WorldWideScience

Sample records for polar cap magnetic

  1. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  2. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  3. Theoretical model of polar cap auroral arcs

    International Nuclear Information System (INIS)

    Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)

    1985-01-01

    A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references

  4. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  5. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  6. Simple model for polar cap convection patterns and generation of theta auroras

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1985-01-01

    The simple addition of a uniform interplanetary magnetic field and the Earth's dipole magnetic field is used to evaluate electric field convection patterns over the polar caps that result from solar wind flow across open geomagnetic field lines. This model is found to account for observed polar-cap convection patterns as a function of the interplanetary magnetic field components B/sub y/ and B/sub z/. In particular, the model offers an explanation for sunward and antisunward convection over the polar caps for B/sub z/>0. Observed field-aligned current patterns within the polar cap and observed auroral arcs across the polar cap are also explained by the model. In addition, the model gives several predictions concerning the polar cap that should be testable. Effects of solar wind pressure and magnetospheric currents on magnetospheric electric and magnetic fields are neglected. That observed polar cap features are reproduced suggests that the neglected effects do not modify the large-scale topology of magnetospheric electric and magnetic fields along open polar cap field lines. Of course, the neglected effects significantly modify the magnetic geometry, so that the results of this paper are not quantitatively realistic and many details may be incorrect. Nevertheless, the model provides a simple explanation for many qualitative features of polar cap convection

  7. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  8. Evidence that polar cap arcs occur on open field lines

    International Nuclear Information System (INIS)

    Gussenhoven, M.S.; Hardy, D.A.; Rich, F.J.; Mullen, E.G.; Redus, R.H.

    1990-01-01

    The characteristics of polar cap arc occurrence are reviewed to show that the assumption of a closed magnetospheric magnetic field topology at very high latitudes when the IMF B z is strongly northward is difficult to reconcile with a wide variety of observational and theoretical considerations. In particular, we consider the implications of observations of particle entry for high and low energy electrons, magnetic flux conservation between the near and far tail, the time sequencing in polar cap arcs events, and the hemispherical differences in polar cap arc observations. These points can be explained either by excluding the need for a major topological magnetic field change from explanations of polar cap arc dynamics, or by assuming a long-tailed magnetosphere for all IMF orientations in which magnetic field lines eventually merge with solar wind field lines in either a smooth or a patchy fashion. (author)

  9. Relationships between the solar wind and the polar cap magnetic activity

    International Nuclear Information System (INIS)

    Berthelier, A.

    1981-01-01

    The influence of solar wind conditions on magnetic activity is described in order to delineate the differences in the response of the magnetic activity to the arrival on the magnetopause of different typical solar wind variations. By determining a new index of local magnetic activity free from seasonal and diurnal effects we put in evidence the dependence of the various effects upon the invariant latitude. Most important results are: (1) the main increase of the magnetic activity does not occur at the same invariant latitude for different interplanetary variations, e.g. peaks of Bz tend to increase magnetic activity mainly in the auroral zones while peaks of B correspond to a uniform increase in magnetic activity over the polar cap and auroral zone; (2) there is a two steps response of magnetic activity to the high speed plasma streams; (3) an increase of magnetic activity is observed for large and northward Bz, which probably indicates that the solar wind-magnetosphere coupling is efficient under these circumstances. The specific influences of the IMF polarity are also briefly reviewed. (orig.)

  10. Dynamics of the quiet polar cap

    International Nuclear Information System (INIS)

    Carlson, H.C. Jr.

    1990-01-01

    Work in the past has established that a few percent of the time, under northward interplanetary magnetic field and thus magnetically quiet conditions, sun aligned arcs are found in the polar cap with intensities greater than the order of a kilo Rayleigh in the visible. Here we extend this view. We first note that imaging systems with sensitivity down to tens of Rayleighs in the visible find sun aligned arcs in the polar cap far more often, closer to half the time than a few percent. Furthermore, these sun aligned arcs have simple electrodynamics. They mark boundaries between rapid antisunward flow of ionospheric plasma on their dawn side and significantly slower flow, or even sunward flow, on their dusk side. Since the sun aligned arcs are typically the order of 1000 km to transpolar in the sun-earth direction, and the order of 100 km or less in the dawn-dusk direction, they demarcate lines of strongly anisotropic ionospheric flow shears or convection cells. The very quiet polar cap (strongly northward IMF) is in fact characterized by the presence of sun aligned arcs and multiple highly anisotropic ionospheric flow shears. Sensitive optical images are a valuable diagnostic with which to study polar ionospheric convection under these poorly understood conditions. (author)

  11. A study of auroral activity in the nightside polar cap

    International Nuclear Information System (INIS)

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74 degree) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74 degree) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N 2 + ) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude

  12. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  13. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  14. Polar cap index as a proxy for hemispheric Joule heating

    DEFF Research Database (Denmark)

    Chun, F.K.; Knipp, D.J.; McHarg, M.G.

    1999-01-01

    The polar cap (PC) index measures the level of geomagnetic activity in the polar cap based on magnetic perturbations from overhead ionospheric currents and distant field-aligned currents on the poleward edge of the nightside auroral oval. Because PC essentially measures the main sources of energy...... input into the polar cap, we propose to use PC as a proxy for the hemispheric Joule heat production rate (JH). In this study, JH is estimated from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. We fit hourly PC values to hourly averages of JH. Using a data base approximately...

  15. Characteristics of the polar cap at ionospheric levels and present understanding of the physical processes that give rise to these characteristics

    International Nuclear Information System (INIS)

    Brekke, A.

    1983-01-01

    This chapter discusses the relationship between the interplanetary magnetic field (IMF) and various polar cap current systems, such as the DP2-system and the S /SUB q/ P-system. The disagreements concerning these systems are examined. Topics considered include the polar cap (a result of an open magnetosphere); studies of the polar cap magnetic field variations; the DP2-current system and its relation to the IMF; the polar cap current system during a northward IMF; the azimuthal component of IMF and its influence on the polar cap magnetic field variations; the electric potential distribution on the polar cap; rocket observations of the polar cap electric field; the auroral arcs as a visible trace of the ionospheric convection; neutral wind measurements in the polar cap F-region; and further studies of polar cap dynamics. The focus is on the polar region inside the auroral oval. It is suggested that more research is needed of the polar cap current system in order to understand the magnetosphereionosphere coupling, with the polar cap ionospheric conductivity distribution being the most crucial parameter

  16. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  17. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok553@nplindia.org; Shukla, A. K. [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012 (India); Barrionuevo, D.; Ortega, N.; Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343 (United States); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering - IMRE, Agency for Science Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Scott, J. F. [Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews KY16 ST (United Kingdom)

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  18. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  19. Convection flow structure in the central polar cap

    Science.gov (United States)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  20. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  1. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  2. Polar cap contraction and expansion during a period of substorms

    Science.gov (United States)

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  3. Modeling polar cap F-region patches using time varying convection

    International Nuclear Information System (INIS)

    Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.

    1993-01-01

    Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF

  4. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Directory of Open Access Journals (Sweden)

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  5. Polar cap particle precipitation and aurora: Review and commentary

    Science.gov (United States)

    Newell, Patrick T.; Liou, Kan; Wilson, Gordon R.

    2009-02-01

    Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally d[Phi]MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause. Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically 0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the

  6. Variations in the polar cap area during two substorm cycles

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-05-01

    Full Text Available This study employs observations from several sources to determine the location of the polar cap boundary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral images from the Ultraviolet Imager (UVI instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP and National Oceanographic and Atmospheric Administration (NOAA satellites, and the Fast Auroral SnapshoT (FAST spacecraft. Changes in the open flux content of the magnetosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, allowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and decreases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to decrease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap boundary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times supports this finding.Key words. Ionosphere (plasma convection; polar ionosphere – Magnetospheric physics (magnetospheric configuration and dynamics

  7. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  8. IMF B(y) and day-night conductivity effects in the expanding polar cap convection model

    Science.gov (United States)

    Moses, J. J.; Gorney, D. J.; Siscoe, G. L.; Crooker, N. U.

    1987-01-01

    During southward B(z) periods the open field line region in the ionosphere (polar cap) expands due to increased dayside merging. Ionospheric plasma flow patterns result which can be classified by the sign of the interplanetary magnetic field (IMF) B(y) component. In this paper, a time-dependent ionospheric convection model is constructed to simulate these flows. The model consists of a spiral boundary with a gap in it. The sign of the IMF B(y) component determines the geometry of the gap. A potential is applied across the gap and distributed around the boundary. A flow results which enters the polar cap through the gap and uniformly pushes the boundary outward. Results of the model show that B(y) effects are greatest near the gap and virtually unnoticeable on the nightside of the polar cap. Adding a day-night ionospheric conductivity gradient concentrates the polar cap electric field toward dawn. The resulting flow curvature gives a sunward component that is independent of B(y). These patterns are shown to be consistent with published observations.

  9. Parameterizing the Magnetopause Reconnection Rate from Observations of the Expanding Polar Cap

    Science.gov (United States)

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-04-01

    We determine an expression for the magnetopause reconnection rate in terms of upstream interplanetary parameters. We quantify the dayside reconnection rate from observations of the expanding polar cap when the nightside reconnection rate is assumed to be zero. The polar cap open flux is calculated from auroral images collected by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet camera (FUV), and its rate of increase is correlated with upstream solar wind and interplanetary magnetic field measurements from the OMNI data-set. We find that the reconnection rate is successfully reproduced by considering the magnetic flux transport within a 4 Re-wide channel within the solar wind (with an additional small correction for the solar wind velocity) and an IMF clock angle dependence with an exponent of 9/2. Contrary to several previous studies we do not find a dependence of the reconnection rate on solar wind density. We discuss our findings in the context of previous studies and solar wind-magnetosphere coupling models.

  10. Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983)

    International Nuclear Information System (INIS)

    Israelevich, P.L.; Podgorny, I.M.; Kuzmin, A.K.; Nikolaeva, N.S.; Dubinin, E.M.

    1988-01-01

    Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10-11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF B y y > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale-correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it. (author)

  11. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  12. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.

    Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  13. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    2000-09-01

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  14. A study of the relationship between interplanetary parameters and large displacements of the nightside polar cap boundary

    International Nuclear Information System (INIS)

    Lester, M.; Freeman, M.P.; Southwood, D.J.; Waldock, J.A.; Singer, H.J.

    1990-01-01

    On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at ∼ 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thence to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s -1 . the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s -1

  15. The response of ionospheric convection in the polar cap to substorm activity

    Directory of Open Access Journals (Sweden)

    M. Lester

    Full Text Available We report multi-instrument observations during an isolated substorm on 17 October 1989. The EISCAT radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71°λ-78°λ. SAMNET and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. IMP-8 magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF. We infer that the polar cap expanded as a result of the addition of open magnetic flux to the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71°λ by the time of the expansion phase onset. A westward electrojet, centred at 65.4°λ, occurred at the onset of the expansion phase. This electrojet subsequently moved poleward to a maximum of 68.1°λ at 2000 UT and also widened. During the expansion phase, there is evidence of bursts of plasma flow which are spatially localised at longitudes within the substorm current wedge and which occurred well poleward of the westward electrojet. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the "distant" neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase. It is not obvious whether the electrojet mapped to a near-Earth neutral line, but at its most poleward, the expanded electrojet does not reach the estimated latitude of the polar cap

  16. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  17. On the role of IMF By in generating the electric field responsible for the flow across the polar cap

    International Nuclear Information System (INIS)

    Vennerstroem, S.; Friis-Christensen, E.

    1987-01-01

    During periods of southward interplanetary magnetic field (IMF) the authors have examined the relationship between magnetic variations in the central polar cap and the IMF B y and B z components. The geomagnetic polar cap index PC that can be used as a measure of the flow across the polar cap has been derived using data from Thule in the IMS period. The results have been compared with IMP 8 measurements of the IMF and the solar wind velocity. The statistical analysis shows that the absolute value of the azimuthal component |B y | contributes to the cross-polar cap flow in the same manner as the southward component B s . The relative contributions of |B y | and B z have been examined and compared with the theoretical expression υB T sin 2 θ/2 for the merging electric field. It is found that the contribution of |B y | compared to B z is only half as big in the observations as in the theoretical expression. The B y effect on PC is compared to an earlier reported effect of B y on the geomagnetic index AL (Murayama et al., 1980) and found to be quite different from this. This is discussed in relation to interpretations in terms of merging site asymmetry

  18. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  19. Electron polar cap and the boundary of open geomagnetic field lines.

    Science.gov (United States)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  20. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2012-02-01

    Full Text Available On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi

  1. The Martian polar caps: Stability and water transport at low obliquities

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1992-01-01

    The seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.

  2. Variations in the polar cap area during intervals of substorm activity on 20-21 March 1990 deduced from AMIE convection patterns

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1996-09-01

    Full Text Available The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF, has been calculated during two intervals when the IMF had an approximately constant southward component (1100–2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990. The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday\\'s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday\\'s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between ~35RE and ~75RE downstream in the tail.

  3. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  4. Dependence of the cross polar cap potential saturation on the type of solar wind streams

    OpenAIRE

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2013-01-01

    We compare of the cross polar cap potential (CPCP) saturation during magnetic storms induced by various types of the solar wind drivers. By using the model of Siscoe-Hill \\citep{Hilletal1976,Siscoeetal2002a,Siscoeetal2002b,Siscoeetal2004,Siscoe2011} we evaluate criteria of the CPCP saturation during the main phases of 257 magnetic storms ($Dst_{min} \\le -50$ nT) induced by the following types of the solar wind streams: magnetic clouds (MC), Ejecta, the compress region Sheath before MC ($Sh_{M...

  5. Modeling the Quiet Time Outflow Solution in the Polar Cap

    Science.gov (United States)

    Glocer, Alex

    2011-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.

  6. Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap

    Science.gov (United States)

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-03-01

    Many studies have attempted to quantify the coupling of energy from the solar wind into the magnetosphere. In this paper we parameterize the dependence of the magnetopause reconnection rate on interplanetary parameters from the OMNI data set. The reconnection rate is measured as the rate of expansion of the polar cap during periods when the nightside reconnection rate is thought to be low, determined from observations by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet (FUV) imager. Our fitting suggests that the reconnection rate is determined by the magnetic flux transport in the solar wind across a channel approximately 4 RE in width, with a small correction dependent on the solar wind speed, and a clock angle dependence. The reconnection rate is not found to be significantly dependent on the solar wind density. Comparison of the modeled reconnection rate with SuperDARN measurements of the cross-polar cap potential provides broad support for the magnitude of the predictions. In the course of the paper we discuss the relationship between the dayside reconnection rate and the cross-polar cap potential.

  7. On the spatial relationship between auroral emissions and magnetic signatures of plasma convection in the midday polar cusp and cap ionospheres during negative and positive IMF Bsub(z)

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.

    1986-03-01

    The dynamics of midday auroras, including polar cusp and cap emissions, and their relation to the interplanetary magnetic field (IMF) have been investigated with optical ground-based observations from Svalbard, Norway and IMF data from spacecraft ISEE-2. One case is presented showing the spatial relationship, along the magnetic meridian in the midday sector, between the cusp aurora and IMF Bγ-related convection currets (the DPY signature) for negative and positive values of IMF Bsub(z)

  8. Mapping of the solar wind electric field to the Earth's polar caps

    International Nuclear Information System (INIS)

    Toffoletto, F.R.; Hill, T.W.

    1989-01-01

    In this paper we describe a quantitative model of a magnetically interconnected (open) magnetosphere, developed as a perturbation to Voigt's closed magnetosphere model with a given magnetopause shape. The ''interconnection'' (perturbation) field is obtained as a solution to a Neumann boundary value problem, with the magnetopause normal component distribution as a boundary condition. The normal component at the magnetopause is required to be time independent and is specified in accordance with one of two hypotheses: the subsolar point merging hypothesis and Crooker's antiparallel merging hypothesis. The resulting open magnetospheric configuration is used to map the magnetopause electric field down to the polar cap ionosphere. We present ionospheric convection patterns derived from three representative interplanetary magnetic field (IMF) orientations for each of the two dayside merging geometries. Both merging geometries reproduce the observed convergence of convection streamlines near noon in a convection ''throat,'' and the east-west deflection of these streamlines in response to the east-west IMF component. The major difference between the two dayside merging geometries occurs for nonsouthward IMF, and consists of a Sun-aligned convection gap that bifurcates the polar cap in the case of the antiparallel merging geometry but not in the subsolar point merging geometry. This convection gap may plausibly be associated with the ''theta aurora'' structure observed when the IMF has a northward component. copyright American Geophysical Union 1989

  9. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Lu, G.; Reiff, P.H.; Karty, J.L.; Hairston, M.R.; Heelis, R.A.

    1989-01-01

    Plasma flow data from the AE-C, AE-D and DE 2 satellites have been used to systematically study the distribution of the convection potential around the polar cap boundary under a variety of different interplanetary magnetic field (IMF) conditions. For either a garden hose (B x B y x B y >0) orientation of the IMF, the potential distribution is mainly affected by the sign of B y . In the northern hemisphere, the zero potential line (which separates the dusk convection cell from the dawn cell) on the dayside shifts duskward as B y changes from positive to negative. But in the southern hemisphere, a dawnward shift has been found, although the uncertainties are large. The typical range of displacement is about ±1.5 hours MLT. Note that this shift is in the opposite direction from most simple schematic models of ionospheric flow; this reflects the fact that the polar cap boundary is typically more poleward than the flow reversal associated with the region 1 current system, which shifts in the opposite direction. Thus the enhanced flow region typically crosses noon. In most cases a sine wave is an adequate representation of the distribution of potential around the boundary. However, in a few cases the data favors (at the 80% confidence level) a steeper gradient near noon, more indicative of a throat. The potential drop at the duskside boundary is almost greater than at the dawnside boundary. A slight duskward shift of the patterns observed as the IMF changes from garden hose to ortho-garden hose conditions. Analytic equipotential contours, given the potential function as a boundary condition, are constructed for several IMF conditions

  10. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  11. DMSP optical and electron measurements in the vicinity of polar cap arcs

    International Nuclear Information System (INIS)

    Hardy, D.A.; Burke, W.J.; Gussenhoven, M.S.

    1982-01-01

    We have completed an extensive analysis of the electron and optical data from the DMSP satellites for an external period of polar cap arc occurrences on December 12, 1977. The polar cap arcs are observed in three distinct intervals in a period of quieting after a time of intense substorm activity. The observation of polar cap arcs is associated with the admittance of large and variable fluxes of low-energy electrons into a major portion of both the northern and southern hemisphere polar caps. These fluxes fall into the following categories: First, nearly Maxwellian distributions of electrons with temperatures between 50 eV and 200 eV and number densities varying from 0.03/cm 3 to 4/cm 3 . The highest densities are found at the poleward boundary of the diffuse aurorae and near the visible polar cap arcs. The lowest densities are associated with the polar rain. Second, distributions of electrons peaked between 50 eV and 200 eV. These distributions result from accelertion of the cold Maxwellian distribution through a potential of 50 to 200 V without any heating of the electrons. Third, distributions of electrons displaying two populations; an intense low-energy component with a temperature of approx.20 eV and a much weaker high-energy component with a temperature of 180 eV. We interpret such distributions as evidence of direct admittance of magnetosheath electrons into the polar cap. Fourth,, distributions of electrons peaked at approx.1 keV. These distributions produce the visible arcs. They result from the acceleration of a two-component electron population with temperatures of 100 and 350 eV through a potential drop of approx.750 V

  12. The thermospheric effects of a rapid polar cap expansion

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.

    Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  13. Simultaneous observations of sun-aligned polar cap arcs in both hemispheres by EXOS-C and viking

    International Nuclear Information System (INIS)

    Obara, T.; Kitayama, M.; Mukai, T.; Kaya, N.; Murphree, J.S.; Cogger, L.L.

    1988-01-01

    On September 25, 1986, the EXOS-C satellite traversed an intense electron precipitation in the southern polar cap, while the Viking satellite simultaneously obtained image data of the polar cap arc in the northern hemisphere. The energy spectrum of the precipitation, measured by instrumentation aboard EXOS-C, was very similar to that of adjacent (typical) auroral arcs, and the precipitation in the southern polar cap was observed in the same local time sector in which the arc was found in the northern polar cap. Observations seem to support the view that the polar cap arc occurs on closed field lines and is conjugate in both hemispheres. copyright American Geophysical Union 1988

  14. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  15. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  16. Ion Outflow and Convection in the Polar Cap and Cleft as Measured by Tide, EFI, MFE and Timas

    Science.gov (United States)

    Elliott, H. A.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Maynard, N. C.; Peterson, W. K.; Lennartsson, O. W.; Shelley, E. G.; Mozer, F. S.; Russell, C. T.

    1997-01-01

    This study examines high-latitude ion outflows and velocities perpendicular to the magnetic field derived from moments of ion distributions measured by the TIDE (Thermal Ion Dynamics Experiment) instrument on the Polar satellite. Hydrogen and oxygen ions are shown to be E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1. 8 Re). E X B drifts are calculated from electric fields measured by EFI (Electric Field Instrument) and magnetic fields measured by MFE (Magnetic Field Experiment) both of which are also on Polar. How convection at Polar's perigee relates to potential patterns of the ionosphere will be discussed. In the cusp/cleft the distribution of hydrogen extends over a large enough range of energy to be measured by both TIDE and the Toroidal Imaging Mass-Angle Spectrograph (TIMAS). Such comparisons will be also be presented.

  17. IR SPECTRAL MAPPING OF THE MARTIAN SOUTH POLAR RESIDUAL CAP USING CRISM

    Directory of Open Access Journals (Sweden)

    J. Campbell

    2016-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are considered to be important in theories of abiogenesis (Allamandola, 2011 . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS on the Cassini spacecraft (Cruikshank et al., 2007. The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012. This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC structural evolution (Thomas et al., 2009 that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called “Swiss Cheese Terrain”, a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009. We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, on board NASA’s Mars Reconnaissance Orbiter (MRO. CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  18. Dayside and nightside contributions to the cross polar cap potential: placing an upper limit on a viscous-like interaction

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2004-11-01

    Full Text Available Observations of changes in size of the ionospheric polar cap allow the dayside and nightside reconnection rates to be quantified. From these it is straightforward to estimate the rate of antisunward transport of magnetic flux across the polar regions, quantified by the cross polar cap potential ΦPC. When correlated with upstream measurements of the north-south component of the IMF, ΦPC is found to increase for more negative Bz, as expected. However, we also find that ΦPC does not, on average, decrease to zero, even for strongly northward IMF. In the past this has been interpreted as evidence for a viscous interaction between the magnetosheath flow and the outer boundaries of the magnetosphere. In contrast, we show that this is the consequence of flows excited by tail reconnection, which is inherently uncorrelated with IMF Bz.

  19. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  20. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  1. Effect of the interplanetary magnetic field on the distribution of electric fields in the polar ionosphere

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1985-08-01

    Heppner (1972), in an analysis of satellite data, observed 12 types of electric-field distributions in the polar ionosphere along the morning-evening meridian. In the present paper it is shown that these distribution types can be described by the analytical model of Uvarov and Barashkov (1984). In this model the excitation of the electric fields is investigated by solving the set of continuity equations for current in three regions (the north and south polar caps and a region outside the caps) with allowance for the magnetic conjugacy of the ionosphere in the two hemispheres.

  2. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  3. Response of the polar cap boundary and the current system to changes in IMF observed from the MAGSAT satellite in the southern hemisphere during summer

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Burrows, J.R.

    1987-01-01

    The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions. The study has been carried out for the summer months in the Southern Hemisphere. ''Shear reversals'' (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180 0 . It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bsub(z) component and in the latitude range of about 70 0 -80 0 . SRs in the dusk sector occur predominantly when the azimuthal component Bsub(y) is positive and in the dawn sector when Bsub(y) is negative, irrespective of the sign of Bsub(z). These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bsub(z). Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 x 10 4 to 6.5 x 10 5 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to

  4. Mars polar cap: a habitat for elementary life1

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, N. C.

    2009-04-01

    Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

  5. Estimation of Polar Cap Potential and the Role of PC Index

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2012-09-01

    Full Text Available Polar cap potential has long been considered as an indicator for the amount of energy flowing in the magnetosphere-ionosphere system. Thus, the estimation of polar cap potential is important to understand the physical process of the magnetosphere. To estimate the polar cap potential in the Northern Hemisphere, merging electric field by Kan & Lee (1979 is adopted. Relationships between the PC index and calculated merging electric field (E* are examined during full-time and storm-time periods separately. For this purpose Dst, AL, and PC indices and solar wind data are utilized during the period from 1996-2003. From this linear relationship, polar cap potential (Φ* is estimated using the formula by Doyle & Burke (1983. The values are represented as 58.1 ± 26.9 kV for the full-time period and 123.7 ± 84.1 kV for a storm-time period separately. Considering that the average value of polar cap potential of Doyle & Burke (1983 is about 47 kV during moderately quiet intervals with the S3-2 measurements, these results are similar to such. The monthly averaged variation of Dst, AL, and PC indices are then compared. The Dst and AL indices show distinct characteristics with peaks during equinoctial season whereas the average PC index according to the month shows higher values in autumn than in spring. The monthly variations of the linear correlation coefficients between solar wind parameters and geomagnetic indices are also examined. The PC-AL linear correlation coefficient is highest, being 0.82 with peaks during the equinoctial season. As with the AL index, the PC index may also prove useful for predicting the intensity of an auroral substorm. Generally, the linear correlation coefficients are shown low in summer due to conductance differences and other factors. To assess the role of the PC index during the recovery phase of a storm, the relation between the cumulative PC index and the duration is examined. Although the correlation coefficient lowers

  6. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  7. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  8. Characteristics of magnetospheric convective electric fields as mapped onto the polar caps

    International Nuclear Information System (INIS)

    Saunders, R.S.

    1976-01-01

    A study is made of the open connected magnetosphere using two numerical computer models: the Hones-Taylor (1965), with image and internal dipoles being the only sources, and the Mead-Williams (1965) with a current sheet added. The objectives of the study are to demonstrate that steady state field line connection across the magnetopause is a possible mechanism for producing the polar cap electric fields detected there, and to show the interesting characteristics of such fields. A review of the literature pertinent to the polar cap electric fields is included

  9. Estimation of the polar cap dimensions from photometric data

    International Nuclear Information System (INIS)

    Besprozvannaya, A.S.; Vorob'ev, V.G.; Ruga, G.N.; Shchuka, T.I.; Yagodkina, O.I.

    1992-01-01

    The moment of crossing near-polar boundary of auroral oval by the is. Heis station (Φ L =74,4 deg) according to simultaneous optical and ionospheric observations during the period, dated 25.12.83-10.01.84, is investigated. It is shown that time of the station appearance in the polar cap area, characterized by decrease in luminescence intensity of the basic auroral emissions by the background one and by appearance in the UT afternoon hours of flat layers, coincide. Correlation coefficient - r=0.95

  10. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  11. Sublimation and transport of water from the north residual polar cap on Mars

    Science.gov (United States)

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  12. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  13. Superconducting polarizing magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for the JINR (Dubna) movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T in the centre with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet contains a main solenoidal winding 558 mm long and 206/144 mm in diameters, and compensating and correcting winding placed at its ends. The windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat. The diameter of the 'warm' aperture of the magnet cryostat is 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements, using a NMR-magnetometer are given. A similar magnet constructed at DAPNIA, CEA/Saclay (France), represented a model for the present development. The MPT array is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the synchrophasotron of the Laboratory of High Energies (LHE), JINR (Dubna)

  14. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    International Nuclear Information System (INIS)

    Stauning, P.

    2015-01-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B y ) of the interplanetary magnetic field (IMF). The added IMF B y -related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m -1 ). Furthermore, cases of reverse convection during strong northward IMF B z (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m -1 during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  15. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    Energy Technology Data Exchange (ETDEWEB)

    Stauning, P. [Danish Meteorological Institute, Copenhagen (Denmark)

    2015-07-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B{sub y}) of the interplanetary magnetic field (IMF). The added IMF B{sub y}-related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m{sup -1}). Furthermore, cases of reverse convection during strong northward IMF B{sub z} (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m{sup -1} during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  16. Polar cap deflation during magnetospheric substorms

    Science.gov (United States)

    Moses, J. J.; Siscoe, G. L.; Heelis, R. A.; Winningham, J. D.

    1989-01-01

    The expanding/contracting polar cap model has been used to simulate DE-2 ion drift data during substorms as determined using the AL index. Of the 39 cases modeled, 57 percent required the opening of a nightside gap which maps to where reconnection occurs in the tail; 75 percent of the 16 recovery phase cases required a nightside gap, while only 29 percent of the 17 expansion phase cases required a nightside gap. On the basis of this result, it is concluded that if a nightside gap implies tail reconnection, then reconnection probably occurs after expansion phase onset and continues throughout most of the recovery phase of a substorm.

  17. Mars seasonal polar caps as a test of the equivalence principle

    International Nuclear Information System (INIS)

    Rubincam, David Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial (passive) to gravitational (active) masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor Eoetvoes test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  18. Preparing an ATLAS toroid magnet end-cap for lowering

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the two 13-m high toroid magnet end-caps for the ATLAS experiment being transported from the construction hall to the experimental area. The end-cap will be lowered into the ATLAS cavern and attached to an end of the detector.

  19. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Science.gov (United States)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  20. Self-assembly of colloids with magnetic caps

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V., E-mail: ekaterina.novak@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In our earlier work (Steinbach et al., 2016 ) we investigated a homogeneous system of magnetically capped colloidal particles that self-assembled via two structural patterns of different symmetry. The particles could form a compact, equilateral triangle with a three-fold rotational symmetry and zero dipole moment and a staggered chain with mirror symmetry with a net magnetisation perpendicular to the chain. The system exhibited a bistability already in clusters of three particles. Based on observations of a real magnetic particles system, analytical calculations and molecular dynamics simulations, it has been shown that the bistability is a result of an anisotropic magnetisation distribution with rotational symmetry inside the particles. The present study is a logical extension of the above research and forms a preparatory stage for the study of a self-assembly of such magnetic particles under the influence of an external magnetic field. Since the magnetic field is only an additive contribution to the total ground state energy, we can study the interparticle interaction energies of candidate ground state structures based on the field-free terms. - Highlights: • Analytical calculations of the energies of ground state candidates for colloids with magnetic caps. • Computer simulations confirmed the theoretical model. • The structural transition between ground states was found.

  1. Mars Seasonal Polar Caps as a Test of the Equivalence Principle

    Science.gov (United States)

    Rubincam, Daivd Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial to gravitational masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor E6tv6s test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  2. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  3. Excited eigenmodes in magnetic vortex states of soft magnetic half-spheres and spherical caps

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myoung-Woo; Lee, Jae-Hyeok; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr [National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-12-14

    We studied the magnetization dynamics of excitation modes in special geometrical confinements of soft magnetic half-spheres and spherical caps in magnetic vortex states using finite-element micromagnetic numerical calculations. We found additional fine features of the zeroth- and first-order gyrotropic modes and asymmetric m = +1 and m = −1 azimuthal spin-wave modes, which detailed information is unobtainable from two-dimensional mesh-cell based numerical calculations. Moreover, we examined the perpendicular bias field dependence of the excited eigenmodes, which data provide for an efficient means of control over the excited modes. Such numerical calculations offer additional details or new underlying physics on dynamic features in arbitrary-shape magnetic nano-elements such as half-spheres and spherical caps in magnetic vortex states.

  4. North-Polar Martian Cap as Habitat for Elementary Life

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, J. T.; Wickramasinghe, N. C.

    2008-09-01

    North-polar cap over millenia Atmospheric water in Mars tends currently as for the past millenia to distil onto the polar caps and be buried under dust deposits. Diffusive release from ground-ice (and its excavation in meteorite impacts [1]) replenishes atmospheric water, allowing the gradual build up of polar ice-dust deposits. When sunlit, this warmed and sublimating ice-dust mix has interest as a potential habitat for micro-organisms. Modelling shows precipitable vapour at 10-50μm/yr, varying sensitively with small changes in orbitable obliquity around the present 25° [2]. The modelling applies to a globe with regionally uniform albedo, unlike the steep topography and dark layering of the north polar cap whose upper 300m have accumulated over the last 500 kyr [3]. The cliffs and ravines of the north-polar cap are thought to form through south-facing slopes sublimating and gaining a dirt-encrusted surface, while horizontal surfaces brighten through frost deposits. The two-phase surface derives from the dust and frost feedback on surface albedo [4] and the resulting terrain develops over diurnal cycles of frosting and sublimation, and over annual seasonal cycles. The steep south-facing sides of observed ravines when unshadowed would see for a few hours the full intensity of sunlight at near normal incidence, without the atmospheric dimming at similar inclinations on Earth. As exposed ice sublimates at T > 200K (partial pressure exceeds typical martian 0.1 Pa), a crust of dirt develops to maintain quasi-stability. The dirt crust's main function is to buffer the ice against diurnal temperature fluctuations, but it also slows down vapour diffusion - analogous to south polar ice sublimation [5] and the growth of ground-ice [6]. We envisage 1-10 mm/yr as the net sublimation rate, compatible with the 100 kyr life and scales of the north polar ravines. Modelling of icy-dirt crusts in the polar cap Plane-parallel layers have been used to model the changing temperature

  5. EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2008-02-01

    Full Text Available The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6° cgmLat and Longyearbyen (75.2° cgmLat on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB made zig-zag-type motion with amplitude of 2.5° cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL. The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992. The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.

    During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 RE mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency fluctuations.

    The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2° during

  6. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  7. Recession of the Northern polar cap from the PFS Mars Express observations

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Giuranna, M.; Grassi, D.; Hansen, G.; Ignatiev, N. I.; Maturilli, A.; Pfs Team

    Planetary Fourier Spectrometer (PFS) has two spectral channels, devoted to the thermal and solar reflected spectral range investigations. The first observations by PFS of the Northern hemisphere ,which includes the North pole, occurred at Ls= 342 (northern winter). Surface temperature alone the orbit shows that the CO2 ice polar cap, where the surface temperature is found around 150K and below, is extended down to about 62 N. The spectra at latitudes above 80 N are obtained at polar darkness and at latitudes below 80 at illumination by the low Sun. Retrieved temperature profiles of the atmosphere at darkness show that temperature of the atmosphere is low enough to allow the CO2 condensation up to about 25 km. Between 70 and 80 latitude the upper levels of the atmosphere are heated by the Sun, but condensation of the CO2 may occur in the near surface layer below 5 km. The water ice clouds exist at lower latitudes with maximum opacity at the edge of the polar cap. More detailed investigation of the data obtained in winter as well as of the measurements in the northern spring will be presented.

  8. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  9. Capping layer-tailored interface magnetic anisotropy in ultrathin Co2FeAl films

    International Nuclear Information System (INIS)

    Belmeguenai, M.; Zighem, F.; Chérif, S. M.; Gabor, M. S.; Petrisor, T.; Tiusan, C.

    2015-01-01

    Co 2 FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm 2 and 0.74 erg/cm 2 for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin

  10. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  11. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  12. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, M., E-mail: belmeguenai.mohamed@univ-paris13.fr; Zighem, F.; Chérif, S. M. [LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Gabor, M. S., E-mail: mihai.gabor@phys.utcluj.ro; Petrisor, T. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Tiusan, C. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Lorraine Université, BP 70239, F-54506 Vandoeuvre (France)

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  13. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    Science.gov (United States)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  14. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  15. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  16. Broad-band linear polarization and magnetic intensification in rotating magnetic stars

    International Nuclear Information System (INIS)

    Degl'Innocenti, M.L.; Calamai, G.; Degl'Innocenti, E.L.; Patriarchi, P.

    1981-01-01

    Magnetic intensification is proposed as a mechanism to explain the general features of the variable broad-band linear polarization emerging from rotating magnetic stars. This mechanism is studied in detail, and some efforts are made to investigate the wide variety of polarization diagrams that can result from it. Theoretical results are compared with direct observations of the variable magnetic star 53 Cam to determine its geometric and magnetic configuration

  17. Field-aligned currents and convection patterns in the Southern Polar Cap during stable northward, southward, and azimuthal IMF

    International Nuclear Information System (INIS)

    Papitashvili, V.O.; Belov, B.A.; Gromova, L.I.

    1989-01-01

    Equivalent ionospheric current patterns are derived from ground-based geomagnetic observations for events on 11-12 November 1979 (B/sub z/ >> 0), 24 November 1981 (B/sub z/ > 0) (B/sub y/ >> 0), and 25-26 November 1979 (B/sub y/ 0 . Due to stable external conditions, it is possible to calculate the field-aligned current (FAC) density within cells formed by two adjacent stations by taking into account the uniform conductivity of the summer polar ionosphere. These results completely correspond to regressional analysis of interplanetary magnetic fields (IMF) and ground-based geomagnetic data, and also to satellite observations of the NBZ current system. During stable southward IMF a new result was obtained, a reversal of antisunward convection flow is identified, and an NBZ-like FAC system is restored in the central part of the southern polar cap. The authors conclude that there may be an additional NBZ-like FAC system poleward of -85 0 , which is independent of the IMF and is generated by the quasi-viscous interaction between solar-wind plasma and high-latitude lobes of the magnetospheric tail

  18. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  19. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  20. Commissioning Test of ATLAS End-Cap Toroidal Magnets

    CERN Document Server

    Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E

    2009-01-01

    The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...

  1. Polarized light modulates light-dependent magnetic compass orientation in birds

    Science.gov (United States)

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  2. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Science.gov (United States)

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  3. Synthesis, Characterization, and Magnetic Properties of Pure and EDTA-Capped NiO Nanosized Particles

    Directory of Open Access Journals (Sweden)

    H. T. Rahal

    2017-01-01

    Full Text Available The effect of ethylenediaminetetraacetic acid (EDTA as a capping agent on the structure, morphology, optical, and magnetic properties of nickel oxide (NiO nanosized particles, synthesized by coprecipitation method, was investigated. Nickel chloride hexahydrate and sodium hydroxide (NaOH were used as precursors. The resultant nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. XRD patterns showed that NiO have a face-centered cubic (FCC structure. The crystallite size, estimated by Scherrer formula, has been found in the range of 28–33 nm. It is noticed that EDTA-capped NiO nanoparticles have a smaller size than pure nanoparticles. Thus, the addition of 0.1 M capping agent EDTA can form a nucleation point for nanoparticles growth. The optical and magnetic properties were investigated by Fourier transform infrared spectroscopy (FTIR and UV-vis absorption spectroscopy (UV as well as electron paramagnetic resonance (EPR and magnetization measurements. FTIR spectra indicated the presence of absorption bands in the range of 402–425 cm−1, which is a common feature of NiO. EPR for NiO nanosized particles was measured at room temperature. An EPR line with g factor ≈1.9–2 is detected for NiO nanoparticles, corresponding to Ni2+ ions. The magnetic hysteresis of NiO nanoparticles showed that EDTA capping recovers the surface magnetization of the nanoparticles.

  4. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    DEFF Research Database (Denmark)

    Aghanim, N.; Alves, M. I R; Arzoumanian, D.

    2016-01-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < −60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the...

  5. O+ trough zones in the polar cap ionosphere-magnetosphere coupling region

    Science.gov (United States)

    Horwitz, James; Zeng, Wen; Jaafari, Fajer

    Regions of low-density troughs in O+ have been observed at 1 RE altitude in the polar cap ionosphere-magnetosphere region by the Thermal Ion Dynamics Experiment(TIDE) on the POLAR spacecraft. In this presentation, the UT Arlington Dynamic Fluid-Kinetic (DyFK) code is employed to investigate the formation of such O+ density troughs. We utilize convection paths of flux tubes in the high-latitude region as prescribed by an empirical convection model with solar wind inputs to track the evolution of ionospheric plasma transport and in particular O+ densities along these tubes with time/space. The flux tubes are subjected to auroral processes of precipitation and wave-driven ion heating when they pass through the auroral oval, which tends to elevate the plasma densities in these tubes. When the F-regions of such tubes traverse locations where the F-region is in darkness, recombination there causes the higher-altitude regions to drain and the densities to decline throughout. Owing to the varying effects of these processes, significant and low trough-like densities at higher altitudes developed along these flux tubes. The modeled densities near 6000 km altitudes will be compared with multiple POLAR passes featuring POLAR/TIDE-measured O+ densities for inside and outside of such trough regions.

  6. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  7. Drifting field-aligned density structures in the night-side polar cap

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Persoon, A. M.; Gurnett, D. A.; Décréau, P. M. E.; Pickett, J. S.; Maršálek, O.; Maksimovic, M.; Cornilleau-Wehrlin, N.

    2005-01-01

    Roč. 32, - (2005), L06106-1 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA202/03/0832; GA MŠk ME 650; GA MŠk 1P05ME811 Grant - others: NASA (US) NAG5-9974; NASA (US) NNG04GB98G; NSF(US) 0307319; ESA PECS(XE) 98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : Magnetospheric Physics * Plasma convection * Plasma waves and instabilities * Polar cap phenomena * Magnetospheric configuration and dynamics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005

  8. ''Electron Conic'' Signatures observed in the nightside auroral zone and over the polar cap

    International Nuclear Information System (INIS)

    Menietti, J.D.; Burch, J.L.

    1985-01-01

    A preliminary search of the Dynamics Explorer 1 high-altitude plasma instrument data base has yielded examples of ''electron conic'' signatures. The three example passes show an association with regions of downward electron acceleration and upward ion beams, but this is not true of all the electron conic events. The electron conic signatures are clearly discernible on energy-flux-versus-time color spectrograms as pairs of discrete vertical bands which are symmetric about a pitch angle of approximately 180 0 . One of the examples is a polar cap pass with electron conic signatures observed at invariant latitudes from 84 0 to 75 0 . The other two cases are nightside auroral zone passes in which the regions of detectable electron conics are spatially more confined, covering only about 1 0 in invariant latitude. The conic signatures have been found at energies that range from 50 eV 0 is larger than expected for a loss cone feature. If the electrons conserve the first adiabatic invariant in a dipole magnetic field, and in some cases a parallel electric field, the mirroring altitude varies between about 500 km and 8000 km, which is above the atmospheric loss region. For this reason, and in analogy with the formation of ion conics, we suggest that the conic signatures are produced by heating of the electrons perpendicular to the magnetic field

  9. Gigantic perpendicular magnetic anisotropy of heavy transition metal cappings on Fe/MgO(0 0 1)

    Science.gov (United States)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2017-11-01

    Effects of capping layer by 5d transition metals (TM = Hf, Ta, W, Re, Os, Ir, Pt, and Au) on Fe/MgO(0 0 1), a typical magnetic tunneling junction, are systematically investigated using first-principles calculation for magnetism and magnetocrystalline-anisotropy (MCA). The early TMs having less than half-filled d bands favor magnetization antiparallel to Fe, whereas the late TMs having more than half-filled d bands favor parallel, which is explained in the framework of kinetic exchange energy. The Os capping, isovalent to Fe, enhances MCA significantly to gigantic energy of +11.31 meV/cell, where positive contribution is mostly from the partially filled majority d bands of magnetic quantum number of |m| = 1 along with stronger spin-orbit coupling of Os than Fe. Different TM cappings give different MCA energies as the Fermi level shifts according to the valence of TM: Re and Ir, just one valence more or less than Os, have still large PMCA but smaller than the Os. In the W and Pt cappings, valence difference by two, PMCA are further reduced; MCAs are lowered compared to Fe/MgO(0 0 1) by the cappings of the very early TMs (Hf and Ta), while the very late TM (Au) switches sign to in-plane MCA.

  10. Magnetic elliptical polarization of Schumann resonances

    International Nuclear Information System (INIS)

    Sentman, D.D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references

  11. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  12. Competing effects in the magnetic polarization of non-magnetic atoms

    International Nuclear Information System (INIS)

    Boada, R; Piquer, C; Chaboy, J; Laguna-Marco, M A

    2013-01-01

    The magnetic polarization of the Lu 5d states through the Ho 1-x Lu x (Fe 1-y Al y ) 2 series has been studied by means of x-ray magnetic circular dichroism. A combined study of the dichroic signals performed at the Fe K-, Ho L 2 - and Lu L 2,3 -edges gives a complete picture of the polarization scheme at the conduction band. The results show that in the presence of competing localized magnetic moments, μ Fe (3d) and μ Ho (4f), the dichroic signal at the Lu site is mainly due to the Fe atoms, the effect of the magnetic rare-earth being negligible. Estimation of the spin and orbital components of the Lu(5d) induced magnetic moment have been obtained by applying the magneto-optical sum rules derived for x-ray magnetic circular dichroism.

  13. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  14. Magnetic materials research with polarized neutrons

    International Nuclear Information System (INIS)

    Hammer, J.; Rauch, H.; Badurek, G.

    1980-01-01

    In order to study the mechanisms of time dependent effects in magnetic materials with superparamagnetic or spinglass behaviour as well as in ferromagnetic materials a 'dynamic neutron depolarization' system has been developed as a beam hole experiment at the TRIGA Mark II Reactor in Vienna. In the course of this experiment an increasing or decreasing polarization can be observed as a consequence of the interaction between spins of the polarized neutron beam and the magnetic structure if the magnetic clusters in the sample are stimulated by a short magnetic pulse, lasting up to a few seconds. In accordance with numerical calculations and theoretical considerations we can draw conclusions from dynamics in the range of 10 ms to 1 h within magnetic materials which give us additional information that cannot be obtained from experiments used so far

  15. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity. The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours. We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  16. Dynamics of the polar ionosphere structure disturbance in the Svalgaard-Mansurov effect

    International Nuclear Information System (INIS)

    Osipov, N.K.; Mozhaev, A.M.; Larina, T.N.; Ponomarev, Yu.N.

    1988-01-01

    Nonstationary disturbance model of the ionsphere of polar caps caused by change of B y component sign of interplanetary magnetic field is considered. It is shown that nonstationary convection transfer of ionospheric plasma represents the main and the most fast mechanism regulating reconstruction of ionosphere structure in polar caps during magnetosphere substorms, caused by the change of B y sign. Calculations show that characteristic time of sufficient change of ionosphere structure at ∼1500 km distances is on the order of 10-25 min

  17. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gilev, A.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Bazarov, B.A.; Bulkin, A.P.; Schebetov, A.F. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Syromyatnikov, V.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Physical Department, St. Petersburg State University, Ulyanovskaya, 1, Petrodvorets, St. Petersburg 198504 (Russian Federation); Tarnavich, V.V.; Ulyanov, V.A. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation)

    2016-10-11

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4′ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm{sup 2} beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm{sup 2} window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm{sup 2} window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  18. Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles

    OpenAIRE

    Hoang, Thiem; Lazarian, A.

    2015-01-01

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background (CMB) B-mode signal. To obtain theoretical constraints on the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that, in realistic conditions of the interste...

  19. Automated identification and tracking of polar-cap plasma patches at solar minimum

    Directory of Open Access Journals (Sweden)

    R. Burston

    2014-03-01

    Full Text Available A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS, inverts slant total electron content (TEC data from ground-based Global Navigation Satellite System (GNSS receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

  20. Spherical cap modelling of Orsted magnetic field vectors over southern Africa

    CSIR Research Space (South Africa)

    Kotze, PB

    2001-01-01

    Full Text Available Vector magnetic field observations by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000, have been employed to derive a spherical cap harmonic model (Haines, 1985) over the southern African region between 10 degrees...

  1. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.

    Science.gov (United States)

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young

    2012-08-01

    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.

  2. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  3. Pulsar bi-drifting: implications for polar cap geometry

    Science.gov (United States)

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  4. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  5. Polarized radiation in magnetic white dwarfs

    International Nuclear Information System (INIS)

    Rosi, L.A.; Zimmerman, R.L.; Kemp, J.C.

    1976-01-01

    A model for magnetic white dwarfs is proposed which attributes the partially polarized light to synchrotron radiation. The source of the radiation is relativistic electrons trapped in the magnetosphere of a white dwarf. The white dwarf's magnetic field is assumed to be dipolar. The Stokes parameters for the synchrotron radiation are tabulated as a function of frequency, observer's orientation, and energy and spatial distribution of the relativistic electrons. The results of the synchrotron calculations are applied to the polarization observations of Grw+70degree8247 and DQ Herculis. This model can account for the major features of the polarized radiation coming from these two magnetic white dwarfs. The calculations predict for Grw+70degree8247 that the surface magnetic field is B/sub s/approximately-less-than4 x 10 6 gauss, that the incident viewing angle is 45degreeapproximately-less-thantheta 0 approximately-less-than75degree, and that the electrons are trapped with nearly an isotropic distribution about the white dwarf. For DQ Herculis the surface magnetic field is B/sub s/approximately-less-than7 x 10 6 gauss and the trapped electrons are confined to a dislike region about the white dwarf. For both cases the density of electrons in the magnetosphere falls in the range of 10 5 approximately-less-thannapproximately-less-than10 7 cm -3 with energies of about 4--35 MeV

  6. A new polarized neutrons method for studying depth-inhomogeneously magnetized magnetic films

    International Nuclear Information System (INIS)

    Korneev, D.A.

    1990-01-01

    The main specific features of the process of polarized thermal neutrons specular reflection from the surface of depth-inhomogeneously magnetic films are considered theoretically. It is shown how using the method of specular reflection of polarized thermal neutrons from such a films surface, one may restore the depth distribution of the local magnetization vector M-vector(z). 9 refs

  7. A critical note on the IAGA-endorsed Polar Cap (PC) indices: excessive excursions in the real-time index values

    Science.gov (United States)

    Stauning, Peter

    2018-04-01

    The Polar Cap (PC) indices were approved by the International Association for Geomagnetism and Aeronomy (IAGA) in 2013 and made available at the web portal http://pcindex.org" target="_blank">http://pcindex.org holding prompt (real-time) as well as archival index values. The present note provides the first reported examination of the validity of the IAGA-endorsed method to generate real-time PC index values. It is demonstrated that features of the derivation procedure defined by Janzhura and Troshichev (2011) may cause considerable excursions in the real-time PC index values compared to the final index values. In examples based on occasional downloads of index values, the differences between real-time and final values of PC indices were found to exceed 3 mV m-1, which is a magnitude level that may indicate (or hide) strong magnetic storm activity.

  8. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  9. Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2005-12-01

    Full Text Available Using data from the EISCAT (European Incoherent Scatter VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005. It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002, were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1 concentration enhancement within the patches by cusp/cleft precipitation; (2 plasma depletion in the minima between the patches by fast plasma flows; and (3 intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3 is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2 also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000.

  10. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  11. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  12. Magnetospheric convection and current system in the dayside polar cap

    International Nuclear Information System (INIS)

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  13. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity.

    The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours.

    We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  14. Non-volatile polarization switch of magnetic domain wall velocity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  15. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  16. Mass balance of Mars' residual south polar cap from CTX images and other data

    Science.gov (United States)

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.

    2016-04-01

    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  17. Controlling vortex chirality and polarity by geometry in magnetic nanodots

    OpenAIRE

    Agramunt Puig, Sebastià

    2014-01-01

    The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...

  18. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    Science.gov (United States)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  19. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  20. H2O grain size and the amount of dust in Mars' residual North polar cap

    Science.gov (United States)

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  1. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  2. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  3. Magnetization-dependent viscosity in brute-force-polarized liquid 3He

    DEFF Research Database (Denmark)

    Vermeulen, G.A.; Schuhl, A.; Joffrin, J.

    1988-01-01

    A new method to measure the magnetization dependence of the viscosity in polarized liquid He3 is presented. The magnetization is obtained by "brute-force polarization" at 45 mK in magnetic fields up to 11 T; it is subsequently destroyed by saturation of the NMR signal. Our result, a relative...... increase of the viscosity of (31.5)×10-3 at 3.9% polarization and a pressure of 30 bars, disagrees with a prediction based on the "nearly metamagnetic" model....

  4. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  5. Layered magnets: polarized neutron reflection studies

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, H; Schreyer, A [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)

    1996-11-01

    Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.

  6. Electric polarization of magnetic textures: New horizons of micromagnetism

    International Nuclear Information System (INIS)

    Pyatakov, A.P.; Meshkov, G.A.; Zvezdin, A.K.

    2012-01-01

    A common scenario of magnetoelectric coupling in multiferroics is the electric polarization induced by spatially modulated spin structures. It is shown in this paper that the same mechanism works in magnetic dielectrics with inhomogeneous magnetization distribution: the domain walls and magnetic vortexes can be the sources of electric polarization. The electric field driven magnetic domain wall motion is observed in iron garnet films. The electric field induced nucleation of vortex state of magnetic nanodots is theoretically predicted and numerically simulated. From the practical point of view the electric field control of micromagnetic structures suggests a low-power approach for spintronics and magnonics.

  7. The Recovery of a Magnetically Dead Layer on the Surface of an Anatase (Ti,CoO2 Thin Film via an Ultrathin TiO2 Capping Layer

    Directory of Open Access Journals (Sweden)

    Thantip S. Krasienapibal

    2017-03-01

    Full Text Available The effect of an ultrathin TiO2 capping layer on an anatase Ti0.95Co0.05O2−δ (001 epitaxial thin film on magnetism at 300 K was investigated. Films with a capping layer showed increased magnetization mainly caused by enhanced out-of-plane magnetization. In addition, the ultrathin capping layer was useful in prolonging the magnetization lifetime by more than two years. The thickness dependence of the magnetic domain structure at room temperature indicated the preservation of magnetic domain structure even for a 13 nm thick film covered with a capping layer. Taking into account nearly unchanged electric conductivity irrespective of the capping layer’s thickness, the main role of the capping layer is to prevent surface oxidation, which reduces electron carriers on the surface.

  8. Magnetic excitations and polarized neutrons

    International Nuclear Information System (INIS)

    Shirane, G.

    1985-01-01

    We review the historical development of polarized beam techniques for studies of condensed matter physics. In particular we describe, in some detail, the recent advance of the triple axis technique with polarization analysis. It is now possible to carry out quantitative characterization of magnetic cross sections S(Q,ω), in absolute units, for a wide range of energy and momentum transfers. We will discuss some examples of recent inelastic measurements on 3d ferromagnets and heavy Fermions. 35 refs., 11 figs., 2 tabs

  9. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles

    International Nuclear Information System (INIS)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M.A.; Haskel, D.; te Velthuis, S.G.E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M.A.

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 · 10 -4 was found at the Au L 3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M s , of 0.06 emu/g Au . SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences

  10. Alternating current loss reduction for rectangular busbars by covering their edges with low permeable magnetic caps

    Energy Technology Data Exchange (ETDEWEB)

    Sasada, Ichiro, E-mail: sasada@ence.kyushu-u.ac.jp [Applied Science for Electronics and Materials, Kyushu University, Kasuga (Japan)

    2014-05-07

    A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.

  11. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  12. Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field

    OpenAIRE

    Silenko, Alexander J.

    2008-01-01

    The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.

  13. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  14. Effect of Particle Size on the Magnetic Properties of Ni Nanoparticles Synthesized with Trioctylphosphine as the Capping Agent

    Directory of Open Access Journals (Sweden)

    Toshitaka Ishizaki

    2016-09-01

    Full Text Available Magnetic cores of passive components are required to have low hysteresis loss, which is dependent on the coercive force. Since it is well known that the coercive force becomes zero at the superparamagnetic regime below a certain critical size, we attempted to synthesize Ni nanoparticles in a size-controlled fashion and investigated the effect of particle size on the magnetic properties. Ni nanoparticles were synthesized by the reduction of Ni acetylacetonate in oleylamine at 220 °C with trioctylphosphine (TOP as the capping agent. An increase in the TOP/Ni ratio resulted in the size decrease. We succeeded in synthesizing superparamagnetic Ni nanoparticles with almost zero coercive force at particle size below 20 nm by the TOP/Ni ratio of 0.8. However, the saturation magnetization values became smaller with decrease in the size. The saturation magnetizations of the Ni nanoparticles without capping layers were calculated based on the assumption that the interior atoms of the nanoparticles were magnetic, whereas the surface-oxidized atoms were non-magnetic. The measured and calculated saturation magnetization values decreased in approximately the same fashion as the TOP/Ni ratio increased, indicating that the decrease could be mainly attributed to increases in the amounts of capping layer and oxidized surface atoms.

  15. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  16. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  17. Extinction of polarized light in ferrofluids with different magnetic particle concentrations

    International Nuclear Information System (INIS)

    Socoliuc, V.; Popescu, L.B.

    2012-01-01

    The magnetic field intensity and nanoparticle concentration dependence of the polarized light extinction in a ferrofluid made of magnetite particles stabilized with technical grade oleic acid dispersed in transformer oil was experimentally investigated. The magnetically induced optical anisotropy, i.e. the dichroism divided by concentration, was found to decrease with increasing sample concentration from 2% to 8%. The magnetically induced change in the optical extinction of light polarized at 54.74 o with respect to the magnetic field direction was found to be positive for the less concentrated sample (2%) and negative for the samples with 4% and 8% magnetic nanoparticle concentrations, the more negative the higher the concentration and field intensity. Based on the theoretically proven fact that the particle orientation mechanism has no effect on the extinction of light polarized at 54.74 o with respect to the field direction, we analyzed the experimental findings in the frames of the agglomeration and long-range pair correlations theories for the magnetically induced optical anisotropy in ferrofluids. We developed a theoretical model in the approximation of single scattering for the optical extinction coefficient of a ferrofluid with magnetically induced particle agglomeration. The model predicts the existence of a polarization independent component of the optical extinction coefficient that is experimentally measurable at 54.74 o polarization angle. The change in the optical extinction of light polarized at 54.74 o is positive if only the formation of straight n-particle chains is considered and may become negative in the hypothesis that the longer chains degenerate to more isotropic structures (polymer-like coils, globules or bundles of chains). The model for the influence on the light absorption of the long-range pair correlations, published elsewhere, predicts that the change in the optical extinction of light polarized at 54.74 o is always negative, the more

  18. Engineering status of the superconducting end cap toroid magnets for the ATLAS experiment at LHC

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Courthold, M J D; Cragg, D A; Densham, C J; Evans, D; Holtom, E; Rochford, J; Sole, D; Towndrow, Edwin F; Warner, G P

    2000-01-01

    The ATLAS experiment at LHC, CERN will utilise a large, superconducting, air-cored toroid magnet system for precision muon measurements. The magnet system will consist of a long barrel and two end-cap toroids. Each end-cap toroid will contain eight racetrack coils mounted as a single cold mass in cryostat vessel of ~10 m diameter. The project has now moved from the design/specification stage into the fabrication phase. This paper presents the engineering status of the cold masses and vacuum vessels that are under fabrication in industry. Final designs of cold mass supports, cryogenic systems and control/protection systems are presented. Planning for toroid integration, test and installation is described. (3 refs).

  19. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.

    2011-12-01

    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  20. Local magnetic structure determination using polarized neutron holography

    International Nuclear Information System (INIS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-01-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems

  1. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  2. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  3. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  4. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    International Nuclear Information System (INIS)

    Zabel, H; Theis-Broehl, K

    2003-01-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures

  5. THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Li Di; Clemens, D. P.; Krco, Marko

    2011-01-01

    We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A V ∼ 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 μG and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales (∼2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

  6. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    International Nuclear Information System (INIS)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Choudhuri, Arnab Rai

    2014-01-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century

  7. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev [Indian Institute of Astrophysics,Koramangala, Bengaluru 560034 (India); Karak, Bidya Binay [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Muñoz-Jaramillo, Andrés [Montana State University, Bozeman, MT 59717 (United States); Choudhuri, Arnab Rai, E-mail: mpriya@iiap.res.in, E-mail: dipu@iiap.res.in [Indian Institute of Science, Bangalore (India)

    2014-09-20

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

  8. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  9. Spin polarization and magnetic effects in radical reactions

    International Nuclear Information System (INIS)

    Salikhov, K.M.; Molin, Yu.N.; Sagdeev, R.Z.; Buchachenko, A.L.

    1984-01-01

    Studies on the effects of chemically induced dynamic nuclear and electron polarizations (CIDNP and CIDEP), and magnetic effects in radical reactions, have given rise to a new rapidly-progressing field of chemical physics. It came into being about ten years ago and has been attracting the ever-growing attention of researchers in related areas. The present book is a fairly all-embracing review of the state of affairs in this field. The book presents the physical background (both theoretical and experimental) of CIDNP and CIDEP, of the effects of an external magnetic field and magnetic nuclear moment (magnetic isotope effects) on radical reactions in solutions. Great attention has been paid to the application of chemical spin polarization and magnetic effects to solving various problems of chemical kinetics, structural chemistry, molecular physics, magnetobiology, and radiospectroscopy. The book will be useful for physicists, chemists and biologists employing CIDNP, CIDEP and magnetic effects in their investigations, as well as for researchers in related fields of chemical physics. The book can be also recommended for postgraduates and senior undergraduate students. (Auth.)

  10. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: yugmor@hotmail.com [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Ortega, D., E-mail: daniel.ortega@imdea.org [Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049, Madrid (Spain); Mafina, M.-K., E-mail: m.k.mafina@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 231, London E1 4NS (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-06-05

    Highlights: • Levitation-jet aerosol synthesis of Zn particles capped by ZnO nanoparticles (NPs). • TEM, XRD, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between unit-cell volume of crystal lattice and maximum magnetization. - Abstract: Spherical zinc particles ranging from 42 to 760 nm in average size and capped with plate-like zinc oxide particles of 10–30 nm in sizes have been prepared by levitation-jet aerosol synthesis through condensation of zinc vapor in an inert/oxidizer gas flow. The nanoparticles have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), BET measurements, ultra violet visible (UV–vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray electron spectroscopy (XPS), superconducting quantum interference device (SQUID), and vibrating-sample magnetometer (VSM). Magnetic and XRD data indicate that the observed ferromagnetic ordering related to the changes in unit-cell volume of Zn in the Zn/ZnO interface of the nanoparticles. These results are in good correlation with the optical measurements data.

  11. A snapshot of the polar ionosphere

    International Nuclear Information System (INIS)

    Whitteker, J.H.

    1976-01-01

    This paper presents a picture of the north polar F layer and topside ionosphere obtained primarily from three satellites (Alouette 2, ISIS 1, ISIS 2), that passed over the region within a time interval of ca. 50 min on 25 April 1971, a magnetically quiet day. The horizontal distribution of electron densities at the peak of the F layer is found to be similar to synoptic results from the IGY. Energetic particle and ionospheric plasma data are also presented, and the F layer data are discussed in terms of these measurements, and also in terms of electric field and neutral N 2 density measurements made by other satellites on other occasions. The major features observed are as follows: A tongue of F region ionization extends from the dayside across the polar cap, which is accounted for by antisunward drift due to magnetospheric convection. In the F layer and topside ionosphere, the main effect of auroral precipitation appears to be heating and expansion of the topside. A region of low F layer density appears on the morning side of the polar cap, which may be due to convection and possibly also to enhanced N 2 densities. (author)

  12. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  13. Cryopyrin-Associated Autoinflammatory Syndromes (CAPS) - Juvenile

    Science.gov (United States)

    ... all ethnic groups can be affected. What are CAPS? Cryopyrin-associated autoinflammatory syndromes (CAPS) consist of three ... ears by magnetic resonance imaging (MRI). How is CAPS treated? Medications that target interleukin-1 are very ...

  14. Investigating the polar electrojet using Swarm satellite magnetic data

    DEFF Research Database (Denmark)

    Aakjær, Cecilie Drost; Olsen, Nils; Finlay, Chris

    The aim of this study is to investigate the magnetic perturbations caused by the polar electrojets, which are described by means of a model consisting of a series of infinite line currents placed at the height of the ionosphere along QD latitudes. The method is applied to Swarm magnetic scalar...... of the polar electrojets as well as their temporal evolution. In addition, applying the method to data taken by the Swarm satellites Alpha and Beta allows investigating longitudinal differences of the electrojets....

  15. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  16. Internal magnetic turbulence measurement in plasma by cross polarization scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X L; Colas, L; Paume, M; Chareau, J M; Laurent, L; Devynck, P; Gresillon, D

    1994-09-01

    For the first time, the internal magnetic turbulence is measured by a new cross polarization scattering diagnostic in Tore Supra tokamak. The principle of this experiment is presented. It is based on the polarization change or mode conversion of the e.m. wave scattering by magnetic fluctuations. The role of different physical processes on the signal formation are investigated. From the Observation, a rough estimate for the relative magnetic fluctuations of about 10{sup -4} is obtained. A strong correlation of the measured signal with additional heating is observed. (author). 14 refs., 4 figs.

  17. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  18. Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer

    International Nuclear Information System (INIS)

    Ibusuki, Takahiro; Miyajima, Toyoo; Umehara, Shinjiro; Eguchi, Shin; Sato, Masashige

    2009-01-01

    Effects of capping materials on magnetoresistance (MR) properties of MgO magnetic tunnel junctions (MTJs) with a CoFeB free layer were investigated. MR ratios of samples with various capping materials showed a difference in annealing temperature dependence. MTJ with a Ti capping layer annealed at 270 deg. C showed a MR ratio 1.4 times greater than that with a conventional Ta or Ru capping layer. Secondary ion mass spectroscopy and high-resolution transmission electron microscopy images revealed that crystallization of CoFeB was remarkably affected by adjacent materials and the Ti capping layer adjoining CoFeB acted as a boron-absorption layer. These results suggest that the crystallization process can be controlled by choosing proper capping materials. Ti is one of the effective materials that accelerate the crystallization of CoFeB layers at lower annealing temperature

  19. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  20. Revisiting magnetism of capped Au and ZnO nanoparticles: Surface band structure and atomic orbital with giant magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)

    2011-10-15

    In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  2. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    Science.gov (United States)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  3. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  4. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    1995-08-01

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  5. Critical magnetic scattering of polarized neutrons on iron

    International Nuclear Information System (INIS)

    Hetzelt, M.

    1975-01-01

    A new spectrometer has been built and tested. The instrument was designed particularly for small angle scattering of polarized neutrons whereby the degree of polarisation of the scattered neutrons can be measured. The use of polarizing neutron pipes as polarizer and analyser allows the performence with a very broad wavelength spectrum (2 A 7 n/cm 2 sec) with good collimation (Δ theta approximately 0.2 0 ). The instrument is applied for the measurement of the critical magnetic scattering of polarized neutrons on an iron single crystal. For this purpose a special oven with an appropriate magnetic field configuration and a high precision in temperature has been constructed. The measured intensity distributions are in good agreement with other experiments. The critical exponent of the correlation range xi results in 0.65 +- 0.06. Angle and temperature dependence of the scattered neutron polarisation could be determined with good precision. The measurements are partly in extreme contradiction to the only hitherto existing experiment of this kind of Drabkin et al, and to assumptions in the theoretical evaluation. This contradiction is shown to be caused by the influence of multiple scattering. (orig./HPOE) [de

  6. Dynamic Nuclear Polarization and other magnetic ideas at EPFL.

    Science.gov (United States)

    Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey

    2012-01-01

    Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.

  7. The location of the open-closed magnetic field line boundary in the dawn sector auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2004-11-01

    Full Text Available As a measure of the degree of coupling between the solar wind-magnetosphere-ionosphere systems, the rate at which the size of the polar cap (the region corresponding to ionospheric termini of open magnetic flux tubes varies is of prime importance. However, a reliable technique by which the extent of the polar cap might be routinely monitored has yet to be developed. Current techniques provide particularly ambiguous indications of the polar cap boundary in the dawn sector. We present a case study of space- and ground-based observations of the dawn-sector auroral zone and attempt to determine the location of the polar cap boundary using multi-wavelength observations of the ultraviolet aurora (made by the IMAGE FUV imager, precipitating particle measurements (recorded by the FAST, DMSP, and Cluster 1 and 3 satellites, and SuperDARN HF radar observations of the ionospheric Doppler spectral width boundary. We conclude that in the dawn sector, during the interval presented, neither the poleward edge of the wideband auroral UV emission (140-180nm nor the Doppler spectral width boundary were trustworthy indicators of the polar cap boundary location, while narrow band UV emissions in the range 130-140nm appear to be much more reliable.

  8. Plasma drifts associated with a system of sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Mende, S.B.; Doolittle, J.H.; Robinson, R.M.; Vondrak, R.R.; Rich, F.J.

    1988-01-01

    A series of four sun-aligned arcs passed over Sondre Stromfjord, Greenland, on the night of the 17th and 18th of February, 1985. Observations of these arcs were made using the Sondrestrom incoherent scatter radar and an intensified all-sky imaging TV system that was operated at the radar site. The first of the four arcs crossed the Sondre Stromfjord meridian just before local midnight moving westward, and the other three arcs followed at approximately half-hour intervals. When we account for the earth's rotation, the arc drift in an inertial frame was eastward, or dusk to dawn. The half-hour interval between meridian crossings of the arcs implies that the mean spacing between the arcs was 180 km. A Defense Meteorological Satellite Program (DMSP) F6 satellite pass at 0110 UT revealed the presence of highly structured electron and ion precipitation throughout the polar cap. The DMSP visible imager detected a single, sun-aligned arc associated with the largest peak in precipitating electron flux. This arc was also observed at Thule, Greenland, with an intensified film camera. These observations suggest that at least one of the arcs that were observed at Sondre Stromfjord extended across a large part of the polar cap. The radar at Sondre Stromfjord measured electron density and ion drift velocities associated with the four arcs. The radar drift measurements were superimposed on the all-sky video images to determine the location of the measurements relative to the arcs. Plasma drifts outside the arcs were found to be both sunward and antisunward, while within the arcs the drifts were predominantly antisunward. The variability of the drifts in the direction parallel to the arcs indicates that the electric fields were highly structured even though the configuration and motion of the arcs were well behaved

  9. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  10. /sup 15/N(p,. cap alpha. )/sup 12/C reaction with polarized protons from 0. 34 to 1. 21 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, G H; Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-03-29

    A polarized beam was used to measure angular distributions of the analyzing power of the /sup 15/N(p,..cap alpha..)/sup 12/C reaction at 0.34 MeV and at five energies from 0.92 to 1.21 MeV. The analyzing power can be fitted with associated Legendre polynomials, P/sub 1//sup 1/ and P/sub 2//sup 1/ sufficing to describe the results except near 1.2 MeV where P/sub 3//sup 1/ is also required. Polarization excitation functions were measured throughout the entire energy range at angles where the polynomials P/sub 2//sup 1/ and P/sub 3//sup 1/ are zero. A polarization contour map is given.

  11. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  12. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  13. Continuous control of spin polarization using a magnetic field

    Science.gov (United States)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  14. Continuous control of spin polarization using a magnetic field

    International Nuclear Information System (INIS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-01-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  15. Continuous control of spin polarization using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y., E-mail: tingyong.chen@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-05-23

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  16. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  17. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  18. Magnetic-field fluctuations from 0 to 26 Hz observed from a polar-orbiting satellite

    International Nuclear Information System (INIS)

    Erlandson, R.E.; Zanetti, L.J.; Potemra, T.A.

    1989-01-01

    The polar orbit of the Viking satellite provides a unique opportunity to obtain observations of magnetic fluctuations at mid-altitudes on the dayside of the magnetosphere and in the polar-cusp region. One type of magnetic-field fluctuation, observed in the dayside magnetosphere, was Pc 1 waves. Pc 1 waves are in the electromagnetic ion-cyclotron mode and are generated by anisotropies in energetic ion distributions. The waves are thought to be generated near the equator and to propagate large distances along magnetic-field lines. Most observations of Pc 1 waves have been obtained near the equator using geosynchronous satellites and on the surface of the earth. The Viking observations provide an opportunity to observe Pc 1 waves at mid-latitudes above the ionosphere and to determine the spectral structure and polarization of the waves. ULF/ELF broadband noise represents a second type of magnetic fluctuation acquired by Viking. This type of magnetic fluctuation was observed at high latitudes near the polar cusp and may be useful in the identification of polar-cusp boundaries. Thirdly, electromagnetic ion-cyclotron waves have also been observed in the polar-cusp region. These waves occur only during an unusually high level of magnetic activity and appear to be generated locally

  19. Polarized neutron reflectometry on thin magnetic films

    International Nuclear Information System (INIS)

    Van Der Graaf, A.

    1997-01-01

    In order to be sensitive to magnetic scattering with X-rays very high intensities have to be used. This makes it necessary to use large installations like synchroton radiation sources providing high X-ray intensities. Polarized neutron experiments can be performed even at small reactors like the 2 MW reactor of IRI. In general polarized neutron reflectometry (PNR) is used to determine magnetization depth profiles, whereas X-ray reflectometry is used to study magnetic surfaces. Chapters 2 through 4 of this thesis are general chapters. The theory of neutron reflectometry is described in chapter 2, followed by a description of the ROG instrument (a time-of-flight reflectometer) in chapter 3, and chapter 4 deals with the data analysis. In the subsequent chapters PNR-experiments on different kinds of samples are discussed. First, experiments on a Co-Cr layer, a candidate to be used as perpendicular recording medium, are described in chapter 5. In chapter 6 it is shown that PNR can give information on metal evaporated videotapes, as presently available in every ordinary shop selling videotapes, and also on the writing process in these tapes. Chapter 7 deals with experiments on Fe/Si multilayers. The initial interest in such multilayers was to obtain information on magnetic coupling through a semiconductor. In chapter 8 PNR-experiments on spin-valve systems, that probably will be used as magnetic read head material, are described. Finally, chapter 9 gives some conclusions and recommendations for the future. 78 refs

  20. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  1. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  2. On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    Full Text Available Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to ~2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.

    Key words: Ionosphere (ionosphere–magnetosphere interactions; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  3. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  4. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  5. Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.

  6. NMR at earth's magnetic field using para-hydrogen induced polarization

    NARCIS (Netherlands)

    Hamans, B.C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S.S.; Tessari, M.

    2011-01-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal

  7. PALOMA: A Magnetic CV between Polars and Intermediate Polars

    Science.gov (United States)

    Joshi, Arti; Pandey, J. C.; Singh, K. P.; Agrawal, P. C.

    2016-10-01

    We present analyses of archival X-ray data obtained from the XMM-Newton satellite and optical photometric data obtained from 1 m class telescopes of ARIES, Nainital of a magnetic cataclysmic variable (MCV) Paloma. Two persistent periods at 156 ± 1 minutes and 130 ± 1 minutes are present in the X-ray data, which we interpret as the orbital and spin periods, respectively. These periods are similar to those obtained from the previous as well as new optical photometric observations. The soft-X-ray excess seen in the X-ray spectrum of Paloma and the averaged X-ray spectra are well fitted by two-temperature plasma models with temperatures of {0.10}-0.01+0.02 and {13.0}-0.5+0.5 keV with an Fe Kα line and an absorbing column density of 4.6 × 1022 cm-2. This material partially covers 60 ± 2% of the X-ray source. We also present the orbital and spin-phase-resolved spectroscopy of Paloma in the 0.3{--}10.0 {keV} energy band and find that the X-ray spectral parameters show orbital and spin-phase dependencies. New results obtained from optical and X-ray studies of Paloma indicate that it belongs to a class of a few magnetic CVs that seem to have the characteristics of both the polars and the intermediate polars.

  8. Circular polarization in a non-magnetic resonant tunneling device

    Directory of Open Access Journals (Sweden)

    Airey Robert

    2011-01-01

    Full Text Available Abstract We have investigated the polarization-resolved photoluminescence (PL in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW PL presents strong circular polarization (values up to -70% at 19 T. The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  9. NMR at earth's magnetic field using para-hydrogen induced polarization.

    Science.gov (United States)

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  11. Assembling the CMS yoke end-caps

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    A crane is used to piece together one of the end-caps that will provide the path for magnetic flux return on the CMS experiment. A total of six end-cap discs will be assembled before being positioned on the barrel yoke to complete the huge 12 500 tonne cylinder yoke. The magnetic field produced will be greater than any other solenoid created to date at 4 T, 100 000 times greater than the Earth's natural magnetic field, and will store enough energy to melt 18 tonnes of gold.

  12. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  13. Magnetization reversal of ferromagnetic nanoparticles induced by a stream of polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kozhushner, M.A.; Gatin, A.K.; Grishin, M.V.; Shub, B.R. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation); Kim, V.P.; Khomutov, G.B. [Faculty of Physics, Lomonosov Moscow State University, Lenin Gory 1-2, Moscow 119991 (Russian Federation); Ilegbusi, O.J. [University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450 (United States); Trakhtenberg, L.I. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation)

    2016-09-15

    The remagnetization of ferromagnetic Fe{sub 3}O{sub 4} nanoparticles of several thousand cubic nanometers by spin-polarized current is investigated. For this purpose, magnetite nanoparticles are synthesized and deposited on a conductive nonmagnetic substrate. The remagnetization is conducted in high-vacuum scanning tunneling microscope (STM). The STM tip from magnetized iron wire constitutes one electrode while the ferromagnetic nanoparticle on the graphite surface represents the second electrode. The measured threshold value of remagnetization current (I{sub thresh}=9 nA) is the lowest value of current at which remagnetization occurs. The change in nanoparticle magnetization is detected by the effect of giant magnetic resistance, specifically, the dependence of the weak polarized current (Imagnetization of the electrodes. The results indicate essential difference with available literature data on the influence of polarized current on magnetic moment of small ferromagnetic nanoclusters. The peculiarities of size dependence of the observed effects are explained. - Highlights: • Ferromagnetic nanoparticle in STM with ferromagnetic tip. • Change of the direction of nanoparticle magnetization by current I>I{sub cr}=9 nA. • GMR effect used to control change of magnetization.

  14. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. I. Fe XII

    International Nuclear Information System (INIS)

    House, L.L.

    1977-01-01

    A general formulation for the polarization of coronal emission lines is presented, and the physics is illustrated through application of the formulation to the lines of Fe XIII at 10747 and 10798 A. The goal is to present a foundation for the determination of the orientation of coronal magnetic fields from emission-line polarization measurements. The physics of emission-line polarization is discussed using the statistical equilibrium equations for the magnetic sublevels of a coronal ion. The formulation of these equations, which describe the polarization of the radiation field in terms of Stokes parameters, is presented; and the various rate parameters: both radiative and collisional: are considered. The emission Stokes vector is constructed from the solution of the equilibrium equations for a point in the corona where the magnetic field has an arbitrary orientation. On the basis of a model, a computer code for the calculation of emission-line polarization is briefly described and illustrated with a number of sample calculations for Fe XIII. Calculations are carried out for three-dimensional models that demonstrate the physics of the formation of emission-line polarization and illustrate how the degree of polarization and angle of polarization and their variations over the corona are related to the density and magnetic field structure. The models considered range from simple cases in which the density distribution with height is spherically symmetric and the field is radial or dipole to a complex case in which both the density and magnetic field distributions are derived from realistic three-dimensional distributions for the 1973 eclipse on the basis of K-coronameter measurements for the density and potential-field extrapolation of surface magnetic fields in the corona

  15. Spin polarization of a non-magnetic high g-factor semiconductor at low magnetic field

    International Nuclear Information System (INIS)

    Lee, J.; Back, J.; Kim, K.H.; Kim, S.U.; Joo, S.; Rhie, K.; Hong, J.; Shin, K.; Lee, B.C.; Kim, T.

    2007-01-01

    We have studied the spin polarization of HgCdTe by measuring Shubnikov-de Haas oscillations. The magnetic field have been applied in parallel and perpendicular to the current. Relatively long spin relaxation time was observed since only spin conserved transition is allowed by selection rules. The electronic spin is completely polarized when the applied magnetic field is larger than 0.5 Tesla, which can be easily generated by micromagnets deposited on the surface of the specimen. Thus, the spin-manipulation such as spin up/down junction can be realized with this semiconductor. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Applications of circularly polarized photons at the ALS with a bend magnet source

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High T c Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements

  17. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  18. Characterization of a magnetic trap by polarization dependent Zeeman spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Carsten Vandel; Lyngsøe, Jens Kristian; Thorseth, Anders

    2008-01-01

    This paper demonstrates a detailed experimental study of our cloverleaf magnetic trap for sodium atoms. By using polarization dependent Zeeman spectroscopy of our atomic beam, passing the magnetic trap region, we have determined important trap parameters such as gradients, their curvatures...

  19. A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-05-01

    Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).

  20. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  1. The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media

    International Nuclear Information System (INIS)

    Li, W.M.; Lim, W.K.; Shi, J.Z.; Ding, J.

    2013-01-01

    A systematic investigation of magnetic switching behavior of CoCrPt based capped media (perpendicularly coupled granular/continuous (CGC) media consisting of granular CoCrPt:SiO 2 TiO 2 Ta 2 O 5 /capped CoCrPt(B)) is performed by varying the thickness of the capped layer from 0 to 9 nm. The microscopic structures of CGC media with different thickness of capped layer are examined by transmission electron microscope. We find out that CoCrPt magnetic grains are separated by nonmagnetic oxide grain boundaries. Grain size and grain boundary are about 8.9 nm and 2 nm, respectively. The nonmagnetic oxide grain boundaries in the granular layer do not disappear immediately at the interface between the granular and capped layers. The amorphous grain boundary phase in the granular layer propagates to the top surface of the capped layer. After capping with the CoCrPt(B) layer, the grain size at the surface of CGC structure increases and the grain boundary decreases. Both coercivity and intergranular exchange coupling of the CGC media are investigated by Polar magneto-optic Kerr effect magnetometer and alternating gradient force magnetometer. Although H c apparently decreases at thicker capped layer, no obvious variation of macroscopic switching field distribution (SFD/H c ) is observed. We separate intrinsic switching field distribution from intergranular interactions. The investigation of reduced intrinsic SFD/H c and increased hysteresis loop slope at coercivity, suggests that improvement of absolute switching field distribution (SFD) is caused by both strong intergranular exchange coupling and uniform grain size. Micromagnetic simulation results further verify our conclusion that the capped layer in CGC media is not uniformly continuous but has some granular nature. However, grains in the CoCrPt(B) capped layer is not absolutely isolated, strong exchange coupling exists between grains. - Highlights: • In CGC media, CoCrPt magnetic grains are separated by nonmagnetic oxide

  2. Investigation of Fe3O4 Colloid Behaviour in a Magnetic Field by Polarized Neutron Transmission

    International Nuclear Information System (INIS)

    Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1994-01-01

    Experiments were conducted to measure the dependence of neutron polarization following their transmission through a magnetic colloid on the concentration of magnetic particles, magnetic field strength and wavelength of neutrons. In a magnetic field up to 500 Oe the precession of the neutron polarization is seen. Comparison of the experimental data and theory is made and colloid magnetization is determined. The measurement was carried out with the SPN-1 polarized neutron spectrometer at the high-flux pulsed reactor IBR-2 in Dubna. 7 refs., 2 figs

  3. Development of a neutron-polarizing device based on a quadrupole magnet and its application to a focusing SANS instrument

    International Nuclear Information System (INIS)

    Oku, Takayuki

    2009-01-01

    We have investigated suitable magnetic field distribution to polarize neutrons based only on the electromagnetic interaction between a neutron magnetic moment and magnetic field, and found out a quadrupole field was the most suitable among simple multipole fields. Then we constructed a quadrupole magnet with a Halbach magnetic circuit as the neutron polarizing device. A cold neutron polarizing experiment of the quadrupole magnet was performed at the beamline C3-1-2-1 (NOP) of JRR-3 at JAEA. By passing through the aperture of the quadrupole magnet, positive and negative polarity neutrons are accelerated in opposite directions and spatially separated. Therefore, we extracted the one-spin component and analyzed its polarization degree. As a result very high neutron polarization degree P=0.9993±0.0025 was obtained. Then the quadrupole magnet was installed into the polarized neutron focusing geometry SANS instrument SANS-J-II of JRR-3. The instrument performance was enhanced by about 10 times compared with the case with the magnetic supermirror as the neutron polarizing device. The details are shown and discussed. (author)

  4. Magnetic x-ray circular dichroism in spin-polarized photoelectron diffraction

    International Nuclear Information System (INIS)

    Waddill, G.D.; Tobin, J.G.

    1994-01-01

    The first structural determination with spin-polarized, energy-dependent photoelectron diffraction using circularly-polarized x-rays is reported for Fe films on Cu(001). Circularly-polarized x-rays produced spin-polarized photoelectrons from the Fe 2p doublet, and intensity asymmetries in the 2p 3/2 level are observed. Fully spin-specific multiple scattering calculations reproduced the experimentally-determined energy and angular dependences. A new analytical procedure which focuses upon intensity variations due to spin-dependent diffraction is introduced. A sensitivity to local geometric and magnetic structure is demonstrated

  5. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  6. ATLAS End Cap Toroid Magnets cold mass design and manufacturing status

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Densham, C J; Holtom, E; Morrow, D; Towndrow, E F; Luijckx, G; Geerinck, J

    2004-01-01

    The End Cap Toroid Magnets for the ATLAS experiment at LHC, CERN will contain eight racetrack coils mounted as a single cold mass in a cryostat vessel of approximately 10 m diameter. This paper presents the engineering design of the cold mass and gives the status of the industrial production. The cold mass mechanical structure consisting of 8 coils and keystone boxes is described. Coil fabrication from component assembly, coil winding to final impregnation will be reviewed. The design and industrial manufacture of the keystone box elements is given. The cold mass assembly methods and status are described. 3 Refs.

  7. Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization.

    Science.gov (United States)

    Kempa, M; Kamba, S; Savinov, M; Maryško, M; Frait, Z; Vaněk, P; Tomczyk, M; Vilarinho, P M

    2010-11-10

    We investigated ceramics samples of solid solutions of [PbFe(2/3)W(1/3)O(3)](x)-[PbZr(0.53)Ti(0.47)O(3)](1 - x) (PFW(x)-PZT(1 - x), x = 0.2 and 0.3) by means of broad-band dielectric spectroscopy, differential scanning calorimetry and SQUID magnetometry. We did not confirm the observations of Kumar et al (2009 J. Phys.: Condens. Matter 21 382204), who reported on reversible suppression of ferroelectric polarization in polycrystalline PFW(x)-PZT(1 - x) thin films for magnetic fields above 0.5 T. We did not observe any change of ferroelectric polarization with external magnetic fields up to 3.2 T. Pirc et al (2009 Phys. Rev. B 79 214114) developed a theory explaining the reported large magnetoelectric effect in PFW(x)-PZT(1 - x), taking into account relaxor magnetic and relaxor ferroelectric properties of the system. Our data revealed classical ferroelectric properties below 525 K and 485 K in samples with x = 0.2 and 0.3, respectively. Moreover, paramagnetic behavior was observed down to 4.5 K instead of previously reported relaxor magnetic behavior. It seems that the reported switching-off of ferroelectric polarization in PFW(x)-PZT(1 - x) thin films is not an intrinsic property, but probably an effect of electrodes, interlayers, grain boundaries or second phases presented in polycrystalline thin films.

  8. Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?

    Science.gov (United States)

    Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.

    2017-10-01

    I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).

  9. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    International Nuclear Information System (INIS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator. (paper)

  10. Polar Magnetic Field Reversals of the Sun in Maunder Minimum

    Indian Academy of Sciences (India)

    tribpo

    The data on polar migration of solar magnetic fields were obtained on the basis of. Η alpha magnetic synoptic charts for 1880 1991 using Kodaikanal, Kislovodsk and Italian observations, and Atlas of Η alpha charts (Mclntosh 1979; Makarov &. Fatianov 1980; Makarov & Sivaraman 1989; Makarov 1994). The Wolf numbers ...

  11. CLASSIFICATION FOR ANGLE-DEPENDENT POLARIZED PHOTOEMISSION SPECTRA USING MAGNETIC-MOMENTS ANALYSIS

    NARCIS (Netherlands)

    VANDERLAAN, G; THOLE, BT

    The angular distribution of photoelectrons from a core level or localized valence level excited with circularly or linearly polarized Xrays is shown to contain the complete one-electron information of the ground state of a magnetic polarized atom. We generalize the definition of the fundamental

  12. Study of a permanent-magnet dipole with variable field strength and polarity

    International Nuclear Information System (INIS)

    Honma, Toshihiro

    1996-01-01

    A proto-type dipole magnet employing permanent-magnet rods has been designed and constructed. The magnet is able to change the magnetic field strength continuously as well as the polarity of the field direction by rotating the rods. The magnet has a special advantage of high-field production within a small open space available. The magnet of this type will be used for beam steering at an extraction channel for a planned negative-ion acceleration in our cyclotron. The first important objective at the exit channel is to steer the beam extracted from the cyclotron by some dipole magnet onto the optical axis of a new beam line to be constructed. This is not a trivial task because available open space is too small to install a coil-type magnet. One of the selections is to use a permanent-magnet dipole because such a magnet is expected to provide a very high field in a small space when compared with a coil-type magnet. A proto-type permanent-magnet dipole (PMD) with variable field strength and polarity has been designed and constructed for such a purpose. (J.P.N.)

  13. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    International Nuclear Information System (INIS)

    Mrózek, M.; Rudnicki, D. S.; Gawlik, W.; Mlynarczyk, J.

    2015-01-01

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit may be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves

  14. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  15. The Hanle effect in a random magnetic field. Dependence of the polarization on statistical properties of the magnetic field

    Science.gov (United States)

    Frisch, H.; Anusha, L. S.; Sampoorna, M.; Nagendra, K. N.

    2009-07-01

    Context: The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field correlation length is much less than a photon mean free path. Aims: To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle effect on the magnetic field correlation length, its angular, and strength distributions. Methods: We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity. Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a polarized approximate lambda iteration method. Results: We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the magnetic field, while spectral lines with intermediate optical depths (around 10-100) show some sensitivity to this parameter. The result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution. Conclusions: The mean field derived from Hanle effect analysis of

  16. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  17. Fine structure of the magnetic spectrum of. cap alpha. -rays of ionium

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblum, S; Valadares, M; Vial, J

    1948-11-22

    Using as source of Io--Th an electrolytic deposit on Pt made in 1945 (27% Io), the authors studied the magnetic spectrum of the ..cap alpha..-radiation of Io from long-exposure photographs (4 to 21 days) submitted to a microscopic counting. From a simultaneously obtained ..cap alpha..-spectrum of ThC a ratio was obtained which permitted the assigning of a value of 4682 +- 10 keV to the energy of the most rapid group of Io. This group is separated from another, of a similar order of intensity, by 69 keV. A still slower group seems to exist at 170 keV from the first one (cf Ward, Proc Cambridge Phil Soc 35 322(1939)). There are indications that the groups are of a complex nature, which points to the possible existence either of a soft gamma spectrum or of a complicated beta spectrum. The presence of Ra accumulated since 1945 is visible on the spectra obtained; in a few years it will be possible to determine directly, by the method used, the half life of Ra.

  18. Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle

    Science.gov (United States)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2017-08-01

    We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983, Nature, 304, 401) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region Ω-loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper giving a full description of our dynamo scenario is posted on arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode

  19. Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization

    Czech Academy of Sciences Publication Activity Database

    Kempa, Martin; Kamba, Stanislav; Savinov, Maxim; Maryško, Miroslav; Frait, Zdeněk; Vaněk, Přemysl; Tomczyk, M.; Vilarinho, P. M.

    2010-01-01

    Roč. 22, č. 44 (2010), 445902/1-445902/5 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : dielectric and magnetic properties * ceramics * polarization * phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.332, year: 2010

  20. General relativistic razor-thin disks with magnetically polarized matter

    Science.gov (United States)

    Navarro-Noguera, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2018-06-01

    The origin of magnetic fields in the universe still remains unknown and constitutes one of the most intriguing questions in astronomy and astrophysics. Their significance is enormous since they have a strong influence on many astrophysical phenomena. In regards of this motivation, theoretical models of galactic disks with sources of magnetic field may contribute to understand the physics behind them. Inspired by this, we present a new family of analytical models for thin disks composed by magnetized material. The solutions are axially symmetric, conformastatic and are obtained by solving the Einstein-Maxwell Field Equations for continuum media without the test field approximation, and assuming that the sources are razor-thin disk of magnetically polarized matter. We find analytical expressions for the surface energy density, the pressure, the polarization vector, the electromagnetic fields, the mass and the rotational velocity for circular orbits, for two particular solutions. In each case, the energy-momentum tensor agrees with the energy conditions and also the convergence of the mass for all the solutions is proved. Since the solutions are well-behaved, they may be used to model astrophysical thin disks, and also may contribute as initial data in numerical simulations. In addition, the process to obtain the solutions is described in detail, which may be used as a guide to find solutions with magnetized material in General Relativity.

  1. Synthesis and characterization of magnetic Co nanoparticles: A comparison study of three different capping surfactants

    International Nuclear Information System (INIS)

    Lu Yu; Lu Xianmao; Mayers, Brian T.; Herricks, Thurston; Xia Younan

    2008-01-01

    This paper compares the performance of three long-chain acids-oleic and elaidic (both olefinic) and stearic (aliphatic)-as a capping agent in the synthesis of magnetic Co nanoparticles. The particles were formed through thermal decomposition of dicobalt octacarbonyl in toluene in the presence of the long-chain acid, and characterized by TEM, high-resolution TEM, and SQUID measurements. Infrared spectra revealed that some of the added olefinic acid was transformed from cis- to trans-configuration (for oleic acid) or from trans- to cis- (for elaidic acid) to facilitate the formation of a densely packed monolayer on the surface of Co nanoparticles. As compared to aliphatic acids, olefinic acids are advantageous for dense packing on small particles with high surface curvatures due to a bent shape of the cis-isomer. The presence of an olefinic acid is able to control particle growth, stabilize the colloidal suspension, and prevent the final product from oxidation by air. Our results indicate that oleic acid, elaidic acid, and a mixture of oleic/stearic acids or elaidic/stearic acids have roughly the same performance in serving as a capping agent for the synthesis of Co nanoparticles with a spherical shape and narrow size distribution. - Graphical abstract: Magnetic Co nanoparticles were synthesized in the presence of different capping agents and the effect of their molecular structures on the morphology of Co nanoparticles was analyzed. The transformation between cis- and trans-isomers of olefinic acids was critical to the formation of a densely packed monolayer on the surface of small nanoparticles characterized by high curvatures

  2. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  3. Change in the F region structure of a polar ionosphere at the change of the Y component sighn of the interplanetary magnetic field. Svalgaard-Mansurov effect in the ionosphere

    International Nuclear Information System (INIS)

    Gal'perin, Yu.I.; Zosimova, A.G.; Larina, T.N.; Mozhaev, A.M.; Osipov, N.K.; Ponomarev, Yu.N.

    1980-01-01

    Model calculations of the planetary picture of the polar ionosphere characteristics taking into account modern models of magnetospheric convection are carried out. The results of direct measurements of the lateral component of the convection rate in the day polar cusp region obtained by the ''Kosmos-184'' satellite in 1967 indicative of rotation of the zonal convection component direction with tha change of the Bsub(y) component sign of the interplanetary magnetic field (IMF). It is shown that the change of the IMF Bsub(y) sign and the following change of the convection picture in the polar cap must cause a quick (10 3 s) change of the planetary picture of the polar ionosphere characteristics in the F region peak and higher, i.e. ''the Svalgard-Mansurov ionospheric effect''. The amplitude of the variations and their character are defined by the relation of the solar and auroral ionization, and, therefore, they strongly depend on the universal time, season and auroral activity, that hampers comparison of the calculations with the experiment. The experimental data obtained from satellites and indicative of the reality of the described ionospheric Bsub(y) effect are presented. Thus, the data of many years on the ionospheric measurements from the Earth and satellites parallel with the magnetic measurements can be used to specify parameters describing the magnetospheric convection picture [ru

  4. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  5. Collection of ions in a plasma by magnetic field acceleration with selective polarization

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1976-01-01

    Method and apparatus are described for generating and accelerating ions in a vapor by use of relatively polarized laser radiation and a magnetic field. As applied to uranium isotope enrichment, a flowing uranium vapor has particles of the 235 U isotope type selectively ionized by laser radiation and the ionized flow is subjected to a transverse gradient in a magnetic field. The magnetic field gradient induces an acceleration on the ionized particles of 235 U which deflects them from their normal flow path toward a collecting structure. High magnetic field and corresponding high ion accelerations are achieved without loss in ionization selectivity by maintaining a polarization between the applied laser radiation and magnetic field which minimizes Zeeman splitting of the uranium energy states

  6. On the polarization of Herbig Ae/Be star radiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N I; Shevchenko, V S

    1987-08-01

    Results of multicolor UBVRI polarimetry of 14 Herbig Ae/Be stars including 7 stars for which observations of polarization have been made for the first time are presented. 6 bright Herbig Ae/Be stars (As 441, AS 442, LK H..cap alpha..134, LK H..cap alpha..135, Lk H..cap alpha..169 and V517 Cyg) which belong to star formation region connected with IC 5070 show the polarization from 1 to 4.5. per cent with similar theta (approx. 180 deg) (basically of interstellar nature). The polarimetrical variability of BD+46 deg 3471, BD+65 deg 1637, HD 200775 and Lk H..cap alpha..234 is confirmed. Mechanismes of polarization in Herbig Ae/Be stars in circumstellar formations are discussed.

  7. Multi-station basis for Polar Cap (PC) indices: ensuring credibility and operational reliability

    Science.gov (United States)

    Stauning, Peter

    2018-02-01

    The Polar Cap (PC) indices, PCN (North) and PCS (South) are based on polar geomagnetic observations from Qaanaaq (Thule) and Vostok, respectively, processed to measure the transpolar plasma convection that may seriously affect space weather conditions. To establish reliable space weather forecasts based on PC indices, and also to ensure credibility of their use for scientific analyses of solar wind-magnetosphere interactions, additional sources of data for the PC indices are investigated. In the search for alternative index sources, objective quality criteria are established here to be used for the selection among potential candidates. These criteria are applied to existing PC index series to establish a quality scale. In the Canadian region, the data from Resolute Bay magnetometer are shown to provide alternative PCN indices of adequate quality. In Antarctica, the data from Concordia Dome-C observatory are shown to provide basis for alternative PCS indices. In examples to document the usefulness of these alternative index sources it is shown that PCN indices in a real-time version based on magnetometer data from Resolute Bay could have given 6 h of early warning, of which the last 2 h were "red alert", up to the onset of the strong substorm event on 13 March 1989 that caused power outage in Quebec. The alternative PCS indices based on data from Dome-C have helped to disclose that presently available Vostok-based PCS index values are corrupted throughout most of 2011.

  8. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  9. Electrical polarization and orbital magnetization: the modern theories

    International Nuclear Information System (INIS)

    Resta, Raffaele

    2010-01-01

    Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M-phenomenologically known as bulk properties-apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out

  10. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  11. Chronological changes in the eighth cranial nerve compound action potential (CAP) in experimental endolymphatic hydrops: the effects of altering the polarity of click sounds.

    Science.gov (United States)

    Morizono, Tetsuo; Kondo, Tsuyoshi; Yamano, Takafumi; Miyagi, Morimichi; Shiraishi, Kimio

    2009-02-01

    Using a guinea pig model of experimental endolymphatic hydrops, click sounds of altered polarity showed different latencies and amplitudes in hydropic compared with normal cochleae. Latency changes appeared as early as 1 week after endolymphatic obstruction. This method can help diagnose endolymphatic hydrops. The goal of the study was to develop an objective electrophysiological diagnosis of endolymphatic hydrops. Endolymphatic hydrops were created surgically in guinea pigs. The latency and the amplitude of the eighth cranial nerve compound action potential (CAP) for click sounds of altered polarity were measured up to 8 weeks after the surgery. At early stages after surgery, the latency for condensation clicks became longer, and at later stages the latencies for both condensation and rarefaction became longer. The discrepancy in the latencies for rarefaction and condensation click sounds (rarefaction minus condensation) became larger by the first week after surgery, but no further discrepancy occurred thereafter. Compared with latency changes, amplitude changes in the CAP were rapid and progressive following surgery, suggesting ongoing damage to hair cells.

  12. SNR polarization and the direction of the magnetic field

    International Nuclear Information System (INIS)

    Milne, D.K.

    1988-01-01

    The authors are currently engaged in a program to map polarization in SNRs at 8.4 GHz. These results are compared with earlier Parkes 5 GHz maps to deduce the direction of magnetic field, Faraday rotation and depolarization

  13. Probing the magnetic profile of diluted magnetic semiconductors using polarized neutron reflectivity.

    Science.gov (United States)

    Luo, X; Tseng, L T; Lee, W T; Tan, T T; Bao, N N; Liu, R; Ding, J; Li, S; Lauter, V; Yi, J B

    2017-07-24

    Room temperature ferromagnetism has been observed in the Cu doped ZnO films deposited under an oxygen partial pressure of 10 -3 and 10 -5 torr on Pt (200 nm)/Ti (45 nm)/Si (001) substrates using pulsed laser deposition. Due to the deposition at relatively high temperature (873 K), Cu and Ti atoms diffuse to the surface and interface, which significantly affects the magnetic properties. Depth sensitive polarized neutron reflectometry method provides the details of the composition and magnetization profiles and shows that an accumulation of Cu on the surface leads to an increase in the magnetization near the surface. Our results reveal that the presence of the copper at Zn sites induces ferromagnetism at room temperature, confirming intrinsic ferromagnetism.

  14. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    Science.gov (United States)

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  15. Radical polarization in double switching of external magnetic field

    International Nuclear Information System (INIS)

    Lukzen, N.N.; Morozov, V.A.; Sagdeev, R.Z.

    1999-01-01

    Theoretical treatment of radical spin evolution under the action of double switching of external magnetic field is proposed. Account is taken of evolution of the radical spin state during laser pulse which generates paramagnetic particles. It is shown that the most effective beats in the nuclear magnetization of diamagnetic products of recombination occur upon the jump into zero magnetic field after laser pulse. The phase of observed beats bears information about the type of the initial radical polarization. The frequency of the beats is determined by radical hyperfine structure. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Pure spin polarized current through a full magnetic silicene junction

    Science.gov (United States)

    Lorestaniweiss, Zeinab; Rashidian, Zeinab

    2018-06-01

    Using the Landauer-Buttiker formula, we investigate electronic transport in silicene junction composed of ferromagnetic silicene. The direction of magnetization in the middle region may change in a plane perpendicular to the junction, whereas the magnetization direction keep fixed upward in silicene electrodes. We investigate how the various magnetization directions in the middle region affect the electronic transport. We demonstrate that conductance depends on the orientation of magnetizations in the middle region. It is found that by changing the direction of the magnetization in the middle region, a pure spin up current can be achieved. This achievement makes this full magnetic junction a good design for a full spin-up current polarizer.

  17. Spontaneous electric polarization in the B-site magnetic spinel GeCu2O4

    Science.gov (United States)

    Yanda, Premakumar; Ghara, Somnath; Sundaresan, A.

    2018-04-01

    We report the observation of a spontaneous electric polarization at the antiferromagnetic ordering temperature (TN ∼ 33 K) of Cu2+ ions in the B-site magnetic spinel GeCu2O4, synthesized at high pressure and high temperature. This compound is known to crystallize in a tetragonal structure (space group I41/amd) due to Jahn-Teller distortion of Cu2+ ions and exhibit a collinear up-up-down-down (↑↑↓↓) antiferromagnetic spin configuration below TN. We found a clear dielectric anomaly at TN, where an electric polarization appears in the absence of applied magnetic field. The electric polarization is suppressed by applied magnetic fields, which demonstrates that the compound GeCu2O4 is a type-II multiferroic.

  18. ATLAS end-caps 
on the move

    CERN Multimedia

    2007-01-01

    Two delicate and spectacular transport operations have been performed for ATLAS in recent weeks: the first end-cap tracker was installed in its final position, and one of the huge end-caps of the toroid magnet was moved to the top of the experiment’s shaft.

  19. Hyperspectral characterisation of the Martian south polar residual cap using CRISM

    Science.gov (United States)

    Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.

    2017-09-01

    We present our research on hyperspectral characterization of the Martian South Polar Residual Cap (SPRC), with a focus on the detection of organic signatures within the dust content of the ice. The SPRC exhibits unique CO2 ice sublimation features known colloquially as 'Swiss Cheese Terrain' (SCT). These flat floored, circular depressions are highly dynamic, and may expose dust particles previously trapped within the ice in the depression walls and partially on the floors. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions to establish their mineral composition, to eliminate the effects of ices on sub-pixel dusty features, and to assess whether ther might be signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 and H2O ice. Whilst no conclusive evidence for PAHs has been found, depression rims are shown to have higher water content than regions of featureless ice, and there are indications of magnesium carbonate within the dark, dusty regions.

  20. Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3

    Science.gov (United States)

    Bordács, S.; Farkas, D. G.; White, J. S.; Cubitt, R.; DeBeer-Schmitt, L.; Ito, T.; Kézsmárki, I.

    2018-04-01

    The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric monodomain single crystals of the room-temperature multiferroic BiFeO3 is studied using small-angle neutron scattering. The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of ˜5 T . In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization perpendicular to the rhombohedral axis.

  1. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity

    Science.gov (United States)

    Zhai, Xiaofang; Grutter, Alexander J.; Yun, Yu; Cui, Zhangzhang; Lu, Yalin

    2018-04-01

    Unambiguous magnetic characterization of room-temperature multiferroic materials remains challenging due in part to the difficulty of distinguishing their very weak ferromagnetism from magnetic impurity phases and other contaminants. In this study, we used polarized neutron reflectivity to probe the magnetization of B i6FeCoT i3O18 and LaB i5FeCoT i3O18 in their epitaxial thin films while eliminating a variety of impurity contributions. Our results show that LaB i5FeCoT i3O18 exhibits a magnetization of about 0.016 ±0.027 μB/Fe -Co pair at room temperature, while the B i6FeCoT i3O18 thin film only exhibits a weak magnetic moment below room temperature, with a saturation magnetization of 0.049 ±0.015 μB/Fe -Co pair at 50 K. This polarized-neutron-reflectivity study places an upper magnetization limit on the matrix material of the magnetically doped Aurivillius oxides and helps to clarify the true mechanism behind the room-temperature magnetic performance.

  2. High-gradient quadrupole magnet for a polarized-beam facility

    International Nuclear Information System (INIS)

    Smith, R.P.; Hoffman, J.A.; Kim, S.H.; Mataya, K.F.; Niemann, R.C.; Turner, L.R.

    1980-01-01

    A prototype quadrupole magnet with 2.8 m effective length is under design and construction for use in a polarized beam transport system at Fermi National Accelerator Laboratory. The operating gradient required is 50 T/m and the higher multipole error fields must not exceed a few parts in one thousand over a 10 cm diameter bore. For cryogenic efficiency the magnet will operate at 1000 amperes and a cold iron yoke will provide complete field shielding

  3. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  4. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  5. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  6. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  7. Ionization and electric field properties of auroral arcs during magnetic quiescence

    International Nuclear Information System (INIS)

    Robinson, R.M.; Mende, S.B.

    1990-01-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm 2 s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern

  8. Martian North Polar Water-Ice Clouds During the Viking Era

    Science.gov (United States)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  9. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Dirk, E-mail: sander@mpi-halle.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany); Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany)

    2013-08-15

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center.

  10. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Sander, Dirk; Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen

    2013-01-01

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center

  11. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun; Zhang, Q. Y.; Schwingenschlö gl, Udo

    2014-01-01

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we

  12. Development of accurate techniques for controlling polarization of a long wavelength neutron beam in very low magnetic fields. I

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Tasaki, Seiji; Akiyoshi, Tsunekazu; Eguchi, Yoshiaki; Hino, Masahiro; Achiwa, Norio.

    1995-01-01

    The purpose of our study is to develop accurate techniques for controlling polarization of a long wavelength neutron beam and to make a thin-film dynamical spin-flip device operated in magnetizing fields less than 100 gauss and in a shorter switching time up to 20 kHz. The device would work as a chopper for a polarized neutron beam and as a magnetic switching device for a multilayer neutron interferometer. We have started to develop multilayer polarizing mirrors functioning under magnetizing fields less than 100 gauss. The multilayers of Permalloy-Ge and Fe-Ge have been produced using the evaporation method under magnetizing fields of about 100 gauss parallel to the Si-wafer substrate surface. The hysteresis loop for in-plane magnetization of the multilayers were measured to discuss their feasibilities for the polarizing device functioning under very low magnetizing fields. The polarizing efficiencies of Fe-Ge and Permalloy-Ge multilayers were 95 % and 91 % with reflectivities of 50 % and 66 % respectively under magnetizing fields of 80 gauss. The report also discusses problems in applying these multilayer polarizing mirrors to ultracold neutrons. (author)

  13. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  14. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A. [University of California-Los Angeles, P.O. Box 957099, Los Angeles, California 90095 (United States)

    2016-11-15

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  15. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  16. Origin of the magnetic-field controlled polarization reversal in multiferroic TbMn2 O 5

    Science.gov (United States)

    Leo, N.; Meier, D.; Pisarev, R. V.; Park, S.; Cheong, S.-W.; Fiebig, M.

    2011-03-01

    The interplay of multi-dimensional complex magnetic order parameters leads to interesting effects like magnetically induced ferroelectricity. A particular interesting example is TbMn 2 O5 because of the associated magnetic-field controllable electric polarization. By optical second harmonic generation we show that the gigantic magnetoelectric effect originates in three independent ferroelectric contributions. Two of these are manganese-generated. The third contribution is related to the magnetism of the Tb 3+ sublattice and has not been identified so far. It mediates the remarkable magnetic-field induced polarization reversal. This model is verified by experiments on the isostructural YMn 2 O5 where Y3+ ions are nonmagnetic and only two polarization contributions are present and no magnetoelectric coupling is observed. These results underline the importance of the 3 d - 4 f -interaction for the intricate magnetoelectric coupling in the class of isostructural RMn 2 O5 compounds. This work was supported by the DFG through SFB 608.

  17. A study of the inferred interplanetary magnetic field polarity periodicities

    International Nuclear Information System (INIS)

    Xanthakis, J.; Tritakis, V.P.; Zerefos, Ch.

    1981-01-01

    A detailed Power Spectrum Analysis applied on the daily polarities of the inferred interplanetary magnetic field, published by Svalgaard, has pointed out that the main periodicity apparent in these data is 27-28 days, which suggests a recurrency of a 2-sector structure. There is also a secondary periodicity of 13-14 days which mainly appears in the yers of the descending branch of the solar cycle and superimposes on the 2-sector structure, transforming it into a 4-sector structure. A strict statistical study of the correlation between the predominant polarity of the interplanetary magnetic field and the heliographic latitude of the Earth, also known as the Rosenberg-Coleman effect, pointed out that perhaps there is a faint correspondence between these two elements, but one cannot speak of a systematic effect. (Auth.)

  18. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  19. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    Science.gov (United States)

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  20. The magnetic polarity stratigraphy of the Mauch Chunk Formation, Pennsylvania.

    Science.gov (United States)

    Opdyke, Neil D; DiVenere, Victor J

    2004-09-14

    Three sections of Chesterian Mauch Chunk Formation in Pennsylvania have been studied paleomagnetically to determine a Late Mississippian magnetic polarity stratigraphy. The upper section at Lavelle includes a conglomerate with abundant red siltstone rip-up clasts that yielded a positive conglomerate test. All samples were subjected to progressive thermal demagnetization to temperatures as high as 700 degrees C. Two components of magnetization were isolated: a synfolding "B" component and the prefolding "C" component. The conglomerate test is positive, indicating that the C component was acquired very early in the history of the sediment. A coherent pattern of magnetic polarity reversals was identified. Five magnetozones were identified in the upper Lavelle section, which yields a pattern that is an excellent match with the pattern of reversals obtained from the upper Mauch Chunk at the original type section of the Mississippian/Pennsylvanian boundary at Pottsville, PA. The frequency of reversals in the upper Mississippian, as identified in the Mauch Chunk Formation, is approximately one to two per million years, which is an average for field reversal through time.

  1. Refraction of polarized neutrons on the boundary in thick magnetic film FeAlSi

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V L; Kozhevnikov, S V; Nikitenko, Yu V [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Frank Lab. of Neutron Physics

    1999-07-01

    Complete text of publication follows. Refraction of polarized neutrons in multilayer structure FeAlSi(20 mkm)/Cr(0.05 mkm)/CaTiO{sub 3}(1000 mkm) has been investigated. An external magnetic field was applied under an angle to the sample surface. Refraction on themagnetic boundaries of two types has been investigated. First type is the boundary vacuum-magnetic film. Second type is magnetic film - non-magnetic substrate CaTiO{sub 3} (thin non-magnetic Cr layer doesn't refract the beam). On the boundary there are spin-flip and beam-splitting. Four spatial splitted beams were observed for different spin transitions on each type of the boundary: '+-', '++', '-+' and '--'. From the experimental values of the glancing angles of refracted beam the following parameters has been derives: the nuclear potentials of the magnetic film and the non-magnetic substrate, the magnitude and the direction of a magnetic induction in the magnetic film. It has been shown that the method of refractometry of polarized neutrons can be used for investigation of thick (about mkm) magnetic films. (author)

  2. Determination of the orientation of the white dwarf's magnetic axis from X-ray orbital light curves

    International Nuclear Information System (INIS)

    Andronov, I.L.

    1986-01-01

    The directional pattern of soft X-ray radiation produced in a ''polar cap'' on the white dwarf's surface is calculated taking into account the absorption in the axially symmetrical accretion column, homogeneous along its height. An algorithm for the determination of orientation of the magnetic axis of a compact star from orbital curves of soft X-ray flux, is suggested. The values of the orbital inclination i (51 deg <=i<64 deg) and the angle between the rotational and magnetic axes σ (30 deg <=σ<=34 deg) were calculated for the polar AM Herculis for different values of model parameters

  3. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  4. Structures Of Magnetically-Supported Filaments And Their Appearance In The Linear Polarization

    Science.gov (United States)

    Tomisaka, Kohji

    2017-10-01

    Dust thermal emissions observed with Herschel have revealed that interstellar molecular clouds consist of many filaments. Polarization observation of interstellar extinctions in the optical and near IR wavelengths shows that the dense filaments are extending perpendicular to the interstellar magnetic field. Magnetohydrostatic structures of such filaments are studied. It is well known that a hydrostatic filament without magnetic field has a maximum line mass of ¥lambda_max=2c_s^2/G (c_s:the isothermal sound speed and G: the gravitational constant). On the other hand, the magnetically-supported maximum line mass increases in proportion to the magnetic flux per unit length threading the filament (¥phi), as ¥lambda_max 2c_s^2/G + ¥phi/(2¥pi G^1/2). Comparison is made with 3D clouds. Stability of these magnetized filaments is studied using time-dependent 3D MHD simulations to discuss star formation in the filaments. Polarization pattern expected for the magnetically subcritical filaments is calculated. The distribution function of the angle between B-field and the axis of the filament, which is obtained with Planck Satellite, is compared with this mock observation.

  5. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  6. Cosmic microwave background polarization signals from tangled magnetic fields.

    Science.gov (United States)

    Seshadri, T R; Subramanian, K

    2001-09-03

    Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500polarization, which could help in their detection.

  7. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  8. CMS end-cap yoke at the detector's assembly site.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The magnetic flux generated by the superconducting coil in the CMS detector is returned via an iron yoke comprising three end-cap discs at each end (end-cap yoke) and five concentric cylinders (barrel yoke). This picture shows the first of three end-cap discs (red) seen through the outer cylinder of the vacuum tank which will house the superconducting coil.

  9. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  10. Magnetism of a Co monolayer on Pt(111) capped by overlayers of 5 d elements: A spin-model study

    Science.gov (United States)

    Simon, E.; Rózsa, L.; Palotás, K.; Szunyogh, L.

    2018-04-01

    Using first-principles calculations, we study the magnetic properties of a Co monolayer on a Pt(111) surface with a capping monolayer of selected 5 d elements (Re, Os, Ir, Pt, and Au). First we determine the tensorial exchange interactions and magnetic anisotropies characterizing the Co monolayer for all considered systems. We find a close relationship between the magnetic moment of the Co atoms and the nearest-neighbor isotropic exchange interaction, which is attributed to the electronic hybridization between the Co and the capping layers, in the spirit of the Stoner picture of ferromagnetism. The Dzyaloshinskii-Moriya interaction is decreased for all overlayers compared to the uncapped Co/Pt(111) system, while even the sign of the Dzyaloshinskii-Moriya interaction changes in the case of the Ir overlayer. We conclude that the variation of the Dzyaloshinskii-Moriya interaction is well correlated with the change of the magnetic anisotropy energy and of the orbital moment anisotropy. The unique influence of the Ir overlayer on the Dzyaloshinskii-Moriya interaction is traced by scaling the strength of the spin-orbit coupling of the Ir atoms in Ir/Co/Pt(111) and by changing the Ir concentration in the Au1 -xIrx /Co/Pt(111) system. Our spin dynamics simulations indicate that the magnetic ground state of Re/Co/Pt(111) thin film is a spin spiral with a tilted normal vector, while the other systems are ferromagnetic.

  11. Photometry and Multipolar Magnetic Field Modeling of Polars: BY Camelopardalis and FL Ceti

    Directory of Open Access Journals (Sweden)

    P. A. Mason

    2015-02-01

    Full Text Available We present new broad band optical photometry of two magnetic cataclysmic variable stars, the asynchronous polar BY Camelopardalis and the short period polar FL Ceti. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald Observatory with 3s and 1s integration times respectively. In an attempt to understand the observed complex changes in accretion flow geometry observed in BY Cam, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures. We investigate fields with increasing complexity including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry at various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are broadly consistent with optical photometry. FL Ceti is observed to have two very small accretion regions at the foot-points of the white dwarf’s magnetic field. Both accretion regions are visible at the same time in the high state and are about 100 degrees apart. MHD modeling using a dipole plus quadrupole field structure yields quite similar accretion regions as those observed in FL Ceti. We conclude that accretion flows calculated from MHD modeling of multi-polar magnetic fields produce synthetic light curves consistent with photometry of these magnetic cataclysmic variables.

  12. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  13. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  14. Nanomagnetic behavior of fullerene thin films in Earth magnetic field in dark and under polarization light influences.

    Science.gov (United States)

    Koruga, Djuro; Nikolić, Aleksandra; Mihajlović, Spomenko; Matija, Lidija

    2005-10-01

    In this paper magnetic fields intensity of C60 thin films of 60 nm and 100 nm thickness under the influence of polarization lights are presented. Two proton magnetometers were used for measurements. Significant change of magnetic field intensity in range from 2.5 nT to 12.3 nT is identified as a difference of dark and polarization lights of 60 nm and 100 nm thin films thickness, respectively. Specific power density of polarization light was 40 mW/cm2. Based on 200 measurement data average value of difference between magnetic intensity of C60 thin films, with 60 nm and 100 nm thickness, after influence of polarization light, were 3.9 nT and 9.9 nT respectively.

  15. Magnetic field-dependent polarization of (111)-oriented PZT–Co ferrite nanobilayer: Effect of Co ferrite composition

    Energy Technology Data Exchange (ETDEWEB)

    Khodaei, M. [Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Seyyed Ebrahimi, S.A., E-mail: saseyyed@ut.ac.ir [Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Jun Park, Yong [Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Son, Junwoo; Baik, Sunggi [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2015-05-15

    The perfect (111)-oriented PZT/CFO (CFO=CoFe{sub 2}O{sub 4}, Co{sub 0.8}Fe{sub 2.2}O{sub 4} and Co{sub 0.6}Mn{sub 0.2}Fe{sub 2.2}O{sub 4}) bilayer multiferroic thin films were grown on Pt(111)/Si substrate at 600 °C using pulsed laser deposition technique. The precision X-ray diffraction analysis (avoiding the shift of peak due to the sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and deposition of PZT top layer led to more increase in the out-of-plane contraction, i.e. increase in the residual stresses. The PZT and CFO layers have significant effects on magnetic and ferroelectric properties of PZT/CFO bilayer films, respectively, leading to an enhanced in-plane magnetic anisotropy as well as increased and asymmetric polarization. The effect of composition of CFO layer on magnetic field-dependent polarization of PZT/CFO bilayer films was investigated by applying the magnetic field during P-E measurement. The polarization of PZT films were increased by applying the magnetic field as a result of strain transferred from magnetostrictive CFO underlayer. This increase in polarization for PZT/Co{sub 0.6}Mn{sub 0.2}Fe{sub 2.2}O{sub 4} was higher than that for PZT/Co{sub 0.8}Fe{sub 2.2}O{sub 4} and both of them were significantly higher than that for PZT/CoFe{sub 2}O{sub 4} bilayer film, which was discussed based on their magnetostriction properties. - Highlights: • The effect of composition of CFO on P–E characteristics of PZT/CFO films was investigated. • The polarization of PZT films were increased by applying the magnetic field. • The increasing polarization was a result of strain from magnetostrictive CFO underlayer.

  16. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films

    KAUST Repository

    Lu, Chengliang; Dong, Shuai; Xia, Zhengcai; Luo, Hui; Yan, Zhibo; Wang, Haowen; Tian, Zhaoming; Yuan, Songliu; Wu, Tao; Liu, Junming

    2013-01-01

    magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ?800% upon a field of 2 Tesla at 2 K) in DyMnO3 thin films grown on Nb-SrTiO3 substrates. Accompanying with the large polarization enhancement

  17. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  18. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  19. Recognition of primary and diagenetic magnetizations to determine the magnetic polarity record and timing of deposition of the moat-fill rocks of the Oligocene Creede Caldera, Colorado

    Science.gov (United States)

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.

    2000-01-01

    Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by

  20. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  1. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  2. Long-term analysis of ionospheric polar patches based on CHAMP TEC data

    DEFF Research Database (Denmark)

    Noja, M.; Stolle, Claudia; Park, J.

    2013-01-01

    Total electron content (TEC) from LEO satellites offers great possibility to sound the upper ionosphere and plasmasphere. This paper describes a method to derive absolute TEC observations aboard CHAMP considering multipath effects and receiver differential code bias. The long-term data set of 9...... years GPS observations is used to investigate the climatological behavior of high-latitude plasma patches in both hemispheres. The occurrence of polar patches has a clear correlation with the solar cycle, which is less pronounced in the Southern Hemisphere (SH). Summed over all years, we observed...... a higher number of patches in the SH. The maximum occurrence rate of patches has been found at the dayside polar cusp during 12:00-18:00 MLT (magnetic local time) supporting the mechanisms for patch creation by local particle precipitation and by intrusion of subauroral plasma into the polar cap through...

  3. Some problems associated with the inversion of polar magnetic substorm data recorded at the Earth's surface

    International Nuclear Information System (INIS)

    Mareschal, M.

    1975-01-01

    The major thrust of this dissertation was to test an original method for resolving the current system associated with polar magnetic substorms from ground based magnetic observations. This method is based on a general technique of inversion reviewed by Wiggins in 1972 and appears to give quite satisfactory results, at least, when the current system considered is simulated by a three-dimensional current system consisting of field-aligned currents flowing down to the ionosphere, westward in the ionosphere, and back up again to the magnetosphere. Conclusions suggest that, for the purpose of inverting polar magnetic substorm data with the use of the three-dimensional model of current, the Earth's induction effects can be simulated by introducing a perfectly conducting layer inside the Earth. However, the depth of this equivalent conductor should be allowed to vary with the source frequency as the substorm develops with time. To determine how satisfactorily each model parameter could be expected to be resolved during the process of inversion, a study of the magnetic disturbance variations under specific parameter variations was then performed. The results of that study were encouraging enough to foster the inversion of an actual polar magnetic substorm data, the event of June 15, 1970. Despite the success of the enterprise, it seems reasonable to suggest that the technique of inversion should be further tested before being systematically used to resolve polar magnetic substorms

  4. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  5. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  6. Magnetic field calculation of variably polarizing undulator (APPLE-type) for SX beamline in the SPring-8

    International Nuclear Information System (INIS)

    Kobayashi, Hideki; Sasaki, Shigemi; Shimada, Taihei; Takao, Masaru; Yokoya, Akinori; Miyahara, Yoshikazu

    1996-03-01

    This paper describes the design of a variably polarizing undulator (APPLE-type) to be installed in soft X-ray beamline in the SPring-8 facility. The magnetic field distribution and radiation spectrum expected from this undulator were calculated. The magnetic field strength is varied by changing the gap distance of upper and lower jaws, so it changes the photon energy in soft X-ray range. By moving the relative position of pairs of magnet rows (phase shift), the polarization of radiation is varied circularly, elliptically and linearly in the horizontal and vertical direction. We expect that right and left handed circular polarizations are obtained alternately at a rate of 1 Hz by high speed phase shifting. The repulsive and attractive magnetic force working on the magnet rows were calculated which interfere in phase shifting at high speed. The magnetic force changes with gap distance and phase shift position, and the magnetic force working on a row in the direction of phase shift becomes up to 500 kgf. The construction of this undulator is started in 1996, that will be inserted in the storage ring in 1997. (author)

  7. ATLAS End-cap Part II

    CERN Multimedia

    2007-01-01

    The epic journey of the ATLAS magnets is drawing to an end. On Thursday 12 July, the second end-cap of the ATLAS toroid magnet was lowered into the cavern of the experiment with the same degree of precision as the first (see Bulletin No. 26/2007). This spectacular descent of the 240-tonne component, is one of the last transport to be completed for ATLAS.

  8. Coulombian Model for 3D Analytical Calculation of the Torque Exerted on Cuboidal Permanent Magnets with Arbitrarly Oriented Polarizations

    OpenAIRE

    Allag , Hicham; Yonnet , Jean-Paul; Latreche , Mohamed E. H.; Bouchekara , Houssem

    2011-01-01

    International audience; The paper proposes improved analytical expressions of the torque on cuboidal permanent magnets. Expressions are valid for any relative magnet position and for any polarization direction. The analytical calculation is made by replacing polarizations by distributions of magnetic charges on the magnet poles (Coulombian approach). The torque exerted on the second magnet is calculated by Lorentz force formulas for any arbitrary position. The three components of the torque a...

  9. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    International Nuclear Information System (INIS)

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-01-01

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  10. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    International Nuclear Information System (INIS)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.

    2013-01-01

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the ∼0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B ∼ 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  11. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    Energy Technology Data Exchange (ETDEWEB)

    De la Chevrotiere, A.; St-Louis, N.; Moffat, A. F. J. [Departement de Physique, Universite de Montreal and Centre de Recherche en Astrophysique du Quebec (CRAQ), C. P. 6128, succ. centre-ville, Montreal (Quebec) H3C 3J7 (Canada); Collaboration: MiMeS Collaboration

    2013-02-20

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the {approx}0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B {approx} 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  12. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  13. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  14. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  15. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  16. Magnetic field reversals, polar wander, and core-mantle coupling.

    Science.gov (United States)

    Courtillot, V; Besse, J

    1987-09-04

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.

  17. Interannual and seasonal changes in the south seasonal polar cap of Mars: Observations from MY 28-31 using MARCI

    Science.gov (United States)

    Calvin, W. M.; Cantor, B. A.; James, P. B.

    2017-08-01

    The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.

  18. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  19. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  20. Surface magnetism studied by polarized light emission after He+ scattering

    NARCIS (Netherlands)

    Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R

    Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of

  1. Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2004-04-01

    Full Text Available Polar cap absorption (PCA events recorded during November 2001 are investigated by observations of ionospheric absorption of a 30MHz riometer installed at Terra Nova Bay (Antarctica, and of solar proton flux, monitored by the NOAA-GOES8 satellite in geo-synchronous orbit. During this period three solar proton events (SPE on 4, 19 and 23 November occurred. Two of these are among the dozen most intense events since 1954 and during the current solar cycle (23rd, the event of 4 November shows the greatest proton flux at energies >10MeV. Many factors contribute to the peak intensity of the two SPE biggest events, one is the Coronal Mass Ejection (CME speed, other factors are the ambient population of SPE and the shock front due to the CME. During these events absorption peaks of several dB (~20dB are observed at Terra Nova Bay, tens of minutes after the impact of fast halo CMEs on the geomagnetic field.

    Results of a cross-correlation analysis show that the first hour of absorption is mainly produced by 84–500MeV protons in the case of the 4 November event and by 15–44MeV protons for the event of 23 November, whereas in the entire event the contribution to the absorption is due chiefly to 4.2–82MeV (4 November and by 4.2–14.5MeV (23 November. Good agreement is generally obtained between observed and calculated absorption by the empirical flux-absorption relationship for threshold energy E0=10MeV. From the residuals one can argue that other factors (e.g. X-ray increases and geomagnetic disturbances can contribute to the ionospheric absorption.

    Key words. Ionosphere (Polar Ionosphere, Particle precipitation – Solar physics (Flares and mass ejections

  2. The Effect of an Offset Polar Cap Dipolar Magnetic Field on the Modeling of the Vela Pulsar's Gamma-Ray Light Curves

    Science.gov (United States)

    Barnard, M.; Venter, C.; Harding, A. K.

    2016-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.

  3. Further comments on the effects of vacuum birefringence on the polarization of X-rays emitted from magnetic neutron stars

    Science.gov (United States)

    Chanan, G. A.; Novick, R.; Silver, E. H.

    1979-01-01

    The birefringence of the vacuum in the presence of strong (of the order of 1 teragauss) magnetic fields will in general affect the polarization of X-rays propagating through these fields. Two of the four Stokes parameters will vary so rapidly with wavelength as to be 'washed out' and unobservable, but the remaining two parameters will be unaffected. These results show that one conclusion of an earlier work is incorrect: Polarized X-ray emission from the surface of a magnetic neutron star will not in general be completely depolarized by the effects of vacuum birefringence. In particular, this birefringence has no effect on the linear polarization of cyclotron emission from the poles of magnetic neutron stars, and a similar result holds for synchrotron emission. More general cases of the propagation of polarized X-rays in magnetic fields are also discussed.

  4. Evolution of the microstructure, chemical composition and magnetic behaviour during the synthesis of alkanethiol-capped gold nanoparticles

    International Nuclear Information System (INIS)

    Guerrero, E.; Rojas, T.C.; Multigner, M.; Crespo, P.; Munoz-Marquez, M.A.; Garcia, M.A.; Hernando, A.; Fernandez, A.

    2007-01-01

    In the present paper, we show an exhaustive microstructural characterization of thiol-capped gold nanoparticles (NPs) with two different average particle sizes. These samples are compared with the polymer-like Au(I) phase formed as a precursor during the synthesis of the thiol-capped gold NPs. The set of analysed samples shows different microstructures at the nanoscale with different proportions of Au atoms bonded either to S or to Au atoms. It has been experimentally shown that the presence of a ferromagnetic-like behaviour is associated to the formation of NPs with simultaneous presence of Au-Au and Au-S bonds. In order to explain such magnetic behaviour a possible model is proposed based on the spin-orbit coupling so that localized charges and/or spins (Au-S bonds) can trap conduction electrons (Au-Au bonds) in orbits

  5. Probing defect and magnetic structures on the nanoscale

    OpenAIRE

    Kallis, Alexis

    2010-01-01

    This thesis reports on experimental research on structural defects and magnetic species on the nanoscale. The latter project involved considerable development work on the production of a spin-polarised mono-energetic positron beam. The construction of the system is described through various trial steps with emphasis on the methods of maximum practical polarization of the positron beam and of electrons in the sample with the smallest possible loss of beam intensity. A new sodium-22 source caps...

  6. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  7. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  8. Pulsar magnetic alignment. The drifting subpulses

    International Nuclear Information System (INIS)

    Jones, P.B.

    1977-01-01

    According to Ruderman and Sutherland (Ap.J.;196:51 (1975)) the subpulse drift observed in certain pulsars is a consequence of the circulation around the magnetic axis of electron-positron discharges occurring within an acceleration region near the polar cap. The predicted period of circulation P 3 is of the correct order of magnitude, but the sense of circulation and therefore the direction of subpulse drift is not consistent with indirect evidence, from observed integrated pulse widths, on the variation with pulsar age of the angle between the spin and magnetic axes. It is shown that this problem is resolved by a model of the acceleration electric field based on space charge limited ion flow. (author)

  9. The effect of reducing agents on the electronic, magnetic and electrocatalytic properties of thiol-capped Pt/Co and Pt/Ni nanoparticles

    CSIR Research Space (South Africa)

    Mathe, NR

    2015-05-01

    Full Text Available The electronic, magnetic and electrocatalytic properties of bimetallic thiol-capped Pt/Co and Pt/Ni nanoparticles were synthesised using two reducing agents, NaBH(sub4) and N(sub2)H(sub4). X-ray diffraction analysis of the nanoparticles showed Pt...

  10. Magnetic moment of $^{17}$Ne using beta -NMR and tilted foil polarization

    CERN Document Server

    Baby, L T; Hass, M; Haas, H; Weissman, L; Brown, B A

    2004-01-01

    We report on the measurement of the magnetic moment of the ground state of /sup 17/Ne. Radioactive /sup 17/Ne nuclei were delivered from the high resolution mass separator at ISOLDE onto a high voltage platform at -200 kV and were polarized using the tilted foil polarization method. The polarized nuclei were implanted into a Pt stopper situated in a liquid-helium cooled beta -NMR apparatus and the asymmetry destruction of the ensuing beta rays was monitored as a function of the rf frequency applied to the polarized nuclei. The measured value of mu = 0.74 +or- 0.03 affirms the nu p/sub 1/2//sup - / nature of the ground state of /sup 17/Ne and is compared to shell model calculations. (10 refs).

  11. Polar cap magnetic field reversals during solar grand minima: could pores play a role?

    Czech Academy of Sciences Publication Activity Database

    Švanda, Michal; Brun, A.S.; Roudier, T.; Jouve, L.

    2016-01-01

    Roč. 586, February (2016), A123/1-A123/11 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-04338S Institutional support: RVO:67985815 Keywords : dynamo * Sun * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  12. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  13. The effect of colloidal stabilization upon ferrimagnetic resonance in magnetic fluids in the presence of a polarizing magnetic field

    CERN Document Server

    Fannin, P C; Socoliuc, V; Istratuca, G M; Giannitsis, A T

    2003-01-01

    The complex magnetic susceptibility of two magnetic fluids, with different degrees of colloidal stabilization, has been measured over the frequency range 100 MHz to 6 GHz. The colloidal stabilization of the magnetic fluids has been investigated using magneto-optical measurements. Based on complex magnetic susceptibility measurements, chi(omega) chi'(omega)-i chi''(omega), the dependence of the maximum absorption frequency at resonance, f sub m sub a sub x , and of line width, DELTA f, on an external magnetic polarizing field, H, over the range 0-1.45 kOe, has been examined for both magnetic fluids. The experimental results have been interpreted in terms of magnetic interparticle interactions and particle agglomeration.

  14. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  15. The interaction of a magnetic cloud with the Earth - Ionospheric convection in the Northern and Southern Hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions

    Science.gov (United States)

    Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.

    1993-01-01

    Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.

  16. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  17. Comparison of Mars Northern Cap Edge Advance and Recession Rates over the Last 6 Mars Years

    Science.gov (United States)

    Titus, T. N.; Cushing, G. E.; Langevin, Y.; Brown, A. J.; Themis Science Team; CRISM Science Team

    2011-12-01

    The most observable parameter that describes the Mars polar seasonal caps is their size, which has been measured since the days of Herschel. The advance and retreat of the polar cap from year to year may exhibit many clues to help elucidate little understood physical processes. For example, summertime heat storage in the regolith could delay the onset of seasonal CO2 cap formation. The evolution of the seasonal cap could also be directly affected by the thermal inertia of the near-surface regolith and place constraints on the depth of the ice table. Parameterizations of the seasonal cap edges provide useful constraints on atmospheric GCMs and mesoscale models. Longitudinally resolving the cap edges as they advance and retreat constrains the times when zonal means are appropriate and when longitudinal asymmetries make zonal means invalid. These same kinds of parameterizations can also be used when modeling other data that have low spatial resolutions, such as Gamma Ray Spectrometer (GRS )and Neutron Spectrometer (NS) data. By knowing where the cap edge should be, coarse spatial data can correct for subpixel mixing caused by large point-spread functions including both frosted and frost-free areas. The northern cap exhibits a near symmetric retreat, which has been well characterized at visible wavelengths by both telescopic and spacecraft observations. However, the advance of the cap has not been well characterized until the 21st century. Kieffer and Titus (2001) have used zonal means to observe surface temperature and visible bolometric albedo variations with season using MGS/TES. The TES thermal observations show an almost perfectly symmetrical advance; i.e., condensation at consistent latitude across all longitudes, with the most northern edge of the seasonal cap occurring between longitudes 245°E to 265°E and the most southern edge of the seasonal cap occurring between 280°E and 30°E. The advance of the northern cap typically leads the advance of the edge of

  18. Magnetic shielding for a transversely polarized target in the longitudinal field of the PANDA solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold; Ahmed, Samer; Dbeyssi, Alaa; Mora Espi, Maria Carmen; Gerz, Kathrin; Lin, Dexu; Maas, Frank; Martinez, Ana Penuelas; Morales, Cristina; Wang, Yadi [Helmholtz Institut Mainz (Germany); Aguar Bartolome, Patricia [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A transversely polarized target in PANDA would allow for the first time access to the imaginary part of the time like electromagnetic proton form factors, namely the phase angle in the imaginary plane between electric and magnetic form factors. Moreover it would allow for a number of other target single spin asymmetries revealing nucleon structure observables connected with the transverse spin structure of the proton. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present experimental results on intense magnetic flux shielding using a BSCCO-2212 high temperature superconducting hollow cylinder at liquid helium temperature.

  19. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  20. Spontaneous and trigger-associated substorms compared: Electrodynamic parameters in the polar ionosphere

    Science.gov (United States)

    Liu, Jun-Ming; Zhang, Bei-Chen; Kamide, Y.; Wu, Zhen-Sen; Hu, Ze-Jun; Yang, Hui-Gen

    2011-01-01

    An attempt is made to study the difference, if any, between the response of the polar ionosphere to spontaneous substorms and that to trigger-associated substorms in terms of electrodynamic parameters including ionospheric current vectors, the electric potential, and the current function. The results show that, in the first approximation, the ionospheric parameters for the two types of substorms are quite similar. It is therefore conceived that spontaneous substorms are not very different from trigger-associated substorms in the development of substorm processes in the magnetosphere-ionosphere system. We demonstrate, however, that spontaneous substorms seem to have a more clearly identifiable growth phase, whereas trigger-associated substorms have a more powerful unloading process. Changes in the current intensity and the electric potential drop across the polar cap in the recovery phase are also quite different from each other. Both the current intensity and the cross-polar cap potential drop show a larger decrease in the recovery phase of trigger-associated substorms, but the potential drop decreases only slightly and the currents in the late morning sector are still strong for spontaneous substorms. We interpret these findings as an indication of the relative importance of the unloading process and the directly driven process in conjunction with the north-south polarity of the interplanetary magnetic field. There still exists a strong directly driven process in the recovery phase of spontaneous substorms. For trigger-associated substorms, however, both the directly driven process and the unloading process become weak after the peak time.

  1. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite

    Science.gov (United States)

    Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev

    2018-02-01

    Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.

  2. Lift, drag, and guidance forces on alternating polarity magnets, using loop guideways

    International Nuclear Information System (INIS)

    Lindenbaum, S.D.; Lee, M.S.

    1975-01-01

    Exact solutions of track current, lift force, and drag force, together with their velocity dependence, have been computed for a vehicle carrying a finite number of fixed current alternating polarity superconducting magnets, suspended at various heights over structured track guideways of the single- and double-loop (''null'') types. Results for the double-loop case are compared with those of a previously reported approximate analysis. The analytical method is then applied to a study of a low-drag guidance loop guideway which is integrable with lift loop guideways utilizing a common set of vehicle magnets. Solutions are obtained for guidance track restoring forces, lateral destabilization forces, and lift force degradation as functions of lateral displacement from symmetry. The dependence of lift, drag, and lift-to-drag on track loop parameters is studied and the linear dependence of lift-to-drag on loop time constant confirmed. The contribution to the forces made by successive addition of alternating polarity magnets is calculated and the marked reduction in lift force pulsation noted

  3. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    Science.gov (United States)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on

  4. Working on an LHC dipole end-cap

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A metal worker constructs an end-cap for an LHC dipole magnet. These magnets will be used to bend the proton beams around the LHC, which is due to start up in 2008. The handmade prototype seen here will be used to make a mold from which the final set of components will be made for the accelerator.

  5. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  6. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  7. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  8. Auroral and magnetic variations in the polar cusp and cleft. Signatures of magnetopause boundary layer dynamics

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.

    1987-10-01

    By combining continous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationships with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships, simultaneous groundbased observations of the midday and evening-midnight sectors of the auroral oval, is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMF B z is repeated occurrence of certain short-lived auroral structures moving in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath

  9. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  10. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio (IAFE), C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States); Moffett, David A., E-mail: ereynoso@iafe.uba.ar, E-mail: jph@physics.rutgers.edu, E-mail: david.moffett@furman.edu [Department of Physics, Furman University, Greenville, SC 29613 (United States)

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while

  11. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    International Nuclear Information System (INIS)

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A.

    2013-01-01

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 ± 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of ∼12 rad m –2 is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient

  12. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  13. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    Science.gov (United States)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  14. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  15. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  16. Separation and correlation of structural and magnetic roughness in a Ni thin film by polarized off-specular neutron reflectometry.

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2009-02-04

    Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

  17. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  18. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Serpico, C.; d'Aquino, M.; Mayergoyz, I. D.; Bonin, R.

    2005-01-01

    Full text: Considerable interest has been generated in recent years by the discovery that a current of spin-polarized electrons can apply appreciable torques to a nanoscale ferromagnet. This mechanism was theoretically predicted and subsequently confirmed by a number of experiments which have shown that spin transfer can indeed induce switching or microwave oscillations of the magnetization. Significant efforts have been devoted to the explanation of these results, in view of the new physics involved and of the possible applications to new types of current-controlled memory cells or microwave sources and resonators . However, the precise nature of magnetization dynamics when spin-polarized currents and external magnetic fields are simultaneously present has not yet been fully understood. The spin-transfer-driven nanomagnet is a nonlinear open system that is forced far from equilibrium by the injection of the current. Thus, the appropriate framework for the study of the problem is nonlinear dynamical system theory and bifurcation theory. In this talk, it is shown that within this framework the complexity and subtlety of spin-torque effects are fully revealed and quantified, once it is recognized that both intrinsic damping and spin transfer can be treated as perturbations of the free precessional dynamics typical of ferromagnetic resonance. Complete stability diagrams are derived for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching; for the amplitude and frequency of magnetization self-oscillations; for the conditions leading to hysteretic transitions between self-oscillations and stationary states

  19. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  20. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  1. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    Science.gov (United States)

    Yang, Jing; Zhang, Jiasen

    2013-04-08

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  2. Polarization transfer in relativistic magnetized plasmas

    Science.gov (United States)

    Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme

    2013-04-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a

  3. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films

    KAUST Repository

    Lu, Chengliang

    2013-12-02

    The mutual controls of ferroelectricity and magnetism are stepping towards practical applications proposed for quite a few promising devices in which multiferroic thin films are involved. Although ferroelectricity stemming from specific spiral spin ordering has been reported in highly distorted bulk perovskite manganites, the existence of magnetically induced ferroelectricity in the corresponding thin films remains an unresolved issue, which unfortunately halts this step. In this work, we report magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ?800% upon a field of 2 Tesla at 2 K) in DyMnO3 thin films grown on Nb-SrTiO3 substrates. Accompanying with the large polarization enhancement, the ferroelectric coercivity corresponding to the magnetic chirality switching field is significantly increased. A picture based on coupled multicomponent magnetic structures is proposed to understand these features. Moreover, different magnetic anisotropy related to strain-suppressed GdFeO 3-type distortion and Jahn-Teller effect is identified in the films.

  4. CHANGE OF MAGNETIC FIELD-GAS ALIGNMENT AT THE GRAVITY-DRIVEN ALFVÉNIC TRANSITION IN MOLECULAR CLOUDS: IMPLICATIONS FOR DUST POLARIZATION OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22901 (United States)

    2016-10-01

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicular to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.

  5. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  6. Progress in LAr EndCap Calorimetry: News from the Hadronic EndCap Group.

    CERN Multimedia

    Oram, C.J.

    With module production and testing completed for the Hadronic EndCap calorimeter, the attention of the HEC group is heavily directed towards wheel assembly in building 180. Three of the four HEC wheels are now assembled and rotated, and work is progressing on assembling the final wheel. This year has been a busy year for the installation of components in the EndCap C cryostat: the signal feedthrough installation was completed April 22nd, the pre-sampler shortly thereafter and the Electro-Magnetic EndCap August 13th. This allowed the HEC group to start transferring the HEC wheels from the T6A storage cradle into the cryostat. The operation started in mid-September and has progressed, on or ahead of schedule, since then with the major milestones being: Insertion of 67 ton front HEC wheel October 3rd Insertion of 90 ton rear HEC wheel October 22nd. The wheel alignment has proved to be excellent, with the position of the centre of the front(rear) wheel with respect to the nominal position being displaced b...

  7. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    Science.gov (United States)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  8. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  9. Magnetic field of mars from data of simultaneous measurements in the planet's magnetosphere and in the solar wind

    International Nuclear Information System (INIS)

    Dolginov, S.S.; Shkol'nikova, S.I.; Zhuzgov, L.N.

    1985-01-01

    This paper examines the parameters of the magnetic dipole of Mars according to measurements by the Mars-2 probe on February 23-24, 1972. In all components there were observed fields of marked intensity in the components; however, at the second pass of the pericenter no field of marked intensity was observed. The passage through zero and change of polarity of the radial component Y /sub m/ of the field was also revealed in the magnetogram. The results of simultaneous measurements of interplanetary magnetic fields near Mars on its day and night sides and data on the dynamic pressure of the solar wind (IMP-6) are compared. The existence of a Martian magnetic field with a magnetic moment that is an effective obstacle to the solar wind is demonstrated. It is estimated that, with the width of the polar cap of Mars ca 45 degrees, the magnetic tail of the Martian magnetosphere can reach as far as 90R /sub M/

  10. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7

    DEFF Research Database (Denmark)

    Mook, H.A.; Yethiraj, M.; Aeppli, G.

    1993-01-01

    Polarization analysis has been used to identify the magnetic excitations in YBa2Cu3O7. The dominant feature in the spectra is a peak at the (pi,pi) reciprocal lattice position and centered at 41 meV. The behavior of the peak is shown to change dramatically at T(c), so that the magnetic excitations...

  11. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes.

    Science.gov (United States)

    Phark, Soo-Hyon; Sander, Dirk

    2017-01-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I /d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  12. Phases of a polar spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2007-01-01

    The two Bose-Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz-Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation

  13. Extension of the VITESS polarized neutron suite towards the use of imported magnetic field distributions

    International Nuclear Information System (INIS)

    Manoshin, S; Rubtsov, A; Bodnarchuk, V; Mattauch, S; Ioffe, A

    2014-01-01

    Latest developments of the polarized neutron suite in the VITESS simulation package allowed for simulations of time-dependent spin handling devices (e.g. radio-frequency (RF) flippers, adiabatic gradient RF-flippers) and the instrumentation built upon them (NRSE, SESANS, MIEZE, etc.). However, till now the magnetic field distribution in such devices have been considered as 'ideal' (sinusoidal, triangular or rectangular), when the main practical interest is in the use of arbitrary magnetic field distributions (either obtained by the field mapping or by FEM calculations) that may significantly influence the performance of real polarized neutron instruments and is the key issue in the practical use of the simulation packages. Here we describe modified VITESS modules opening the possibility to load the magnetic field 3-dimensional space map from an external source (file). Such a map can be either obtained by direct measurements or calculated by dedicated FEM programs (such as ANSYS, MagNet, Maxwell or similar). The successful use of these new modules is demonstrated by a very good agreement of neutron polarimetric experiments with performance of the spin turner with rotating magnetic field and an adiabatic gradient RF-flipper simulated by VITESS using calculated 3-dimensional field maps (using MagNet) and magnetic field mapping, respectively.

  14. Heliospheric magnetic field polarity inversions driven by radial velocity field structures

    Czech Academy of Sciences Publication Activity Database

    Landi, S.; Hellinger, Petr; Velli, M.

    2006-01-01

    Roč. 33, č. 14 (2006), L14101/1-L14101/5 ISSN 0094-8276 Grant - others:European Commission(XE) HRPN-CT-2001-00310 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * magnetic field polarity inversions * microstreams * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.602, year: 2006

  15. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  16. Intensity of low-frequency radiations and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.

    1983-01-01

    The data of measurements of ELF/VLF radiations at ''Interkosmos-13'' artificial Earth satellite in auroral latitudes and in the polar cap in the vernal equinox of 1975 are compared with characteristics of interplanetary magnetic field (IMF). The absence of north-south asymmetry of variations of ELF/VLF-radiation Intensity in the outer ionosphere versus the IMF characteristics is noted. The intensity of natural ELF- and VLF-radiations depends in a complex way on parameters of the magnetospheric plasma: composition and concentration of ''cold'' particles, geomagnetic field intensity, properties of energetic particle fluxes. The considered variations in the radiation amplitude versus the IMF characteristics show the predominant role of the sector structure polarity and IMF Bsub(y) component sign

  17. Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field

    International Nuclear Information System (INIS)

    Maraghechi, B.; Willett, J.e.

    1979-01-01

    The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)

  18. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  19. Revised magnetic polarity time scale for the Paleocene and early Eocene and implications for Pacific plate motion

    International Nuclear Information System (INIS)

    Butler, R.F.; Coney, P.J.

    1981-01-01

    Magnetostratiographic studies of a continental sedimentary sequence in the Clark's Fork Basin, Wyoming and a marine sedimentary sequence at Gubbio, Italy indicate that the Paleocene--Eocene boundary occurs just stratigraphically above normal polarity zones correlative with magnetic anomaly 25 chron. These data indicate that the older boundary of anomaly 24 chron is 52.5 Ma. This age is younger than the late Paleocene age assigned by LaBrecque et al. [1977] and also younger than the basal Eocene age assigned by Ness et al. [1980]. A revised magnetic polarity time scale for the Paleocene and early Eocene is presented in this paper. Several changes in the relative motion system between the Pacific plate and neighboring plates occurred in the interval between anomaly 24 and anomaly 21. A major change in absolute motion of the Pacific plate is indicated by the bend in the Hawaiian--Emperor Seamount chain at approx.43 Ma. The revised magnetic polarity time scale indicates that the absolute motion change lags the relative motion changes by only approx.3--5 m.y. rather than by >10 m.y. as indicated by previous polarity time scales

  20. Magnetic vortices in nanocaps induced by curvature

    Science.gov (United States)

    Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.

    2018-05-01

    Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.

  1. Orientation of Birkeland current sheets in the dayside polar region and its relationship to the IMF

    International Nuclear Information System (INIS)

    Saflekos, N.A.; Potemra, T.A.

    1980-01-01

    Vector magnetic field observations made with the three-axes magnetometer on the Triad satellite have been used to study the orientation of magnetic disturbances in the dayside polar region. These measurements were all made over the southern polar region and recorded at McMurdo, Antarctica. These disturbances are transverse to the main geomagnetic field and may be interpreted as being caused by field-aligned Birkeland current sheets consistent with Maxwell's equations. The current sheets in the regions usually associated with the morning and afternoon auroral regions are most often aligned in the geomagnetic east-west direction. The amplitudes of these 'south auroral' currents are larger in the morning than in the afternoon when the interplanetary magnetic field (IMF) is directed toward the sun (B/sub y/ 0) and larger in the afternoon when the IMF is directed away (B/sub y/>0, B/sub x/ 0 the Birkeland current flow in the region of the southern cusp is predominantly away from the ionosphere in contrast to the downward flow into the northern cusp as determined earlier (e.g., McDiarmid et al., 1978b; Iijima et al., 1978). The cusp Birkeland current flow directions appear to reverse for B/sub y/>0 and B/sub x/<0. From a search of the Triad data set, some rare examples of magnetic disturbances with a large north-south (noon-midnight) component have been discovered in the polar cap near noon

  2. Magnetic trapping of spin-polarized neutral atoms at its limits

    International Nuclear Information System (INIS)

    Shapiro, V.E.

    1995-01-01

    We investigated the limits of magnetic methods of trapping neutral atoms in a spot of small size and small polarization misalignment. The analysis covers various methods of trapping with static and rotating magnetic field. In particular, new rotating field methods having advantages are proposed. They differ from the recently invented 'top' type by employing a slow rotating field, resonant to the orbiting atoms, rather than much faster rotation. Also a theory of the top trap is developed. It elucidates important features of trapping lying beyond the time-averaged potential concept. General criteria on the trapping temperature as a function of size and misalignment parameters are established for various methods. (author). 8 refs., 2 figs

  3. Intermediate polars as low-field magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Wickramasinghe, D.T.; Kinwah Wu; Ferrario, Lilia

    1991-01-01

    We present the first detailed calculations of the polarization properties of extended accretion shocks on the surface of a magnetic white dwarf where allowance is made both for field spread and for the change in shock height as a function of specific accretion rate. These results are used to show conclusively that the null detection of circular polarization in most IPs imply fields of less than 5 MG. We suggest that the X-ray properties of MCVs depends critically on the fractional area of the white-dwarf surface over which accretion occurs, and on the type of accretion (smooth or clumpy). We argue that in the known IPs, accretion occurs via a disc. The accretion flow is smooth and a strong shock forms making them a powerful source of hard X-rays. We propose that there is a new class of MCV distinct from the IPs, where the white dwarf is asynchronous and accretes without a disc in which the accretion is clumpy and the radiation is mainly in the EUV region. (author)

  4. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. Density profiles

    Directory of Open Access Journals (Sweden)

    H. Laakso

    2002-11-01

    Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found

  5. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  6. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  7. Sulfonsuccinate (AOT Capped Pure and Mn-Doped CdS Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. Venkatesan

    2012-01-01

    Full Text Available CdS nanoparticles and thin films are well known for their excellent semiconducting properties. When transition metal ions are doped into the CdS, it exhibits magnetic properties in addition to semiconducting properties and they are termed as dilute magnetic semiconductors (DMSs. In this paper, we discuss the preparation of sodium bis(2-ethylhexyl sulfonsuccinate (AOT capped CdS nanoparticles and thin films doped with magnetic impurity Mn. Sodium bis(2-ethulexyl sulfonsuccinate (AOT, capping agent promotes the uniform formation of nanoparticles. Optical characterizations are made using the UV-Vis spectrometer, PL, and FTIR. XRD shows the hexagonal structure of the CdS. SEM images and EDS measurements were made for the thin films. EPR shows the clear hyperfine lines corresponding to Mn2+ ion in the CdS nanoparticles.

  8. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  9. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    International Nuclear Information System (INIS)

    Kleimenova, N.; Kozyreva, O.V.; Francia, P.; Villante, U.

    1999-01-01

    Geomagnetic field measurements at two Antarctic are compared during two weeks in the local summer (January 1-15, 1992). Low frequency (0.6 mHz) pulsations are observed at each station near local magnetic noon. The same wave packets appear in some case also at the other station, although with a significant attenuation, more clearly in the morning sector; the wave show a near noon reversal of the polarization sense from counterclockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively

  10. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    Directory of Open Access Journals (Sweden)

    J. Bitterly

    1999-06-01

    Full Text Available Geomagnetic field measurements at two Antarctic stations are compared during two weeks in the local summer (January 1-15, 1992. Low frequency (0.6-6 mHz pulsations are observed at each station near local magnetic noon. The same wave packets appear in some cases also at the other station, although with a significant attenuation, more clearly in the morning sector; the waves show a near noon reversal of the polarization sense from counter-clockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively.

  11. The electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Valladares, C.E.; Carlson, H.C. Jr.

    1991-01-01

    The authors report here measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stromfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area (order 10 3 km by 10 3 km) maps of altitude profiles for observed electron and ion gas number densities, temperatures and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities (N e , T e , T i , V, E, Σ p , Σ H ), horizontal and field-aligned currents, joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc. Strong electron temperature enhancements (>2,000 K) are found as expected within the sheets of ionizing particle precipitation. Dawn to dusk decreases in the antisunward plasma flow of order 1 km s -1 , across order 100 km, correspond to peak electron densities of order 10 5 cm -3 down to altitudes as low as 120 km, and upward currents of order 1 μA m -2 . These data also lead to important implications for the physics of polar cap arcs. The high-velocity (antisunward flow on the dawnside) edge of the arc marks the location of strong persistent Joule heating driven by downward Poynting flux. The deposition rate into the atmosphere of the net electromagnetic energy well exceeds the net particle energy deposited by the ionizing energetic electron flux. This heating is a substantial source of heat into the polar thermosphere

  12. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  13. Ionic magnetic fluids in polar solvents with tuned counter-ions

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Filomeno, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil); Kouyaté, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Cousin, F. [Lab. Léon Brillouin – CE-Saclay, Gif-sur-Yvette (France); Demouchy, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Dpt de physique, Univ. de Cergy Pontoise, Cergy-Pontoise (France); Dubois, E.; Michot, L.; Mériguet, G. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Perzynski, R., E-mail: regine.perzynski@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Peyre, V.; Sirieix-Plénet, J. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Lab. PHENIX, Paris (France); Tourinho, F.A. [Grupo de Fluidos Complexos Inst. de Quimica, Univ. de Brasília, Brasília (DF) (Brazil)

    2017-06-01

    The aim of the present study is to propose a new reproducible method for preparing colloidal dispersions of electrostatically charged nanoparticles (NPs) in polar solvents with different kinds of counter-ions. Maghemite NPs are here dispersed in solvents of different dielectric constant, namely water, dimethylsulfoxide (DMSO) and an ionic liquid, ethylammonium nitrate (EAN). If the existence of a NP superficial charge happens to be necessary for the colloidal stability of the dispersions in these three solvents, the standard DLVO theory cannot be used any more to describe the colloidal stability in EAN. The structure of the dispersions and the strength of the interparticle repulsion are investigated by small angle X-ray scattering measurements, in association with Ludwig–Soret coefficient determinations. Specificities, associated to the nature of the counter-ions are identified in this work on the colloidal stability, on the interparticle repulsion and on the Ludwig–Soret coefficient. - Highlights: • A controlled synthesis of ionic magnetic fluids in three polar solvents is proposed. • Colloidal repulsion in the magnetic fluids depends on the counter-ion nature. • Soret coefficient of citrate-coated maghemite nanoparticles is probed in water-pH7. • Thermophilicity of nanoparticles depends on the nature of their counter-ions. • Nanoparticles dressed with same counter-ions have solvent-dependent thermoproperties.

  14. Calculated Hanle transmission and absorption spectra of the 87Rb D1 line with residual magnetic field for arbitrarily polarized light

    International Nuclear Information System (INIS)

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-01-01

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  15. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  16. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters

    International Nuclear Information System (INIS)

    Weber, E.J.; Ballenthin, J.O.; Basu, S.; Carlson, H.C.; Hardy, D.A.; Maynard, N.C.; Smiddy, M.; Kelley, M.C.; Fleischman, J.R.; Sheehan, R.E.; Pfaff, R.F.; Rodriguez, P.

    1989-01-01

    An instrumented rocket payload was launched into a polar cap F layer aurora to investigate the energetic particle, plasma, and electric circuit parameters of a Sun-aligned arc. On-board instruments measured energetic electron flux, ion composition and density fluctuations, electron density and temperature, electron density fluctuations, and ac and dc electric fields. Real-time all-sky imaging photometer measurements of the location and motion of the aurora, were used to determine the proper geophysical situation for launch. Comparison of the in situ measurements with remote optical measurements shows that the arc was produced by fluxes of low-energy (< 1 keV) electrons. Field-aligned potentials in the arc inferred from the electron spectra had a maximum value of approximately 300 V, and from the spectral shape a parent population of preaccelerated electrons characteristic of the boundary plasma sheet or magnetosheath was inferred. Electric field components along and across the arc show sunward flow within the arc and duskward drift of the arc consistent with the drift direction and speed determined from optical imaging. Thus this arc is drifting duskward under the influence of the convection electric field. Three possible explanations for this (field-aligned currents, chemistry, and transport) are considered. Finally, ionospheric irregularity and electric field fluctuations indicate two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability

  17. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  18. Three-dimensional polarization characteristics of magnetic variations in the Pc 5 frequency range at conjugate areas near L=4

    International Nuclear Information System (INIS)

    Fukunishi, H.; Lanzerotti, L.J.; MaClennan, C.G.

    1975-01-01

    By using magnetic data measured at a network of stations extending from L approx. 3.2 to L approx. 4.4 and at a station in the conjugate area, ellipticities in the three orthogonal planes (H-D, H-Z, and D-Z) for the frequency range 2-5 mHz were computed continuously by the cross-spectral matrix method over 10 days with various levels of magnetic activity. The ellipticity diagrams in the H-D plane show that, except for the time interval during the main phase of a major magnetic storm, the sense of polarization reverses every day across local noon, with a left-hand polarization observed during local morning hours and a right-hand polarization observed during local evening hours, regardless of the level of magnetic activity. The second reversal of the sense of polarization occurs generally around approx. 2000 LT. The ellipticity diagrams in the H-Z plane show a predominantly clockwise polarization throughout the day, while the diurnal variation of the ellipticity in the D-Z plane tends to be confused. As to the latitude dependence of the wave phase, it is found that the D component oscillations are almost in phase at all latitudes, while the H component oscillations have advanced phase shifts at the lower-latitude stations. As to the conjugate dependence of wave phase, it is found that the D component oscillations are almost out of phase, while the H component oscillations are almost in phase atthe conjugate pair stations. These polarization characteristics are discussed in terms of external driving sources coupling to the shear Alfven waves of the local resonant field lines. Possible energy sources of Pc 5 waves are also discussed on the basis of the local time dependence of the sense of polarization

  19. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  20. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-06-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.

  1. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-03-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations, from radii of 50 to 1000 au. The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disk size in B335.

  2. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO42 frustrated honeycomb-lattice magnet

    Directory of Open Access Journals (Sweden)

    L.-P. Regnault

    2018-01-01

    Full Text Available The magnetic properties of the cobaltite BaCo2(AsO42, a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q, we have been able to determine the low-temperature magnetic structure of BaCo2(AsO42 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector k1=(kx,0,kz, with kx=0.270±0.005 and kz≈−1.31 appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component ≈0.25μB/Co2+, representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements Pyz and Pzy of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors Q=(0.27,0,3.1 and Q=(0.73,0,0.8 (energy transfer ΔE≈2.3 meV, no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic Pyz and Pzy matrix elements can be understood by assuming that the magnetic excitations in BaCo2(AsO42 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  3. Last End Cap Toroid installation : The Pharaonic enterprise

    CERN Multimedia

    Arnaud Foussat

    After the successful and impressive transport feat from Building 191 to Point 1 was carried out by the Friderici crew on 28th June, the second and last Toroid End Cap, ECT-C, was transferred into the surface building, SX1, on 2nd July. The ECT-C was installed in the ATLAS cavern on the C-side on 12th July. As the person responsible for the project, in my opinion, one of the crucial points of this project was to design all the tooling and installation sequences taking into account the building infrastructure dimensional constraints. View of the ECT installation tooling and preparation for the ECT-C descent into the ATLAS 80m-shaft by the ATLAS magnet group and DBS teams. The movement of the 240-ton magnet and 12-m diameter toroid end-cap was achieved in collaboration with SCALES, a subcontractor company, using a hydraulic gantry able to lower the ECT inside the shaft by 5m below the floor level . This allowed the DBS team to attach the end-cap with the 2 x 140 tons overhead crane and lower it onto the c...

  4. Spin-polarized photoemission

    International Nuclear Information System (INIS)

    Johnson, Peter D.

    1997-01-01

    Spin-polarized photoemission has developed into a versatile tool for the study of surface and thin film magnetism. In this review, we examine the methodology of the technique and its application to a number of different problems, including both valence band and core level studies. After a detailed review of spin-polarization measurement techniques and the related experimental requirements we consider in detail studies of the bulk properties both above and below the Curie temperature. This section also includes a discussion of observations relating to unique metastable phases obtained via epitaxial growth. The application of the technique to the study of surfaces, both clean and adsorbate covered, is reviewed. The report then examines, in detail, studies of the spin-polarized electronic structure of thin films and the related interfacial magnetism. Finally, observations of spin-polarized quantum well states in non-magnetic thin films are discussed with particular reference to their mediation of the oscillatory exchange coupling in related magnetic multilayers. (author)

  5. Investigation of a marine magnetic polarity reversal boundary in cross section at the northern boundary of the Kane Megamullion, Mid-Atlantic Ridge, 23°40'N

    Science.gov (United States)

    Xu, Min; Tivey, M. A.

    2016-05-01

    Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west dipping angle of ~45° in the shallow (Williams (2007) that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.

  6. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    Science.gov (United States)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  7. The Polarization Signature of Photospheric Magnetic Fields in 3D MHD Simulations and Observations at Disk Center

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C. [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Fabbian, D. [Max-Planck-Institut für Sonnensytemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rezaei, R. [Instituto de Astrofísica de Canarias, C/Vía Láctea S/N, E-38205 La Laguna, Tenerife (Spain); Puschmann, K. G., E-mail: cbeck@nso.edu [Alzenau (Germany)

    2017-06-10

    Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.

  8. Polarized nuclear target based on parahydrogen induced polarization

    OpenAIRE

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-01-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ($\\sim$100 Hz) polarization reversal, and operation with large intensity of an electron beam.

  9. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    Science.gov (United States)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  10. Model of the polar ionosphere with account for the interplanetary medium

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.; Zakharova, A.P.

    1992-01-01

    The effect of IMR B y -component on F-region structure is simulated numerically. An additional convective vortex is reflected in the structure of F2 electronic density isolines in the form of vortex-live depression on the day half of the polar cap when B y y >0), the ionization is more profound on the night (daytime) side of the polar cap; plasma cavity is centered for after (before) midnight hours; F2 electron density increases (decreases) in the auroral peak and vortex-like depression is localized at p.m (a.m) hours

  11. Modelling the Common Agricultural Policy with the Modular Agricultural GeNeral Equilibrium Tool (MAGNET). Effects of the 2014-2020 CAP financial agreement on welfare, trade, factor and product markets

    OpenAIRE

    BOULANGER PIERRE; PHILIPPIDIS GEORGE

    2013-01-01

    This JRC report presents methodological development of the Modular Applied GeNeral Equilibrium Tool (MAGNET), a global computable general equilibrium (CGE) model, for representing the Common Agricultural Policy (CAP). Using original data on European Union (EU) domestic support, it examines some likely macroeconomic effects of the expected CAP budget over the period 2014-2020. Results suggest that agreed budget cuts, in constant price, have limited impacts on EU and world markets, given the br...

  12. Spin polarization and magnetization of conduction-band dilute-magnetic-semiconductor quantum wells with non-step-like density of states

    International Nuclear Information System (INIS)

    Simserides, Constantinos

    2005-01-01

    We study the magnetization, M, and the spin polarization, ζ, of n-doped non-magnetic-semiconductor (NMS)/narrow to wide dilute-magnetic-semiconductor (DMS)/n-doped NMS quantum wells, as a function of the temperature, T, and the in-plane magnetic field, B. Under such conditions the density of states (DOS) deviates from the occasionally stereotypic step-like form, both quantitatively and qualitatively. The DOS modification causes an impressive fluctuation of M in cases of vigorous competition between spatial and magnetic confinement. At low T, the enhanced electron spin-splitting, U oσ , acquires its bigger value. At higher T, U oσ decreases, augmenting the influence of the spin-up electrons. Increasing B, U oσ increases and accordingly electrons populate spin-down subbands while they abandon spin-up subbands. Furthermore, due to the DOS modification, all energetically higher subbands become gradually depopulated

  13. An elliptically-polarizing undulator with phase adjustable energy and polarization

    International Nuclear Information System (INIS)

    Lidia, S.

    1993-08-01

    The authors present a planar helical undulator designed to produce elliptically polarized light. Helical magnetic fields may be produced by a variety of undulators with four parallel cassettes of magnets. In their design, all cassettes are mounted in two planes on slides so that they may be moved parallel to the electron beam. This allows the undulator to produce x-rays of left- or right-handed elliptical or circular polarization as well as horizontal or vertical linear polarization. In model calculations, they have found that by sliding the top pair of rows with respect to the bottom pair, or the left pair with respect to the right pair, they retain the polarization setting but change the magnetic field strength, and hence the x-ray energy. This allows them to select both energy and polarization by independent phase adjustments alone, without changing the gap between the rows. Such a design may be simpler to construct than an adjustable gap machine. The authors present calculations that model its operation and its effects on an electron beam

  14. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  15. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  16. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  17. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet.

    Science.gov (United States)

    Regnault, L-P; Boullier, C; Lorenzo, J E

    2018-01-01

    The magnetic properties of the cobaltite BaCo 2 (AsO 4 ) 2 , a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q , we have been able to determine the low-temperature magnetic structure of BaCo 2 (AsO 4 ) 2 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector [Formula: see text], with [Formula: see text] and [Formula: see text]) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component [Formula: see text]/Co 2+ , representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements [Formula: see text] and [Formula: see text] of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors [Formula: see text] and [Formula: see text] (energy transfer [Formula: see text] meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic [Formula: see text] and [Formula: see text] matrix elements can be understood by assuming that the magnetic excitations in BaCo 2 (AsO 4 ) 2 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  18. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  19. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Science.gov (United States)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  20. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    International Nuclear Information System (INIS)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Utsunomiya, Shin; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions. (paper)

  1. Cervical Cap

    Science.gov (United States)

    ... Videos for Educators Search English Español The Cervical Cap KidsHealth / For Teens / The Cervical Cap What's in ... Call the Doctor? Print What Is a Cervical Cap? A cervical cap is a small cup made ...

  2. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  3. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    Science.gov (United States)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  4. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  5. Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA

    Science.gov (United States)

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.; Yen, Hsi-Wei; Su, Yu-Nung; Takakuwa, Shigehisa

    2018-03-01

    We present the first ALMA dust polarization observations toward the high-mass star-forming regions W51 e2, e8, and W51 North in Band 6 (230 GHz) with a resolution of about 0\\buildrel{\\prime\\prime}\\over{.} 26 (∼5 mpc). Polarized emission in all three sources is clearly detected and resolved. Measured relative polarization levels are between 0.1% and 10%. While the absolute polarization shows complicated structures, the relative polarization displays the typical anticorrelation with Stokes I, although with a large scatter. Inferred magnetic (B) field morphologies are organized and connected. Detailed substructures are resolved, revealing new features such as comet-shaped B-field morphologies in satellite cores, symmetrically converging B-field zones, and possibly streamlined morphologies. The local B-field dispersion shows some anticorrelation with the relative polarization. Moreover, the lowest polarization percentages together with largest dispersions coincide with B-field convergence zones. We put forward \\sin ω , where ω is the measurable angle between a local B-field orientation and local gravity, as a measure of how effectively the B field can oppose gravity. Maps of \\sin ω for all three sources show organized structures that suggest a locally varying role of the B field, with some regions where gravity can largely act unaffectedly, possibly in a network of narrow magnetic channels, and other regions where the B field can work maximally against gravity.

  6. A non-local-thermodynamic equilibrium formulation of the transport equation for polarized light in the presence of weak magnetic fields. Doctoral thesis

    International Nuclear Information System (INIS)

    McNamara, D.J.

    1977-01-01

    The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated

  7. Exact analytic expressions for the evolution of polarization for radiation propagating in a plasma with non uniformly sheared magnetic field

    International Nuclear Information System (INIS)

    Segre, S. E.

    2001-01-01

    The known analytic expressions for the evolution of the polarization of electromagnetic waves propagating in a plasma with uniformly sheared magnetic field are extended to the case where the shear is not constant. Exact analytic expressions are found for the case when the space variations of the medium are such that the magnetic field components and the plasma density satisfy a particular condition (eq. 13), possibly in a convenient reference frame of polarization space [it

  8. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  9. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values

    Science.gov (United States)

    Iranmanesh, P.; Tabatabai Yazdi, Sh.; Mehran, M.; Saeednia, S.

    2018-03-01

    In this work, well-dispersed nanoparticles of NiFe2O4 with diameters less than 10 nm and good crystallinity and excellent magnetic properties were synthesized via a simple one-step capping agent-free coprecipitation route from metal chlorides. The ammonia was used as the precipitating agent and also the solution basicity controller. The effect of pH value during the coprecipitation process was investigated by details through microstructural, optical and magnetic characterizations of the synthesized particles using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-vis spectroscopy, and vibrating sample magnetometer. The results showed that the particle size, departure from the inverse spinel structure, the band gap value and the magnetization of Ni ferrite samples increase with pH value from 9 to 11 indicating the more pronounced surface effects in the smaller nanoparticles.

  10. Zero-field spin transfer oscillators based on magnetic tunnel junction having perpendicular polarizer and planar free layer

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2016-12-01

    Full Text Available We experimentally studied spin-transfer-torque induced magnetization oscillations in an asymmetric MgO-based magnetic tunnel junction device consisting of an in-plane magnetized free layer and an out-of-plane magnetized polarizer. A steady auto-oscillation was achieved at zero magnetic field and room temperature, with an oscillation frequency that was strongly dependent on bias currents, with a large frequency tunability of 1.39 GHz/mA. Our results suggest that this new structure has a high potential for new microwave device designs.

  11. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  12. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    Science.gov (United States)

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.

  13. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  14. Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data

    Directory of Open Access Journals (Sweden)

    N. A. Tsyganenko

    2009-04-01

    Full Text Available A detailed statistical study of the magnetic structure of the dayside polar cusps is presented, based on multi-year sets of magnetometer data of Polar and Cluster spacecraft, taken in 1996–2006 and 2001–2007, respectively. Thanks to the dense data coverage in both Northern and Southern Hemispheres, the analysis spanned nearly the entire length of the cusps, from low altitudes to the cusp "throat" and the magnetosheath. Subsets of data falling inside the polar cusp "funnels" were selected with the help of TS05 and IGRF magnetic field models, taking into account the dipole tilt and the solar wind/IMF conditions. The selection funnels were shifted within ±10° of SM latitude around the model cusp location, and linear regression parameters were calculated for each sliding subset, further divided into 10 bins of distance in the range 2≤R≤12 RE, with the following results. (1 Diamagnetic depression, caused by the penetrated magnetosheath plasma, becomes first visible at R~4–5 RE, rapidly deepens with growing R, peaks at R~6–9 RE, and then partially subsides and widens in latitude at the cusp's outer end. (2 The depression peak is systematically shifted poleward (by ~2° of the footpoint latitude with respect to the model cusp field line, passing through the min{|B|} point at the magnetopause. (3 At all radial distances, clear and distinct peaks of the correlation between the local By and By(IMF and of the corresponding proportionality coefficient are observed. A remarkably regular variation of that coefficient with R quantitatively confirms the field-aligned geometry of the cusp currents associated with the IMF By, found in earlier observations.

  15. Magnetic properties of polar ZnO surfaces from ab-initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Guntram; Adeagbo, Waheed; Hergert, Wolfram [University Halle, Halle (Germany); Ernst, Arthur [Max-Planck-Institute of Microstructure Physics, Halle (Germany); Sanchez, Nadia; Mu noz, Carmen [Instituto de Ciencia de Materiales de Madrid, Madrid (Spain); Szotek, Zdzislawa; Temmerman, Walter [Daresbury Laboratory, Warrington (United Kingdom)

    2011-07-01

    We have investigated a magnetic moment formation of three oxygen-terminated polar ZnO surfaces. Specifically, these are the (000-1) surface, the (0001) surface with an oxygen atom on top of the Zn atom [(0001)-t], and the (0001) surface with an oxygen atom in a threefold hollow site [(0001)-h]. In this study we have used a multi-code approach allowing us to relax the surface structure and calculate the Heisenberg exchange parameters via a magnetic force theorem. Also, the influence of applying self-interaction corrections (SIC) to the oxygen p orbitals has been investigated. Our calculations show that all three surfaces are magnetic. In addition, we find that applying SIC is necessary to correctly describe the top oxygen atom of the (0001)-h and (0001)-t surfaces, for both of which we find Curie temperatures to be larger than room temperature. The latter have been derived from Monte Carlo simulations based on the calculated exchange parameters.

  16. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  17. ON THE WEAKENING OF THE POLAR MAGNETIC FIELDS DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R.; Robbrecht, E.

    2009-01-01

    The Sun's polar fields are currently ∼40% weaker than they were during the previous three sunspot minima. This weakening has been accompanied by a corresponding decrease in the interplanetary magnetic field (IMF) strength, by a ∼20% shrinkage in the polar coronal-hole areas, and by a reduction in the solar-wind mass flux over the poles. It has also been reflected in coronal streamer structure and the heliospheric current sheet, which only showed the expected flattening into the equatorial plane after sunspot numbers fell to unusually low values in mid-2008. From latitude-time plots of the photospheric field, it has long been apparent that the polar fields are formed through the transport of trailing-polarity flux from the sunspot latitudes to the poles. To address the question of why the polar fields are now so weak, we simulate the evolution of the photospheric field and radial IMF strength from 1965 to the present, employing a surface transport model that includes the effects of active region emergence, differential rotation, supergranular convection, and a poleward bulk flow. We find that the observed evolution can be reproduced if the amplitude of the surface meridional flow is varied by as little as 15% (between 14.5 and 17 m s -1 ), with the higher average speeds being required during the long cycles 20 and 23.

  18. Additions and corrections to the absorption coefficients of CO2 ice: Applications to the Martian south polar cap

    International Nuclear Information System (INIS)

    Calvin, W.M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 μm. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO 2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO 2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO 2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO 2 than can be obtained from the method used here

  19. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  20. Effects of the strain relaxation of an AlGaN barrier layer induced by various cap layers on the transport properties in AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Liu Zi-Yang; Zhang Jin-Cheng; Duan Huan-Tao; Xue Jun-Shuai; Lin Zhi-Yu; Ma Jun-Cai; Xue Xiao-Yong; Hao Yue

    2011-01-01

    The strain relaxation of an AlGaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of AlGaN/GaN heterostructures. Compared with the slight strain relaxation found in AlGaN barrier layer without cap layer, it is found that a thin cap layer can induce considerable changes of strain state in the AlGaN barrier layer. The degree of relaxation of the AlGaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the AlGaN barrier, which is believed to be the main cause of the deterioration of crystalline quality and morphology on the AlGaN/GaN interface. On the other hand, both GaN and AlN cap layers lead to a decrease in 2DEG density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between GaN and AlGaN, while the reduction of the piezoelectric effect in the AlGaN layer results in the decrease of 2DEG density in the case of AlN cap layer. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  2. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  3. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  4. Winds in the high-latitude lower thermosphere: Dependence on the interplanetary magnetic field

    DEFF Research Database (Denmark)

    Richmond, A.D.; Lathuillere, C.; Vennerstrøm, Susanne

    2003-01-01

    -side cyclonic vortex that responds more strongly to B-z variations. The dependence of the wind on the IMF is nonlinear, especially with respect to IMF B-z. For positive B-z the difference winds are largely confined to the polar cap, while for negative B-z the difference winds extend to subauroral latitudes...... of similar to20 hours, a B-y-dependent magnetic-zonal-mean zonal wind generally exists, with maximum wind speeds at 80 magnetic latitude, typically 10 m/s at 105 km, increasing to about 60 m/s at 123 km and 80 m/s at 200 km. In the southern hemisphere the wind is cyclonic when the time-averaged B...

  5. Magnetic Polarity Stratigraphy and Rock Magnetic Data From the Continuous Cored Record of Triassic Continental Environmental Change, the Colorado Plateau Coring Project

    Science.gov (United States)

    Geissman, J. W.; McIntosh, J.; Buhedma, H. M. A.

    2017-12-01

    Despite the fact that the Triassic Period (ca. 251.9-201.3 Ma) is bound by two of Earth's largest mass extinctions, experienced giant bolide impacts and eruption of three large igneous provinces, and witnessed evolution of the main components of modern tetrapod communities, the time interval has sparse geochronologic calibration. The US NSF- and ICDP-funded coring of Phase 1 of the CPCP was completed in 2013, with the recovery of two major cores (6.35 cm diameter: 1A, 518m length and 2B, 253m; 31km apart) from the Petrified Forest National Park spanning the Chinle and Moenkopi fms. Core 1A has been fully sampled, with specimens obtained either by drilling or by extraction of core fragments and packing in ceramic boxes. Specimens are subjected to progressive thermal demagnetization or a combination of alternating field (AF) followed by thermal treatment. In several cases, specimens were extracted from each core segment to test for internal consistency. Chinle hematitic mudstones and siltstones have NRM intensities between 130 to 0.5 mA/m, with bulk susceptibilities from 2 x 10-2 to 5 x 10-5 SI units. More indurated hematitic siltstones/ medium sandstones of the Moenkopi Fm have NRM intensities and bulk susceptibilities that are far less variable (NRM: 9.0 to 1.2 mA/m, MS: 3.0 X 10-4 and 0.5 x 10-5 SI vol). Thermal demagnetization typically isolates magnetizations of N declination and shallow inclination (interpreted as normal polarity) and antipodes (reverse) (image), a polarity stratigraphy is being compiled for much of the section. Response is typically more interpretable for very hematitic Chinle mudstone sections and most Moenkopi rocks. Coarser grained, less hematitic Chinle strata rarely yield interpretable results, likely due to coarse-grained detrital magnetite, and it is likely that these intervals will not yield robust polarity information. Some core segments yield well-resolved magnetizations that are inconsistent with a Triassic field and we suspect

  6. Spectral time-domain induced polarization and magnetic surveying – an efficient tool for characterization of solid waste deposits in developing countries

    DEFF Research Database (Denmark)

    Wemegah, David Dotse; Fiandaca, Gianluca; Auken, Esben

    Time-domain induced polarization (IP) and magnetic data were acquired to map and characterize the decommissioned, un-engineered, municipal solid waste deposit site of the Kwame Nkrumah University of Science and Technology (KNUST), located in the Kumasi Metropolis of Ghana. Thirteen induced...... polarization profiles 500-800 m long and twenty-six magnetic profiles 600-800 m long were acquired, and two drillings were carried out in order to help in the interpretation of the geophysical data. The study was carried out with the aim of determining the risk posed by the waste deposit to the quality...... for interpreting the polarization data. The chargeability, resistivity, and the normalized chargeability distributions, together with the magnetic results, aided in a full characterization of the site geology, the waste and the associated pollution plume. In particular, clear contrasts in resistivity...

  7. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  8. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  9. /sup 56/Fe (. gamma. ,. cap alpha. /sub 0/) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tamae, T; Sugawara, M [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Tsubota, H

    1974-12-01

    The reaction cross section of /sup 56/Fe (..gamma.., ..cap alpha../sub 0/) was measured from the electron energy of 15 to 25 MeV. The measured data were compared with the calculated ones based on statistic theory. Both agreed with each other. Therefore, the affirmative result was obtained for the presumption that the reaction of (..gamma.., ..cap alpha../sub 0/) of the nuclei around these energy levels can be explained by the statistical theory. The angular distribution of /sup 56/Fe (..gamma.., ..cap alpha../sub 0/) with 17 MeV electron energy was also measured, and the E2/E1 ratio was obtained. In the measurement of the /sup 56/Fe ( Gamma , ..cap alpha../sub 0/) reaction cross section, a natural target of 2.69 mg/cm/sup 2/ was irradiated with an electron beam with energy from 15 MeV to 25 MeV at intervals of 0.5 MeV, and the emitted ..cap alpha.. particles were detected by a broad band magnetic distribution meter. The measured cross section of the (..gamma.., ..cap alpha../sub 0/) reaction agreed with the calculated one based on statistical theory. If this fact is recognized in many nuclei, the cross section of the (..gamma.., ..cap alpha../sub 0/) reaction on those nuclei has the following characteristics. When the increasing rate of the product of a complex nucleus formation cross section and ..cap alpha../sub 0/ penetration factor is larger than that of the sum of all penetration factors of possible channels, the cross section of the (..gamma.., ..cap alpha../sub 0/) reaction increases, and takes a peak value when the above two increasing rates agree with each other.

  10. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  11. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    Science.gov (United States)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  12. On the large COMPASS polarized deuteron target

    CERN Document Server

    Finger, M; Baum, G; Doshita, N; Finger, M Jr; Gautheron, F; Goertz, St; Hasegawa, T; Heckmann, J; Hess, Ch; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Y; Koivuniemi, J; Kondo, K; Le Goff, J-M; Magnon, A; Marchand, C; Matsuda, T; Meyer, W; Reicherz, G; Srnka, A

    2006-01-01

    The spin structure of the nucleons is investigated in deep inelastic scattering of a polarized muon beam and a polarized nucleon target in the COMPASS experiment at CERN since 2001. To achieve high luminosities a large solid polarized target is used. The COMPASS polarized target consists of a high cooling power $^{3}$He/$^{4}$He dilution refrigerator capable to maintain working temperature of the target material at about 50mK, a superconducting solenoid and dipole magnet system for longitudinal and transversal magnetic field on the target material, respectively, target cells containing polarizable material, microwave cavities and high power microwave radiation systems for dynamic nuclear polarization and the nuclear magnetic resonance system for nuclear spin polarization measurements. During 2001–2004 experiments superconducting magnet system with opening angle $\\pm$69 mrad, polarized target holder with two target cells and corresponding microwave and NMR systems have been used. For the data taking from 200...

  13. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment.

    Science.gov (United States)

    Blum, T; Boyle, P A; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M

    2016-06-10

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 48^{3}×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization a_{μ}^{HVP(LO)disc}=-9.6(3.3)(2.3)×10^{-10}, where the first error is statistical and the second systematic.

  14. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment

    Science.gov (United States)

    Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations

    2016-06-01

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.

  15. South Polar Polygons

    Science.gov (United States)

    2005-01-01

    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  16. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacker, Jan G.

    2012-07-01

    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  17. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    International Nuclear Information System (INIS)

    Krummenacker, Jan G.

    2012-01-01

    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  18. MAGNETIC FIELD COMPONENTS ANALYSIS OF THE SCUPOL 850 μm POLARIZATION DATA CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [Department of Physics and Astronomy, University College London, Kathleen Lonsdale Building, Gower Place, London WC1E 6BT (United Kingdom); Falceta-Gonçalves, Diego [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Kowal, Grzegorz [Universidade de São Paulo, Escola de Artes, Ciências e Humanidades Rua Arlindo Béttio, No. 1000, Ermelino Matarazzo, São Paulo, SP 03828-000 (Brazil); De Gouveia Dal Pino, Elisabete; Magalhães, Antonio Mário, E-mail: poidevin@star.ucl.ac.uk, E-mail: dfalceta@usp.br, E-mail: kowal@astro.iag.usp.br, E-mail: dalpino@astro.iag.usp.br, E-mail: mario@astro.iag.usp.br [Universidade de São Paulo, Instituto de Astronomia, Geofísica e Cîenças Atmosféricas, Rua do Matão 1226, Butantã, São Paulo, SP 05508-900 (Brazil)

    2013-11-10

    We present an extensive analysis of the 850 μm polarization maps of the SCUBA Polarimeter Legacy (SCUPOL) Catalogue produced by Matthews et al., focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from two-dimensional synthetic maps of dust-emission polarization produced with three-dimensional magnetohydrodynamics (MHD) numerical simulations scaled to the S106, OMC-2/3, W49, and DR21 molecular cloud polarization maps. For these specific regions, the turbulent MHD regimes retrieved from the simulations, as described by the turbulent Alfvén and Sonic Mach numbers, are consistent within a factor one to two with the values of the same turbulent regimes estimated from the analysis of Zeeman measurements data provided by Crutcher. Constraints on the values of the inclination angle α of the mean magnetic field with respect to the line of sight are also given. The values obtained from the comparison of the simulations with the SCUPOL data are consistent with the estimates made by using two observational methods provided by other authors. Our main conclusion is that simple, ideal, isothermal, and non-self-gravitating MHD simulations are sufficient in order to describe the large-scale observed physical properties of the envelopes of this set of regions.

  19. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-03-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  1. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  2. Ultra-long magnetization needle induced by focusing azimuthally polarized beams with a spherical mirror.

    Science.gov (United States)

    Hang, Li; Luo, Kai; Fu, Jian; Chang, Yizhe; Wang, Ying; Chen, Peifeng

    2018-03-20

    Based on extended Richards-Wolf theory for axisymmetric surfaces and the inverse Faraday effect, we propose the generation of a purely longitudinal magnetization needle by focusing Gaussian annular azimuthally polarized beams with a spherical mirror. The needle obtained has a longitudinal length varying hundreds to thousands of wavelengths while keeping the lateral size under 0.4λ, and the corresponding aspect ratio can easily reach more than 2000. It may be the first time that a magnetization needle whose aspect ratio is over 500 has been achieved. The approximate analytical expressions of the magnetization needle are given, and the longitudinal length is tunable by changing the value of the angular thickness and the position of the annular beams.

  3. Polarity reversals and tilt of the Earth's magnetic dipole

    Science.gov (United States)

    Dolginov, A. Z.

    1993-01-01

    There is evidence that the terrestrial magnetic field is connected with the Earth's mantle: (1) there are magnetic anomalies that do not take part in the westward drift of the main field, but are fixed with respect to the mantle; (2) the geomagnetic pole position flips in a particular way by preferred meridional paths during a reversal; and (3) magnetic polarity reversals are correlated with the activations of geological processes. These facts may be explained if we take into account that a significant horizontal temperature gradient can exist in the top levels of the liquid core because of the different thermoconductivity of the different areas of the core-mantle boundary. These temperature inhomogeneities can penetrate the core because fluxes along the core boundary (the thermal wind) can be strongly suppressed by a small redistribution of the chemical composition in the top of the core. The nonparallel gradients of the temperature, density, and composition on the top of the core create a curled electric field that produces a current and a magnetic field. This seed-field can be amplified by motions in the core. The resulting field does not forget the seed-field distribution and in this way the field on the Earth surface (that can be created only in regions with high conductivity, i.e. in the core) is connected with the core-mantle boundary. Contrary to the usual approach to the dynamo problem, we will take into account that the seed field of thermoelectric origin is acting not only at some initial moment of time but permanently.

  4. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  5. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  6. The Steens Mountain (Oregon) geomagnetic polarity transition: 1. Directional history, duration of episodes, and rock magnetism

    Science.gov (United States)

    Mankinen, Edward A.; Prevot, M.; Gromme, C. Sherman; Coe, Robert S.

    1985-01-01

    The thick sequence of Miocene lava flows exposed on Steens Mountain in southeastern Oregon is well known for containing a detailed record of a reversed‐to‐normal geomagnetic polarity transition. Paleomagnetic samples were obtained from the sequence for a combined study of the directional and intensity variations recorded; the paleointensity study is reported in a companion paper. This effort has resulted in the first detailed history of total geomagnetic field behavior during a reversal of polarity. A comparison of the directional variation history of the reversed and normal polarity intervals on either side of the transition with the Holocene record has allowed an estimate of the duration of these periods to be made. These time estimates were then used to calculate accumulation rates for the volcanic sequence and thereby provide a means for estimating time periods within the transition itself. The polarity transition was found to consist of two phases, each with quite different characteristics. At the onset of the first phase, a one‐third decrease in magnetic field intensity may have preceded the first intermediate field directions by about 600 years. Changes in field direction were confined near the local north‐south vertical plane when the actual reversal in direction occurred and normal polarity directions may have been attained within 550±150 years. The end of the first phase of the transition was marked by a brief (possibly 100–300 years) period with normal polarity and a pretransitional intensity which suggests a quasi‐normal dipole field structure existed during this interval. The second phase of the transition was characterized by a return to very low field intensities with the changes in direction describing a long counterclockwise loop in contrast to the earlier narrowly constrained changes. This second phase lasted 2900±300 years, and both normal directions and intensities were recovered at the same time. Both directional and intensity

  7. Cervical Cap

    Science.gov (United States)

    ... giving birth vaginally, which means the cervical cap may not fit as well. Inconsistent or incorrect use of the cervical cap increases your risk of pregnancy. For example, you may get pregnant when using the cervical cap if: ...

  8. Parabolic heavy ion flow in the polar magnetosphere

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1987-01-01

    Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions (O + , O ++ , N + , N ++ ) with flow velocities of the order 1 km/s (Lockwood et al., 1985b). These downward flows were interpreted as the result of parabolic flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here the author utilizes a two-dimensional kinetic model to elicit features of the transport of very low energy O + ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady state models

  9. Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle

    Science.gov (United States)

    Sckopke, N.; Paschmann, G.; Rosenbauer, H.; Fairfield, D. H.

    1976-01-01

    The response of the plasma mantle to the orientation of the interplanetary magnetic field (IMF) has been studied by correlating Heos 2 plasma and Imp 6 magnetic field data. The mantle is nearly always present when the IMF has a southward component and often also when the field has a weak northward component. In addition, the mantle appears increasingly thicker with greater southward components. On the other hand, the mantle is thin or missing (from the region where it is normally found) when the average IMF has a strong northward component. This result supports the idea that polar cap convection plays a dominant role in the formation of the plasma mantle: mantle plasma originates in the magnetosheath, enters the magnetosphere through the day side polar cusps, and is transported across the cusp to the night side by means of a convection electric field whose magnitude is controlled by the orientation of the IMF.

  10. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  11. A note on polarized light from magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Capparelli, L.M.; Damiano, A.; Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Maiani, L. [CERN, Theory Department, Geneva (Switzerland)

    2017-11-15

    In a recent paper it is claimed that vacuum birefringence has been experimentally observed for the first time by measuring the degree of polarization of visible light from a magnetar candidate, a neutron star with a magnetic field presumably as large as B ∝ 10{sup 13} G. The role of such a strong magnetic field is twofold. First, the surface of the star emits, at each point, polarized light with linear polarization correlated with the orientation of the magnetic field. Depending on the relative orientation of the magnetic axis of the star with the direction to the distant observer, a certain degree of polarization should be visible. Second, the strong magnetic field in the vacuum surrounding the star could enhance the effective degree of polarization observed: vacuum birefringence. We compare experimental data and theoretical expectations concluding that the conditions to support a claim of strong evidence of vacuum birefringence effects are not met. (orig.)

  12. Laser-polarized xenon-129 magnetic resonance spectroscopy and imaging. The development of a method for in vivo perfusion measurement

    Science.gov (United States)

    Rosen, Matthew Scot

    2001-07-01

    This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5

  13. Neutron multimonochromator-bipolarizer based on magnetic multilayer Fe/Co and new scheme for the total neutron polarization analysis

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Zaw Lin, Kyaw

    2017-01-01

    In this paper, we present a new neutron-optical element, Neutron Multimonochromator-Bipolarizer (NMB). It consists of a multimultilayer structure made of 12 periodic multilayer Fe/Co magnetic nanostructures whose period increases with distance from the substrate. Results are presented of calculations of the reflection coefficients from the NMB. We propose a new scheme of the total neutron polarization analysis for the time-of-flight method in the reflectometry. In this scheme, double NMB is used as a polarizer and there is no spin-flipper before the sample. NMB can be used in polarized neutron reflectometry, in SESANS, and for research of low-angle and inelastic scattering of polarized neutrons. (paper)

  14. Variations of the electron concentration in the polar ionosphere

    International Nuclear Information System (INIS)

    Chasovitin, Yu.K.; Shushkova, V.B.

    1980-01-01

    The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified

  15. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  16. Detecting spin polarization of nano-crystalline manganese doped zinc oxide thin film using circular polarized light

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com

    2016-02-01

    The presence of spin polarization in Mn-doped ZnO thin film is very important for spintronic applications. Spin polarization was detected using simple method. This method depends on measuring the optical transmittance using circular polarized light in visible and near infra-red region. It was found that, there is a difference in the optical energy gap of the film for circular left and circular polarized light. For temperatures > 310 K the difference in energy gap is vanished. This result is confirmed by measuring the magnetic hysteresis of the film. This work introduces a promising method for measuring the ferromagnetism in diluted magnetic semiconductors. - Highlights: • Highly oriented c-axis of Mn-ZnO thin film doped with nitrogen is prepared. • The optical energy gap depends on the state of circularly polarized light. • The presence of spin polarization is confirmed using simple optical method. • Magnetic measurements are consistent with the results of the optical method.

  17. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  18. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  19. A consistent magnetic polarity stratigraphy of Plio-Pleistocene fluvial sediments from the Heidelberg Basin (Germany)

    Science.gov (United States)

    Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian

    2014-05-01

    Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores

  20. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  1. Polarization of submillimetre lines from interstellar medium

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  2. Anti-pp,. cap alpha cap alpha. and p. cap alpha. elastic scattering at high energies and Chou-Yang conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem; Rifique, M.

    1987-03-01

    The recent experimental measurements for anti-pp and ..cap alpha cap alpha.. elastic scattering at high energies have shown that the Chou-Yang conjecture regarding the relationship between the electromagnetic and the hadronic form factor of a particle is only an approximation. A new ansatz has been proposed to obtain hadronic form factors of proton and the ..cap alpha..-particle. These form factors have been used to explain the various characteristics of anti-pp, ..cap alpha cap alpha.. and p..cap alpha.. elastic scattering at high energies.

  3. Nonlinear interaction of s-polarized surface waves at the boundary of a semibounded magnetized plasma

    International Nuclear Information System (INIS)

    Amein, W.H.; El-Siragy, N.M.; Nagy, O.Z.; Sayed, Y.A.

    1981-01-01

    Nonlinear interaction of S-Polarized surface waves at the boundary of a semibounded magnetized plasma is investigated. The expressions of the amplitudes of the generated waves are found. It is shown that, the generated waves with combined frequencies are equally radiated from the transient layer into plasma and vacuum

  4. Nonlinear waves in viscoelastic magnetized complex astroplasmas with polarized dust-charge variations

    Directory of Open Access Journals (Sweden)

    Papari Das

    2018-01-01

    Full Text Available A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed astro-structure formation, such as stellesimals, planetsimals, etc.

  5. Nonlinear waves in viscoelastic magnetized complex astroplasmas with polarized dust-charge variations

    Science.gov (United States)

    Das, Papari; Karmakar, Pralay Kumar

    2018-01-01

    A nonextensive nonthermal magnetized viscoelastic astrofluid, compositionally containing nonthermal electrons and ions together with massive polarized dust micro-spherical grains of variable electric charge, is allowed to endure weakly nonlinear perturbation around its equilibrium. The nonextensivity originating from the large-scale non-local effects is included via the Tsallis thermo-statistical distribution laws describing the lighter species. Assuming the equilibrium as a homogeneous hydrostatic one, the dust polarization effects are incorporated via the conventional homogeneous polarization force law. The perturbed fluid model evolves as a unique conjugate pair of coupled extended Korteweg-de Vries (e-KdV) equations. A constructed numerical tapestry shows the collective excitations of a new pair of distinct classes of nonlinear mode structures in new parametric space. The first family indicates periodic electrostatic compressive eigenmodes in the form of soliton-chains. Likewise, the second one reveals gravitational rarefactive solitary patterns. Their microphysical multi-parametric dependencies of the eigen-patterns are illustratively analyzed and bolstered. The paper ends up with some promising implications and applications in the astro-cosmo-plasmic context of wave-induced accretive triggering processes responsible for gravitationally bounded (gravito-condensed) astro-structure formation, such as stellesimals, planetsimals, etc.

  6. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  7. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    Science.gov (United States)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  8. Instability of drift Alfven wave accompanying polar magnetic storm

    International Nuclear Information System (INIS)

    Higuchi, Yoshihiro

    1974-01-01

    As the micro plasma instability due to the plasma non-uniformity in magnetosphere, there is the instability of drift Alfven wave. With the data obtained with the network of multiple observation points for geomagnetism, attempt was made to prove the hypothesis that the instability of drift Alfven wave due to the electron temperature gradient at the inner boundary of plasma sheet may be one of the causes for the geomagnetic pulsation (Pi 1) accompanying polar magnetic storm. Up to date, final conclusion is yet impossible as to the problems in it due to the discussion based on the data from widely separated observation points. The installation of economically efficient multi-point observation network is necessary for the solution. (Mori, K.)

  9. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  10. Modulation of Jahn-Teller effect on magnetization and spontaneous electric polarization of CuFeO2

    Science.gov (United States)

    Xiao, Guiling; Xia, Zhengcai; Wei, Meng; Huang, Sha; Shi, Liran; Zhang, Xiaoxing; Wu, Huan; Yang, Feng; Song, Yujie; Ouyang, Zhongwen

    2018-03-01

    CuFe0.99Mn0.01O2 and CuFe0.99Co0.01O2 single crystal samples are grown by a floating zone technique and their magnetization and spontaneous electric polarization have been investigated. Similarly with pure CuFeO2, an obviously anisotropic magnetization and spontaneous electric polarization were observed in the both doped samples, and their phase transition critical fields and temperatures are directly doping ion dependent. Considering the different d-shell configuration and ionic size between Mn3+, Co3+ and Fe3+ ions, in which the Mn3+ ion with Jahn-Teller (J-T) effect has different distortion on the geometry frustration from both of Fe3+ and Co3+ ion. Since for Mn3+ ion, the orbital splitting results from the low-symmetry J-T distortion in a crystal-field environment leads to a distorted MnO6 octahedron, which different from undistorted FeO6 and CoO6 octahedrons. The strain between distorted and undistorted octahedrons produces different effects on the spin reorientation transition and spontaneous electric polarization. Although the pure CuFeO2 has a very strong and robust frustration, the presence of the strain due to the random distribution of distorted MnO6 octahedron and undistorted CoO6 (FeO6) octahedrons leads to its spin reorientation transitions and spontaneous electric polarization different from CuFeO2.

  11. Polarized neutron study of TbNi2

    International Nuclear Information System (INIS)

    Givord, D.; Givord, F.; Gignoux, D.; Koehler, W.C.; Moon, R.M.

    1976-01-01

    Neutron diffraction experiments have been carried out on a TbNi 2 single crystal. Below the Curie temperature, 42 K, a magnetic contribution is observed only on nuclear scattering peaks. Therefore, the terbium atoms form a ferromagnetic structure. Polarized neutron measurements performed in the paramagnetic state, in an applied magnetic field of 57 kOe, reveal a non-uniform polarization of the conduction band. Within the experimental accuracy, no 3d magnetic moment is observed on nickel atoms. This result is consistent with the assumption of rare earth magnetic ordering occurring through the polarization of conduction electrons. (author)

  12. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  13. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  14. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  15. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  16. Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands

    International Nuclear Information System (INIS)

    Honda, Syuta; Inuzuka, Kouhei; Inoshita, Takeshi; Ota, Norio; Sano, Nobuyuki

    2014-01-01

    The magnetization and spin transport of asymmetric zigzag-edge graphene nanoribbons, terminated by hydrogen on one edge while unterminated on the other edge, were investigated by a combination of first-principles calculations and a tight-binding approach. At the unterminated edge, a spin-polarized σ edge state of minority spin appears near the Fermi level and contributes to spin transport. This state enters the band gap for ribbon widths of less than 15 chains, dominating the spin-polarized current. This indicates the importance of the σ edge states in the design of spintronic devices using graphene nanoribbons. We also examined the case where the ‘unterminated’ edge is partially terminated by hydrogen. (paper)

  17. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    Science.gov (United States)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  18. Silicon photonic thermometer operating on multiple polarizations

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    A silicon photonics optical thermometer simultaneously operating on the multiple polarizations is designed and experimentally demonstrated. Measured sensitivities are 86pm/°C and 48pm/°C for the transverse-electric and transverse-magnetic polarizations, respectively.......A silicon photonics optical thermometer simultaneously operating on the multiple polarizations is designed and experimentally demonstrated. Measured sensitivities are 86pm/°C and 48pm/°C for the transverse-electric and transverse-magnetic polarizations, respectively....

  19. Cradle Cap (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Cradle Cap (Infantile Seborrheic Dermatitis) KidsHealth / For Parents / Cradle Cap ( ... many babies develop called cradle cap. About Cradle Cap Cradle cap is the common term for seborrheic ...

  20. Polarization study of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, D

    1987-01-01

    Optical polarimetry results are presented for four spiral galaxies: NGC 5194 (M51), NGC 1068, NGC 4565 and NGC 4594 (M104). M51 and NGC 1068 show spiral polarization patterns interpreted as indicating a spiral magnetic field in each case. NGC 4565 and M104 show polarizations in their dust lanes which are parallel to their galactic planes, and which are interpreted in terms of a magnetic field in the plane of each. It is hypothesized that the observed magnetic fields may be linked to galactic shocks. A discussion of the origin of galactic magnetic fields concludes that there is not evidence that necessitates a primordial magnetic field.