijima Islands (~600m was large (>1, and the lifting condensation level was below the tops of the Koshikijima Islands. Thus, it is suggested that the clouds organizing the rainband are formed by the triggering of the mountains on the airflow passing over them. The vertical profile of horizontal wind in/around the rainband was investigated in the wind profiler observations. In the downdraft region 60km from the Koshikijima Islands, strong wind and its clockwise rotation with increasing height was observed below 3km altitude. In addition, a strong wind component perpendicular to the rainband was observed when the rainband was well developed. These wind behaviors were related to the evolution of the rainband.

  11. Evidence of Polar Mesosphere Summer Echoes Observed by SuperDARN SANAE HF Radar in Antarctica

    OpenAIRE

    Olakunle Ogunjobi; Venkataraman Sivakumar; Judy Ann Elizabeth Stephenson; and William Tafon Sivla

    2015-01-01

    We report on the polar mesosphere summer echoes (PMSE) occurrence probability over SANAE (South African National Antarctic Expedition) IV, for the first time. A matching coincidence method is described and implemented for PMSE extraction from SuperDARN (Super Dual Auroral Radar Network) HF radar. Several SuperDARN-PMSE characteristics are studied during the summer period from years 2005 - 2007. The seasonal and interannual SuperDARN-PMSE variations in relation to the mesospheric neutral winds...

  12. Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2002-09-01

    Full Text Available HF radar backscatter, which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø, has provided coherent radar ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by both the CUTLASS HF radars and the EISCAT UHF radar. Data from the SP-UK-OUCH experiment have revealed small-scale (high azimuthal wave number, m -45 waves, predominantly in the morning sector, thought to be brought about by the drift-bounce resonance processes. Conjugate observations from the Polar CAM-MICE instrument indicate the presence of a non-Maxwellian ion distribution function. Further statistical analysis has been undertaken, using the Polar TIMAS instrument, to reveal the prevalence and magnitude of the non-Maxwellian energetic particle populations thought to be responsible for generating these wave types.Key words. Ionosphere (active experiments; wave-particle interactions Magnetospheric physics (MHD waves and instabilities

  13. Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    Full Text Available HF radar backscatter, which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø, has provided coherent radar ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by both the CUTLASS HF radars and the EISCAT UHF radar. Data from the SP-UK-OUCH experiment have revealed small-scale (high azimuthal wave number, m -45 waves, predominantly in the morning sector, thought to be brought about by the drift-bounce resonance processes. Conjugate observations from the Polar CAM-MICE instrument indicate the presence of a non-Maxwellian ion distribution function. Further statistical analysis has been undertaken, using the Polar TIMAS instrument, to reveal the prevalence and magnitude of the non-Maxwellian energetic particle populations thought to be responsible for generating these wave types.

    Key words. Ionosphere (active experiments; wave-particle interactions Magnetospheric physics (MHD waves and instabilities

  14. Studies of medium scale travelling ionospheric disturbances using TIGER SuperDARN radar sea echo observations

    Directory of Open Access Journals (Sweden)

    L.-S. He

    2004-12-01

    Full Text Available Seasonal and diurnal variations in the direction of propagation of medium-scale travelling ionospheric disturbances (MSTIDs have been investigated by analyzing sea echo returns detected by the TIGER SuperDARN radar located in Tasmania (43.4° S, 147.2° E geographic; –54.6°Λ. A strong dependency on local time was found, as well as significant seasonal variations. Generally, the propagation direction has a northward (i.e. equatorward component. In the early morning hours the direction of propagation is quite variable throughout the year. It then becomes predominantly northwest and changes to northeast around 09:00 LT. In late fall and winter it changes back to north/northwest around 15:00 LT. During the other seasons, northward propagation is very obvious near dawn and dusk, but no significant northward propagation is observed at noon. It is suggested that the variable propagation direction in the morning is related to irregular magnetic disturbances that occur at this local time. The changes in the MSTID propagation directions near dawn and dusk are generally consistent with changes in ionospheric electric fields occurring at these times and is consistent with dayside MSTIDs being generated by the Lorentz force. Key words. Ionosphere (ionospheric disturbances; wave propagation; ionospheric irregularities; signal processing

  15. Turbulence characteristics inside ionospheric small-scale expanding structures observed with SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    R. André

    2003-08-01

    Full Text Available Unusual structures characterized by a very high-velocity divergence have been observed in the high-latitude F-region with SuperDARN radars (André et al., 2000. These structures have been interpreted as due to local demagnetization of the plasma in the ionospheric F-region, during very specific geophysical conditions. In this study, the collective wave scattering theory is used to characterize the decameter-scale turbulence (l approx 15 m inside the structures. The distribution function of the diffusion coefficient is modified when the structures are generated, suggesting that two regimes of turbulence coexist. A temporal analysis decorrelates the two regimes and gives access to the dynamics associated with the structures. It is shown that a high turbulent regime precedes the plasma demagnetization and should be related to an energy deposition. Then a second regime appears when the plasma is demagnetized and disappears simultaneously with the structures. This study is the first application of the collective wave scattering theory to a specific geophysical event.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities – Space plasma physics (turbulence

  16. ATLID: atmospheric lidar for clouds and aerosol observation combined with radar sounding

    Science.gov (United States)

    Pain, Th.; Martimort, Ph.; Tanguy, Ph.; Leibrandt, W.; Heliere, A.

    2017-11-01

    The atmospheric lidar ATLID is part of the payload of the joint collaborative satellite mission Earth Cloud and Aerosol Explorer (EarthCARE) conducted by the European Space Agency (ESA) and the National Space Development Agency of Japan (JAXA). In December 2002, ESA granted Alcatel Space with a phase A study of the EarthCARE mission in which Alcatel Space is also in charge to define ATLID. The primary objective of ATLID at the horizon 2011 is to provide global observation of clouds in synergy with a cloud profiling radar (CPR) mounted on the same platform. The planned spaceborne mission also embarks an imager and a radiometer and shall fly for 3 years. The lidar design is based on a novel concept that maximises the scientific return and fosters a cost-effective approach. This improved capability results from a better understanding of the way optical characteristics of aerosol and clouds affect the performance budget. For that purpose, an end to end performance model has been developed utilising a versatile data retrieval method suitable for new and more conventional approaches. A synthesis of the achievable performance will be presented to illustrate the potential of the system together with a description of the design.

  17. Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia

    Directory of Open Access Journals (Sweden)

    F. Renggono

    2001-08-01

    Full Text Available Temporal variations of precipitating clouds in equatorial Indonesia have been studied based on observations with 1357.5 MHz boundary layer radars at Serpong (6.4° S, 106.7° E near Jakarta and Bukittinggi (0.2° S, 100.3° E in West Sumatera. We have classified precipitating clouds into four types: stratiform, mixed stratiform-convective, deep convective, and shallow convective clouds, using the Williams et al. (1995 method. Diurnal variations of the occurrence of precipitating clouds at Serpong and Bukittinggi have showed the same characteristics, namely, that the precipitating clouds primarily occur in the afternoon and the peak of the stratiform cloud comes after the peak of the deep convective cloud. The time delay between the peaks of stratiform and deep convective clouds corresponds to the life cycle of the mesoscale convective system. The precipitating clouds which occur in the early morning at Serpong are dominated by stratiform cloud. Concerning seasonal variations of the precipitating clouds, we have found that the occurrence of the stratiform cloud is most frequent in the rainy season, while the occurrence of the deep convective cloud is predominant in the dry season.Key words. Meteorology and atmospheric dynamics (convective processes; precipitation; tropical meteorology

  18. Diurnal, monthly and seasonal variation of mean winds in the MLT region observed over Kolhapur using MF radar

    Science.gov (United States)

    Sharma, A. K.; Gaikwad, H. P.; Ratnam, M. Venkat; Gurav, O. B.; Ramanjaneyulu, L.; Chavan, G. A.; Sathishkumar, S.

    2018-04-01

    Medium Frequency (MF) radar located at Kolhapur (16.8°N, 74.2°E) has been upgraded in August 2013. Since then continuous measurements of zonal and meridional winds are obtained covering larger altitudes from the Mesosphere and Lower Thermosphere (MLT) region. Diurnal, monthly and seasonal variation of these mean winds is presented in this study using four years (2013-2017) of observations. The percentage occurrence of radar echoes show maximum between 80 and 105 km. The mean meridional wind shows Annual Oscillation (AO) between 80 and 90 km altitudes with pole-ward motion during December solstice and equatorial motion during June solstice. Quasi-biennial oscillation (QBO) with weaker amplitudes are also observed between 90 and 104 km. Zonal winds show semi-annual oscillation (SAO) with westward winds during equinoxes and eastward winds during solstices between 80 and 90 km. AO with eastward winds during December solstice and westward wind in the June solstice is also observed in the mean zonal wind between 100 and 110 km. These results match well with that reported from other latitudes within Indian region between 80 and 90 km. However, above 90 km the results presented here provide true mean background winds for the first time over Indian low latitude region as the present station is away from equatorial electro-jet and are not contaminated by ionospheric processes. Further, the results presented earlier with an old version of this radar are found contaminated due to unknown reasons and are corrected in the present work. This upgraded MF radar together with other MLT radars in the Indian region forms unique network to investigate the vertical and lateral coupling.

  19. Observation of Polar Mesosphere Summer Echoes using the northernmost MST radar at Eureka (80°N)

    Science.gov (United States)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-09-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northernmost geographically located MST radar at Eureka (80°N, 86°W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and 33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69°N, 16°E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  20. Simultaneous Antarctic Gravity Wave Observations in PMCs from the AIM Satellite and PMSE Observations from PANSY Radar

    Science.gov (United States)

    Buzanowicz, M. E.; Yue, J.; Russell, J. M., III; Sato, K.; Kohma, M.; Nakamura, T.

    2015-12-01

    Polar mesospheric clouds (PMCs) are high-altitude ice clouds that form in the cold summer mesopause region due to adiabatic cooling caused by an upwelling induced by the global meridional circulation, which is driven by gravity wave dissipation and forcing. Polar mesospheric summer echoes (PMSEs) are strong coherent echoes also observed in the polar summer mesosphere and are considered to be related to ionization and the small-scale structure associated with PMCs, with their origins thought to be strongly related. The peak PMSE height can be located slightly below the summer mesopause temperature minimum but above the PMC altitude. Upward propagating atmospheric gravity waves (AGWs) are usually considered to be the cause of the wave patterns seen in PMCs. Monitoring PMCs and PMSEs will provide important tools in detecting climate change in the upper atmosphere and a better understanding of the earth-climate system. The science goal I plan to accomplish is to investigate the possibility of a connection between gravity wave perturbation characteristics in PMCs from the AIM (Aeronomy of Ice in the Mesosphere) satellite and PMSE structures observed by PANSY (program of the Antarctic Syowa MST/IS radar). Data from the CIPS instrument onboard AIM, PANSY, and AIRS (Atmospheric Infrared Sounder) will be used. AIM provides a two-dimensional horizontal view of the atmosphere dynamics embedded in PMCs, while PANSY provides a vertical view of PMSEs and gravity waves with high temporal resolution. The combination of AIM and PANSY will provide a three-dimensional view of the atmosphere, AGWs, PMCs and PMSEs. AIRS provides information about AGWs in the stratosphere. Wave analysis of the Fast Fourier Transform or a wavelet analysis will be used to complete the science goal. AIRS will be used to examine how lower atmosphere meteorology may impact the PMC and PMSE structures.

  1. Radar observations of the quarterdiurnal tide in the mesosphere/lower thermosphere

    Science.gov (United States)

    Jacobi, Christoph; Krug, Amelie; Lilienthal, Friederike; Lima, Lourivaldo; Merzlyakov, Eugeny

    2016-04-01

    While the diurnal, semidiurnal and terdiurnal tides in the mesosphere/lower thermosphere (MLT) have been observed from the ground and from satellites, the quarterdiurnal tide has been investigated on a few occasions only. Therefore, meteor radar observations of horizontal winds in the MLT (80-100 km) at Collm (51.1°N, 13.0°E), Obninsk (55°N, 37°E), Cariri (7.4°S, 36.5°W) and Cachoeira Paulista (22.7°S, 45.0°W) have been used to analyse the seasonal variability of the quarterdiurnal tide at middle and low latitudes. At Collm and Obninsk, the zonal amplitudes show a clear maximum in boreal winter and a weaker one during spring. Amplitudes increase with height, with up to 7 m/s in the lower thermosphere. The meridional amplitudes are weaker, but show a similar seasonal cycle. Amplitudes and phases at Collm and Obninsk are similar, indicating that most of the observed 6-hour oscillation at higher midlatitudes is due to the migrating quarterdiurnal tide. Obninsk amplitudes show an interdecadal variation with smaller values during the 1990s and larger ones during the 2000s. At low southern latitudes over Cariri, the maxima during boreal winter and spring are also visible, but there is another one during austral winter, and generally the amplitudes are smaller. Meridional amplitudes at Cariri are larger than the zonal ones, and maximize during austral winter. At Cachoeira Paulista there are two maxima at the upper altitudes during the equinoxes in both wind components, and another one during austral winter in the mesosphere, which is mainly visible in the zonal component.

  2. Polarimetric ISAR: Simulation and image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    In polarimetric ISAR the illumination platform, typically airborne, carries a pair of antennas that are directed toward a fixed point on the surface as the platform moves. During platform motion, the antennas maintain their gaze on the point, creating an effective aperture for imaging any targets near that point. The interaction between the transmitted fields and targets (e.g. ships) is complicated since the targets are typically many wavelengths in size. Calculation of the field scattered from the target typically requires solving Maxwell’s equations on a large three-dimensional numerical grid. This is prohibitive to use in any real-world imaging algorithm, so the scattering process is typically simplified by assuming the target consists of a cloud of independent, non-interacting, scattering points (centers). Imaging algorithms based on this scattering model perform well in many applications. Since polarimetric radar is not very common, the scattering model is often derived for a scalar field (single polarization) where the individual scatterers are assumed to be small spheres. However, when polarization is important, we must generalize the model to explicitly account for the vector nature of the electromagnetic fields and its interaction with objects. In this note, we present a scattering model that explicitly includes the vector nature of the fields but retains the assumption that the individual scatterers are small. The response of the scatterers is described by electric and magnetic dipole moments induced by the incident fields. We show that the received voltages in the antennas are linearly related to the transmitting currents through a scattering impedance matrix that depends on the overall geometry of the problem and the nature of the scatterers.

  3. Validation of high-frequency radar ocean surface current observations in the NW of the Iberian Peninsula

    Science.gov (United States)

    Lorente, P.; Piedracoba, S.; Fanjul, E. Alvarez

    2015-01-01

    An assessment of the accuracy of a four-site long-range (5 MHz) CODAR SeaSonde HF radar network deployed along the Galician Coast is attempted through a comparison with measurements from two moored current meters for the entire year 2012. Radial vectors comparison shows correlation coefficients and RMSE in the ranges 0.32-0.72 and 10-17 cm s-1, respectively. Observed discrepancies in current velocities could be partially attributable to the existence of bearing errors and the influence of the current profile, although other factors like the Stokes drift or intrinsic HF radar variance might also contribute. Evidence of bearing errors can be seen, with values lying between -15° and +10°. The study is also conducted on a quarterly basis in order to routinely monitor performance of the sites in terms of bearing offset evolution, with offset values remaining stable throughout 2012. Use of measured antenna pattern only improves performance at two radar sites. Comparison of total current vectors is carried out together with an evaluation of the impact of the selected averaging radius (AR). Lower AR values give rise to optimized metrics when radar sites involved in the comparison operate accurately, reporting correlations and RMSE in the ranges 0.56-0.74 and 8-13 cm s-1, respectively. By contrast, if at least one of the two involved sites operates erratically, the strategy based on reducing AR becomes counterproductive and the imposed standard value of 25 km seems to be appropriate.

  4. High resolution observation of soil water dynamics in a complicated architecture with Ground-Penetrating Radar

    Science.gov (United States)

    Klenk, P.; Seegers, C.; Dagenbach, A.; Jaumann, S.; Buchner, J. S.; Roth, K.

    2012-04-01

    Over the last decades, surface Ground-Penetrating Radar (GPR) has become a reliable tool for studying the subsurface at the field scale. However, there still is a need for detailed studies under well-controlled field conditions. Besides improving the quantitative GPR analysis, this also furthers the understanding of near-surface hydrological processes. In this study, we present the results of high-resolution multichannel GPR observations of fluctuating water table experiments at the Heidelberg ASSESS-GPR test site. This site is an artificial sand-bed with a well-defined, known subsurface structure, where the pertinent boundary conditions are either measured or can be directly adjusted. During these experiments, a well-defined amount of water has been infiltrated into the structure from below over the course of several hours and was subsequently pumped out again. Concurrently, various multichannel surface GPR measurements at three different frequencies have been carried out at characteristic locations on the sand-bed. The large number of radargrams, which have been obtained at a temporal resolution of about one minute throughout the whole experiment duration, allow for a detailed representation of the spatio-temporal water content dynamics. We discuss in particular (i) the conditions under which compacted sand layers act as reflectors, (ii) the interference of reflections from the moving capillary fringe with those from the sand layers, and (iii) the information that can be retrieved from observing the dynamics of the capillary fringe moving through different layers. From these results, we draw further conclusions for quantitative measurements at previously unknown field sites.

  5. A comparison of optical and coherent HF radar backscatter observations of a post-midnight aurora

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available A poleward-progressing 630 nm optical feature is observed between approximately 0100 UT and 0230 UT (0400 MLT to 0530 MLT by a meridian-scanning photometer (MSP located at Ny Ålesund, Svalbard. Simultaneous coherent HF radar measurements indicate a region of poleward-expanding backscatter with rapid sunward plasma flow velocity along the MSP meridian. Spatial maps of the backscatter indicate a stationary backscatter feature aligned obliquely with respect to the MSP meridian, which produces an impression of poleward-expansion as the MSP progresses to later MLT. Two interpretations of the observations are possible, depending on whether the arc system is considered to move (time-dependent or to be stationary in time and apparent motion is produced as the MSP meridian rotates underneath it (time-independent. The first interpretation is as a poleward motion of an east-west aligned auroral arc. In this case the appearance of the region of backscatter is not associated with the optical feature, though the velocities within it are enhanced when the two are co-located. The second interpretation is as a polar arc or theta aurora, common features of the polar cap under the prevailing IMF northwards conditions. In this case the backscatter appears as an approximately 150 km wide region adjacent to the optical arc. In both interpretations the luminosity of the optical feature appears related to the magnitude of the plasma flow velocity. The optical features presented here do not generate appreciable HF coherent backscatter, and are only identifiable in the backscatter data as a modification of the flow by the arc electrodynamics.

  6. Statistical Characteristics of Convective Clouds over the Western Ghats Derived from Weather Radar Observations

    Science.gov (United States)

    Utsav, Bhowmik; Deshpande, Sachin M.; Das, Subrata K.; Pandithurai, Govindan

    2017-09-01

    X-band radar observations at Mandhardev (18.04°N, 73.85°E) are used to investigate statistics of convective clouds over the Western Ghats during monsoon season (June-September 2014). Convective storms (cells) are identified using an objective-tracking method to examine their spatiotemporal variability, thus quantifying the time-continuous aspects of convective cloud population over the region for the first time. An increased frequency of storm location and initiation along the windward mountains compared to coastal and lee side highlights orographic response to southwesterly flow, with superimposed diurnal cycle. An eastward progression of convective activity from upstream the barrier through windward slopes of mountains over to the lee side is observed. Storm area, height, and duration follow lognormal distributions; wherein, small-sized storms contribute more to total population and unimodal distribution of 35 dBZ top heights (peaking at 5.5 km) depicts the dominance of shallow convection. Storms exhibit a pronounced diurnal cycle with a peak in afternoon hours, while the convective area maximum is delayed by several hours to that of precipitation flux. Cell lifetime and propagation show that cells move with slow speeds and have mean duration of 46 min. They align east-west nearly parallel to mountain ridges, and their direction of movement is steered mostly by large-scale winds at lower levels. Based on top heights, convective cells are further classified into cumulus, congestus, and deep clouds. In general, congestus (deep) cells are most abundant in the windward (leeward) side. A lead-lag relationship between congestus and deep cells indicates midtroposphere moistening by congestus cells prior to deep convection.

  7. VHF radar observations of turbulent structures in the polar mesopause region

    Directory of Open Access Journals (Sweden)

    P. Czechowsky

    Full Text Available The mobile SOUSY VHF Radar was operated in the summer of 1987 during the MAC/SINE campaign in northern Norway to study the polar mesosphere summer echoes (PMSE. Measurements of the spectral width indicate that two types of structures occur. In general mesospheric layers are bifurcated exhibiting a narrow spectral width and a well-defined aspect sensitivity. However, for about 10% of the observation time cells of enhanced turbulence characterized by extremely broad spectral widths appear predominantly in the upper sublayer above 86 km. Identification and separation of beam and shear broadening allows a determination of the turbulence-induced component of the spectral width. This case study reveals that during several events these cloud-like structures of enhanced turbulence move with an apparent velocity of several tens of meters per second which is almost identical with the phase trace velocity of simultaneously observed waves. Since, at that time, the Richardson number was less than a quarter, it was concluded that these turbulent cells were generated by a Kelvin-Helmholtz mechanism. The horizontal extent of these structures was calculated to be less than 40 km. A general relation between spectral width and echo power was not detected. The turbulent component of the spectral width was used to calculate typical values of the energy dissipation rate at times where narrow spectral width dominates and during periods of enhanced turbulence. In addition, the outer scale of the inertial subrange (buoyancy scale was estimated. For the first time the occurrence and motion of this type of structures of enhanced spectral width is analyzed and discussed in detail.

  8. VHF radar observations of turbulent structures in the polar mesopause region

    Directory of Open Access Journals (Sweden)

    P. Czechowsky

    1997-08-01

    Full Text Available The mobile SOUSY VHF Radar was operated in the summer of 1987 during the MAC/SINE campaign in northern Norway to study the polar mesosphere summer echoes (PMSE. Measurements of the spectral width indicate that two types of structures occur. In general mesospheric layers are bifurcated exhibiting a narrow spectral width and a well-defined aspect sensitivity. However, for about 10% of the observation time cells of enhanced turbulence characterized by extremely broad spectral widths appear predominantly in the upper sublayer above 86 km. Identification and separation of beam and shear broadening allows a determination of the turbulence-induced component of the spectral width. This case study reveals that during several events these cloud-like structures of enhanced turbulence move with an apparent velocity of several tens of meters per second which is almost identical with the phase trace velocity of simultaneously observed waves. Since, at that time, the Richardson number was less than a quarter, it was concluded that these turbulent cells were generated by a Kelvin-Helmholtz mechanism. The horizontal extent of these structures was calculated to be less than 40 km. A general relation between spectral width and echo power was not detected. The turbulent component of the spectral width was used to calculate typical values of the energy dissipation rate at times where narrow spectral width dominates and during periods of enhanced turbulence. In addition, the outer scale of the inertial subrange (buoyancy scale was estimated. For the first time the occurrence and motion of this type of structures of enhanced spectral width is analyzed and discussed in detail.

  9. Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)

    Science.gov (United States)

    Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert

    2016-01-01

    To date, over twenty meteorite falls have been located in the weather radar imagery of the National Oceanic and Atmospheric Administration (NOAA)'s NEXRAD radar network. We present here the most prominent events recorded since the last Meteoritical Society meeting, covering most of 2015 and early 2016. Meteorite Falls: The following events produced evidence of falling meteorites in radar imagery and resulted in meteorites recovered at the fall site. Creston, CA (24 Oct 2015 0531 UTC): This event generated 218 eyewitness reports submitted to the American Meteor Society (AMS) and is recorded as event #2635 for 2015 on the AMS website. Witnesses reported a bright fireball with fragmentation terminating near the city of Creston, CA, north of Los Angeles. Sonic booms and electrophonic noise were reported in the vicinity of the event. Weather radar imagery records signatures consistent with falling meteorites in data from the KMUX, KVTX, KHNX and KVBX. The Meteoritical Society records the Creston fall as an L6 meteorite with a total recovered mass of 688g. Osceola, FL (24 Jan 2016 1527 UTC): This daytime fireball generated 134 eyewitness reports on AMS report number 266 for 2016, with one credible sonic boom report. The fireball traveled roughly NE to SW with a terminus location north of Lake City, FL in sparsely populated, forested countryside. Radar imagery shows distinct and prominent evidence of a significant meteorite fall with radar signatures seen in data from the KJAX and KVAX radars. Searchers at the fall site found that recoveries were restricted to road sites by the difficult terrain, and yet several meteorites were recovered. Evidence indicates that this was a relatively large meteorite fall where most of the meteorites are unrecoverable due to terrain. Osceola is an L6 meteorite with 991 g total mass recovered to date. Mount Blanco, TX (18 Feb 2016 0343 UTC): This event produced only 39 eyewitness reports and is recorded as AMS event #635 for 2016. No

  10. Interpulse phase coding for improving accuracy of polarimetric SAR

    Science.gov (United States)

    Giuli, Dino; Facheris, Luca

    1993-02-01

    Polarimetric measurements made by Synthetic Aperture Radar (SAR) may be in some cases, depending on the polarimetric response of distributed targets to be imaged, severely limited in their accuracy due to the joint effect of range ambiguities and weak crosspolarized signal response. Due to the utilization of alternate transmission of pulses at orthogonal polarizations, each ambiguous swath gives rise to one different kind of interference, depending whether its order is even or odd. Interference arising from even-order ambiguous swaths, differently from that arising from odd-order swaths, is generated by pulses transmitted on the same polarization channel of the pulse soliciting the desired echo signal, that they corrupt. Evidently, interference arising from odd-order swaths and affecting crosspolar measurements is most harmful, together with that arising from zones at low incidence angle, which carries a strong reflectivity contribution to the total interference on the desired signal. The paper discusses the utility of appropriate interpulse phase coding strategies, depending on the SAR geometry, than can be devised and utilized in the polarimetric interleaved-pulse measurement technique, with the task to reduce the interference generated by range ambiguities and affecting those target scattering matrix elements, whose measurement is expected to be most critical.

  11. A partial 45 MHz sky temperature map obtained from the observations of five ST radars

    Directory of Open Access Journals (Sweden)

    B. Campistron

    2001-08-01

    Full Text Available A sky temperature map at 45 MHz covering declination between + 30° and + 60°  is presented. The sampling in right ascension is 20 min (~5° and 2°  in declination in most of the map. The originality of the work was to use cosmic emission measurements from five VHF Stratosphere-Troposphere (ST radars collected during long periods of routine meteorological surveys. This map, which has an accuracy in temperature of about 600 K, is intended first for radar reflectivity calibration and system performance monitoring. The presence of two strong radio sources, Cassiopeia A and Cygnus A, can also serve as the verification of the beam diagram, beam width, and beam pointing direction of the antenna. Finally, this work is an attempt to show the potentiality of ST radar for astronomical purposes.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (radio astronomy

  12. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    Science.gov (United States)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the

  13. Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars

    Science.gov (United States)

    Carter, L.M.; Campbell, B.A.; Watters, T.R.; Phillips, R.J.; Putzig, N.E.; Safaeinili, A.; Plaut, J.J.; Okubo, C.H.; Egan, A.F.; Seu, R.; Biccari, D.; Orosei, R.

    2009-01-01

    The SHARAD (shallow radar) sounding radar on the Mars Reconnaissance Orbiter detects subsurface reflections in the eastern and western parts of the Medusae Fossae Formation (MFF). The radar waves penetrate up to 580 m of the MFF and detect clear subsurface interfaces in two locations: west MFF between 150 and 155?? E and east MFF between 209 and 213?? E. Analysis of SHARAD radargrams suggests that the real part of the permittivity is ???3.0, which falls within the range of permittivity values inferred from MARSIS data for thicker parts of the MFF. The SHARAD data cannot uniquely determine the composition of the MFF material, but the low permittivity implies that the upper few hundred meters of the MFF material has a high porosity. One possibility is that the MFF is comprised of low-density welded or interlocked pyroclastic deposits that are capable of sustaining the steep-sided yardangs and ridges seen in imagery. The SHARAD surface echo power across the MFF is low relative to typical martian plains, and completely disappears in parts of the east MFF that correspond to the radar-dark Stealth region. These areas are extremely rough at centimeter to meter scales, and the lack of echo power is most likely due to a combination of surface roughness and a low near-surface permittivity that reduces the echo strength from any locally flat regions. There is also no radar evidence for internal layering in any of the SHARAD data for the MFF, despite the fact that tens-of-meters scale layering is apparent in infrared and visible wavelength images of nearby areas. These interfaces may not be detected in SHARAD data if their permittivity contrasts are low, or if the layers are discontinuous. The lack of closely spaced internal radar reflectors suggests that the MFF is not an equatorial analog to the current martian polar deposits, which show clear evidence of multiple internal layers in SHARAD data. ?? 2008 Elsevier Inc.

  14. HF radar and drifter observing system in the Adriatic for fishery management and security

    DEFF Research Database (Denmark)

    Corgnati, Lorenzo; Carlson, Daniel Frazier; Mantovani, Carlo

    2014-01-01

    A HF radar system has been operating since May 2013 in the Southern Adriatic between the Gargano Cape and the Manfredonia Gulf. The system, that has been tested and complemented with drifter launchings during three experiments, produces maps of surface ocean velocities at 2 km resolution every hour....... These data support fishery management as well as search and rescue and pollution mitigation operations. The Manfredonia Gulf is a known nursery area for small pelagic fish (anchovies and sardines), and its dynamics and connectivity properties are very relevant to the study of population dynamics. HF radar...

  15. Radar and photometric observations and shape modeling of contact binary near-Earth Asteroid (8567) 1996 HW1

    Czech Academy of Sciences Publication Activity Database

    Magri, C.; Howell, E. S.; Nolan, M. C.; Taylor, P.A.; Fernandez, Y.R.; Mueller, M.; Vervack, R.J.; Benner, L. A. M.; Giorgini, J. D.; Ostro, S. J.; Scheeres, D.J.; Hicks, M. D.; Rhoades, H.; Somers, J.M.; Gaftonyuk, N. M.; Kouprianov, V.V.; Krugly, Yu. N.; Molotov, I.E.; Busch, M.W.; Margot, J. L.; Benishek, V.; Protitch-Benishek, V.; Galád, Adrián; Higgins, D.; Kušnirák, Peter; Pray, D. P.

    2011-01-01

    Roč. 214, č. 1 (2011), s. 210-227 ISSN 0019-1035 R&D Projects: GA ČR GA205/09/1107 Grant - others:SAV(SK) Vega2/0016/09; NASA (US) NNX10AP87G; NASA (US) NNX10AP87G Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * photometry * radar observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.385, year: 2011

  16. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image

    Directory of Open Access Journals (Sweden)

    Li Yang

    2015-06-01

    Full Text Available Multiaspect Synthetic Aperture Radar (SAR can generate high resolution images and target scattering signatures in different azimuth angles from the coherent integration of all subaperture images. However, mixed anisotropic scatters limit the application of traditional imaging theory. Anisotropic scattering may introduce errors in polarimetric parameters by decreasing the reliability of terrain classification and detection of variability. Thus a method is proposed for estimating and removing anisotropic scattering in multiaspect polarimetric SAR images. The proposed algorithm is based on the maximum likelihood and likelihood-ratio tests for the two-class case, while considering the speckle effect, the mechanism of removing the anisotropic scattering, and the monotonicity of the Constant False Alarm Rate (CFAR detection function. We compare the polarimetric entropy before and after removing the anisotropic subapertures, and then validate the algorithm's potential in retrieving the target signature using a P-band quad-pol airborne SAR with circular trajectory.

  17. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    International Nuclear Information System (INIS)

    Shao, Y; Li, K; Liu, L; Yang, Z; Brisco, B

    2014-01-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research

  18. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  19. Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments

    Directory of Open Access Journals (Sweden)

    Chih-Chien Tsai

    2014-03-01

    Full Text Available This study develops a Doppler radar data assimilation system, which couples the local ensemble transform Kalman filter with the Weather Research and Forecasting model. The benefits of this system to quantitative precipitation nowcasting (QPN are evaluated with observing system simulation experiments on Typhoon Morakot (2009, which brought record-breaking rainfall and extensive damage to central and southern Taiwan. The results indicate that the assimilation of radial velocity and reflectivity observations improves the three-dimensional winds and rain-mixing ratio most significantly because of the direct relations in the observation operator. The patterns of spiral rainbands become more consistent between different ensemble members after radar data assimilation. The rainfall intensity and distribution during the 6-hour deterministic nowcast are also improved, especially for the first 3 hours. The nowcasts with and without radar data assimilation have similar evolution trends driven by synoptic-scale conditions. Furthermore, we carry out a series of sensitivity experiments to develop proper assimilation strategies, in which a mixed localisation method is proposed for the first time and found to give further QPN improvement in this typhoon case.

  20. A study of thunderstorm characteristics using lightning and weather radar observations

    OpenAIRE

    Pineda Ruegg, Nicolau; Bech, Joan; Rigo, Tomeu; Montañá Puig, Juan

    2004-01-01

    The main objective of this study was to give insight into the temporal and spatial aspects of lightning activity during the life cycle of diverse types of thunderstorms, and to examine the possible relationships with thunderstorm environment and meteorological radar products in order to support forecasters’ decisions about severe storms.

  1. HF radar and drifter observing system in the Adriatic for fishery management and security

    DEFF Research Database (Denmark)

    Corgnati, Lorenzo; Carlson, Daniel Frazier; Mantovani, Carlo

    2014-01-01

    . These data support fishery management as well as search and rescue and pollution mitigation operations. The Manfredonia Gulf is a known nursery area for small pelagic fish (anchovies and sardines), and its dynamics and connectivity properties are very relevant to the study of population dynamics. HF radar...

  2. The New Meteor Radar at Penn State: Design and First Observations

    Science.gov (United States)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  3. Radar and optical observations and physical modeling of near-Earth Asteroid 10115 (1992 SK)

    Czech Academy of Sciences Publication Activity Database

    Busch, M.; Ostro, S. J.; Benner, L. A. M.; Giorgini, J. D.; Jurgens, R. F.; Rose, R.; Magri, C.; Pravec, Petr; Scheeres, D.J.; Broschart, S.B.

    2006-01-01

    Roč. 181, č. 1 (2006), s. 145-155 ISSN 0019-1035 R&D Projects: GA ČR(CZ) GA205/05/0604; GA AV ČR IAA3003204 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * radar * rotation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.151, year: 2006

  4. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.

    2011-01-01

    in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  5. Mini-RF S- and X-Band Bistatic Radar Observations of the Moon

    Science.gov (United States)

    Patterson, G. W.; Carter, L. M.; Stickle, A. M.; Cahill, J. T. S.; Nolan, M. C.; Morgan, G. A.; Schroeder, D. M.; Mini-RF Team

    2017-10-01

    Mini-RF is operating in concert with the Arecibo Observatory and the Goldstone DSS-13 antenna to collect bistatic radar data. We will provide an update on science questions being addressed by the Mini-RF team in the current LRO extended mission.

  6. Exploring Vesta's Surface Roughness and Dielectric Properties Using VIR Spectrometer and Bistatic Radar Observations by the Dawn Mission

    Science.gov (United States)

    Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Kofman, W. W.; Russell, C. T.

    2014-12-01

    Multiple lines of evidence from NASA's Dawn mission suggest transient volatile presence at the surface of asteroid Vesta. Radar remote sensing is a useful technique for the investigation of volatile content at the surface and shallow subsurface, but requires the use of accurate dielectric and topographic models in order to deconvolve the effect of surface roughness from the total observed radar backscatter. Toward this end, we construct a dielectric model for the dry, volatile-poor case of Vesta's surface to represent average surface conditions, and to assess the expected average range of dielectric properties due to known variations in mineralogy, temperature, and density as inferred from Dawn VIR data. We employ dielectric studies of lunar samples to serve as a suitable analog to the Vestan regolith, and in the case of 10-wavelength penetration depth of X-band frequency radar observations, our model yields ɛ' from 2.5 to 2.6 from the night to dayside of Vesta, and tan δ from 0.011 to 0.014. Our estimation of ɛ' corresponds to specular surface reflectivity of ~0.05. In addition to modeling, we have also conducted an opportunistic bistatic radar (BSR) experiment at Vesta using the communications antennas aboard Dawn and on Earth. In this configuration, Dawn transmits a continuous radar signal toward the Earth while orbiting Vesta. As the Dawn spacecraft passes behind Vesta (entering an occultation), the line of sight between Dawn and Earth intersects Vesta's surface, resulting in a reflection of radar waves from the surface and shallow subsurface, which are then received on Earth for analysis. The geometry of the Dawn BSR experiment results in high incidence angles on Vesta's surface, and leads to a differential Doppler shift of only a few 10s of Hz between the direct signal and the surface echo. As a consequence, this introduces ambiguity in the measurement of bandwidth and peak power of each surface echo. We report our interpretations of each surface echo in

  7. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  8. Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data

    Directory of Open Access Journals (Sweden)

    Yasuhiro Nakamura

    2012-07-01

    Full Text Available The present study introduces the four-component scattering power decomposition (4-CSPD algorithm with rotation of covariance matrix, and presents an experimental proof of the equivalence between the 4-CSPD algorithms based on rotation of covariance matrix and coherency matrix. From a theoretical point of view, the 4-CSPD algorithms with rotation of the two matrices are identical. Although it seems obvious, no experimental evidence has yet been presented. In this paper, using polarimetric synthetic aperture radar (POLSAR data acquired by Phased Array L-band SAR (PALSAR on board of Advanced Land Observing Satellite (ALOS, an experimental proof is presented to show that both algorithms indeed produce identical results.

  9. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar.

    Science.gov (United States)

    Gabella, Marco; Leuenberger, Andreas

    2017-05-22

    The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of -0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the "small" (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB.

  10. Polarimetric Parameters for Growing Stock Volume Estimation Using ALOS PALSAR L-Band Data over Siberian Forests

    Directory of Open Access Journals (Sweden)

    Martyna Stelmaszczuk-Górska

    2013-11-01

    Full Text Available In order to assess the potentiality of ALOS L-band fully polarimetric radar data for forestry applications, we investigated a four-component decomposition method to characterize the polarization response of Siberian forest. The decomposition powers of surface scattering, double-bounce and volume scattering, derived with and without rotation of coherency matrix, were compared with Growing Stock Volume (GSV. To compensate for topographic effects an adaptive rotation of the coherency matrix was accomplished. After the rotation, the correlation between GSV and double-bounce increased significantly. Volume scattering remained same and the surface scattering power decreased slightly. The volume scattering power and double-bounce power increased as the GSV increased, whereas the surface scattering power decreased. In sparse forest, at unfrozen conditions the surface scattering was higher than volume scattering, while volume scattering was dominant in dense forest. The scenario was different at frozen conditions for dense forest where the surface scattering was higher than volume scattering. Moreover, a slight impact of tree species on polarimetric decomposition powers has been observed. Larch was differed from aspen, birch and pine by +2 dB surface scattering power and also by −1.5 dB and −1.2 dB volume scattering power and double-bounce scattering power respectively at unfrozen conditions.

  11. Aspect sensitive E- and F-region SPEAR-enhanced incoherent backscatter observed by the EISCAT Svalbard radar

    Directory of Open Access Journals (Sweden)

    R. S. Dhillon

    2009-01-01

    Full Text Available Previous studies of the aspect sensitivity of heater-enhanced incoherent radar backscatter in the high-latitude ionosphere have demonstrated the directional dependence of incoherent scatter signatures corresponding to artificially excited electrostatic waves, together with consistent field-aligned signatures that may be related to the presence of artificial field-aligned irregularities. These earlier high-latitude results have provided motivation for repeating the investigation in the different geophysical conditions that obtain in the polar cap ionosphere. The Space Plasma Exploration by Active Radar (SPEAR facility is located within the polar cap and has provided observations of RF-enhanced ion and plasma line spectra recorded by the EISCAT Svalbard UHF incoherent scatter radar system (ESR, which is collocated with SPEAR. In this paper, we present observations of aspect sensitive E- and F-region SPEAR-induced ion and plasma line enhancements that indicate excitation of both the purely growing mode and the parametric decay instability, together with sporadic E-layer results that may indicate the presence of cavitons. We note consistent enhancements from field-aligned, vertical and also from 5° south of field-aligned. We attribute the prevalence of vertical scatter to the importance of the Spitze region, and of that from field-aligned to possible wave/irregularity coupling.

  12. High-time resolution conjugate SuperDARN radar observations of the dayside convection response to changes in IMF By

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2000-02-01

    Full Text Available We present data from conjugate SuperDARN radars describing the high-latitude ionosphere's response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is ~8-12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.Key words: Ionosphere (plasma convection - Magnetospheric physics (magnetopause, cusp, and boundary layers; solar wind - magnetosphere interactions

  13. Study of midlatitude ionospheric irregularities and E- and F-region coupling based on rocket and radar observations from Japan

    Science.gov (United States)

    Yamamoto, M.

    2015-12-01

    We have been studying ionspheric irregularities in mid-latitude region by using radars, sounding rockets, etc. The mid-latitude ionosphere was considered much stable than those in the equatorial or polar region in the past, but our studies for years have revealed that there are much active variabilities. We found variety of wave-like structures that are specific in the mid-latitudes. One of the phenomena is quasi-periodic echoes (QP echoes) first observed by the MU radar that reflects horizontal plasma-density structures associated to sporadic-E layers. Another phenomenon is medium-scale traveling ionospheric disturbance (MSTID) in the F-region. In the generation mechanism we think that Ionospheric E- and F-region coupling process is important. In this presentation, we will discuss nature of mid-latitude ionosphere based on our observations; the MU radar, sounding rocket campaigns of SEEK-1/2, and recent MSTID rocket experiment from JAXA Uchinoura Space Center in July 2013.

  14. Ship Discrimination Using Polarimetric SAR Data and Coherent Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Canbin Hu

    2013-12-01

    Full Text Available This paper presents a new approach for the discrimination of ship responses using polarimetric SAR (PolSAR data. The PolSAR multidimensional information is analyzed using a linear Time-Frequency (TF decomposition approach, which permits to describe the polarimetric behavior of a ship and its background area for different azimuthal angles of observation and frequencies of illumination. This paper proposes to discriminate ships from their background by using characteristics of their polarimetric TF responses, which may be associated with the intrinsic nature of the observed natural or artificial scattering structures. A statistical descriptor related to polarimetric coherence of the signal in the TF domain is proposed for detecting ships in different complex backgrounds, including SAR azimuth ambiguities, artifacts, and small natural islands, which may induce numerous false alarms. Choices of the TF analysis direction, i.e., along separate azimuth or range axis, or simultaneously in both directions, are investigated and evaluated. TF decomposition modes including range direction perform better in terms of discriminating ships from range focusing artifacts. In comparison with original full-resolution polarimetric indicators, the proposed TF polarimetric coherence descriptor is shown to qualitatively enhance the ship/background contrast and improve discrimination capabilities. Using polarimetric RADARSAT-2 data acquired over complex scenes, experimental results demonstrate the efficiency of this approach in terms of ship location retrieval and response characterization.

  15. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  16. Tropical cyclone rainbands over land in South Florida: Multiwavelength radar observations and their educational applications

    Science.gov (United States)

    Donaher, Shaunna

    This dissertation investigates the wind structure observed in outer rainbands of three tropical cyclones in August and September 2008 in South Florida. Average wind profiles during fourteen stratiform periods are evaluated using a velocity-azimuth display (VAD) technique applied to Level-2 Miami (KAMX) WSR-88D data to study wind structure in high vertical resolution from a height of 65 meters to 6550 meters above ground level. The maximum horizontal wind speed in the rainbands is typically observed between 1000-1500 meters in height, with occasional evidence of a secondary horizontal wind maximum near 3500-5000 meters. This secondary maximum is found to be stronger than the low-level maximum in four cases of stronger storms observed at further distances (425-450 km) from storm center. Storm-relative wind components are calculated, and radial wind profiles show a mean switch from radial inflow at low levels to radial outflow around 2500-3000 meters AGL. The radial inflow maximum is around 500 meters, while maximum outflow is much more variable. Temporal variability within one four hour period is examined, and an ascending and strengthening low-level wind maximum is seen, along with a decrease in the low-level radial inflow over time. Low-level winds are studied in great detail using the high resolution VAD data. All rainbands show a logarithmic wind speed decrease below 500 meters; friction velocity and aerodynamic roughness length are calculated in this log-wind regime for each band. Although the roughness length is found to be higher and much more variable than previous observations, using the calculated components for a fit between 65-120 meters AGL allows for an estimate of wind speeds up to 500 meters above ground level with good accuracy. Variability within the four longest stratiform periods is examined in high temporal and vertical resolution using X-band radar and wind profiler data. Vertical features extending from the near-surface up to the height of the

  17. Unusual Ionospheric Echoes with Velocity and Very Low Special Width Observed by the SuperDARN Radars in the Polar Cap During High Geomagnetic Activity

    National Research Council Canada - National Science Library

    Nishitani, Nozomu

    2004-01-01

    ...) They have a close correlation with geomagnetic activity such that as the Dst index decreases, the radars tend to observe ionospheric echoes with high Doppler velocity and very low spectral width more frequently. (2...

  18. REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION

    International Nuclear Information System (INIS)

    Casini, R.; Judge, P. G.; Schad, T. A.

    2012-01-01

    We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.

  19. The sand seas of titan: Cassini RADAR observations of longitudinal dunes

    Science.gov (United States)

    Lorenz, R.D.; Wall, S.; Radebaugh, J.; Boubin, G.; Reffet, E.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Elachi, C.; Lunine, J.; Mitchell, Ken; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Ori, G.G.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; Flamini, E.; West, R.

    2006-01-01

    The most recent Cassini RADAR images of Titan show widespread regions (up to 1500 kilometers by 200 kilometers) of near-parallel radar-dark linear features that appear to be seas of longitudinal dunes similar to those seen in the Namib desert on Earth. The Ku-band (2.17-centimeter wavelength) images show ???100-meter ridges consistent with duneforms and reveal flow interactions with underlying hills. The distribution and orientation of the dunes support a model of fluctuating surface winds of ???0.5 meter per second resulting from the combination of an eastward flow with a variable tidal wind. The existence of dunes also requires geological processes that create sand-sized (100- to 300-micrometer) particulates and a lack of persistent equatorial surface liquids to act as sand traps.

  20. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao

    2017-07-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  1. Statistical analysis of radar observed F region irregularities from three longitudinal sectors

    Directory of Open Access Journals (Sweden)

    R. Y. C. Cueva

    2013-12-01

    Full Text Available Equatorial Spread F (ESF is a manifestation of ionospheric interchange instabilities in the nighttime equatorial F region. These instabilities generate plasma density irregularities with scale sizes ranging from centimetres to thousands of kilometres. The irregularities can be detected from a variety of instruments such as digisonde, coherent and incoherent scatter radars, in situ space probes, and airglow photometers. In the present study, occurrence statistics of the ESF, based on various parameters are presented using data obtained from the VHF radars located at three longitudinally separated equatorial stations: Christmas Island (2° N, 202.6° E, 2.9° N dip latitude, São Luís (2.59° S, 315.8° E, 0.5° S dip latitude and Jicamarca (12° S, 283.1° E, 0.6° N dip latitude. The ESF parameters presented here are the onset altitude, onset time (onset refers to first appearance of signal in the radar field of view of the bottom-type and plume, and the peak altitude of the plume. Recent studies have used these parameters to classify the spread F occurrence characteristics. The present study reveals novel features namely, the dependence of ESF parameters on the seasonal, solar flux, declination angle and longitudinal dependence from the three radar sites. In addition, we also present an empirical model to determine the nature of these ESF parameters as a function of the solar flux which may enable us to forecast (with 30 min to 1 h tolerance the plume occurrence at any longitude located in between São Luís and Christmas Island.

  2. Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    Mccaul, Eugene W., Jr.; Buechler, Dennis E.; Goodman, Steven J.; Cammarata, Michael

    2004-01-01

    Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.

  3. Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

    Science.gov (United States)

    Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.

    2017-01-01

    Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

  4. HF radar observations of equatorial spread-F over West Africa

    Directory of Open Access Journals (Sweden)

    J.-F. Cécile

    Full Text Available New experimental data depicting equatorial spread-F were taken during an HF radar sounding campaign in Korhogo (Ivory Coast, 9°24N, 5°37W, dip 4°S. Range-time-intensity maps of the radar echoes have been analyzed to identify the signatures of density depletions and bottomside spread-F. Density depletions are well known features of equatorial spread-F, and are believed to emerge after the development of a Rayleigh-Taylor instability on the bottomside F-layer. A simple model is developed and used to simulate the flow of density depletions over the radar field of view. The simulation permits an interpretation of the data that yields the zonal flow velocity as a function of local time. Comparisons with previous measurements are undertaken to assess the consistency of the computational results, and qualitative arguments are presented to identify bottomside spread-F. Using the computational results as reference, a morphological study of ionograms showing spread-F is undertaken which reveals the specific signature of bottomside spread-F on ionograms recorded just after sunset.

  5. HF radar observations of equatorial spread-F over West Africa

    Directory of Open Access Journals (Sweden)

    J.-F. Cécile

    1996-04-01

    Full Text Available New experimental data depicting equatorial spread-F were taken during an HF radar sounding campaign in Korhogo (Ivory Coast, 9°24N, 5°37W, dip 4°S. Range-time-intensity maps of the radar echoes have been analyzed to identify the signatures of density depletions and bottomside spread-F. Density depletions are well known features of equatorial spread-F, and are believed to emerge after the development of a Rayleigh-Taylor instability on the bottomside F-layer. A simple model is developed and used to simulate the flow of density depletions over the radar field of view. The simulation permits an interpretation of the data that yields the zonal flow velocity as a function of local time. Comparisons with previous measurements are undertaken to assess the consistency of the computational results, and qualitative arguments are presented to identify bottomside spread-F. Using the computational results as reference, a morphological study of ionograms showing spread-F is undertaken which reveals the specific signature of bottomside spread-F on ionograms recorded just after sunset.

  6. The proposed flatland radar

    Science.gov (United States)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  7. Detection of Ground Clutter from Weather Radar Using a Dual-Polarization and Dual-Scan Method

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Golbon-Haghighi

    2016-06-01

    Full Text Available A novel dual-polarization and dual-scan (DPDS classification algorithm is developed for clutter detection in weather radar observations. Two consecutive scans of dual-polarization radar echoes are jointly processed to estimate auto- and cross-correlation functions. Discriminants are then defined and estimated in order to separate clutter from weather based on their physical and statistical properties. An optimal Bayesian classifier is used to make a decision on clutter presence from the estimated discriminant functions. The DPDS algorithm is applied to the data collected with the KOUN polarimetric radar and compared with the existing detection methods. It is shown that the DPDS algorithm yields a higher probability of detection and lower false alarm rate in clutter detection.

  8. Combining dual-polarization radar and ground-based observations to study the effect of riming on ice particles

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Recently a new microphysical scheme based on a single ice-phase category was proposed for the use in numerical weather prediction models. In the proposed scheme, ice particle properties are predicted and vary in time and space. One of the attributes of the proposed scheme is that the prefactor of a power-law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent is kept constant. According to this the maximum dimensions of ice particles do not change during riming until graupel growth phase is reached. The dual-polarization radar observations given an additional insight on what are the physical properties of ice particles. Often, it is assumed that differential reflectivity should decrease because of riming. The motivation for this is that heavy riming would transform an ice particle to graupel. A graupel particle typically would have an almost spherical shape and therefore the differential reflectivity will become smaller. On the other hand, at the earlier stages ice particle shape may not change much, while its mass and therefore the density increases. This would lead to the increase of the differential reflectivity, for example. By combining ground-based observations, which allow to quantify the effect of riming on snowfall, and dual-polarization radar observations we investigate the impact of riming on ice particle properties, i.e. mass, density and shape. Furthermore, a connection between, bulk properties of ice particles, liquid water path, radar equivalent reflectivity factor and precipitation rate observations is established. The study is based on data collected during US DOE Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign that took place in Hyytiala, Finland. A detailed analysis of two events is presented to illustrate the method.

  9. Polarimetric Segmentation Using Wishart Test Statistic

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2002-01-01

    ) approach, which is a merging algorithm for single channel SAR images. The polarimetric version described in this paper uses the above-mentioned test statistic for merging. The segmentation algorithm has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR......A newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic has been used in a segmentation algorithm. The segmentation algorithm is based on the MUM (merge using moments....... The results show clearly an improved segmentation performance for the full polarimetric algorithm compared to single channel approaches....

  10. ASTEROID POLARIMETRIC DATABASE V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  11. ASTEROID POLARIMETRIC DATABASE V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  12. ASTEROID POLARIMETRIC DATABASE V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  13. ASTEROID POLARIMETRIC DATABASE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is compiled by Dmitrij Lupishko of Kharkov University. This database tabulates the original data comprising degree of...

  14. Enhance the accuracy of radar snowfall estimation with Multi new Z-S relationships in MRMS system

    Science.gov (United States)

    Qi, Y.

    2017-12-01

    Snow may have negative affects on roadways and human lives, but the result of the melted snow/ice is good for farm, humans, and animals. For example, in the Southwest and West mountainous area of United States, water shortage is a very big concern. However, snowfall in the winter can provide humans, animals and crops an almost unlimited water supply. So, using radar to accurately estimate the snowfall is very important for human life and economic development in the water lacking area. The current study plans to analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be evaluated with independent CoCoRaHS (Community Collaborative Rain, Hail & Snow Network) gauge observations and eventually implemented in the Multi-Radar Multi-Sensor system for improved quantitative precipitation estimation for snow. This study will analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be used to reduce the error of snowfall estimation in Multi Radar and Multi Sensors (MRMS) system, and tested in MRMS system and evaluated with the COCORaHS observations. Finally, it will be ingested in MRMS sytem, and running in NWS/NCAR operationally

  15. Statistical characteristics of Doppler spectral width as observed by the conjugate SuperDARN radars

    Directory of Open Access Journals (Sweden)

    K. Hosokawa

    Full Text Available We performed a statistical analysis of the occurrence distribution of Doppler spectral width around the day-side high-latitude ionosphere using data from the conjugate radar pair composed of the CUTLASS Iceland-East radar in the Northern Hemisphere and the SENSU Syowa-East radar in the Southern Hemisphere. Three types of spectral width distribution were identified: (1 an exponential-like distribution in the lower magnetic latitudes (below 72°, (2 a Gaussian-like distribution around a few degrees magnetic latitude, centered on 78°, and (3 another type of distribution in the higher magnetic latitudes (above 80°. The first two are considered to represent the geophysical regimes such as the LLBL and the cusp, respectively, because they are similar to the spectral width distributions within the LLBL and the cusp, as classified by Baker et al. (1995. The distribution found above 80° magnetic latitude has been clarified for the first time in this study. This distribution has similarities to the exponential-like distribution in the lower latitude part, although clear differences also exist in their characteristics. These three spectral width distributions are commonly identified in conjugate hemispheres. The latitudinal transition from one distribution to another exhibits basically the same trend between two hemispheres. There is, however, an interhemispheric difference in the form of the distribution around the cusp latitudes, such that spectral width values obtained from Syowa-East are larger than those from Iceland-East. On the basis of the spectral width characteristics, the average locations of the cusp and the open/closed field line boundary are estimated statistically.

    Key words. Ionosphere (ionosphere-magnetosphere inter-actions; plasma convection – Magnetospheric physics (magnetopause, cusp, and boundary layers

  16. Electrostatic potential in the auroral ionosphere derived from Chatanika radar observations

    International Nuclear Information System (INIS)

    Foster, J.C.; Banks, P.M.; Doupnik, J.R.

    1982-01-01

    A technique is described for determining the latitudinal variation of the electrostatic potential associated with the ionospheric convection electric fields. Using the north-south electric field component derived from radar convection velocity experiments, the integral of Exd1 is taken northward along the magnetic meridian, starting at low latitudes. The radar data consiste of up to 40 independent measurements of plasma convection spanning 15 0 of invariant latitude centered on Chatanika, Alaska (65 0 ν), with half-hour temporal resolution. It has been found that (1) the electric field contributions to the potential at and below 60 0 ν are small under most circumstances and (2) the latitudinal variation of the potential is smooth and regular, permitting the potentials to be contoured across local time. It is found from the experiments that the potential often varies uniformly over 10 0 latitude at dawn and dusk. Electric fields of 50 mV/m are common. It is also noted that the latitude of the greatest negative potential in the premidnight sector coincides with the Harang discontinuity in ionspheric currents. The potentials calculated from the measured plasma drifts exhibit a regular local time variation. Equipotential contours derived from the latitude-local time potential field obtained with the long-duration radar experiments, while not providing a snapshot of the instantaneous pattern, elucidate the large-scale diurnal variation of the electrostatic potential at auroral latitudes. From such contours it is found that a two-cell convection pattern with varying degrees of asymmetry is consistently present at auroral latitudes, that a cross-polar cap potential drop of 70--120 kV is present in moderately disturbed conditions, and that substorms perturb the potential pattern at all local times

  17. ENSO Precipitation Variations as Seen by GPM and TRMM Radar and Passive Microwave Observations

    Science.gov (United States)

    Adler, R. F.; Wang, J. J.

    2017-12-01

    Tropical precipitation variations related to ENSO are the largest-scale such variations both spatially and in magnitude and are also the main driver of surface temperature-surface rainfall relationships on the inter-annual scale. GPM (and TRMM before it) provide a unique capability to examine these relations with both the passive and active microwave approaches. Documenting the phase and magnitudes of these relationships are important to understand these large-scale processes and to validate climate models. However, as past research by the authors have shown, the results of these relations have been different for passive vs. radar retrievals. In this study we re-examine these relations with the new GPM Version 5 products, focusing on the 2015-2016 El Nino event. The recent El Nino peaked in Dec. 2015 through Feb. 2016 with the usual patterns of precipitation anomalies across the Tropics as evident in both the GPM GMI and the Near Surface (NS) DPR (single frequency) retrievals. Integrating both the rainfall anomalies and the SST anomalies over the entire tropical ocean area (25N-25S) and comparing how they vary as a function of time on a monthly scale during the GPM era (2014-2017), the radar-based results show contrasting results to those from the GMI-based (and GPCP) results. The passive microwave data (GMI and GPCP) indicates a slope of 17%/C for the precipitation variations, while the radar NS indicates about half that ( 8%/C). This NS slope is somewhat less than calculated before with GPM's V4 data, but is larger than obtained with TRMM PR data ( 0%/C) for an earlier period during the TRMM era. Very similar results as to the DPR NS calculations are also obtained for rainfall at 2km and 4km altitude and for the Combined (DPR + GMI) product. However, at 6km altitude, although the reflectivity and rainfall magnitudes are much less than at lower altitudes, the slope of the rainfall/SST relation is 17%/C, the same as calculated with the passive microwave data. The

  18. MITHRAS: A Program of Simultaneous Radar Observations of the High-Latitude Auroral Zone.

    Science.gov (United States)

    1982-11-01

    66.30 57.00 Dipole geomagnetic longitude 105*W 105°E 1.5°W A coverage at 350-km altitude 560 to 740 610 to 710 420 to 700 L value 5.6 6.2 3.0 Dip angle...angle it makes with the earth’s magnetic dipole . e is a measure of the rate at which energy is transferred from the solar wind to the magnetosphere...and A. R. Hessing, to be submitted to J. Geophys. Res. (1982). "Measures Simultanies des Champs Electriques de l’Ionosphere Aurorale par les Radars

  19. Meteor radar measurements of MLT winds near the equatorial electro jet region over Thumba (8.5° N, 77° E: comparison with TIDI observations

    Directory of Open Access Journals (Sweden)

    S. R. John

    2011-07-01

    Full Text Available The All-Sky interferometric meteor (SKYiMET radar (MR derived winds in the vicinity of the equatorial electrojet (EEJ are discussed. As Thumba (8.5° N, 77° E; dip lat. 0.5° N is under the EEJ belt, there has been some debate on the reliability of the meteor radar derived winds near the EEJ height region. In this regard, the composite diurnal variations of zonal wind profiles in the mesosphere-lower thermosphere (MLT region derived from TIMED Doppler Interferometer (TIDI and ground based meteor radar at Thumba are compared. In this study, emphasis is given to verify the meteor radar observations at 98 km height region, especially during the EEJ peaking time (11:00 to 14:00 LT. The composite diurnal cycles of zonal winds over Thumba are constructed during four seasons of the year 2006 using TIDI and meteor radar observations, which showed good agreement especially during the peak EEJ hours, thus assuring the reliability of meteor radar measurements of neutral winds close to the EEJ height region. It is evident from the present study that on seasonal scales, the radar measurements are not biased by the EEJ. The day-time variations of HF radar measured E-region drifts at the EEJ region are also compared with MR measurements to show there are large differences between ionospheric drifts and MR measurements. The significance of the present study lies in validating the meteor radar technique over Thumba located at magnetic equator by comparing with other than the radio technique for the first time.

  20. Evidence of Polar Mesosphere Summer Echoes Observed by SuperDARN SANAE HF Radar in Antarctica

    Directory of Open Access Journals (Sweden)

    Olakunle Ogunjobi

    2015-01-01

    Full Text Available We report on the polar mesosphere summer echoes (PMSE occurrence probability over SANAE (South African National Antarctic Expedition IV, for the first time. A matching coincidence method is described and implemented for PMSE extraction from SuperDARN (Super Dual Auroral Radar Network HF radar. Several SuperDARN-PMSE characteristics are studied during the summer period from years 2005 - 2007. The seasonal and interannual SuperDARN-PMSE variations in relation to the mesospheric neutral winds are studied and presented in this paper. The occurrence probability of SuperDARN-PMSE on the day-to-day scale show, predominantly, diurnal variation, with a broader peak between 12 - 14 LT and distinct minimum of 22 LT. The SuperDARN-PMSE occurrence probability rate is high in the summer solstice. Seasonal variations show a connection between the SuperDARN-PMSE occurrence probability rate and mesospheric temperature from SABER (Sounding of the Atmosphere using Broadband Emission Radiometry. The seasonal trend for both meridional and zonal winds is very stable year-to-year. Analysis of the neutral wind variations indicates the importance of pole-to-pole circulations in SuperDARN-PMSE generation.

  1. Imaging radar observations of Farley Buneman waves during the JOULE II experiment

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-07-01

    Full Text Available Vector electric fields and associated E×B drifts measured by a sounding rocket in the auroral zone during the NASA JOULE II experiment in January 2007, are compared with coherent scatter spectra measured by a 30 MHz radar imager in a common volume. Radar imaging permits precise collocation of the spectra with the background electric field. The Doppler shifts and spectral widths appear to be governed by the cosine and sine of the convection flow angle, respectively, and also proportional to the presumptive ion acoustic speed. The neutral wind also contributes to the Doppler shifts. These findings are consistent with those from the JOULE I experiment and also with recent numerical simulations of Farley Buneman waves and instabilities carried out by Oppenheim et al. (2008. Simple linear analysis of the waves offers some insights into the spectral moments. A formula relating the spectral width to the flow angle, ion acoustic speed, and other ionospheric parameters is derived.

  2. First simultaneous lidar observations of sodium layers and VHF radar observations of E-region field-aligned irregularities at the low-latitude station Gadanki

    Directory of Open Access Journals (Sweden)

    S. Sridharan

    2009-09-01

    Full Text Available Simultaneous observations of atmospheric sodium (Na made by a resonance lidar and E-region field-aligned-irregularities (FAI made by the Indian MST radar, both located at Gadanki (13.5° N, 79.2° E and horizontal winds acquired by a SKiYMET meteor radar at Trivandrum (8.5° N, 77° E are used to investigate the relationship among sodium layer, FAI and neutral winds in the mesosphere and lower thermosphere region. The altitudes and descent rates of higher altitude (~95 km Na layer and FAI agree quite well. The descending structures of the higher altitude Na layer and FAI are found to be closely related to the diurnal tidal phase structure in zonal winds observed over Trivandrum. At lower altitudes, the descent rate of FAI is larger than that of Na layer and zonal tidal phase. These observations support the hypothesis that the metallic ion layers are formed by the zonal wind shear associated with tidal winds and subsequently get neutralized to manifest in the form of descending Na layers. The descending FAI echoing layers are manifestation of the instabilities setting in on the ionization layer. In the present observations, the altitudes of occurrence of Na layer and FAI echoes being low, we surmise that it is quite possible that the FAI echoes are due to the descent of already formed irregularities at higher altitudes.

  3. Simultaneous PMC and PMSE observations with a ground-basedlidar and SuperDARN HF radar over Syowa Station, Antarctica

    Science.gov (United States)

    Suzuki, Hidehiko; Nakamura, Takuji; Tsutsumi, Masaki; Kawahara, Takuya D.; Ogawa, Tadahiko; Tomikawa, Yoshihiro; Ejiri, Mitsumu K.; Sessai Yukimatu, Akira; Abo, Makoto

    2012-07-01

    A Rayleigh-Raman lidar system had been installed by the 52nd JapaneseAntarctic Research Expedition on February, 2011 at Syowa Station Antarctica(69.0°S, 39.5°E). Polar Mesospheric Cloud (PMC) was detected by the lidar at22:30UT (+3hr for LT) on Feb 4th, 2011, the first day of a routineoperation. This event is the first time to detect PMC over Syowa Station bya lidar. In the same night, SuperDARN HF radar with oblique incidence beamsalso detected Polar Mesosphere Summer Echoes (PMSEs) during 21:30UT to23:00UT. Although these signals were detected at different times andlocations, PMC motion estimated using horizontal wind velocities obtained bya collocated MF radar strongly suggests that they have a common origin (i.e.ice particle). We consider that this event occurred in the end of PMCactivity period at Syowa Station in the austral summer season (2010-2011),since the lidar did not detected any PMC signals on other days in February,2011. This is consistent with satellite-born PMC observations by AIM/CIPSand atmospheric temperature observations by AURA/MLS instruments.

  4. Target detection and recognition with polarimetric SAR

    NARCIS (Netherlands)

    Dekker, R.J.; Broek, A.C. van den

    2000-01-01

    Target detection and recognition using polarimetric SAR data has been studied by using PHARUS and RAMSES data collected during the MIMEX campaign. Additionally very high-resolution ISAR data was used. A basic detection and recognition scheme has been developed, which includes polarimetric

  5. Ion and neutral temperature distributions in the E-region observed by the EISCAT Tromsø and Svalbard radars

    Directory of Open Access Journals (Sweden)

    S. Maeda

    Full Text Available Simultaneous Common Program Two experiments by the EISCAT UHF radar at Tromsø and the EISCAT Svalbard radar at Longyearbyen from 00:00 to 15:00 UT on 22 September 1998 and 9 March 1999 have been utilized to investigate distributions of the ion and neutral temperatures in the E-region between 105 and 115 km. During the experiments, soft particle precipitations in the dayside cusp were observed over the Svalbard radar site by the Defense Meteorological Satellite Program (DMSP F11 satellite. It is found that the dayside electric field in the regions of the low-latitude boundary of the polar cap and the cusp was greater and more variable than that in the auroral region. The ion temperature, parallel to the geomagnetic field at Longyearbyen, was higher than that at Tromsø during the daytime from 06:00 to 12:00 UT. The steady-state ion energy equation has been applied to derive neutral temperature under the assumption of no significant heat transport and viscous heating. The estimated neutral temperature at Longyearbyen was also higher than that at Tromsø. The ion and neutral energy budget was discussed in terms of the ion frictional heating and the Joule heating. The results indicate two possibilities: either the neutral temperature was high in the low latitude boundary of the polar cap and the cusp, or the heat transport by the polar cap neutral winds toward the dayside sector was significant.

    Key words. Ionosphere (auroral ionosphere; ionosphere–atmosphere interactions; polar ionosphere

  6. Gas And Ice Spectrometer/Radar (GAISR): a new instrument for close-up comet activity observations

    Science.gov (United States)

    Cooper, Ken; Monje, Raquel; Cochrane, Corey; Tang, Adrian; Alonso, Maria; Dengler, Robert; Durden, Stephen; Choukroun, Mathieu

    2017-10-01

    The Rosetta mission at 67P/Churyumov-Gerasimenko enabled the first detailed and long-term survey of cometary activity, which occurs primarily through water outgassing and emission of dust. Its highly-capable instrument suite improved our understanding of the outgassing and the dust emission and size distribution separately, however the coupling between the two remains poorly understood. GAISR consists of a dual-channel submillimeter-wave spectrometer inspired from MIRO/Rosetta, coupled to a small-particle Doppler radar for simultaneous observations of outgassing and emission of the large dust particles (comprising most of the mass emitted) in cometary jets and plumes of outer solar system satellites. GAISR’s medium-range W-band (95 GHz) radar will operate in a frequency-modulated continuous-wave (FMCW) mode with 1 Watt of transmit power to achieve high sensitivity detection of the range and velocity distribution of 0.1-10 mm sized ice and dust particles released by jets and plumes. The radar’s primary aperture also functions as an antenna for two passive heterodyne spectrometer channels at 270 and 560 GHz for detecting the abundance, temperature, and velocity of water vapor and its isotopes (including HDO), as well other major cometary volatiles such as CO, NH3, CH3OH. GAISR has been designed with a priority placed on low mass and power needs, to facilitate its infusion in future planetary missions. This is accomplished by leveraging recent innovations in W-band signal generation using low power silicon integrated circuits, state-of-the art III-V semiconductor devices for signal amplification and detection, and compact quasioptical duplexing. A new signal processing algorithm for FMCW Doppler radar detection out to the maximum range ambiguity limit has also been developed. GAISR’s performance testing has begun, and this poster will summarize its proven capabilities and plans for validation in relevant environments.

  7. PRELIMINARY RESULTS OF RADAR OBSERVATION OF NOCTURNAL BIRD MIGRATION IN ISRAEL

    Directory of Open Access Journals (Sweden)

    Matsyura A.V.

    2011-11-01

    Full Text Available The results of radar-tracking supervisions over the night migration in Israel are submitted. The determination of flight altitudes, flight speeds, heights of maximum birds’ concentration, and migratory directions was performed. The average flight altitudes of night migration were 985 m in autumn and 1465 m in spring of 1998-2000, maximum flight altitudes were 2068 m and 2655 m correspondingly. The mean track direction of the night bird migration is 183° in spring and 6° in autumn. The migration of waterfowl over the Mediterranean Sea in the low altitude band was registered. Their average headings differ from the general migratory path, averaging 135° in autumn and 315° in spring. The average birds’ groundspeed was 14 m/s (50 km/h in spring and 13 m/s (47 km/h in autumn.

  8. Rainfall Process Partitioning Using S-PROF Radar Observations Collected During the CalWater Field Campaign Winters

    Science.gov (United States)

    White, A. B.; Neiman, P. J.; Creamean, J.; Hughes, M. R.; Moore, B.; Ralph, F. M.; Prather, K. A.

    2011-12-01

    Vertically pointing S-band radar (S-PROF) observations collected during the CalWater field campaign winter wet seasons are analyzed to partition the observed rainfall into three primary categories: brightband (BB) rain, non-brightband (NBB) rain, and convective rain. NBB rain is primarily a shallow, warm rain process driven by collision and coalescence. Because of its shallow nature, NBB rain is often undetected by the operational NEXRAD radar network. Previous rainfall process partitioning analysis conducted for a coastal mountain site in California has shown that NBB rain contributes about one-third, on average, of the total wet season precipitation observed there. Shallow moist flow with near neutral stability, which is often present in the coastal environment during the warm sectors of landfalling storms, is a key ingredient in the formation of NBB rain. However, NBB rain also has been observed in other storm regimes (e.g., post-cold frontal). NBB rain has been shown to produce rain rates known by forecasters to be capable of producing floods. During the CalWater field campaign winters, S-PROF radars were located in the Sierra Nevada at Sugar Pine Dam (SPD) for three consecutive winters (2009-2011) and at Mariposa (MPI) for the latter two winters (2010-2011). During the southwesterly flow present in the warm sectors of many California landfalling storms, the SPD site was directly downwind of the gap in coastal terrain associated with the San Francisco Bay Delta. This orientation would allow relatively unmodified maritime flow to arrive at SPD. The MPI site was located further south such that airflow arriving at this site during winter storms likely was processed by the coastal terrain south of San Francisco Bay. In this presentation we will examine whether the relative locations of SPD and MPI relative to the coastal terrain impacted the amount of NBB rain that was observed at each site during the CalWater wet seasons. We will use synoptic and mesoscale

  9. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wardle, John F. C. [Brandeis University, Physics Department, Waltham, MA 02454 (United States); Bouman, Katherine L., E-mail: achael@cfa.harvard.edu [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States)

    2016-09-20

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  10. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Directory of Open Access Journals (Sweden)

    E. Picciotti

    2013-05-01

    Full Text Available Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative mbox{integrated} decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5

  11. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Science.gov (United States)

    Picciotti, E.; Marzano, F. S.; Anagnostou, E. N.; Kalogiros, J.; Fessas, Y.; Volpi, A.; Cazac, V.; Pace, R.; Cinque, G.; Bernardini, L.; De Sanctis, K.; Di Fabio, S.; Montopoli, M.; Anagnostou, M. N.; Telleschi, A.; Dimitriou, E.; Stella, J.

    2013-05-01

    Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band) has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band) and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative integrated decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5 (MM5) and the Army Corps

  12. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    Science.gov (United States)

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (approximately 16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  13. PMSE observations with the EISCAT VHF- and UHF-radars: Ice particles and their effect on ambient electron densities

    Science.gov (United States)

    Li, Qiang; Rapp, Markus

    2013-11-01

    It is now well understood that the occurrence of PMSE is closely connected to the presence of ice particles. These ice particles modify the ambient electron density by electron attachment which occasionally leads to large electron density depletions which have also been called ‘biteouts’. There has been some debate in the literature regarding the relative depth of such depletions which is usually expressed by the parameter Λ=|ZA|NA/ne. Here, |ZA|NA is the charge number density of ice particles and ne is the electron density. In this paper, we present, for the first time, the statistical distribution of Λ using measurements with the EISCAT VHF- and UHF-radars. Based on 25 h of simultaneous observations, we derived a total of 757 Λ values based on 15 min of data each. In each of these cases, PMSE were observed with the EISCAT VHF-radar but not with the UHF-radar and the UHF-measurement were hence used to determine the electron density profile. From these 757 cases, there are 699 cases with Λ⪡1, and only 33 cases with Λ>0.5 (21 cases with Λ>1). A correlation analysis of Λ versus PMSE volume reflectivities further reveals that there is no strong dependence between the two parameters. This is in accordance with current PMSE-theory based on turbulence in combination with a large Schmidt-number. The maxima of Λ from each profile show a negative relationship with the undisturbed electron densities deduced at the same altitudes. This reveals that the variability of Λ mainly depends on the variability of the electron densities. In addition, variations of aerosol number densities may also play a role. Although part of the observations were conducted during the HF heating experiments, the so-called overshoot effects did not significantly bias our statistical results. In order to avoid missing biteouts because of a superposition of coherent and incoherent scatter in the UHF-data, we finally calculated spectral parameters n by applying a simple fit to auto

  14. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  15. Emergent radar technologies and innovative multifractal methodologies for new prospects in urban hydrology

    Science.gov (United States)

    Tchiguirinskaia, Ioulia; Schertzer, Daniel; Paz, Igor; Gires, Auguste; Ichiba, Abdellah; Scour-Plakali, Elektra; Lee, Jisun

    2017-04-01

    To make our cities weather ready and climate proof has become a fundamental societal issue in the context of an on-going urbanization and growing population density (http://www.nws.noaa.gov/com/weatherreadynation/). This is a challenging question in a region like Île-de-France, which corresponds to one of the largest, if not the largest, concentration of assets and infrastructures in Europe. More than ever, there is an urgent need to cross-fertilise research and operational hydrology, whereas they have both suffered from a long-lasting divorce (Schertzer et al., 2010). A preliminary step is to use the best available measurement technologies. In this presentation we discuss the potentials of the polarimetric X-band radar technology to measure small scale rainfalls in urban environment. Particularly intense rainy episodes have struck hard various regions of France during the period of May-June 2016, notably Ile-de-France and its neighbourhoods. The data collected during those days by the X-band radar of Ecole des Pont ParisTech (http://www.enpc.fr/hydrologie-meteorologie-et-complexite) allow to observe the fast aggregation of strong cells of small sizes in a multi-cellular thunderstorm. Certain cells make initially hardly more than a radar pixel (250m x 250m), while just three quarters of hour later they form a multi-cellular well-organised thunderstorm over tenths of kilometres. These observations have triggered the development of new methods of immediate forecast taking into account the multi-scale and strongly intermittent character of such rainfall fields to better manage the crises, particularly for strongly vulnerable urban systems. We present the results of the multifractal analysis and simulations of the polarimetric X-band radar data that first contribute to better understanding of the three-dimensional dynamics of such events, and then allows representing of how strong cores of haste precipitation contribute to the rainfall amounts striking the ground. The

  16. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    H. Suzuki

    2013-10-01

    Full Text Available A Rayleigh–Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E. Polar mesospheric clouds (PMCs were detected by lidar at around 22:30 UTC (LT −3 h on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010–2011, since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere/CIPS (Cloud Imaging and Particle Size and AURA/MLS (Microwave Limb Sounder and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward. This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  17. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Science.gov (United States)

    Suzuki, H.; Nakamura, T.; Ejiri, M. K.; Ogawa, T.; Tsutsumi, M.; Abo, M.; Kawahara, T. D.; Tomikawa, Y.; Yukimatu, A. S.; Sato, N.

    2013-10-01

    A Rayleigh-Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E). Polar mesospheric clouds (PMCs) were detected by lidar at around 22:30 UTC (LT -3 h) on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN) HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE) between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010-2011), since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere)/CIPS (Cloud Imaging and Particle Size) and AURA/MLS (Microwave Limb Sounder) and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward). This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  18. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system

    Directory of Open Access Journals (Sweden)

    S. Saito

    2008-08-01

    Full Text Available Mid-latitude F-region field-aligned irregularities (FAIs were studied by using the middle-and-upper atmosphere (MU radar ultra-multi-channel system with the radar imaging technique. On 12 June 2006, F-region FAI echoes with a period of about one hour were observed intermittently. These echoes were found to be embedded in medium-scale traveling ionospheric disturbances (MSTIDs observed as variations of total electron content (TEC. The echoes drifting away from (toward the radar were observed in the depletion (enhancement phase of the MSTID. The Doppler velocity of the echoes is consistent with the range rates in the the range-time-intensity (RTI maps. Fine scale structures with a spatial scale of 10 km or less were found by the radar imaging analysis. Those structures with positive Doppler velocities (moving away from the radar appeared to drift north- (up- westward, and those with negative Doppler velocities south- (down- eastward approximately along the wavefronts of the MSTID. FAIs with positive Doppler velocities filling TEC depletion regions were observed.

  19. Destabilization of Masjed-Soleyman rockfill dam observed by satellite radar interferometry

    Science.gov (United States)

    Haghshenas Haghighi, Mahmud; Motagh, Mahdi; Emadali, Lotfollah

    2017-04-01

    Differential interferometry using Envisat, ALOS, ALOS-2, TerraSAR-X and Sentinel-1 data, and terrestrial geodetic surveys are used to assess post-construction settlement of the Masjed-Soleyman embankment dam, southwest Iran. The Masjed-Soleyman dam, a rockfill dam with a vertical central clay core, was constructed between 1995 and 2000 on the Karoun River, which is one of the largest and longest rivers in Iran (length 950 km) and one of the most important surface water resources in the country. Soon after the first impoundment of the dam in December 2000, cross and longitudinal cracks developed in the dam crest, especially at the junction of concrete or steel elements to the rockfill dam shell, causing growing concern that dam might be at risk of failure. Therefore, geodetic monitoring of Masjed-Soleyman dam became particularly important. In this paper, we report on the detection and analysis of ongoing destabilization of this dam from both space-based synthetic aperture radar (SAR) measurements and ground-based terrestrial survey and evaluate the potential of various space technologies and processing algorithms for efficient monitoring of this infrastructure.

  20. The theta aurora and ionospheric flow convection: Polar ultraviolet imager and SuperDARN radar observations

    Science.gov (United States)

    Liou, K.; Ruohoniemi, J. M.; Newell, P. T.; Meng, C. I.

    2003-12-01

    We report results from a case study of the theta aurora that occurred during a magnetic cloud event on November 8, 2000. The interplanetary magnetic field (IMF) was strongly northward for more than 12 hours, while the y-component of IMF changed signs several times. Auroral images from the Ultraviolet Imager on board the Polar satellite show clear instances of theta auroras during the prolonged northward IMF period. This event provides a good opportunity for testing current models of theta aurora generation and evolution. We examine in situ particle data from the DMSP satellites to find magnetospheric source regions responsible for the theta auroras. We also examine ionospheric plasma flow convection data from the SuperDARN radar network to study relationships between the ionospheric plasma flow pattern and the location of the theta auroras. Our results clearly indicate that the theta aurora bar, at least on nightside, was located in a region of anti-sunward convecting flow. This is not consistent with the current view that theta auroras reside in regions of closed field lines and hence in regions of sunward convecting flow. Implication of the new findings will be discussed.

  1. Distance and velocity estimation of projectiles based on Doppler radar signals using a nonlinear discrete-time observer

    Science.gov (United States)

    Podjawerschek, Sonja; Spahn, Emil; Horn, Joachim; Brodmann, Michael; Himmelsbach, Ralf

    2010-04-01

    We propose a new "quasi-global" observer design to determine the distance and velocity of projectiles in real-time. The detection of the projectile is realized by a low power Doppler radar at short distances (5m-10m). The advantage of a global observer design is the possibility to deal with large initial errors, which is important because of the usually unknown initial state of the observed system. The transformation to the nonlinear observability canonical form (NOCF) leads to linear error dynamics and this allows a traceable influence on the dynamic behaviour of the observer, which is essential for the time critical implementation on a real-time system. To benefit from these two advantages, the nonlinear system has to be transformed to the NOCF and an explicit expression of the inverse transformation has to be found. Since with this severe restriction the given problem can not be solved, we propose a numerically approximated inverse transformation in a bounded region of physical interest to allow the design of a quasi-global observer with linear error dynamics in the presented case. Based on this design the class of systems where this kind of observer can be applied has been enlarged considerably.

  2. Forest mapping using bi-aspect polarimetric SAR data in southwest China

    Science.gov (United States)

    Zhang, Fengli; Xu, Maosong; Xia, Zhongsheng; Wan, Zi; Li, Kun; Li, Xiaofang

    2009-10-01

    Synthetic aperture radar (SAR) provides a powerful tool for forestry inventory because of its all-weather and all-day capabilities. In this paper forest mapping method using bi-aspect polarimetric SAR data acquired from ascending and descending path has been studied. Zhazuo forest farm in Guizhou province was selected as test site and an 8-temporal field experiment was designed to obtain bio-physical parameters and spatial structure parameters of the 12 sample plots. Then the Michigan Microwave Canopy Scattering model (MIMICS) was employed to analyze the seasonal variation of these 4 types of managed forests. Using polarimetric Radarsat 2 data, scattering mechanisms of each forest type were determined and polarimetric variables were extracted and analyzed for forest discrimination. Considering the inherent geometric distortion of SAR imaging in hilly areas, a geometric correction strategy using bi-aspect SAR images and high resolution DEM was proposed. Then support vector machines method was adopted for classification of the whole test area. Experiments show that the bi-aspect geometric strategy is useful for hilly areas especially for shadow elimination in SAR image, and polarimetric SAR data is helpful to forest mapping.

  3. Compact Polarimetric SAR Ship Detection with m-δ Decomposition Using Visual Attention Model

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2016-09-01

    Full Text Available A few previous studies have illustrated the potentials of compact polarimetric Synthetic Aperture Radar (CP SAR in ship detection. In this paper, we design a ship detection algorithm of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed cosine transform (PCT visual attention model is proposed to suppress background clutter and highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to CP SAR application. The proposed algorithm is a quick and complete framework for practical use. Polarimetric features—the relative phase δ and volume scattering component—are extracted from m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate (CFAR algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter distribution fitting procedure of the modified saliency map. The proposed method is then tested on three simulated circular-transmit-linear-receive (CTLR mode images, which covering East Sea of China. Compared with the detection results of SPAN and the saliency map with only single-channel amplitude, the proposed method achieves the highest detection rates and the lowest misidentification rate and highest figure of merit, proving the effectiveness of polarimetric information of compact polarimetric SAR ship detection and the enhancement from the visual attention model.

  4. Comparisons of Circular Transmit and Linear Receive Compact Polarimetric SAR Features for Oil Slicks Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Li

    2015-01-01

    Full Text Available Compact polarimetric (CP synthetic aperture radar (SAR has proven its potential in distinguishing oil slicks and look-alikes. Polarimetric information can be retrieved directly from scattering vector or from reconstructed pseudo-Quad-Pol covariance matrix of CP SAR data. In this paper, we analysed features from Circular Transmit and Linear Receive (CTLR CP SAR data that are derived by taking both of these two methods. K-means clustering followed by accuracy assessment was also implemented for performance evaluation. Through experiments that were conducted based on L-band UAVSAR fully polarimetric data, it was found that optimum extraction methods varied for different features. The histogram analysis and segmentation results also demonstrated the comparable performance of CP SAR features in distinguishing different damping properties within oil slicks. This study proposed a framework of statistically analyzing polarimetric SAR (Pol-SAR features and provided guidelines for determining optimum feature extraction methods from CP SAR data and for marine oil-spills detection and classification.

  5. Classification of Polarimetric SAR Data Using Dictionary Learning

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg; Dahl, Anders Lindbjerg

    2012-01-01

    This contribution deals with classification of multilook fully polarimetric synthetic aperture radar (SAR) data by learning a dictionary of crop types present in the Foulum test site. The Foulum test site contains a large number of agricultural fields, as well as lakes, forests, natural vegetation......, grasslands and urban areas, which make it ideally suited for evaluation of classification algorithms. Dictionary learning centers around building a collection of image patches typical for the classification problem at hand. This requires initial manual labeling of the classes present in the data and is thus...... a method for supervised classification. Sparse coding of these image patches aims to maintain a proficient number of typical patches and associated labels. Data is consecutively classified by a nearest neighbor search of the dictionary elements and labeled with probabilities of each class. Each dictionary...

  6. Searching for Jet Emission in LMXBs: A Polarimetric View

    Directory of Open Access Journals (Sweden)

    Maria Cristina Baglio

    2017-10-01

    Full Text Available We present results taken from a study aiming at detecting the emission from relativistic particles jets in neutron star-low mass X-ray binaries using optical polarimetric observations. First, we focus on a polarimetric study performed on the persistent LMXB 4U 0614+091. Once corrected for interstellar effects, we measured an intrinsic linear polarization in the r-band of ~3% at a 3σ confidence level. This is in-line with the observation of an infrared excess in the spectral energy distribution (SED of the source, reported in a previous work, which the authors linked to the optically thin synchrotron emission of a jet. We then present a study performed on the transitional millisecond pulsar PSR J1023+0038 during quiescence. We measured a linear polarization of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R-band reveals a hint of a sinusoidal modulation at the source orbital period. The NIR -optical SED of the system did not suggest the presence of a jet. We conclude that the optical linear polarization observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the disc, as also suggested by the hint of the modulation of the R-band linear polarization at the system orbital period.

  7. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image

    Directory of Open Access Journals (Sweden)

    She Xiaoqiang

    2017-10-01

    Full Text Available This paper proposes a classification method for the intertidal area using quad-polarimetric synthetic aperture radar data. In this paper, a systematic comparison of four well-known multipolarization features is provided so that appropriate features can be selected based on the characteristics of the intertidal area. Analysis result shows that the two most powerful multipolarization features are polarimetric entropy and anisotropy. Furthermore, through our detailed analysis of the scattering mechanisms of the polarimetric entropy, the Generalized Extreme Value (GEV distribution is employed to describe the statistical characteristics of the intertidal area based on the extreme value theory. Consequently, a new classification method is proposed by combining the GEV Mixture Models and the EM algorithm. Finally, experiments are performed on the Radarsat-2 quad-polarization data of the Dongtan intertidal area, Shanghai, to validate our method.

  8. A Passive Multistatic CW Radar System using Geostationary Illuminators

    OpenAIRE

    Thölert, Steffen; Hounam, David

    2006-01-01

    In this paper a new passive radar system using a geostationary TV satellite as an illuminator and ground-based receivers is presented. The system can be operated as a monostatic or multistatic radar and can be used for target detection or reflectivity measurements. Full polarimetric operation is possible. The measurement technique and the system hardware of an experimental system are described, particular attention being paid to the methods of signal synchronization. The results of experiment...

  9. Application of model-based spectral analysis to wind-profiler radar observations

    Directory of Open Access Journals (Sweden)

    E. Boyer

    Full Text Available A classical way to reduce a radar’s data is to compute the spectrum using FFT and then to identify the different peak contributions. But in case an overlapping between the different echoes (atmospheric echo, clutter, hydrometeor echo. . . exists, Fourier-like techniques provide poor frequency resolution and then sophisticated peak-identification may not be able to detect the different echoes. In order to improve the number of reduced data and their quality relative to Fourier spectrum analysis, three different methods are presented in this paper and applied to actual data. Their approach consists of predicting the main frequency-components, which avoids the development of very sophisticated peak-identification algorithms. The first method is based on cepstrum properties generally used to determine the shift between two close identical echoes. We will see in this paper that this method cannot provide a better estimate than Fourier-like techniques in an operational use. The second method consists of an autoregressive estimation of the spectrum. Since the tests were promising, this method was applied to reduce the radar data obtained during two thunder-storms. The autoregressive method, which is very simple to implement, improved the Doppler-frequency data reduction relative to the FFT spectrum analysis. The third method exploits a MUSIC algorithm, one of the numerous subspace-based methods, which is well adapted to estimate spectra composed of pure lines. A statistical study of performances of this method is presented, and points out the very good resolution of this estimator in comparison with Fourier-like techniques. Application to actual data confirms the good qualities of this estimator for reducing radar’s data.

    Key words. Meteorology and atmospheric dynamics (tropical meteorology- Radio science (signal processing- General (techniques applicable in three or more fields

  10. Radar research at University of Oklahoma (Conference Presentation)

    Science.gov (United States)

    Zhang, Yan R.; Weber, Mark E.

    2017-05-01

    This abstract is for the academic institution profiles session This presentation will focus on radar research programs at the University of Oklahoma, the radar research in OU has more than 50 years history of collaboration with NOAA, and has been through tremendous growth since early 2000. Before 2010, the focus was weather radar and weather surveillance, and since the Defense, Security and Intelligence (DSI) initiative in 2011, there have many new efforts on the defense and military radar applications. This presentation will focus on the following information: (1) The history, facilities and instrumentations of Advanced Radar Research Center, (2) Focus area of polarimetric phased array systems, (3) Focus area of airborne and spaceborne radars, (4) Intelligent radar information processing, (5) Innovative antenna and components.

  11. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    Science.gov (United States)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  12. Occurrence rate of ion upflow and downflow observed by the Poker Flat Incoherent Scatter Radar (PFISR)

    Science.gov (United States)

    Zou, S.; Lu, J.; Varney, R. H.

    2017-12-01

    This study aims to investigate the occurrence rate of ion upflow and downflow events in the auroral ionosphere, using a full 3-year (2011-2013) dataset collected by the Poker Flat Incoherent Scatter Radar (PFISR) at 65.5° magnetic latitude. Ion upflow and downflow events are defined if there are three consecutive data points larger/smaller than 100/-100 m/s in the ion field-aligned velocity altitude profile. Their occurrence rates have been evaluated as a function of magnetic local time (MLT), season, geomagnetic activity, solar wind and interplanetary magnetic field (IMF). We found that the ion upflows are twice more likely to occur on the nightside than the dayside, and have slightly higher occurrence rate near Fall equinox. In contrast, the ion downflow events are more likely to occur in the afternoon sector but also during Fall equinox. In addition, the occurrence rate of ion upflows on the nightside increases when the aurora electrojet index (AE) and planetary K index (Kp) increase, while the downflows measured on the dayside clearly increase as the AE and Kp increase. In general, the occurrence rate of ion upflows increases with enhanced solar wind and IMF drivers. This correlation is particularly strong between the upflows on the nightside and the solar wind dynamic pressure and IMF Bz. The lack of correlation of upflows on the dayside with these parameters is due to the location of PFISR, which is usually equatorward of the dayside auroral zone and within the nightside auroral zone under disturbed conditions. The occurrence rate of downflow at all MLTs does not show strong dependence on the solar wind and IMF conditions. However, it occurs much more frequently on the dayside when the IMF By is strongly positive, i.e., >10 nT and the IMF Bz is strongly negative, i.e., < -10 nT. We suggest that the increased occurrence rate of downflows on the dayside is associated with dayside storm-enhanced density and the plume.

  13. On the Utilization of Fully Polarimetric Data in Radar Polarimetry

    OpenAIRE

    山口, 芳雄; Yamaguchi, Yoshio

    2008-01-01

    リモートセンシング分野では世界的に偏波合成開ロレーダ(POLSAR)の開発が進められている.POLSARで取得されるデータは2×2の複素散乱行列である.本論文では,散乱行列から導かれる二次統計量を要素とする各種の偏波行列,及びその利用方法について述べる.散乱行列により独立な偏波二次統計要素は9個出現するが,それらの回転不変成分を調べると独立情報は4個に減少する.これらの成分を考慮した偏波情報の利用方法・指標として,円偏波基底の相関係数,固有値解析,散乱電力分解を紹介する....

  14. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  15. ASTEROID POLARIMETRIC DATABASE V7.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  16. ASTEROID POLARIMETRIC DATABASE V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  17. ASTEROID POLARIMETRIC DATABASE V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine....

  18. The dynamic cusp at low altitudes: A case study utilizing Viking, DMSP-F7 and Sondrestrom incoherent scatter radar observations

    Science.gov (United States)

    Watermann, J.; De La Beaujardiere, O.; Lummerzheim, D.; Woch, J.; Newell, P. T.; Potemra, T. A.; Rich, F. J.; Shapshak, M.

    1994-01-01

    Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5 deg invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F- regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2h local time. The cusp appeared to be about 2 deg invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2 deg during this time, possibly influenced by an overall decrease in the interplanetary magnetic field (IMF) B(sub z) component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.

  19. Flight altitude of trans-Sahara migrants in autumn: a comparison of radar observations with predictions from meteorological conditions and water and energy balance models

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Biebach, H.

    2000-01-01

    Radar observations on the altitude of bird migration and altitudinal profiles of meteorological conditions over the Sahara desert are presented for the autumn migratory period. Migratory birds By at an average altitude of 1016 m (a.s.l.) during the day and 571 m during the night. Weather data served

  20. Winds, temperatures, and tides in the MLT region at low latitudes during the 1st CAWSES Tidal Campaign 2005 from meteor radar and satellite observations

    Science.gov (United States)

    Singer, Werner; Hoffmann, Peter; Buriti, R.; Batista, Paulo; Oberheide, Jens; Nakamura, Takuji; Clemesha, Barclay; Riggin, Dennis; Ramkumar, Geetha

    Winds at mesospheric/lower thermospheric altitudes between 80 and 100 km and temperatures around 90 km are derived from all-sky meteor radar observations at latitudes between 9° N and 22° S and longitudes between 77° E and 315° E. The data are acquired with identical radar systems and detection software. The six SKiYMET radars are located at Trivandrum (9° N, 77° E), Kototabang (0.2° S, 100° E), Cariri (7° S, 323° E), Learmonth (22° S, 114° E), Rarotonga (21° S, 200° E), and Cachoeira Paulista (22° S, 315° E). Using 4-d, 10-d, and 60-d composite days, wind tides are determined for the year 2005 when the 1st CAWSES Tidal Campaign took place. The results provide information about the variability of the diurnal, semi-diurnal, and ter-diurnal tide at low latitudes. The seasonal variability of mean winds, temperatures, and tides is discussed. For the latitude 22° S the seasonal variation of the migrating tides is estimated using the observations at three sites well separated in longitude. The radar results obtained from 60-d composite days agree well with diurnal tides derived from TIDI observations on the TIMED satellite. The tidal results obtained for the 1st CAWSES Tidal Campaign in September/October 2005 at low latitudes are discussed in relation to observations at middle and high northern latitudes.

  1. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Science.gov (United States)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  2. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Directory of Open Access Journals (Sweden)

    D. E. Scipión

    2016-09-01

    Full Text Available The SOUSY (SOUnding SYstem radar was relocated to the Jicamarca Radio Observatory (JRO near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz, it is able to characterize clear-air backscattering with high range resolution (37.5 m. A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz using the DataHawk (DH small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  3. Assimilation of HF Radar Observations in the Chesapeake-Delaware Bay Region Using the Navy Coastal Ocean Model (NCOM) and the Four-Dimensional Variational (4DVAR) Method

    Science.gov (United States)

    2015-01-01

    Assimilation of HF Radar Observations in the C h esa pea ke-Delawa re Bay Region Using the Navy Coastal Ocean Model (NCOM) and the Four...observations to initialize the coastal model for forecasting. Modern analysis systems can also provide an observation impact assessment for the design...resolution. The increased resolution can also become a liability for the assimilation as the model resolves small-scale circulation features that

  4. Modelling of deformations occurring in the city of Auckland, New Zealand and observed by Differential Synthetic Aperture Radar

    Science.gov (United States)

    Samsonov, S.; Tiampo, K.; Manville, V.; Jolly, G.

    2008-12-01

    Auckland is the largest city in New Zealand with a current population of over one million. It is situated on a basaltic volcanic field which consist of over 50 individual largely monogenetic volcanoes with a total area of 360 sq. km. The most recent and largest eruption occurred 600 years ago, and was witnessed by local inhabitants. It is anticipated that the chance of reawakening of a past volcano is very low; however, a new volcano could be created at any time in a new location within the field. In this work we present results of modelling of the deformations that occurred in the city of Auckland from 18 July 2003 to 9 November 2007. These deformations were observed by the Differential Synthetic Aperture Radar on ENVISAT satellite (Track 151, Frame 6442, IS2, VV). Stacking, Small Baseline Subset (SBAS) and Permanent Scatterers (PS) processing algorithms where used to determine spatial and temporal patterns of surface deformation as well as average rates. A number of localized deformation regions were consistently observed by all three techniques. Three regions of subsidence are believed to be caused by groundwater extraction. And three source of uplift are modeled here as volcanic sources, however, the volcanic nature of these uplifts has not been confirmed.

  5. Observations of the ultra-fast Kelvin wave using meteor radar over a Brazilian extra-tropical station

    Science.gov (United States)

    Guharay, Amitava; Prado Batista, Paulo; Clemesha, Barclay Robert

    2013-04-01

    Characteristics of the equatorial 3.5-day ultra-fast Kelvin (UKF) wave are investigated with four year meteor radar wind observations over Cachoeira Paulista (22.7S, 45W). UFK signature manifests as discrete bursts spanning over various times of the year with generally less amplitude during fall equinox and early winter span. Daily as well as seasonal mean amplitude of the UFK wave is found to be sufficiently smaller than that observed previously from equatorial stations. Estimated vertical wavelength of the UFK wave comes out to be larger than 80 km. Comparison of present results with another Brazilian equatorial station exhibits latitudinal invariance of the wave as well as transient local dynamical influence to its variability. High zonal acceleration caused by momentum flux convergence due to the UFK wave just after equinoxes is supposed to be responsible for driving westerly phase of the mean zonal wind immediately after equinoxes and hence the mesospheric semiannual oscillation. There is a clear signature of modulation of the UFK wave amplitude by various harmonics of the annual oscillation.

  6. Study of the ultra-fast Kelvin wave with meteor radar observations over a Brazilian extra-tropical station

    Science.gov (United States)

    Guharay, A.; Batista, P. P.; Clemesha, B. R.

    2013-09-01

    Characteristics of the 3.5-day ultra-fast Kelvin (UKF) wave are investigated with 4 years of meteor radar wind observations over Cachoeira Paulista (22.7°S, 45°W). The UFK signature manifests itself as discrete bursts spanning over various times of the year with generally less amplitude during fall equinox and early winter. Daily as well as seasonal mean amplitude of the UFK component is found to be considerably smaller than that observed previously from equatorial stations. Estimated vertical wavelengths of the UFK wave come out to be larger than 40 km. Comparison of the present results with another Brazilian equatorial station implies latitudinal invariance of the wave as well as transient local dynamical influence to its variability. High zonal acceleration caused by momentum flux convergence due to the UFK wave just after equinoxes is believed to be responsible for driving the westerly phase of the mean zonal wind immediately after the equinoxes and hence the mesospheric semiannual oscillation to some extent. There is a clear signature of modulation of the UFK wave amplitude by various harmonics of the annual oscillation.

  7. The 2007-8 volcanic eruption on Jebel at Tair island (Red Sea) observed by satellite radar and optical images

    KAUST Repository

    Xu, Wenbin

    2014-01-31

    We use high-resolution optical images and Interferometric Synthetic Aperture Radar (InSAR) data to study the September 2007-January 2008 Jebel at Tair eruption. Comparison of pre- and post-eruption optical images reveals several fresh ground fissures, a new scoria cone near the summit, and that 5.9 ± 0.1 km2 of new lava covered about half of the island. Decorrelation in the InSAR images indicates that lava flowed both to the western and to the northeastern part of the island after the start of the eruption, while later lavas were mainly deposited near the summit and onto the north flank of the volcano. From the InSAR data, we also estimate that the average thickness of the lava flows is 3.8 m, resulting in a bulk volume of around 2.2 × 107 m3. We observe no volcano-wide pre- or post-eruption uplift, which suggests that the magma source may be deep. The co-eruption interferograms, on the other hand, reveal local and rather complex deformation. We use these observations to constrain a tensile dislocation model that represents the dike intrusion that fed the eruption. The model results show that the orientation of the dike is perpendicular to the Red Sea rift, implying that the local stresses within the volcanic edifice are decoupled from the regional stress field. © 2014 Springer-Verlag Berlin Heidelberg.

  8. Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign

    Science.gov (United States)

    Padullés, R.; Cardellach, E.; de la Torre Juárez, M.; Tomás, S.; Turk, F. J.; Oliveras, S.; Ao, C. O.; Rius, A.

    2016-01-01

    This study describes the first experimental observations showing that hydrometeors induce polarimetric signatures in global navigation satellite system (GNSS) signals. This evidence is relevant to the PAZ low Earth orbiter, which will test the concept and applications of polarimetric GNSS radio occultation (RO) (i.e. ROs obtained with a dual-polarization antenna). A ground field campaign was carried out in preparation for PAZ to verify the theoretical sensitivity studies on this concept (Cardellach et al., 2015). The main aim of the campaign is to identify and understand the factors that might affect the polarimetric GNSS observables. Studied for the first time, GNSS signals measured with two polarimetric antennas (H, horizontal, and V, vertical) are shown to discriminate between heavy rain events by comparing the measured phase difference between the H and V phase delays (ΔΦ) in different weather scenarios. The measured phase difference indicates higher dispersion under rain conditions. When individual events are examined, significant increases in ΔΦ occur when the radio signals cross rain cells. Moreover, the amplitude of such a signal is much higher than the theoretical prediction for precipitation; thus, other sources of polarimetric signatures have been explored and identified. Modelling of other hydrometeors, such as melting particles and ice crystals, have been proposed to explain the obtained measurements, with good agreement in more than 90 % of the cases.

  9. Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-12-01

    Full Text Available In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads—rectangular features of bare land covering an area of approximately 50–60 m × 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery and the possibility of detailed land use classification (vs. single-pol SAR. The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59%–71% in each case (area based accuracy assessment. Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74%–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are

  10. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steepe