WorldWideScience

Sample records for polar cap convection

  1. Simple model for polar cap convection patterns and generation of theta auroras

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1985-01-01

    The simple addition of a uniform interplanetary magnetic field and the Earth's dipole magnetic field is used to evaluate electric field convection patterns over the polar caps that result from solar wind flow across open geomagnetic field lines. This model is found to account for observed polar-cap convection patterns as a function of the interplanetary magnetic field components B/sub y/ and B/sub z/. In particular, the model offers an explanation for sunward and antisunward convection over the polar caps for B/sub z/>0. Observed field-aligned current patterns within the polar cap and observed auroral arcs across the polar cap are also explained by the model. In addition, the model gives several predictions concerning the polar cap that should be testable. Effects of solar wind pressure and magnetospheric currents on magnetospheric electric and magnetic fields are neglected. That observed polar cap features are reproduced suggests that the neglected effects do not modify the large-scale topology of magnetospheric electric and magnetic fields along open polar cap field lines. Of course, the neglected effects significantly modify the magnetic geometry, so that the results of this paper are not quantitatively realistic and many details may be incorrect. Nevertheless, the model provides a simple explanation for many qualitative features of polar cap convection

  2. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  3. Modeling polar cap F-region patches using time varying convection

    International Nuclear Information System (INIS)

    Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.

    1993-01-01

    Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF

  4. Convection flow structure in the central polar cap

    Science.gov (United States)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  5. Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983)

    International Nuclear Information System (INIS)

    Israelevich, P.L.; Podgorny, I.M.; Kuzmin, A.K.; Nikolaeva, N.S.; Dubinin, E.M.

    1988-01-01

    Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10-11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF B y y > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale-correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it. (author)

  6. Theoretical model of polar cap auroral arcs

    International Nuclear Information System (INIS)

    Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)

    1985-01-01

    A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references

  7. Magnetospheric convection and current system in the dayside polar cap

    International Nuclear Information System (INIS)

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  8. IMF B(y) and day-night conductivity effects in the expanding polar cap convection model

    Science.gov (United States)

    Moses, J. J.; Gorney, D. J.; Siscoe, G. L.; Crooker, N. U.

    1987-01-01

    During southward B(z) periods the open field line region in the ionosphere (polar cap) expands due to increased dayside merging. Ionospheric plasma flow patterns result which can be classified by the sign of the interplanetary magnetic field (IMF) B(y) component. In this paper, a time-dependent ionospheric convection model is constructed to simulate these flows. The model consists of a spiral boundary with a gap in it. The sign of the IMF B(y) component determines the geometry of the gap. A potential is applied across the gap and distributed around the boundary. A flow results which enters the polar cap through the gap and uniformly pushes the boundary outward. Results of the model show that B(y) effects are greatest near the gap and virtually unnoticeable on the nightside of the polar cap. Adding a day-night ionospheric conductivity gradient concentrates the polar cap electric field toward dawn. The resulting flow curvature gives a sunward component that is independent of B(y). These patterns are shown to be consistent with published observations.

  9. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  10. Dynamics of the quiet polar cap

    International Nuclear Information System (INIS)

    Carlson, H.C. Jr.

    1990-01-01

    Work in the past has established that a few percent of the time, under northward interplanetary magnetic field and thus magnetically quiet conditions, sun aligned arcs are found in the polar cap with intensities greater than the order of a kilo Rayleigh in the visible. Here we extend this view. We first note that imaging systems with sensitivity down to tens of Rayleighs in the visible find sun aligned arcs in the polar cap far more often, closer to half the time than a few percent. Furthermore, these sun aligned arcs have simple electrodynamics. They mark boundaries between rapid antisunward flow of ionospheric plasma on their dawn side and significantly slower flow, or even sunward flow, on their dusk side. Since the sun aligned arcs are typically the order of 1000 km to transpolar in the sun-earth direction, and the order of 100 km or less in the dawn-dusk direction, they demarcate lines of strongly anisotropic ionospheric flow shears or convection cells. The very quiet polar cap (strongly northward IMF) is in fact characterized by the presence of sun aligned arcs and multiple highly anisotropic ionospheric flow shears. Sensitive optical images are a valuable diagnostic with which to study polar ionospheric convection under these poorly understood conditions. (author)

  11. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  12. Variations in the polar cap area during intervals of substorm activity on 20-21 March 1990 deduced from AMIE convection patterns

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1996-09-01

    Full Text Available The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF, has been calculated during two intervals when the IMF had an approximately constant southward component (1100–2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990. The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday\\'s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday\\'s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between ~35RE and ~75RE downstream in the tail.

  13. The response of ionospheric convection in the polar cap to substorm activity

    Directory of Open Access Journals (Sweden)

    M. Lester

    Full Text Available We report multi-instrument observations during an isolated substorm on 17 October 1989. The EISCAT radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71°λ-78°λ. SAMNET and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. IMP-8 magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF. We infer that the polar cap expanded as a result of the addition of open magnetic flux to the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71°λ by the time of the expansion phase onset. A westward electrojet, centred at 65.4°λ, occurred at the onset of the expansion phase. This electrojet subsequently moved poleward to a maximum of 68.1°λ at 2000 UT and also widened. During the expansion phase, there is evidence of bursts of plasma flow which are spatially localised at longitudes within the substorm current wedge and which occurred well poleward of the westward electrojet. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the "distant" neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase. It is not obvious whether the electrojet mapped to a near-Earth neutral line, but at its most poleward, the expanded electrojet does not reach the estimated latitude of the polar cap

  14. Variations in the polar cap area during two substorm cycles

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-05-01

    Full Text Available This study employs observations from several sources to determine the location of the polar cap boundary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral images from the Ultraviolet Imager (UVI instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP and National Oceanographic and Atmospheric Administration (NOAA satellites, and the Fast Auroral SnapshoT (FAST spacecraft. Changes in the open flux content of the magnetosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, allowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and decreases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to decrease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap boundary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times supports this finding.Key words. Ionosphere (plasma convection; polar ionosphere – Magnetospheric physics (magnetospheric configuration and dynamics

  15. Ion Outflow and Convection in the Polar Cap and Cleft as Measured by Tide, EFI, MFE and Timas

    Science.gov (United States)

    Elliott, H. A.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Maynard, N. C.; Peterson, W. K.; Lennartsson, O. W.; Shelley, E. G.; Mozer, F. S.; Russell, C. T.

    1997-01-01

    This study examines high-latitude ion outflows and velocities perpendicular to the magnetic field derived from moments of ion distributions measured by the TIDE (Thermal Ion Dynamics Experiment) instrument on the Polar satellite. Hydrogen and oxygen ions are shown to be E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1. 8 Re). E X B drifts are calculated from electric fields measured by EFI (Electric Field Instrument) and magnetic fields measured by MFE (Magnetic Field Experiment) both of which are also on Polar. How convection at Polar's perigee relates to potential patterns of the ionosphere will be discussed. In the cusp/cleft the distribution of hydrogen extends over a large enough range of energy to be measured by both TIDE and the Toroidal Imaging Mass-Angle Spectrograph (TIMAS). Such comparisons will be also be presented.

  16. Characteristics of magnetospheric convective electric fields as mapped onto the polar caps

    International Nuclear Information System (INIS)

    Saunders, R.S.

    1976-01-01

    A study is made of the open connected magnetosphere using two numerical computer models: the Hones-Taylor (1965), with image and internal dipoles being the only sources, and the Mead-Williams (1965) with a current sheet added. The objectives of the study are to demonstrate that steady state field line connection across the magnetopause is a possible mechanism for producing the polar cap electric fields detected there, and to show the interesting characteristics of such fields. A review of the literature pertinent to the polar cap electric fields is included

  17. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Lu, G.; Reiff, P.H.; Karty, J.L.; Hairston, M.R.; Heelis, R.A.

    1989-01-01

    Plasma flow data from the AE-C, AE-D and DE 2 satellites have been used to systematically study the distribution of the convection potential around the polar cap boundary under a variety of different interplanetary magnetic field (IMF) conditions. For either a garden hose (B x B y x B y >0) orientation of the IMF, the potential distribution is mainly affected by the sign of B y . In the northern hemisphere, the zero potential line (which separates the dusk convection cell from the dawn cell) on the dayside shifts duskward as B y changes from positive to negative. But in the southern hemisphere, a dawnward shift has been found, although the uncertainties are large. The typical range of displacement is about ±1.5 hours MLT. Note that this shift is in the opposite direction from most simple schematic models of ionospheric flow; this reflects the fact that the polar cap boundary is typically more poleward than the flow reversal associated with the region 1 current system, which shifts in the opposite direction. Thus the enhanced flow region typically crosses noon. In most cases a sine wave is an adequate representation of the distribution of potential around the boundary. However, in a few cases the data favors (at the 80% confidence level) a steeper gradient near noon, more indicative of a throat. The potential drop at the duskside boundary is almost greater than at the dawnside boundary. A slight duskward shift of the patterns observed as the IMF changes from garden hose to ortho-garden hose conditions. Analytic equipotential contours, given the potential function as a boundary condition, are constructed for several IMF conditions

  18. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    International Nuclear Information System (INIS)

    Stauning, P.

    2015-01-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B y ) of the interplanetary magnetic field (IMF). The added IMF B y -related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m -1 ). Furthermore, cases of reverse convection during strong northward IMF B z (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m -1 during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  19. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    Energy Technology Data Exchange (ETDEWEB)

    Stauning, P. [Danish Meteorological Institute, Copenhagen (Denmark)

    2015-07-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B{sub y}) of the interplanetary magnetic field (IMF). The added IMF B{sub y}-related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m{sup -1}). Furthermore, cases of reverse convection during strong northward IMF B{sub z} (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m{sup -1} during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  20. The thermospheric effects of a rapid polar cap expansion

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.

    Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  1. Mapping of the solar wind electric field to the Earth's polar caps

    International Nuclear Information System (INIS)

    Toffoletto, F.R.; Hill, T.W.

    1989-01-01

    In this paper we describe a quantitative model of a magnetically interconnected (open) magnetosphere, developed as a perturbation to Voigt's closed magnetosphere model with a given magnetopause shape. The ''interconnection'' (perturbation) field is obtained as a solution to a Neumann boundary value problem, with the magnetopause normal component distribution as a boundary condition. The normal component at the magnetopause is required to be time independent and is specified in accordance with one of two hypotheses: the subsolar point merging hypothesis and Crooker's antiparallel merging hypothesis. The resulting open magnetospheric configuration is used to map the magnetopause electric field down to the polar cap ionosphere. We present ionospheric convection patterns derived from three representative interplanetary magnetic field (IMF) orientations for each of the two dayside merging geometries. Both merging geometries reproduce the observed convergence of convection streamlines near noon in a convection ''throat,'' and the east-west deflection of these streamlines in response to the east-west IMF component. The major difference between the two dayside merging geometries occurs for nonsouthward IMF, and consists of a Sun-aligned convection gap that bifurcates the polar cap in the case of the antiparallel merging geometry but not in the subsolar point merging geometry. This convection gap may plausibly be associated with the ''theta aurora'' structure observed when the IMF has a northward component. copyright American Geophysical Union 1989

  2. Characteristics of the polar cap at ionospheric levels and present understanding of the physical processes that give rise to these characteristics

    International Nuclear Information System (INIS)

    Brekke, A.

    1983-01-01

    This chapter discusses the relationship between the interplanetary magnetic field (IMF) and various polar cap current systems, such as the DP2-system and the S /SUB q/ P-system. The disagreements concerning these systems are examined. Topics considered include the polar cap (a result of an open magnetosphere); studies of the polar cap magnetic field variations; the DP2-current system and its relation to the IMF; the polar cap current system during a northward IMF; the azimuthal component of IMF and its influence on the polar cap magnetic field variations; the electric potential distribution on the polar cap; rocket observations of the polar cap electric field; the auroral arcs as a visible trace of the ionospheric convection; neutral wind measurements in the polar cap F-region; and further studies of polar cap dynamics. The focus is on the polar region inside the auroral oval. It is suggested that more research is needed of the polar cap current system in order to understand the magnetosphereionosphere coupling, with the polar cap ionospheric conductivity distribution being the most crucial parameter

  3. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  4. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  5. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  6. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    1995-08-01

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  7. Polar cap particle precipitation and aurora: Review and commentary

    Science.gov (United States)

    Newell, Patrick T.; Liou, Kan; Wilson, Gordon R.

    2009-02-01

    Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally d[Phi]MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause. Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically 0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the

  8. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  9. Field-aligned currents and convection patterns in the Southern Polar Cap during stable northward, southward, and azimuthal IMF

    International Nuclear Information System (INIS)

    Papitashvili, V.O.; Belov, B.A.; Gromova, L.I.

    1989-01-01

    Equivalent ionospheric current patterns are derived from ground-based geomagnetic observations for events on 11-12 November 1979 (B/sub z/ >> 0), 24 November 1981 (B/sub z/ > 0) (B/sub y/ >> 0), and 25-26 November 1979 (B/sub y/ 0 . Due to stable external conditions, it is possible to calculate the field-aligned current (FAC) density within cells formed by two adjacent stations by taking into account the uniform conductivity of the summer polar ionosphere. These results completely correspond to regressional analysis of interplanetary magnetic fields (IMF) and ground-based geomagnetic data, and also to satellite observations of the NBZ current system. During stable southward IMF a new result was obtained, a reversal of antisunward convection flow is identified, and an NBZ-like FAC system is restored in the central part of the southern polar cap. The authors conclude that there may be an additional NBZ-like FAC system poleward of -85 0 , which is independent of the IMF and is generated by the quasi-viscous interaction between solar-wind plasma and high-latitude lobes of the magnetospheric tail

  10. Theoretical study of the high-latitude ionosphere's response to multicell convection patterns

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.

    1987-01-01

    It is well known that the convection electric fields have an important effect on the ionosphere at high latitudes and that a quantitative understanding of their effect requires a knowledge of the plasma convection pattern. When the interplanetary magnetic field (IMF) is southward, plasma convection at F region altitudes displays a two-cell pattern with antisunward flow over the polar cap and return flow at lower latitudes. However, when the IMF is northward, multiple convection cells can exist, with both sunward flow and auroral precipitation (theta aurora) in the polar cap. The characteristic ionospheric signatures associated with multicell convection patterns were studied with the aid of a three-dimensional time-dependent ionospheric model. Two-, three-, and four-cell patterns were considered and the ionosphere's response was calculated for the same cross-tail potential and for solar maximum and winter conditions in the northern hemisphere. As expected, there are major distinguishing ionospheric features associated with the different convection patterns, particularly in the polar cap. For two-cell convection the antisunward flow the plasma from the dayside into the polar cap. For two-cell convection the antisunward flow of plasma from the dayside into the polar cap acts to maintain the densities in this region in winter. For four-cell convection, on the other hand, the two aditional convection cells in the polar cap are in darkness most of the time, and the resulting O + decay acts to produce twin polar holes that are separated by a sun-aligned ridge of enhanced ionization due to theta aurora precipitation

  11. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  12. On the spatial relationship between auroral emissions and magnetic signatures of plasma convection in the midday polar cusp and cap ionospheres during negative and positive IMF Bsub(z)

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.

    1986-03-01

    The dynamics of midday auroras, including polar cusp and cap emissions, and their relation to the interplanetary magnetic field (IMF) have been investigated with optical ground-based observations from Svalbard, Norway and IMF data from spacecraft ISEE-2. One case is presented showing the spatial relationship, along the magnetic meridian in the midday sector, between the cusp aurora and IMF Bγ-related convection currets (the DPY signature) for negative and positive values of IMF Bsub(z)

  13. O+ trough zones in the polar cap ionosphere-magnetosphere coupling region

    Science.gov (United States)

    Horwitz, James; Zeng, Wen; Jaafari, Fajer

    Regions of low-density troughs in O+ have been observed at 1 RE altitude in the polar cap ionosphere-magnetosphere region by the Thermal Ion Dynamics Experiment(TIDE) on the POLAR spacecraft. In this presentation, the UT Arlington Dynamic Fluid-Kinetic (DyFK) code is employed to investigate the formation of such O+ density troughs. We utilize convection paths of flux tubes in the high-latitude region as prescribed by an empirical convection model with solar wind inputs to track the evolution of ionospheric plasma transport and in particular O+ densities along these tubes with time/space. The flux tubes are subjected to auroral processes of precipitation and wave-driven ion heating when they pass through the auroral oval, which tends to elevate the plasma densities in these tubes. When the F-regions of such tubes traverse locations where the F-region is in darkness, recombination there causes the higher-altitude regions to drain and the densities to decline throughout. Owing to the varying effects of these processes, significant and low trough-like densities at higher altitudes developed along these flux tubes. The modeled densities near 6000 km altitudes will be compared with multiple POLAR passes featuring POLAR/TIDE-measured O+ densities for inside and outside of such trough regions.

  14. Drifting field-aligned density structures in the night-side polar cap

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Persoon, A. M.; Gurnett, D. A.; Décréau, P. M. E.; Pickett, J. S.; Maršálek, O.; Maksimovic, M.; Cornilleau-Wehrlin, N.

    2005-01-01

    Roč. 32, - (2005), L06106-1 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA202/03/0832; GA MŠk ME 650; GA MŠk 1P05ME811 Grant - others: NASA (US) NAG5-9974; NASA (US) NNG04GB98G; NSF(US) 0307319; ESA PECS(XE) 98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : Magnetospheric Physics * Plasma convection * Plasma waves and instabilities * Polar cap phenomena * Magnetospheric configuration and dynamics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005

  15. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  16. A study of auroral activity in the nightside polar cap

    International Nuclear Information System (INIS)

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74 degree) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74 degree) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N 2 + ) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude

  17. Evidence that polar cap arcs occur on open field lines

    International Nuclear Information System (INIS)

    Gussenhoven, M.S.; Hardy, D.A.; Rich, F.J.; Mullen, E.G.; Redus, R.H.

    1990-01-01

    The characteristics of polar cap arc occurrence are reviewed to show that the assumption of a closed magnetospheric magnetic field topology at very high latitudes when the IMF B z is strongly northward is difficult to reconcile with a wide variety of observational and theoretical considerations. In particular, we consider the implications of observations of particle entry for high and low energy electrons, magnetic flux conservation between the near and far tail, the time sequencing in polar cap arcs events, and the hemispherical differences in polar cap arc observations. These points can be explained either by excluding the need for a major topological magnetic field change from explanations of polar cap arc dynamics, or by assuming a long-tailed magnetosphere for all IMF orientations in which magnetic field lines eventually merge with solar wind field lines in either a smooth or a patchy fashion. (author)

  18. Polar cap index as a proxy for hemispheric Joule heating

    DEFF Research Database (Denmark)

    Chun, F.K.; Knipp, D.J.; McHarg, M.G.

    1999-01-01

    The polar cap (PC) index measures the level of geomagnetic activity in the polar cap based on magnetic perturbations from overhead ionospheric currents and distant field-aligned currents on the poleward edge of the nightside auroral oval. Because PC essentially measures the main sources of energy...... input into the polar cap, we propose to use PC as a proxy for the hemispheric Joule heat production rate (JH). In this study, JH is estimated from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. We fit hourly PC values to hourly averages of JH. Using a data base approximately...

  19. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca; Sun, Shuyu

    2012-01-01

    of low permeability. CO2 from this ‘capped' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport

  20. Electron polar cap and the boundary of open geomagnetic field lines.

    Science.gov (United States)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  1. The Martian polar caps: Stability and water transport at low obliquities

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1992-01-01

    The seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.

  2. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  3. Polar cap contraction and expansion during a period of substorms

    Science.gov (United States)

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  4. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  5. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  6. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  7. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  8. High-latitude convection on open and closed field lines for large IMF B(y)

    Science.gov (United States)

    Moses, J. J.; Crooker, N. U.; Gorney, D. J.; Siscoe, G. L.

    1985-01-01

    S3-3 electric field observations for August 23, 1976, show a single convection cell engulfing the northern polar cap. The flow direction is that for a positive IMF B(y) component. The particle data indicate that nearly half the duskside sunward flow occurs on closed field lines whereas the dawnside flow is entirely on open field lines. This is interpreted in terms of an IMF B(y)-induced deformation in the polar cap boundary, where the deformation moves with the convective flow. Thus, convection streamlines cross the deformed polar cap boundary, but no flow crosses the boundary because it is carried by the flow. Since southern hemisphere convection is expected to occur with the opposite sense of rotation, closed field lines that will be forced to tilt azimuthally are predicted. On the nightside the tilt produces a y component of the magnetic field in the same direction as the IMF for either sign of IMF B(y). This interpretation is consistent with observations of a greater y component in the plasma sheet than the tail lobes, which are difficult to understand in terms of the common explanation of IMF penetration. Alternatives to this interpretation are also discussed.

  9. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  10. DMSP optical and electron measurements in the vicinity of polar cap arcs

    International Nuclear Information System (INIS)

    Hardy, D.A.; Burke, W.J.; Gussenhoven, M.S.

    1982-01-01

    We have completed an extensive analysis of the electron and optical data from the DMSP satellites for an external period of polar cap arc occurrences on December 12, 1977. The polar cap arcs are observed in three distinct intervals in a period of quieting after a time of intense substorm activity. The observation of polar cap arcs is associated with the admittance of large and variable fluxes of low-energy electrons into a major portion of both the northern and southern hemisphere polar caps. These fluxes fall into the following categories: First, nearly Maxwellian distributions of electrons with temperatures between 50 eV and 200 eV and number densities varying from 0.03/cm 3 to 4/cm 3 . The highest densities are found at the poleward boundary of the diffuse aurorae and near the visible polar cap arcs. The lowest densities are associated with the polar rain. Second, distributions of electrons peaked between 50 eV and 200 eV. These distributions result from accelertion of the cold Maxwellian distribution through a potential of 50 to 200 V without any heating of the electrons. Third, distributions of electrons displaying two populations; an intense low-energy component with a temperature of approx.20 eV and a much weaker high-energy component with a temperature of 180 eV. We interpret such distributions as evidence of direct admittance of magnetosheath electrons into the polar cap. Fourth,, distributions of electrons peaked at approx.1 keV. These distributions produce the visible arcs. They result from the acceleration of a two-component electron population with temperatures of 100 and 350 eV through a potential drop of approx.750 V

  11. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-01-01

    done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced

  12. Simultaneous observations of sun-aligned polar cap arcs in both hemispheres by EXOS-C and viking

    International Nuclear Information System (INIS)

    Obara, T.; Kitayama, M.; Mukai, T.; Kaya, N.; Murphree, J.S.; Cogger, L.L.

    1988-01-01

    On September 25, 1986, the EXOS-C satellite traversed an intense electron precipitation in the southern polar cap, while the Viking satellite simultaneously obtained image data of the polar cap arc in the northern hemisphere. The energy spectrum of the precipitation, measured by instrumentation aboard EXOS-C, was very similar to that of adjacent (typical) auroral arcs, and the precipitation in the southern polar cap was observed in the same local time sector in which the arc was found in the northern polar cap. Observations seem to support the view that the polar cap arc occurs on closed field lines and is conjugate in both hemispheres. copyright American Geophysical Union 1988

  13. IR SPECTRAL MAPPING OF THE MARTIAN SOUTH POLAR RESIDUAL CAP USING CRISM

    Directory of Open Access Journals (Sweden)

    J. Campbell

    2016-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are considered to be important in theories of abiogenesis (Allamandola, 2011 . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS on the Cassini spacecraft (Cruikshank et al., 2007. The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012. This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC structural evolution (Thomas et al., 2009 that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called “Swiss Cheese Terrain”, a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009. We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, on board NASA’s Mars Reconnaissance Orbiter (MRO. CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  14. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  15. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  16. Scaling rates of true polar wander in convecting planets and moons

    Science.gov (United States)

    Rose, Ian; Buffett, Bruce

    2017-12-01

    Mass redistribution in the convecting mantle of a planet causes perturbations in its moment of inertia tensor. Conservation of angular momentum dictates that these perturbations change the direction of the rotation vector of the planet, a process known as true polar wander (TPW). Although the existence of TPW on Earth is firmly established, its rate and magnitude over geologic time scales remain controversial. Here we present scaling analyses and numerical simulations of TPW due to mantle convection over a range of parameter space relevant to planetary interiors. For simple rotating convection, we identify a set of dimensionless parameters that fully characterize true polar wander. We use these parameters to define timescales for the growth of moment of inertia perturbations due to convection and for their relaxation due to true polar wander. These timescales, as well as the relative sizes of convective anomalies, control the rate and magnitude of TPW. This analysis also clarifies the nature of so called "inertial interchange" TPW events, and relates them to a broader class of events that enable large and often rapid TPW. We expect these events to have been more frequent in Earth's past.

  17. Validation of the stream function method used for reconstruction of experimental ionospheric convection patterns

    Directory of Open Access Journals (Sweden)

    P.L. Israelevich

    Full Text Available In this study we test a stream function method suggested by Israelevich and Ershkovich for instantaneous reconstruction of global, high-latitude ionospheric convection patterns from a limited set of experimental observations, namely, from the electric field or ion drift velocity vector measurements taken along two polar satellite orbits only. These two satellite passes subdivide the polar cap into several adjacent areas. Measured electric fields or ion drifts can be considered as boundary conditions (together with the zero electric potential condition at the low-latitude boundary for those areas, and the entire ionospheric convection pattern can be reconstructed as a solution of the boundary value problem for the stream function without any preliminary information on ionospheric conductivities. In order to validate the stream function method, we utilized the IZMIRAN electrodynamic model (IZMEM recently calibrated by the DMSP ionospheric electrostatic potential observations. For the sake of simplicity, we took the modeled electric fields along the noon-midnight and dawn-dusk meridians as the boundary conditions. Then, the solution(s of the boundary value problem (i.e., a reconstructed potential distribution over the entire polar region is compared with the original IZMEM/DMSP electric potential distribution(s, as well as with the various cross cuts of the polar cap. It is found that reconstructed convection patterns are in good agreement with the original modelled patterns in both the northern and southern polar caps. The analysis is carried out for the winter and summer conditions, as well as for a number of configurations of the interplanetary magnetic field.

    Key words: Ionosphere (electric fields and currents; plasma convection; modelling and forecasting

  18. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  19. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Directory of Open Access Journals (Sweden)

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  20. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  1. Mars polar cap: a habitat for elementary life1

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, N. C.

    2009-04-01

    Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

  2. Estimation of Polar Cap Potential and the Role of PC Index

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2012-09-01

    Full Text Available Polar cap potential has long been considered as an indicator for the amount of energy flowing in the magnetosphere-ionosphere system. Thus, the estimation of polar cap potential is important to understand the physical process of the magnetosphere. To estimate the polar cap potential in the Northern Hemisphere, merging electric field by Kan & Lee (1979 is adopted. Relationships between the PC index and calculated merging electric field (E* are examined during full-time and storm-time periods separately. For this purpose Dst, AL, and PC indices and solar wind data are utilized during the period from 1996-2003. From this linear relationship, polar cap potential (Φ* is estimated using the formula by Doyle & Burke (1983. The values are represented as 58.1 ± 26.9 kV for the full-time period and 123.7 ± 84.1 kV for a storm-time period separately. Considering that the average value of polar cap potential of Doyle & Burke (1983 is about 47 kV during moderately quiet intervals with the S3-2 measurements, these results are similar to such. The monthly averaged variation of Dst, AL, and PC indices are then compared. The Dst and AL indices show distinct characteristics with peaks during equinoctial season whereas the average PC index according to the month shows higher values in autumn than in spring. The monthly variations of the linear correlation coefficients between solar wind parameters and geomagnetic indices are also examined. The PC-AL linear correlation coefficient is highest, being 0.82 with peaks during the equinoctial season. As with the AL index, the PC index may also prove useful for predicting the intensity of an auroral substorm. Generally, the linear correlation coefficients are shown low in summer due to conductance differences and other factors. To assess the role of the PC index during the recovery phase of a storm, the relation between the cumulative PC index and the duration is examined. Although the correlation coefficient lowers

  3. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  4. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  5. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2012-02-01

    Full Text Available On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi

  6. Estimation of the polar cap dimensions from photometric data

    International Nuclear Information System (INIS)

    Besprozvannaya, A.S.; Vorob'ev, V.G.; Ruga, G.N.; Shchuka, T.I.; Yagodkina, O.I.

    1992-01-01

    The moment of crossing near-polar boundary of auroral oval by the is. Heis station (Φ L =74,4 deg) according to simultaneous optical and ionospheric observations during the period, dated 25.12.83-10.01.84, is investigated. It is shown that time of the station appearance in the polar cap area, characterized by decrease in luminescence intensity of the basic auroral emissions by the background one and by appearance in the UT afternoon hours of flat layers, coincide. Correlation coefficient - r=0.95

  7. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  8. Sublimation and transport of water from the north residual polar cap on Mars

    Science.gov (United States)

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  9. A snapshot of the polar ionosphere

    International Nuclear Information System (INIS)

    Whitteker, J.H.

    1976-01-01

    This paper presents a picture of the north polar F layer and topside ionosphere obtained primarily from three satellites (Alouette 2, ISIS 1, ISIS 2), that passed over the region within a time interval of ca. 50 min on 25 April 1971, a magnetically quiet day. The horizontal distribution of electron densities at the peak of the F layer is found to be similar to synoptic results from the IGY. Energetic particle and ionospheric plasma data are also presented, and the F layer data are discussed in terms of these measurements, and also in terms of electric field and neutral N 2 density measurements made by other satellites on other occasions. The major features observed are as follows: A tongue of F region ionization extends from the dayside across the polar cap, which is accounted for by antisunward drift due to magnetospheric convection. In the F layer and topside ionosphere, the main effect of auroral precipitation appears to be heating and expansion of the topside. A region of low F layer density appears on the morning side of the polar cap, which may be due to convection and possibly also to enhanced N 2 densities. (author)

  10. Parabolic heavy ion flow in the polar magnetosphere

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1987-01-01

    Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions (O + , O ++ , N + , N ++ ) with flow velocities of the order 1 km/s (Lockwood et al., 1985b). These downward flows were interpreted as the result of parabolic flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here the author utilizes a two-dimensional kinetic model to elicit features of the transport of very low energy O + ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady state models

  11. True polar wander on convecting planets

    Science.gov (United States)

    Rose, Ian Robert

    Rotating planets are most stable when spinning around their maximum moment of inertia, and will tend to reorient themselves to achieve this configuration. Geological activity redistributes mass in the planet, making the moment of inertia a function of time. As the moment of inertia of the planet changes, the spin axis shifts with respect to a mantle reference frame in order to maintain rotational stability. This process is known as true polar wander (TPW). Of the processes that contribute to a planet's moment of inertia, convection in the mantle generates the largest and longest-period fluctuations, with corresponding shifts in the spin axis. True polar wander has been hypothesized to explain several physiographic features on planets and moons in our solar system. On Earth, TPW events have been invoked in some interpretations of paleomagnetic data. Large swings in the spin axis could have enormous ramifications for paleogeography, paleoclimate, and the history of life. Although the existence of TPW is well-verified, it is not known whether its rate and magnitude have been large enough for it to be an important process in Earth history. If true polar wander has been sluggish compared to plate tectonic speeds, then it would be difficult to detect and its consequences would be minor. I investigate rates of true polar wander on convecting planets using scaling, numerics, and inverse problems. I perform a scaling analysis of TPW on a convecting planet, identifying a minimal set of nondimensional parameters which describe the problem. The primary nondimensional numbers that control the rate of TPW are the ratio of centrifugal to gravitational forces m and the Rayleigh number Ra. The parameter m sets the size of a planet's rotational bulge, which determines the amount of work that needs to be done to move the spin axis. The Rayleigh number controls the size, distribution, and rate of change of moment of inertia anomalies, all of which affect the rate of TPW. I find that

  12. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  13. Model of the polar ionosphere with account for the interplanetary medium

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.; Zakharova, A.P.

    1992-01-01

    The effect of IMR B y -component on F-region structure is simulated numerically. An additional convective vortex is reflected in the structure of F2 electronic density isolines in the form of vortex-live depression on the day half of the polar cap when B y y >0), the ionization is more profound on the night (daytime) side of the polar cap; plasma cavity is centered for after (before) midnight hours; F2 electron density increases (decreases) in the auroral peak and vortex-like depression is localized at p.m (a.m) hours

  14. Dynamics of the polar ionosphere structure disturbance in the Svalgaard-Mansurov effect

    International Nuclear Information System (INIS)

    Osipov, N.K.; Mozhaev, A.M.; Larina, T.N.; Ponomarev, Yu.N.

    1988-01-01

    Nonstationary disturbance model of the ionsphere of polar caps caused by change of B y component sign of interplanetary magnetic field is considered. It is shown that nonstationary convection transfer of ionospheric plasma represents the main and the most fast mechanism regulating reconstruction of ionosphere structure in polar caps during magnetosphere substorms, caused by the change of B y sign. Calculations show that characteristic time of sufficient change of ionosphere structure at ∼1500 km distances is on the order of 10-25 min

  15. Polar cap deflation during magnetospheric substorms

    Science.gov (United States)

    Moses, J. J.; Siscoe, G. L.; Heelis, R. A.; Winningham, J. D.

    1989-01-01

    The expanding/contracting polar cap model has been used to simulate DE-2 ion drift data during substorms as determined using the AL index. Of the 39 cases modeled, 57 percent required the opening of a nightside gap which maps to where reconnection occurs in the tail; 75 percent of the 16 recovery phase cases required a nightside gap, while only 29 percent of the 17 expansion phase cases required a nightside gap. On the basis of this result, it is concluded that if a nightside gap implies tail reconnection, then reconnection probably occurs after expansion phase onset and continues throughout most of the recovery phase of a substorm.

  16. Mars seasonal polar caps as a test of the equivalence principle

    International Nuclear Information System (INIS)

    Rubincam, David Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial (passive) to gravitational (active) masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor Eoetvoes test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  17. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.

    Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  18. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    2000-09-01

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  19. Multi-station basis for Polar Cap (PC) indices: ensuring credibility and operational reliability

    Science.gov (United States)

    Stauning, Peter

    2018-02-01

    The Polar Cap (PC) indices, PCN (North) and PCS (South) are based on polar geomagnetic observations from Qaanaaq (Thule) and Vostok, respectively, processed to measure the transpolar plasma convection that may seriously affect space weather conditions. To establish reliable space weather forecasts based on PC indices, and also to ensure credibility of their use for scientific analyses of solar wind-magnetosphere interactions, additional sources of data for the PC indices are investigated. In the search for alternative index sources, objective quality criteria are established here to be used for the selection among potential candidates. These criteria are applied to existing PC index series to establish a quality scale. In the Canadian region, the data from Resolute Bay magnetometer are shown to provide alternative PCN indices of adequate quality. In Antarctica, the data from Concordia Dome-C observatory are shown to provide basis for alternative PCS indices. In examples to document the usefulness of these alternative index sources it is shown that PCN indices in a real-time version based on magnetometer data from Resolute Bay could have given 6 h of early warning, of which the last 2 h were "red alert", up to the onset of the strong substorm event on 13 March 1989 that caused power outage in Quebec. The alternative PCS indices based on data from Dome-C have helped to disclose that presently available Vostok-based PCS index values are corrupted throughout most of 2011.

  20. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    M. Förster

    2008-09-01

    Full Text Available In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007, and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the

  1. Mars Seasonal Polar Caps as a Test of the Equivalence Principle

    Science.gov (United States)

    Rubincam, Daivd Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial to gravitational masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor E6tv6s test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  2. North-Polar Martian Cap as Habitat for Elementary Life

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, J. T.; Wickramasinghe, N. C.

    2008-09-01

    North-polar cap over millenia Atmospheric water in Mars tends currently as for the past millenia to distil onto the polar caps and be buried under dust deposits. Diffusive release from ground-ice (and its excavation in meteorite impacts [1]) replenishes atmospheric water, allowing the gradual build up of polar ice-dust deposits. When sunlit, this warmed and sublimating ice-dust mix has interest as a potential habitat for micro-organisms. Modelling shows precipitable vapour at 10-50μm/yr, varying sensitively with small changes in orbitable obliquity around the present 25° [2]. The modelling applies to a globe with regionally uniform albedo, unlike the steep topography and dark layering of the north polar cap whose upper 300m have accumulated over the last 500 kyr [3]. The cliffs and ravines of the north-polar cap are thought to form through south-facing slopes sublimating and gaining a dirt-encrusted surface, while horizontal surfaces brighten through frost deposits. The two-phase surface derives from the dust and frost feedback on surface albedo [4] and the resulting terrain develops over diurnal cycles of frosting and sublimation, and over annual seasonal cycles. The steep south-facing sides of observed ravines when unshadowed would see for a few hours the full intensity of sunlight at near normal incidence, without the atmospheric dimming at similar inclinations on Earth. As exposed ice sublimates at T > 200K (partial pressure exceeds typical martian 0.1 Pa), a crust of dirt develops to maintain quasi-stability. The dirt crust's main function is to buffer the ice against diurnal temperature fluctuations, but it also slows down vapour diffusion - analogous to south polar ice sublimation [5] and the growth of ground-ice [6]. We envisage 1-10 mm/yr as the net sublimation rate, compatible with the 100 kyr life and scales of the north polar ravines. Modelling of icy-dirt crusts in the polar cap Plane-parallel layers have been used to model the changing temperature

  3. On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    Full Text Available Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to ~2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.

    Key words: Ionosphere (ionosphere–magnetosphere interactions; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  4. Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited

    Science.gov (United States)

    Förster, M.; Haaland, S.

    2015-07-01

    The interaction between the interplanetary magnetic field and the geomagnetic field sets up a large-scale circulation in the magnetosphere. This circulation is also reflected in the magnetically connected ionosphere. In this paper, we present a study of ionospheric convection based on Cluster Electron Drift Instrument (EDI) satellite measurements covering both hemispheres and obtained over a full solar cycle. The results from this study show that average flow patterns and polar cap potentials for a given orientation of the interplanetary magnetic field can be very different in the two hemispheres. In particular during southward directed interplanetary magnetic field conditions, and thus enhanced energy input from the solar wind, the measurements show that the southern polar cap has a higher cross polar cap potential. There are persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. These persistent asymmetries are primarily a result of the significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace.

  5. Recession of the Northern polar cap from the PFS Mars Express observations

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Giuranna, M.; Grassi, D.; Hansen, G.; Ignatiev, N. I.; Maturilli, A.; Pfs Team

    Planetary Fourier Spectrometer (PFS) has two spectral channels, devoted to the thermal and solar reflected spectral range investigations. The first observations by PFS of the Northern hemisphere ,which includes the North pole, occurred at Ls= 342 (northern winter). Surface temperature alone the orbit shows that the CO2 ice polar cap, where the surface temperature is found around 150K and below, is extended down to about 62 N. The spectra at latitudes above 80 N are obtained at polar darkness and at latitudes below 80 at illumination by the low Sun. Retrieved temperature profiles of the atmosphere at darkness show that temperature of the atmosphere is low enough to allow the CO2 condensation up to about 25 km. Between 70 and 80 latitude the upper levels of the atmosphere are heated by the Sun, but condensation of the CO2 may occur in the near surface layer below 5 km. The water ice clouds exist at lower latitudes with maximum opacity at the edge of the polar cap. More detailed investigation of the data obtained in winter as well as of the measurements in the northern spring will be presented.

  6. Parameterizing the Magnetopause Reconnection Rate from Observations of the Expanding Polar Cap

    Science.gov (United States)

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-04-01

    We determine an expression for the magnetopause reconnection rate in terms of upstream interplanetary parameters. We quantify the dayside reconnection rate from observations of the expanding polar cap when the nightside reconnection rate is assumed to be zero. The polar cap open flux is calculated from auroral images collected by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet camera (FUV), and its rate of increase is correlated with upstream solar wind and interplanetary magnetic field measurements from the OMNI data-set. We find that the reconnection rate is successfully reproduced by considering the magnetic flux transport within a 4 Re-wide channel within the solar wind (with an additional small correction for the solar wind velocity) and an IMF clock angle dependence with an exponent of 9/2. Contrary to several previous studies we do not find a dependence of the reconnection rate on solar wind density. We discuss our findings in the context of previous studies and solar wind-magnetosphere coupling models.

  7. Comparison of ionospheric convection and the transpolar potential before and after solar wind dynamic pressure fronts: implications for magnetospheric reconnection

    Science.gov (United States)

    Boudouridis, A.; Zesta, E.; Lyons, L. R.; Kim, H.-J.; Lummerzheim, D.; Wiltberger, M.; Weygand, J. M.; Ruohoniemi, J. M.; Ridley, A. J.

    2012-04-01

    The solar wind dynamic pressure, both through its steady state value and through its variations, plays an important role in the determination of the state of the terrestrial magnetosphere and ionosphere, its effects being only secondary to those of the Interplanetary Magnetic Field (IMF). Recent studies have demonstrated the significant effect solar wind dynamic pressure enhancements have on ionospheric convection and the transpolar potential. Further studies have shown a strong response of the polar cap boundary and thus the open flux content of the magnetosphere. These studies clearly illustrate the strong coupling of solar wind dynamic pressure fronts to the terrestrial magnetosphere-ionosphere system. We present statistical studies of the response of Super Dual Auroral Radar Network (SuperDARN) flows, and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) transpolar potentials to sudden enhancements in solar wind dynamic pressure. The SuperDARN results show that the convection is enhanced within both the dayside and nightside ionosphere. The dayside response is more clear and immediate, while the response on the nightside is slower and more evident for low IMF By values. AMIE results show that the overall convection, represented by the transpolar potential, has a strong response immediately after an increase in pressure, with magnitude and duration modulated by the background IMF Bz conditions. We compare the location of the SuperDARN convection enhancements with the location and motion of the polar cap boundary, as determined by POLAR Ultra-Violet Imager (UVI) images and runs of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic model for specific events. We find that the boundary exhibits a poleward motion after the increase in dynamic pressure. The enhanced ionospheric flows and the poleward motion of the boundary on the nightside are both signatures of enhanced tail reconnection, a conclusion that is reinforced by the observation of the

  8. Modeling the Quiet Time Outflow Solution in the Polar Cap

    Science.gov (United States)

    Glocer, Alex

    2011-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.

  9. A study of the relationship between interplanetary parameters and large displacements of the nightside polar cap boundary

    International Nuclear Information System (INIS)

    Lester, M.; Freeman, M.P.; Southwood, D.J.; Waldock, J.A.; Singer, H.J.

    1990-01-01

    On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at ∼ 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thence to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s -1 . the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s -1

  10. On the role of IMF By in generating the electric field responsible for the flow across the polar cap

    International Nuclear Information System (INIS)

    Vennerstroem, S.; Friis-Christensen, E.

    1987-01-01

    During periods of southward interplanetary magnetic field (IMF) the authors have examined the relationship between magnetic variations in the central polar cap and the IMF B y and B z components. The geomagnetic polar cap index PC that can be used as a measure of the flow across the polar cap has been derived using data from Thule in the IMS period. The results have been compared with IMP 8 measurements of the IMF and the solar wind velocity. The statistical analysis shows that the absolute value of the azimuthal component |B y | contributes to the cross-polar cap flow in the same manner as the southward component B s . The relative contributions of |B y | and B z have been examined and compared with the theoretical expression υB T sin 2 θ/2 for the merging electric field. It is found that the contribution of |B y | compared to B z is only half as big in the observations as in the theoretical expression. The B y effect on PC is compared to an earlier reported effect of B y on the geomagnetic index AL (Murayama et al., 1980) and found to be quite different from this. This is discussed in relation to interpretations in terms of merging site asymmetry

  11. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  12. Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap

    Science.gov (United States)

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-03-01

    Many studies have attempted to quantify the coupling of energy from the solar wind into the magnetosphere. In this paper we parameterize the dependence of the magnetopause reconnection rate on interplanetary parameters from the OMNI data set. The reconnection rate is measured as the rate of expansion of the polar cap during periods when the nightside reconnection rate is thought to be low, determined from observations by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet (FUV) imager. Our fitting suggests that the reconnection rate is determined by the magnetic flux transport in the solar wind across a channel approximately 4 RE in width, with a small correction dependent on the solar wind speed, and a clock angle dependence. The reconnection rate is not found to be significantly dependent on the solar wind density. Comparison of the modeled reconnection rate with SuperDARN measurements of the cross-polar cap potential provides broad support for the magnitude of the predictions. In the course of the paper we discuss the relationship between the dayside reconnection rate and the cross-polar cap potential.

  13. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca

    2012-01-01

    A rise in carbon dioxide levels from industrial emissions is contributing to the greenhouse effect and global warming. CO2 sequestration in saline aquifers is a strategy to reduce atmospheric CO2 levels. Scientists and researchers rely on numerical simulators to predict CO2 storage by modeling the fluid transport behaviour. Studies have shown that after CO2 is injected into a saline aquifer, undissolved CO2 rises due to buoyant forces and will spread laterally away from the injection site under an area of low permeability. CO2 from this ‘capped\\' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport is important to model since it predicts an enhanced storage capacity of the saline aquifer. This work incorporates the diffusive and convective transport processes into the transport modeling equation, and uses a self-generated code. Discretization of the domain is done with a cell-centered finite difference method. Cases are set up using similar parameters from published literature in order to compare results. Enhanced storage capacity is predicted in this work, similar to work done by others. A difference in the onset of convective transport between this work and published results is noticed and discussed in this paper. A sensitivity analysis is performed on the density model used in this work, and on the diffusivity value assumed. The analysis shows that the density model and diffusivity value is a key component on simulation results. Also, perturbations are added to porosity and permeability in order to see the effect of perturbations on the onset of convection, and results agree with similar findings by others. This work provides a basis for studying other cases, such as the impact of heterogeneity on the diffusion-convective transport. An extension of this work may involve the use of an equation of state to

  14. Types of electric field distribution and corresponding types of convection in the polar ionosphere. Model

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1989-01-01

    All types of distributions, known due to the experiment, for Ee-m electric field evening-morning component along morning-evening meridian are reproduced and corresponding types of convection in polar ionosphere are calculated on the basis of model of continuous distribution of E large-scale electric fields. Two-, three- and four-whirl types of convection are realized depending on conditions in interplanetary medium

  15. Convection in the polar ionosphere and the state of the interplanetary medium

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    A model of the continuous distribution of electric fields (E) controlled by parameters of the interplanetary medium has been developed which reproduces all the empirically known types of E distributions. This model is used to calculate the corresponding types of plasma convection in the polar ionosphere, represented by two-, three-, and four-vortex structures.

  16. IMF By associated interhemispheric asymmetries in ionospheric convection and field-aligned currents

    Science.gov (United States)

    Kunduri, B.; Baker, J.; Ruohoniemi, J. M.; Clausen, L.; Ribeiro, A.

    2012-12-01

    The solar wind-magnetosphere interaction plays an important role in controlling the dynamics of ionospheric convection. It is widely known that the By component of IMF generates asymmetries in ionospheric convection between the northern and southern polar caps. Some studies show that IMF By-generated electric field penetrates into the closed magnetosphere producing differences in the high latitude ionospheric convection between hemispheres. The differences in convection were attributed to field-aligned potential drop between hemispheres resulting in flow of interhemispheric field aligned currents. In the current paper we present interhemispheric observations of high latitude ionospheric convection on closed field lines in the noon-dusk sector. The observations reveal that the convection is stronger in the northern (southern) hemisphere when IMF By is positive (negative) irrespective of season. The inter-hemispheric differences can be attributed to the flow of interhemispheric field aligned currents which support the existence of oppositely-directed zonal plasma flows in the closed field line regions, suppressing the convection in one hemisphere and aiding it in the other. We estimate the strength of these currents, analyze their characteristics and identify the various factors such as magnetic local time, magnetic latitude and ionospheric conductivity that impact them.

  17. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li, E-mail: mali@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Li, Jing, E-mail: lijing@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Ji, Shui, E-mail: jishui@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Chang, Huajian, E-mail: changhuajian@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Highlights: • The facility reached high Ra number at 10{sup 12} of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra{sup 0.315} was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10{sup 5} to 6.8 × 10{sup 8} in G–D correlation and less than 10{sup 12} in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10{sup 11} for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra{sup 0.315} in the range 3.93 × 10{sup 8} < Ra < 3.57

  18. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    International Nuclear Information System (INIS)

    Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian

    2015-01-01

    Highlights: • The facility reached high Ra number at 10 12 of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra 0.315 was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10 5 to 6.8 × 10 8 in G–D correlation and less than 10 12 in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10 11 for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra 0.315 in the range 3.93 × 10 8 < Ra < 3.57 × 10 12 . Furthermore, the experiment

  19. High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere

    Science.gov (United States)

    Forsythe, Victoriya V.

    The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern latitudes where plasma convection estimates are accurately deduced from all SuperDARN radars in the southern hemisphere. Statistical analysis is presented showing that the predominance of the

  20. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  1. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters

    International Nuclear Information System (INIS)

    Weber, E.J.; Ballenthin, J.O.; Basu, S.; Carlson, H.C.; Hardy, D.A.; Maynard, N.C.; Smiddy, M.; Kelley, M.C.; Fleischman, J.R.; Sheehan, R.E.; Pfaff, R.F.; Rodriguez, P.

    1989-01-01

    An instrumented rocket payload was launched into a polar cap F layer aurora to investigate the energetic particle, plasma, and electric circuit parameters of a Sun-aligned arc. On-board instruments measured energetic electron flux, ion composition and density fluctuations, electron density and temperature, electron density fluctuations, and ac and dc electric fields. Real-time all-sky imaging photometer measurements of the location and motion of the aurora, were used to determine the proper geophysical situation for launch. Comparison of the in situ measurements with remote optical measurements shows that the arc was produced by fluxes of low-energy (< 1 keV) electrons. Field-aligned potentials in the arc inferred from the electron spectra had a maximum value of approximately 300 V, and from the spectral shape a parent population of preaccelerated electrons characteristic of the boundary plasma sheet or magnetosheath was inferred. Electric field components along and across the arc show sunward flow within the arc and duskward drift of the arc consistent with the drift direction and speed determined from optical imaging. Thus this arc is drifting duskward under the influence of the convection electric field. Three possible explanations for this (field-aligned currents, chemistry, and transport) are considered. Finally, ionospheric irregularity and electric field fluctuations indicate two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability

  2. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  3. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  4. Interhemispheric differences and solar cycle effects of the high-latitude ionospheric convection patterns deduced from Cluster EDI observations

    Science.gov (United States)

    Förster, Matthias; Haaland, Stein

    2015-04-01

    Here, we present a study of ionospheric convection at high latitudes that is based on satellite measurements of the Electron Drift Instrument (EDI) on-board the Cluster satellites, which were obtained over a full solar cycle (2001-2013). The mapped drift measurements are covering both hemispheres and a variety of different solar wind and interplanetary magnetic field (IMF) conditions. The large amount of data allows us to perform more detailed statistical studies. We show that flow patterns and polar cap potentials can differ between the two hemispheres on statistical average for a given IMF orientation. In particular, during southward directed IMF conditions, and thus enhanced energy input from the solar wind, we find that the southern polar cap has a higher cross polar cap potential. We also find persistent north-south asymmetries which cannot be explained by external drivers alone. Much of these asymmetries can probably be explained by significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemisphere. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace. The average convection is higher during periods with high solar activity. Although local ionospheric conditions may play a role, we mainly attribute this to higher geomagnetic activity due to enhanced solar wind - magnetosphere interactions.

  5. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  6. The interaction of a magnetic cloud with the Earth - Ionospheric convection in the Northern and Southern Hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions

    Science.gov (United States)

    Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.

    1993-01-01

    Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.

  7. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Science.gov (United States)

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  8. Localized electron density enhancements in the high-altitude polar ionosphere and their relationships with storm-enhanced density (SED plumes and polar tongues of ionization (TOI

    Directory of Open Access Journals (Sweden)

    Y. Kitanoya

    2011-02-01

    Full Text Available Events of localized electron density increase in the high-altitude (>3000 km polar ionosphere are occasionally identified by the thermal plasma instruments on the Akebono satellite. In this paper, we investigate the vertical density structure in one of such events in detail using simultaneous observations by the Akebono and DMSP F15 satellites, the SuperDARN radars, and a network of ground Global Positioning System (GPS receivers, and the statistical characteristics of a large number (>10 000 of such events using Akebono data over half of an 11-year solar cycle. At Akebono altitude, the parallel drift velocity is remarkably low and the O+ ion composition ratio remarkably high, inside the high plasma-density regions at high altitude. Detailed comparisons between Akebono, DMSP ion velocity and density, and GPS total electron content (TEC data suggest that the localized plasma density increase observed at high altitude on Akebono was likely connected with the polar tongue of ionization (TOI and/or storm enhanced density (SED plume observed in the F-region ionosphere. Together with the SuperDARN plasma convection map these data suggest that the TOI/SED plume penetrated into the polar cap due to anti-sunward convection and the plume existed in the same convection channel as the dense plasma at high altitude; in other words, the two were probably connected to each other by the convecting magnetic field lines. The observed features are consistent with the observed high-density plasma being transported from the mid-latitude ionosphere or plasmasphere and unlikely a part of the polar wind population.

  9. Dayside and nightside contributions to the cross polar cap potential: placing an upper limit on a viscous-like interaction

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2004-11-01

    Full Text Available Observations of changes in size of the ionospheric polar cap allow the dayside and nightside reconnection rates to be quantified. From these it is straightforward to estimate the rate of antisunward transport of magnetic flux across the polar regions, quantified by the cross polar cap potential ΦPC. When correlated with upstream measurements of the north-south component of the IMF, ΦPC is found to increase for more negative Bz, as expected. However, we also find that ΦPC does not, on average, decrease to zero, even for strongly northward IMF. In the past this has been interpreted as evidence for a viscous interaction between the magnetosheath flow and the outer boundaries of the magnetosphere. In contrast, we show that this is the consequence of flows excited by tail reconnection, which is inherently uncorrelated with IMF Bz.

  10. Simulation of natural convection in an inclined polar cavity using a finite-difference lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Yang, Haicheng; Guo, Xueyan; Ren Dai [University of Shanghai for Science and Technology, Shanghai (China); Yan, Yonghua [Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai (China); Liu, Chaoqun [University of Texas at Arlington, Arlington (United States)

    2017-06-15

    Natural convection heat transfer in an inclined polar cavity was studied using a Finite-difference lattice Boltzmann method (FDLBM) based on a double-population approach for body-fitted coordinates. A D2G9 model coupled with the simplest TD2Q4 lattice model was applied to determine the velocity field and temperature field. For both velocity and temperature fields, the discrete spatial derivatives were obtained by combining the upwind scheme with the central scheme, and the discrete temporal term is obtained using a fourth-order Runge-Kutta scheme. Studies were carried out for different Rayleigh numbers and different inclination angles. The results in terms of streamlines, isotherms, and Nusselt numbers explain the heat transfer mechanism of natural convection in an inclined polar cavity due to the change of Rayleigh number and inclination angle.

  11. High latitude plasma convection: Predictions for EISCAT and Sondre Stromfjord

    International Nuclear Information System (INIS)

    Sojka, J.J.; Raitt, W.J.; Schunk, R.W.

    1979-01-01

    We have used a plasma convection model to predict diurnal patterns of horizontal drift velocities in the vicinity of the EISCAT incoherent scatter facility at Tromso, Norway and for Sondre Stromfjord, Greenland, a proposed new incoherent scatter facility site. The convection model includes the offset of 11.4 0 between the geographic and geomagnetic poles (northern hemisphere), the tendency of plasma to corotate about the geographic pole, and a magnetospheric electric field mapped to a circle about a center offset by 5 0 in the antisunward direction from the magnetic pole. Four different magnetospheric electric field configurations were considered, including a constant cross-tail electric field, asymmetric electric fields with enhancements on the dawn and dusk sides of the polar cap, and an electric field pattern that is not aligned parallel to the noon-midnight magnetic meridian. The different electric field configurations produce different signatures in the plasma convection pattern which are clearly identified. Both of the high-latitude sites are better suited to study magnetospheric convection effects than either Chatanika, Alaska or Millstone Hill, Massachusetts. Also, each site appears to have unique capabilities with regard to studying certain aspects of the magnetospheric electric field

  12. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  13. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  14. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-05-01

    An increase in the earth’s surface temperature has been directly linked to the rise of carbon dioxide (CO2) levels In the atmosphere and an enhanced greenhouse effect. CO2 sequestration is one of the proposed mitigation Strategies in the effort to reduce atmospheric CO2 concentrations. Globally speaking, saline aquifers provide an adequate storage capacity for the world’s carbon emissions, and CO2 sequestration projects are currently underway in countries such as Norway, Germany, Japan, USA, and others. Numerical simulators serve as predictive tools for CO2 storage, yet must model fluid transport behavior while coupling different transport processes together accurately. With regards to CO2 sequestration, an extensive amount of research has been done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced storage capacity in saline aquifers, due to the density increase between pure fluid and CO2‐saturated fluid. This work presents the transport modeling equations that are used for diffusive- convective modeling. A cell-centered finite difference method is used, and simulations are run using MATLAB. Two cases are explored in order to compare the results from this work’s self-generated code with the results published in literature. Simulation results match relatively well, and the discrepancy for a delayed onset time of convective transport observed in this work is attributed to numerical artifacts. In fact, onset time in this work is directly attributed to the instability of the physical system: this instability arises from non-linear coupling of fluid flow, transport, and convection, but is triggered by numerical errors in these simulations. Results from this work enable the computation of a value for the numerical constant that appears in the onset time equation that

  15. Automated identification and tracking of polar-cap plasma patches at solar minimum

    Directory of Open Access Journals (Sweden)

    R. Burston

    2014-03-01

    Full Text Available A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS, inverts slant total electron content (TEC data from ground-based Global Navigation Satellite System (GNSS receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

  16. Pulsar bi-drifting: implications for polar cap geometry

    Science.gov (United States)

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  17. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2000-06-01

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  18. Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2005-12-01

    Full Text Available Using data from the EISCAT (European Incoherent Scatter VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005. It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002, were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1 concentration enhancement within the patches by cusp/cleft precipitation; (2 plasma depletion in the minima between the patches by fast plasma flows; and (3 intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3 is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2 also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000.

  19. Relationships between the solar wind and the polar cap magnetic activity

    International Nuclear Information System (INIS)

    Berthelier, A.

    1981-01-01

    The influence of solar wind conditions on magnetic activity is described in order to delineate the differences in the response of the magnetic activity to the arrival on the magnetopause of different typical solar wind variations. By determining a new index of local magnetic activity free from seasonal and diurnal effects we put in evidence the dependence of the various effects upon the invariant latitude. Most important results are: (1) the main increase of the magnetic activity does not occur at the same invariant latitude for different interplanetary variations, e.g. peaks of Bz tend to increase magnetic activity mainly in the auroral zones while peaks of B correspond to a uniform increase in magnetic activity over the polar cap and auroral zone; (2) there is a two steps response of magnetic activity to the high speed plasma streams; (3) an increase of magnetic activity is observed for large and northward Bz, which probably indicates that the solar wind-magnetosphere coupling is efficient under these circumstances. The specific influences of the IMF polarity are also briefly reviewed. (orig.)

  20. Mass balance of Mars' residual south polar cap from CTX images and other data

    Science.gov (United States)

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.

    2016-04-01

    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  1. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    Science.gov (United States)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  2. EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2008-02-01

    Full Text Available The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6° cgmLat and Longyearbyen (75.2° cgmLat on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB made zig-zag-type motion with amplitude of 2.5° cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL. The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992. The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.

    During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 RE mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency fluctuations.

    The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2° during

  3. H2O grain size and the amount of dust in Mars' residual North polar cap

    Science.gov (United States)

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  4. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Science.gov (United States)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  5. Change in the F region structure of a polar ionosphere at the change of the Y component sighn of the interplanetary magnetic field. Svalgaard-Mansurov effect in the ionosphere

    International Nuclear Information System (INIS)

    Gal'perin, Yu.I.; Zosimova, A.G.; Larina, T.N.; Mozhaev, A.M.; Osipov, N.K.; Ponomarev, Yu.N.

    1980-01-01

    Model calculations of the planetary picture of the polar ionosphere characteristics taking into account modern models of magnetospheric convection are carried out. The results of direct measurements of the lateral component of the convection rate in the day polar cusp region obtained by the ''Kosmos-184'' satellite in 1967 indicative of rotation of the zonal convection component direction with tha change of the Bsub(y) component sign of the interplanetary magnetic field (IMF). It is shown that the change of the IMF Bsub(y) sign and the following change of the convection picture in the polar cap must cause a quick (10 3 s) change of the planetary picture of the polar ionosphere characteristics in the F region peak and higher, i.e. ''the Svalgard-Mansurov ionospheric effect''. The amplitude of the variations and their character are defined by the relation of the solar and auroral ionization, and, therefore, they strongly depend on the universal time, season and auroral activity, that hampers comparison of the calculations with the experiment. The experimental data obtained from satellites and indicative of the reality of the described ionospheric Bsub(y) effect are presented. Thus, the data of many years on the ionospheric measurements from the Earth and satellites parallel with the magnetic measurements can be used to specify parameters describing the magnetospheric convection picture [ru

  6. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    Science.gov (United States)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on

  7. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.

    2011-12-01

    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  8. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.

    Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  9. Dependence of the cross polar cap potential saturation on the type of solar wind streams

    OpenAIRE

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2013-01-01

    We compare of the cross polar cap potential (CPCP) saturation during magnetic storms induced by various types of the solar wind drivers. By using the model of Siscoe-Hill \\citep{Hilletal1976,Siscoeetal2002a,Siscoeetal2002b,Siscoeetal2004,Siscoe2011} we evaluate criteria of the CPCP saturation during the main phases of 257 magnetic storms ($Dst_{min} \\le -50$ nT) induced by the following types of the solar wind streams: magnetic clouds (MC), Ejecta, the compress region Sheath before MC ($Sh_{M...

  10. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok553@nplindia.org; Shukla, A. K. [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012 (India); Barrionuevo, D.; Ortega, N.; Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343 (United States); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering - IMRE, Agency for Science Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Scott, J. F. [Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews KY16 ST (United Kingdom)

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  11. The spatial distribution of magnetospheric convection electric fields at ionospheric altitudes: a review. 1. Observations

    International Nuclear Information System (INIS)

    Caudal, G.; Blanc, M.

    1983-01-01

    The different techniques used for the study of the large-scale pattern of magnetospheric convection in the auroral zone are reviewed, with particular emphasis on incoherent and coherent scatter radars. For each technique, typical results are presented that illustrate its most important contributions to our knowledge of plasma convection at ionospheric altitudes, and its main advantages, limitations, and typical spatial and temporal coverage are described. Based upon the results gathered to date, the main features of the convection pattern are presented, namely: the double cell system and its asymmetry depending in particular on the Bsub(y) component of the IMF, the Harang discontinuity and its latitudinal dependence, the dayside throat, the attenuation of convection toward lower latitudes and its reversal at the polar cap boundary. The most interesting problems still open include the establishment of a quantitative model of the latitudinal variation of the electric field intensity at the planetary scale. Others entail separating universal time and local time effects in the field variations. Longitude variations have not yet been evaluated, and the characteristic signature of substorms has not been clearly separated from mere global modulations of the intensity of convection. Global coordinated campaigns, taking advantage of the best that each measurement technique has to offer to achieve the spatial and temporal coverage needed, are the only possible way to attack these problems

  12. Response of the polar cap boundary and the current system to changes in IMF observed from the MAGSAT satellite in the southern hemisphere during summer

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Burrows, J.R.

    1987-01-01

    The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions. The study has been carried out for the summer months in the Southern Hemisphere. ''Shear reversals'' (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180 0 . It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bsub(z) component and in the latitude range of about 70 0 -80 0 . SRs in the dusk sector occur predominantly when the azimuthal component Bsub(y) is positive and in the dawn sector when Bsub(y) is negative, irrespective of the sign of Bsub(z). These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bsub(z). Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 x 10 4 to 6.5 x 10 5 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to

  13. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  14. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  15. Plasma drifts associated with a system of sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Mende, S.B.; Doolittle, J.H.; Robinson, R.M.; Vondrak, R.R.; Rich, F.J.

    1988-01-01

    A series of four sun-aligned arcs passed over Sondre Stromfjord, Greenland, on the night of the 17th and 18th of February, 1985. Observations of these arcs were made using the Sondrestrom incoherent scatter radar and an intensified all-sky imaging TV system that was operated at the radar site. The first of the four arcs crossed the Sondre Stromfjord meridian just before local midnight moving westward, and the other three arcs followed at approximately half-hour intervals. When we account for the earth's rotation, the arc drift in an inertial frame was eastward, or dusk to dawn. The half-hour interval between meridian crossings of the arcs implies that the mean spacing between the arcs was 180 km. A Defense Meteorological Satellite Program (DMSP) F6 satellite pass at 0110 UT revealed the presence of highly structured electron and ion precipitation throughout the polar cap. The DMSP visible imager detected a single, sun-aligned arc associated with the largest peak in precipitating electron flux. This arc was also observed at Thule, Greenland, with an intensified film camera. These observations suggest that at least one of the arcs that were observed at Sondre Stromfjord extended across a large part of the polar cap. The radar at Sondre Stromfjord measured electron density and ion drift velocities associated with the four arcs. The radar drift measurements were superimposed on the all-sky video images to determine the location of the measurements relative to the arcs. Plasma drifts outside the arcs were found to be both sunward and antisunward, while within the arcs the drifts were predominantly antisunward. The variability of the drifts in the direction parallel to the arcs indicates that the electric fields were highly structured even though the configuration and motion of the arcs were well behaved

  16. /sup 15/N(p,. cap alpha. )/sup 12/C reaction with polarized protons from 0. 34 to 1. 21 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, G H; Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-03-29

    A polarized beam was used to measure angular distributions of the analyzing power of the /sup 15/N(p,..cap alpha..)/sup 12/C reaction at 0.34 MeV and at five energies from 0.92 to 1.21 MeV. The analyzing power can be fitted with associated Legendre polynomials, P/sub 1//sup 1/ and P/sub 2//sup 1/ sufficing to describe the results except near 1.2 MeV where P/sub 3//sup 1/ is also required. Polarization excitation functions were measured throughout the entire energy range at angles where the polynomials P/sub 2//sup 1/ and P/sub 3//sup 1/ are zero. A polarization contour map is given.

  17. The excitation of plasma convection in the high-latitude ionosphere

    International Nuclear Information System (INIS)

    Lockwood, M.; Cowley, S.W.H.; Freeman, M.P.

    1990-01-01

    Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the Polar experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼ 10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼ 10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼ 1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength ofthe IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes

  18. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  19. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  20. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  1. On the polarization of Herbig Ae/Be star radiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N I; Shevchenko, V S

    1987-08-01

    Results of multicolor UBVRI polarimetry of 14 Herbig Ae/Be stars including 7 stars for which observations of polarization have been made for the first time are presented. 6 bright Herbig Ae/Be stars (As 441, AS 442, LK H..cap alpha..134, LK H..cap alpha..135, Lk H..cap alpha..169 and V517 Cyg) which belong to star formation region connected with IC 5070 show the polarization from 1 to 4.5. per cent with similar theta (approx. 180 deg) (basically of interstellar nature). The polarimetrical variability of BD+46 deg 3471, BD+65 deg 1637, HD 200775 and Lk H..cap alpha..234 is confirmed. Mechanismes of polarization in Herbig Ae/Be stars in circumstellar formations are discussed.

  2. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  3. Chronological changes in the eighth cranial nerve compound action potential (CAP) in experimental endolymphatic hydrops: the effects of altering the polarity of click sounds.

    Science.gov (United States)

    Morizono, Tetsuo; Kondo, Tsuyoshi; Yamano, Takafumi; Miyagi, Morimichi; Shiraishi, Kimio

    2009-02-01

    Using a guinea pig model of experimental endolymphatic hydrops, click sounds of altered polarity showed different latencies and amplitudes in hydropic compared with normal cochleae. Latency changes appeared as early as 1 week after endolymphatic obstruction. This method can help diagnose endolymphatic hydrops. The goal of the study was to develop an objective electrophysiological diagnosis of endolymphatic hydrops. Endolymphatic hydrops were created surgically in guinea pigs. The latency and the amplitude of the eighth cranial nerve compound action potential (CAP) for click sounds of altered polarity were measured up to 8 weeks after the surgery. At early stages after surgery, the latency for condensation clicks became longer, and at later stages the latencies for both condensation and rarefaction became longer. The discrepancy in the latencies for rarefaction and condensation click sounds (rarefaction minus condensation) became larger by the first week after surgery, but no further discrepancy occurred thereafter. Compared with latency changes, amplitude changes in the CAP were rapid and progressive following surgery, suggesting ongoing damage to hair cells.

  4. Stationary magnetospheric convection on November 24, 1981. 2. Small-scale structures in the dayside cusp/cleft

    Directory of Open Access Journals (Sweden)

    Y. I. Galperin

    Full Text Available A case study of the dayside cusp/cleft region during an interval of stationary magnetospheric convection (SMC on November, 24, 1981 is presented, based on detailed measurements made by the AUREOL-3 satellite. Layered small-scale field-aligned current sheets, or loops, superimposed to a narrow V-shaped ion dispersion structure, were observed just equatorward from the region of the "cusp proper". The equatorward sheet was accompanied by a very intense and short (less than 1 s ion intensity spike at 100 eV. No major differences were noted of the characteristics of the LLBL, or "boundary cusp", and plasma mantle precipitation during this SMC period from those typical of the cusp/cleft region for similar IMF conditions. Simultaneous NOAA-6 and NOAA-7 measurements described in Despirak et al. were used to estimate the average extent of the "cusp proper" (defined by dispersed precipitating ions with the energy flux exceeding 10-3 erg cm-2 s-1 during the SMC period, as ~0.73° ILAT width, 2.6-3.4 h in MLT, and thus the recently merged magnetic flux, 0.54-0.70 × 107 Wb. This, together with the average drift velocity across the cusp at the convection throat, ~0.5 km s-1, allowed to evaluate the cusp merging contribution to the total cross-polar cap potential difference, ~33.8-43.8 kV. It amounts to a quite significant part of the total cross-polar cap potential difference evaluated from other data. A "shutter" scenario is suggested for the ion beam injection/penetration through the stagnant plasma region in the outer cusp to explain the pulsating nature of the particle injections in the low- and medium-altitude cusp region.

    Key words. Magnetospheric physics (current systems; magnetopause · cusp · and boundary layers; solar wind-magnetosphere interactions.

  5. Hyperspectral characterisation of the Martian south polar residual cap using CRISM

    Science.gov (United States)

    Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.

    2017-09-01

    We present our research on hyperspectral characterization of the Martian South Polar Residual Cap (SPRC), with a focus on the detection of organic signatures within the dust content of the ice. The SPRC exhibits unique CO2 ice sublimation features known colloquially as 'Swiss Cheese Terrain' (SCT). These flat floored, circular depressions are highly dynamic, and may expose dust particles previously trapped within the ice in the depression walls and partially on the floors. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions to establish their mineral composition, to eliminate the effects of ices on sub-pixel dusty features, and to assess whether ther might be signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 and H2O ice. Whilst no conclusive evidence for PAHs has been found, depression rims are shown to have higher water content than regions of featureless ice, and there are indications of magnesium carbonate within the dark, dusty regions.

  6. Martian North Polar Water-Ice Clouds During the Viking Era

    Science.gov (United States)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  7. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  8. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  9. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  10. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Augustson, Kyle; Miesch, Mark [High Altitude Observatory, Center Green 1, Boulder, CO 80301 (United States); Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/DSM–CNRS–Université Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Toomre, Juri [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  11. Interannual and seasonal changes in the south seasonal polar cap of Mars: Observations from MY 28-31 using MARCI

    Science.gov (United States)

    Calvin, W. M.; Cantor, B. A.; James, P. B.

    2017-08-01

    The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.

  12. Multi-instrumentation observations of a transpolar arc in the northern hemisphere

    Directory of Open Access Journals (Sweden)

    A. Goudarzi

    2008-02-01

    Full Text Available A transpolar arc was imaged by the FUV instrument on the IMAGE spacecraft during a 3-h interval on 5 February 2002. Observations indicate that a burst of reconnection in the geomagnetic tail, which was not associated with a substorm, was responsible for the formation of the arc. The arc initially formed across the central polar cap, extending from near midnight to noon such that the polar cap was approximately divided in half. The subsequent motion of the arc was controlled by the amount of open flux being added to the dawn sector cap from a magnetopause reconnection site on the post-noon side of the magnetosphere. The dayside reconnection happened during a period when the IMF By component was dominant, although the Bz component initially remained positive, and resulted in strong westward azimuthal flows in the noon sector. The arc continued to move towards the duskside auroral oval after the IMF Bz turned southward. A keogram of the FUV/WIC auroral observations along the dawn-dusk meridian provides further evidence of the expansion and contraction of the polar cap during the period in which different IMF orientations occurred. Furthermore, comparing images from IMAGE and ionospheric convection flow from SuperDARN measurements, vortical convection flows occurred exactly at the time and location of the formation of the transpolar arc and subsequently followed the head of the transpolar arc as it moved across the polar cap. The observations are consistent with the prediction of a recent model for the formation of the transpolar cap by the closure of open flux in the geomagnetic tail, and its subsequent motion through changes in the open flux distribution within the polar cap.

  13. Multi-instrumentation observations of a transpolar arc in the northern hemisphere

    Directory of Open Access Journals (Sweden)

    A. Goudarzi

    2008-02-01

    Full Text Available A transpolar arc was imaged by the FUV instrument on the IMAGE spacecraft during a 3-h interval on 5 February 2002. Observations indicate that a burst of reconnection in the geomagnetic tail, which was not associated with a substorm, was responsible for the formation of the arc. The arc initially formed across the central polar cap, extending from near midnight to noon such that the polar cap was approximately divided in half. The subsequent motion of the arc was controlled by the amount of open flux being added to the dawn sector cap from a magnetopause reconnection site on the post-noon side of the magnetosphere. The dayside reconnection happened during a period when the IMF By component was dominant, although the Bz component initially remained positive, and resulted in strong westward azimuthal flows in the noon sector. The arc continued to move towards the duskside auroral oval after the IMF Bz turned southward. A keogram of the FUV/WIC auroral observations along the dawn-dusk meridian provides further evidence of the expansion and contraction of the polar cap during the period in which different IMF orientations occurred. Furthermore, comparing images from IMAGE and ionospheric convection flow from SuperDARN measurements, vortical convection flows occurred exactly at the time and location of the formation of the transpolar arc and subsequently followed the head of the transpolar arc as it moved across the polar cap. The observations are consistent with the prediction of a recent model for the formation of the transpolar cap by the closure of open flux in the geomagnetic tail, and its subsequent motion through changes in the open flux distribution within the polar cap.

  14. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  15. Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2004-04-01

    Full Text Available Polar cap absorption (PCA events recorded during November 2001 are investigated by observations of ionospheric absorption of a 30MHz riometer installed at Terra Nova Bay (Antarctica, and of solar proton flux, monitored by the NOAA-GOES8 satellite in geo-synchronous orbit. During this period three solar proton events (SPE on 4, 19 and 23 November occurred. Two of these are among the dozen most intense events since 1954 and during the current solar cycle (23rd, the event of 4 November shows the greatest proton flux at energies >10MeV. Many factors contribute to the peak intensity of the two SPE biggest events, one is the Coronal Mass Ejection (CME speed, other factors are the ambient population of SPE and the shock front due to the CME. During these events absorption peaks of several dB (~20dB are observed at Terra Nova Bay, tens of minutes after the impact of fast halo CMEs on the geomagnetic field.

    Results of a cross-correlation analysis show that the first hour of absorption is mainly produced by 84–500MeV protons in the case of the 4 November event and by 15–44MeV protons for the event of 23 November, whereas in the entire event the contribution to the absorption is due chiefly to 4.2–82MeV (4 November and by 4.2–14.5MeV (23 November. Good agreement is generally obtained between observed and calculated absorption by the empirical flux-absorption relationship for threshold energy E0=10MeV. From the residuals one can argue that other factors (e.g. X-ray increases and geomagnetic disturbances can contribute to the ionospheric absorption.

    Key words. Ionosphere (Polar Ionosphere, Particle precipitation – Solar physics (Flares and mass ejections

  16. Modeling mantle convection in the spherical annulus

    Science.gov (United States)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  17. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  18. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

    Science.gov (United States)

    Lukianova, R. Yu.; Bogoutdinov, Sh. R.

    2017-11-01

    An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y y generation of large-scale irregularities in the polar ionosphere.

  19. SuperDARN HF Scattering and Propagation in the Presence of Polar Patches Imaged Using RISR

    Science.gov (United States)

    Gillies, R. G.; Perry, G. W.; Varney, R. H.; Gillies, D. M.; Donovan, E.

    2017-12-01

    The global array of High Frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars continuously monitors ionospheric convection in the middle-to-high latitude region. The radars measure coherent backscatter from decameter scale field-aligned irregularities. One of the main generation mechanisms for these field-aligned irregularities is the gradient drift instability (GDI). The edges of ionospheric density structures, such as polar cap patches, provide ideal locations for GDI growth. The geometry required for GDI growth results in irregularities forming on the trailing edge of polar patches. However, irregularities generated by the non-linear evolution of the GDI can become prevalent throughout the patch within minutes. Modelling the irregularity growth and measurements of backscatter within patches have both confirmed this. One aspect that has often been overlooked in studies of coherent backscatter within patches is the effect of HF propagation on echo location. This study examines HF echo locations in the vicinity of patches that were imaged using the Resolute Bay Incoherent Scatter Radars (RISR). The effect of both vertical and lateral refraction of the HF wave on echo location is examined.

  20. Comparison of Mars Northern Cap Edge Advance and Recession Rates over the Last 6 Mars Years

    Science.gov (United States)

    Titus, T. N.; Cushing, G. E.; Langevin, Y.; Brown, A. J.; Themis Science Team; CRISM Science Team

    2011-12-01

    The most observable parameter that describes the Mars polar seasonal caps is their size, which has been measured since the days of Herschel. The advance and retreat of the polar cap from year to year may exhibit many clues to help elucidate little understood physical processes. For example, summertime heat storage in the regolith could delay the onset of seasonal CO2 cap formation. The evolution of the seasonal cap could also be directly affected by the thermal inertia of the near-surface regolith and place constraints on the depth of the ice table. Parameterizations of the seasonal cap edges provide useful constraints on atmospheric GCMs and mesoscale models. Longitudinally resolving the cap edges as they advance and retreat constrains the times when zonal means are appropriate and when longitudinal asymmetries make zonal means invalid. These same kinds of parameterizations can also be used when modeling other data that have low spatial resolutions, such as Gamma Ray Spectrometer (GRS )and Neutron Spectrometer (NS) data. By knowing where the cap edge should be, coarse spatial data can correct for subpixel mixing caused by large point-spread functions including both frosted and frost-free areas. The northern cap exhibits a near symmetric retreat, which has been well characterized at visible wavelengths by both telescopic and spacecraft observations. However, the advance of the cap has not been well characterized until the 21st century. Kieffer and Titus (2001) have used zonal means to observe surface temperature and visible bolometric albedo variations with season using MGS/TES. The TES thermal observations show an almost perfectly symmetrical advance; i.e., condensation at consistent latitude across all longitudes, with the most northern edge of the seasonal cap occurring between longitudes 245°E to 265°E and the most southern edge of the seasonal cap occurring between 280°E and 30°E. The advance of the northern cap typically leads the advance of the edge of

  1. Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN

    Science.gov (United States)

    Bodine, D. J.; Rasmussen, K. L.

    2015-12-01

    Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.

  2. Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle

    Science.gov (United States)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2017-08-01

    We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983, Nature, 304, 401) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region Ω-loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper giving a full description of our dynamo scenario is posted on arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode

  3. Centrifugal acceleration of the polar wind

    Science.gov (United States)

    Horwitz, J. L.; Ho, C. W.; Scarbro, H. D.; Wilson, G. R.; Moore, T. E.

    1994-01-01

    The effect of parallel ion acceleration associated with convection was first applied to energization of test particle polar ions by Cladis (1986). However, this effect is typically neglected in 'self-consistent' models of polar plasma outflow, apart from the fluid simulation by Swift (1990). Here we include approximations for this acceleration, which we broadly characterize as centrifugal in nature, in our time-dependent, semikinetic model of polar plasma outflow and describe the effects on the bulk parameter profiles and distribution functions of H+ and O+. For meridional convection across the pole the approximate parallel force along a polar magnetic field line may be written as F(sub cent, pole) = 1.5m(E(sub i))/B(sub i))squared (r(squared)/r(sup 3)(sub i)) where m is ion mass, r is geometric distance; and E(sub i), B(sub i) and r(sub i) refer to the electric and magnetic field magnitudes and geocentric distance at the ionosphere, respectively. For purely longitudinal convection along a constant L shell the parallel force is F(cent. long) = F(sub cent, pole)(1 - (r/(r(sub i)L))(sup 3/2)/(1 - 3r/(4 r(sub i)L))(sup 5/2). For high latitudes the difference between these two cases is relatively unimportant below approximately 5 R(sub E). We find that the steady state O+ bulk velocities and parallel temperatures strongly increase and decrease, respectively, with convection strength. In particular, the bulk velocities increase from near 0 km/s at 4000 km altitude to approximately 10 km/s at 5 R(sub E) geocentric distance for 50-mV/m ionospheric convection electric field. However, the centrifugal effect on the steady O+ density profiles depends on the exobase ion and electron temperatures: for low-base temperatures (T(sub i) = T(sub e) = 3000 K) the O+ density at high altitudes increases greatly with convection, while for higher base temperatures (T(sub i) = 5000 K, T(sub e) = 9000 K), the high-altitude O+ density decreases somewhat as convection is enhanced. The

  4. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  5. The First End-Cap Cryostat is being Tested at Cold

    CERN Multimedia

    Aleksa, M

    The integration of the LAr end-cap detector wheels - one electromagnetic calorimeter wheel and two hadronic calorimeter wheels - was finished at the end of 2003 (see Fig. 1). Fig. 1: ECC cryostat after the insertion of the second hadronic end-cap wheel (Dec. 2003), and before the insertion of the forward calorimeter. After the insertion of the forward calorimeter, in summer 2004, the cryostat was closed and welded. Cool-down of the End-Cap C Cryostat: On Nov. 26, 2004, the cool-down of the cryostat started in B180 using forced convection of gaseous N2 in the heat exchangers and He gas in the cryostat (see Fig. 2). The cool-down speed during this time was on average 0.2K/h, hence arriving at a temperature of approximately 120K after about 6 weeks. The speed of the cool down was limited by stringent requirements on the temperature gradients in the detector wheels, which were established from mechanical constraints. The most severe limit was the maximum allowed temperature difference of 6K for the el...

  6. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  7. Structure of the polar ionosphere and convection of magnetospheric plasma outside the plazmapause

    International Nuclear Information System (INIS)

    Mozhaev, A.M.; Osipov, N.K.; AN SSSR, Moscow. Inst. Zemnogo Magnetizma, Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    The effect of large-scale magnetospheric convection on the space structure of high-latitude ionosphere was investigated. Simple analytical models were used. The continuity equation for the electron concentration at a given rate of transfer is solved. It has been found that the formation of the principal structural forms in the ionosphere is associated with the horizontal convective transfer of ionospheric plasma

  8. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. Density profiles

    Directory of Open Access Journals (Sweden)

    H. Laakso

    2002-11-01

    Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found

  9. The electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Valladares, C.E.; Carlson, H.C. Jr.

    1991-01-01

    The authors report here measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stromfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area (order 10 3 km by 10 3 km) maps of altitude profiles for observed electron and ion gas number densities, temperatures and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities (N e , T e , T i , V, E, Σ p , Σ H ), horizontal and field-aligned currents, joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc. Strong electron temperature enhancements (>2,000 K) are found as expected within the sheets of ionizing particle precipitation. Dawn to dusk decreases in the antisunward plasma flow of order 1 km s -1 , across order 100 km, correspond to peak electron densities of order 10 5 cm -3 down to altitudes as low as 120 km, and upward currents of order 1 μA m -2 . These data also lead to important implications for the physics of polar cap arcs. The high-velocity (antisunward flow on the dawnside) edge of the arc marks the location of strong persistent Joule heating driven by downward Poynting flux. The deposition rate into the atmosphere of the net electromagnetic energy well exceeds the net particle energy deposited by the ionizing energetic electron flux. This heating is a substantial source of heat into the polar thermosphere

  10. A critical note on the IAGA-endorsed Polar Cap (PC) indices: excessive excursions in the real-time index values

    Science.gov (United States)

    Stauning, Peter

    2018-04-01

    The Polar Cap (PC) indices were approved by the International Association for Geomagnetism and Aeronomy (IAGA) in 2013 and made available at the web portal http://pcindex.org" target="_blank">http://pcindex.org holding prompt (real-time) as well as archival index values. The present note provides the first reported examination of the validity of the IAGA-endorsed method to generate real-time PC index values. It is demonstrated that features of the derivation procedure defined by Janzhura and Troshichev (2011) may cause considerable excursions in the real-time PC index values compared to the final index values. In examples based on occasional downloads of index values, the differences between real-time and final values of PC indices were found to exceed 3 mV m-1, which is a magnitude level that may indicate (or hide) strong magnetic storm activity.

  11. Response of reverse convection to fast IMF transitions

    DEFF Research Database (Denmark)

    Taguchi, S.; Tawara, A.; Hairston, M. R.

    2015-01-01

    that variations of the ground magnetic perturbations were produced by the transition from clockwise plasma circulation to the anticlockwise circulation over the polar cap. A simple calculation based on the Biot-Savart law shows that the near-noon transition state is consistent with the approach of a new...

  12. ''Electron Conic'' Signatures observed in the nightside auroral zone and over the polar cap

    International Nuclear Information System (INIS)

    Menietti, J.D.; Burch, J.L.

    1985-01-01

    A preliminary search of the Dynamics Explorer 1 high-altitude plasma instrument data base has yielded examples of ''electron conic'' signatures. The three example passes show an association with regions of downward electron acceleration and upward ion beams, but this is not true of all the electron conic events. The electron conic signatures are clearly discernible on energy-flux-versus-time color spectrograms as pairs of discrete vertical bands which are symmetric about a pitch angle of approximately 180 0 . One of the examples is a polar cap pass with electron conic signatures observed at invariant latitudes from 84 0 to 75 0 . The other two cases are nightside auroral zone passes in which the regions of detectable electron conics are spatially more confined, covering only about 1 0 in invariant latitude. The conic signatures have been found at energies that range from 50 eV 0 is larger than expected for a loss cone feature. If the electrons conserve the first adiabatic invariant in a dipole magnetic field, and in some cases a parallel electric field, the mirroring altitude varies between about 500 km and 8000 km, which is above the atmospheric loss region. For this reason, and in analogy with the formation of ion conics, we suggest that the conic signatures are produced by heating of the electrons perpendicular to the magnetic field

  13. Observations of polar patches generated by solar wind Alfvén wave coupling to the dayside magnetosphere

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    1999-04-01

    Full Text Available A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0. The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs. In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations

  14. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.

    2012-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  15. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.

    2011-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  16. Ionization and electric field properties of auroral arcs during magnetic quiescence

    International Nuclear Information System (INIS)

    Robinson, R.M.; Mende, S.B.

    1990-01-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm 2 s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern

  17. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  18. Ionospheric travelling convection vortices observed by the Greenland magnetometer chain

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Stolle, Claudia; Friis-Christensen, Eigil

    2013-01-01

    The Greenland magnetometer array continuously provides geomagnetic variometer data since the early eighties. With the polar cusp passing over it almost every day, the array is suitable to detect ionospheric traveling convection vortices (TCVs), which were rst detected by Friis-Christensen et al...

  19. Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms

    Science.gov (United States)

    Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.

    2017-12-01

    A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.

  20. Cervical Cap

    Science.gov (United States)

    ... Videos for Educators Search English Español The Cervical Cap KidsHealth / For Teens / The Cervical Cap What's in ... Call the Doctor? Print What Is a Cervical Cap? A cervical cap is a small cup made ...

  1. Seasonal dependence of high-latitude electric fields

    International Nuclear Information System (INIS)

    de la Beaujardiere, O.; Leger, C.; Alcayde, D.; Fontanari, J.

    1991-01-01

    The seasonal dependence of the high-latitude electric field was investigated using Sondrestrom incoherent scatter radar data. Average ExB drifts were derived from 5 years of measurements centered around solar minimum. The electrostatic potentials that best fit the observed average electric field were calculated. It was found that the large-scale convection pattern significantly changes with season. This change involves the overall shape of the convection pattern, as well as the electric field intensity, and thus the total dawn-dusk potential across the polar cap. The cross polar cap potential drop is largest in fall, followed by winter, spring and summer. The small difference found between the summer and winter cross polar cap potential can be attributed to differing field-aligned potential drops. In view of the well-known relationship between field-aligned currents and parallel potential drop, this is consistent with the observations that Birkeland currents are larger in the summer than in winter. Changes in the overall shape of the convection pattern are consistent with the simple notion that the whole pattern is shifted toward the nightside as well as, to a lesser extent, toward the dawnside in summer as compared to winter. This assumption is based on the following observed effects: (1) The rotation of the overall convection pattern toward earlier local times with respect to the noon-midnight direction is maximum for summer on the dayside. (2) On the nightside, the Harang discontinuity is typically located within the radar field of view (Λ=67 to 82) in the winter averaged patterns, but it is equatorward of the field of view in summer. (3) The line that joins the dawn and dusk potential maxima is shifted toward the midnight sector in summer as compared to winter by about 5 degree. (4) In the dawn cell, the latitude of the convection reversal is the lowest during summer; in the dusk cell the latitude of the reversal is the lowest during winter

  2. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  3. Additions and corrections to the absorption coefficients of CO2 ice: Applications to the Martian south polar cap

    International Nuclear Information System (INIS)

    Calvin, W.M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 μm. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO 2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO 2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO 2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO 2 than can be obtained from the method used here

  4. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.

    2012-01-01

    Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and

  5. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    Science.gov (United States)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  6. South Polar Polygons

    Science.gov (United States)

    2005-01-01

    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  7. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  9. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    A rectilinear shell element formulated in the convected (co-rotational) coordinates is used to investigate the effects of edge conditions on the behaviors of thin shells of revolution under suddenly applied uniform loading. The equivalent generalized nodal forces under uniform loading are computed to the third order of the length of each element. A dynamic buckling load is defined as the load at which a great change in the response is observed for a small change in the loading. The problem studied is a shallow spherical cap. The cap is discretized into a finite number of elements. This discretization introduces some initial imperfections into the shell model. Nonetheless, the effect of this artificial imperfection is isolated from the effect of the edge conditions provided the same number of elements is used in all the cases. Four different edge conditions for the cap are used. These boundary conditions are fixed edge, hinged edge, roller edge and free edge. The apex displacement of the cap is taken as the measure for the response of the cap, and the dynamic buckling load is obtained by examining the response of the cap under different levels of loadings. Dynamic buckling loads can be found for all cases but for the free edge case. They are 0.28q for both fixed and hinged cases and 0.13 q for the roller case, where q is the classic static buckling load of a complete spherical shell with the same geometric dimensions and material properties. In the case of free edge, the motions of the cap are composed of mostly rigid body motion and small vibrations. The vibration of the cap is stable up to 1 q loading. The cap does snap through at higher loading. However, no loading can be clearly identified as buckling load

  10. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  11. Observations of polar patches generated by solar wind Alfvén wave coupling to the dayside magnetosphere

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    Full Text Available A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0. The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs. In the solar

  12. Magnetic field reversals, polar wander, and core-mantle coupling.

    Science.gov (United States)

    Courtillot, V; Besse, J

    1987-09-04

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.

  13. Cervical Cap

    Science.gov (United States)

    ... giving birth vaginally, which means the cervical cap may not fit as well. Inconsistent or incorrect use of the cervical cap increases your risk of pregnancy. For example, you may get pregnant when using the cervical cap if: ...

  14. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2015-09-01

    This study focuses on the 15 May 2005 geomagnetic superstorm and aims to investigate the global variation of positive and negative storm phases and their development. Observations are provided by a series of global total electron content maps and multi-instrument line plots. Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) simulations are also employed. Results reveal some sunward streaming plumes of storm-enhanced density (SED) over Asia and a well-developed midlatitude trough over North America forming isolated positive and negative storms, respectively. The simultaneous development of positive and negative storms over North America is also shown. Then, some enhanced auroral ionizations maintained by strong equatorward neutral winds appeared in the depleted nighttime ionosphere. Meanwhile, the northern nighttime polar region became significantly depleted as the SED plume plasma could not progress further than the dayside cusp. Oppositely, a polar tongue of ionization (TOI) developed in the daytime southern polar region. According to CTIP simulations, solar heating locally maximized (minimized) over the southern (northern) magnetic pole. Furthermore, strong upward surges of molecular-rich air created O/N2 decreases both in the auroral zone and in the trough region, while some SED-related downward surges produced O/N2 increases. From these results we conclude for the time period studied that (1) composition changes contributed to the formation of positive and negative storms, (2) strengthening polar convection and increasing solar heating of the polar cap supported polar TOI development, and (3) a weaker polar convection and minimized solar heating of the polar cap aided the depletion of polar plasma.

  15. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  16. A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the 'Y' component of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rees, D.; Fuller-Rowell, T.J.; Gordon, R.

    1986-01-01

    The strength and direction of the Interplanetary Magnetic Field (IMF) controls the transfer of solar wind momentum and energy to the high latitude thermosphere in a direct fashion. The sense of ''Y'' component of the IMF (BY) creates a significant asymmetry of the magnetospheric convection pattern as mapped onto the high latitude thermosphere and ionosphere. The resulting response of the polar thermospheric winds during periods when BY is either positive or negative is quite distinct, with pronounced changes in the relative strength of thermospheric winds in the dusk-dawn parts of the polar cap and in the dawn part of the auroral oval. In a study of four periods when there was a clear signature of BY, observed by the ISEE-3 satellite, with observations of polar winds and electric fields from the Dynamics Explorer-2 satellite and with wind observations by a ground-based Fabry-Perot interferometer located in Kiruna, Northern Sweden, it is possible to explain features of the high latitude thermospheric circulation using three dimensional global models including BY dependent, asymmetric, polar convection fields. Anomalously zonal wind velocities are often observed, for BY positive and when BY is negative. These are matched by the observation of strong anti-sunward polar-cap wind jets from the DE-2 satellite, on the dusk side with BY negative, and on the dawn side with BY positive. (author)

  17. Ionospheric convection response to changes of interplanetary magnetic field B-z component during strong B-y component

    DEFF Research Database (Denmark)

    Huang, C.S.; Murr, D.; Sofko, G.J.

    2000-01-01

    response to IMF Bz changes during strong IMF BZ. On March 23, 1995, B-x was small, B-y was strongly positive (7-11 nT), and the B-z polarity changed several times after 1300 UT. The dayside ionospheric convection is dominated by a large clockwise convection cell. The cell focus (the "eye" of the convection...... cell, or the largest change in the convection pattern, is limited roughly to the region between the previous cell focus and the new cell focus. Outside this region, the ionospheric flows could be greatly enhanced or weakened, while the convection pattern shape changes very little. When B-y is strong...... the dawn-dusk meridian plane, which is interpreted as propagation or expansion of newly generated convection cells in the cusp region. Other studies showed that the change in convection pattern in response to IMF reorientations is spatially fixed. In this paper, we investigate the ionospheric convection...

  18. Variations of the electron concentration in the polar ionosphere

    International Nuclear Information System (INIS)

    Chasovitin, Yu.K.; Shushkova, V.B.

    1980-01-01

    The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified

  19. Deriving Global Convection Maps From SuperDARN Measurements

    Science.gov (United States)

    Gjerloev, J. W.; Waters, C. L.; Barnes, R. J.

    2018-04-01

    A new statistical modeling technique for determining the global ionospheric convection is described. The principal component regression (PCR)-based technique is based on Super Dual Auroral Radar Network (SuperDARN) observations and is an advanced version of the PCR technique that Waters et al. (https//:doi.org.10.1002/2015JA021596) used for the SuperMAG data. While SuperMAG ground magnetic field perturbations are vector measurements, SuperDARN provides line-of-sight measurements of the ionospheric convection flow. Each line-of-sight flow has a known azimuth (or direction), which must be converted into the actual vector flow. However, the component perpendicular to the azimuth direction is unknown. Our method uses historical data from the SuperDARN database and PCR to determine a fill-in model convection distribution for any given universal time. The fill-in data process is driven by a list of state descriptors (magnetic indices and the solar zenith angle). The final solution is then derived from a spherical cap harmonic fit to the SuperDARN measurements and the fill-in model. When compared with the standard SuperDARN fill-in model, we find that our fill-in model provides improved solutions, and the final solutions are in better agreement with the SuperDARN measurements. Our solutions are far less dynamic than the standard SuperDARN solutions, which we interpret as being due to a lack of magnetosphere-ionosphere inertia and communication delays in the standard SuperDARN technique while it is inherently included in our approach. Rather, we argue that the magnetosphere-ionosphere system has inertia that prevents the global convection from changing abruptly in response to an interplanetary magnetic field change.

  20. A-Train Observations of Deep Convective Storm Tops

    Science.gov (United States)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  1. Anti-pp,. cap alpha cap alpha. and p. cap alpha. elastic scattering at high energies and Chou-Yang conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem; Rifique, M.

    1987-03-01

    The recent experimental measurements for anti-pp and ..cap alpha cap alpha.. elastic scattering at high energies have shown that the Chou-Yang conjecture regarding the relationship between the electromagnetic and the hadronic form factor of a particle is only an approximation. A new ansatz has been proposed to obtain hadronic form factors of proton and the ..cap alpha..-particle. These form factors have been used to explain the various characteristics of anti-pp, ..cap alpha cap alpha.. and p..cap alpha.. elastic scattering at high energies.

  2. Storm-time Convection Dynamics Viewed from Optical Auroras: from Streamer to Patchy Pulsating Aurora

    Science.gov (United States)

    Yang, B.; Donovan, E.; Liang, J.; Grono, E.

    2016-12-01

    In a series of statistical and event studies we have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to if not exactly convection. Thus, 2D maps of PPA motion provides us the opportunity to remote sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI aurora observations (streamers and patchy pulsating aurora) combined with SuperDARN convection measurements, Swarm ion drift velocity measurements, and RBSP electric field measurements to explore the convection dynamics in storm time. From 0500 UT to 0600 UT on March 19 2015, convection observations across 5 magnetic local time (MLT) inferred from the motion of PPA patches and SuperDARN measurements show that a westward SAPS (Subauroral Polarized Streams) enhancement occurs after an auroral streamer. This suggests that plasma sheet fast flows can affect the inner magnetospheric convection, and possibly trigger very fast flows in the inner magnetosphere.

  3. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  4. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  5. Cradle Cap (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Cradle Cap (Infantile Seborrheic Dermatitis) KidsHealth / For Parents / Cradle Cap ( ... many babies develop called cradle cap. About Cradle Cap Cradle cap is the common term for seborrheic ...

  6. Types of electric-field distribution and corresponding types of convection in the polar ionosphere - A model

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1989-08-01

    A model for the continuous distribution of large-scale electric fields is used to reproduce all the experimentally known types of distributions of the evening-morning electric field component along the morning-evening meridian. The corresponding convection patterns are then calculated, which are shown to diverge significantly from previous theoretical considerations. Depending on conditions in the interplanetary medium, two-, three-, or four-vortex convection patterns occur.

  7. Effect of the interplanetary magnetic field on the distribution of electric fields in the polar ionosphere

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1985-08-01

    Heppner (1972), in an analysis of satellite data, observed 12 types of electric-field distributions in the polar ionosphere along the morning-evening meridian. In the present paper it is shown that these distribution types can be described by the analytical model of Uvarov and Barashkov (1984). In this model the excitation of the electric fields is investigated by solving the set of continuity equations for current in three regions (the north and south polar caps and a region outside the caps) with allowance for the magnetic conjugacy of the ionosphere in the two hemispheres.

  8. Numerical study of transient laminar natural convection over an isothermal sphere

    International Nuclear Information System (INIS)

    Yang, Shu; Raghavan, Vasudevan; Gogos, George

    2007-01-01

    The full Navier-Stokes equations and the energy equation for laminar natural convection heat transfer over an isothermal sphere have been discretized using the finite control volume formulation and solved by employing the SIMPLEC method. Transient and 'steady-state' results have been obtained for a wide range of high Grashof numbers (10 5 ≤ Gr ≤ 10 9 ) and a wide range of Prandtl numbers (Pr = 0.02, 0.7, 7 and 100). Main results are listed below. A plume with a mushroom-shaped cap forms above the sphere and drifts upward continuously with time. The upward movement of the plume cap is slowed as the Prandtl number increases. The size and the level of temperature of the transient cap and plume stem decrease with increasing Gr and Pr. The time at which the 'steady-state' is reached, increases with the Prandtl number. The presence of a vortex in the wake of the sphere has been predicted and has been clearly delineated as a function of both Grashof and Prandtl numbers. The overall Nusselt numbers and total drag coefficients for the range of Grashof and Prandtl numbers investigated are presented and they are in very good agreement with studies available in the literature

  9. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  10. First Experimental Demonstration of Coherent CAP for 300-Gb/s Metropolitan Optical Networks

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Iglesias Olmedo, Miguel; Zibar, Darko

    2014-01-01

    We report on high - capacity coherent links employing dual polarization 2D - CAP modulation, allowing for signal design in 8 - dimensional space. Successful demodulation of 221 Gb/s (7.5 b/s/Hz) and 336 Gb/s (7.8 b/s/Hz) after 225 km and 451 km of standard single - mode fiber (SSMF) is achieved....

  11. MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, Ulrich R. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Poppenhaeger, Katja, E-mail: rakesh.yadav@cfa.harvard.edu [Astrophysics Research Center, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-12-20

    The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristics of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.

  12. Radar Observations of Convective Systems from a High-Altitude Aircraft

    Science.gov (United States)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  13. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  14. Cradle Cap: Treatment

    Science.gov (United States)

    Cradle cap Treatment Cradle cap usually doesn't require medical treatment. It clears up on its own within a few months. In the meantime, wash ... tips can help you control and manage cradle cap. Gently rub your baby's scalp with your fingers ...

  15. Beta-decay asymmetries in polarized /sup 12/B and /sup 12/N and the G-parity non-conservation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    1976-07-01

    The decay asymmetries (A) in polarized /sup 12/B and /sup 12/N have been measured as a function of ..beta..-ray energies (E). The coefficients ..cap alpha..sub(-+) in A = -+ P(p/E) (1 + ..cap alpha..sub(-+)E)) have been determined to be ..cap alpha..sub(-) (/sup 12/B) = +(0.31+-0.06)%/MeV and ..cap alpha..sub(+) (/sup 12/N) = -(0.21+-0.07)%/MeV. The experimental value, ..cap alpha..sub(-) - ..cap alpha..sub (+) = (0.52+-0.09)%/MeV, is larger than the prediction according to conservation of vector current which includes no second-class current, (..cap alpha..sub(-) - ..cap alpha..sub(+) CVC approximately equal to 0.27%/MeV, and indicates the existence of the second-class induced-tensor current.

  16. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity. The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours. We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  17. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  18. What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients?

    Science.gov (United States)

    Hughes, Michelle L; Choi, Sangsook; Glickman, Erin

    2018-03-01

    Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poorer peripheral neural health, whereas more similar eCAP responses between polarities might reflect better neural health. The interphase gap (IPG) has also been shown to relate to neural survival in animal studies. Specifically, healthy neurons exhibit larger eCAP amplitudes, lower thresholds, and steeper AGF slopes for increasing IPGs. In ears with poorer neural survival, these changes in neural responses are generally less apparent with increasing IPG. The primary goal of this study was to examine the combined effects of stimulus polarity and IPG within and across subjects to determine whether both measures represent similar underlying mechanisms related to neural health. With the exception of one measure in one group of subjects, results showed that polarity and IPG effects were generally not correlated in a systematic or predictable way. This suggests that these two effects might represent somewhat different aspects of neural health, such as differences in site of excitation versus integrative membrane characteristics, for example. Overall, the results from this study suggest that the underlying mechanisms that contribute to polarity and IPG effects in human CI recipients might be difficult to determine from animal models that do not exhibit the same anatomy, variance in etiology, electrode placement, and duration of deafness as humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  20. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  1. M-I coupling across the auroral oval at dusk and midnight. Repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Sandholt, P.E. [Oslo Univ. (Norway). Dept. of Physics; Farrugia, C.J. [New Hampshire Univ., Durham (United Kingdom). Space Science Center; Denig, W.F. [NOAA, Boulder, CO (United States)

    2014-07-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostroem type I centered at midnight and Bostroem type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) 'snapshot' satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δB{sub z}/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the

  2. M–I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2014-04-01

    Full Text Available We study substorms from two perspectives, i.e., magnetosphere–ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii "snapshot" satellite (DMSP F13 observations of FAC/precipitation/ion drift profiles, and (iii observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt and the inferred large spatial scales (in radial and azimuthal dimensions of the dipolarization process in these strong substorm expansions may lead to 50–100 kV enhancements of the

  3. Unsteady mixed convection flow of a micro-polar fluid near the stagnation point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2006-12-15

    The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)

  4. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Science.gov (United States)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  5. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity.

    The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours.

    We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  6. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2005-11-01

    Full Text Available Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km.

    The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude.

  7. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2005-11-01

    Full Text Available Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km. The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude.

  8. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  9. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  10. Towards 400GBASE 4-lane Solution Using Direct Detection of MultiCAP Signal in 14 GHz Bandwidth per Lane

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Tianjian, Zuo; Jensen, Jesper Bevensee

    2013-01-01

    We report on an experimental demonstration of 102 Gbit/s transmission over a 15km single wavelength and polarization fiber link with 14GHz 3dB bandwidth. Novel multiband CAP signaling allows for a 4-lane 400GBASE long reach solution....

  11. Analysis of Strain and Intermixing in a Single Layer Ge/Si dots using polarized Raman Spectroscopy

    OpenAIRE

    PEROVA, TANIA; MOORE, ROBERT

    2006-01-01

    PUBLISHED The built-in strain and composition of as-grown and Si-capped single layers of Ge?Si dots grown at various temperatures (460?800 ?C) are studied by a comparative analysis of the Ge-Ge and Si-Ge modes in the polarized Raman spectra of the dots. A pronounced reduction of the strain and Ge content in the dots after deposition of the cap layer at low temperatures is observed, indicating that strain-induced Si diffusion from the cap layer is occurring. For large dots grown at 700?800...

  12. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis.

    Science.gov (United States)

    Van Impe, Katrien; Bethuyne, Jonas; Cool, Steven; Impens, Francis; Ruano-Gallego, David; De Wever, Olivier; Vanloo, Berlinda; Van Troys, Marleen; Lambein, Kathleen; Boucherie, Ciska; Martens, Evelien; Zwaenepoel, Olivier; Hassanzadeh-Ghassabeh, Gholamreza; Vandekerckhove, Joël; Gevaert, Kris; Fernández, Luis Ángel; Sanders, Niek N; Gettemans, Jan

    2013-12-13

    Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit. We raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading. With G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS). CapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers

  13. EISCAT observations of unusual flows in the morning sector associated with weak substorm activity

    Directory of Open Access Journals (Sweden)

    N. J. Fox

    1994-05-01

    Full Text Available A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at ~0415 MLT contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (~0515 MLT with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is "pinched off", and present two alternative explanations in terms of (1 viscous and lobe circulation cells and (2 polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked "viscous-like" momentum transfer across the magnetopause.

  14. EISCAT observations of unusual flows in the morning sector associated with weak substorm activity

    Directory of Open Access Journals (Sweden)

    N. J. Fox

    Full Text Available A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at ~0415 MLT contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (~0515 MLT with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is "pinched off", and present two alternative explanations in terms of (1 viscous and lobe circulation cells and (2 polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked "viscous-like" momentum transfer across the magnetopause.

  15. /sup 58,60,62/Ni (. cap alpha. ,p) three--nucleon transfer reactions and. cap alpha. optical potential ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Yuanda, Wang; Xiuming, Bao; Zhiqiang, Mao; Rongfang, Yuan; Keling, Wen; Binyin, Huang; Zhifu, Wang; Shuming, Li; Jianan, Wang; Zuxun, Sun; others, and

    1985-11-01

    The differential cross sections are measured using 26.0 MeV ..cap alpha.. particle for /sup 58,62/Ni(..cap alpha.., ..cap alpha..) /sup 58,62/Ni and /sup 58,62/Ni(..cap alpha..,p) /sup 61,65/Cu reactions as well as 25.4 MeV ..cap alpha.. particle for /sup 60/Ni(..cap alpha.., ..cap alpha..)/sup 69/Ni and /sup 60/Ni(..cap alpha.., p)/sup 63/Cu reactions. Consistent calculations with optical model and ZR DWBA are made for (..cap alpha.., ..cap alpha..) and (..cap alpha.., p) reactions by using of single, two, three and four nucleon optical potential parameters. For elastic scattering due to the ..cap alpha.. optical potential ambiguities, all the above optical potential can reproduce the experimental angular distributions. However, the single, two and three nucleon potential, including the Baird's mass systematics and the Chang's energy systematics of ..cap alpha.. potentials, obviously can not provide a reasonable fitting with the (..cap alpha..,p) reaction experimental data. Only the results from the four nucleon potential is in good agreement with the (..cap alpha..,p) reaction experimental data. This reveals that in the ..cap alpha..-particle induced transfer reactions, the real depth of the ..cap alpha..-nucleus optical potential should be rather deep.

  16. How does the antagonism between capping and anti-capping proteins affect actin network dynamics?

    International Nuclear Information System (INIS)

    Hu Longhua; Papoian, Garegin A

    2011-01-01

    Actin-based cell motility is essential to many biological processes. We built a simplified, three-dimensional computational model and subsequently performed stochastic simulations to study the growth dynamics of lamellipodia-like branched networks. In this work, we shed light on the antagonism between capping and anti-capping proteins in regulating actin dynamics in the filamentous network. We discuss detailed mechanisms by which capping and anti-capping proteins affect the protrusion speed of the actin network and the rate of nucleation of filaments. We computed a phase diagram showing the regimes of motility enhancement and inhibition by these proteins. Our work shows that the effects of capping and anti-capping proteins are mainly transmitted by modulation of the filamentous network density and local availability of monomeric actin. We discovered that the combination of the capping/anti-capping regulatory network with nucleation-promoting proteins introduces robustness and redundancy in cell motility machinery, allowing the cell to easily achieve maximal protrusion speeds under a broader set of conditions. Finally, we discuss distributions of filament lengths under various conditions and speculate on their potential implication for the emergence of filopodia from the lamellipodial network.

  17. Convectively Induced Meanflow in a Long Channel.

    Science.gov (United States)

    Grimm, Th.; Maxworthy, T.

    1997-11-01

    The similarity theory of Phillips (Deep Sea Res. 13, 1966) for the convectively induced motion in the Red Sea, predicts that the outflow buoyancy difference should scale as (B _0L) ^2/3/h :: , where B 0 is the surface buoyancy flux and L and h are the length and height of the channel above the sill crest, respectively. A friction-buoyancy balance leads to a modified expression [(B _0L) ^2/3/h][fracLh]^1/3 :: (2). The results can be applied also to a number of other natural flows including freezing-induced convection in fjords and polar seas. A series of Experiments have been conducted to check the predictions. A channel 300 cm long and 21 cm wide has been constructed. Within it segmented salt-water sources have been placed over a length of 250 cm. Their depth varied from 2 to 12 cm. A sill was placed in the exit region and its height was at least half the total depth of water in the channel. Density data were taken by withdrawing samples while velocity profiles were found by a DPIV technique. The meanflow consists of a two-layer stratification over a large fraction of the length of the channel. Our results suggest that the scaling (2) above is most closely realized with a constant of value 1.1. Analysis of the Red Sea data suggests a constant between 1.1 and 1.4 depending on the data set used. The exit Fr-number is unity. The amount of mixing within the channel is less than that predicted for the 'overmixed' state. Supported by the German Acad. Exchge. Serv. and the NSF Polar Programs.

  18. 47 CFR 54.623 - Cap.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Cap. 54.623 Section 54.623 Telecommunication... Universal Service Support for Health Care Providers § 54.623 Cap. (a) Amount of the annual cap. The annual cap on federal universal service support for health care providers shall be $400 million per funding...

  19. 47 CFR 54.507 - Cap.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Cap. 54.507 Section 54.507 Telecommunication... Universal Service Support for Schools and Libraries § 54.507 Cap. (a) Amount of the annual cap. The annual funding cap on federal universal service support for schools and libraries shall be $2.25 billion per...

  20. Auroral streamers: characteristics of associated precipitation,convection and field-aligned currents

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2004-01-01

    Full Text Available During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned accelerated electron precipitation coincides with the strong (≥2–7μA/m2 upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5–1km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.

    Key words. Ionosphere (electric fiels and

  1. The fate of the outer plasmasphere

    International Nuclear Information System (INIS)

    Elphic, R.C.; Thomsen, M.F.; Borovsky, J.E.

    1997-01-01

    Both the solar wind and the ionosphere contribute to Earth close-quote s magnetospheric plasma environment. However, it is not widely appreciated that the plasmasphere is a large reservoir of ionospheric ions that can be tapped to populate the plasma sheet. We employ empirical models of high-latitude ionospheric convection and the geomagnetic field to describe the transport of outer plasmasphere flux tubes from the dayside, over the polar cap and into the magnetotail during the early phases of a geomagnetic storm. We calculate that this process can give rise to high densities of cold plasma in the magnetotail lobes and in the near-Earth plasma sheet during times of enhanced geomagnetic activity, and especially during storms. This model can help explain both polar cap ionization patches and the presence of cold flowing ions downtail.copyright 1997 American Geophysical Union

  2. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  4. Simulation of cloud/radiation interaction using a second-order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.; Smith, W.S.

    1994-01-01

    Extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasi-permanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net shortwave flux entering the atmosphere, and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory. Future work includes sensitivity tests to ascertain the model validity as well as to systematically include all the possible ambient atmospheric and surface conditions. Detailed budget analyses are also useful in categorizing the cloud-capped boundary layers into a few classes

  5. Modeling of Jovian Auroral Polar Ion and Proton Precipitation

    Science.gov (United States)

    Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.

    2017-12-01

    Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input

  6. Catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis of 500 patients from the International CAPS Registry.

    Science.gov (United States)

    Rodríguez-Pintó, Ignasi; Moitinho, Marta; Santacreu, Irene; Shoenfeld, Yehuda; Erkan, Doruk; Espinosa, Gerard; Cervera, Ricard

    2016-12-01

    To analyze the clinical and immunologic manifestations of patients with catastrophic antiphospholipid syndrome (CAPS) from the "CAPS Registry". The demographic, clinical and serological features of 500 patients included in the website-based "CAPS Registry" were analyzed. Frequency distribution and measures of central tendency were used to describe the cohort. Comparison between groups regarding qualitative variables was undertaken by chi-square or Fisher exact test while T-test for independent variables was used to compare groups regarding continuous variables. 500 patients (female: 343 [69%]; mean age 38±17) accounting for 522 episodes of CAPS were included in the analysis. Forty percent of patients had an associated autoimmune disease, mainly systemic lupus erythematosus (SLE) (75%). The majority of CAPS episodes were triggered by a precipitating factor (65%), mostly infections (49%). Clinically, CAPS was characterized by several organ involvement affecting kidneys (73%), lungs (60%), brain (56%), heart (50%), and skin (47%). Lupus anticoagulant, IgG anticardiolipin and IgG anti-β2-glycprotein antibodies were the most often implicated antiphospholipid antibodies (83%, 81% and 78% respectively). Mortality accounted for 37% of episodes of CAPS. Several clinical differences could be observed based on the age of presentation and its association to SLE. Those cases triggered by a malignancy tended to occur in older patients, while CAPS episodes in young patients were associated with an infectious trigger and peripheral vessels involvement. Additionally, CAPS associated with SLE were more likely to have severe cardiac and brain involvement leading to a higher mortality (48%). Although the presentation of CAPS is characterized by multiorgan thrombosis and failure, clinical differences among patients exist based on age and underlying chronic diseases, e.g. malignancy and SLE. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  8. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  9. The rebirth of the cervical cap.

    Science.gov (United States)

    Cappiello, J D; Grainger-Harrison, M

    1981-01-01

    In an effort to dispel myths surrounding the cervical cap, the historical and political factors affecting the cap's use in the U.S. are described. Clinical aspects of cap fitting are also included. The cervical cap has found only limited acceptance in the U.S. Skepticisms on the part of physicians may be the result of 2 factors: confusion of the cervical cap with intracervical devices used for artificial insemination and confusion with stem pessaries; and the lack of clinical research and statistical evaluation of efficacy rates. The latter factor prompted Tietze et al. to conduct the only U.S. statistical study of the cap in 1953. Of the 143 women studied, the pregnancy rate was 7.6/100 years of use. Of the 28 unplanned pregnancies, 6 were related to faulty technique or omission of a spermicide and 10 were instances of admittedly irregular use. When these failures are omitted, the theoretical effectiveness rate is about 98%. Some practitioners are concerned about an increased incidence of cervical erosion with cap use. Possibly currently conducted studies will show that cap and spermicide users have a lower incidence of cervical erosion than women using no contraceptive method. Study findings suggest that the cervical cap may afford protection without any spermicidal supplement, but the use of spermicides continues to be recommended to clients. Advantages of the cervical cap include the following: it can be left in place longer than a diaphragm without additional applications of spermicide in the vagina; and the insertion of the cap is unrelated to the time of intercourse. Despite research on toleration of the cap for 3 weeks at a time, it is recommended that the cap be worn for only a few days at a time. At this time there are no manufacturers of cervical caps for contraceptive use in the U.S. The cap is now being imported from England and it costs $6.00. A factor that has made the cap unpopular with many physicians is the lengthy time required for fitting. An

  10. The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS

    Directory of Open Access Journals (Sweden)

    H. Wang

    2011-07-01

    Full Text Available We have investigated the seasonal and diurnal variation of SAPS (Subauroral Polarization Streams occurrence based on 3663 SAPS events identified in DMSP ion drift observations in the Northern Hemisphere during July 2001 and June 2003. Their relationships with high latitude convection electric field, substorm, and ionospheric conductivity have been addressed. SAPS occurrences show a clear seasonal and diurnal variation with the occurrence rates varying by a factor of 5. It is found that the convection electric field might play a dominant role in association with SAPS occurrence. Peak convection electric fields mark the occurrence maximum of SAPS. Substorm might play a secondary role related to SAPS occurrence. It account for the secondary maximum in SAPS occurrence rate during December solstice. Our work demonstrates that the substorm induced electric field can develop SAPS during relatively low global convection. Somewhat low fluxtube-integrated conductivity is favorable for SAPS to develop. Another topic is the temporal relationship between SAPS and substorm phases. SAPS can occur at substorm onset, substorm expansion and recovery phases. Most probably SAPS tend to occur 60 min/45 min after substorm onset during quiet/more disturbed geomagnetic activity, respectively. This indicates that enhanced global convection helps SAPS to develop quicker during substorms. The peak plasma velocity of SAPS is increased on average only by 5–10 % by the substorm process.

  11. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  12. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  13. Microtubule's conformational cap

    DEFF Research Database (Denmark)

    Flyvbjerg, H.

    1999-01-01

    The molecular mechanisms that allow elongation of the unstable microtubule lattice remain unclear. It is usually thought that the GDP-liganded tubulin lattice is capped by a small layer of GTP- or GDP-P(i)-liganded molecules, the so called "GTP-cap". Here, we point-out that the elastic properties...

  14. Double-chain phospholipid end-capped polyurethanes: Synthesis, characterization and platelet adhesion study

    International Nuclear Information System (INIS)

    Tan Dongsheng; Zhang Xiaoqing; Li Jiehua; Tan Hong; Fu Qiang

    2012-01-01

    A novel phospholipid containing double chains and phosphotidylcholine polar head groups, 2-(10-(2-aminoethylamino)-10-oxodecanamido)-3-(decyloxy)-3-oxopropyl phosphorylcholine (ADDPC), was synthesized and characterized. Two kinds of double-chain phospholipid end-capped polyurethanes with different soft segments were prepared. The structure of prepared polyurethanes was characterized by X-ray photoelectron spectroscopic (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometry and atomic force microscope (AFM), which indicated that the double-chain phospholipids enriched onto the top surface of the prepared polyurethane films. The preliminary evaluation of blood compatibility showed that these novel phospholipid end-capped polyurethanes could suppress platelet adhesion and activation effectively. This property did not depend on the chemical structure of polyurethanes. In addition, according to tensile test results, the phospholipid polyurethanes kept good mechanical properties in comparison with original polyurethanes. It is suggested that double-chain phospholipid end-caption has good potential for achieving both hemocompatibility and good mechanical properties simultaneously for polyurethanes.

  15. 75 FR 49527 - Caps Visual Communications, LLC; Black Dot Group; Formerly Known as Caps Group Acquisition, LLC...

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,195] Caps Visual Communications, LLC; Black Dot Group; Formerly Known as Caps Group Acquisition, LLC Chicago, IL; Amended... of Caps Visual Communications, LLC, Black Dot Group, formerly known as Caps Group Acquisition, LLC...

  16. Macrophage Capping Protein CapG Is a Putative Oncogene Involved in Migration and Invasiveness in Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    J. Glaser

    2014-01-01

    Full Text Available The actin binding protein CapG modulates cell motility by interacting with the cytoskeleton. CapG is associated with tumor progression in different nongynecologic tumor entities and overexpression in breast cancer cell lines correlates with a more invasive phenotype in vitro. Here, we report a significant CapG overexpression in 18/47 (38% of ovarian carcinomas (OC analyzed by qRealTime-PCR analyses. Functional analyses in OC cell lines through siRNA mediated CapG knockdown and CapG overexpression showed CapG-dependent cell migration and invasiveness. A single nucleotide polymorphism rs6886 inside the CapG gene was identified, affecting a CapG phosphorylation site and thus potentially modifying CapG function. The minor allele frequency (MAF of SNP rs6886 (c.1004A/G was higher and the homozygous (A/A, His335 genotype was significantly more prevalent in patients with fallopian tube carcinomas (50% as in controls (10%. With OC being one of the most lethal cancer diseases, the detection of novel biomarkers such as CapG could reveal new diagnostic and therapeutic targets. Moreover, in-depth analyses of SNP rs6886 related to FTC and OC will contribute to a better understanding of carcinogenesis and progression of OC.

  17. The magnetosphere under weak solar wind forcing

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2007-02-01

    Full Text Available The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively. The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45 nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i generally weak and patchy (in time low-latitude dayside reconnection or reconnection poleward of the cusps; (ii absence of substorms; (iii a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT, giving an unforced decreased of ~1.1 nT/h; (iv the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH instability; (v a cross-polar cap potential of just 20–30 kV; (vi a persistent, polar cap region containing (vii very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992 but has never yet been observed.

  18. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  19. Designing Smart Charter School Caps

    Science.gov (United States)

    Dillon, Erin

    2010-01-01

    In 2007, Andrew J. Rotherham proposed a new approach to the contentious issue of charter school caps, the statutory limits on charter school growth in place in several states. Rotherham's proposal, termed "smart charter school caps," called for quality sensitive caps that allow the expansion of high-performing charter schools while also…

  20. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability

    Science.gov (United States)

    Lamarche, Leslie J.; Makarevich, Roman A.

    2017-03-01

    We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.

  1. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  2. From polar wander to dynamic planet: A tribute to Keith Runcorn

    Science.gov (United States)

    Girdler, R.W.

    1998-01-01

    The evolution of Keith Runcorn's ideas from the static, elastic Earth of Jeffreys to a dynamic, convecting planet are presented based on discussions as his colleague over 25 years from 1963 to his retirement in 1988. Keith reached the concept of a dynamic planet by way of polar wander and continental drift using palaeomagnetism with great zeal. It took some time for Keith to convince himself of the reality of continental drift. Once convinced, he became an evangelist converting others and enthusiastically pursuing possible mechanisms for explaining it, homing in on mantle convection. To establish the nature and history of mantle convection his interests ranged from the world rift system and satellite gravity anomalies to the radiometric age peaks. A great step forward occurred when we realised that a region of uprising convection was not necessary under all the rifts as had been commonly advocated in the 1960s and that the mid-Atlantic, African and Indian Ocean rifts could be equally well explained by one large region of upwelling mantle convection. It was also realised that the plate convergence zones (island arcs, trenches and deep focus earthquakes) were much better correlated with the satellite gravity anomalies and it was much easier to locate the possible regions of downwelling mantle convection. Now, seismic tomography helps to establish the nature of mantle convection and it appears that relations among the Earth's surface features, the geoid anomalies and peturbations of mantle seismic velocities are near to being established. In the next few years a far better and accurate picture of the geometry of mantle convection so enthusiastically advocated by Keith Runcorn is likely to be seen.

  3. NATURE MANAGEMENT, LANDSCAPE AND THE CAP

    OpenAIRE

    Brouwer, Floor M.; Godeschalk, Frans E.

    2004-01-01

    The integration of nature management, landscape and environmental concerns into the Common Agricultural Policy (CAP) has gained momentum with the CAP reforms adopted in June 2003. The report explores instruments and approaches that contribute to the inte-gration of nature conservation and landscape concerns into the CAP. A broader use of the CAP instruments might help to achieve nature types in the Netherlands.

  4. Constraints on the Within Season and Between Year Variability of the North Residual Cap from MGS-TES

    Science.gov (United States)

    Calvin, W. M.; Titus, T. N.; Mahoney, S. A.

    2003-01-01

    There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated ice deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and ice constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 ice deposits ("Swiss Cheese", "slab ice" etc.) b) the relationship of the ice deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual ice cap. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual ice cap exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with ice and rocky materials. Exploration of these properties is the subject of our current study.

  5. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  6. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Directory of Open Access Journals (Sweden)

    M. Keller

    2018-04-01

    Full Text Available Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM and 2 km grid spacing (convection-resolving model, CRM are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW using a vertically uniform warming and the other with vertically dependent warming (VW that enables changes in lapse rate.The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  7. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Science.gov (United States)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  8. CAPS Simulation Environment Development

    Science.gov (United States)

    Murphy, Douglas G.; Hoffman, James A.

    2005-01-01

    The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.

  9. The cervical cap (image)

    Science.gov (United States)

    The cervical cap is a flexible rubber cup-like device that is filled with spermicide and self-inserted over the cervix ... left in place several hours after intercourse. The cap is a prescribed device fitted by a health ...

  10. Does uncertainty justify intensity emission caps?

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2005-01-01

    Environmental policies often set 'relative' or 'intensity' emission caps, i.e. emission limits proportional to the polluting firm's output. One of the arguments put forth in favour of relative caps is based on the uncertainty on business-as-usual output: if the firm's production level is higher than expected, so will be business-as-usual emissions, hence reaching a given level of emissions will be more costly than expected. As a consequence, it is argued, a higher emission level should be allowed if the production level is more important than expected. We assess this argument with a stochastic analytical model featuring two random variables: the business-as-usual emission level, proportional to output, and the slope of the marginal abatement cost curve. We compare the relative cap to an absolute cap and to a price instrument, in terms of welfare impact. It turns out that in most plausible cases, either a price instrument or an absolute cap yields a higher expected welfare than a relative cap. Quantitatively, the difference in expected welfare is typically very small between the absolute and the relative cap but may be significant between the relative cap and the price instrument. (author)

  11. Cryopyrin-Associated Autoinflammatory Syndromes (CAPS) - Juvenile

    Science.gov (United States)

    ... all ethnic groups can be affected. What are CAPS? Cryopyrin-associated autoinflammatory syndromes (CAPS) consist of three ... ears by magnetic resonance imaging (MRI). How is CAPS treated? Medications that target interleukin-1 are very ...

  12. Types of distribution of electric fields and the types of convection corresponding to them in the polar ionosphere. A model.

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    1989-06-01

    All types of distributions known from experiment of the evening-morning component of the electric field Ee-m along the morning-evening meridian are reproduced on the basis of a model of the continuous distribution of largescale electric fields E, and the convection patterns corresponding to them, which differ appreciably from the known speculative concepts, are calculated. Two-, three-, and four-vortex convection patterns are realized, depending on the conditions in the interplanetary medium.

  13. Evaluation of strain in GaN/AlN quantum dots by means of resonant Raman scattering: the effect of capping

    Energy Technology Data Exchange (ETDEWEB)

    Cros, A.; Budagosky, J.A.; Garro, N.; Cantarero, A. [Institut de Ciencia del Materials, Universitat de Valencia, 46071 Valencia (Spain); Coraux, J.; Renevier, H.; Favre-Nicolin, V. [CEA-CNRS Group, ' ' Nanophysique et Semiconducteurs' ' , DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Universite Joseph Fourier, BP 53, 38041 Grenoble Cedex 9 (France); Proietti, M.G. [Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Daudin, B. [CEA-CNRS Group, ' ' Nanophysique et Semiconducteurs' ' , DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2007-06-15

    We have studied in detail changes in the strain state of GaN/AlN quantum dots during the capping process. {mu}-Raman scattering experiments allowed the detection of a resonant mode which provided information on the evolution of strain with capping. Simultaneously, Multiwavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) experiments were performed on the same samples, providing the independent determination of the wurtzite lattice parameters a and c. The remarkable agreement between Raman and X-ray data stands out the suitability of polar vibrational modes for the determination of strain in nanostructures. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. The North Zealand CAP Monitor

    DEFF Research Database (Denmark)

    Nielsen, Minna; Ravn, Pernille; Notander Clausen, Lise

    with CAP. We started with 34 audit variables. Through repeated cycles of testing, feedback and discussions, we reduced the number of indicators to 22 and time per audit from 20 to 10 minutes. Strategy for change To link the monitoring system with our patient pathway for CAP we established an improvement...... Designing a database Designing and testing a dashboard to present indicators in a balanced way Messages for others Auditing patients with a common disease as CAP is useful to identify areas for improvement for a large group of patients. The baseline audit can serve as a basis for a monitoring system......Contect We describe how we developed a monitoring system for community acquired pneumonia (CAP) at North Zealand Regional hospital. We serve 310.000 inhabitants and annually around 3200 patients with CAP are admitted. As part of a program of clinical pathways for common conditions, a pathway...

  15. Dayside aurorae and polar arcs under south-east IMF orientation

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2006-12-01

    Full Text Available We document a characteristic spatial and temporal structure of the aurora in the postnoon sector present during a 10-h-long interval of very steady southeast IMF orientation (clock angle=135° ending in a sharp south-to-north transition. Focus is placed on the detailed morphology of auroral forms/activities corresponding to merging and lobe convection cells obtained from SuperDARN convection data and Greenland magnetograms. The ground optical instruments at Ny Ålesund, Svalbard (76° MLAT recorded different auroral forms/activities as the station moved to higher magnetic local times (MLTs in the 13:00–17:00 MLT sector. Whereas the 13:00–15:00 MLT sector is characterized by classical poleward moving auroral forms (PMAFs associated with merging cell transients, the aurora in the 15:00–17:00 MLT sector shows instead a characteristic latitudinal bifurcation consisting of standard oval forms and polar arcs, and a corresponding composite pattern of merging and lobe convection cells. The merging and lobe cells respond to the southward and northward IMF transitions by activation/fading and fading/activation, respectively. A sequence of brightening events is characterized by successive activations progressing in latitude from the merging cell regime to the lobe cell regime. Emphasis is placed on the association between polar arc brightenings and the activation of the channel of enhanced sunward flow in the lobe cell. The observations are discussed in relation to recent work on solar wind-magnetosphere-ionosphere interconnection topology.

  16. Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS

    Science.gov (United States)

    Teolis, B. D.; Waite, J. H.

    2016-07-01

    A Dione O2 and CO2 exosphere of similar composition and density to Rhea's is confirmed by Cassini spacecraft Ion Neutral Mass Spectrometer (INMS) flyby data. INMS results from three Dione and two Rhea flybys show exospheric spatial and temporal variability indicative of seasonal exospheres, modulated by winter polar gas adsorption and desorption at the equinoxes. Cassini Plasma Spectrometer (CAPS) pickup ion fluxes also show exospheric structure and evolution at Rhea consistent with INMS, after taking into consideration the anticipated charge exchange, electron impact, and photo-ionization rates. Data-model comparisons show the exospheric evolution to be consistent with polar frost diffusion into the surface regolith, which limits surface exposure and loss of the winter frost cap by sputtering. Implied O2 source rates of ∼45(7) × 1021 s-1 at Dione(Rhea) are ∼50(300) times less than expected from known O2 radiolysis yields from ion-irradiated pure water ice measured in the laboratory, ruling out secondary sputtering as a major exospheric contributor, and implying a nanometer scale surface refractory lag layer consisting of concentrated carbonaceous impurities. We estimate ∼30:1(2:1) relative O2:CO2 source rates at Dione(Rhea), consistent with a stoichiometric bulk composition below the lag layer of 0.01(0.13) C atoms per H2O molecule, deriving from endogenic constituents, implanted micrometeoritic organics, and (in particular at Dione) exogenous H2O delivery by E-ring grains. Impact deposition, gardening and vaporization may thereby control the global O2 source rates by fresh H2O ice exposure to surface radiolysis and trapped oxidant ejection.

  17. Estimated release from the saltstone landfill effect of landfill caps and landfill-cap/monolith-liner combinations

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1985-01-01

    The effect of capping the entire saltstone landfill is dependent on the effectiveness of the clay cap in preventing infiltration. A cap that is 99% effective will reduce releases from the saltstone landfill by a factor of 7.7. Several combinations of landfill design alterations will result in meeting ground water standards

  18. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Yao Zhongping; Li Liangliang; Jiang Zhaohua

    2009-01-01

    The ceramic coatings containing Ca and P were prepared on AZ91D Mg alloy by plasma electrolytic oxidation technique in NaOH system and Na 2 SiO 3 system, respectively. The phase composition, morphology and the element distribution of the coatings was studied by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of the coatings was examined by polarizing curve methods in a 0.9% NaCl solution. In NaOH system, there were a large number of micro-holes distributing evenly on the surface of the coating, and the coating was mainly composed of Mg, Al, P and Ca. In Na 2 SiO 3 system, the micro-holes in the coatings were reduced greatly in number and the distribution of the micro-holes was uneven, and the coating was mainly composed of Mg, Al, Si, P and Ca. The ratio of Ca/P in the coating can be controlled by the adjustment of the technique parameters to a certain extent. The adjustment of the concentration of Ca 2+ in the electrolyte was an effective method to change the ratio of Ca/P in the coating in both systems; the reaction time and the working voltage for the adjustment of the ratio of Ca/P in the coating was more suitable for the NaSi 2 O 3 system than the NaOH system. The polarizing curve tests showed the coatings improved the corrosion resistance of the AZ91D Mg alloy in 0.9% NaCl solution by nearly two orders of magnitude.

  19. Some properties of the dynamics of the solar convective zone and their consequences on the activity cycle

    International Nuclear Information System (INIS)

    Ribes, E.

    1986-01-01

    A large-scale circulation pattern has been detected in the solar convective zone, for the first time. Tracers used to probe the convective layers are newly-born sunspots and long-lived Hsub(α) filaments. The coincidence of the zonal meridional circulation with the magnetic pattern drawn by the Hsub(α) filaments suggests that we are looking at rotating rolls. The direction of rotation is associated with the magnetic polarity. Another result concerns the rotational rate of the deep convective layers. Young spots seem to rotate more rigidly, in contrast with older spots which exhibit a differential rotation similar to the surface rotation. However, the rotational rate exhibits a large dispersion, partly due to young spots located at the site of converging of diverging rolls. This is the consequence of the Coriolis force which decelerates or accelerates the plasma. These results shed a completely new light on problems dealing with the differential rotation, the transport of angular momentum and the dynamo action [fr

  20. Spontaneous and trigger-associated substorms compared: Electrodynamic parameters in the polar ionosphere

    Science.gov (United States)

    Liu, Jun-Ming; Zhang, Bei-Chen; Kamide, Y.; Wu, Zhen-Sen; Hu, Ze-Jun; Yang, Hui-Gen

    2011-01-01

    An attempt is made to study the difference, if any, between the response of the polar ionosphere to spontaneous substorms and that to trigger-associated substorms in terms of electrodynamic parameters including ionospheric current vectors, the electric potential, and the current function. The results show that, in the first approximation, the ionospheric parameters for the two types of substorms are quite similar. It is therefore conceived that spontaneous substorms are not very different from trigger-associated substorms in the development of substorm processes in the magnetosphere-ionosphere system. We demonstrate, however, that spontaneous substorms seem to have a more clearly identifiable growth phase, whereas trigger-associated substorms have a more powerful unloading process. Changes in the current intensity and the electric potential drop across the polar cap in the recovery phase are also quite different from each other. Both the current intensity and the cross-polar cap potential drop show a larger decrease in the recovery phase of trigger-associated substorms, but the potential drop decreases only slightly and the currents in the late morning sector are still strong for spontaneous substorms. We interpret these findings as an indication of the relative importance of the unloading process and the directly driven process in conjunction with the north-south polarity of the interplanetary magnetic field. There still exists a strong directly driven process in the recovery phase of spontaneous substorms. For trigger-associated substorms, however, both the directly driven process and the unloading process become weak after the peak time.

  1. Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle

    Science.gov (United States)

    Sckopke, N.; Paschmann, G.; Rosenbauer, H.; Fairfield, D. H.

    1976-01-01

    The response of the plasma mantle to the orientation of the interplanetary magnetic field (IMF) has been studied by correlating Heos 2 plasma and Imp 6 magnetic field data. The mantle is nearly always present when the IMF has a southward component and often also when the field has a weak northward component. In addition, the mantle appears increasingly thicker with greater southward components. On the other hand, the mantle is thin or missing (from the region where it is normally found) when the average IMF has a strong northward component. This result supports the idea that polar cap convection plays a dominant role in the formation of the plasma mantle: mantle plasma originates in the magnetosheath, enters the magnetosphere through the day side polar cusps, and is transported across the cusp to the night side by means of a convection electric field whose magnitude is controlled by the orientation of the IMF.

  2. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    Science.gov (United States)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  3. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Science.gov (United States)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  4. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  5. Numerical modelling of pulsation and convection in cepheids

    International Nuclear Information System (INIS)

    Mundprecht, E.

    2011-01-01

    In order to simulate the pulsation convection coupling in a Cepheid the ANTARES-code was equipped with a polar and moving grid. The numerical cost of a fully parallelized, sufficiently large, and fully resolved section would be immense. Thus it was not only necessary to find a suitable model, but also save to costs for parallelisation and grid refinement. The equations governing the hydrodynamics were derived for this particular grid and implemented in the code. The grey short characteristics method for the radiative transfer equation was also adjusted. Different methods of parallelisation for the radiative transfer were tested. Abstract Within ANTARES shocks are treated with an essentially non oscillatory (ENO) scheme with Marquina flux splitting. As this method is only valid for grids that are equidistant or uniformly stretched in all directions two differnt sets of ENO-coefficients were implemented and tested. It was found that the traditional approach is indeed no longer valid and the system is not conservative when the original set of coefficients is used. In the upper or hydrogen ionisation zone the gradient of density, temperature etc. is very steep, therefore a finer resolution with a minimum of additional time steps is needed. In order to resolve these few points a co-moving grid refinement was developed. Simulations in one and two dimensions were performed, a comparison between them helps to better understand the effects of convection on the e.c. light curve. Analysis of the fluxes and the work integral was done for the helium ionisation zone. The effects of subgrid modelling were tested on the hydrogen convection zone and compared with a resolved simulation of this zone. (author) [de

  6. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  7. ATLAS electromagnetic end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    After the insertion of the first end-cap into this cryostat, the team proceed to the wiring operations. Millions of wires are connected to the electromagnetic calorimeter on this end-cap, whch must be carefully fed out from the detector so that data can be read out. The energy of photons, electrons and positrons will be measured as they pass through the end-cap having been created along the line of the beams in the proton-proton collisions.

  8. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  9. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  10. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  11. Idealized Mesoscale Model Simulations of Open Cellular Convection Over the Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Kelly, Mark C.

    2012-01-01

    The atmospheric conditions during an observed case of open cellular convection over the North Sea were simulated using the Weather Research and Forecasting (WRF) numerical model. Wind, temperature and water vapour mixing ratio profiles from the WRF simulation were used to initialize an idealized...... version of the model, which excluded the effects of topography, surface inhomogeneities and large-scale weather forcing. Cells with an average diameter of 17.4 km developed. Simulations both with and without a capping inversion were made, and the cell-scale kinetic energy budget was calculated for each...... case. By considering all sources of explicit diffusion in the model, the budgets were balanced. In comparison with previous work based on observational studies, the use of three-dimensional, gridded model data afforded the possibility of calculating all terms in the budgets, which showed...

  12. 21 CFR 884.5250 - Cervical cap.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... cap. (a) Identification. A cervical cap is a flexible cuplike receptacle that fits over the cervix to...

  13. 21 CFR 888.3000 - Bone cap.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom...

  14. Genetic ablation of root cap cells in Arabidopsis

    OpenAIRE

    Tsugeki, Ryuji; Fedoroff, Nina V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of...

  15. CENTRIFUGE END CAP

    Science.gov (United States)

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  16. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  17. Dual HF radar study of the subauroral polarization stream

    Directory of Open Access Journals (Sweden)

    R. A. Makarevich

    2008-01-01

    Full Text Available The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER system often observe localized high-velocity F-region plasma flows (≥1500 m/s in the midnight sector (20:00–02:00 MLT at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from −5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm

  18. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Finlay, Chris; Hesse, M.

    2017-01-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagneticmain field. Observations from...... the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine...

  19. Auroral and magnetic variations in the polar cusp and cleft. Signatures of magnetopause boundary layer dynamics

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.

    1987-10-01

    By combining continous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationships with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships, simultaneous groundbased observations of the midday and evening-midnight sectors of the auroral oval, is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMF B z is repeated occurrence of certain short-lived auroral structures moving in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath

  20. THE TURN OF THE MONTH EFFECT CONTINUED: A COMPARISON OF SMALL CAP STOCKS AND LARGE CAP STOCKS

    OpenAIRE

    Ramsundhar, Shamman

    2010-01-01

    The purpose of this paper is to investigate whether the turn of the month effect occurs in small cap and large cap stocks and if it occurs in both categories, to determine whether there is a difference in the magnitude. My research, for the period of 1963-2008, based on the CRSP value weighted index, shows that there is a significant turn of the month effect in small and large cap stocks, however the effect is larger in small cap stocks. Furthermore, this effect is not limited to a short time...

  1. Reconnection During Periods of Large IMF By Producing Shear Instabilities at the Dayside Convection Reversal Boundary

    Science.gov (United States)

    Qamar, S.; Clauer, C. R.; Hartinger, M.; Xu, Z.

    2017-12-01

    During periods of large interplanetary magnetic field (IMF) By component and small negative Bz (GSM Coordinates), the ionospheric polar electric potential system is distorted so as to produce large east-west convection shears across local noon. Past research has shown examples of ULF waves with periods of approximately 10 - 20 minutes observed at this convection shear by the Greenland west coast chain of magnetometers. Past work has shown examples of these waves and associated them with conditions in the solar wind and IMF, particularly periods of large IMF By component. Here we report the results of a search of several years of solar wind data to identify periods when the IMF By component is large and the magnetometer chains along the 40-degree magnetic meridian (Greenland west coast and conjugate Antarctic chains) are within a few hours of local noon. We test here the hypothesis that large IMF By reconnection leads to large convection shears across local noon that generate ULF waves through, presumably, a shear instability such as Kelvin-Helmholtz.

  2. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  3. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  4. Asymmetric distribution of the ionospheric electric potential in the opposite hemispheres as inferred from the SuperDARN observations and FAC-based convection model

    DEFF Research Database (Denmark)

    Lukianova, R.; Hanuise, C.; Christiansen, Freddy

    2008-01-01

    We compare the SuperDARN convection patterns with the predictions of a new numerical model of the global distribution of ionospheric electric potentials. The model utilizes high-precision statistical maps of field-aligned currents (FAC) derived from measurements made by polar-orbiting low-altitud...

  5. Convective instability of RCP modes for a magnetized chiral plasma

    International Nuclear Information System (INIS)

    Torres-Silva, Hector; Sakanaka, P.H.; Reggiani, N.

    1998-01-01

    Using the Maxwell's equations and the proposed constitutive relations for a chiral plasma medium, the dispersion relations for right circularly polarized waves, (RCP), depending on the characteristics of the distribution, a new mode conversion and instabilities are found due to the chiral effect. From the dispersion relations and considering that the chirowave magnetic field may be important when the condition of velocity isotropy is dropped, we find that growing modes (instabilities) can occur at resonance and for frequencies below the electron gyrofrequency. We study, in this paper, the convective instability of RCP waves in a two-component bi-Lorentzian chiroplasma which can model the solar wind particle distributions. (author)

  6. Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon

    Science.gov (United States)

    Schiro, K. A.; Neelin, J. D.

    2017-12-01

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.

  7. Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole

    Science.gov (United States)

    Brown, A. J.; Wolff, M. J.

    2009-03-01

    We have used CRISM Emission Phase Function gimballed observations to investigate atmospheric dust/ice opacity and surface albedo in the south polar region for the first Mars year of MRO operations. This covers the MY28 "dust event" and cap recession.

  8. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  9. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  10. FAINT LUMINESCENT RING OVER SATURN’S POLAR HEXAGON

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Alberto; D’Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico [Institute of Space Astrophysics and Planetology of INAF, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Moriconi, Maria Luisa, E-mail: alberto.adriani@iaps.inaf.it [Institute of Atmospheric Sciences and Climate of CNR, Via Fosso del Cavaliere 100, I-00133 Rome (Italy)

    2015-07-20

    Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610–3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.

  11. Do polar faculae terminate or commence an extended cycle of solar activity?

    International Nuclear Information System (INIS)

    Bumba, V.

    1990-01-01

    From the local as well as from the global points of view, polar magnetic fields are formed from successively developed trailing polarity fields expelled from the main activity zone. Polar faculae observed during the 20th and the 21st cycles of activity fill in the areas covered by the most intense unipolar fields distributed in the convection network. These polar regions formed from magnetic fields of an old activity cycle are sharply separated from low-latitude magnetic fields and from fields developed by a new cycle of activity. The polarity distribution in polar faculae seems to follow from unipolarity of their magnetic fields - the prevailing polarity becomes the main leading polarity. The greatest part of the main activity zone, the most intense faculae shifting equatorwards are connected with the zone of the prevailing leading polarity magnetic fields. Some of these faculae - the weak and inhomogeneously distributed ones, bordering the main faculae butterflies polewards - are related again to the trailing polarity fields shifting polewards. The main characteristic of the latitudinal distribution of solar faculae is the existence of their two latitudinal types: the polar faculae shifting polewards are related to the trailing polarity fields of the old cycle, the faculae of the main activity zone shifting equatorwards are related mainly (from the global point of view) to the leading polarity fields, and their activity ends several years earlier than that of the polar ones. The polar faculae with their magnetic fields represent the last phase of the magnetic activity cycle lasting 15-17 years. (author). 6 figs., 21 refs

  12. Effects of rooting and tree growth of selected woodland species on cap integrity in a mineral capped landfill site.

    Science.gov (United States)

    Hutchings, T R; Moffat, A J; Kemp, R A

    2001-06-01

    The above and below ground growth of three tree species (Alnus glutinosa, Pinus nigra var. maritima and Acer pseudoplatanus) was studied on a containment landfill site at Waterford, Hertfordshire, UK. Tree root architecture was studied using soil inspection pits excavated next to 12 trees of each species and mapped in detail. Tree height was related to soil thickness over the compacted mineral cap. No roots entered the cap where soil thickness was 1.3 m, but a few roots, especially of alder, were observed within it when the soil cover was 1.0 m or less. Micromorphological analysis of undisturbed samples of the mineral cap suggested that roots exploited weaknesses in the cap rather than actively causing penetration into it. Alder roots were more tolerant of anaerobic conditions within the cap than the other species examined. The results confirm that mineral caps should be covered by 1.5 m of soil or soil-forming material if tree establishment is intended over a restored landfill site, unless protected by other parts of a composite capping system.

  13. Rocket and satellite observations of electric fields and ion convection in the dayside auroral ionosphere

    International Nuclear Information System (INIS)

    Marklund, G.; Heelis, R.A.

    1984-06-01

    Electric field observations from two high-altitude rocket flights in the polar cusp have been combined with satellite observations of ion drifts to infer details of the electric field and convection pattern of the dayside auroral ionosphere. A region of shear flow reversal can be inferred from the electric field observations on one flight near 15.30 MLT 20 minutes after the Dynamics Explorer 2 satellite crossed through the same region. The drift patterns observed by the two spacecrafts were very similar although shifted by 0.5 degrees, a shift which is expected from the observed change in the interplanetary magnetic field (IMF) B(sub)Z component during this time. A region of rotational flow reversal was covered by the other flight shortly after magnetic noon, at the same time the DE-2 satellite travelled along roughly the dawn-dusk meridian. By joining points of equal potential, integrated from the two datasets and assuming the reversal boundary to be an equipotential, the instantaneous convection pattern could be drawn showing crescent-shaped convection contours in the dusk cell and more circular shaped contours in the dawn cell. (author)

  14. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  15. The configuration of the auroral distribution for interplanetary magnetic field Bz northward. 2. Ionospheric convection consistent with Viking observations

    International Nuclear Information System (INIS)

    Jankowska, K.; Elphinstone, R.D.; Murphree, J.S.; Cogger, L.L.; Hearn, D.; Marklund, G.

    1990-01-01

    Views of the northern hemisphere auroral distribution obtained by the Viking satellite present a qualitative means of inferring the convective patterns which occur during interplanetary magnetic field (IMF) B z northward. The approach is taken whereby upward field-aligned currents are assumed to be coincident with large-scale discrete auroral features and on this basis possible convective patterns are deduced. While the patterns are not unique solutions, they are found to be consistent with merging theory predictions. That is, for B z northward the auroral observations support the possibility of three and/or four cell patterns. When the IMF azimuthal angle is 90 degree (270 degree), a clockwise (anticlockwise) cell is found to be located in the polar region between the two standard viscous cells. When IMF B x dominates and is in a toward orientation, convection stagnates, whereas if B x is negative, a four-cell pattern may form with sunward flow at very high latitudes. The concept of using global auroral images as an additional tool when developing convection models could prove to be necessary in order to extend beyond the few isolated measurements taken in situ by satellites

  16. Sodium, Iodine and Bromine in Polar Ice Cores

    DEFF Research Database (Denmark)

    Maffezzoli, Niccolo

    Abstract: This research focuses on sodium, bromine and iodine in polar ice cores, with the aim of reviewing and advancing their current understanding with additional measurements and records, and investigating the connections of these tracers with sea ice and their feasibility as sea ice indicators...... with a description of the main analytic al techniques used to measure ionic and elemental species in ice cores. Chapter 4 introduces sodium, bromine and iodine with a theoretical perspective and a particular focus on their connections with sea ice. Some of the physical and chemical properties that are believed...... back trajectory analyses of the past 17 years. The results identify the aerosol source area influencing the Renland ice cap, a result necessary for the interpretation of impurity records obtained from the ice core. Chapter 6 reviews the published ice/snow measurements of bromine and iodine at polar...

  17. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    Science.gov (United States)

    Chang, Heon-Young

    2001-06-01

    In this paper we investigate the properties of advection-dominated accretion flows(ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs) in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  18. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2001-06-01

    Full Text Available In this paper we investigate the properties of advection-dominated accretion flows(ADAFs in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS. The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  19. Convection and mass loss through the chromosphere of Betelgeuse

    Science.gov (United States)

    Ridgway, Stephen

    2011-10-01

    Betelgeuse is well suited for detailed study of the mass loss process in a massive red supergiant. We have engaged in a multi-scale, multi-color study to trace the ejected material from the photosphere to the interstellar medium, and understand its chemical evolution {formation of molecules and dust}. Infrared interferometry already gave us a detailed image of the photosphere, compatible with large convective cells. Adaptive optics spectro-imaging {1.0-2.2 microns} allowed us to detect the presence of the CN molecule and mass loss plume structures up to at least 6 R*. At larger distances, we observed silicate-rich dust in thermal IR {8-20 microns}. From the surface to 100 R*, we therefore have a continuous coverage with multicolor imagery. The chromosphere lies at a key location, between the photosphere and the molecular envelope. As shown by STIS spatially resolved spectroscopy {Lobel & Dupree 2001}, it contains rising and falling gases. Such structure is supported by our 3D modeling of the convection. In order to probe the dynamics of the envelope and its relation to photospheric spots and mass loss plumes, we propose to obtain UV imaging with STIS at 3 epochs to complement our coordinated ground-based effort as well as the earlier HST UV snapshots. We will use this imagery to correlate structures at different radii and temperatures, and to explore the time-scales of evolution. With the support of our 3D models, this information will answer specific questions including deciding between convective and polar explanations for bright spots and plumes. Our infrared imaging observations will be repeated contemporaneously with the requested HST/STIS images.

  20. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  1. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  2. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...

  3. 49 CFR 230.41 - Flexible staybolts with caps.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flexible staybolts with caps. 230.41 Section 230... Appurtenances Staybolts § 230.41 Flexible staybolts with caps. (a) General. Flexible staybolts with caps shall have their caps removed during every 5th annual inspection for the purpose of inspecting the bolts for...

  4. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  5. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  6. Characterization of cap binding proteins associated with the nucleus

    International Nuclear Information System (INIS)

    Patzelt, E.

    1986-04-01

    Eucaryotic mRNAs a carry 7-methylguanosine triphosphate residue (called cap structure) at their 5' terminus. The cap plays an important role in RNA recognition. Cap binding proteins (CBP) of HeLa cells were identified by photoaffinity labelling using the cap analogue γ-( 32 P)-(4-(benzoyl-phenyl)methylamido)-7-methylguanosine-5'-triphosphate (BP-m 7 GTP). Photoreaction of this cap analogue with HeLa cell initiation factors resulted in specific labelling of two polypeptides of Msub(r) 37000 and 26000. The latter was also labelled in crude initiation factors prepared from reticulocytes and is identical to the cap binding protein CBP I previously identified. These cap binding proteins were also affinity labelled in poliovirus infected cell extracts. Photoaffinity reaction with BP-m 7 GTP of whole HeLa cell homogenate showed three additional polypeptides with Msub(r) 120000, 89000 and 80000. These cap binding proteins were found to be associated with the nucleus and are therefore referred to as nuclear cap binding proteins, i.e. NCBP 1, NCBP 2 and NCBP 3. They were also present in splicing extracts. Photoaffinity labelling in these nuclear extracts was differentially inhibited by various cap analogues and capped mRNAs. Affinity chromatography on immobilized globin mRNA led to a partial separation of the three nuclear cap binding proteins. Chromatography on m 7 GTP-Sepharose resulted in a specific binding of NCBP 3. The different behaviour of the cap binding proteins suggests that they are functionally distinct and that they might be involved in different processes requiring cap recognition. (Author)

  7. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  8. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  9. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  10. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  11. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    International Nuclear Information System (INIS)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Choudhuri, Arnab Rai

    2014-01-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century

  12. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev [Indian Institute of Astrophysics,Koramangala, Bengaluru 560034 (India); Karak, Bidya Binay [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Muñoz-Jaramillo, Andrés [Montana State University, Bozeman, MT 59717 (United States); Choudhuri, Arnab Rai, E-mail: mpriya@iiap.res.in, E-mail: dipu@iiap.res.in [Indian Institute of Science, Bangalore (India)

    2014-09-20

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

  13. Main Ionospheric Trough and Equatorial Ionization Anomaly During Substorms With the Different UT Onset Moments

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    2007-05-01

    In the given work the numerical calculation results of ionospheric effects of four modeling substorms which have begun in 00, 06, 12 and 18 UT are presented. Calculations are executed on the basis of Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), developed in WD IZMIRAN, added by the new block of calculation of electric fields in the ionosphere of the Earth for vernal equinox conditions in the minimum of solar activity. In calculations we considered superposition of magnetospheric convection electric field (at set potential differences through polar caps and field aligned currents of the second zone with taking into account of particle precipitation) and dynamo field generated by thermospheric winds without taking into account the tides. It is shown, that in the given statement of problem the substorms cause strong positive disturbances in F-region of ionosphere in night sector. Negative disturbances are much less and arise, mainly, at night in the middle and low latitudes. During substorms longitudinal extent of main ionospheric trough increases. The substorm beginning in 18 UT, causes negative disturbances in high latitudes except for a southern polar cap. Besides there is "stratification" of the main ionospheric trough. As a result in southern hemisphere the additional high-latitude trough which is absent in quiet conditions is formed. "Stratification" of the main ionospheric trough occurs in northern hemisphere at 6 hours after the beginning of the substorm. These "stratifications" are consequence non-stationary magnetospheric convection. Distinction between these events consists that "stratification" in a southern hemisphere occurs in active phase of substorm, and in northern hemisphere in recovery phase. During a substorm beginning in 00 UT, foF2 increases in all northern polar cap. Positive disturbances of foF2 in the equatorial anomaly region cause all presented substorms, except for a substorm beginning in 18 UT

  14. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  15. Linear polarization measurements at H. beta. of early-type emission line stars

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D; McLean, I S [Glasgow Univ. (UK)

    1976-02-01

    Linear polarization measurements across the H..beta.. emission lines of the stars ..gamma.. Cas, zeta Tau and 48 Per are presented. For the first two stars there is a marked reduction of the polarization at the centre of the line and for ..gamma.. Cas, this varies from night to night. During the H..beta.. observations of zeta Tau, a change of polarization over tens of minutes was indicated in a monitor channel tuned to the continuum on the blue side of H..beta... For the fainter star, 48 Per, the uncertainties of the polarimetry were increased in relation to ..gamma.. Cas and zeta Tau by a factor of about two and at this precision, no differential effects across the line were recorded. Observations of ..cap alpha.. Cyg are also given to demonstrate the reliability of the polarimeter.

  16. Long-term analysis of ionospheric polar patches based on CHAMP TEC data

    DEFF Research Database (Denmark)

    Noja, M.; Stolle, Claudia; Park, J.

    2013-01-01

    Total electron content (TEC) from LEO satellites offers great possibility to sound the upper ionosphere and plasmasphere. This paper describes a method to derive absolute TEC observations aboard CHAMP considering multipath effects and receiver differential code bias. The long-term data set of 9...... years GPS observations is used to investigate the climatological behavior of high-latitude plasma patches in both hemispheres. The occurrence of polar patches has a clear correlation with the solar cycle, which is less pronounced in the Southern Hemisphere (SH). Summed over all years, we observed...... a higher number of patches in the SH. The maximum occurrence rate of patches has been found at the dayside polar cusp during 12:00-18:00 MLT (magnetic local time) supporting the mechanisms for patch creation by local particle precipitation and by intrusion of subauroral plasma into the polar cap through...

  17. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  18. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  19. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man; Lee, Yi-Kuen; Zohar, Yitshak

    2012-01-01

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  20. The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media

    International Nuclear Information System (INIS)

    Li, W.M.; Lim, W.K.; Shi, J.Z.; Ding, J.

    2013-01-01

    A systematic investigation of magnetic switching behavior of CoCrPt based capped media (perpendicularly coupled granular/continuous (CGC) media consisting of granular CoCrPt:SiO 2 TiO 2 Ta 2 O 5 /capped CoCrPt(B)) is performed by varying the thickness of the capped layer from 0 to 9 nm. The microscopic structures of CGC media with different thickness of capped layer are examined by transmission electron microscope. We find out that CoCrPt magnetic grains are separated by nonmagnetic oxide grain boundaries. Grain size and grain boundary are about 8.9 nm and 2 nm, respectively. The nonmagnetic oxide grain boundaries in the granular layer do not disappear immediately at the interface between the granular and capped layers. The amorphous grain boundary phase in the granular layer propagates to the top surface of the capped layer. After capping with the CoCrPt(B) layer, the grain size at the surface of CGC structure increases and the grain boundary decreases. Both coercivity and intergranular exchange coupling of the CGC media are investigated by Polar magneto-optic Kerr effect magnetometer and alternating gradient force magnetometer. Although H c apparently decreases at thicker capped layer, no obvious variation of macroscopic switching field distribution (SFD/H c ) is observed. We separate intrinsic switching field distribution from intergranular interactions. The investigation of reduced intrinsic SFD/H c and increased hysteresis loop slope at coercivity, suggests that improvement of absolute switching field distribution (SFD) is caused by both strong intergranular exchange coupling and uniform grain size. Micromagnetic simulation results further verify our conclusion that the capped layer in CGC media is not uniformly continuous but has some granular nature. However, grains in the CoCrPt(B) capped layer is not absolutely isolated, strong exchange coupling exists between grains. - Highlights: • In CGC media, CoCrPt magnetic grains are separated by nonmagnetic oxide

  1. Diagnostic criteria for cryopyrin-associated periodic syndrome (CAPS).

    Science.gov (United States)

    Kuemmerle-Deschner, Jasmin B; Ozen, Seza; Tyrrell, Pascal N; Kone-Paut, Isabelle; Goldbach-Mansky, Raphaela; Lachmann, Helen; Blank, Norbert; Hoffman, Hal M; Weissbarth-Riedel, Elisabeth; Hugle, Boris; Kallinich, Tilmann; Gattorno, Marco; Gul, Ahmet; Ter Haar, Nienke; Oswald, Marlen; Dedeoglu, Fatma; Cantarini, Luca; Benseler, Susanne M

    2017-06-01

    Cryopyrin-associated periodic syndrome (CAPS) is a rare, heterogeneous disease entity associated with NLRP3 gene mutations and increased interleukin-1 (IL-1) secretion. Early diagnosis and rapid initiation of IL-1 inhibition prevent organ damage. The aim of the study was to develop and validate diagnostic criteria for CAPS. An innovative process was followed including interdisciplinary team building, item generation: review of CAPS registries, systematic literature review, expert surveys, consensus conferences for item refinement, item reduction and weighting using 1000Minds decision software. Resulting CAPS criteria were tested in large cohorts of CAPS cases and controls using correspondence analysis. Diagnostic models were explored using sensitivity analyses. The international team included 16 experts. Systematic literature and registry review identified 33 CAPS-typical items; the consensus conferences reduced these to 14. 1000Minds exercises ranked variables based on importance for the diagnosis. Correspondence analysis determined variables consistently associated with the diagnosis of CAPS using 284 cases and 837 controls. Seven variables were significantly associated with CAPS (pCAPS-typical symptoms: urticaria-like rash, cold-triggered episodes, sensorineural hearing loss, musculoskeletal symptoms, chronic aseptic meningitis and skeletal abnormalities. Sensitivity was 81%, specificity 94%. It performed well for all CAPS subtypes and regardless of NLRP3 mutation. The novel approach integrated traditional methods of evidence synthesis with expert consensus, web-based decision tools and innovative statistical methods and may serve as model for other rare diseases. These criteria will enable a rapid diagnosis for children and adults with CAPS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Enzymatic synthesis of RNAs capped with nucleotide analogues reveals the molecular basis for substrate selectivity of RNA capping enzyme: impacts on RNA metabolism.

    Directory of Open Access Journals (Sweden)

    Moheshwarnath Issur

    Full Text Available RNA cap binding proteins have evolved to specifically bind to the N7-methyl guanosine cap structure found at the 5' ends of eukaryotic mRNAs. The specificity of RNA capping enzymes towards GTP for the synthesis of this structure is therefore crucial for mRNA metabolism. The fact that ribavirin triphosphate was described as a substrate of a viral RNA capping enzyme, raised the possibility that RNAs capped with nucleotide analogues could be generated in cellulo. Owing to the fact that this prospect potentially has wide pharmacological implications, we decided to investigate whether the active site of the model Paramecium bursaria Chlorella virus-1 RNA capping enzyme was flexible enough to accommodate various purine analogues. Using this approach, we identified several key structural determinants at each step of the RNA capping reaction and generated RNAs harboring various different cap analogues. Moreover, we monitored the binding affinity of these novel capped RNAs to the eIF4E protein and evaluated their translational properties in cellulo. Overall, this study establishes a molecular rationale for the specific selection of GTP over other NTPs by RNA capping enzyme It also demonstrates that RNAs can be enzymatically capped with certain purine nucleotide analogs, and it also describes the impacts of modified RNA caps on specific steps involved in mRNA metabolism. For instance, our results indicate that the N7-methyl group of the classical N7-methyl guanosine cap is not always indispensable for binding to eIF4E and subsequently for translation when compensatory modifications are present on the capped residue. Overall, these findings have important implications for our understanding of the molecular determinants involved in both RNA capping and RNA metabolism.

  3. On the relaxation of magnetospheric convection when Bz turns northward

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2012-06-01

    Full Text Available The solar wind inputs considerable energy into the upper atmosphere, particularly when the interplanetary magnetic field (IMF is southward. According to Poynting's theorem (Kelley, 2009, this energy becomes stored as magnetic fields and then is dissipated by Joule heat and by energizing the plasmasheet plasma. If the IMF turns suddenly northward, very little energy is transferred into the system while Joule dissipation continues. In this process, the polar cap potential (PCP decreases. Experimentally, it was shown many years ago that the energy stored in the magnetosphere begins to decay with a time constant of two hours. Here we use Poynting's theorem to calculate this time constant and find a result that is consistent with the data.

  4. Synthesis of tritium or deuterium labelled 19-nor-3. cap alpha. -hydroxy-5. cap alpha. -androstan-17-one from nortestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Protiva, J; Klinotova, E [Karlova Univ., Prague (Czechoslovakia). Prirodovedecka Fakulta; Filip, J [Ustav pro Vyzkum, Vyrobu a Vyuziti Radioisotopu, Prague (Czechoslovakia); Hampl, R [Research Inst. of Endocrinology, Praha (Czechoslovakia)

    1982-10-20

    Tritium and/or deuterium (5-H) labelled 19-nor-3..cap alpha..-hydroxy-5..cap alpha..-androstan-17-one (norandrosterone) was prepared from nortestosterone in view to use it as a radioligand for radioimmunoassay of the main nortestosterone metabolites. Based upon model experiments using testosterone and deuterium labelling, the following four step procedure was established: nortestosterone was oxidized with pyridine chlorochromate and the resulting 19-nor-4-androsten-3,17-dione was tritiated with tritium gas under catalysis with tris(triphenylphosphine)rhodium chloride to give (4,5..cap alpha..-/sup 3/H)19-nor-5..cap alpha..-androstan-3,17-dione. A selective reduction of the latter compound yielded (5-/sup 3/H)19-nor-3..cap alpha..-hydroxy-5..cap alpha..-androstan-17-one of the molar radioactivity 0.3 TBq (8.15 Ci)/mmol.

  5. Influence of high range of mass transfer coefficient and convection heat transfer on direct contact membrane distillation performance

    KAUST Repository

    Lee, Jung Gil

    2017-11-03

    In order to improve water production of membrane distillation (MD), the development of high performance membrane having better mass transfer and enhancement of convection heat transfer in MD module have been continuously investigated. This paper presents the relationship between the heat and mass transfer resistance across the membrane and the performance improvement. Various ranges of mass transfer coefficient (MTC) from normal (0.3×10−6 to 2.1×10−6kg/m2sPa: currently available membranes) to high (>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer and convection heat transfer on the MD performance parameters including temperature polarization coefficient (TPC), mean permeate flux, and specific energy consumption were investigated in a direct contact MD (DCMD) configuration. Results showed that improving the MTC at the low ranges is more important than that at the high ranges where the heat transfer resistance becomes dominant and hence the convection heat transfer coefficient must be increased. Therefore, an effort on designing MD modules using feed and permeate spacers and controlling the membrane surface roughness to increase the convection heat transfer and TPC in the channel aiming to enhance the flux is required because the currently developed mass transfer has almost reached the critical point.

  6. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  7. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  8. 7 CFR 1714.7 - Interest rate cap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Interest rate cap. 1714.7 Section 1714.7 Agriculture... PRE-LOAN POLICIES AND PROCEDURES FOR INSURED ELECTRIC LOANS General § 1714.7 Interest rate cap. Except... section, or both the rate disparity test for the interest rate cap and the consumer income test set forth...

  9. 20 CFR 606.22 - Application for cap.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Application for cap. 606.22 Section 606.22... Reduction § 606.22 Application for cap. (a) Application. (1) The Governor of the State shall make... a State requests a cap on tax credit reduction. The Governor is required to notify the Department on...

  10. IAA transport in corn roots includes the root cap

    International Nuclear Information System (INIS)

    Hasenstein, K.H.

    1989-01-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing 3 H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 μ1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 μ1 of sorbitol or the Ca 2+ chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap

  11. Synthesis and luminescent properties of star-burst D-π-A compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Liu, Rui, E-mail: rui.liu@njtech.edu.cn [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Zhu, Xiaolin [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Li, Yuhao [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chang, Jin [Queensland University of Technology, 2 George St., Brisbane 4000 (Australia); Zhu, Hongjun, E-mail: zhuhjnjut@hotmail.com [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Ma, Liangwei; Lv, Wangjie; Guo, Jun [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China)

    2014-12-15

    Two new star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms (1a and 1b) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. Both compounds exhibit strong {sup 1}π–π{sup ⁎} transitions in the UV region and intense {sup 1}π–π{sup ⁎}/intramolecular charge transfer ({sup 1}ICT) absorption bands in the UV–vis region. Introducing the carbazole end-capped phenylene ethynylene arm on the 1,3,5-triazine core causes a slight bathochromic shift and enhanced molar extinction coefficient of the {sup 1}π–π{sup ⁎}/{sup 1}ICT transition band. Both compounds are emissive in solution at room temperature and 77 K, which exhibit pronounced positive solvatochromic effect. The emitting state could be ascribed to {sup 1}ICT state in more polar solvent, and {sup 1}π–π{sup ⁎} state in low-polarity solvent. The high emission quantum yields (Φ{sub em}=0.90∼1.0) of 1a and 1b (in hexane and toluene) make them potential candidates as efficient light-emitting materials. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these compounds can be tuned by the carbazole end-capped phenylene ethynylene arm, which would also be useful for rational design of photofunctional materials. - Highlights: • Star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms. • Photophysical properties of target compounds were investigated systematically via spectroscopic and theoretical methods. • The relatively high fluorescence quantum yields make them potential candidates as light-emitting materials.

  12. Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign

    Science.gov (United States)

    Waddicor, D.; Vaughan, G.; Choularton, T.

    2009-04-01

    The Aerosol and Chemical Transport In tropical convection (ACTIVE) campaign took place between October 2005 and February 2006. This investigation involved the sampling of deep convective storms that occur in the Tropics; the campaign was based in Darwin, Northern Territory, Australia - the latter half of the campaign coincided with the monsoon season. A range of scientific equipment was used to sample the inflow and outflow air from these storms; of particular importance were the NERC Dornier (low-level) and ARA Egrett (high-level outflow) aircraft. The Dornier held a range of aerosol, particle and chemical detectors for the purpose of analysing the planetary boundary layer (PBL), in the vicinity of tropical convection. The Egrett contained detection instrumentation for a range of sizes of aerosol and cloud particles (2 Condensation Particle Counters (CPC), CAPS, CIP, CPI) in the storm outflow. This allowed a quantifiable measurement to be made of the effect of deep tropical convection on the aerosol population in the Tropical Tropopause Layer (TTL). The ACTIVE campaign found that there were large numbers of aerosol particles in the 10 - 100 nm (up to 25,000 /cm3 STP) and 100 - 1000 nm (up to 600 /cm3) size ranges. These values, in many instances, surpassed those found in the PBL. The higher levels of aerosol found in the TTL compared to the PBL could indicate that aerosol nucleation was occurring in the TTL as a direct result of convective activity. Furthermore, the Egrett aircraft found distinct boundaries between the high levels of aerosol, which were found in cloud free regions, and very low numbers of aerosol, which were found in the cloudy regions (storm anvil). The air masses were determined, from back trajectories, to have been through convective uplift and were formerly part of the anvil cloud. The cloudy regions would have contained high levels of entrapped precursor gases. Reduced nucleation and cloud particle scavenging of aerosol and gases would give a

  13. The effect of convection and semi-convection on the C/O yield of massive stars

    International Nuclear Information System (INIS)

    Dearborn, D.S.

    1979-01-01

    The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)

  14. Distribution of irregularities in the northern polar region determined from Hilat observations

    International Nuclear Information System (INIS)

    Macdougall, J.W.

    1990-01-01

    Three years' observations of the Hilat satellite from stations Sondre, Churchill, and Tromso have been used to study the distributions of scintillations over the northern polar region. Two regions showed enhancement. Region (1) was an enhancement of phase scintillations when the line of sight to the satellite lay along an L shell and the observing station was under the auroral oval. Region (2) is revealed most clearly by amplitude scintillations and maximizes in an annular region several degrees poleward of the auroral oval. Region (1) is most likely associated with large-scale 'blobs' of ionization in the auroral zone; region (2) appears to be due to km-scale irregularities generated in the polar cap. 17 refs

  15. Investigation of tropical diurnal convection biases in a climate model using TWP-ICE observations and convection-permitting simulations

    Science.gov (United States)

    Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.

    2017-12-01

    Climate models are known to have difficulty in simulating tropical diurnal convections that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in convective parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, convective organization, and propagation of convection-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. Convective-scale radar retrievals and observation-driven convection-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal convective properties and their contrast among inland, coastal and open ocean conditions.

  16. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  17. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  18. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  19. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    Science.gov (United States)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  20. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  1. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    Science.gov (United States)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive

  2. Relationship between Birkeland current regions, particle precipitation, and electric fields

    International Nuclear Information System (INIS)

    Beaujardiere, O. de la; Watermann, J.; Newell, P.; Rich, F.

    1993-01-01

    The authors study relationships between particle precipitation, currents, and convection, using data from DMSP observations and observations of the Sondrestrom radar. They adopt the classification of Newell et al., who defined five different classes of particle populations observed in satellite crossings of auroral regions. Observations were limited to prenoon local times. The advantage of the DMSP data is that it is part of a consistent 10 year observation mission which provides a broad replicated data set. It is difficult to specify with certainty the polar cap boundary from DMSP data alone

  3. The comparison of CAP88-PC version 2.0 versus CAP88-PC version 1.0

    International Nuclear Information System (INIS)

    Yakubovich, B.A.; Klee, K.O.; Palmer, C.R.; Spotts, P.B.

    1997-12-01

    40 CFR Part 61 (Subpart H of the NESHAP) requires DOE facilities to use approved sampling procedures, computer models, or other approved procedures when calculating Effective Dose Equivalent (EDE) values to members of the public. Currently version 1.0 of the approved computer model CAP88-PC is used to calculate EDE values. The DOE has upgraded the CAP88-PC software to version 2.0. This version provides simplified data entry, better printing characteristics, the use of a mouse, and other features. The DOE has developed and released version 2.0 for testing and comment. This new software is a WINDOWS based application that offers a new graphical user interface with new utilities for preparing and managing population and weather data, and several new decay chains. The program also allows the user to view results before printing. This document describes a test that confirmed CAP88-PC version 2.0 generates results comparable to the original version of the CAP88-PC program

  4. Cap-independent translation of plant viral RNAs.

    Science.gov (United States)

    Kneller, Elizabeth L Pettit; Rakotondrafara, Aurélie M; Miller, W Allen

    2006-07-01

    The RNAs of many plant viruses lack a 5' cap and must be translated by a cap-independent mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from those of animal viruses: they are smaller (translation factors, and speculate on their mechanism of action and their roles in the virus replication cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host translational machinery.

  5. Characterization of a mimivirus RNA cap guanine-N2 methyltransferase.

    Science.gov (United States)

    Benarroch, Delphine; Qiu, Zhicheng R; Schwer, Beate; Shuman, Stewart

    2009-04-01

    A 2,2,7-trimethylguanosine (TMG) cap is a signature feature of eukaryal snRNAs, telomerase RNAs, and trans-spliced nematode mRNAs. TMG and 2,7-dimethylguanosine (DMG) caps are also present on mRNAs of two species of alphaviruses (positive strand RNA viruses of the Togaviridae family). It is presently not known how viral mRNAs might acquire a hypermethylated cap. Mimivirus, a giant DNA virus that infects amoeba, encodes many putative enzymes and proteins implicated in RNA transactions, including the synthesis and capping of viral mRNAs and the promotion of cap-dependent translation. Here we report the identification, purification, and characterization of a mimivirus cap-specific guanine-N2 methyltransferase (MimiTgs), a monomeric enzyme that catalyzes a single round of methyl transfer from AdoMet to an m(7)G cap substrate to form a DMG cap product. MimiTgs, is apparently unable to convert a DMG cap to a TMG cap, and is thereby distinguished from the structurally homologous yeast and human Tgs1 enzymes. Nonetheless, we show genetically that MimiTgs is a true ortholog of Saccharomyces cerevisiae Tgs1. Our results hint that DMG caps can satisfy many of the functions of TMG caps in vivo. We speculate that DMG capping of mimivirus mRNAs might favor viral protein synthesis in the infected host.

  6. Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing

    Directory of Open Access Journals (Sweden)

    Susie Wright

    2017-07-01

    Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.

  7. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  8. Death cap

    DEFF Research Database (Denmark)

    Rudbæk, Torsten R; Kofoed, Pernille Bouteloup; Bove, Jeppe

    2014-01-01

    Death cap (Amanita phalloides) is commonly found and is one of the five most toxic fungi in Denmark. Toxicity is due to amatoxin, and poisoning is a serious medical condition, causing organ failure with potential fatal outcome. Acknowledgement and clarification of exposure, symptomatic and focused...

  9. The pattern of convection in the Sun

    International Nuclear Information System (INIS)

    Weiss, N.O.

    1976-01-01

    The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)

  10. The Effect of an Offset Polar Cap Dipolar Magnetic Field on the Modeling of the Vela Pulsar's Gamma-Ray Light Curves

    Science.gov (United States)

    Barnard, M.; Venter, C.; Harding, A. K.

    2016-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.

  11. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    Science.gov (United States)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  12. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  13. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  14. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.

    Science.gov (United States)

    Garfinkel, C I; Schwartz, C

    2017-10-16

    The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.

  15. Enhancement of device performance by using quaternary capping over ternary capping in strain-coupled InAs/GaAs quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Tongbram, B.; Shetty, S.; Ghadi, H.; Adhikary, S.; Chakrabarti, S.

    2015-01-01

    We investigate and compare the performance of 30 layers strain-coupled quantum dot (SCQD) infrared photodetectors capped with one of two different layers: a quaternary (In 0.21 Al 0.21 Ga 0.58 As) or ternary (In 0.15 Ga 0.85 As) alloy of 30 Aa and a GaAs layer with a thickness of 120-150 Aa. Measurements of optical properties, spectral responsivity, and cross-sectional transmission electron microscopy were conducted. Results showed that quaternary capping yielded more superior multilayer QD infrared photodetectors than ternary capping. Quaternary capping resulted in enhanced dot size, order, and uniformity of the QD array. The presence of Al in the capped layer helped in the reduction in dark current density and spectral linewidth as well as led to higher electron confinement of the QDs and enhanced device detectivity. The vertically ordered SCQD system with quaternary capping exhibited higher peak detectivity (∝10 10 cm Hz 1/2 /W) than that with ternary capping (∝10 7 cm Hz 1/2 /W). In addition, a very low noise current density of ∝10 -16 A/cm 2 Hz 1/2 at 77 K was achieved with quaternary-capped QDs. (orig.)

  16. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  17. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Brunner, F.; Cho, E.-M. [Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Hashizume, T. [Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, 060-0814 Sapporo, Japan and JST-CREST, 102-0075 Tokyo (Japan)

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  18. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  19. Apical cap

    International Nuclear Information System (INIS)

    McLoud, T.C.; Isler, R.J.; Novelline, R.A.; Putman, C.E.; Simeone, J.; Stark, P.

    1981-01-01

    Apical caps, either unilateral or bilateral, are a common feature of advancing age and are usually the result of subpleural scarring unassociated with other diseases. Pancoast (superior sulcus) tumors are a well recognized cause of unilateral asymmetric apical density. Other lesions arising in the lung, pleura, or extrapleural space may produce unilateral or bilateral apical caps. These include: (1) inflammatory: tuberculosis and extrapleural abscesses extending from the neck; (2) post radiation fibrosis after mantle therapy for Hodgkin disease or supraclavicular radiation in the treatment of breast carcinoma; (3) neoplasm: lymphoma extending from the neck or mediastinum, superior sulcus bronchogenic carcinoma, and metastases; (4) traumatic: extrapleural dissection of blood from a ruptured aorta, fractures of the ribs or spine, or hemorrhage due to subclavian line placement; (5) vascular: coarctation of the aorta with dilated collaterals over the apex, fistula between the subclavian artery and vein; and (6) miscellaneous: mediastinal lipomatosis with subcostal fat extending over the apices

  20. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  1. Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions: SuperDARN and satellite observations

    Directory of Open Access Journals (Sweden)

    C. Senior

    2002-06-01

    Full Text Available High-time resolution data from the two Iceland SuperDARN HF radars show very strong nightside convection activity during a prolonged period of low geomagnetic activity and northward interplanetary magnetic field (IMF. Flows bursts with velocities ranging from 0.8 to 1.7 km/s are observed to propagate in the sunward direction with phase velocities up to 1.5 km/s. These bursts occur over several hours of MLT in the 20:00–01:00 MLT sector, in the evening-side sunward convection. Data from a simultaneous DMSP pass and POLAR UVI images show a very contracted polar cap and extended regions of auroral particle precipitation from the magnetospheric boundaries. A DMSP pass over the Iceland-West field-of-view while one of these sporadic bursts of enhanced flow is observed, indicates that the flow bursts appear within the plasma sheet and at its outward edge, which excludes Kelvin-Helmholtz instabilities at the magnetopause boundary as the generation mechanism. In the nightside region, the precipitation is more spot-like and the convection organizes itself as clockwise U-shaped structures. We interpret these flow bursts as the convective transport following plasma injection events from the tail into the night-side ionosphere. We show that during this period, where the IMF clock angle is around 70°, the dayside magnetosphere is not completely closed.Key words. Ionosphere (Auroral ionosphere; Ionospheremagnetosphere interactions; Particle precipitation

  2. A nucleation theory of cell surface capping

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Wester, M.J.; Perelson, A.S.

    1997-01-01

    We propose a new theory of cell surface capping based on the principles of nucleation. When antibody interacts with cell surface molecules, the molecules initially form small aggregates called patches that later coalesce into a large aggregate called a cap. While a cap can form by patches being pulled together by action of the cell''s cytoskeleton, in the case of some molecules, disruption of the cytoskeleton does not prevent cap formation. Diffusion of large aggregates on a cell surface is slow, and thus we propose that a cap can form solely through the diffusion of small aggregates containing just one or a few cell surface molecules. Here we consider the extreme case in which single molecules are mobile, but aggregates of all larger sizes are immobile. We show that a set of patches in equilibrium with a open-quotes seaclose quotes of free cell surface molecules can undergo a nucleation-type phase transition in which the largest patch will bind free cell surface molecules, deplete the concentration of such molecules in the open-quotes seaclose quotes and thus cause the other patches to shrink in size. We therefore show that a cap can form without patches having to move, collide with each other, and aggregate

  3. 47 CFR 61.41 - Price cap requirements generally.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Price cap requirements generally. 61.41 Section... (CONTINUED) TARIFFS General Rules for Dominant Carriers § 61.41 Price cap requirements generally. (a... companies shall not bar a carrier from electing price cap regulation provided the carrier is otherwise...

  4. A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide

    KAUST Repository

    Allen, Rebecca

    2013-01-01

    The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently

  5. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? (a...

  6. Devon island ice cap: core stratigraphy and paleoclimate.

    Science.gov (United States)

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  7. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles.

    Science.gov (United States)

    Grzelczak, Marcin P; Danks, Stephen P; Klipp, Robert C; Belic, Domagoj; Zaulet, Adnana; Kunstmann-Olsen, Casper; Bradley, Dan F; Tsukuda, Tatsuya; Viñas, Clara; Teixidor, Francesc; Abramson, Jonathan J; Brust, Mathias

    2017-12-26

    Carborane-capped gold nanoparticles (Au/carborane NPs, 2-3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.

  8. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  9. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  10. Photoactivable caps for reactive metal nanoparticles

    Science.gov (United States)

    Patel, Ashish

    The synthesis and stabilization of reactive metal nanoparticles is often challenging under normal atmospheric conditions. This problem can be alleviated by capping and passivation. Our lab has focused on forming polymer coatings on the surface of reactive metal nanoparticles. We discovered a convenient and effective route for stabilization of aluminum nanoparticles (Al NPs), which uses the nascent metal core as a polymerization initiator for various organic monomers. In our previous work, we used this method to passivate the Al NPs using variety of epoxides and copolymers of epoxides and alkenes. These products have demonstrated air stability for weeks to months with little to no degradation in the active Al content. Since our previously synthesized Al NP's were not beneficial for rapid and efficient thermodynamic access to the active Al core, our goal was find polymers that could easily be photochemically activated to enhance such access. Since poly(methyl methacrylate) (PMMA) has photodegrading properties, we used PMMA as a capping agent to passivate Al NPs. In this work, we present capping and stabilization of Al NPs with PMMA, and also with 1,2-epoxyhexane/ PMMA. In our previous work, we increased the stability of Al NP capped with 1,2-epoxy-9-decene by adding 1,13-tetradecadiene as a cross-linker. Here, we used the methyl methacrylate (MMA) monomer as cross-linker for Al NP capped with 1,2-epoxy-9-decene. We have also used the MMA as capping agent. We use powder x-ray diffractametry (PXRD), differential scanning calorimetry (DSC), and thermogravity analysis (TGA) to confirm the presence of elemental Al and ATR-FTIR to confirm the presence of polymers.

  11. CAP FUTURE: WHAT DO STAKEHOLDERS WANT?

    Directory of Open Access Journals (Sweden)

    Petr BLIZKOVSKY

    2018-03-01

    Full Text Available The Common Agricultural Policy (CAP is at the crossroads of several policy interests. It is scrutinised by farming and environmental communities as well as by the food industry, regional authorities, research and public sector. The paper analyses the recent consultation process undertaken by the European Commission. The paper concludes that among the key reform issues are: the level of the financial support to the CAP; the continued environmental and other public goods orientation of the CAP and generational renewal. In addition, the focus on result orientation and reduction of the administrative burden can be expected. The relevant European Commission proposals are foreseen around summer 2018.

  12. Empiric penicillin monotherapy of CAP is not associated with increased mortality; experiences from the retrospective CAP-North cohort

    DEFF Research Database (Denmark)

    Baunbæk-Knudsen, Getrud; Vestergaard Jensen, Andreas; Andersen, Stine

    2016-01-01

    Background: Community-acquired pneumonia (CAP) is a severe infection, with high morbidity and mortality. The antibiotic strategies for CAP differ across Europe. Objective: To assess the usage of Penicillin monotherapy in a real-life cohort and to evaluate predictors of treatment duration and the ......Background: Community-acquired pneumonia (CAP) is a severe infection, with high morbidity and mortality. The antibiotic strategies for CAP differ across Europe. Objective: To assess the usage of Penicillin monotherapy in a real-life cohort and to evaluate predictors of treatment duration......, and evaluated predictors of treatment duration by linear regression. Mortality of patients receiving empiric penicillin-G/V was compared to others by logistic regression analysis. The CAPNETZ database technology was used for data-capture. Results: We included 1320 patients. The incidence of hospitalized CAP...... was 3.1 per 1000 inhabitants. The median age was 71 years (IQR; 58.81). In-hospital mortality was 8%. Patients treated with penicillin-G/V as empiric monotherapy (45%) did not have a higher mortality than those treated with broader spectrum antibiotics (OR 1.30, CI 95% 0.84-2-02). The median duration...

  13. Progress in LAr EndCap Calorimetry: News from the Hadronic EndCap Group.

    CERN Multimedia

    Oram, C.J.

    With module production and testing completed for the Hadronic EndCap calorimeter, the attention of the HEC group is heavily directed towards wheel assembly in building 180. Three of the four HEC wheels are now assembled and rotated, and work is progressing on assembling the final wheel. This year has been a busy year for the installation of components in the EndCap C cryostat: the signal feedthrough installation was completed April 22nd, the pre-sampler shortly thereafter and the Electro-Magnetic EndCap August 13th. This allowed the HEC group to start transferring the HEC wheels from the T6A storage cradle into the cryostat. The operation started in mid-September and has progressed, on or ahead of schedule, since then with the major milestones being: Insertion of 67 ton front HEC wheel October 3rd Insertion of 90 ton rear HEC wheel October 22nd. The wheel alignment has proved to be excellent, with the position of the centre of the front(rear) wheel with respect to the nominal position being displaced b...

  14. An infinite-dimensional model of free convection

    Energy Technology Data Exchange (ETDEWEB)

    Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))

    1990-12-01

    An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.

  15. Convergence behavior of idealized convection-resolving simulations of summertime deep moist convection over land

    Science.gov (United States)

    Panosetti, Davide; Schlemmer, Linda; Schär, Christoph

    2018-05-01

    Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.

  16. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  17. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  18. Density functional study of condensation in capped capillaries.

    Science.gov (United States)

    Yatsyshin, P; Savva, N; Kalliadasis, S

    2015-07-15

    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤Tcw) or continuous (at T>Tcw), where Tcw is the capillary wetting temperature. At T>Tcw, the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  19. Durability of Capped Wood Plastic Composites

    Science.gov (United States)

    Mark Mankowski; Mark J. Manning; Damien P. Slowik

    2015-01-01

    Manufacturers of wood plastic composites (WPCs) have recently introduced capped decking to their product lines. These new materials have begun to take market share from the previous generation of uncapped products that possessed a homogenous composition throughout the thickness of their cross-section. These capped offerings have been introduced with claims that the...

  20. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  1. ImmunoCAP assays: Pros and cons in allergology.

    Science.gov (United States)

    van Hage, Marianne; Hamsten, Carl; Valenta, Rudolf

    2017-10-01

    Allergen-specific IgE measurements and the clinical history are the cornerstones of allergy diagnosis. During the past decades, both characterization and standardization of allergen extracts and assay technology have improved. Here we discuss the uses, advantages, misinterpretations, and limitations of ImmunoCAP IgE assays (Thermo Fisher Scientific/Phadia, Uppsala, Sweden) in the field of allergology. They can be performed as singleplex (ImmunoCAP) and, for the last decade, as multiplex (Immuno Solid-phase Allergen Chip [ISAC]). The major benefit of ImmunoCAP is the obtained quantified allergen-specific IgE antibody level and the lack of interference from allergen-specific IgG antibodies. However, ImmunoCAP allergen extracts are limited to the composition of the extract. The introduction of allergen molecules has had a major effect on analytic specificity and allergy diagnosis. They are used in both singleplex ImmunoCAP and multiplex ImmunoCAP ISAC assays. The major advantage of ISAC is the comprehensive IgE pattern obtained with a minute amount of serum. The shortcomings are its semiquantitative measurements, lower linear range, and cost per assay. With respect to assay performance, ImmunoCAP allergen extracts are good screening tools, but allergen molecules dissect the IgE response on a molecular level and put allergy research on the map of precision medicine. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  3. The Influence of Company Size on Accounting Information: Evidence in Large Caps and Small Caps Companies Listed on BM&FBovespa

    Directory of Open Access Journals (Sweden)

    Karen Yukari Yokoyama

    2015-09-01

    Full Text Available In this study, the relation between accounting information aspects and the capitalization level o companies listed on the São Paulo Stock Exchange was investigated, classified as Large Caps or Small Caps, companies with larger and smaller capitalization, respectively, between 2010 and 2012. Three accounting information measures were addressed: informativeness, conservatism and relevance, through the application of Easton and Harris’ (1991 models of earnings informativeness, Basu’s (1997 model of conditional conservatism and the value relevance model, based on Ohlson (1995. The results appointed that, although the Large Caps present a higher level of conservatism, their accounting figures were less informative and more relevant when compared to the Large Caps companies. Due to the greater production of private information (predisclosure surrounding larger companies, the market would tend to respond less strongly or surprised to the publication of these companies’ accounting information, while the lack of anticipated information would make the effect of disclosing these figures more preponderant for the Small Caps companies.

  4. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  5. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  6. Contabilidad de Costos II. - Capítulo 4. Respuestas

    OpenAIRE

    Morillo Moreno, Marysela C.

    2008-01-01

    ÍNDICE Presentación Orientaciones para el usuario Capítulo 1: Contabilidad de costos por procesos Sistemas de Contabilidad de Costos por Proceso Costos de Producción Conjunta. Productos Principales y Secundarios Capítulo 2: Contabilidad de costos predeterminados Presupuesto Estático y Presupuesto Flexible Sistema de Costos Estándar Capítulo 3: Sistema de costos variables Capítulo 4: Respuestas Bibliografía recomendada Pr...

  7. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  8. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  9. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  10. 22 CFR 121.11 - Military demolition blocks and blasting caps.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Military demolition blocks and blasting caps... blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not include the following articles: (a) Electric squibs. (b) No. 6 and No. 8 blasting caps, including electric...

  11. Continuous reorientation of synchronous terrestrial planets due to mantle convection

    Science.gov (United States)

    Leconte, Jérémy

    2018-02-01

    Many known rocky exoplanets are thought to have been spun down by tidal interactions to a state of synchronous rotation, in which a planet's period of rotation is equal to that of its orbit around its host star. Investigations into atmospheric and surface processes occurring on such exoplanets thus commonly assume that day and night sides are fixed with respect to the surface over geological timescales. Here we use an analytical model to show that true polar wander—where a planetary body's spin axis shifts relative to its surface because of changes in mass distribution—can continuously reorient a synchronous rocky exoplanet. As occurs on Earth, we find that even weak mantle convection in a rocky exoplanet can produce density heterogeneities within the mantle sufficient to reorient the planet. Moreover, we show that this reorientation is made very efficient by the slower rotation rate of a synchronous planet when compared with Earth, which limits the stabilizing effect of rotational and tidal deformations. Furthermore, a relatively weak lithosphere limits its ability to support remnant loads and stabilize against reorientation. Although uncertainties exist regarding the mantle and lithospheric evolution of these worlds, we suggest that the axes of smallest and largest moment of inertia of synchronous exoplanets with active mantle convection change continuously over time, but remain closely aligned with the star-planet and orbital axes, respectively.

  12. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  13. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  14. Prices regulation in price-cap: the lessons of the british gas industry; Reglementations tarifaires en price-cap: les lecons de l'industrie gaziere anglaise

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    2003-07-01

    This article examines the problem of the price-cap regulation applied to the british gas transport. The RPI-X cap is a particular form of the price cap. This cap seems to be more remunerative for the regulatory firm than a cap calculated on the Laspeyres index because it authorizes a greater freedom of prices choice, to the prejudice of the consumers. Facing these perverse effects, Cowan proposed in 1997 a new system, not more satisfying. Another equation is analyzed in this article, proposed by Ofgem. Meanwhile this system presents no improvement of the consumers surplus facing the RPI-X cap. (A.L.B.)

  15. THEORY OF SOLAR MERIDIONAL CIRCULATION AT HIGH LATITUDES

    International Nuclear Information System (INIS)

    Dikpati, Mausumi; Gilman, Peter A.

    2012-01-01

    We build a hydrodynamic model for computing and understanding the Sun's large-scale high-latitude flows, including Coriolis forces, turbulent diffusion of momentum, and gyroscopic pumping. Side boundaries of the spherical 'polar cap', our computational domain, are located at latitudes ≥ 60°. Implementing observed low-latitude flows as side boundary conditions, we solve the flow equations for a Cartesian analog of the polar cap. The key parameter that determines whether there are nodes in the high-latitude meridional flow is ε = 2ΩnπH 2 /ν, where Ω is the interior rotation rate, n is the radial wavenumber of the meridional flow, H is the depth of the convection zone, and ν is the turbulent viscosity. The smaller the ε (larger turbulent viscosity), the fewer the number of nodes in high latitudes. For all latitudes within the polar cap, we find three nodes for ν = 10 12 cm 2 s –1 , two for 10 13 , and one or none for 10 15 or higher. For ν near 10 14 our model exhibits 'node merging': as the meridional flow speed is increased, two nodes cancel each other, leaving no nodes. On the other hand, for fixed flow speed at the boundary, as ν is increased the poleward-most node migrates to the pole and disappears, ultimately for high enough ν leaving no nodes. These results suggest that primary poleward surface meridional flow can extend from 60° to the pole either by node merging or by node migration and disappearance.

  16. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  17. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  18. In Situ Remediation Of Contaminated Sediments - Active Capping Technology

    International Nuclear Information System (INIS)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-01-01

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  19. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  20. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  1. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  2. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Science.gov (United States)

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  3. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  4. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Chaboyer, Brian, E-mail: gregory.a.feiden@gmail.com, E-mail: brian.chaboyer@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  5. Cassini ISS Observations Of The Early Stages Of The Formation Of Titan's South Polar Hood And Vortex In 2012

    Science.gov (United States)

    West, Robert A.; Del Genio, A.; Perry, J.; Ingersoll, A. P.; Turtle, E. P.; Porco, C.; Ovanessian, A.

    2012-10-01

    Northern spring equinox on Titan occurred on August 11, 2009. In March of 2012 the Imaging Science Subsystem (ISS) on the Cassini spacecraft saw the first evidence for the formation of a polar hood in the atmosphere above Titan’s south pole. Views of the limb showed an optical thickening primarily at about 360 km altitude across a few degrees of latitude centered on the pole. Images of Titan in front of Saturn provide a nearly direct measure of the line-of-sight optical depth as a function of latitude and altitude from about 250 km and higher. Two or more distinct layers are seen, both near the pole and at other latitudes. The highest of these, near 360 km altitude, hosts the embryonic polar hood. On June 27, 2012 ISS observed the pole from high latitude. These images show a distinct and unusual cloudy patch, elongated and not centered on the pole and with an elevated perimeter. The morphology and color indicate an unfamiliar (for Titan) composition and dynamical regime. The interior of the feature consists of concentrations of cloud/haze organized on spatial scales of tens of kilometers. Its morphology is reminiscent of the open cellular convection sometimes seen in the atmospheric boundary layer over Earth’s oceans under conditions of large-scale subsidence. Unlike Earth, where such convection is forced by large surface heat fluxes or the onset of drizzle, convection at 360 km on Titan is more likely to be driven from above by radiative cooling. During the 9 hours we observed Titan, this feature completed a little over one rotation around the pole, providing direct evidence for a polar vortex rotating at a rate roughly consistent with angular-momentum-conserving flow for air displaced from the equator. Part of this work was performed by the Jet Propulsion Laboratory, California Institute of Technology.

  6. Lowering the YE+1 end-cap for CMS

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    On 9 January 2007, the massive YE+1 end-cap was lowered into the CMS cavern. This is a very precise process as the crane must lower the end-cap through minimal clearance without tilt or sway. Once in the cavern, the end-cap is then positioned over the end of the barrel to detect particles produced in collisions that travel close to the axis of the beams.

  7. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    An effective theory is formulated for the dynamics of the guanosine triphosphate (GTP) cap believed to stabilize growing microtubules. The theory provides a ''coarse-grained'' description of the cap's dynamics. ''Microscopic'' details, such as the microtubule lattice structure and the fate of its...

  8. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  9. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  10. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  11. Who's (Still) Above the Social Security Payroll Tax Cap?

    OpenAIRE

    Nicole Woo; Janelle Jones; John Schmitt

    2012-01-01

    The Social Security payroll tax cap is the earnings level above which no further Social Security taxes are collected. The cap is currently at $110,100, though legislation has been introduced in Congress to apply the Social Security payroll tax to earnings above $250,000 (but not between the current cap and this level). This issue brief updates earlier work, finding that 5.8 percent of workers would be affected if the Social Security cap were eliminated entirely and 1.4 percent would be affect...

  12. /sup 56/Fe (. gamma. ,. cap alpha. /sub 0/) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tamae, T; Sugawara, M [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Tsubota, H

    1974-12-01

    The reaction cross section of /sup 56/Fe (..gamma.., ..cap alpha../sub 0/) was measured from the electron energy of 15 to 25 MeV. The measured data were compared with the calculated ones based on statistic theory. Both agreed with each other. Therefore, the affirmative result was obtained for the presumption that the reaction of (..gamma.., ..cap alpha../sub 0/) of the nuclei around these energy levels can be explained by the statistical theory. The angular distribution of /sup 56/Fe (..gamma.., ..cap alpha../sub 0/) with 17 MeV electron energy was also measured, and the E2/E1 ratio was obtained. In the measurement of the /sup 56/Fe ( Gamma , ..cap alpha../sub 0/) reaction cross section, a natural target of 2.69 mg/cm/sup 2/ was irradiated with an electron beam with energy from 15 MeV to 25 MeV at intervals of 0.5 MeV, and the emitted ..cap alpha.. particles were detected by a broad band magnetic distribution meter. The measured cross section of the (..gamma.., ..cap alpha../sub 0/) reaction agreed with the calculated one based on statistical theory. If this fact is recognized in many nuclei, the cross section of the (..gamma.., ..cap alpha../sub 0/) reaction on those nuclei has the following characteristics. When the increasing rate of the product of a complex nucleus formation cross section and ..cap alpha../sub 0/ penetration factor is larger than that of the sum of all penetration factors of possible channels, the cross section of the (..gamma.., ..cap alpha../sub 0/) reaction increases, and takes a peak value when the above two increasing rates agree with each other.

  13. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  14. Transient Mixed Convection Validation for NGNP

    International Nuclear Information System (INIS)

    Smith, Barton; Schultz, Richard

    2015-01-01

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  15. A decision tool for selecting trench cap designs

    Energy Technology Data Exchange (ETDEWEB)

    Paige, G.B.; Stone, J.J.; Lane, L.J. [USDA-ARS, Tucson, AZ (United States)] [and others

    1995-12-31

    A computer based prototype decision support system (PDSS) is being developed to assist the risk manager in selecting an appropriate trench cap design for waste disposal sites. The selection of the {open_quote}best{close_quote} design among feasible alternatives requires consideration of multiple and often conflicting objectives. The methodology used in the selection process consists of: selecting and parameterizing decision variables using data, simulation models, or expert opinion; selecting feasible trench cap design alternatives; ordering the decision variables and ranking the design alternatives. The decision model is based on multi-objective decision theory and uses a unique approach to order the decision variables and rank the design alternatives. Trench cap designs are evaluated based on federal regulations, hydrologic performance, cover stability and cost. Four trench cap designs, which were monitored for a four year period at Hill Air Force Base in Utah, are used to demonstrate the application of the PDSS and evaluate the results of the decision model. The results of the PDSS, using both data and simulations, illustrate the relative advantages of each of the cap designs and which cap is the {open_quotes}best{close_quotes} alternative for a given set of criteria and a particular importance order of those decision criteria.

  16. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  17. Immunoprecipitation of Tri-methylated Capped RNA.

    Science.gov (United States)

    Hayes, Karen E; Barr, Jamie A; Xie, Mingyi; Steitz, Joan A; Martinez, Ivan

    2018-02-05

    Cellular quiescence (also known as G 0 arrest) is characterized by reduced DNA replication, increased autophagy, and increased expression of cyclin-dependent kinase p27 Kip1 . Quiescence is essential for wound healing, organ regeneration, and preventing neoplasia. Previous findings indicate that microRNAs (miRNAs) play an important role in regulating cellular quiescence. Our recent publication demonstrated the existence of an alternative miRNA biogenesis pathway in primary human foreskin fibroblast (HFF) cells during quiescence. Indeed, we have identified a group of pri-miRNAs (whose mature miRNAs were found induced during quiescence) modified with a 2,2,7-trimethylguanosine (TMG)-cap by the trimethylguanosine synthase 1 (TGS1) protein and transported to the cytoplasm by the Exportin-1 (XPO1) protein. We used an antibody against (TMG)-caps (which does not cross-react with the (m 7 G)-caps that most pri-miRNAs or mRNAs contain [Luhrmann et al ., 1982]) to perform RNA immunoprecipitations from total RNA extracts of proliferating or quiescent HFFs. The novelty of this assay is the specific isolation of pri-miRNAs as well as other non-coding RNAs containing a TMG-cap modification.

  18. REVERSALS IN THE 6-CELLS CONVECTION DRIVEN

    Directory of Open Access Journals (Sweden)

    G.M. Vodinchar

    2015-12-01

    Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.

  19. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic)

  20. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta

    2013-01-01

    phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine...... residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant...

  1. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  2. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  3. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  4. Influence of tropical atmospheric variability on Weddell Sea deep water convection

    Science.gov (United States)

    Kleppin, H.

    2016-02-01

    Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).

  5. Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-convective coupling

    Science.gov (United States)

    Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.

    2016-10-01

    This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.

  6. THE EFFECT OF SOLAR RADIATION ON AUTOMOBILE ENVIRONMENT THROUGH NATURAL CONVECTION AND MIXED CONVECTION

    Directory of Open Access Journals (Sweden)

    MD. FAISAL KADER

    2012-10-01

    Full Text Available In the present paper, the effect of solar radiation on automobiles has been studied by both experimentally and numerically. The numerical solution is done by an operation friendly and fast CFD code – SC/Tetra with a full scale model of a SM3 car and turbulence is modeled by the standard k-ε equation. Numerical analysis of the three-dimensional model predicts a detailed description of fluid flow and temperature distribution in the passenger compartment during both the natural convection due to the incoming solar radiation and mixed convection due to the flow from defrost nozzle and radiation. It can be seen that solar radiation is an important parameter to raise the compartment temperature above the ambient temperature during summer. During natural convection, the rate of heat transfer is fast at the initial period. In the mixed convection analyses, it is found that the temperature drops down to a comfortable range almost linearly at the initial stage. Experimental investigations are performed to determine the temperature contour on the windshield and the local temperature at a particular point for further validation of the numerical results.

  7. ATLAS end-caps 
on the move

    CERN Multimedia

    2007-01-01

    Two delicate and spectacular transport operations have been performed for ATLAS in recent weeks: the first end-cap tracker was installed in its final position, and one of the huge end-caps of the toroid magnet was moved to the top of the experiment’s shaft.

  8. CAPS OpenACC Compilers: Performance and Portability

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The announcement late 2011 of the new OpenACC directive-based programming standard supported by CAPS, CRAY and PGI compilers has open up the door to more scientific applications that can be ported on many-core systems. Following a porting methodology, this talk will first review the principles of programming with OpenACC and then the advanced features available in the CAPS compilers to further optimize OpenACC applications: library integration, tuning directives with auto-tune mechanisms to build applications adaptive to different GPUs. CAPS compilers use hardware vendors' backends such as NVIDIA CUDA and OpenCL making them the only OpenACC compilers supporting various many-core architectures. About the speaker Stéphane Bihan is co-funder and currently Director of Sales and Marketing at CAPS enterprise. He has held several R&D positions in companies such as ARC international plc in London, Canon Research Center France, ACE compiler experts in Amsterdam and the INRIA r...

  9. Effects of the strain relaxation of an AlGaN barrier layer induced by various cap layers on the transport properties in AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Liu Zi-Yang; Zhang Jin-Cheng; Duan Huan-Tao; Xue Jun-Shuai; Lin Zhi-Yu; Ma Jun-Cai; Xue Xiao-Yong; Hao Yue

    2011-01-01

    The strain relaxation of an AlGaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of AlGaN/GaN heterostructures. Compared with the slight strain relaxation found in AlGaN barrier layer without cap layer, it is found that a thin cap layer can induce considerable changes of strain state in the AlGaN barrier layer. The degree of relaxation of the AlGaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the AlGaN barrier, which is believed to be the main cause of the deterioration of crystalline quality and morphology on the AlGaN/GaN interface. On the other hand, both GaN and AlN cap layers lead to a decrease in 2DEG density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between GaN and AlGaN, while the reduction of the piezoelectric effect in the AlGaN layer results in the decrease of 2DEG density in the case of AlN cap layer. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Wind blade spar cap and method of making

    Science.gov (United States)

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  11. What Determines Upscale Growth of Oceanic Convection into MCSs?

    Science.gov (United States)

    Zipser, E. J.

    2017-12-01

    Over tropical oceans, widely scattered convection of various depths may or may not grow upscale into mesoscale convective systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered convection? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered convection are small. The main positive results from this work (already published) demonstrate that the strength of convection is well correlated with the size and perhaps "organization" of convective features over tropical oceans, in contrast to tropical land, where strong convection is common for large or small convective features. So, important questions remain: Over tropical oceans, how should we define "organized" convection? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.

  12. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  13. State-of-the-art synthetic membrane for capping landfills

    International Nuclear Information System (INIS)

    Kriofske, K.P.; Gagle, D.W.

    1991-01-01

    Very Low Density Polyethylene (VLDPE) has emerged as a superior capping material for landfill closures. Landfills must be capped by a material which will undergo substantial deformation in areas of localized settlement prior to rupture. Methane and hydrogen sulfide gases must be contained and directed to collection points without permeating the landfill cap. Vegetative growth in the cover sods will be protected by the gas impermeability of the geosynthetic membrane. VLDPE compounded with carbon black is minimally affected by radiation and is inert to ultraviolet rays. This property sustains VLDPE's ability to retard gas permeation at levels superior to other geosynthetics. Cover soil stability on long cap slopes in all weather conditions is crucial. It has been demonstrated in the laboratory and in full-scale, on-site test conditions that VLDPE exhibits friction characteristics equaling or exceeding other synthetics used for this purpose without diminishing physical and chemical properties. Large-scale, multiaxial stress tests have demonstrated the ability of VLDPE to deflect substantially in all directions of a potential settlement area. Only PVC can equal the elastic deformation properties of VLDPE, but PVC is more gas-permeable susceptible to degradation due to natural soil radiation or ultraviolet light and heat. Test results are presented to illustrate these points. The geosynthetic cap membrane must prevent water percolation into the landfill to prevent the formation of hazardous leachates. The use of a VLDPE cap reduces the depth of cap soils, thus increasing landfill volume. The economics and reduction in long-term liabilities of closure costs are enhanced by the use of VLDPE in the cap system. Since the expected half-life of polyethylene exceeds hundreds of years, the inclusion of VLDPE in the cap system will provide pollution security for many generations

  14. Interhemispheric Asymmetry of the Sunward Plasma Flows for Strongly Dominant IMF BZ > 0

    Science.gov (United States)

    Yakymenko, K. N.; Koustov, A. V.; Fiori, R. A. D.

    2018-01-01

    Super Dual Auroral Radar Network (SuperDARN) convection maps obtained simultaneously in both hemispheres are averaged to infer polar cap ionospheric flow patterns under strongly dominant positive interplanetary magnetic field (IMF) Bz component. The data set consisted of winter observations in the Northern Hemisphere simultaneously with summer observations in the Southern Hemisphere. Long-lasting high-latitude dayside reverse convection cells are shown to have faster sunward flows at near-magnetic noon hours in the summer/Southern Hemisphere. Sunward flows typically deviate from the midnight-noon meridian toward 10-11 h of magnetic local time in the summer/Southern Hemisphere and are more aligned with the midnight-noon meridian in the winter/Northern Hemisphere. Flow deviations in the winter/Northern Hemisphere can be both toward prenoon and postnoon hours, and there is no clear relationship between flow deviation and the IMF By component. No strong preference for the sunward flow occurrence depending on the IMF Bx polarity was found. In addition, the rate of the sunward flow speed increase in response to an increase in driving conditions was found to be comparable for the IMF Bx > 0 and Bx < 0.

  15. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  16. Response of the ionospheric convection pattern to a rotation of the interplanetary magnetic field on January 14, 1988

    International Nuclear Information System (INIS)

    Cumnock, J.A.; Heelis, R.A.; Hairston, M.R.

    1992-01-01

    Ionospheric convection signatures observed over the polar regions are provided by the DMSP F8 satellite. The authors consider five passes over the southern summer hemisphere during a time when the z component of the interplantary magnetic field was stable and positive and the y component changed slowly from positive to negative. Large-scale regions of sunward flow are observed at very high latitudes consistent with a strong z component. When B y and B z are positive, but B y is greater than B z , strong evidence exists for dayside merging in a manner similar to that expected when B z is negative. This signature is diminished as B y decreases and becomes smaller than B z resulting in a four-cell convection pattern displaced toward the sunward side of the dawn-dusk meridian. In this case the sign of B y affects the relative sizes of the two highest-latitude cells. In the southern hemisphere the duskside high-latitude cell is dominant for B y positive and the dawnside high-latitude cell is dominant for B y negative. The relative importance of possible electric field sources in the low-latitude boundary layer, the dayside cusp, and the lobe all need to be considered to adequately explain the observed evolution of the convection pattern

  17. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  18. Truncated Dual-Cap Nucleation Site Development

    Science.gov (United States)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  19. ON THE WEAKENING OF THE POLAR MAGNETIC FIELDS DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R.; Robbrecht, E.

    2009-01-01

    The Sun's polar fields are currently ∼40% weaker than they were during the previous three sunspot minima. This weakening has been accompanied by a corresponding decrease in the interplanetary magnetic field (IMF) strength, by a ∼20% shrinkage in the polar coronal-hole areas, and by a reduction in the solar-wind mass flux over the poles. It has also been reflected in coronal streamer structure and the heliospheric current sheet, which only showed the expected flattening into the equatorial plane after sunspot numbers fell to unusually low values in mid-2008. From latitude-time plots of the photospheric field, it has long been apparent that the polar fields are formed through the transport of trailing-polarity flux from the sunspot latitudes to the poles. To address the question of why the polar fields are now so weak, we simulate the evolution of the photospheric field and radial IMF strength from 1965 to the present, employing a surface transport model that includes the effects of active region emergence, differential rotation, supergranular convection, and a poleward bulk flow. We find that the observed evolution can be reproduced if the amplitude of the surface meridional flow is varied by as little as 15% (between 14.5 and 17 m s -1 ), with the higher average speeds being required during the long cycles 20 and 23.

  20. Standard and alternative landfill capping design in Germany

    International Nuclear Information System (INIS)

    Simon, Franz-Georg; Mueller, Werner W.

    2004-01-01

    Engineered capping systems are in most cases an indispensable and often the only efficient component required by the long-term safety concept for landfills, mine tailings tips and contaminated land. In Germany the composite liner is the main component of standard landfill cappings for municipal and hazardous waste landfills and the compacted clay liner (CCL) for landfills for inert or low-contamination waste. The composite liner is a technically highly effective but very expensive system. Research and experience has given rise to concern about the proper long-term performance of a conventional single CCL as a landfill capping. Therefore, alternative capping systems are discussed and applied for landfills and for the containment of contaminated sites. This paper gives an overview on various alternative engineered cappings and suitable systems for capping reflecting the state of the art and the expert view in Germany. According to the European Council Directive on the landfill of waste an impermeable mineral layer is recommended for the surface sealing of non-hazardous landfills and a composition of artificial sealing liner and impermeable mineral layer for hazardous landfills. In both cases a drainage layer thickness of at least 0.5 m is suggested. These recommendations should be interpreted flexibly and to some extent modified in the light of the experience and results presented in this paper

  1. Following the south polar cap recession as viewed by OMEGA/MEX using automatic detection of H2O and CO2 ices.

    Science.gov (United States)

    Schmidt, F.; Doute, S.; Schmitt, B.

    In order to understand Mars' current climate it is necessary to detect, characterize and monitor CO2 and H2O at the surface (permanent and seasonal icy deposits) and in the atmosphere (vapor and clouds). Here we will focus on the South Seasonal Polar Cap (SSPC) whose recession was previously observed with different techniques : from earth in the visible range with HST [James 1996], or from MGS spacecraft with MOC images [Benson 2005], in the thermal IR range by the TES [Kieffer 2000], in the near infrared by OMEGA/MEX [Langevin submitted]. The time and space evolutions of the SSPC is a major annual climatic signal both at the global and the regional scales. In particular the measurement of the temporal and spatial distributions of CO2 constrains exchange processes between both surface and atmosphere. This exchange may involve preponderant species : H2O, CO2 and dust. In this work we will apply a new detection technique : "wavanglet" in order to follow the recession of the SSPC thanks to OMEGA/MEX observations. This method was especially developed in the goal to classify a huge dataset, such OMEGA ones. We propose to use "wavanglet" as a supervised automatic classification method that identifies spectral features and classifies the image in spectrally homogeneous units. Additionally we will evaluate quantitative detection limits of "wavanglet" based on synthetic dataset simulating OMEGA spectra in typical situation of the SSPC. This detection limit will be discussed in terms of abundance for H2O and CO2 ices in order to improve the interpretation of the classification. Finally we will present the recession of the SSPC using "wavanglet" and we will compare the results with those of earlier investigation. An interpretation of the similarities and disagreements between those maps will be done.

  2. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  3. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  4. 20 CFR 606.21 - Criteria for cap.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Criteria for cap. 606.21 Section 606.21 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TAX CREDITS UNDER THE... Reduction § 606.21 Criteria for cap. (a) Reduction in unemployment tax effort. (1) For purposes of paragraph...

  5. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  6. Development of CAP code for nuclear power plant containment: Lumped model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon, E-mail: sjhong90@fnctech.com [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Ha, Sang Jun [Central Research Institute, Korea Hydro & Nuclear Power Company, Ltd., 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-09-15

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP.

  7. Development of CAP code for nuclear power plant containment: Lumped model

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul; Ha, Sang Jun

    2015-01-01

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP

  8. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  9. Survey of Enabling Technologies for CAPS

    Science.gov (United States)

    Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.

    2005-01-01

    The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.

  10. CMS end-cap yoke at the detector's assembly site.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The magnetic flux generated by the superconducting coil in the CMS detector is returned via an iron yoke comprising three end-cap discs at each end (end-cap yoke) and five concentric cylinders (barrel yoke). This picture shows the first of three end-cap discs (red) seen through the outer cylinder of the vacuum tank which will house the superconducting coil.

  11. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  12. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  13. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    Science.gov (United States)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-10-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  14. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Abstract. A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  15. A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation

    Directory of Open Access Journals (Sweden)

    Sabrina Wahl

    2017-10-01

    Full Text Available Atmospheric reanalyses are a state-of-the-art tool to generate consistent and realistic state estimates of the atmospheric system. They provide a synthesis of various heterogeneous observational systems and model simulations using a physical model together with a data assimilation scheme. Current reanalyses are mainly global, while regional reanalyses are emerging for North America, the polar region, and most recently for Europe. However, deep convection is still parameterized even in the regional reanalyses. A novel convective-scale regional reanalysis system for Central Europe (COSMO-REA2 has been developed by the Hans-Ertel Center for Weather Research – Climate Monitoring Branch. The system is based on the COSMO model and uses observational nudging for regional data assimilation. In addition to conventional observations, radar-derived rain rates are assimilated using latent heat nudging. With a horizontal grid-spacing of 2 km, the model runs without parameterization of deep moist convection. COSMO-REA2 produces horizontal wind fields that represent a realistic energy spectrum for horizontal scales above 14 km. COSMO-REA2 is currently available for seven years from 2007 to 2013.This study illustrates the improved representation of local precipitation over Germany by the convective-scale reanalysis COSMO-REA2 compared to coarser gridded European and global reanalyses. A systematic verification using rain gauge data reveals the added value of high-resolution regional atmospheric reanalyses on different time scales. On monthly to annual time scales, regional reanalyses yield better estimates of the spatial variability of precipitation patterns which can not be provided by coarser gridded global models. On hourly to daily time scales, the convective-scale reanalysis substantially improves the representation of local precipitation in two ways. On the one hand, COSMO-REA2 shows an enhanced representation of observed frequencies of local

  16. CAPS Activity in Priming Vesicle Exocytosis Requires CK2 Phosphorylation*

    OpenAIRE

    Nojiri, Mari; Loyet, Kelly M.; Klenchin, Vadim A.; Kabachinski, Gregory; Martin, Thomas F. J.

    2009-01-01

    CAPS (Ca2+-dependent activator protein for secretion) functions in priming Ca2+-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca2+-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in...

  17. Phenomenology of convection-parameterization closure

    Directory of Open Access Journals (Sweden)

    J.-I. Yano

    2013-04-01

    Full Text Available Closure is a problem of defining the convective intensity in a given parameterization. In spite of many years of efforts and progress, it is still considered an overall unresolved problem. The present article reviews this problem from phenomenological perspectives. The physical variables that may contribute in defining the convective intensity are listed, and their statistical significances identified by observational data analyses are reviewed. A possibility is discussed for identifying a correct closure hypothesis by performing a linear stability analysis of tropical convectively coupled waves with various different closure hypotheses. Various individual theoretical issues are considered from various different perspectives. The review also emphasizes that the dominant physical factors controlling convection differ between the tropics and extra-tropics, as well as between oceanic and land areas. Both observational as well as theoretical analyses, often focused on the tropics, do not necessarily lead to conclusions consistent with our operational experiences focused on midlatitudes. Though we emphasize the importance of the interplays between these observational, theoretical and operational perspectives, we also face challenges for establishing a solid research framework that is universally applicable. An energy cycle framework is suggested as such a candidate.

  18. Sediment Capping and Natural Recovery, Contaminant Transport Fundamentals With Applications to Sediment Caps

    National Research Council Canada - National Science Library

    Petrovski, David M; Corcoran, Maureen K; May, James H; Patrick, David M

    2005-01-01

    Engineered sediment caps and natural recovery are in situ remedial alternatives for contaminated sediments, which consist of the artificial or natural placement of a layer of material over a sediment...

  19. Landscape Evolution and the Reincarnation of the Southern Residual Ice Cap

    Science.gov (United States)

    Byrne, S.; Zuber, M. T.

    2006-10-01

    Given the present rate of erosion on the southern residual ice cap, it is unlikely that any part of the cap is older than a few centuries. Unless we're lucky, why is there a residual cap present today for us to observe? We propose a solution involving constant destruction and renewal of the cap.

  20. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  1. Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers

    Science.gov (United States)

    Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAP and dCAP markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as tetraploid cotton that has A and D subgenomes. The obje...

  2. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  3. Preventing Thin Film Dewetting via Graphene Capping.

    Science.gov (United States)

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preform spar cap for a wind turbine rotor blade

    Science.gov (United States)

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  5. Behaviors and transitions along the path to magnetostrophic convection

    Science.gov (United States)

    Grannan, A. M.; Vogt, T.; Horn, S.; Hawkins, E. K.; Aggarwal, A.; Aurnou, J. M.

    2017-12-01

    The generation of magnetic fields in planetary and stellar interiors are believed to be controlled primarily by turbulent convection constrained by Coriolis and Lorentz forces in their electrically conducting fluid layers. Yet relatively few laboratory experiments are capable of investigating the different regimes of turbulent magnetohydrodynamic convection. In this work, we perform one laboratory experiment in a cylinder at a fixed heat flux using the liquid metal gallium in order to investigate, sequentially: Rayleigh-Bènard convection without any imposed constraints, magnetoconvection with a Lorentz constraint imposed by vertical magnetic field, rotating convection with a Coriolis constraint imposed by rotation, and finally the magnetostrophic convective regime where both Coriolis and Lorentz are imposed and equal. Using an array of internal and external temperature probes, we show that each regime along the path to magnetostrophic convection is unique. The behaviors and transitions in the dominant modes of convection as well as their fundamental frequencies and wavenumbers are investigated.

  6. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  7. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  8. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  9. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  10. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  11. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  12. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  13. A high-latitude, low-latitude boundary layer model of the convection current system

    International Nuclear Information System (INIS)

    Siscoe, G.L.; Lotko, W.; Sonnerup, B.U.O.

    1991-01-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer (∼1000 km), whereas thicknesses inferred from satellite data tend to be greater

  14. Chemical synthesis of highly size-confined triethylamine-capped ...

    Indian Academy of Sciences (India)

    2018-03-23

    Mar 23, 2018 ... TiO2 nanoparticles and its dye-sensitized solar cell performance .... Figure 5. Formation mechanism of TEA-capped and uncapped TiO2 nanoparticles. ... this research work, synthesized TEA-capped TiO2 nanopar- ticles were ...

  15. Analysis of Dynamic Stiffness of Bridge Cap-Pile System

    Directory of Open Access Journals (Sweden)

    Jinhui Chu

    2018-01-01

    Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.

  16. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  17. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Adler, Volker; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Bremer, R; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Feld, Lutz; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; Klein, Katja; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schmitz, Stefan Antonius; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing.

  18. Universal time dependence of nighttime F region densities at high latitudes

    International Nuclear Information System (INIS)

    Beaujardiere, O.D.L.; Wickwar, V.B.; Caudal, G.

    1985-01-01

    Coordinated EISCAT, Chatanika, and Millstone Hill incoherent scatter radar observations have revealed that in the auroral zone, the nighttime F region densities vary substantially with the longitude of the observing site: EISCAT's densities are the largest and Millstone Hill's are the lowest. The nighttime F region densities measured by the individual radars are not uniform: the regions where the densities are maximum are the so-called ''blobs'' or ''patches'' that have been reported previously. The observations are consistent with the hypothesis that the nighttime densities are produced in significant amounts not by particle precipitation, but by solar EUV radiation, and that they have been transported across the polar cap. The observed differences can be explained by the offset of the geographic and geomagnetic poles. A larger portion of the magnetospheric convection pattern is sunlit when EISCAT is in the midnight sector than when Chatanika is. In winter, when Millstone Hill is in the midnight sector, almost all the auroral oval is in darkness. This universal time effect, which was observed on all coordinated three-radar experiments (September 1981 to February 1982), is illustrated using two periods of coincident radar and satellite observations: November 18--19, and December 15--16, 1981. These two periods were selected because they corresponded to relatively steady conditions. Dynamics Explorer (DE) measurements are used to aid in interpreting the radar observations. De 1 auroral images show what portion of the oval was sunlit. DE 2 data are used to measure the ion drift across the polar cap. Because the altitude of the ionization peak was high, the decay time of the F region density was substantially longer than the transit time across the polar cap

  19. Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes

    International Nuclear Information System (INIS)

    Chae, Myeong Seon; Chung, Bum Jin

    2013-01-01

    This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree

  20. Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth

    International Nuclear Information System (INIS)

    Dasgupta, Sansaptak; Nidhi,; Brown, David F.; Wu, Feng; Keller, Stacia; Speck, James S.; Mishra, Umesh K.

    2010-01-01

    Ultralow Ohmic contact resistance and a self-aligned device structure are necessary to reduce the effect of parasitic elements and obtain higher f t and f max in high electron mobility transistors (HEMTs). N-polar (0001) GaN HEMTs, offer a natural advantage over Ga-polar HEMTs, in terms of contact resistance since the contact is not made through a high band gap material [Al(Ga)N]. In this work, we extend the advantage by making use of polarization induced three-dimensional electron-gas through regrowth of graded InGaN and thin InN cap in the contact regions by plasma (molecular beam epitaxy), to obtain an ultralow Ohmic contact resistance of 27 Ω μm to a GaN 2DEG.