WorldWideScience

Sample records for polar angle representation

  1. Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Directory of Open Access Journals (Sweden)

    Xiangwei Xing

    2014-01-01

    Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  2. Angle-dependent rotation of calcite in elliptically polarized light

    Science.gov (United States)

    Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.

    2017-08-01

    Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.

  3. Polar representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Mattos, Joao Roberto Loureiro de

    2008-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic parameters: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. Any one of these quantities can be expressed as a function of any two others. The curves showing the relationships between these four variables are called the pump characteristic curves, also referred to as four-quadrant curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, the four-quadrant configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the polar form appears as the simplest way to represent the homologous curves. In the polar method, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a

  4. On-ground characterization of the IXPE polarization angle knowledge

    Science.gov (United States)

    Evangelista, Y.

    2017-08-01

    The Imaging X-ray Polarimetry Explorer (IXPE) has been recently selected for development as part of NASA's Small Explorer program (SMEX), with a launch date in 2021. Developed in a collaboration between NASA and the Italian Space Agency (ASI), IXPE will perform groundbreaking measurements of imaging polarization in X-rays for a number of different classes of sources including isolated and accreting neutron stars, pulsar wind nebulae, stellar and supermassive black holes. Combining 30 arcsec (HPD) grazing-incidence X-ray optics with the polarization-sensitive Gas Pixel Detectors (GPDs), IXPE will provide two-orders of magnitude improvement in sensitivity over the past flown instruments. The IXPE requested precision on the measurement of the polarization angle (better than 0.2 degrees at instrument level) poses strict constraints on the detector unit (DU) mechanical design and requires the implementation of a specific alignment and measurement strategy to meet the scientific requirements. In this paper we describe the design solutions that will be implemented in the DU flight models as well as a step-by-step metrology procedure that will ensure the fulfillment of the scientific requirement.

  5. 14N Polarization Inversion Spin Exchange at Magic Angle (PISEMA)

    Science.gov (United States)

    Qian, Chunqi; Fu, Riqiang; Gor'kov, Peter; Brey, William W.; Cross, Timothy A.; Gan, Zhehong

    2009-01-01

    Polarization Inversion Spin Exchange at Magic Angle (PISEMA) is a powerful experiment for determining peptide orientation in uniformly aligned samples such as planar membranes. In this paper, we present 14N-PISEMA experiment which correlates 14N quadrupolar coupling and 14N- 1H dipolar coupling. 14N-PISEMA enables the use of 14N quadrupolar coupling tensor as an ultra sensitive probe for peptide orientation and can be carried out without the need of isotope enrichment. The experiment is based on selective spin-exchange between a proton and a single-quantum transition of 14N spins. The spin-exchange dynamics is described and the experiment is demonstrated with a natural abundant N-acetyl valine crystal sample.

  6. Ultra-small-angle scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Jericha, E.; Badurek, G.; Trinker, M.

    2007-01-01

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble

  7. Ultra-small-angle scattering with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, E. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)]. E-mail: jericha@ati.ac.at; Badurek, G. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Trinker, M. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)

    2007-07-15

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble.

  8. Energy polarization and popular representation: Evidence from the Russian Duma

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriadis, Theocharis N. [Department of Political Science, University of California, Berkeley, 210 Barrows Hall, Berkeley, CA, 94720-1950 (United States)], E-mail: thgrigoriadis@berkeley.edu; Torgler, Benno [The School of Economics and Finance, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia); CREMA Center for Research in Economics, Management and the Arts (Switzerland); CESifo Munich (Germany)], E-mail: benno.torgler@qut.edu.au

    2009-03-15

    In this article we introduce the term 'energy polarization' to explain the politics of energy market reform in the Russian Duma. Our model tests the impact of regional energy production, party cohesion and ideology, and electoral mandate on the energy policy decisions of the Duma deputies (oil, gas, and electricity bills and resolution proposals) between 1994 and 2003. We find a strong divide between Single-Member District (SMD) and Proportional Representation (PR) deputies High statistical significance of gas production is demonstrated throughout the three Duma terms and shows Gazprom's key position in the post-Soviet Russian economy. Oil production is variably significant in the two first Dumas, when the main legislative debates on oil privatization occur. There is no constant left-right continuum, which is consistent with the deputies' proclaimed party ideology. The pro- and anti-reform poles observed in our Poole-based single dimensional scale are not necessarily connected with liberal and state-oriented regulatory policies, respectively. Party switching is a solid indicator of Russia's polarized legislative dynamics when it comes to energy sector reform.

  9. Energy polarization and popular representation. Evidence from the Russian Duma

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriadis, Theocharis N. [Department of Political Science, University of California, Berkeley, 210 Barrows Hall, Berkeley, CA, 94720-1950 (United States); Torgler, Benno [The School of Economics and Finance, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia)

    2009-03-15

    In this article we introduce the term 'energy polarization' to explain the politics of energy market reform in the Russian Duma. Our model tests the impact of regional energy production, party cohesion and ideology, and electoral mandate on the energy policy decisions of the Duma deputies (oil, gas, and electricity bills and resolution proposals) between 1994 and 2003. We find a strong divide between Single-Member District (SMD) and Proportional Representation (PR) deputies High statistical significance of gas production is demonstrated throughout the three Duma terms and shows Gazprom's key position in the post-Soviet Russian economy. Oil production is variably significant in the two first Dumas, when the main legislative debates on oil privatization occur. There is no constant left-right continuum, which is consistent with the deputies' proclaimed party ideology. The pro- and anti-reform poles observed in our Poole-based single dimensional scale are not necessarily connected with liberal and state-oriented regulatory policies, respectively. Party switching is a solid indicator of Russia's polarized legislative dynamics when it comes to energy sector reform. (author)

  10. Note: Optimization of magnifying a polarization angle with Littrow layout blazed gratings.

    Science.gov (United States)

    Sasao, H; Arakawa, H; Imazawa, R; Kawano, Y; Itami, K; Kubo, H

    2017-03-01

    Magnification of a polarization angle with Littrow layout gratings has been developed. High magnification with a factor of 7.7 using two gratings in Littrow layout was experimentally proved. The magnification range was investigated by calculation at a wavelength of 10.6 μm. The method can be applied for a high magnification factor >30. Larger groove numbers and smaller blaze angles are suitable for the large magnification. Statistical fluctuation of the diffracted polarization angle is compared with that of the incident polarization angle.

  11. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  12. Polarization Techniques for Mitigation of Low Grazing Angle Sea Clutter

    Science.gov (United States)

    2017-01-01

    standard CFAR false alarm rate while maintaining detections on objects of interest. Moreover, PCL is elegant : It exploits fundamental characteristics of both...cannot measure polarization. Polarization is defined by the path traced by the tip of an EM wave’s electric field vector over one period of propagation...vector phasor propagating in the +z direction. Polarization is defined by the path traced by the tip of this electric field vector phasor over one

  13. Polarization-angle dependence of photoluminescence intensity of ordered GaInP{sub 2} layers: observation of polarization memory

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T.; Brito-Orta, R. [Instituto de Ciencias, BUAP, Puebla (Mexico); Pelosi, C. [IMEM/CNR, Parma (Italy)

    2008-09-15

    We compare measured and calculated polarization-angle dependencies of the intensity of the photoluminescence emission from MOVPE-grown GaInP{sub 2} layers with different ordering parameters. We measured the polarization-angle dependencies of the emission propagating along the [001],[110] and [1 anti 10] directions at room temperature. Symmetry considerations were used to calculate the dependence of the relative intensity of the PL emission which was linearly polarized along different directions and to estimate the value of the valence-band splitting by fitting the measured dependencies with calculated curves. An intriguing influence of the polarization of the exciting beam on the relative amount of the polarized PL emission was observed in the emission from the (110) plane. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Adaptive Countering Technique for Angle Deception Based on Dual Polarization Radar Seeker

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-01-01

    Full Text Available Angle deception jamming makes the monopulse radar seeker track to itself but not the real target, which is catastrophic for the guidance radar. In this paper, an adaptive technique based on dual polarization radar is presented to counter it. How angle deception jamming acts on the monopulse tracking radar is first investigated. An angle estimation technique of the real target is then derived from the conventional monopulse method, although it is being interfered with by angle deception jamming. Meanwhile, the polarization ratio characteristic of the angle deception jamming could be adaptively estimated in current practical scene. Furthermore, the similar characteristic of Jones vectors is defined as the rule to judge whether the target is being interfered with by jamming. It can make the radar seeker select different techniques for angle estimation adaptively. Finally, two major factors of angle estimation accuracy are analyzed by simulation and the effectiveness of the proposed technique is proved through experiments.

  15. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  16. Magnetic nanostructures studied by polarized small angle neutron scattering

    International Nuclear Information System (INIS)

    Wiedenmann, Albrecht; Kammel, Martin; Heinemann, Andre

    2005-01-01

    Small Angle Neutron Scattering using polarised neutrons is introduced as a contrast variation technique for magnetic systems. The potential of this technique is illustrated on diluted Ferrofluids. Composition, magnetization and size distributions of magnetic core-shell composite particles and magnetic aggregates could be precisely evaluated beside non-magnetic micelles and free surfactants of similar sizes. Structure factors have been extracted which revealed a local pseudo-crystalline ordering of the magnetic particles induced by magnetic fields

  17. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    International Nuclear Information System (INIS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-01-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations. - Highlights: • The CE318-DP polarized measurements are not yet widely used except DoLP. • Compared with DoLP and I, difficulty in calculating Stokes Q and U is discussed. • A new polarized almucantar observation geometry based on CE318-DP is executed. • We derive Stokes Q, U, and AoP both in principal and almucantar plane geometries. • The results are comparable with previous DoLP and I, as well as model simulations

  18. Polar exponential sensor arrays unify iconic and Hough space representation

    Science.gov (United States)

    Weiman, Carl F. R.

    1990-01-01

    The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.

  19. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    Science.gov (United States)

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  20. Electromagnetic Power Harvester Using Wide-Angle and Polarization-Insensitive Metasurfaces

    Directory of Open Access Journals (Sweden)

    Xuanming Zhang

    2018-03-01

    Full Text Available A new wide-angle and polarization-insensitive metasurface (MS instead of traditional antenna is built as the primary ambient energy harvester in this paper. The MS is a two-dimensional energy harvesting array that is composed of subwavelength electrical small ring resonator that is working at 2.5 GHz (LTE/WiFi. In the case of different polarization and incidence angles, we demonstrate the metasurface can achieve high harvesting efficiency of 90%. The fabricated prototype of 9 × 9 MS energy harvesting array is measured, and the experimental results validate that the proposed MS has a good performance more than 80% of energy harvesting efficiency for arbitrary polarization and wide-angle incident waves. The good agreement of the simulation with the experiment results verifies the practicability and effectiveness of the proposed MS structure, which will provide a new source of supply in wireless sensor networks (WSN.

  1. Polarity classification using structure-based vector representations of text

    NARCIS (Netherlands)

    Hogenboom, Alexander; Frasincar, Flavius; de Jong, Franciska M.G.; Kaymak, Uzay

    The exploitation of structural aspects of content is becoming increasingly popular in rule-based polarity classification systems. Such systems typically weight the sentiment conveyed by text segments in accordance with these segments' roles in the structure of a text, as identified by deep

  2. A C/X Dual-band Wide-angle Reflective Polarization Rotation Metasurface

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2017-09-01

    Full Text Available In this paper, a C/X dual-band wide-angle re¬flective polarization rotation metasurface (PRMS with high rotation efficiency is proposed and realized. Aiming to miniaturize the size of the unit cell, a metallic flower-like shape ring is selected to extend the current path and the 45 degree slanting stitch along diagonal direction is used to form the asymmetric structure. The simulated results show that the proposed PRMS achieves polarization rotation at 4.61 GHz and 8.67 GHz with high efficiency, at which the linear polarization incident wave is converted into its orthogonal polarization after reflection. Furthermore, the high polarization rotation efficiency of the proposed PRMS is maintained under an oblique incident direction from 0° to 60°. To verify the simulated results, the proposed PRMS is fabricated and measured. The measured results are in good accordance with the simulated ones.

  3. Accelerating fourier volume rendering by polar coordinate data representation.

    Science.gov (United States)

    Liao, Jan-Ray; Lee, Shun-Zhi; Lee, Huai-Che

    2012-12-01

    Volume rendering is an important tool to visualize three-dimensional data in biomedicine by projecting the data to a two-dimensional plane. The projection is done by ray casting and its complexity is proportional to the number of three-dimensional data points. To reduce complexity, Fourier volume rendering (FVR) uses slice projection theorem to facilitate the integration of voxels along the ray casting path. In this paper, we proposed a new method for FVR that stored and processed the frequency domain data in polar coordinate. By exploiting three aspects of data processing which is previously impossible in rectilinear coordinate, our new method is much faster than the previous methods. The first aspect is data regularity. When data are stored in polar coordinate, extracting a slice involves accessing data stored in adjacent memory location. This regularity makes memory access more efficient. The second aspect is to utilize the high data density near the origin in polar coordinate. We can obtain two benefits from this aspect. The first allows us to extract a slice by nearest-neighbor interpolation instead of more complex interpolation but without sacrificing image quality. The second allows us to trade off between image quality and memory storage. The third aspect is to recognize that converting from rectilinear coordinate to polar coordinate is a one-time process. Therefore, we can use a better interpolation kernel with larger support in coordinate conversion. In turn, most of the computation is shifted to the preprocessing stage and interactive rendering can be made very fast. In the experiments, we show that the speed in interactive visualization for our new method is independent of the size of the interpolation kernel, therefore, achieving comparable image quality at a faster rate than previous methods. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study.

    Science.gov (United States)

    Uematsu, N; Matsuzaki, K

    2000-10-01

    Various physicochemical properties play important roles in the membrane activities of amphipathic antimicrobial peptides. To examine the effects of the polar angle, two model peptides, thetap100 and thetap180, with polar angles of 100 degrees and 180 degrees, respectively, were designed, and their interactions with membranes were investigated in detail. These peptides have almost identical physicochemical properties except for polar angle. Like naturally occurring peptides, these peptides selectively bind to acidic membranes, assuming amphipathic alpha-helices, and formed peptide-lipid supramolecular complex pores accompanied by lipid flip-flop and peptide translocation. Despite its somewhat lower membrane affinity, thetap100 exhibited higher membrane permeabilization activity, a greater flip-flop rate, as well as more antimicrobial activity due to a higher pore formation rate compared with thetap180. Consistent with these results, the peptide translocation rate of thetap100 was higher. Furthermore, the number of peptides constituting thetap100 pores was less than that of thetap180, and thetap100 pores involved more lipid molecules, as reflected by its cation selectivity. The polar angle was found to be an important parameter determining peptide-lipid interactions.

  5. A full-Maxwell approach for large angle polar wander of viscoelastic bodies

    NARCIS (Netherlands)

    Hu, H.; van der Wal, W.; Vermeersen, L.L.A.

    2017-01-01

    For large-angle long-term true polar wander (TPW) there are currently two types of nonlinear methods which give approximated solutions: those assuming that the rotational axis coincides with the axis of maximum moment of inertia (MoI), which simplifies the Liouville equation, and those based on the

  6. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  7. Using remote sensing to detect the polarized sunglint reflected from oil slicks beyond the critical angle

    Science.gov (United States)

    Lu, Yingcheng; Zhou, Yang; Liu, Yongxue; Mao, Zhihua; Qian, Weixian; Wang, Mengqiu; Zhang, Minwei; Xu, Jiang; Sun, Shaojie; Du, Peijun

    2017-08-01

    The critical angle at which the brightness of oil slicks and oil-free seawater is reversed occurs under sunglint and is often shown as an area of uncertainty due to different roughness and surface Fresnel reflection parameters. Consequently, differentiating oil slicks from the seawater in these areas using optical sensors is a challenge. Polarized optical remote sensing techniques provide complementary information for intensity imagery with different physical properties and, thus, possess the ability to resolve this difficult problem. In the polarized reflectance model, the degree of linear polarization (DOLP) of sunglint depends on accurately knowing the Stokes parameter for the reflected light, and varies with the refractive index of the surface layer and viewing angles. For the polarized detection of oil slicks, the highest sensitivity of the DOLP to the refractive index is located within the specular reflection direction where the sum of the solar and sensor zenith angles is 82.6°. The modeled results clearly indicate that the DOLP of oil slicks is weaker in comparison with oil-free seawater under sunglint. Using measurements from the space-borne Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) over the Deepwater Horizon oil spill in the Gulf of Mexico, we illustrate that the PARASOL-derived DOLP difference between the oil spill and seawater is obvious and is in accordance with the modeled results. These preliminary results suggest that the potential of multiangle measurement and feasibility of deriving refractive index of ocean surface from space-borne sensors need further researches.

  8. Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS

    Science.gov (United States)

    Ioffe, A.; Babcock, E.; Pipich, V.; Radulescu, A.

    2011-06-01

    Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.

  9. Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS

    International Nuclear Information System (INIS)

    Ioffe, A; Babcock, E; Pipich, V; Radulescu, A

    2011-01-01

    Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3 He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.

  10. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    International Nuclear Information System (INIS)

    Shang, Shuai; Yang, Shizhong; Tao, Lu; Yang, Lisheng; Cao, Hailin

    2016-01-01

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles for both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (∼0.018λ 0 , λ 0 corresponding to the lowest peak absorption frequency) compact (0.168λ 0 ×0.168λ 0 corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.

  11. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  12. Small-angle neutron scattering investigations of magnetic nanostructures and interfaces using polarized neutrons

    Science.gov (United States)

    Wiedenmann, Albrecht

    2001-03-01

    Using polarized neutrons, the relative contrasts for small-angle scattering are strongly modified which allows a precise evaluation of magnetization, density and composition profiles at surfaces and interfaces of nanoscaled materials. In Co ferrofluids, the magnetic core behaves as a non-interacting single domain. The core is encapsulated by a shell of surfactant molecules which was found to be impenetrable for the solvent. In soft magnetic Fe-Si-B-(Nb,Cu) and Fe-Nb-B alloys, the presence of a weak magnetic interface between ferromagnetic nanocrystals and amorphous matrix has been demonstrated which breaks the exchange interactions.

  13. Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering

    Science.gov (United States)

    Jung, JaeHwang; Kim, Jinhyung; Seo, Min-Kyo; Park, YongKeun

    2018-03-01

    We present a method to measure the vector-field light scattering of individual microscopic objects. The polarization-dependent optical field images are measured with quantitative phase imaging at the sample plane, and then numerically propagated to the far-field plane. This approach allows the two-dimensional polarization-dependent angle-resolved light scattered patterns from individual object to be obtained with high precision and sensitivity. Using this method, we present the measurements of the polarization-dependent light scattering of a liquid crystal droplet and individual silver nanowires over scattering angles of 50{\\deg}. In addition, the spectroscopic extension of the polarization-dependent angle-resolved light scattering is demonstrated using wavelength-scanning illumination.

  14. Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning

    Science.gov (United States)

    Raya, J.; Hirschinger, J.

    2017-08-01

    Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and L-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.

  15. Representation of the Auroral and Polar Ionosphere in the International Reference Ionosphere (IRI)

    Science.gov (United States)

    Bilitza, Dieter; Reinisch, Bodo

    2013-01-01

    This issue of Advances in Space Research presents a selection of papers that document the progress in developing and improving the International Reference Ionosphere (IRI), a widely used standard for the parameters that describe the Earths ionosphere. The core set of papers was presented during the 2010 General Assembly of the Committee on Space Research in Bremen, Germany in a session that focused on the representation of the auroral and polar ionosphere in the IRI model. In addition, papers were solicited and submitted from the scientific community in a general call for appropriate papers.

  16. Dispersion measurement on chirped mirrors at arbitrary incidence angle and polarization state (Conference Presentation)

    Science.gov (United States)

    Kovacs, Mate; Somoskoi, Tamas; Seres, Imre; Borzsonyi, Adam; Sipos, Aron; Osvay, Károly

    2017-05-01

    The optical elements of femtosecond high peak power lasers have to fulfill more and more strict requirements in order to support pulses with high intensity and broad spectrum. In most cases chirped pulse amplification scheme is used to generate high peak power ultrashort laser pulses, where a very precise control of spectral intensity and spectral phase is required in reaching transform-limited temporal shape at the output. In the case of few cycle regime, the conventional bulk glass, prism-, grating- and their combination based compressors are not sufficient anymore, due to undesirable nonlinear effects in their material and proneness to optical damages. The chirped mirrors are also commonly used to complete the compression after a beam transport system just before the target. Moreover, the manufacturing technology requires quality checks right after production and over the lifetime of the mirror as well, since undesired deposition on the surface can lead alteration from the designed value over a large part of the aperture. For the high harmonic generation, polarization gating technology is used to generate single attosecond pulses [1]. In this case the pulse to be compressed has various polarization state falling to the chirped mirrors. For this reason, it is crucial to measure the dispersion of the mirrors for the different polarization states. In this presentation we demonstrate a simple technique to measure the dispersion of arbitrary mirror at angles of incidence from 0 to 55 degree, even for a 12" optics. A large aperture 4" mirror has been scanned over with micrometer accuracy and the dispersion property through the surface has been investigated with a stable interference fringes in that robust geometry. We used Spectrally Resolved Interferometry, which is based on a Michaelson interferometer and a combined visible and infrared spectrometer. Tungsten halogen lamp with 10 mW coupled optical power was used as a white-light source so with the selected

  17. Polarized small-angle neutron scattering (SANSPOL) for discrimination of nano sized components in ferro fluids

    International Nuclear Information System (INIS)

    Heinemann, A.; Wiedenmann, A.; Kammel, M.; Hoell, A.

    2003-01-01

    The use of polarized neutron technique in small-angle scattering (SANS) have led to new results in the case of magnetic nanometer-scale structure analysis. Different magnetic cross sections for spin-up and spin-down neutron scattering can be combined with chemical contrast variation methods. We show that the analysis of the interference term of nuclear and magnetic scattering respectively enables the extraction of additional information on the composition and magnetization profiles of the samples. This technique profits by the clear distinction between the magnetic and nonmagnetic scattering contributions and the strong auxiliary conditions for model fitting procedures. Beside general formulas for some special cases of present experimental interest, we apply the approach to cobalt bases ferro fluid scattering data obtained in the HMI-V4 experiment. (authors)

  18. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  19. A Full-Maxwell Approach for Large-Angle Polar Wander of Viscoelastic Bodies

    Science.gov (United States)

    Hu, H.; van der Wal, W.; Vermeersen, L. L. A.

    2017-12-01

    For large-angle long-term true polar wander (TPW) there are currently two types of nonlinear methods which give approximated solutions: those assuming that the rotational axis coincides with the axis of maximum moment of inertia (MoI), which simplifies the Liouville equation, and those based on the quasi-fluid approximation, which approximates the Love number. Recent studies show that both can have a significant bias for certain models. Therefore, we still lack an (semi)analytical method which can give exact solutions for large-angle TPW for a model based on Maxwell rheology. This paper provides a method which analytically solves the MoI equation and adopts an extended iterative procedure introduced in Hu et al. (2017) to obtain a time-dependent solution. The new method can be used to simulate the effect of a remnant bulge or models in different hydrostatic states. We show the effect of the viscosity of the lithosphere on long-term, large-angle TPW. We also simulate models without hydrostatic equilibrium and show that the choice of the initial stress-free shape for the elastic (or highly viscous) lithosphere of a given model is as important as its thickness for obtaining a correct TPW behavior. The initial shape of the lithosphere can be an alternative explanation to mantle convection for the difference between the observed and model predicted flattening. Finally, it is concluded that based on the quasi-fluid approximation, TPW speed on Earth and Mars is underestimated, while the speed of the rotational axis approaching the end position on Venus is overestimated.

  20. Technical Note: An investigation of polarity effects for wide-angle free-air chambers

    International Nuclear Information System (INIS)

    Shen, H.; Ross, C. K.; Culberson, W. S.

    2016-01-01

    Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identified with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for 125 I and 241 Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface from the small gap

  1. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Matsuki, Yoh; Woskov, Paul P; Corzilius, Björn; Griffin, Robert G; Temkin, Richard J

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.

    2007-01-01

    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  3. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  4. Focusing and polarized neutron ultra-small-angle scattering spectrometer (SANS-J-II) at Research Reactor JRR3, Japan

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Iwase, Hiroki; Suzuki, Jun-ichi; Oku, Takayuki; Motokawa, Ryuhei; Sasao, Hajime; Tanaka, Hirokazu; Yamaguchi, Daisuke; Shimizu, Hirohiko M.; Hashimoto, Takeji

    2006-01-01

    By employing focusing lenses of sextupole permanent magnet and biconcave MgF 2 crystal, and high-resolution photomultiplier, SANS-J (pinhole small-angle neutron scattering spectrometer at research reactor JRR3, Tokai) was reconstructed to focusing and polarized neutron ultra-small-angle scattering spectrometer (SANS-J-II). Consequently, an accessible minimum wave number q min was improved from 3x10 -3 A -1 to 3x10 -4 A -1 . Furthermore, we added 3 He sub-detectors with an analyzer super mirror at a sample position. With this setup, we perform polarization analysis at high q (>0.2 A -1 ) in order to quantitatively discriminate spin incoherent scattering from hydrogen or to perform spin contrast variation, by a dynamic nuclear polarization method (>0.2 A -1 )

  5. [The multi-angle polarization spectral character of water and its applications in water color remote sensing].

    Science.gov (United States)

    Wu, Tai-Xia; Yan, Lei; Xiang, Yun; Zhao, Yun-Sheng; Chen, Wei

    2010-02-01

    The reflectance of pure water is very low at visible and near infrared bands. Its spectral characteristics are not obvious. Water always shows dark hue in optical remote sensing images. This dark hue causes the difficulties in water remote sensing identification. There is an interesting phenomenon when the authors research the water polarization spectroscopy. The authors measured water's polarization spectra and reflectance spectra at different view zenith angles using the ASD spectrometer. When the view zenith angle was zero (measured vertically), as the spectrum people commonly measure, there was no polarization phenomenon at the water surface, and the reflectance was low at each band. Along with the increase in view zenith angle, the DOP spectra curves increased evidently, while the reflectance curves only changed a little. When the view zenith angle was over 30 degree, the values of DOP spectrum were much larger than the reflectance spectrum values at the entire visible and near infrared bands. At some bands, the DOP value was several dozen times than its reflectance value. This phenomenon shows that the water's brightness in DOP image is much higher than its brightness in intensity image under the same condition. This rule was verified by the PARASOL multiangle polarization satellite data. Comparing the average brightness of DOP images with the average brightness of intensity images at 490, 670 and 865 nm band, the former is higher than the latter apparently. The brighter DOP images are better for water remote sensing identification It is the first time that the authors found this special multiangle polarization spectral character of water. It revealed the advantage of water detection using the multiangle polarization remote sensing data. This method solved the low reflectivity problem of water color remote sensing. It will greatly improve the capability of water remote sensing identification and the retrieval accuracy of water quality parameters.

  6. Nanostructures and ordering phenomena in ferrofluids investigated using polarized small angle neutron scattering

    International Nuclear Information System (INIS)

    Wiedenmann, A; Kammel, M; Heinemann, A; Keiderling, U

    2006-01-01

    Polarized small angle neutron scattering (SANSPOL) was used to investigate the microstructure of various ferrofluids (FF) where magnetic materials (Co, Fe magnetite), stabilization mechanisms (electrostatic, monolayers and bilayers of surfactants) and carrier liquids (water, organic solvents) have been systematically varied. Magnetic core-shell particles, non-magnetic micelles and magnetic aggregates were identified and size distributions and density, composition, and magnetization profiles were determined. Partial penetrations of solvent molecules inside the surfactant layer and formation of non-magnetic oxide coatings were established. The magnetic nanostructure in diluted samples consists of non-interacting ferromagnetic single domain particles. In concentrated Co FF a pseudo-crystalline ordering was found to be induced by an external magnetic field where cobalt core-shell particles are arranged in hexagonal planes. The particle ordering and magnetic moment direction followed the direction of the applied field. In addition, segments of uncorrelated dipolar chains were found to be present. The dynamics of the field induced ordering was studied by means of time-resolved SANS. Individual particle moments are stuck by field induced dipolar interactions in domains of local hexagonal ordering which relax by rotational diffusion when the field is switched off, with a characteristic time of a few seconds

  7. Nanostructures and ordering phenomena in ferrofluids investigated using polarized small angle neutron scattering

    Science.gov (United States)

    Wiedenmann, A.; Kammel, M.; Heinemann, A.; Keiderling, U.

    2006-09-01

    Polarized small angle neutron scattering (SANSPOL) was used to investigate the microstructure of various ferrofluids (FF) where magnetic materials (Co, Fe magnetite), stabilization mechanisms (electrostatic, monolayers and bilayers of surfactants) and carrier liquids (water, organic solvents) have been systematically varied. Magnetic core-shell particles, non-magnetic micelles and magnetic aggregates were identified and size distributions and density, composition, and magnetization profiles were determined. Partial penetrations of solvent molecules inside the surfactant layer and formation of non-magnetic oxide coatings were established. The magnetic nanostructure in diluted samples consists of non-interacting ferromagnetic single domain particles. In concentrated Co FF a pseudo-crystalline ordering was found to be induced by an external magnetic field where cobalt core-shell particles are arranged in hexagonal planes. The particle ordering and magnetic moment direction followed the direction of the applied field. In addition, segments of uncorrelated dipolar chains were found to be present. The dynamics of the field induced ordering was studied by means of time-resolved SANS. Individual particle moments are stuck by field induced dipolar interactions in domains of local hexagonal ordering which relax by rotational diffusion when the field is switched off, with a characteristic time of a few seconds.

  8. Polarized small angle neutron scattering of MnO/Mn3O4 nanocrystals

    Science.gov (United States)

    Dedon, L.; Ijiri, Y.; Booth, R.; Krycka, K.; Borchers, J. A.; Chen, W. C.; Watson, S.; Rhyne, J. J.; Majetich, S. A.

    2012-02-01

    Monodisperse magnetic nanoparticles are of great interest for biomedical and data storage applications, particularly in cases where the core and shell can be carefully controlled to alter properties like magnetic anisotropy. However, it is often difficult to determine the underlying moment arrangements and correlations in these systems. Here, we focus on manganese (II) oxide/manganese (II,III) oxide core/shell nanoparticles, using polarized small angle neutron scattering (SANS) to probe the magnetic intra and interparticle interactions. The 30nm diameter particles with 4-5nm shell were prepared by solution chemistry methods and self-assembled into 3D nanocrystals. SANS measurements were conducted in magnetic fields from remanence-1T and temperatures from 10-300K. Magnetic and structural scattering components were separated using an algorithm previously described in [1]. The magnetic signature depended on the field and temperature history of the sample. Modeling work has been done to further quantify the interparticle length scales and the effects of crystal packing. This work was supported in part by NSF grants DMR-0454672, -0704178, -0804779, -1104489, and DOE grant DE-FG02-08ER40481. [1] K.L. Krycka, et al. Phys. Rev. Lett. 104, 207203 (2010).

  9. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  10. Seasonal Variations of Polarization Diversity Gain in a Vegetated Area considering High Elevation Angles and a Nomadic User

    Directory of Open Access Journals (Sweden)

    Milan Kvicera

    2015-01-01

    Full Text Available Seasonal variations of the polarization diversity gain are addressed for a nomadic user in a vegetated area taking high elevation angles and nongeostationary satellites into consideration. Corresponding experimental data were obtained at a frequency of 2.0 GHz at Stromovka Park in Prague, the Czech Republic, within the full in-leaf and out-of-leaf periods of 2013 and 2014, respectively. By detecting copolarized and cross-polarized components of the transmitted left- and right-handed circularly polarized signals, the corresponding diversity gain was obtained for multiple-input single-output (MISO, single-input multiple-output (SIMO, and combined MISO/SIMO cases. It was found that tree defoliation results in a significant decrease of the polarization diversity gain achieved for low time percentages in particular scenarios.

  11. The influence of IMF cone angle on invariant latitudes of polar region footprints of FACs in the magnetotail: Cluster observatio

    Science.gov (United States)

    Cheng, Z.; Shi, J.; Zhang, J.; Kistler, L. M.

    2017-12-01

    The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes (ILATs) of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistic study of 542 FAC cases observed by the four Cluster spacecraft in the northern hemisphere. The results show that the large FAC (>10 nA/m2) cases occur at the low ILATs (60º, which implies the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with the IMF cone angle especially when IMF Bz is positive. There is almost no correlation or a weak positive correlation of the poleward boundary and IMF cone angle no matter IMF is northward or southward. The equatorward boundary is more responsive to the IMF cone angle. Compared to the equatorward boundary, the center of the FAC projected location changes very little. This is the first time a correlation between FAC projected location and IMF cone angle has been determined.

  12. Difference between the Brewster angle and angle of minimum reflectance for incident unpolarized or circularly polarized light at interfaces between transparent media.

    Science.gov (United States)

    Azzam, R M A

    2015-06-01

    For reflection at interfaces between transparent optically isotropic media, the difference between the Brewster angle ϕB of zero reflectance for incident p-polarized light and the angle ϕu min of minimum reflectance for incident unpolarized or circularly polarized light is considered as function of the relative refractive n in external and internal reflection. We determine the following. (i) ϕu min reflection (n > 1), the maximum difference (ϕB - ϕu min)max = 75° at n = 2 + √3. (iii) In internal reflection and 0 reflectance R0 at normal incidence is in the range 0 ≤ R0 ≤ 1/3, ϕu min = 0, and ϕB - ϕu min = ϕB. (v) For internal reflection and 0 < n < 2 - √3, ϕu min exhibits an unexpected maximum (= 12.30°) at n = 0.24265. Finally, (vi) for 1/3 ≤ R0 < 1, Ru min at ϕu min is limited to the range 1/3 ≤ Ru min < 1/2.

  13. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    Science.gov (United States)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  14. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.

  15. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casado, A [Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla (Spain); Guerra, S [Centro Asociado de la Universidad Nacional de Educacion a Distancia de Las Palmas de Gran Canaria (Spain); Placido, J [Departamento de Fisica, Universidad de Las Palmas de Gran Canaria (Spain)], E-mail: acasado@us.es

    2008-02-28

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements.

  16. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    International Nuclear Information System (INIS)

    Casado, A; Guerra, S; Placido, J

    2008-01-01

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements

  17. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  18. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Numerical Study of an Ultrabroadband, Wide-Angle, Polarization-Insensitivity Metamaterial Absorber in the Visible Region

    Science.gov (United States)

    Hoa, Nguyen Thi Quynh; Tung, Phan Duy; Lam, Phan Huu; Dung, Nguyen Duc; Quang, Nguyen Hong

    2018-02-01

    We propose and numerically investigate an ultrabroadband metamaterial absorber (MA) formed of a periodic array of metallic-dielectric multilayered conical frustums for use in the visible regime. The bandwidth and absorption performance of the proposed absorber can be controlled by varying structural parameters such as the tilt angle and lattice constant. The absorption efficiency of the proposed MA exceeds 80% in a wide bandwidth from 474.4 nm to 784.4 nm and is retained at large angles of incidence up to 65°. Furthermore, perfect polarization insensitivity is also obtained due to its rotationally symmetric structure. This excellent absorber performance makes the proposed MA a promising candidate for applications in the visible region.

  20. Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy of soil humic fractions

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; Hawkins, B.L.; Maciel, G.E.

    1986-01-01

    Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy was used to characterize humic fractions isolated from different soils. The humic acid fractions are more aromatic than the humin fractions, probably due to the higher polysaccharide content of humins. However, fulvic acid fractions are more aromatic than the corresponding humic acid and humin fractions. These results can be interpreted in terms of the isolation procedure, because the high affinity of Polyclar AT for phenols results in higher aromaticities as compared with other isolation methods (e.g. charcoal).

  1. A Polarization Technique for Mitigating Low Grazing Angle Radar Sea Clutter

    Science.gov (United States)

    2017-03-03

    returns due to man -made objects. Specifically, the sea surface features measured by horizontally polarized on trans- mit and receive (HH) radar have...562, 2008. [4] S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs, John Wiley & Sons , 1994. [5] M. W

  2. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).

    Science.gov (United States)

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Chang, Yanhe

    2013-09-01

    Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°-74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range.

  3. Wave normal angles of magnetospheric chorus emissions observed on the Polar spacecraft

    Czech Academy of Sciences Publication Activity Database

    Haque, N.; Spasojevic, M.; Santolík, Ondřej; Inan, U. S.

    2010-01-01

    Roč. 115, - (2010), A00F07/1-A00F07/12 ISSN 0148-0227 R&D Projects: GA AV ČR IAA301120601 Grant - others:GA MŠk(CZ) ME 842 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus * wave normal * Polar spacecraft Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.303, year: 2010

  4. Investigation of resonant polarization radiation of relativistic electrons in gratings at small angles

    International Nuclear Information System (INIS)

    Aleinik, A.N.; Chefonov, O.V.; Kalinin, B.N.; Naumenko, G.A.; Potylitsyn, A.P.; Saruev, G.A.; Sharafutdinov, A.F.

    2003-01-01

    The resonant optical polarization radiation (ROPR) in the Smith-Purcell geometry and the one from the inclined grating at the Tomsk synchrotron and 6-MeV microtron have been investigated. The polarization radiation was observed at 4.2 deg. from the 200 MeV electron beam and at 5 deg. from the 6.2 MeV electron beam. Two methods of measurement of ROPR maxima in these two cases have been used. In the first case (the experiment on synchrotron) we have fixed the wavelength of radiation using an optical filter; the orientation dependence of this radiation was measured. In this dependence we have observed two peaks of radiation from electrons in gold foil grating of 0.1 mm period. The first large peak is a zeroth order peak in direction of specular reflection, and the second one is the first-order peak of resonant polarization radiation. In the experiment on microtron the spectra of ROPR from aluminum foil strip grating of 0.2 mm period in the Smith-Purcell geometry were measured, and the peak of the first-order Smith-Purcell radiation in these spectra was observed. The comparison of data obtained with the simulation results has been performed

  5. Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field

    International Nuclear Information System (INIS)

    Yao Jinping; Zeng Bin; Fu Yuxi; Chu Wei; Ni Jielei; Li Yao; Xiong Hui; Xu Han; Cheng Ya; Xu Zhizhan; Liu Xiaojun; Chen, J.

    2010-01-01

    We theoretically investigate the high-order harmonic generation (HHG) in helium using a two-color laser field synthesized by an intense 25-fs laser pulse at 800 nm and a relatively weak ∼43-fs laser pulse at 1400 nm. When the polarization between the two pulses is arranged at an angle of ∼73 deg., supercontinuum spectra are dramatically broadened to 180 eV, which is sufficient to support an isolated ∼73-as pulse without any phase compensation. The physical mechanisms behind the phenomenon are well explained in terms of quantum and classical analyses. Furthermore, in the long-pulse regime, this method of extending the supercontinuum spectrum shows the significant advantage over previous two-color HHG schemes.

  6. Comparative analysis of the structure of sterically stabilized ferrofluids on polar carriers by small-angle neutron scattering.

    Science.gov (United States)

    Avdeev, M V; Aksenov, V L; Balasoiu, M; Garamus, V M; Schreyer, A; Török, Gy; Rosta, L; Bica, D; Vékás, L

    2006-03-01

    Results of experiments on small-angle neutron scattering from ferrofluids on polar carriers (pentanol, water, methyl-ethyl-ketone), with double-layer sterical stabilization of magnetic nanoparticles, are reported. Several types of spatial structural organization are observed. The structure of highly stable pentanol-based samples is similar to that of stable ferrofluids based on organic non-polar carriers (e.g., benzene) with mono-layer covered magnetic nanoparticles. At the same time, the effect of the interparticle interaction on the scattering is stronger in polar ferrofluids because of the structural difference in the surfactant shell. The structure of the studied methyl-ethyl-ketone- and water-based ferrofluids essentially different from the previous case. The formation of large (>100 nm in size) elongated or fractal aggregates, respectively, is detected even in the absence of external magnetic field, which corresponds to weaker stability of these types of ferrofluids. The structure of the fractal aggregates in water-based ferrofluids does not depend on the particle concentration, but it is sensitive to temperature. A temperature increase results in a decrease in their fractal dimension reflecting destruction of the aggregates. In addition, in water-based ferrofluids these aggregates consist of small (radius approximately 10 nm) and temperature-stable primary aggregates.

  7. Amorphous soft-magnetic ribbons studied by ultra-small-angle polarized neutron scattering

    International Nuclear Information System (INIS)

    Badurek, G; Jericha, E; Groessinger, R; Sato-Turtelli, R

    2010-01-01

    When we investigated the magnetic structure of a variety of soft-magnetic amorphous ribbons by means of ultra-small-angle neutron scattering (USANSPOL) we were confronted with one particularly interesting Fe 65.7 Co 18 Si 0.8 B 15.5 ribbon, provided by VAC Hanau. Due to a special thermal treatment during production a field- and stress-induced transverse domain texture was expected. Although the USANSPOL technique encountered its resolution limits during the investigation of this specific sample ribbon, such a texture could indeed be verified.

  8. Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering

    International Nuclear Information System (INIS)

    Disch, S; Hermann, R P; Brückel, Th; Wetterskog, E; Salazar-Alvarez, G; Bergström, L; Wiedenmann, A; Vainio, U

    2012-01-01

    By means of polarized small-angle neutron scattering, we have resolved the long-standing challenge of determining the magnetization distribution in magnetic nanoparticles in absolute units. The reduced magnetization, localized in non-interacting nanoparticles, indicates strongly particle shape- dependent surface spin canting with a 0.3(1) and 0.5(1) nm thick surface shell of reduced magnetization found for ∼9 nm nanospheres and ∼8.5 nm nanocubes, respectively. Further, the reduced macroscopic magnetization in nanoparticles results not only from surface spin canting, but also from drastically reduced magnetization inside the uniformly magnetized core as compared to the bulk material. Our microscopic results explain the low macroscopic magnetization commonly found in nanoparticles. (paper)

  9. A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing

    Science.gov (United States)

    Lin, Yu-Sheng; Chen, Wenjun

    2018-01-01

    We develop an effective method for glucose sensing by using a plasmonic color filter (PCF) integrated with a microfluidic chip. The morphology of PCF is composed of hybrid nanopillars fabricated with SiO2 and Au thin-films on silicon substrate. It exhibits angle-independence, polarization-independence and wafer-level fabrication, which are the most important factors for color filters for industrial applications. The shift of resonant wavelength is 56 nm with a stable bandwidth (∼30 nm) by varying concentration of glucose solution. The sensitivity is 157.61 nm/RIU and the corresponding figure-of-merit is 5.25. Such strategy can be exploited to further increase the detection and potentially enter the ultra-strong coupling regime in chemical solution sensors.

  10. Investigation of photon detection probability dependence of SPADnet-I digital photon counter as a function of angle of incidence, wavelength and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Játékos, Balázs, E-mail: jatekosb@eik.bme.hu; Ujhelyi, Ferenc; Lőrincz, Emőke; Erdei, Gábor

    2015-01-01

    SPADnet-I is a prototype, fully digital, high spatial and temporal resolution silicon photon counter, based on standard CMOS imaging technology, developed by the SPADnet consortium. Being a novel device, the exact dependence of photon detection probability (PDP) of SPADnet-I was not known as a function of angle of incidence, wavelength and polarization of the incident light. Our targeted application area of this sensor is next generation PET detector modules, where they will be used along with LYSO:Ce scintillators. Hence, we performed an extended investigation of PDP in a wide range of angle of incidence (0° to 80°), concentrating onto a 60 nm broad wavelength interval around the characteristic emission peak (λ=420 nm) of the scintillator. In the case where the sensor was optically coupled to a scintillator, our experiments showed a notable dependence of PDP on angle, polarization and wavelength. The sensor has an average PDP of approximately 30% from 0° to 60° angle of incidence, where it starts to drop rapidly. The PDP turned out not to be polarization dependent below 30°. If the sensor is used without a scintillator (i.e. the light source is in air), the polarization dependence is much less expressed, it begins only from 50°.

  11. Polarizing news? Representations of threat and efficacy in leading US newspapers' coverage of climate change.

    Science.gov (United States)

    Feldman, Lauren; Hart, P Sol; Milosevic, Tijana

    2017-05-01

    This study examines non-editorial news coverage in leading US newspapers as a source of ideological differences on climate change. A quantitative content analysis compared how the threat of climate change and efficacy for actions to address it were represented in climate change coverage across The New York Times, The Wall Street Journal, The Washington Post, and USA Today between 2006 and 2011. Results show that The Wall Street Journal was least likely to discuss the impacts of and threat posed by climate change and most likely to include negative efficacy information and use conflict and negative economic framing when discussing actions to address climate change. The inclusion of positive efficacy information was similar across newspapers. Also, across all newspapers, climate impacts and actions to address climate change were more likely to be discussed separately than together in the same article. Implications for public engagement and ideological polarization are discussed.

  12. Convergent spectral representation for three-dimensional inverse MHD equilibria

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1984-10-01

    By rearranging terms in a polar representation for the cylindrical spatial coordinates (R, theta, Z), a renormalized Fourier series moment expansion is obtained that possesses superior convergence properties in mode number space. This convergent spectral representation also determines a unique poloidal angle and thus resolves the underdetermined structure of previous moment expansions. A conformal mapping technique is used to demonstrate the existence and uniqueness of the new representation

  13. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    Science.gov (United States)

    2017-08-08

    the band and for scan angles up to 60° from normal. The antenna efficiency and axial ratio degrade by 1 dB at some points near the edges of the band...Prescribed by ANSI Std. Z39-18 i Approved for public release; distribution is unlimited Table of Contents Section Page 1.0 Summary...51 6.4 Estimating Finite Polarizer Edge Effects

  14. Myosin helical pitch angle as a quantitative imaging biomarker for characterization of cardiac programming in fetal growth restriction measured by polarization second harmonic microscopy

    Science.gov (United States)

    Amat-Roldan, I.; Psilodimitrakopoulos, S.,; Eixarch, E.,; Torre, I.; Wotjas, B.; Crispi, F.; Figueras, F.; Artigas, D.,; Loza-Alvarez, P.; Gratacos, E.,

    2009-07-01

    Fetal growth restriction (FGR) has recently shown a strong association with cardiac programming which predisposes to cardiovascular mortality in adulthood. Polarization Second Harmonic Microscopy can quantify molecular architecture changes with high sensitivity in cardiac myofibrils. In this work, we use myosin helical pitch angle as an example to quantify such alterations related to this high risk population. Importantly, this shows a potential use of the technique as an early diagnostic tool and an alternative method to understand pathophysiological processes.

  15. Calamitic Smectic A-Polar Smectic APA Transition Observed in Bent Molecules with Large Bent-Angle Central Core of 4,6-Dichlorobenzene and Alkylthio Terminal Tail

    Science.gov (United States)

    Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji

    2011-07-01

    New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.

  16. Occurrence Locations, Dipole Tilt Angle Effects, and Plasma Cloud Drift Paths of Polar Cap Neutral Density Anomalies

    Science.gov (United States)

    Lin, C. S.; Sutton, E. K.; Huang, C. Y.; Cooke, D. L.

    2018-02-01

    Polar cap neutral density anomaly (PCNDA) with large mass density enhancements over the background has been frequently observed in the polar cap during magnetic storms. By tracing field lines to the magnetosphere from the polar ionosphere, we divide the polar cap into two regions, an open field line (OFL) region with field lines connecting to the magnetopause boundary and a distant tail field line (TFL) region threaded with magnetotail lobe field lines. A statistical study of neutral density observed by the Challenging Minisatellite Payload satellite during major magnetic storms with Dst atmospheric disturbance could be generated in the nightside polar cap. From the PCNDA size and speed of sound at 400 km, we derive an initial energy deposition duration for producing traveling atmospheric disturbance in the range from 0.5 to 2.5 hr.

  17. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  18. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations

    Directory of Open Access Journals (Sweden)

    Xiu Tao Huang

    2018-04-01

    Full Text Available An ultra-wide-angle THz metamaterial absorber (MA utilizing sixteen-circular-sector (SCR resonator for both transverse electric (TE and transverse magnetic (TM mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (Ez distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.

  19. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    Science.gov (United States)

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  20. Angle and Polarization Dependent Fluorescence EXAFS Measurements on Al-doped Single Crystal V_2O3 Above and Below the Transition Temperature

    Science.gov (United States)

    Müller, O.; Pfalzer, P.; Schramme, M.; Urbach, J.-P.; Klemm, M.; Horn, S.; Frenkel, A. I.; Denboer, M. L.

    1998-03-01

    We present angle and polarisation dependent flourescence EXAFS measured on Al-doped single crystal V_2O3 below and above the structural phase transition from monoclinic to trigonal. Strong self-absorption distorted the spectra; this was corrected by using the procedure described by Tröger et al. (L. Tröger, D. Arvantis, K. Baberschke, H. Michaelis, U. Grimm, and E. Zschech, Phys. Rev. B,.46), 3238 (1992), generalized to the Lytle detector employed in our work. The spectra show pronounced dependence on the angle between the threefold symmetry axes and the polarization of the incident photons, making it possible to measure the local atomic distances in different directions. We compare our results with the measurements of Frenkel et al. (A. I. Frenkel, E. A. Stern, and F. A. Chudnovsky, Sol. State Comm.102), 637 (1997) on pure V_2O3 They found that locally the monoclinic distortion persists in the trigonal metallic phase.

  1. Dependence of black fragment azimuthal and projected angular distributions on polar angle in silicon-emulsion collisions at 4.5A GeV/c

    International Nuclear Information System (INIS)

    Liu Fuhu; Abd Allah, Nabil N.; Singh, B.K.

    2004-01-01

    The experimental results of dependence of black fragment azimuth (φ) and projected angle (ψ) distributions on polar angle θ in silicon-emulsion collisions at 4.5A GeV/c (the Dubna momentum) are reported. There are two regions of enhancement around φ=±90 deg. for different θ ranges. These enhancements are due to directed (v 1 ) and elliptic (v 2 ) flows. The v 1 and v 2 dependence of values on θ shows that the directed flow is weak and the elliptic flow is strong in these collisions. A multisource ideal gas model is used to describe the experimental results of dependence. The Monte Carlo calculated results are approximately in agreement with the experimental data

  2. Accessible length scale of the in-plane structure in polarized neutron off-specular and grazing-incidence small-angle scattering measurements

    Science.gov (United States)

    Maruyama, R.; Bigault, T.; Wildes, A. R.; Dewhurst, C. D.; Saerbeck, T.; Honecker, D.; Yamazaki, D.; Soyama, K.; Courtois, P.

    2017-06-01

    Polarized neutron off-specular and grazing-incidence small-angle scattering measurements are useful methods to investigate the in-plane structure and its correlation of layered systems. Although these measurements give information on complementary and overlapping length scale, the different characteristics between them need to be taken into account when performed. In this study, the difference in the accessible length scale of the in-plane structure, which is one of the most important characteristics, was discussed using an Fe/Si multilayer together with simulations based on the distorted wave Born approximation.

  3. Bare and thin-film-coated substrates with null reflection for p- and s-polarized light at the same angle of incidence: reflectance and ellipsometric parameters as functions of substrate refractive index and film thickness.

    Science.gov (United States)

    Azzam, R M A

    2016-10-20

    Intensity reflectances and ellipsometric parameters of a partially clad transparent substrate that suppresses the reflection of incident p- and s-polarized light at the same angle of incidence from uncoated and single-layer-coated areas are determined as functions of normalized film thickness ς and substrate refractive index n2. The common polarizing angle is the Brewster angle of the ambient-substrate interface, and the light beam incident from the ambient (air or vacuum) is refracted in the film at a 45° angle from the normal to the parallel-plane film boundaries. For n2≤2, the differential reflection phase shift Δ=δp-δs≈±90° for all values of ς so that the Brewster angle is also approximately the principal angle of the film-substrate system independent of film thickness. Accurate techniques for monitoring the deposition of such films are also proposed.

  4. Detection of biochemical reactions by a surface plasmon resonance senor based on polarization interferometry and angle modulation

    Science.gov (United States)

    Hu, Zhaoxu; Chong, Xinyuan; Ma, Suihua; Li, Yao; He, Yonghong; Guo, Jihua

    2009-08-01

    A surface plasmon resonance (SPR) bio-sensing system has been developed. The system is based on polarization interferometry and angel modulation. In this paper, we apply it in the biological detection. We use the DNA fragment of Escherichia coli (Bacterial 16S rDNA universal primer) as bioprobe and . The process that analyte attach with the bioprobe, and coli DNA as analyte, get a resolution about 2.7× 10-6RI and 0.18nM/L in coli DNA detection.

  5. Spin-wave dynamics in Invar Fe sub 6 sub 5 Ni sub 3 sub 5 alloy studied by small-angle polarized neutron scattering

    CERN Document Server

    Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G

    2002-01-01

    Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)

  6. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, V. I., E-mail: vip@nf.jinr.ru; Avdeev, M. V. [Joint Institute for Nuclear Research (Russian Federation); Bulavin, L. A. [Taras Shevchenko National University of Kyiv (Ukraine); Almasy, L. [Hungarian Academy of Science, Wigner Research Centre for Physics (Hungary); Grigoryeva, N. A. [St. Petersburg State University (Russian Federation); Aksenov, V. L. [National Research Centre “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

  7. Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis.

    Science.gov (United States)

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid

    2015-04-15

    Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Electronic structure and polar catastrophe at the surface of LixCoO2 studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Okamoto, Y.; Matsumoto, R.; Yagihara, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Horiba, K.; Kobayashi, M.; Ono, K.; Kumigashira, H.; Saini, N. L.; Mizokawa, T.

    2017-09-01

    We report an angle-resolved photoemission spectroscopy (ARPES) study of LixCoO2 single crystals which have a hole-doped CoO2 triangular lattice. Similar to NaxCoO2 , the Co 3 d a1 g band crosses the Fermi level with strongly renormalized band dispersion while the Co 3 d eg' bands are fully occupied in LixCoO2 (x =0.46 and 0.71). At x =0.46 , the Fermi surface area is consistent with the bulk hole concentration indicating that the ARPES result represents the bulk electronic structure. On the other hand, at x =0.71 , the Fermi surface area is larger than the expectation which can be associated with the inhomogeneous distribution of Li reported in the previous scanning tunneling microscopy study by Iwaya et al. [Phys. Rev. Lett. 111, 126104 (2013), 10.1103/PhysRevLett.111.126104]. However, the Co 3 d peak is systematically shifted towards the Fermi level with hole doping excluding phase separation between hole rich and hole poor regions in the bulk. Therefore, the deviation of the Fermi surface area at x =0.71 can be attributed to hole redistribution at the surface avoiding polar catastrophe. The bulk Fermi surface of Co 3 d a1 g is very robust around x =0.5 even in the topmost CoO2 layer due to the absence of the polar catastrophe.

  9. Accurate Molecular Orientation Analysis Using Infrared p-Polarized Multiple-Angle Incidence Resolution Spectrometry (pMAIRS) Considering the Refractive Index of the Thin Film Sample.

    Science.gov (United States)

    Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi

    2017-06-01

    Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.

  10. Measuring order in contact-poled organic electrooptic materials with variable-angle polarization-referenced absorption spectroscopy (VAPRAS).

    Science.gov (United States)

    Olbricht, Benjamin C; Sullivan, Philip A; Dennis, Peter C; Hurst, Jeffrey T; Johnson, Lewis E; Benight, Stephanie J; Davies, Joshua A; Chen, Antao; Eichinger, Bruce E; Reid, Philip J; Dalton, Larry R; Robinson, Bruce H

    2011-01-20

    Organic nonlinear electrooptical (ONLO) chromophores must be acentrically ordered for the ONLO material to have electrooptic (EO) activity. The magnitude of the order is characterized by the acentric order parameter, , where β is the major Euler angle between the main axis of the chromophore and the poling field which imposes the acentric order. The acentric order parameter, which is difficult to measure directly, is related to the centrosymmetric order parameter, defined as = ½(3-1), through the underlying statistical distribution. We have developed a method to determine centrosymmetric order of the ONLO chromophores when the order is low (i.e., < 0.1). We have extended the method (begun by Graf et al. J. Appl. Phys. 1994, 75, 3335.) based on the absorption of light to determine the centrosymmetric order parameter induced by a poling field on a thin film sample of ONLO material. We find that the order parameters, analyzed by two different methods, are similar and also consistent with theoretical estimates from modeling of the system using coarse-grained Monte Carlo statistical mechanical methods.

  11. Investigating the use of the dual-polarized and large incident angle of SAR data for mapping the fluvial and aeolian deposits

    Science.gov (United States)

    Gaber, Ahmed; Amarah, Bassam A.; Abdelfattah, Mohamed; Ali, Sarah

    2017-12-01

    Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2]) using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand). The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ°) and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7) of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological observations support the existence of

  12. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi

    2016-12-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization ( P H ). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = -35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å -1 ) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å -1 ) decreased with increasing P H , which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H . At P H = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  13. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  14. Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a dielectric-conductor interface.

    Science.gov (United States)

    Azzam, R M A

    2013-10-01

    The complex Fresnel reflection coefficients r(p) and r(s) of p- and s-polarized light and their ratio ρ=r(p)/r(s) at the pseudo-Brewster angle (PBA) φ(pB) of a dielectric-conductor interface are evaluated for all possible values of the complex relative dielectric function ε=|ε|exp(-jθ)=ε(r)-jε(i), ε(i)>0 that share the same φ(pB). Complex-plane trajectories of r(p), r(s), and ρ at the PBA are presented at discrete values of φ(pB) from 5° to 85° in equal steps of 5° as θ is increased from 0° to 180°. It is shown that for φ(pB)>70° (high-reflectance metals in the IR) r(p) at the PBA is essentially pure negative imaginary and the reflection phase shift δ(p)=arg(r(p))≈-90°. In the domain of fractional optical constants (vacuum UV or light incidence from a high-refractive-index immersion medium) 0reflection phase shifts δ(p), δ(s), Δ=δ(p)-δ(s)=arg(ρ) are also determined as functions of φ(pB).

  15. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects

    Science.gov (United States)

    Horwitz, J. L.; Zeng, W.

    2009-01-01

    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  16. Postlaunch assessment of the response versus scan angle for the thermal emissive bands of visible infrared imaging radiometer suite on-board the Suomi national polar-orbiting partnership satellite

    Science.gov (United States)

    Wu, Aisheng; Xiong, Xiaoxiong; Chiang, Kwofu

    2017-10-01

    The visible infrared imaging radiometer suite (VIIRS) is a key sensor carried on the Suomi national polar-orbiting partnership (S-NPP) satellite, which was launched in October 2011. It has several on-board calibration components, including a solar diffuser and a solar diffuser stability monitor for the reflective solar bands, a V-groove blackbody for the thermal emissive bands (TEB), and a space view port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle. Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first 3 months of intensive Cal/Val. The S-NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of Earth view scan angles, which can be used to characterize the TEB RVS. This study provides our analysis of the pitch maneuver data and assessment of the derived TEB RVS by comparison with prelaunch results. In addition, the stability of the RVS after the first 5 years of operation is examined using observed brightness temperatures (BT) over a clear ocean at various angles of incidence (AOI). To reduce the impact of variations in the BT measurements, the daily overpasses collected over the ocean are screened for cloud contamination, normalized to the results obtained at the blackbody AOI, and averaged each year.

  17. Retrieval of Melt Ponds on Arctic Multiyear Sea Ice in Summer from TerraSAR-X Dual-Polarization Data Using Machine Learning Approaches: A Case Study in the Chukchi Sea with Mid-Incidence Angle Data

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2016-01-01

    Full Text Available Melt ponds, a common feature on Arctic sea ice, absorb most of the incoming solar radiation and have a large effect on the melting rate of sea ice, which significantly influences climate change. Therefore, it is very important to monitor melt ponds in order to better understand the sea ice-climate interaction. In this study, melt pond retrieval models were developed using the TerraSAR-X dual-polarization synthetic aperture radar (SAR data with mid-incidence angle obtained in a summer multiyear sea ice area in the Chukchi Sea, the Western Arctic, based on two rule-based machine learning approaches—decision trees (DT and random forest (RF—in order to derive melt pond statistics at high spatial resolution and to identify key polarimetric parameters for melt pond detection. Melt ponds, sea ice and open water were delineated from the airborne SAR images (0.3-m resolution, which were used as a reference dataset. A total of eight polarimetric parameters (HH and VV backscattering coefficients, co-polarization ratio, co-polarization phase difference, co-polarization correlation coefficient, alpha angle, entropy and anisotropy were derived from the TerraSAR-X dual-polarization data and then used as input variables for the machine learning models. The DT and RF models could not effectively discriminate melt ponds from open water when using only the polarimetric parameters. This is because melt ponds showed similar polarimetric signatures to open water. The average and standard deviation of the polarimetric parameters based on a 15 × 15 pixel window were supplemented to the input variables in order to consider the difference between the spatial texture of melt ponds and open water. Both the DT and RF models using the polarimetric parameters and their texture features produced improved performance for the retrieval of melt ponds, and RF was superior to DT. The HH backscattering coefficient was identified as the variable contributing the most, and its

  18. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  19. Evidence for evanescent waves at interfaces in a high-index prism/liquid-crystal-Au-NPs/glass/air structure and effects of relative concentration of gold nanoparticles, wavelength, polarization, and incident angle of the laser beam

    Science.gov (United States)

    Tiwari, Kunal; Singh, Ankit; Sharma, Suresh

    2011-10-01

    Incorporation of relatively small concentrations of gold nanoparticles (Au NPs) in a polymer-dispersed liquid crystal (PDLC) is known to lower the operating threshold voltage and increase optical transmission through the device.ootnotetextA. Hinojosa and S. C. Sharma, Applied Physics Letters, 97, 081114 (2010) In order to understand whether there is an interplay between the localized surface plasmon resonance at Au-NPs-dielectric interfaces and the electro-optical properties of PDLC devices, we have investigated propagation of light through a high-index prism/liquid-crystal-Au-NPs/glass/air structure by using Kretschmann geometry as functions of concentration of Au NPs in the liquid crystal, and the wavelength, polarization, and angle of incidence of the laser beam. We will discuss to what extent the results of these experiments support an interplay between the localized surface plasmon resonance at NPs/dielectric interfaces and optical propagation through the above-described structure.

  20. Measurement of the correlations between the polar angles of leptons from top quark decays in the helicity basis at $\\sqrt{s}=7$ TeV using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-01-13

    A measurement of the correlations between the polar angles of leptons from the decay of pair-produced $t$ and $\\bar{t}$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$ at a center-of-mass energy of $\\sqrt{s}=7$ TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles $\\theta_1$ and $\\theta_2$ between the charged leptons and the direction of motion of the parent quarks in the $t\\bar{t}$ rest frame are sensitive to the spin information, and the distribution of $\\cos\\theta_1\\cdot\\cos\\theta_2$ is sensitive to the spin correlation between the $t$ and $\\bar{t}$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.

  1. Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)

    Science.gov (United States)

    Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.

    2009-01-01

    This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.

  2. Review of Polarities of experience: Relatedness and self-definition in personality development, psychopathology, and the therapeutic process and Relatedness, self-definition and mental representation: Essays in honor of Sidney J. Blatt.

    Science.gov (United States)

    Wallerstein, Robert S

    2009-03-01

    Reviews the books, Polarities of experience: Relatedness and self-definition in personality development, psychopathology, and the therapeutic process by Sidney J. Blatt (see record 2008-01813-000) and Relatedness, self-definition and mental representation: Essays in honor of Sidney J. Blatt edited by John S. Auerbach, Kenneth N. Levy, and Carrie E. Schaffer (2005). These two volumes present a most impressive and fitting capstone to Sidney Blatt's very productive lifetime of almost unmatched threefold integration of (a) clinical experience, beginning with his astute observation of the strikingly different thematic preoccupations of two otherwise very similarly depressed patients whom Blatt was analyzing during his psychoanalytic training; (b) the theoretic conceptualization stemming from these clinical observations, which became the basic fabric of his lifetime major addition to our psychological explanatory universe; and (c) the painstaking systematic empirical data gathering, together with the creation of necessary-and truly appropriate-measures and instruments that, in ensemble, provide such strong data-based support for Blatt's clinically inspired theoretic harvesting. In the book Polarities of experience: Relatedness and self-definition in personality development, psychopathology, and the therapeutic process, Blatt draws upon a vast literature review of his own work with his collaborating authors-as well as a seemingly exhaustive list of contributors in all the linked and related areas. Blatt has organized his volume sequentially (after defining and describing his fundamental polarity of experience) into three logically following sections on personality development, personality organization and psychopathology, and lastly, the therapeutic process. Relatedness, self-definition and mental representation: Essays in honor of Sidney J. Blatt is put together by three of Blatt's former students, and now collaborating partners, although published 3 years earlier (2005

  3. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  4. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  5. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by 13 C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis.

    Science.gov (United States)

    Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg

    2018-01-01

    The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.

  6. Cross-Polarized Magic-Angle Spinning (sup13)C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Relative to Culturable Bacterial Species Composition and Sustained Biological Control of Pythium Root Rot.

    Science.gov (United States)

    Boehm, M J; Wu, T; Stone, A G; Kraakman, B; Iannotti, D A; Wilson, G E; Madden, L V; Hoitink, H

    1997-01-01

    We report the use of a model system that examines the dynamics of biological energy availability in organic matter in a sphagnum peat potting mix critical to sustenance of microorganism-mediated biological control of pythium root rot, a soilborne plant disease caused by Pythium ultimum. The concentration of readily degradable carbohydrate in the peat, mostly present as cellulose, was characterized by cross-polarized magic-angle spinning (sup13)C nuclear magnetic resonance spectroscopy. A decrease in the carbohydrate concentration in the mix was observed during the initial 10 weeks after potting as the rate of hydrolysis of fluorescein diacetate declined below a critical threshold level required for biological control of pythium root rot. Throughout this period, total microbial biomass and activity, based on rates of [(sup14)C]acetate incorporation into phospholipids, did not change but shifts in culturable bacterial species composition occurred. Species capable of inducing biocontrol were succeeded by pleomorphic gram-positive genera and putative oligotrophs not or less effective in control. We conclude that sustained efficacy of naturally occurring biocontrol agents was limited by energy availability to this microflora within the organic matter contained in the potting mix. We propose that this critical role of organic matter may be a key factor explaining the variability in efficacy typically encountered in the control of pythium root rot with biocontrol agents.

  7. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...

  8. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  9. Study of an efficient application of the tagged bremsstrahlung in double-polarization experiments in the GeV range and the use of the inelastic electron scattering under extremely forward angles as alternative to the tagged bremsstrahlung

    International Nuclear Information System (INIS)

    Konrad, M.

    2006-03-01

    For the preparation of photonic probes for hadron physics the determination of energy and polarization of the photons is essential. In this dissertation in a first part a possibility of the determination of the degree of polarization by use of the asymmetry observables is presented. In a second part a possibility isd discussed to perform an energy and polarization tagging of nearly real photons in electron scattering under small Q 2 . By this method it should be possible to tag billions of photons per second

  10. Representational Machines

    DEFF Research Database (Denmark)

    to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...

  11. DISCOVERY OF POLARIZATION REVERBERATION IN NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, C. Martin; Shoji, Masatoshi [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0111 (United States); Goosmann, Rene W. [Observatoire astronomique de Strasbourg, 11 rue de l' Universite, F-67000 Strasbourg (France); Merkulova, Nelly I.; Shakhovskoy, Nikolay M., E-mail: martin.gaskell@uv.cl, E-mail: mshoji@astro.as.utexas.edu, E-mail: rene.goosmann@astro.unistra.fr [Crimean Astrophysical Observatory, Nauchny, Crimea 98409 (Ukraine)

    2012-04-20

    Observations of the optical polarization of NGC 4151 in 1997-2003 show variations of an order of magnitude in the polarized flux while the polarization position angle remains constant. The amplitude of variability of the polarized flux is comparable to the amplitude of variability of the total U-band flux, except that the polarized flux follows the total flux with a lag of 8 {+-} 3 days. The time lag and the constancy of the position angle strongly favor a scattering origin for the variable polarization rather than a non-thermal synchrotron origin. The orientation of the position angle of the polarized flux (parallel to the radio axis) and the size of the lag imply that the polarization arises from electron scattering in a flattened region within the low-ionization component of the broad-line region. Polarization from dust scattering in the equatorial torus is ruled out as the source of the lag in polarized flux because it would produce a larger lag and, unless the half-opening angle of the torus is >53 Degree-Sign , the polarization would be perpendicular to the radio axis. We note a long-term change in the percentage of polarization at similar total flux levels, and this could be due either to changing non-axisymmetry in the optical continuum emission or a change in the number of scatterers on a timescale of years.

  12. Angle Dependent Optics of Plasmonic Core-Shell Nanoparticles

    Science.gov (United States)

    2018-02-21

    function of spherical co-ordinates: azimuthal and polar angles. Absorption, scattering and emission of light from nanoparticles, especially when they are...placed on a substrate, can drastically depend on angle of excitation and angle of scattering/ emission . Such particle-substrate coupling can...V’ antenna with the Raman marker molecule nile blue chloride. Typical SERS spectra of nile blue from a ‘V’ antenna under different polarizations (0

  13. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological......, technical, and institutional mechanisms. Geographically, bodily, and geometrically, the camera has positioned its subjects in social structures and hierarchies, in recognizable localities, and in iconic depth constructions which, although they show remarkable variation, nevertheless belong specifically...

  14. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  15. Steering Angle Function Algorithm of Morphing of Residential Area

    Directory of Open Access Journals (Sweden)

    XIE Tian

    2015-07-01

    Full Text Available A residential area feature morphing method based on steering angle function is presented. To residential area with the same representation under two different scales,transforming the representation of the residential area polygon from vector coordinates to steering angle function,then using the steering angle function to match,and finding out the similarity and the differences between the residential areas under different scale to get the steering angle function of the the residential areas under any middle scale,the final,transforming the middle scale steering angle function to vector coordinates form,and get the middle shape interpolation of the the residential area polygon.Experimental results show:the residential area morphing method by using steering angle function presented can realize the continuous multi-scale representation under the premise of keeping in shape for the residential area with the rectangular boundary features.

  16. Probing lateral magnetic nanostructures by polarized GISANS

    International Nuclear Information System (INIS)

    Kentzinger, E.; Frielinghaus, H.; Ruecker, U.; Ioffe, A.; Richter, D.; Brueckel, Th.

    2007-01-01

    While structural and magnetic lateral correlations in thin film materials can be investigated at the μm length scale by neutron off-specular scattering (OSS) with polarization analysis, they can also be investigated at the nm length scale by grazing incidence small-angle scattering of polarized neutrons (polarized GISANS). We exemplify this issue showing a combined OSS and GISANS study of the lateral correlations in a remanent polarizing supermirror

  17. Probing lateral magnetic nanostructures by polarized GISANS

    Science.gov (United States)

    Kentzinger, E.; Frielinghaus, H.; Rücker, U.; Ioffe, A.; Richter, D.; Brückel, Th.

    2007-07-01

    While structural and magnetic lateral correlations in thin film materials can be investigated at the μm length scale by neutron off-specular scattering (OSS) with polarization analysis, they can also be investigated at the nm length scale by grazing incidence small-angle scattering of polarized neutrons (polarized GISANS). We exemplify this issue showing a combined OSS and GISANS study of the lateral correlations in a remanent polarizing supermirror.

  18. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  19. Representational Thickness

    DEFF Research Database (Denmark)

    Mullins, Michael

    Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current...... by ‘professionals’ to ‘laypeople’. The thesis articulates problems in VR’s current application, specifically the CAVE and Panorama theatres, and seeks an understanding of how these problems may be addressed. The central questions that have motivated this research project are thus: What is architectural VR...

  20. Climate Change, Polar Bears and their management

    OpenAIRE

    Derenchenko, Liza

    2010-01-01

    This is a literature study of polar bears in the context of climate change: what kind of creatures are polar bears, what are the main interpretations of current climate change, how might the polar bear adapt to these changes (feeding strategies) and how are the bears being managed (hunting)? These are relevant questions , since climate change is on the agenda, and polar bears being the apex predators of the Arctic are a key representation of the wildlife there. The third element of polar bear...

  1. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  2. On the polarization of fermion in an intermediate state

    Science.gov (United States)

    Kaloshin, A. E.; Lomov, V. P.

    2017-06-01

    We show that calculation of a final fermion polarization (for a pure initial state) is equivalent to the problem of looking for complete polarization axis of bispinor. This gives the method for calculation of polarization applicable both for final and intermediate state fermions. We suggest to use fermion propagator (bare or dressed) in form of spectral representation, which gives the orthogonal off-shell energy projectors. This representation leads to covariant separation of particle and antiparticle contributions and gives a natural definition for polarization of intermediate state fermion. The most evident application is related with consistent description of t-quark polarization.

  3. Shear wave splitting in the Isparta Angle, southwestern Turkey ...

    Indian Academy of Sciences (India)

    broadband station in the Isparta Angle,southwestern Turkey.We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, and delay time between fast and ...

  4. Multi-angle Imaging SpectroRadiometer (MISR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-angle Imaging SpectroRadiometer (MISR) was successfully launched into sun-synchronous polar orbit aboard Terra, NASA's first Earth Observing System (EOS)...

  5. [Research on the Thermal Infrared Polarization Properties of Fresh Snow].

    Science.gov (United States)

    Wang, Ting-ting; Li, Zhao-liang; Tang, Bo-hui; Sun, Wei-qi; Zhao, Yun-sheng

    2015-07-01

    Snow can directly affect the surface energy balance and climate change and has a significant impact on human life and production. It is therefore of great significance to study the fresh snow emission spectroscopy properties by using the thermal infrared Polarization technique. This can provide a basis for quantitative thermal infrared remote sensing monitoring of snow as well as a deeper understanding of global warming and appropriate countermeasures. This paper focuses on the investigation of the thermal infrared polarization properties of the fresh snow. The results show that the thermal emissive polarization properties of fresh snow depend significantly on the wavelengths (channels) and view angles used to measure them. Four channels are considered in this study, their spectral response ranges are 8-14 microm for channel 1 (CH1), 11.5-12.5 microm for channel 2 (CH2), 10.3-11.5 microm for channel 3 (CH) and 8.2-9.2 microm for channel 4 (CH4). The snow polarized radiance (L) and its polarized brightness temperature (T) manifest as L(CH1) >L(CH3) > L(CH4) > L(CH2) and T(CH4) > T(CH1) > T(CH2) > TCH3, respectively, while the degree of polarization (P) manifests as P0 > P30 > P40 > P20 > P0 > P50 where the subscript of P denotes the view angle. The maximum of both L and T occurs at the view angle of 50 degree and polarization angle of 90 degree while their minimum appears at the view angle of 30 degree and polarization angle of 75 degree for each channel. In addition, the results show that: CH3 is more appropriate for better investigation of the emissive polarization properties of snow. Linear relationship is found between the fresh snow polarized T and the polarization angle with the coefficient of determination larger than 0.77 for all four channels. The polarized brightness temperature of the fresh snow is found to be increased about 0.003 K per polarization angle within 0-135 degree. The degree of polarization of snow is almost independent of the channels we

  6. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  7. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  8. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  9. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  10. Use of the Polarized Radiance Distribution Camera System in the RADYO Program

    Science.gov (United States)

    2011-01-28

    polarizer’s (Melles Griot , 03 FPG 019). Polarizer’s are orientated at 0 deg, 60 deg, and 120 deg (angles relative to the first polarizer). The combination...combination of a broadband mica quarter wave plate (Melles Griot , 02 WRM001) and a polarizer to form a circular polarization analyzer. The combination of the

  11. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  12. Chaotic expansion of powers and martingale representation

    NARCIS (Netherlands)

    Jamshidian, F.

    2005-01-01

    This paper extends a recent martingale representation result of [N-S] for a L´evy process to filtrations generated by a rather large class of semimartingales. As in [N-S], we assume the underlying processes have moments of all orders, but here we allow angle brackets to be stochastic. Following

  13. On Directional Measurement Representation in Orbit Determination

    Science.gov (United States)

    2016-09-13

    Precision Orbit Determination (OD) is often critical for successful satellite operations supporting a wide variety of missions. Directional or angles only...representations. The three techniques are then compared experimentally for a geostationary and a low Earth orbit satellite using simulated data to evaluate their... Orbit Determination (OD) is often critical for successful satellite operations supporting a wide variety of missions. Precision OD involves

  14. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  15. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  16. Solubilization of a polar oil used in nuclear industry by amphiphilic tri-block copolymers solutions. Relation between structure and behavior by proton nuclear magnetic resonance and small angle neutron scattering

    International Nuclear Information System (INIS)

    Causse, J.

    2005-01-01

    The first step in a decommissioning operation of a nuclear plant concerns the nuclear decontamination of various surfaces. More and more techniques developed for nuclear decontamination use soluble surfactants in aqueous solution with suitable chemical reagents. In most cases decontamination is based on the removal of a surface layer containing most of the activity (grease, organic deposits, paint, oxide layer...). The Tributylphosphate (TBP), a polar oil, is widely used as a complexing agent of Plutonium and Uranium in nuclear industry. This lipophilic compound, containing radioactive residues, strongly sticks on many surfaces. This organic layer is resistant to all classical treatments. Micellar systems proved to be efficient to pull TBP away and solubilize it so as to make easier its draining. In this study, Amphiphilic tri-block copolymers, referred to as Pluronics (polyethylene(oxide) - polypropylene(oxide) - polyethylene(oxide), (EO) n PO) m EO) n ) have been selected as polymeric amphiphiles so as to solubilize TBP in their supramolecular aggregates above the critical aggregation concentration. A first systematic study of the phase behavior of various three components systems (TBP-Water-Pluronic) by turbidity showed the particular behavior of one copolymer (the L64, (EO) 13 PO) 30 EO) 13 ), especially its very high TBP solubilization capacity. Consequently, the main part of this thesis has been devoted to the structural characterization of this micellar system (TBP-Water-L64) using 1 H NMR and SANS measurements. 1 H NMR gave information on the chemical environment of each component in the mixture and especially allowed hypothesis on the TBP location in the copolymer aggregates to be drawn. Direct structural information (size, shape, correlations) were obtained by SANS. Both experimental technique were proved to be very complementary and allowed a structural evolution of the aggregates following addition of TBP in the system to be evidenced. (author)

  17. Symmetric Euler orientation representations for orientational averaging.

    Science.gov (United States)

    Mayerhöfer, Thomas G

    2005-09-01

    A new kind of orientation representation called symmetric Euler orientation representation (SEOR) is presented. It is based on a combination of the conventional Euler orientation representations (Euler angles) and Hamilton's quaternions. The properties of the SEORs concerning orientational averaging are explored and compared to those of averaging schemes that are based on conventional Euler orientation representations. To that aim, the reflectance of a hypothetical polycrystalline material with orthorhombic crystal symmetry was calculated. The calculation was carried out according to the average refractive index theory (ARIT [T.G. Mayerhöfer, Appl. Spectrosc. 56 (2002) 1194]). It is shown that the use of averaging schemes based on conventional Euler orientation representations leads to a dependence of the result from the specific Euler orientation representation that was utilized and from the initial position of the crystal. The latter problem can be overcome partly by the introduction of a weighing factor, but only for two-axes-type Euler orientation representations. In case of a numerical evaluation of the average, a residual difference remains also if a two-axes type Euler orientation representation is used despite of the utilization of a weighing factor. In contrast, this problem does not occur if a symmetric Euler orientation representation is used as a matter of principle, while the result of the averaging for both types of orientation representations converges with increasing number of orientations considered in the numerical evaluation. Additionally, the use of a weighing factor and/or non-equally spaced steps in the numerical evaluation of the average is not necessary. The symmetrical Euler orientation representations are therefore ideally suited for the use in orientational averaging procedures.

  18. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    Science.gov (United States)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  19. Polar Business Design

    Directory of Open Access Journals (Sweden)

    Sébastien Caisse

    2014-02-01

    Full Text Available Polar business design aims to enable entrepreneurs, managers, consultants, researchers, and business students to better tackle model-based analysis, creation, and transformation of businesses, ventures, and, more generically, collective endeavors of any size and purpose. It is based on a systems-thinking approach that builds on a few interrelated core concepts to create holistic visual frameworks. These core concepts act as poles linked by meaningful dyads, flows, and faces arranged in geometric shapes. The article presents two such polar frameworks as key findings in an ongoing analytic autoethnography: the three-pole Value−Activity−Stakeholder (VAS triquetra and the four-pole Offer−Creation−Character−Stakeholder (OCCS tetrahedron. The VAS triquetra is a more aggregated model of collective endeavors. The OCCS tetrahedron makes a trade-off between a steeper learning curve and deeper, richer representation potential. This article discusses how to use these two frameworks as well as their limits, and explores the potential that polar business design offers for future research.

  20. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  1. On the large COMPASS polarized deuteron target

    CERN Document Server

    Finger, M; Baum, G; Doshita, N; Finger, M Jr; Gautheron, F; Goertz, St; Hasegawa, T; Heckmann, J; Hess, Ch; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Y; Koivuniemi, J; Kondo, K; Le Goff, J-M; Magnon, A; Marchand, C; Matsuda, T; Meyer, W; Reicherz, G; Srnka, A

    2006-01-01

    The spin structure of the nucleons is investigated in deep inelastic scattering of a polarized muon beam and a polarized nucleon target in the COMPASS experiment at CERN since 2001. To achieve high luminosities a large solid polarized target is used. The COMPASS polarized target consists of a high cooling power $^{3}$He/$^{4}$He dilution refrigerator capable to maintain working temperature of the target material at about 50mK, a superconducting solenoid and dipole magnet system for longitudinal and transversal magnetic field on the target material, respectively, target cells containing polarizable material, microwave cavities and high power microwave radiation systems for dynamic nuclear polarization and the nuclear magnetic resonance system for nuclear spin polarization measurements. During 2001–2004 experiments superconducting magnet system with opening angle $\\pm$69 mrad, polarized target holder with two target cells and corresponding microwave and NMR systems have been used. For the data taking from 200...

  2. Representing the vacuum polarization on de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Katie E.; Woodard, Richard P. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Prokopec, Tomislav [Institute of Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands)

    2013-03-15

    Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obscure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.

  3. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  4. Representation as the representation of experience

    NARCIS (Netherlands)

    Ankersmit, FR

    This essay deals, mainly, with the notion of representation. Representation is associated with texts and, as such, is contrasted to the true singular statement. It is argued that the relationship between the text and what the text represents can never be modeled on the relationship between the true

  5. Vector meson production from a polarized nucleon

    International Nuclear Information System (INIS)

    Diehl, M.

    2007-04-01

    We provide a framework to analyze the electroproduction process ep→epρ with a polarized target, writing the angular distribution of the ρ decay products in terms of spin density matrix elements that parameterize the hadronic subprocess γ * p → ρp. Using the helicity basis for both photon and meson, we find a representation in which the expressions for a polarized and unpolarized target are related by simple substitution rules. (orig.)

  6. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  7. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  8. The HBN Angle

    Directory of Open Access Journals (Sweden)

    Harsh Bhagvatiprasad Dave

    2015-01-01

    Full Text Available Aim: The purpose of this study was to establish a new cephalometric measurement, named the Harsh Bhagvatiprasad Nita angle (HBN, to assess the sagittal jaw relationship with accuracy and reproducibility. Materials and Methods: Three hundred pretreatment lateral cephalograms (100 each of Class I, II, and III were taken from the Department of Orthodontics and Dentofacial Orthopedics of Rajasthan Dental College and Hospital, Jaipur (Rajasthan and were subdivided into skeletal Class I, II, and III based on ANB, Wits appraisal, and Beta angle. This angle uses 3 skeletal landmarks the "C" (apparent axis of the condyle, "M" (midpoint of the premaxilla, and "G" (center of the largest circle that is tangent to the internal inferior, anterior, and posterior surfaces of the mandibular symphysis. Results: The result of the mean and standard deviation for the HBN angle were calculated in all three skeletal groups. After using one-way analysis of variance and post-hoc multiple comparisons by using Tukey′s honestly significant difference, homogeneous subsets, receiver operating characteristics (ROC curve - to differentiate Class II with Class I, ROC curve - to differentiate Class III with Class I, Reliability analysis with interclass correlation of HBN angle with other angles, we obtained results that showed that a patient with a HBN angle 40° and 46° can be considered to have a Class I skeletal pattern. Conclusions: A new angle, the HBN angle, was developed as a diagnostic aid to evaluate the sagittal jaw relationship more consistently. HBN angle 40° and 46° can be considered to have a Class I skeletal pattern, a more acute HBN angle indicates a Class II skeletal pattern, and a more obtuse HBN angle indicates a Class III skeletal pattern.

  9. Polarity inversion of aluminum nitride by direct wafer bonding

    Science.gov (United States)

    Hayashi, Yusuke; Katayama, Ryuji; Akiyama, Toru; Ito, Tomonori; Miyake, Hideto

    2018-03-01

    A novel fabrication process based on direct bonding technologies is proposed and demonstrated to achieve polarity inversion in AlN. High-angle annular dark-field scanning transmission electron microscopy observation clearly showed an atomically flat bonding interface and an abrupt transition from Al polarity (+c) to N polarity (‑c) through a single monolayer. This ideal polarity inversion of III–nitride materials is expected to provide new insight into heteropolar device applications.

  10. Preliminary Analysis of Chinese GF-3 SAR Quad-Polarization Measurements to Extract Winds in Each Polarization

    Directory of Open Access Journals (Sweden)

    Lin Ren

    2017-11-01

    Full Text Available This study analyzed the noise equivalent sigma zero (NESZ and ocean wind sensitivity for Chinese C-band Gaofen-3 (GF-3 quad-polarization synthetic aperture radar (SAR measurements to facilitate further operational wind extraction from GF-3 data. Data from the GF-3 quad-polarization SAR and collocated winds from both NOAA/NCEP Global Forecast System (GFS atmospheric model and National Data Buoy Center (NDBC buoys were used in the analysis. For NESZ, the co-polarization was slightly higher compared to the cross-polarization. Regarding co-polarization and cross-polarization, NESZ was close to RadarSAT-2 and Sentinel-1 A. Wind sensitivity was analyzed by evaluating the dependence on winds in terms of normalized radar cross-sections (NRCS and polarization combinations. The closest geophysical model function (GMF and the polarization ratio (PR model to GF-3 data were determined by comparing data and the model results. The dependence of co-polarized NRCS on wind speed and azimuth angle was consistent with the proposed GMF models. The combination of CMOD5 and CMOD5.N was considered to be the closest GMF in co-polarization. The cross-polarized NRCS exhibited a strong linear relationship with moderate wind speeds higher than 4 m·s−1, but a weak correlation with the azimuth angle. The proposed model was considered as the closest GMF in cross-polarization. For polarization combinations, PR and polarization difference (PD were considered. PR increased only with the incidence angle, whereas PD increased with wind speed and varied with azimuth angle. There were three very close PR models and each can be considered as the closest. Preliminary results indicate that GF-3 quad-polarization data are valid and have the ability to extract winds in each polarization.

  11. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  12. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  13. Angle-averaged Compton cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.

  14. Angle-averaged Compton cross sections

    International Nuclear Information System (INIS)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV

  15. Data processing workflow for time of flight polarized neutrons inelastic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Savici, Andrei T [ORNL; Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Garlea, Vasile O [ORNL; Winn, Barry L [ORNL

    2017-01-01

    We discuss the data processing workflow for polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. The effects of the focusing Heusler crystal polarizer and the wide-angle supermirror transmission polarization analyzer are added to the data processing flow of the non-polarized case. The implementation is done using the Mantid software package.

  16. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization.

    Science.gov (United States)

    Scott Tyo, J; Ratliff, Bradley M; Alenin, Andrey S

    2016-10-15

    Many mappings from polarization into color have been developed so that polarization information can be displayed. One of the most common of these maps the angle of linear polarization into color hue and degree of linear polarization into color saturation, while preserving the irradiance information from the polarization data. While this strategy enjoys wide popularity, there is a large class of polarization images for which it is not ideal. It is common to have images where the strongest polarization signatures (in terms of degree of polarization) occur in regions of relatively low irradiance: either in shadow in reflective bands or in cold regions in emissive bands. Since the irradiance is low, the chromatic properties of the resulting images are generally not apparent. Here we present an alternate mapping that uses the statistics of the angle of polarization as a measure of confidence in the polarization signature, then amplifies the irradiance in regions of high confidence, and leaves it unchanged in regions of low confidence. Results are shown from an LWIR and a visible spectrum imager.

  17. Frequency dependent polarization in blazars

    International Nuclear Information System (INIS)

    Bjoernsson, C.I.

    1984-10-01

    It is argued that the intrinsic frequency dependent polarization in blazars finds its most straightforward explanations in terms of a single rather than a multicomponent sourcemodel. In order to reproduce the observations, under the assumption that the emission mechanism is optically thin synchrotron radiation, both a well ordered magnetic field and an electron distribution with a sharp break or cuttoff are necessary. Non-uniform pitch angle distribution and/or environments where synchrotron losses are important are both conducive to producing strong frequency dependent polarization. Reasons are put forth as to why such conditions ar expected to occur in blazars. Two specific models are discussed in detail and it is shown that they are both able to produce strong frequency dependent polarization, even when the spectral index changes by a small amount only. (orig.)

  18. Topological events in polarization resolved angular patterns of nematic liquid crystal cells at varying ellipticity of incident wave

    OpenAIRE

    Kiselev, Alexei D.; Vovk, Roman G.

    2008-01-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...

  19. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  20. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  1. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles ......-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications....

  2. XML-BASED REPRESENTATION

    Energy Technology Data Exchange (ETDEWEB)

    R. KELSEY

    2001-02-01

    For focused applications with limited user and use application communities, XML can be the right choice for representation. It is easy to use, maintain, and extend and enjoys wide support in commercial and research sectors. When the knowledge and information to be represented is object-based and use of that knowledge and information is a high priority, then XML-based representation should be considered. This paper discusses some of the issues involved in using XML-based representation and presents an example application that successfully uses an XML-based representation.

  3. Social representations of women

    Directory of Open Access Journals (Sweden)

    Álvaro Estramiana, José Luis

    2006-05-01

    Full Text Available Social Representations is one of the most important theories in contemporary social psychology. Since the social psychologist Serge Moscovici developed his theory of social representations to explain how a scientific theory such as the psychoanalysis turns into a common sense knowledge many studies have been done by different social psychologists. The analysis of the social representations of women as represented in myths and popular beliefs is an excellent opportunity to study how this theory can be applied to this representational field. At the same time it makes possible to understand the formation of attitudes towards women

  4. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  5. Angle at the Medial Border: The Spinovertebra Angle and Its Significance

    Directory of Open Access Journals (Sweden)

    G. S. Oladipo

    2015-01-01

    Full Text Available Background. The evolution from quadrupedalism to bipedalism has adjusted the balance of the upper limb to extensive movement at the shoulder. The scapular angles provide the point of attachment and control to various muscles and have been associated with the different movements of the shoulder girdle and joint. This has made the morphometric and anthropometric study of scapula a subject of extensive investigation. Aim. In the present study, the angle at the medial border was measured in the South-Southern Nigerian population and an anatomical name was ascribed to the angle. Method. The study was conducted on 173 scapulae (75 right and 98 left obtained from various Anatomy Department of South-Sothern Nigerian Universities. The angle at medial border was obtained by pinning the edge of the superior and inferior angles, the lined traced out, and the angle measured using a protractor. SPSS version 20 was used to analyse the data. t-test was used to determine mean angular difference in the sides. Result. The mean ± SD of the medial angle was observed to be 136.88 ± 7.70° (R = 138.13 ± 7.06° : L = 135.92 ± 8.05°. Statistical analysis using the Z-test for mean difference showed the medial angle was found to be higher in the right side of the scapula (mean difference of 2.214 ± 1.152°, but the observed difference was not statistically significant (P > 0.05. The above findings have adjusted the scapula from three to four angles (lateral, superior, inferior, and medial formed from four borders (lateral, superior, inferior, and superomedial and inferomedial. The medial angle because of its anatomical location was named “spinovertebral” angle, owing to its position at the scapulae spine, and located in medial proximity to the vertebra column. Conclusion. The medial angle (now referred to as the spinovertebral angle of the right side of the scapula is wider than the left. The representation of the spinovertebral angle is very important, as

  6. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    odinger equation modelling fourth order dispersion effects when the linearly polarized pump is oriented at arbitrary angles with respect to the slow and fast axes of the birefringent fiber. Keywords. Birefringent optical fiber; fourth order dispersion; ...

  7. The action-angle variables of classical spin motion in circular accelerators

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1986-06-01

    A general formalism is presented which shows how to rewrite a given Hamiltonian involving classical spin motion in an action-angle variable representation. The canonical transformation is made using the Lie transformation technique. (orig.)

  8. Measurement of the Euler Angles of Wurtzitic ZnO by Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wu Liu

    2017-01-01

    Full Text Available A Raman spectroscopy-based step-by-step measuring method of Euler angles φ,θ,and  ψ was presented for the wurtzitic crystal orientation on a microscopic scale. Based on the polarization selection rule and coordinate transformation theory, a series of analytic expressions for the Euler angle measurement using Raman spectroscopy were derived. Specific experimental measurement processes were presented, and the measurement of Raman tensor elements and Euler angles of the ZnO crystal were implemented. It is deduced that there is a trigonometric functional relationship between the intensity of each Raman bands of wurtzite crystal and Euler angle ψ, the polarization direction of incident light under different polarization configurations, which can be used to measure the Euler angles. The experimental results show that the proposed method can realize the measurement of Euler angles for wurtzite crystal effectively.

  9. Kernel density estimation applied to bond length, bond angle, and torsion angle distributions.

    Science.gov (United States)

    McCabe, Patrick; Korb, Oliver; Cole, Jason

    2014-05-27

    We describe the method of kernel density estimation (KDE) and apply it to molecular structure data. KDE is a quite general nonparametric statistical method suitable even for multimodal data. The method generates smooth probability density function (PDF) representations and finds application in diverse fields such as signal processing and econometrics. KDE appears to have been under-utilized as a method in molecular geometry analysis, chemo-informatics, and molecular structure optimization. The resulting probability densities have advantages over histograms and, importantly, are also suitable for gradient-based optimization. To illustrate KDE, we describe its application to chemical bond length, bond valence angle, and torsion angle distributions and show the ability of the method to model arbitrary torsion angle distributions.

  10. Emission polarization study on quartz and calcite.

    Science.gov (United States)

    Vincent, R. K.

    1972-01-01

    Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  11. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    This article elucidates the important role the no- tion of symmetry has played in physics. It dis- cusses the proof of one of the important theorems of quantum mechanics, viz., Wigner's Symmetry. Representation Theorem. It also shows how the representations of various continuous and dis- crete symmetries follow from the ...

  12. Extensions of tempered representations

    NARCIS (Netherlands)

    Opdam, E.; Solleveld, M.

    2013-01-01

    Let π, π′ be irreducible tempered representations of an affine Hecke algebra H with positive parameters. We compute the higher extension groups Ext nH(π,π′) explicitly in terms of the representations of analytic R-groups corresponding to π and π′. The result has immediate applications to the

  13. Representation and Reference

    NARCIS (Netherlands)

    Ankersmit, F.R.

    2010-01-01

    This essay focuses on the historical text as a whole. It does so by conceiving of the historical text as representation - in the way the we may say of a photo or a painting that it represents the person depicted on it. It is argued that representation cannot be properly understood by modelling it on

  14. Group and representation theory

    CERN Document Server

    Vergados, J D

    2017-01-01

    This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

  15. RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES

    Directory of Open Access Journals (Sweden)

    L. Li

    2018-04-01

    Full Text Available The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45° and 65°. Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm.

  16. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  17. Grazing incidence polarized neutron scattering in reflection ...

    Indian Academy of Sciences (India)

    During the year 1980, polarized neutron scattering technique came into being as an ana- lytic tool to measure the ... The discovery of antiferromagnetic coupling was critical to the discovery of GMR, pro- viding as it did ..... Here we consider the incident wave vector ki making an angle αi in the x–z plane while the scattered ...

  18. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    We obtain conditions for the occurrence of polarization modulational instability in the anomalous and normal dispersion regimes for the coupled nonlinear Schrödinger equation modelling fourth order dispersion effects when the linearly polarized pump is oriented at arbitrary angles with respect to the slow and fast axes of ...

  19. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  20. Unbiased determination of polarized parton distributions and their uncertainties

    CERN Document Server

    Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2013-01-01

    We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, ...

  1. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  2. The origin of radio pulsar polarization

    Science.gov (United States)

    Dyks, J.

    2017-12-01

    Polarization of radio pulsar profiles involves a number of poorly understood, intriguing phenomena, such as the existence of comparable amounts of orthogonal polarization modes (OPMs), strong distortions of polarization angle (PA) curves into shapes inconsistent with the rotating vector model (RVM), and the strong circular polarization V which can be maximum (instead of zero) at the OPM jumps. It is shown that the comparable OPMs and large V result from a coherent addition of phase-delayed waves in natural propagation modes, which are produced by a linearly polarized emitted signal. The coherent mode summation implies opposite polarization properties to those known from the incoherent case, in particular, the OPM jumps occur at peaks of V, whereas V changes sign at a maximum linear polarization fraction L/I. These features are indispensable to interpret various observed polarization effects. It is shown that statistical properties of emission and propagation can be efficiently parametrized in a simple model of coherent mode addition, which is successfully applied to complex polarization phenomena, such as the stepwise PA curve of PSR B1913+16 and the strong PA distortions within core components of pulsars B1933+16 and B1237+25. The inclusion of coherent mode addition opens the possibility for a number of new polarization effects, such as inversion of relative modal strength, twin minima in L/I coincident with peaks in V, 45° PA jumps in weakly polarized emission, and loop-shaped core PA distortions. The empirical treatment of the coherency of mode addition makes it possible to advance the understanding of pulsar polarization beyond the RVM model.

  3. Development of optical-pumping polarized deuteron target

    International Nuclear Information System (INIS)

    Tamae, Tadaaki; Yokokawa, Tamio; Nishikawa, Itaru; Abe, Kazuhiro; Konno, Osamu; Nakagawa, Itaru; Sugawara, Masumi; Tanaka, Eiji; Yamaguchi, Nobuo; Yamazaki, Hirohito; Miyase, Haruhisa; Tsubota, Hiroaki

    1998-01-01

    An optical-pumping system of rubidium atoms for a laser-driven polarized deuteron target was constructed. The density and polarization of the rubidium atoms were measured using Faraday rotation. The rotation angle was determined within an error of 0.01 deg. Our preliminary result showed a polarization of 0.4 at a gas thickness of 4x10 13 atoms/cm 2

  4. open angle glaucoma (poag)?

    African Journals Online (AJOL)

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  5. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  6. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  7. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains usi...... method appears to be of minimal practical use in forensic anthropology and archeology....

  8. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    1982-01-01

    The technique of small angle neutron scattering was first used in Germany less than two decades ago. Since then it has developed very rapidly, and today it is regarded as one of the most powerful techniques in materials, chemical and biological research. During the last decade the combination of high flux reactors and sophisticated instrumentation has revolutionized the technique. This paper endeavours to present a brief but comprehensive review of small angle scattering of neutrons and its applications in solid state research. The domain in which small angle neutron scattering is particularly useful is delineated and some of the methods used in the analysis of data are discussed with special emphasis on recent developments. Typical small angle neutron scattering cameras are described. Finally some experimental results on heterogeneities in metallic systems (both static and dynamic studies), radiation damage in materials, superconductivity, magnetic materials and the technologically very important area of non-destructive testing are reviewed in order to illustrate the wide range of applicability of this technique to problems in solid state research. (author)

  9. Neutron small angle scattering

    International Nuclear Information System (INIS)

    Ibel, K.

    1975-01-01

    The neutron small-angle scattering system at the High-Flux Reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The length of the collimator before the fixed sample position can be reduced by movable neutron guides; the secondary flight path of 40 m full length contains detector sites in various positions. Thus, a large domain of momentum transfers can be exploited. Scattering angles between 5.10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available with the same instrument and the same relative resolution. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered into different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. Future development comprises an increase of the limit in the count rate due to the electronic interface between the detector and on-line computer, actually at 5.10 4 per sec. by one order of magnitude

  10. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  11. Tight bounds on angle sums of nonobtuse simplices

    Czech Academy of Sciences Publication Activity Database

    Brandts, J.; Cihangir, A.; Křížek, Michal

    2015-01-01

    Roč. 267, 15 September (2015), s. 397-408 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : nonobtuse simplex * angle sum s * spherical geometry * polar simplex Subject RIV: BA - General Mathematics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315002155

  12. Representations and Relations

    Czech Academy of Sciences Publication Activity Database

    Koťátko, Petr

    2014-01-01

    Roč. 21, č. 3 (2014), s. 282-302 ISSN 1335-0668 Institutional support: RVO:67985955 Keywords : representation * proposition * truth-conditions * belief-ascriptions * reference * externalism * fiction Subject RIV: AA - Philosophy ; Religion

  13. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  14. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  15. Polarization Properties of Laser Solitons

    Directory of Open Access Journals (Sweden)

    Pedro Rodriguez

    2017-04-01

    Full Text Available The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton; this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those found in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It is important to also remark the appearance of a non-negligible amount of circular light that gives vectorial character to all the different emissions investigated.

  16. Distributed Representation of Subgraphs

    OpenAIRE

    Adhikari, Bijaya; Zhang, Yao; Ramakrishnan, Naren; Prakash, B. Aditya

    2017-01-01

    Network embeddings have become very popular in learning effective feature representations of networks. Motivated by the recent successes of embeddings in natural language processing, researchers have tried to find network embeddings in order to exploit machine learning algorithms for mining tasks like node classification and edge prediction. However, most of the work focuses on finding distributed representations of nodes, which are inherently ill-suited to tasks such as community detection w...

  17. Recent progress on HYSPEC, and its polarization analysis capabilities

    Directory of Open Access Journals (Sweden)

    Winn Barry

    2015-01-01

    Full Text Available HYSPEC is a high-intensity, direct-geometry time-of-flight spectrometer at the Spallation Neutron Source, optimized for measurement of excitations in small single-crystal specimens with optional polarization analysis capabilities. The incident neutron beam is monochromated using a Fermi chopper with short, straight blades, and is then vertically focused by Bragg scattering onto the sample position by either a highly oriented pyrolitic graphite (unpolarized or a Heusler (polarized crystal array. Neutrons are detected by a bank of 3He tubes that can be positioned over a wide range of scattering angles about the sample axis. HYSPEC entered the user program in February 2013 for unpolarized experiments, and is already experiencing a vibrant research program. Polarization analysis will be accomplished by using the Heusler crystal array to polarize the incident beam, and either a 3He spin filter or a supermirror wide-angle polarization analyser to analyse the scattered beam. The 3He spin filter employs the spin-exchange optical pumping technique. A 60∘ wide angle 3He cell that matches the detector coverage will be used for polarization analysis. The polarized gas in the post-sample wide angle cell is designed to be periodically and automatically refreshed with an adjustable pressure of polarized gas, optically pumped in a separate cell and then transferred to the wide angle cell. The supermirror analyser has 960 supermirror polarizers distributed over 60∘, and has been characterized at the Swiss Spallation Neutron Source. The current status of the instrument and the development of its polarization analysis capabilities are presented.

  18. Polar Wavelet Transform and the Associated Uncertainty Principles

    Science.gov (United States)

    Shah, Firdous A.; Tantary, Azhar Y.

    2018-02-01

    The polar wavelet transform- a generalized form of the classical wavelet transform has been extensively used in science and engineering for finding directional representations of signals in higher dimensions. The aim of this paper is to establish new uncertainty principles associated with the polar wavelet transforms in L2(R2). Firstly, we study some basic properties of the polar wavelet transform and then derive the associated generalized version of Heisenberg-Pauli-Weyl inequality. Finally, following the idea of Beckner (Proc. Amer. Math. Soc. 123, 1897-1905 1995), we drive the logarithmic version of uncertainty principle for the polar wavelet transforms in L2(R2).

  19. Representation of differences in Brazilian journalistic discourse

    Directory of Open Access Journals (Sweden)

    Fernando Resende

    2015-08-01

    Full Text Available Considering the technological advance, which enhances the production of mediatic discourses, and the notion of a libidinal power installed in our globalized societies, reflecting upon representation of differences seems to be a major issue. This essay discusses the production of journalistic discourses from an epistemological perspective. The field of media is taken as constituted by a triple component – discourse/narrative/machines – and we suggest that this triad has proved to be incomplete: discourse and narrative, once they really are vertexes of the triangle, are absences. Two journalistic-documentary productions – which intend to represent life in the slums of Brazil – are compared in order to reflect upon representation of differences in Brazilian journalistic discourse. In view of the up-to-date polarization and pulverization of discourses, we suggest that in the perspective of the journalistic discourse, one can only speak about alterity if one tries to comprehend the ways news is staged.

  20. Broad-aperture polarized proton target with arbitrary orientation of polarization vector

    International Nuclear Information System (INIS)

    Belyaev, A.A.; Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporov, E.A.; Telegin, Yu.N.; Trotsenko, V.I.

    1985-01-01

    Polarized proton target with the Helmholtz broad-aperture superconducting magnetic system is described. Axial aperture α=95 deg, inter-coil access angle β=23 deg. The structure of the target allows various versions of the installation what make sure an arbitrary orientation of polarization vector. The 0.1 W cold output 3 He evaporation cryostat was used to obtain the work temperature 0.5 K allowing quick transformation to a 3 He- 4 He dilution refrigerator. Results of the study are given on the dynamical proton polarization in 1,2-propylenglycol with various stable Cr 5 complexes

  1. Spatiotemporal representation of cardiac vectorcardiogram (VCG signals

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2012-03-01

    Full Text Available Abstract Background Vectorcardiogram (VCG signals monitor both spatial and temporal cardiac electrical activities along three orthogonal planes of the body. However, the absence of spatiotemporal resolution in conventional VCG representations is a major impediment for medical interpretation and clinical usage of VCG. This is especially so because time-domain features of 12-lead ECG, instead of both spatial and temporal characteristics of VCG, are widely used for the automatic assessment of cardiac pathological patterns. Materials and methods We present a novel representation approach that captures critical spatiotemporal heart dynamics by displaying the real time motion of VCG cardiac vectors in a 3D space. Such a dynamic display can also be realized with only one lead ECG signal (e.g., ambulatory ECG through an alternative lag-reconstructed ECG representation from nonlinear dynamics principles. Furthermore, the trajectories are color coded with additional dynamical properties of space-time VCG signals, e.g., the curvature, speed, octant and phase angles to enhance the information visibility. Results In this investigation, spatiotemporal VCG signal representation is used to characterize various spatiotemporal pathological patterns for healthy control (HC, myocardial infarction (MI, atrial fibrillation (AF and bundle branch block (BBB. The proposed color coding scheme revealed that the spatial locations of the peak of T waves are in the Octant 6 for the majority (i.e., 74 out of 80 of healthy recordings in the PhysioNet PTB database. In contrast, the peak of T waves from 31.79% (117/368 of MI subjects are found to remain in Octant 6 and the rest (68.21% spread over all other octants. The spatiotemporal VCG signal representation is shown to capture the same important heart characteristics as the 12-lead ECG plots and more. Conclusions Spatiotemporal VCG signal representation is shown to facilitate the characterization of space-time cardiac

  2. On the interfacial behavior of ionic liquids: surface tensions and contact angles.

    Science.gov (United States)

    Restolho, José; Mata, José L; Saramago, Benilde

    2009-12-01

    In this work the liquid/vapour and the solid/liquid interfaces of a series of ionic liquids: 1-ethyl-3-methylpyridinium ethyl sulfate, [EMPy][EtSO4], 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM][EtSO4], 1-ethanol-3-methylimidazolium tetrafluoroborate, [C2OHMIM][BF4], 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], and 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF4], were investigated. The surface tension was measured in a wide temperature range, (298-453) K. The contact angles were determined on substrates of different polarities. Both on the polar (glass) and the non-polar substrates ((poly-(tetrafluoroethylene) and poly-(ethylene)), the liquids with maximum and minimum surface tensions lead, respectively, to the highest and the lowest contact angles. The dispersive, gamma(L)(d), and non-dispersive, gamma(L)(nd), components of the liquid surface tension, gamma(L), were calculated from the contact angles on the non-polar substrates using the Fowkes approach. The polarity fraction, gamma(L)(nd)/gamma(L), was compared with the polarity parameter, k, obtained from the fitting of the surface tension vs. temperature data to the Eötvös equation. Good agreement was found for the extreme cases: [OMIM][BF4] exhibits the lowest polarity and [BMIM][BF4], the highest. When compared with the polarity fractions of standard liquids considered as "polar" liquids, the ionic liquids studied may be considered as moderately polar.

  3. The Schrödinger representation and its relation to the holomorphic representation in linear and affine field theory

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2012-01-01

    We establish a precise isomorphism between the Schrödinger representation and the holomorphic representation in linear and affine field theory. In the linear case, this isomorphism is induced by a one-to-one correspondence between complex structures and Schrödinger vacua. In the affine case we obtain similar results, with the role of the vacuum now taken by a whole family of coherent states. In order to establish these results we exhibit a rigorous construction of the Schrödinger representation and use a suitable generalization of the Segal-Bargmann transform. Our construction is based on geometric quantization and applies to any real polarization and its pairing with any Kähler polarization.

  4. Polarized H- source development at BNL

    International Nuclear Information System (INIS)

    Alessi, J.G.; Hershcovitch, A.; Kponou, A.; Niinikoski, T.; Sluyters, T.

    1986-01-01

    The AGS polarized H - source (PONI-1) now produces currents of 25-40 μA, and has operated reliably during polarized physics runs. A new polarized source, having as its goal mA's of H-vector, is now under development. An atomic hydrogen beam has been cooled to about 20 K with a forward flux of approx.10 19 atoms/s/sr. A superconducting solenoid having a calculated acceptance angle of 0.1 sr for the cold H 0 beam, is now being built. An ionizer for the resulting polarized H 0 beam based on resonant charge exchange of H 0 with D - , is being tested. 500 μA of H - have been produced by ionizing an unpolarized H 0 beam using this ionizer

  5. Questions of Representations in Architecture

    DEFF Research Database (Denmark)

    2015-01-01

    Questions of Representations in Architecture is the first major Danish contribution to the current international discussion on architects' use of representations and the significance of visual media for architecture.......Questions of Representations in Architecture is the first major Danish contribution to the current international discussion on architects' use of representations and the significance of visual media for architecture....

  6. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  7. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  8. Operator representations of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Hasannasab, Marzieh

    2017-01-01

    The purpose of this paper is to consider representations of frames {fk}k∈I in a Hilbert space ℋ of the form {fk}k∈I = {Tkf0}k∈I for a linear operator T; here the index set I is either ℤ or ℒ0. While a representation of this form is available under weak conditions on the frame, the analysis...... of the properties of the operator T requires more work. For example it is a delicate issue to obtain a representation with a bounded operator, and the availability of such a representation not only depends on the frame considered as a set, but also on the chosen indexing. Using results from operator theory we show...... that by embedding the Hilbert space ℋ into a larger Hilbert space, we can always represent a frame via iterations of a bounded operator, composed with the orthogonal projection onto ℋ. The paper closes with a discussion of an open problem concerning representations of Gabor frames via iterations of a bounded...

  9. Representation Elements of Spatial Thinking

    Science.gov (United States)

    Fiantika, F. R.

    2017-04-01

    This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.

  10. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  11. Introduction to computer data representation

    CERN Document Server

    Fenwick, Peter

    2014-01-01

    Introduction to Computer Data Representation introduces readers to the representation of data within computers. Starting from basic principles of number representation in computers, the book covers the representation of both integer and floating point numbers, and characters or text. It comprehensively explains the main techniques of computer arithmetic and logical manipulation. The book also features chapters covering the less usual topics of basic checksums and 'universal' or variable length representations for integers, with additional coverage of Gray Codes, BCD codes and logarithmic repre

  12. Contractions of group representations. - I

    International Nuclear Information System (INIS)

    Celeghini, E.; Tarlini, M.

    1981-01-01

    A new definition of contraction as a limit on the parameters defining the basis of the space of representations is given. From the representations of the original group, those of the contracted one are directly obtained. The contraction of inner automorphisms into outer automorphisms and the splitting of one representation into representations of the same or different group are discussed and illustrated by examples. The procedure is also a technique for the study of representations of non-semi-simple groups. (author)

  13. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  14. Post-representational cartography

    Directory of Open Access Journals (Sweden)

    Rob Kitchin

    2010-03-01

    Full Text Available Over the past decade there has been a move amongst critical cartographers to rethink maps from a post-representational perspective – that is, a vantage point that does not privilege representational modes of thinking (wherein maps are assumed to be mirrors of the world and automatically presumes the ontological security of a map as a map, but rather rethinks and destabilises such notions. This new theorisation extends beyond the earlier critiques of Brian Harley (1989 that argued maps were social constructions. For Harley a map still conveyed the truth of a landscape, albeit its message was bound within the ideological frame of its creator. He thus advocated a strategy of identifying the politics of representation within maps in order to circumnavigate them (to reveal the truth lurking underneath, with the ontology of cartographic practice remaining unquestioned.

  15. Representations of distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    2017-01-01

    This paper explores how Danish tourists represent distance in relation to their holiday mobility and how these representations of distance are a result of being aero-mobile as opposed to being land-mobile. Based on interviews with Danish tourists, whose holiday mobility ranges from the European...... continent to global destinations, the first part of this qualitative study identifies three categories of representations of distance that show how distance is being ‘translated’ by the tourists into non-geometric forms: distance as resources, distance as accessibility, and distance as knowledge....... The representations of distance articulated by the Danish tourists show that distance is often not viewed in ‘just’ kilometres. Rather, it is understood in forms that express how transcending the physical distance through holiday mobility is dependent on individual social and economic contexts, and on whether...

  16. Critical angle laser refractometer

    International Nuclear Information System (INIS)

    Castrejon-Pita, J.R.; Morales, A.; Castrejon-Garcia, R.

    2006-01-01

    A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found

  17. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  18. On the spinor representation

    Energy Technology Data Exchange (ETDEWEB)

    Hoff da Silva, J.M.; Rogerio, R.J.B. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Villalobos, C.H.C. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2017-07-15

    A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein-Dirac system that provides the spacetime generated by a fermion. (orig.)

  19. Mobilities and Representations

    DEFF Research Database (Denmark)

    Thelle, Mikkel

    2017-01-01

    , literature, and film. Moreover, we hope the authors of future reviews will reflect on the ways they approached those representations. Such commentaries would provide valuable methodological insights, and we hope to begin that effort with this interview. We have asked four prominent mobility scholars......As the centerpiece of the eighth T2M yearbook, the following interview about representations of mobility signals a new and exciting focus area for Mobility in History. In future issues we hope to include reviews that grapple more with how mobilities have been imagined and represented in the arts...

  20. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributio...

  1. Angle performance on optima MDxt

    Energy Technology Data Exchange (ETDEWEB)

    David, Jonathan; Kamenitsa, Dennis [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  2. Non-coherent continuum scattering as a line polarization mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J., E-mail: tanausu@iac.es, E-mail: rsainz@iac.es, E-mail: jtb@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-03-20

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  3. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  4. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  5. A comparison of SAR imaging algorithms for high-squint angle trajectories

    Science.gov (United States)

    Horvath, Matthew S.; Rigling, Brian D.

    2011-06-01

    This paper explores the effect of squint angle on the phase errors introduced by the linear phase assumption in the polar format algorithm for SAR imaging. The maximum scene radius for an allowable phase error is derived as a function of squint angle and other parameters. Simulated phase histories for a variety of squint angles are generated and imaged to demonstrate the bound and the effects encountered when it is exceeded.

  6. Turning Symbolic: The representation of motion direction in working memory

    Directory of Open Access Journals (Sweden)

    Tal eSeidel Malkinson

    2016-02-01

    Full Text Available What happens to the representation of a moving stimulus when it is no longer present and its motion direction has to be maintained in working memory (WM? Is the initial, sensorial representation maintained during the delay period or is there another representation, at a higher level of abstraction? It is also feasible that multiple representations may co-exist in WM, manifesting different facets of sensory and more abstract features.To that end, we investigated the mnemonic representation of motion direction in a series of three psychophysical experiments, using a delayed motion-discrimination task (relative clockwisecounter-clockwise judgment. First, we show that a change in the dots' contrast polarity does not hamper performance. Next, we demonstrate that performance is unaffected by relocation of the Test stimulus in either retinotopic or spatiotopic coordinate frames. Finally, we show that an arrow-shaped cue presented during the delay interval between the Sample and Test stimulus, biases performance towards the direction of the arrow, although the cue itself is non-informative (it has no predictive value of the correct answer. These results indicate that the representation of motion direction in WM is independent of the physical features of the stimulus (polarity or position and has non-sensorial abstract qualities. It is plausible that an abstract mnemonic trace might be activated alongside a more basic, analogue representation of the stimulus. We speculate that the specific sensitivity of the mnemonic representation to the arrow-shaped symbol may stem from the long term learned association between direction and the hour in the clock.

  7. Turning Symbolic: The Representation of Motion Direction in Working Memory

    Science.gov (United States)

    Seidel Malkinson, Tal; Pertzov, Yoni; Zohary, Ehud

    2016-01-01

    What happens to the representation of a moving stimulus when it is no longer present and its motion direction has to be maintained in working memory (WM)? Is the initial, sensorial representation maintained during the delay period or is there another representation, at a higher level of abstraction? It is also feasible that multiple representations may co-exist in WM, manifesting different facets of sensory and more abstract features. To that end, we investigated the mnemonic representation of motion direction in a series of three psychophysical experiments, using a delayed motion-discrimination task (relative clockwise∖counter-clockwise judgment). First, we show that a change in the dots’ contrast polarity does not hamper performance. Next, we demonstrate that performance is unaffected by relocation of the Test stimulus in either retinotopic or spatiotopic coordinate frames. Finally, we show that an arrow-shaped cue presented during the delay interval between the Sample and Test stimulus, strongly biases performance toward the direction of the arrow, although the cue itself is non-informative (it has no predictive value of the correct answer). These results indicate that the representation of motion direction in WM could be independent of the physical features of the stimulus (polarity or position) and has non-sensorial abstract qualities. It is plausible that an abstract mnemonic trace might be activated alongside a more basic, analog representation of the stimulus. We speculate that the specific sensitivity of the mnemonic representation to the arrow-shaped symbol may stem from the long term learned association between direction and the hour in the clock. PMID:26909059

  8. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  9. A study of images of Projective Angles of pulmonary veins

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jue [Beijing Anzhen Hospital, Beijing (China); Zhaoqi, Zhang [Beijing Anzhen Hospital, Beijing (China)], E-mail: zhaoqi5000@vip.sohu.com; Yu Wei; Miao Cuilian; Yan Zixu; Zhao Yike [Beijing Anzhen Hospital, Beijing (China)

    2009-09-15

    Aims: In images of magnetic resonance and computed tomography (CT) there are visible angles between pulmonary veins and the coronary, transversal or sagittal section of body. In this study these angles are measured and defined as Projective Angles of pulmonary veins. Several possible influential factors and characters of distribution are studied and analyzed for a better understanding of this imaging anatomic character of pulmonary veins. And it could be the anatomic base of adjusting correctly the angle of the central X-ray of the angiography of pulmonary veins undergoing the catheter ablation of atrial fibrillation (AF). Method: Images of contrast enhanced magnetic resonance angiography (CEMRA) and contrast enhanced computer tomography (CECT) of the left atrium and pulmonary veins of 137 health objects and patients with atrial fibrillation (AF) are processed with the technique of post-processing, and Projective Angles to the coronary and transversal sections are measured and analyzed statistically. Result: Project Angles of pulmonary veins are one of real and steady imaging anatomic characteristics of pulmonary veins. The statistical distribution of variables is relatively concentrated, with a fairly good representation of average value. It is possible to improve the angle of the central X-ray according to the average value in the selective angiography of pulmonary veins undergoing the catheter ablation of AF.

  10. Between Representation and Eternity

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2016-01-01

    . At death, an indi- vidual’s corpse and burial primarily reflect the social act of representation during the funeral. The position of the arms, which have incorrectly been used as a chronological tool in Scandinavia, may indicate an evolution from a more collective act of prayer up to the eleventh century...

  11. Reflective Abstraction and Representation.

    Science.gov (United States)

    Lewin, Philip

    Piaget's theory of reflective abstraction can supplement cognitive science models of representation by specifying both the act of construction and the component steps through which knowers pass as they acquire knowledge. But, while approaches suggested by cognitive science supplement Piaget by awakening researchers to the role of auxiliary factors…

  12. Hyperfinite representation of distributions

    Indian Academy of Sciences (India)

    A nonstandard treatment of the theory of distributions in terms of a hyperfinite representa- tion has been presented in papers [2,3] by Kinoshita. A further exploitation of this treatment in an N-dimensional context has been given by Grenier [1]. In the present paper we offer a different approach to the hyperfinite representation, ...

  13. Going beyond representational anthropology

    DEFF Research Database (Denmark)

    Winther, Ida Wentzel

    Going beyond representational anthropology: Re-presenting bodily, emotional and virtual practices in everyday life. Separated youngsters and families in Greenland Greenland is a huge island, with a total of four high-schools. Many youngsters (age 16-18) move far away from home in order to get...

  14. Representation of the Divine

    DEFF Research Database (Denmark)

    Loddegaard, Anne

    2009-01-01

    out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...

  15. Representation of the Divine

    DEFF Research Database (Denmark)

    Loddegaard, Anne

    2012-01-01

    out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...

  16. Moment graphs and representations

    DEFF Research Database (Denmark)

    Jantzen, Jens Carsten

    2012-01-01

    Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...

  17. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live......In this paper we estimate the degree, composition and development of geographical income polarization based on data at the individual and municipal level in Denmark from 1984 to 2002. Rising income polarization is reconfirmed when applying new polarization measures, the driving force being greater...

  18. Measurement of deuteron beam polarization before and after acceleration

    Directory of Open Access Journals (Sweden)

    A Ramazani Moghaddam Arani

    2017-02-01

    Full Text Available Beam polarization measurement in scattering experiments with a high accuracy and the lowest possible cost is an important issue. In this regard, deuteron beam polarization was measured in the low-energy beam line easily with a relatively low cost procedure and in a very short time by Lamb Shift Polarimeter (LSP. Also, the beam polarization has been measured in high-energy beam line with BINA. In low-energy line, a polarized beam of deuterons delivered by POLIS was decelerated and focused on LSP detection system. Three resonances between 52mT and 63mT show the distribution of different spin states of polarized deuteron beam. In high-energy beam line, polarization can be measured employing BINA via the H(d,dp reaction. The asymmetry ratio, was obtained as a function of azimuthal angle, φ, for several polar scattering angles. Knowing values of the analyzing powers, the ratio has been used to extract the polarization results. The obtained results show that polarization of deuteron beam that is accelerated up to the energy of 130 MeV is almost the same before and after acceleration

  19. Non-uniform transmission of supermirror devices for neutron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Tong, X., E-mail: tongx@ornl.gov [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Robertson, J.L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Pynn, R. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Indiana University Center for the Exploration of Energy and Matter, Bloomington 47408, IN (United States)

    2014-12-21

    Polarizing supermirrors have been widely used in neutron scattering facilities where they have been employed as neutron spin filters to polarize neutron beams as well as analyze their polarization. In the past, the performance of polarizing supermirrors has been limited by their small acceptance angle, which made them less suitable for use at short wavelengths or with highly divergent beams. Recent advances in supermirror coatings have led to an array of devices designed to, at least partially, overcome this limitation. V-polarizers and multi-channel polarizers have been employed in several different types of neutron scattering instruments. However, our observations in the field where these types of polarizers are in use have raised concerns about their performance. In this paper, we report on detailed Monte-Carlo simulations performed on a multi-channel polarizer used on a prototype Spin-Echo Small Angle Neutron Scattering (SESANS) instrument to better understand its performance. Our results show that careful simulations of polarizers based on mirror reflection are needed to determine whether a particular design is suitable for SESANS applications.

  20. Lunar skylight polarization signal polluted by urban lighting

    Science.gov (United States)

    Kyba, C. C. M.; Ruhtz, T.; Fischer, J.; Hölker, F.

    2011-12-01

    On clear moonlit nights, a band of highly polarized light stretches across the sky at a 90 degree angle from the moon, and it was recently demonstrated that nocturnal organisms are able to navigate based on it. Urban skyglow is believed to be almost unpolarized, and is therefore expected to dilute this unique partially linearly polarized signal. We found that urban skyglow has a greater than expected degree of linear polarization (p = 8.6 ± 0.3%), and confirmed that its presence diminishes the natural lunar polarization signal. We also observed that the degree of linear polarization can be reduced as the moon rises, due to the misalignment between the polarization angles of the skyglow and scattered moonlight. Under near ideal observing conditions, we found that the lunar polarization signal was clearly visible (p = 29.2 ± 0.8%) at a site with minimal light pollution 28 km from Berlin's center, but was reduced (p = 11.3 ± 0.3%) within the city itself. Daytime measurements indicate that without skyglow p would likely be in excess of 50%. These results indicate that nocturnal animal navigation systems based on perceiving polarized scattered moonlight likely fail to operate properly in highly light-polluted areas, and that future light pollution models must take polarization into account.

  1. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Goyal, P.S.

    1997-01-01

    Small angle neutron scattering (SANS) is one of the most popular neutron scattering technique both for the basic research and as a tool in the hands of applied scientist. SANS is used for studying the structure of a material on a length scale of 10 - 1000 A. SANS is a diffraction experiment that involves scattering of a monocromatic beam of neutrons in order to obtain structural information about macromolecules and heterogeneities. This paper will discuss the design of SANS spectrometers with a special emphasis on the instruments which are better suited for medium flux reactors. The design of several different types of SANS spectrometers will be given. The optimization procedures and appropriate modifications to suit the budget and the space will be discussed. As an example, the design of a SANS spectrometer at CIRUS reactor Trombay will be given. (author)

  2. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  3. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  4. DESIGN OF ILC EXTRACTION LINE FOR 20 MRAD CROSSING ANGLE

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Moffeit, K.; Seryi, A.; Woods, M.; SLAC; Arnold, R.; Massachusetts U., Amherst; Oliver, W.; Tufts U.; Parker, B.; Brookhaven; Torrence, E.; Oregon U.

    2005-01-01

    One of the two ILC Interaction Regions will have a large horizontal crossing angle which would allow to extract the spent beams in a separate beam line. In this paper, the extraction line design for 20 mrad crossing angle is presented. This beam line transports the primary e + /e - and beamstrahlung photon beams from the IP to a common dump, and includes diagnostic section for energy and polarization measurements. The optics is designed for a large energy acceptance to minimize losses in the low energy tail of the disrupted beam. The extraction optics, diagnostic instrumentation and particle tracking simulations are described

  5. Azimuth and angle gathers from wave equation imaging in VTI media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2009-01-01

    Angles in common-image angle domain gathers refer to the scattering angle at the reflector and provide a natural access to analyzing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-space-frequency planes into angle-space planes simultaneously with applying the imaging condition in a transversely isotropic (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case anisotropic media differs from its isotropic counterpart, difference depending mainly on the strength of anisotropy.

  6. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  7. Realizations of the canonical representation

    Indian Academy of Sciences (India)

    A characterisation of the maximal abelian subalgebras of the bounded operators on Hilbert space that are normalised by the canonical representation of the Heisenberg group is given. This is used to classify the perfect realizations of the canonical representation.

  8. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  9. Students’ mathematical representations on secondary school in solving trigonometric problems

    Science.gov (United States)

    Istadi; Kusmayadi, T. A.; Sujadi, I.

    2017-06-01

    This research aimed to analyse students’ mathematical representations on secondary school in solving trigonometric problems. This research used qualitative method. The participants were 4 students who had high competence of knowledge taken from 20 students of 12th natural-science grade SMAN-1 Kota Besi, Central Kalimantan. Data validation was carried out using time triangulation. Data analysis used Huberman and Miles stages. The results showed that their answers were not only based on the given figure, but also used the definition of trigonometric ratio on verbal representations. On the other hand, they were able to determine the object positions to be observed. However, they failed to determine the position of the angle of depression at the sketches made on visual representations. Failure in determining the position of the angle of depression to cause an error in using the mathematical equation. Finally, they were unsuccessful to use the mathematical equation properly on symbolic representations. From this research, we could recommend the importance of translations between mathematical problems and mathematical representations as well as translations among mathematical representaions (verbal, visual, and symbolic) in learning mathematics in the classroom.

  10. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  11. Functional representations for quantized fields

    International Nuclear Information System (INIS)

    Jackiw, R.

    1988-01-01

    This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators

  12. Harmonic Analysis and Group Representation

    CERN Document Server

    Figa-Talamanca, Alessandro

    2011-01-01

    This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

  13. Naturalising Representational Content

    Science.gov (United States)

    Shea, Nicholas

    2014-01-01

    This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661

  14. Polarized neutrons for Australian scientific research

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2005-01-01

    Polarized neutron scattering has been a feature at ANSTO's HIFAR research reactor since the first polarization analysis (PA) spectrometer Longpol began operation over 30 years ago. Since that time, we have improved performance of Longpol and added new capabilities in several reincarnations of the instrument. Most of the polarized neutron experiments have been in the fields of magnetism and superconductivity, and most of that research has involved PA. Now as we plan our next generation neutron beam facility, at the Replacement Research Reactor (RRR), we intend to continue the tradition of PA but with a far broader scope in mind. Our new capabilities will combine PA and energy analysis with both cold and thermal neutron source spectra. We will also provide capabilities for research with polarized neutrons in small-angle neutron scattering and in neutron reflectometry. The discussion includes a brief historical account of the technical developments with a summary of past and present applications of polarized neutrons at HIFAR, and an outline of the polarized neutron capabilities that will be included in the first suite of instruments, which will begin operation at the new reactor in 2006

  15. Multiple Sparse Representations Classification

    Science.gov (United States)

    Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik

    2015-01-01

    Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and

  16. Higher Representations Duals

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We uncover novel solutions of the 't Hooft anomaly matching conditions for scalarless gauge theories with matter transforming according to higher dimensional representations of the underlying gauge group. We argue that, if the duals exist, they are gauge theories with fermions transforming accord......-Dyson approximation. We use the solutions to gain useful insight on the conformal window of the associated electric theory. A consistent picture emerges corroborating previous results obtained via different analytic methods and in agreement with first principle lattice explorations....

  17. The Knowledge Representation Project

    Science.gov (United States)

    1989-07-01

    representing k nowledge. I,- ONE was designed to represent the kinds of knowlodge constriicts encountered by developers of natural language processing systems...project called Empirically Valid Knowledge Representation in 1986. One of the first tasks of the new project was to translate NIKL into Common LISP -- a...constraints -- the syntactic structures that appear in LOO% :constraints or implies clauses translate into knowledge structures for which we have

  18. Representation of Knowledge

    Science.gov (United States)

    1980-03-01

    methodology involves the design of programs that exhibit Intelligent behavior, Al researchers have often taken a rather pragmatic approach to the subject...This article has not been about representation formalisms per se, but rather about the pragmatics of epistemology, the study of the nature of knowledge...1977. Levels of complexity In discourse for anaphora disambiguation and speech act interpretation. IJCAI 3, 43-49. Carbonell, J. R. 1970. Al in CAI: An

  19. Compact Information Representations

    Science.gov (United States)

    2016-08-02

    information representations, for solving very large-scale engineering problems in data stream computations, real-time network monitoring & anomaly...algorithms. Under the support of this AFOSR grant, a lot of excited research problems have been solved and many more arise. We will continue many...applied computer science, and applied math . Within the scope of this proposal, the focus is preliminarily on the fundamental, theoretical research

  20. Could representations influence strategy?

    OpenAIRE

    Diaz Ruiz, Carlos; Kowalkowski, Christian

    2014-01-01

    A central question in industrial marketing is whether the form in which the external environment of a firm is represented influences the marketing strategy. This influence has been studied generally through case study research, and quantitative evidence is limited. In response to this limitation, this paper reports on a quasi-experiment investigating whether market representations have a constructive aspect in business. Empirically, this study compares two types of ostensive and performative ...

  1. Non-Representational Theory

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    Dette kapitel gennemgår den såkaldte ”Non-Representational Theory” (NRT), der primært er kendt fra den Angelsaksiske humangeografi, og som særligt er blevet fremført af den engelske geograf Nigel Thrift siden midten af 2000 årtiet. Da positionen ikke kan siges at være specielt homogen vil kapitlet...

  2. Representation Without Reconstruction

    OpenAIRE

    Edelman, Shimon

    1994-01-01

    According to the paradigmatic reconstructionist approach to vision, a visual system must first reconstruct the world internally, then extract from the resulting representation whatever features are necessary for the task at hand. Recent developments in computational vision and visual neuroscience show that many of the features needed for tasks ranging from spatial discrimination to object recognition can be extracted from the image directly, much as in Gibson's hypothesis of direct perception...

  3. Metric representation of DNA sequences.

    Science.gov (United States)

    Wu, Z B

    2000-07-01

    A metric representation of DNA sequences is borrowed from symbolic dynamics. In view of this method, the pattern seen in the chaos game representation of DNA sequences is explained as the suppression of certain nucleotide strings in the DNA sequences. Frequencies of short nucleotide strings and suppression of the shortest ones in the DNA sequences can be determined by using the metric representation.

  4. Mental Representations of Weekdays.

    Directory of Open Access Journals (Sweden)

    David A Ellis

    Full Text Available Keeping social appointments involves keeping track of what day it is. In practice, mismatches between apparent day and actual day are common. For example, a person might think the current day is Wednesday when in fact it is Thursday. Here we show that such mismatches are highly systematic, and can be traced to specific properties of their mental representations. In Study 1, mismatches between apparent day and actual day occurred more frequently on midweek days (Tuesday, Wednesday, and Thursday than on other days, and were mainly due to intrusions from immediately neighboring days. In Study 2, reaction times to report the current day were fastest on Monday and Friday, and slowest midweek. In Study 3, participants generated fewer semantic associations for "Tuesday", "Wednesday" and "Thursday" than for other weekday names. Similarly, Google searches found fewer occurrences of midweek days in webpages and books. Analysis of affective norms revealed that participants' associations were strongly negative for Monday, strongly positive for Friday, and graded over the intervening days. Midweek days are confusable because their mental representations are sparse and similar. Mondays and Fridays are less confusable because their mental representations are rich and distinctive, forming two extremes along a continuum of change.

  5. [Time perceptions and representations].

    Science.gov (United States)

    Tordjman, S

    2015-09-01

    Representations of time and time measurements depend on subjective constructs that vary according to changes in our concepts, beliefs, societal needs and technical advances. Similarly, the past, the future and the present are subjective representations that depend on each individual's psychic time and biological time. Therefore, there is no single, one-size-fits-all time for everyone, but rather a different, subjective time for each individual. We need to acknowledge the existence of different inter-individual times but also intra-individual times, to which different functions and different rhythms are attached, depending on the system of reference. However, the construction of these time perceptions and representations is influenced by objective factors (physiological, physical and cognitive) related to neuroscience which will be presented and discussed in this article. Thus, studying representation and perception of time lies at the crossroads between neuroscience, human sciences and philosophy. Furthermore, it is possible to identify several constants among the many and various representations of time and their corresponding measures, regardless of the system of time reference. These include the notion of movements repeated in a stable rhythmic pattern involving the recurrence of the same interval of time, which enables us to define units of time of equal and invariable duration. This rhythmicity is also found at a physiological level and contributes through circadian rhythms, in particular the melatonin rhythm, to the existence of a biological time. Alterations of temporality in mental disorders will be also discussed in this article illustrated by certain developmental disorders such as autism spectrum disorders. In particular, the hypothesis will be developed that children with autism would need to create discontinuity out of continuity through stereotyped behaviors and/or interests. This discontinuity repeated at regular intervals could have been

  6. Pioneers of representation theory

    CERN Document Server

    Curtis, Charles W

    1999-01-01

    The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductor...

  7. Exp6-polar thermodynamics of dense supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S; Fried, L E

    2007-12-13

    We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.

  8. Optical Modeling and Polarization Calibration for CMB Measurements with Actpol and Advanced Actpol

    Science.gov (United States)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; hide

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first

  9. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  10. Gravitational Lens Time Delays Using Polarization Monitoring

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-11-01

    Full Text Available Gravitational lens time delays provide a means of measuring the expansion of the Universe at high redshift (and therefore in the ‘Hubble flow’ that is independent of local calibrations. It was hoped that many of the radio lenses found in the JVAS/CLASS survey would yield time delays as these were selected to have flat spectra and are dominated by multiple compact components. However, despite extensive monitoring with the Very Large Array (VLA, time delays have only been measured for three of these systems (out of 22. We have begun a programme to reanalyse the existing VLA monitoring data with the goal of producing light curves in polarized flux and polarization position angle, either to improve delay measurements or to find delays for new sources. Here, we present preliminary results on the lens system B1600+434 which demonstrate the presence of correlated and substantial polarization variability in each image.

  11. Calibration of the instrumental polarization in LEST.

    Science.gov (United States)

    Stenflo, J. O.

    A method to calibrate the instrumental polarization of LEST (i.e., of the optics in front of the polarization and analysis package at the LEST secondary focus) is described and analysed. A laser sends a beam from the LEST observing room at ground level backwards through the telescope. The modulated return beam that has been reflected at the 2.4 m entrance window is received by the detector system at the end focus in the LEST observing room. Because of a wedge in the entrance window the reflections at the front and back window surfaces may be examined separately. The detected laser beam signals at the three AC frequencies are recorded as functions of the position angle of the modulator package at the LEST secondary focus. Aided by a theorem that is proven in the present paper, the information recorded by the detector system allows all unknowns of the instrumental polarization to be fully determined.

  12. Backscattering and negative polarization of agglomerate particles.

    Science.gov (United States)

    Zubko, Evgenij; Shkuratov, Yuriy; Hart, Matthew; Eversole, Jay; Videen, Gorden

    2003-09-01

    We used the discrete dipole approximation to study the backscattering of agglomerate particles consisting of oblong monomers. We varied the aspect ratio of the monomers from approximately 1 (sphere) to 4, while we kept the total particle volume equivalent to that of an x = 10 sphere for m = 1.59 + i0 and 1.50 + i0 and considered two values of agglomerate packing density: rho = 0.25 and rho = 0.1. We found that these particles do not display a prominent brightness opposition effect but do produce significant negative polarization over a range of near-backscattering angles. Increasing the monomers' aspect ratio can make the negative polarization much more prominent. We have noted also that decreasing m and p can reduce the amplitude of the negative polarization for these particles.

  13. Comparison of different methods to measure contact angles of soil colloids.

    Science.gov (United States)

    Shang, Jianying; Flury, Markus; Harsh, James B; Zollars, Richard L

    2008-12-15

    We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar-liquid interactions (smectite), (2) films with pores and with polar-liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar-liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3 degrees); but mostly the differences ranged from 10 degrees to 40 degrees among the different methods. The thin-layer and column wicking methods were the least consistent methods.

  14. Optimization of a solid state polarizing bender for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.R.; Washington, A.L.; Stonaha, P.; Ashkar, R.; Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Krist, T. [Helmholtz Zentrum Berlin, 14109 Berlin (Germany); Pynn, Roger [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge TN (United States)

    2014-12-21

    We have designed a solid state bender to polarize cold neutrons for the Spin Echo Scattering Angle Measurement (SESAME) instrument at the Low Energy Neutron Source (LENS) at Indiana University. The design attempts to achieve high neutron polarization across a wide range of neutron wavelengths and divergence angles by optimizing the supermirror coating materials. The transmission and polarizing efficiency of the bender were modeled using the VITESS software, then measured at both continuous-wave and pulsed neutron sources. While the measured peak neutron transmission and polarization agree reasonably well with simulations, neither quantity has been successfully modeled for long wavelength neutrons. These results imply an insufficient understanding of the magnetic microstructure of the supermirror coatings used.

  15. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  16. Unbiased determination of polarized parton distributions and their uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Tait Institute, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Guffanti, Alberto [The Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland)

    2013-09-01

    We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations.

  17. Unbiased determination of polarized parton distributions and their uncertainties

    International Nuclear Information System (INIS)

    Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2013-01-01

    We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations

  18. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  19. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  20. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ghum and rice. The angles have a big influence on the design offlow and storage structures of ... the angles of internal friction for the same grains and same moisture contents. The data ob- tained were fed into SAS statistical software for step-wise regression analysis. A model of the ..... tion, Application and Validation of En-.

  1. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  2. QED corrections in deep-inelastic scattering from tensor polarized deuteron target

    CERN Document Server

    Gakh, G I

    2001-01-01

    The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles

  3. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  4. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    Science.gov (United States)

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  5. Categorification and higher representation theory

    CERN Document Server

    Beliakova, Anna

    2017-01-01

    The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

  6. [Analysis of influencing factors of snow hyperspectral polarized reflections].

    Science.gov (United States)

    Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin

    2010-02-01

    Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.

  7. Representation of speech variability.

    Science.gov (United States)

    Bent, Tessa; Holt, Rachael F

    2017-07-01

    Speech signals provide both linguistic information (e.g., words and sentences) as well as information about the speaker who produced the message (i.e., social-indexical information). Listeners store highly detailed representations of these speech signals, which are simultaneously indexed with linguistic and social category membership. A variety of methodologies-forced-choice categorization, rating, and free classification-have shed light on listeners' cognitive-perceptual representations of the social-indexical information present in the speech signal. Specifically, listeners can accurately identify some talker characteristics, including native language status, approximate age, sex, and gender. Additionally, listeners have sensitivity to other speaker characteristics-such as sexual orientation, regional dialect, native language for non-native speakers, race, and ethnicity-but listeners tend to be less accurate or more variable at categorizing or rating speakers based on these constructs. However, studies have not necessarily incorporated more recent conceptions of these constructs (e.g., separating listeners' perceptions of race vs ethnicity) or speakers who do not fit squarely into specific categories (e.g., for sex perception, intersex individuals; for gender perception, genderqueer speakers; for race perception, multiracial speakers). Additional research on how the intersections of social-indexical categories influence speech perception is also needed. As the field moves forward, scholars from a variety of disciplines should be incorporated into investigations of how listeners' extract and represent facets of personal identity from speech. Further, the impact of these representations on our interactions with one another in contexts outside of the laboratory should continue to be explored. WIREs Cogn Sci 2017, 8:e1434. doi: 10.1002/wcs.1434 This article is categorized under: Linguistics > Language Acquisition Linguistics > Language in Mind and Brain Psychology

  8. Origin of Cold-Air Outbreaks: Polar Air Mass Formation from a Radiation Perspective

    Science.gov (United States)

    Bliankinshtein, N.; Huang, Y.; Gyakum, J. R.; Atallah, E.

    2017-12-01

    It is well known that arctic processes have significant impacts on mid-latitude weather systems. As a general representation of these processes, one can imagine the polar vortex, which is a large upper-level low-pressure system above the North Pole with cold and dense air masses underneath, and surrounded by a jet stream. This jet stream is essentially a large amplitude Rossby wave propagating eastward. When it makes a cyclonic loop, it encloses a region of the vortex that may extend far to the south causing a cold wave, cold spell or a cold-air outbreak. Cold-air outbreaks event can be associated not only with anomalously low temperatures but also with extreme precipitation and persistent weather regimes occurring at mid-latitude sites, so forecasting of these events is challenging. This study focuses on the formation of the air masses trapped in these regions, from a radiation perspective. We consider both observational and modeling approaches to the phenomenon. A common way to consider cold air mass formation is to implement a single-column radiative-convective equilibrium model and to run it under the conditions of polar night. Thus one can simulate a transition of a warm maritime air mass to a cold continental one as a result of longwave radiative cooling without energy supply in the form of solar radiation. The lack of solar heating is relevant not only for the absolute darkness of polar night, but also when the sun shines just above the horizon, because of a large solar zenith angle and a high albedo. In this study we use reanalysis data to identify the events of cold-air formation over Canada's North and construct a radiative-convective model based on the Rapid Radiative Transfer Model and parameterized convective schemes. We analyze and simulate the evolution of the air masses in a Lagrangian framework and quantify the radiative contribution to these processes.

  9. A LEGO Mindstorms Brewster angle microscope

    Science.gov (United States)

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  10. Representations of commonsense knowledge

    CERN Document Server

    Davis, Ernest

    1990-01-01

    Representations of Commonsense Knowledge provides a rich language for expressing commonsense knowledge and inference techniques for carrying out commonsense knowledge. This book provides a survey of the research on commonsense knowledge.Organized into 10 chapters, this book begins with an overview of the basic ideas on artificial intelligence commonsense reasoning. This text then examines the structure of logic, which is roughly analogous to that of a programming language. Other chapters describe how rules of universal validity can be applied to facts known with absolute certainty to deduce ot

  11. Representations from the past

    DEFF Research Database (Denmark)

    Sammut, Gordon; Tsirogianni, Stavroula; Wagoner, Brady

    2012-01-01

    a deconstructive effort that maps the evolutionary trajectory of a representational project in terms of its adaptation over time. We go on to illustrate our proposal visiting data that emerged in an inquiry investigating Maltese immigrants’ perspectives towards their countries of settlement and origin. This data...... explain how Maltese immigrants to Britain opt for certain forms of intercultural relations than others that are normally Integr preferable. We demonstrate that these preferences rely on an evolved justification of the Maltese getting by with foreign rulers that other scholars have traced back...

  12. Design of triple-band polarization controlled terahertz metamaterial absorber

    Science.gov (United States)

    Wang, Ben-Xin; Xie, Qin; Dong, Guangxi; Huang, Wei-Qing

    2018-02-01

    A kind of triple-band polarization tunable terahertz absorber based on a metallic mirror and a metallic patch structure with two indentations spaced by an insulating medium layer is presented. Results prove that three near-perfect absorption peaks with average absorption coefficients of 98.25% are achieved when the polarization angle is equal to zero, and their absorptivities gradually decrease (and even disappear) by increasing the angle of polarization. When the polarization angle is increased to 90°, three new resonance modes with average absorption rates of 96.59% can be obtained. The field distributions are given to reveal the mechanisms of the triple-band absorption and the polarization tunable characteristics. Moreover, by introducing photosensitive silicon materials (its conductivity can be changed by the pump beam) in the indentations of the patch structure, the number of resonance peaks of the device can be actively tuned from triple-band to dual-band. The presented absorbers have potential applications, such as controlling thermal emissivity, and detection of polarization direction of the incident waves.

  13. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-12-01

    The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs

  14. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  15. An angle-sensitive detection system for scattered heavy ions

    CERN Document Server

    Ganz, R E; Bär, R; Bethge, Klaus; Bokemeyer, H; Folger, H; Samek, M; Salabura, P; Schwalm, D; Stiebing, K E

    1999-01-01

    A compact detection system for heavy ions scattered in collisions at the Coulomb barrier is presented. This system, consisting of four identical, low-pressure Parallel Plate Avalanche Counter (PPAC) modules with two sensitive layers each, was built to operate in an ultra-high-vacuum environment inside the EPoS II solenoid spectrometer at GSI Darmstadt. The detector covers polar angles between 20 deg. and 70 deg. with respect to the beam axis, and about 80% of 2 pi in azimuthal angle. Segmented cathodes and a delay-line read-out allow for a determination of both angles with a precision of delta THETA approx 0.7 deg. in polar and delta PHI approx 1.5 deg. in azimuthal angle, respectively. The system has been proven to be capable of handling instantaneous rates of up to 5x10 sup 5 detected ions per second per module. It neither exhibits the degradation of detection efficiency nor loss in resolution over a 500 h period of a 6 MeV/u sup 2 sup 3 sup 8 U+ sup 1 sup 8 sup 1 Ta measurement at average luminosities of 8...

  16. Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalis L.).

    Science.gov (United States)

    Chiou, Tsyr-Huei; Mäthger, Lydia M; Hanlon, Roger T; Cronin, Thomas W

    2007-10-01

    On every arm of cuttlefish and squid there is a stripe of high-reflectance iridophores that reflects highly polarized light. Since cephalopods possess polarization vision, it has been hypothesized that these polarized stripes could serve an intraspecific communication function. We determined how polarization changes when these boneless arms move. By measuring the spectral and polarizing properties of the reflected light from samples at various angles of tilt and rotation, we found that the actual posture of the arm has little or no effect on partial polarization or the e-vector angle of the reflected light. However, when the illumination angle changed, the partial polarization of the reflected light also changed. The spectral reflections of the signals were also affected by the angle of illumination but not by the orientation of the sample. Electron microscope samples showed that these stripes are composed of several groups of multilayer platelets within the iridophores. The surface normal to each group is oriented at a different angle, which produces essentially constant reflection of polarized light over a range of viewing angles. These results demonstrate that cuttlefish and squid could send out reliable polarization signals to a receiver regardless of arm orientation.

  17. Uncertainties of atmospheric polarimetric measurements with sun-sky radiometers induced by errors of relative orientations of polarizers

    Science.gov (United States)

    Li, Li; Li, Zhengqiang; Li, Kaitao; Sun, Bin; Wu, Yanke; Xu, Hua; Xie, Yisong; Goloub, Philippe; Wendisch, Manfred

    2018-04-01

    In this study errors of the relative orientations of polarizers in the Cimel polarized sun-sky radiometers are measured and introduced into the Mueller matrix of the instrument. The linearly polarized light with different polarization directions from 0° to 180° (or 360°) is generated by using a rotating linear polarizer in front of an integrating sphere. Through measuring the referential linearly polarized light, the errors of relative orientations of polarizers are determined. The efficiencies of the polarizers are obtained simultaneously. By taking the error of relative orientation into consideration in the Mueller matrix, the accuracies of the calculated Stokes parameters, the degree of linear polarization, and the angle of polarization are remarkably improved. The method may also apply to other polarization instruments of similar types.

  18. Social Representations of Intelligence

    Directory of Open Access Journals (Sweden)

    Elena Zubieta

    2016-02-01

    Full Text Available The article stresses the relationship between Explicit and Implicit theories of Intelligence. Following the line of common sense epistemology and the theory of Social Representations, a study was carried out in order to analyze naive’s explanations about Intelligence Definitions. Based on Mugny & Carugati (1989 research, a self-administered questionnaire was designed and filled in by 286 subjects. Results are congruent with the main hyphotesis postulated: A general overlap between explicit and implicit theories showed up. According to the results Intelligence appears as both, a social attribute related to social adaptation and as a concept defined in relation with contextual variables similar to expert’s current discourses. Nevertheless, conceptions based on “gifted ideology” still are present stressing the main axes of Intelligence debate: biological and sociological determinism. In the same sense, unfamiliarity and social identity are reaffirmed as organizing principles of social representation. The distance with the object -measured as the belief in intelligence differences as a solve/non solve problem- and the level of implication with the topic -teachers/no teachers- appear as discriminating elements at the moment of supporting specific dimensions. 

  19. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  20. Optical polarization: background and camouflage

    Science.gov (United States)

    Škerlind, Christina; Hallberg, Tomas; Eriksson, Johan; Kariis, Hans; Bergström, David

    2017-10-01

    Polarimetric imaging sensors in the electro-optical region, already military and commercially available in both the visual and infrared, show enhanced capabilities for advanced target detection and recognition. The capabilities arise due to the ability to discriminate between man-made and natural background surfaces using the polarization information of light. In the development of materials for signature management in the visible and infrared wavelength regions, different criteria need to be met to fulfil the requirements for a good camouflage against modern sensors. In conventional camouflage design, the aimed design of the surface properties of an object is to spectrally match or adapt it to a background and thereby minimizing the contrast given by a specific threat sensor. Examples will be shown from measurements of some relevant materials and how they in different ways affect the polarimetric signature. Dimensioning properties relevant in an optical camouflage from a polarimetric perspective, such as degree of polarization, the viewing or incident angle, and amount of diffuse reflection, mainly in the infrared region, will be discussed.

  1. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  2. Polarization in Sagittarius A*

    OpenAIRE

    Bower, Geoffrey C.

    2000-01-01

    We summarize the current state of polarization observations of Sagittarius A*, the compact radio source and supermassive black hole candidate in the Galactic Center. These observations are providing new tools for understanding accretion disks, jets and their environments. Linear polarization observations have shown that Sgr A* is unpolarized at frequencies as high as 86 GHz. However, recent single-dish observations indicate that Sgr A* may have strong linear polarization at frequencies higher...

  3. Polarization Signals of Common Spacecraft Materials

    Science.gov (United States)

    Gravseth, Ian; Culp, Robert D.; King, Nicole

    1996-01-01

    This is the final report documenting the results of the polarization testing of near-planar objects with various reflectance properties. The purpose of this investigation was to determine the portion of the reflected signal which is polarized for materials commonly used in space applications. Tests were conducted on several samples, with surface characteristics ranging from highly reflective to relatively dark. The measurements were obtained by suspending the test object in a beam of collimated light. The amount of light falling on the sample was controlled by a circular aperture placed in the light field. The polarized reflectance at various phase angles was then measured. A nonlinear least squares fitting program was used for analysis. For the specular test objects, the reflected signals were measured in one degree increments near the specular point. Otherwise, measurements were taken every five degrees in phase angle. Generally, the more diffuse surfaces had lower polarized reflectances than their more specular counterparts. The reflected signals for the more diffuse surfaces were spread over a larger phase angle range, while the signals from the more specular samples were reflected almost entirely within five degrees of angular deviation from the specular point. The method used to test all the surfaces is presented. The results of this study will be used to support the NASA Orbital Debris Optical Signature Tests. These tests are intended to help better understand the reflectance properties of materials often used in space applications. This data will then be used to improve the capabilities for identification and tracking of space debris.

  4. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  5. Linear representation of a graph

    Directory of Open Access Journals (Sweden)

    Eduardo Montenegro

    2019-10-01

    Full Text Available In this paper the linear representation of a graph is defined. A linear representation of a graph is a subgroup of $GL(p,\\mathbb{R}$, the group of invertible matrices of order $ p $ and real coefficients. It will be demonstrated that every graph admits a linear representation. In this paper, simple and finite graphs will be used, framed in the graphs theory's area

  6. Polarization Study for NLC Positron Source Using EGS4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2000-09-20

    SLAC is exploring a polarized positron source to study new physics for the NLC project. The positron source envisioned in this paper consists of a polarized electron source, a 50-MeV electron accelerator, a thin target less-than-or-equal-to 0.2 radiation length for positron production, and a capture system for high-energy, small angular divergence positrons. The EGS4 code was used to study the yield, energy spectra, emission-angle distribution, and the mean polarization of the positrons emanating from W-Re and Ti targets hit by longitudinally polarized electron and photon beams. To account for polarization within the EGS4 code a method devised by Flottmann was used, which takes into account polarization transfer for pair production, bremsstrahlung, and Compton interactions. A mean polarization of 0.85 for positrons with energies greater than 25 MeV was obtained. Most of the high-energy positrons were emitted within a forward angle of 20 degrees. The yield of positrons above 25 MeV per incident photon was 0.034, which was about 70 times higher than that obtained with an electron beam.

  7. Linear Polarization Properties of Parsec-Scale AGN Jets

    Directory of Open Access Journals (Sweden)

    Alexander B. Pushkarev

    2017-12-01

    Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  8. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  9. Non-commutativity in polar coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, James P. [Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Instituto de Fisica y Matematicas, Morelia, Michoacan (Mexico)

    2017-05-15

    We reconsider the fundamental commutation relations for non-commutative R{sup 2} described in polar coordinates with non-commutativity parameter θ. Previous analysis found that the natural transition from Cartesian coordinates to the traditional polar system led to a representation of [r, φ] as an everywhere diverging series. In this article we compute the Borel resummation of this series, showing that it can subsequently be extended throughout parameter space and hence provide an interpretation of this commutator. Our analysis provides a complete solution for arbitrary r and θ that reproduces the earlier calculations at lowest order and benefits from being generally applicable to problems in a two-dimensional non-commutative space. We compare our results to previous literature in the (pseudo-)commuting limit, finding a surprising spatial dependence for the coordinate commutator when θ >> r{sup 2}. Finally, we raise some questions for future study in light of this progress. (orig.)

  10. Intentionality, Representation, and Anticipation

    Science.gov (United States)

    De Preester, Helena

    2002-09-01

    Both Brentano and Merleau-Ponty have developed an account of intentionality, which nevertheless differ profoundly in the following respect. According to Brentano, intentionality mainly is a matter of mental presentations. This marks the beginning of phenomenology's difficult relation with the nature of the intentional reference. Merleau-Ponty, on the other hand, has situated intentionality on the level of the body, a turn which has important implications for the nature of intentionality. Intentionality no longer is primarily based on having (re)presentations, but is rooted in the dynamics of the living body. To contrast those approaches enables us to make clear in what way intentionality is studied nowadays. On the one hand, intentionality is conceived of as a matter of formal-syntactical causality in cognitive science, and in particular in classical-computational theory. On the other hand, a interactivist approach offers a more Merleau-Ponty-like point of view, in which autonomy, embodiment and interaction are stressed.

  11. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP 4 . A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  12. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  13. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  14. Preschool Children's Participation in Representational and Non-Representational Activities

    Science.gov (United States)

    Braswell, Gregory S.

    2017-01-01

    The present study examined representational and non-representational activities in which children in a Head Start classroom participated. This was an investigation from the perspective of cultural-historical activity theory of how components (e.g. artifacts and division of labour) of classroom activities vary across and within types of activities.…

  15. REPRESENTATION OF DIFFERENCES IN BRAZILIAN JOURNALISTIC DISCOURSE

    Directory of Open Access Journals (Sweden)

    Fernando Resende

    2011-02-01

    Full Text Available Considering the technological advance, which enhances the
    production of mediatic discourses, and the notion of a libidinal power installed in our globalized societies, reflecting upon representation of differences seems to be a major issue. This essay discusses the production of journalistic discourses from an epistemological perspective. The field of media is taken as constituted by a triple component – discourse/narrative/machines – and we suggest that this triad has proved to be incomplete: discourse and narrative, once they really are vertexes of the triangle, are absences. Two journalistic-documentary productions – which intend to represent life in the slums of Brazil – are compared in order to reflect upon representation of differences in Brazilian journalistic discourse. In view of the up-to-date polarization and pulverization of discourses, we suggest that in the perspective of the journalistic discourse, one can only speak about alterity if one tries to comprehend the ways news is staged.

  16. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  17. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  18. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  19. Polar Science Is Cool!

    Science.gov (United States)

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  20. Observations at large zenith angles

    CERN Document Server

    Schroeder, F

    2000-01-01

    Cherenkov telescope observations at zenith angles >70 deg. are capable of providing large collection areas for high energy gamma-induced air showers. In order to provide a full Monte Carlo simulation of the large zenith angle observations the air shower simulation code CORSIKA was modified to treat particles in a curved geometry. First results of studies with the stand alone telescope HEGRA CT1 are presented.

  1. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  2. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  3. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  4. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  5. Incident angle dependence of reactions between graphene and hydrogen atom by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Ito, Atsushi

    2010-01-01

    Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ and azimuthal angle φ of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ. Reflection rate becomes larger with increasing θ, and the θ dependence of adsorption rate is also found. The θ dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. φ dependence of penetration rate is also found for large θ. (author)

  6. All-angle collimation of incident light in μ-near-zero metamaterials.

    Science.gov (United States)

    Fedorov, Vladimir Yu; Nakajima, Takashi

    2013-11-18

    We use the theory of inhomogeneous waves to study the transmission of light in μ-near-zero metamaterials. We find the effect of all-angle collimation of incident light, which means that the vector of energy flow in a wave transmitted to a μ-near-zero metamaterial is perpendicular to the interface for any incident angles if an incident wave is s-polarized. This effect is similar to the all-angle collimation of incident light recently found through a different theoretical framework in ε-near-zero metamaterials for a p-polarized incident wave [S. Feng, Phys. Rev. Lett. 108, 193904 (2012)]. To provide a specific example, we consider the transmission of light in a negative-index metamaterial in the spectral region with a permeability resonance, and show that all-angle collimation indeed takes place at the wavelength for which the real part of permeability is vanishingly small.

  7. [Study on the Relationship between Hyperspectral Polarized Information of Soil Salinization and Soil Line].

    Science.gov (United States)

    Xu, Wen-ru; Han, Yang; Qin, Yan; Jin, Lun

    2015-10-01

    It has important significance to assess soil salinization correctly for agricultural production and ecological environment. Soil line can indicate soil salinization in a certain extent. But the soil spectral characteristics obtained at different angles will change with the changing of the soil line parameters. Base on polarized hyper-spectral reflectivity obtained in the laboratory, the study analyzes the relationship between the soil salinization and soil line parameters, explores preliminarily the best way to obtain soil line. The results show: (1) Soil spectral reflectance gradually increased slowly with increasing band. With the enhanced level of salinization, soil spectral reflectance of the first to be gradually reduced to a critical value and then gradually increased. (2) Soil salinization has a linear correlation with the soil slope and intercept. With the enhanced level of salinization, soil slope becomes smaller, and intercept becomes larger. (3) Viewing zenith angle affects the relationship between the polarization state and soil line parameters. When viewing zenith angle is fixed, there is a regularity between the polarization state and soil line parameters. When the viewing zenith angle is between 0 degrees-50 degrees, with the angle becoming larger, soil slope becomes larger, and intercept becomes smaller. (4) Polarization states affects degree of correlation between soil salinization and soil line parameters. When polarization angle is 90 degrees and viewing zenith angle is 25 degrees, the relationship model between soil salinization and soil line parameters is better. The research results can be used to evaluate the degree of salinization soil.

  8. Polar Grid Navigation Algorithm for Unmanned Underwater Vehicles.

    Science.gov (United States)

    Yan, Zheping; Wang, Lu; Zhang, Wei; Zhou, Jiajia; Wang, Man

    2017-07-09

    To solve the unavailability of a traditional strapdown inertial navigation system (SINS) for unmanned underwater vehicles (UUVs) in the polar region, a polar grid navigation algorithm for UUVs is proposed in this paper. Precise navigation is the basis for UUVs to complete missions. The rapid convergence of Earth meridians and the serious polar environment make it difficult to establish the true heading of the UUV at a particular instant. Traditional SINS and traditional representation of position are not suitable in the polar region. Due to the restrictions of the complex underwater conditions in the polar region, a SINS based on the grid frame with the assistance of the OCTANS and the Doppler velocity log (DVL) is chosen for a UUV navigating in the polar region. Data fusion of the integrated navigation system is realized by a modified fuzzy adaptive Kalman filter (MFAKF). By neglecting the negative terms, and using T-S fuzzy logic in the adaptive regulation of the noise covariance, the proposed filter algorithm can improve navigation accuracy. Simulation and experimental results demonstrate that the polar grid navigation algorithm can effectively navigate a UUV sailing in the polar region.

  9. A new optical method for measuring surface temperature at large incident probe angles

    Science.gov (United States)

    Lee, A. S.; Norris, P. M.

    1997-02-01

    A novel thermoreflectance technique has been developed for noncontact temperature measurements using laser light incident at large angles on solid materials and devices. The method involves measuring the differential reflectance from a polarization modulated laser beam. The polarization differential reflectance technique is demonstrated on single-crystal Si wafers and on a polycrystalline carbon thin film over a temperature range of 20-60 °C. The method is shown to be an extremely sensitive temperature probe for near grazing angle measurements, which could be useful for monitoring the surface temperature of closely stacked silicon wafers used in batch processing in the microelectronics industry.

  10. Dielectric relaxation of ethanol and N-methyl acetamide polar ...

    Indian Academy of Sciences (India)

    ... temperatures except at 35°C. This signifies the validity of both the proposed methods in estimating and . The molecular dynamics of the polar mixture are ascertained from Eyring rate theory. Theoretical dipole moments from bond angles and bond moments ( theo ) are also calculated to predict associational aspects.

  11. Polarization-controlled luminaires utilizing multiple Fresnel reflections

    Science.gov (United States)

    Falicoff, Waqidi; Minano, Juan C.; Caulfield, H. John; Alvarez, Roberto

    2003-11-01

    A novel luminaire utilizes repeated Fresnel reflections by angled surfaces to transform a small collimated input beam into a controlled output pattern with a high degree of polarization, either linear or radial. Applications to backlighting, front-lighting, optical communications and automotive lighting will be discussed.

  12. Towards all-dielectric, polarization-independent optical cloaks

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    Fully enclosing, all-dielectric cloaks working for both E-z and H-z polarizations simultaneously are presented in this letter. The cloaks are effective for two antiparallel angles of incidence, and the layout of standard dielectric material in the cloak is determined by topology optimization. Sca...... effectively when distributing a material with lower permittivity than the background material....

  13. Field spectrometer measurement errors in presence of partially polarized light; evaluation of ground truth measurement accuracy.

    Science.gov (United States)

    Lévesque, Martin P; Dissanska, Maria

    2016-11-28

    Considering that natural light is always partially polarized (reflection, Rayleigh scattering, etc.) and the alteration of the spectral response of spectrometers due to the polarization, some concerns were raised about the accuracy and variability of spectrometer outdoor measurements in field campaigns. We demonstrated by simple experiments that, in some circumstances, spectral measurements can be affected by the polarization. The signal variability due to polarization sensitivity of the spectrometer for the measured sample was about 5-10%. We noted that, measuring surfaces at right angle (a frequently used measurement protocol) minimized the problems due to polarization, producing valid results. On the other hand, measurements acquired with a slant angle are more or less accurate; an important proportion of the signal variability is due to the polarization. Direct sun reflection and reflection from close objects must be avoided.

  14. Measurement of the polarization transfer coefficient K sub LS in the p vectorp yields d vector. pi. sup + reaction

    Energy Technology Data Exchange (ETDEWEB)

    Abegg, R.; Green, P.W.; Greeniaus, L.G.; Hutcheon, D.A. (TRIUMF, Vancouver, British Columbia (Canada) Centre for Subatomic Research, Univ. Alberta, Edmonton (Canada)); Yanlin, Y.; Korkmaz, E.; Mack, D.; Moss, G.A.; Olsen, W.C. (Centre for Subatomic Research, Univ. Alberta, Edmonton (Canada)); Stevenson, N.R. (Dept. of Physics, Univ. Saskatchewan, Saskatoon (Canada))

    1992-04-06

    We have measured the polarization transfer asymmetries of the reaction p vectorp{yields}d vector{pi}{sup +} from the longitudinally polarized proton to the sideways polarized deuteron for deuteron center-of-mass angles from 25deg to 140deg. Our longitudinal to sideways polarization transfer data are best represented by the partial-wave amplitude fits of Bugg et al. while several model calculations are only in qualitative agreement. (orig.).

  15. Measurement of the polarization transfer coefficient KLS in the p vectorp→d vectorπ+ reaction

    International Nuclear Information System (INIS)

    Abegg, R.; Green, P.W.; Greeniaus, L.G.; Hutcheon, D.A.; Yanlin, Y.; Korkmaz, E.; Mack, D.; Moss, G.A.; Olsen, W.C.; Stevenson, N.R.

    1992-01-01

    We have measured the polarization transfer asymmetries of the reaction p vectorp→d vectorπ + from the longitudinally polarized proton to the sideways polarized deuteron for deuteron center-of-mass angles from 25deg to 140deg. Our longitudinal to sideways polarization transfer data are best represented by the partial-wave amplitude fits of Bugg et al. while several model calculations are only in qualitative agreement. (orig.)

  16. Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids

    DEFF Research Database (Denmark)

    Geiger, Michel-Andreas; Orwick-Rydmark, Marcella; Märker, Katharina

    2016-01-01

    Dynamic nuclear polarization exploits electron spin polarization to boost signal-to-noise in magic-angle-spinning (MAS) NMR, creating new opportunities in materials science, structural biology, and metabolomics studies. Since protein NMR spectra recorded under DNP conditions can show improved...

  17. J/psi polarization in pp collisions at sqrt(s)=7 TeV

    DEFF Research Database (Denmark)

    ALICE Collaboration, The; Abelev, B.; Abrahantes Quintana, A.

    2012-01-01

    The ALICE Collaboration has studied J/psi production in pp collisions at sqrt(s)=7 TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/psi polarization parameters lambda_theta and lambda_phi were obtained. ...

  18. Meaningful Representations Prevent Catastrophic Interference

    NARCIS (Netherlands)

    Bieger, J.; Sprinkhuizen-Kuyper, I.G.; Rooij, I.J.E.I. van; Calders, T.; Tuyls, K.; Pechenizkiy, M.

    2009-01-01

    Artificial Neural Networks (ANNs) attempt to mimic human neural networks in order to perform tasks. In order to do this, tasks need to be represented in ways that the network understands. In ANNs these representations are often arbitrary, whereas in humans it seems that these representations are

  19. Revealing Children's Implicit Spelling Representations

    Science.gov (United States)

    Critten, Sarah; Pine, Karen J.; Messer, David J.

    2013-01-01

    Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned…

  20. $\\alpha$-Representation for QCD

    OpenAIRE

    Tuan, Richard Hong

    1998-01-01

    An $\\alpha$-parameter representation is derived for gauge field theories.It involves, relative to a scalar field theory, only constants and derivatives with respect to the $\\alpha$-parameters. Simple rules are given to obtain the $\\alpha$-representation for a Feynman graph with an arbitrary number of loops in gauge theories in the Feynman gauge.

  1. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  2. "Ladettes," Social Representations, and Aggression.

    Science.gov (United States)

    Muncer, Steven; Campbell, Anne; Jervis, Victoria; Lewis, Rachel

    2001-01-01

    Examined the relationship among "laddishness" (traditionally working-class, youthful, male social behavior by young women), social representations, and self-reported aggression among English college students. Measures of aggression correlated with holding more instrumental representations of aggression. Females indicated no relationship…

  3. Combinatorial representations of token sequences

    NARCIS (Netherlands)

    Elzinga, C.H.

    2005-01-01

    This paper presents new representations of token sequences, with and without associated quantities, in Euclidean space. The representations are free of assumptions about the nature of the sequences or the processes that generate them. Algorithms and applications from the domains of structured

  4. Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis.

    Science.gov (United States)

    Han, Jiefei; Yang, Kecheng; Xia, Min; Sun, Liying; Cheng, Zao; Liu, Hao; Ye, Junwei

    2015-04-10

    Active polarization imaging technology is a convenient and promising method for imaging in a scattering medium such as fog and turbid water. However, few studies have investigated the influence of polarization on the resolution in underwater imaging. This paper reports on the effects of polarization detection on the resolution of underwater imaging by using active polarization imaging technology. An experimental system is designed to determine the influence under various polarization and water conditions. The modulation transfer function is introduced to estimate the resolution variations at different spatial frequencies. Results show that orthogonal detection supplies the best resolution compared with other polarization directions in the turbid water. The performance of the circular polarization method is better than the linear process. However, if the light propagates under low scattering conditions, such as imaging in clean water or at small optical thickness, the resolution enhancement is not sensitive to the polarization angles.

  5. Angular structure of light polarization and singularities in transmittance of nematic liquid crystal cells

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Buinyi, Igor O.; Soskin, Marat S.

    2007-06-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles. Our theoretical results are obtained by evaluating the Stokes parameters that characterize the polarization state of plane waves propagating through the NLC layer at varying direction of incidence. Using the Stokes polarimetry technique we carried out the measurements of the polarization resolved conoscopic patterns emerging after the homeotropically aligned NLC cell illuminated by the convergent light beam. The resulting polarization resolved angular patterns are described both theoretically and experimentally in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). When the ellipticity of the incident light varies, the angular patterns are found to undergo transformations involving the processes of creation and annihilation of the C-points.

  6. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  7. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  8. A generalized wavelet extrema representation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  9. Fuzzy Morphological Polynomial Image Representation

    Directory of Open Access Journals (Sweden)

    Chin-Pan Huang

    2010-01-01

    Full Text Available A novel signal representation using fuzzy mathematical morphology is developed. We take advantage of the optimum fuzzy fitting and the efficient implementation of morphological operators to extract geometric information from signals. The new representation provides results analogous to those given by the polynomial transform. Geometrical decomposition of a signal is achieved by windowing and applying sequentially fuzzy morphological opening with structuring functions. The resulting representation is made to resemble an orthogonal expansion by constraining the results of opening to equate adapted structuring functions. Properties of the geometric decomposition are considered and used to calculate the adaptation parameters. Our procedure provides an efficient and flexible representation which can be efficiently implemented in parallel. The application of the representation is illustrated in data compression and fractal dimension estimation temporal signals and images.

  10. Multiple representations in physics education

    CERN Document Server

    Duit, Reinders; Fischer, Hans E

    2017-01-01

    This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementati...

  11. Polarization speckles and generalized Stokes vector wave: a review [invited

    DEFF Research Database (Denmark)

    Takeda, Mitsuo; Wang, Wei; Hanson, Steen Grüner

    2010-01-01

    Stokes parameters proposed by Korotkova and Wolf, and introduce its time-domain representation to describe the space-time evolution of the correlation between random electric vector fields at two different space-time points. This time-domain generalized Stokes vector, with components similar to those......We review some of the statistical properties of polarization-related speckle phenomena, with an introduction of a less known concept of polarization speckles and their spatial degree of polarization. As a useful means to characterize twopoint vector field correlations, we review the generalized...... of the beam coherence polarization matrix proposed by Gori, is shown to obey the wave equation in exact analogy to a coherence function of scalar fields. Because of this wave nature, the time-domain generalized Stokes vector is referred to as generalized Stokes vector wave in this paper....

  12. Optical phonon features of triclinic montebrasite : dispersion analysis and non-polar Raman modes.

    OpenAIRE

    Almeida, Rafael M.; Höfer, Sonja; Mayerhöfer, Thomas G.; Popp, Jürgen; Krambrock, Klaus; Lobo, Ricardo P. S. M.; Dias, Anderson; Moreira, Roberto Luiz

    2015-01-01

    Polarized infrared and Raman spectra of triclinic LiAl(PO4)(OH) [montebrasite] single crystal were recorded for appropriate optical configurations. Dispersion analysis was applied on the infrared reflectivity spectra taken at low incidence angle (11 ) to determine the oscillator parameters and the dipole directions of the polar phonons. In particular, all the 27 polar phonons, predicted by group theory for triclinic P1 structure,were determined. The obtained dielectric tensor para...

  13. Full-Angle Quaternions for Robustly Matching Vectors of 3D Rotations

    NARCIS (Netherlands)

    Liwicki, Stephan; Pham, Minh-Tri; Zafeiriou, Stefanos; Pantic, Maja; Stenger, Björn

    In this paper we introduce a new distance for robustly matching vectors of 3D rotations. A special representation of 3D rotations, which we coin full-angle quaternion (FAQ), allows us to express this distance as Euclidean. We apply the distance to the problems of 3D shape recognition from point

  14. Polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  15. Archival Representation in the Digital Age

    Science.gov (United States)

    Zhang, Jane

    2012-01-01

    This study analyzes the representation systems of three digitized archival collections using the traditional archival representation framework of provenance, order, and content. The results of the study reveal a prominent role of provenance representation, a compromised role of order representation, and an active role of content representation in…

  16. Effects of slant angle and illumination angle on MTF estimations

    CSIR Research Space (South Africa)

    Vhengani, LM

    2012-07-01

    Full Text Available angle d(?) was not constant. It was also noted that the iris of the imaging system was in most cases adjusted during initial setups of each measurements. After each measurement, the knife-edge target was replaced with the ISO 12233 MTF target (shown....085 0.09 0.095 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements _20120302_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression -18 -16 -14 -12 -10 -8 -6 -4 -2 0.05 0.055 0.06 0...

  17. Multiple Representations of Buoyancy

    Science.gov (United States)

    Oliviera, Jessica; Weglarz, Meredith; Vesenka, James

    2009-10-01

    For many students the concept of buoyancy falls under a category that can be loosely described as ``knowing it when they see it.'' Unfortunately some of the misconceptions this generates are that ``objects float because they are light'' and ``objects float because they are full of air'' [1]. Those these can some times be true, these descriptions are vague at best, and frequently can be wrong. Part of these misconceptions may stem from incomplete immersion of the object in the fluid and the vector nature of forces. We describe a demonstration/lab activity to help students make sense about relationship between the tension on and weight of an object immersed in water. The activity is in rich in multiple representations, graphical, diagrammatical as well as mathematical. A simple four question multiple choice pre/post test survey has been developed to evaluate the effectiveness of the lab activity.[4pt] [1] Bruce Harlan ``Diving Science'', www.stmatthewsschool.com/deep/pdfs/Diving%20Science.pdf

  18. Electrophysiology of action representation.

    Science.gov (United States)

    Fadiga, Luciano; Craighero, Laila

    2004-01-01

    We continuously act on objects, on other individuals, and on ourselves, and actions represent the only way we have to manifest our own desires and goals. In the last two decades, electrophysiological experiments have demonstrated that actions are stored in the brain according to a goal-related organization. The authors review a series of experimental data showing that this "vocabulary of motor schemata" could also be used for non-strictly motor purposes. In the first section, they present data from monkey experiments describing the functional properties of inferior premotor cortex and, in more detail, the properties of visuomotor neurons responding to objects and others' actions observation (mirror neurons). In the second section, human data are reviewed, with particular regard to electrophysiological experiments aiming to investigate how action representations are stored and addressed. The specific facilitatory effect of motor imagery, action/object observation, and speech listening on motor excitability shown by these experiments provides strong evidence that the motor system is constantly involved whenever the idea of an action is evoked.

  19. Chemical thermodynamic representation of

    International Nuclear Information System (INIS)

    Lindemer, T.B.; Besmann, T.M.

    1984-01-01

    The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base

  20. Islam and Media Representations

    Directory of Open Access Journals (Sweden)

    Mohamed Bensalah

    2006-04-01

    Full Text Available For the author of this article, the media’s treatment of Islam has raised numerous polymorphous questions and debates. Reactivated by the great scares of current events, the issue, though an ancient one, calls many things into question. By way of introduction, the author tries to analyse the complex processes of elaboration and perception of the representations that have prevailed during the past century. In referring to the semantic decoding of the abundant colonial literature and iconography, the author strives to translate the extreme xenophobic tensions and the identity crystallisations associated with the current media orchestration of Islam, both in theWest and the East. He then evokes the excesses of the media that are found at the origin of many amalgams wisely maintained between Islam, Islamism and Islamic terrorism, underscoring their duplicity and their willingness to put themselves, consciously, in service to deceivers and directors of awareness, who are very active at the heart of the politico-media sphere. After levelling a severe accusation against the harmful drifts of the media, especially in times of crisis and war, the author concludes by asserting that these tools of communication, once they are freed of their masks and invective apparatuses, can be re-appropriated by new words and bya true communication between peoples and cultures.

  1. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  2. Asymptotic angular dependences of exclusive hadron large-angle scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1979-01-01

    Asymptotic approach to the description of the large-angle scattering amplitudes of the meson-nucleon and nucleon-nucleon scattering is studied. The paper is based on the Mandelstam representation and quark counting rules. The crossing summetry, SU-3 symmetry and spin effects are taken into account. Formulae obtained are used for the description of the differential cross sections of πsup(+-)p, pp and pn scattering. The predictions about ksup(+-)p and p anti p scattering are made. It is shown that formulae provide quantitative description of experimental data for the considered reactions

  3. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  4. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  5. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  6. Polarization measurement in the COMPASS polarized target

    CERN Document Server

    Kondo, K; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Hasegawa, T; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Yu V; Koivuniemi, J H; Le Goff, J M; Magnon, A; Meyer, W; Reicherz, G; Matsuda, T

    2004-01-01

    Continuous wave nuclear magnetic resonance (NMR) is used to determine the target polarization in the COMPASS experiment. The system is made of the so-called Liverpool Q-meters, Yale-cards, and VME modules for data taking and system controlling. In 2001 the NMR coils were embedded in the target material, while in 2002 and 2003 the coils were mounted on the outer surface of the target cells to increase the packing factor of the material. Though the error of the measurement became larger with the outer coils than with the inner coils, we have performed stable measurements throughout the COMPASS run time for 3 years. The maximum polarization was +57% and -53% as the average in the target cells.

  7. Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces

    Science.gov (United States)

    Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady

    2017-03-01

    Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.

  8. HST observations of the limb polarization of Titan

    Science.gov (United States)

    Bazzon, A.; Schmid, H. M.; Buenzli, E.

    2014-12-01

    Context. Titan is an excellent test case for detailed studies of the scattering polarization from thick hazy atmospheres. Accurate scattering and polarization parameters have been provided by the in situ measurements of the Cassini-Huygens landing probe. For Earth-bound observations Titan can only be observed at a backscattering situation, where the disk-integrated polarization is close to zero. However, with resolved imaging polarimetry a second order polarization signal along the entire limb of Titan can be measured. Aims: We present the first limb polarization measurements of Titan, which are compared as a test to our limb polarization models. Methods: Previously unpublished imaging polarimetry from the HST archive is presented, which resolves the disk of Titan. We determine flux-weighted averages of the limb polarization and radial limb polarization profiles, and investigate the degradation and cancelation effects in the polarization signal due to the limited spatial resolution of our observations. Taking this into account we derive corrected values for the limb polarization in Titan. The results are compared with limb polarization models, using atmosphere and haze scattering parameters from the literature. Results: In the wavelength bands between 250 nm and 2 μm a strong limb polarization of about 2 - 7% is detected with a position angle perpendicular to the limb. The fractional polarization is highest around 1 μm. As a first approximation, the polarization seems to be equally strong along the entire limb. The comparison of our data with model calculations and the literature shows that the detected polarization is compatible with expectations from previous polarimetric observations taken with Voyager 2, Pioneer 11, and the Huygens probe. Conclusions: Our results indicate that ground-based monitoring measurements of the limb-polarization of Titan could be useful for investigating local haze properties and the impact of short-term and seasonal variations of

  9. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  10. A VLA Survey of "Polar?" BAL QSOs

    Science.gov (United States)

    Singh, Vikram; Brotherton, Michael S.; DiPompeo, Michael A.; Myers, Adam D.

    2016-06-01

    Recent evidence has shown that broad absorption line outflows in quasars are almost certainly seen from a wide range of viewing angles, including nearly pole-on, using the shapes of radio spectra and Monte-Carlo modeling. It also seems that outflow properties are similar along all lines of sight, suggestive of a single mechanism driving winds in all directions. However, a larger number of known "polar" outflows is needed for proper study. Radio variability between the FIRST and NVSS surveys, combined with brightness temperature arguments, seem to have identified a significant number of "polar" BAL quasars. There are some questions still surrounding these objects, and most only have information at one frequency. We report results from new VLA observations of 23 objects, both to confirm the variability at 1.4 GHz, and to extend the spectral coverage in order to analyze the shape of the spectrum.

  11. Polarized triple-axis spectrometer TASP

    International Nuclear Information System (INIS)

    Boeni, P.; Keller, P.

    1996-01-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs

  12. Rubber hand illusion affects joint angle perception.

    Directory of Open Access Journals (Sweden)

    Martin V Butz

    Full Text Available The Rubber Hand Illusion (RHI is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model.

  13. Full-Stokes polarimetry with circularly polarized feeds. Sources with stable linear and circular polarization in the GHz regime

    Science.gov (United States)

    Myserlis, I.; Angelakis, E.; Kraus, A.; Liontas, C. A.; Marchili, N.; Aller, M. F.; Aller, H. D.; Karamanavis, V.; Fuhrmann, L.; Krichbaum, T. P.; Zensus, J. A.

    2018-01-01

    We present an analysis pipeline that enables the recovery of reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the effective treatment of the instrumental effects even before the computation of the Stokes parameters, contrary to conventionally used methods such as that based on the Müller matrix. For instance, instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted by instrumental effects. The accuracy we reach in terms of polarization degree is of the order of 0.1-0.2%. The polarization angles are determined with an accuracy of almost 1°. The presented methodology was applied to recover the linear and circular polarization of around 150 active galactic nuclei, which were monitored between July 2010 and April 2016 with the Effelsberg 100-m telescope at 4.85 GHz and 8.35 GHz with a median cadence of 1.2 months. The polarized emission of the Moon was used to calibrate the polarization angle measurements. Our analysis showed a small system-induced rotation of about 1° at both observing frequencies. Over the examined period, five sources have significant and stable linear polarization; three sources remain constantly linearly unpolarized; and a total of 11 sources have stable circular polarization degree mc, four of them with non-zero mc. We also identify eight sources that maintain a stable polarization angle. All this is provided to the community for future polarization observations reference. We finally show that our analysis method is conceptually different from those traditionally used and performs better than the Müller matrix method. Although it has been developed for a system equipped with circularly polarized feeds, it can easily be generalized to systems with linearly polarized feeds as well. The data used to create Fig. C.1 are only available at the CDS via anonymous ftp to http

  14. Production of positive pions from polarized protons by linearly polarized photons in the energy region 300--420 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Get' man, V.A.; Gorbenko, V.G.; Grushin, V.F.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Luchanin, A.A.; Rubashkin, A.L.; Sanin, V.M.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.; Shalatskii, S.V.

    1980-10-01

    A technique for measurement of the polarization observables ..sigma.., P, and T for the reaction ..gamma..p..-->..n..pi../sup +/ in a doubly polarized experiment (polarized proton target + linearly polarized photon beam) is described. Measurements of the angular distributions of these observables in the range of pion emission angles 30--150/sup 0/ are presented for four photon energies from 300 to 420 MeV. Inclusion of the new experimental data in an energy-independent multipole analysis of photoproduction from protons permits a more reliable selection of solutions to be made.

  15. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  16. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  17. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  18. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  19. Cylindrically polarized Bessel–Gauss beams

    International Nuclear Information System (INIS)

    Madhi, Daena; Aiello, Andrea; Ornigotti, Marco

    2015-01-01

    We present a study of radially and azimuthally polarized Bessel–Gauss (BG) beams in both the paraxial and nonparaxial regime. We discuss the validity of the paraxial approximation and the form of the nonparaxial corrections for BG beams. We show that independently on the ratio between the Bessel aperture cone angle ϑ 0 and the Gaussian beam divergence θ 0 , the nonparaxial corrections are alway very small and therefore negligible. The explicit expressions for the nonparaxial vector electric field components are also reported. (paper)

  20. Observations that polar climate modelers use and want

    Science.gov (United States)

    Kay, J. E.; de Boer, G.; Hunke, E. C.; Bailey, D. A.; Schneider, D. P.

    2012-12-01

    Observations are essential for motivating and establishing improvement in the representation of polar processes within climate models. We believe that explicitly documenting the current methods used to develop and evaluate climate models with observations will help inform and improve collaborations between the observational and climate modeling communities. As such, we will present the current strategy of the Polar Climate Working Group (PCWG) to evaluate polar processes within Community Earth System Model (CESM) using observations. Our presentation will focus primarily on PCWG evaluation of atmospheric, sea ice, and surface oceanic processes. In the future, we hope to expand to include land surface, deep ocean, and biogeochemical observations. We hope our presentation, and a related working document developed by the PCWG (https://docs.google.com/document/d/1zt0xParsFeMYhlihfxVJhS3D5nEcKb8A41JH0G1Ic-E/edit) inspires new and useful interactions that lead to improved climate model representation of polar processes relevant to polar climate.

  1. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis

    2015-11-01

    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  2. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  3. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  4. Ultracold Polar Molecules

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0005 Ultracold Polar Molecules Jeremy Hutson UNIVERSITY OF DURHAM Final Report 04/01/2016 DISTRIBUTION A: Distribution approved...DATES COVERED (From - To) 15-Jan-2010 to 14-Jul-2015 4. TITLE AND SUBTITLE Final Report on Grant FA8655-10-1-3033 on Ultracold Polar Molecules 5a...formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging

  5. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1989-02-09

    The central research problem of this project is the effective representation and display of surfaces, interpolating to given information, in three or more dimensions. In a typical problem, we wish to create a surface from some discrete information. If this information is itself on another surface, the problem is to determine a surface defined on a surface,'' which is discussed below. Often, properties of an already constructed surface are desired: such geometry processing'' is described below. The Summary of Proposed Research from our original proposal describes the aims of this research project. This Summary and the Table of Contents from the original proposal are enclosed as an Appendix to this Progress Report. The broad sweep from constructive mathematics through algorithms and computer graphics displays is utilized in the research. The wide range of activity, directed in both theory and applications, makes this project unique. Last month in the first Ardent Titan delivered in the State of Arizona came to our group, funded by the DOE and Arizona State University. Although the Titan is a commercial product, its newness requires our close collaboration with Ardent to maximize results. During the past year, four faculty members and several graduate research assistants have worked on this DOE project. The gaining of new professionals is an important aspect of this project. A listing of the students and their topics is given in the Appendix. The most significant publication during the past year is the book, Curves and Surfaces for Computer Aided Geometric Design, by Dr. Gerald Farin. This 300 page volume helps fill a considerable gap in the subject and includes many new results on Bernstein-Bezier curves and surfaces.

  6. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  7. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  8. Tiny incident light angle sensor

    Science.gov (United States)

    Mitrenga, D.; Schädel, M.; Winzer, A. T.; Völlmeke, S.; Preuß, K. D.; Freitag, J.; Brodersen, O.

    2017-05-01

    A novel device for detecting the intensity and the angles of incoming light is presented. The silicon chip with 1 mm edge length comprises a segmented photo diode with four active areas within the inclined surfaces of a deep etched cavity. Simple signal difference analysis of these signals allow for accurate azimuth and inclination measurement in the range of 0 to 360° and 0 to 55°, respectively. Using an artificial neural network (ANN) calibration strategy the operation range of inclination can be increased up to 85° with typical angle errors below 2°. In this report we present details on design, fabrication, signal analysis and calibration strategies.

  9. Identification of bird representations in prehistory

    Directory of Open Access Journals (Sweden)

    Vasić Vojislav F.

    2003-01-01

    this new approach will show all its usefulness in the future. Sometimes, a view "from another angle", on some archaeological problems may provide valuable results, not only in identification of bird representations, but also as a means of understanding the wider cultural or social-economic significance of the prehistoric period in question.

  10. Hsp Polarization Verification

    Science.gov (United States)

    Bless, Robert

    1991-07-01

    This proposal defines the procedure for determining the instrumental polarization of the polarimetric IDT (IDT#1, POL) on the HSP. 1 of 2 unpolarized standard stars wil be observed using various filter-polarizer combinations. These observations will permit the instrumental polarization to be calibrated. The instrumental polarization must be determined to a high precision in order to vectoriallly remove it from HSP polarization observations to determine the actual astronomical polarization. Final run of proposal will look at one of 2 possible stars previously observed to get another look at the throughput. Revision History: Mark H. Slovak 8/30/88 Translated to V2 proposal instructions (RPSS V6.2) S. Laurent 1/20/89 Updated: Sally Laurent 2/24/89, 3/20/89, 4/13/89, 5/12/89 Modified: P. Stanley 1/15/90 - change to use CTA selected targets only; Fixes for aberration problem - SALM 7/30/90; Based on SV/HSP 1386. New submission changed targets and revised scheduling strategy. Revised: 26 Aug 92 J. Dolan, L. Walter, P. Reppert want to re-run the proposal (3985) one last time to bring down errors.

  11. Polarization-resolved angular patterns of nematic liquid crystal cells: Topological events driven by incident light polarization

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Egorov, Roman I.; Chigrinov, Vladimir G.

    2008-09-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization-resolved angular (conoscopic) patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C points (points of circular polarization) and L lines (lines of linear polarization). For the homeotropically aligned cell, the Stokes polarimetry technique is used to measure the polarization resolved conoscopic patterns at different values of the ellipticity of the incident light, γell(inc) , impinging onto the cell. Using the exact analytical expressions for the transfer matrix we show that variations of the ellipticity, γell(inc) , induce transformations of the angular pattern exhibiting the effect of avoided L -line crossings and characterized by topological events such as creation and annihilation of the C points. The predictions of the theory are found to be in good agreement with the experimental results.

  12. Homogeneous Operators and Projective Representations

    Indian Academy of Sciences (India)

    Abstract. This paper surveys the existing literature on homogeneous operators and their relationships with projective representations of P S L ( 2 , R ) and other Lie groups. It also includes a list of open problems in this area.

  13. Number theory via Representation theory

    Indian Academy of Sciences (India)

    2014-11-09

    Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.

  14. Computer representation of molecular surfaces

    International Nuclear Information System (INIS)

    Max, N.L.

    1981-01-01

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered

  15. (Self)-representations on youtube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    This paper examines forms of self-representation on YouTube with specific focus on Vlogs (Video blogs). The analytical scope of the paper is on how User-generated Content on YouTube initiates a certain kind of audiovisual representation and a particular interpretation of reality that can...... be distinguished within Vlogs. This will be analysed through selected case studies taken from a representative sample of empirically based observations of YouTube videos. The analysis includes a focus on how certain forms of representation can be identified as representations of the self (Turkle 1995, Scannell...... 1996, Walker 2005) and further how these forms must be comprehended within a context of technological constrains, institutional structures and social as well as economical practices on YouTube (Burgess and Green 2009, Van Dijck 2009). It is argued that these different contexts play a vital part...

  16. Vietnamese Document Representation and Classification

    Science.gov (United States)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  17. Semantic Knowledge Representation (SKR) API

    Data.gov (United States)

    U.S. Department of Health & Human Services — The SKR Project was initiated at NLM in order to develop programs to provide usable semantic representation of biomedical free text by building on resources...

  18. Phase sensitive small angle neutron scattering

    Science.gov (United States)

    Brok, Erik; Majkrzak, Charles F.; Krycka, Kathryn

    It is a well-known problem that information about the scattered wave is lost in scattering experiments because the measured quantity is the modulus squared of the complex wave function. This ''phase problem'' leads to ambiguity in determining the physical properties of the scattering sample. Small angle neutron scattering (SANS) is a useful technique for determining the structure of biomolecules, in particular proteins that cannot be crystallized and studied with x-ray crystallography. However, because the biomolecules are usually suspended in a liquid the observed scattering is an average of all possible orientations, making it difficult to obtain three dimensional structural information. In a proposed method polarized SANS and magnetic nanoparticle references attached to the sample molecules is used to obtain phase sensitive structural information and simultaneously circumvent the problem of orientational averaging (Majkrzak et al. J. Appl. Cryst. 47, 2014) If realized and perfected the technique is very promising for unambiguous determination of the three dimensional structure of biomolecules. We demonstrate the principles of our method and show the first experimental data obtained on a simple test system consisting of core shell magnetic nanoparticles.

  19. A Hitch Angle Measurement Device

    National Research Council Canada - National Science Library

    Von

    1998-01-01

    As part of a project to demonstrate that an unmanned ground vehicle (UGV) could remotely back up with a trailer, a simple proof-of-concept device was designed to measure the angle between a high-mobility multipurpose wheeled vehicle (HMMWV...

  20. Birefringent neutron prisms for spin echo scattering angle measurement

    Science.gov (United States)

    Pynn, Roger; Fitzsimmons, M. R.; Lee, W. T.; Stonaha, P.; Shah, V. R.; Washington, A. L.; Kirby, B. J.; Majkrzak, C. F.; Maranville, B. B.

    2009-09-01

    In the first decade of the 19th century, an English chemist, William Wollaston, invented an arrangement of birefringent prisms that splits a beam of light into two spatially separated beams with orthogonal polarizations. We have constructed similar devices for neutrons using triangular cross-section solenoids and employed them for Spin Echo Scattering Angle Measurement (SESAME). A key difference between birefringent neutron prisms and their optical analogues is that it is hard to embed the former in a medium which has absolutely no birefringence because this implies the removal of all magnetic fields. We have overcome this problem by using the symmetry properties of the Wollaston neutron prisms and of the overall spin echo arrangement. These symmetries cause a cancellation of Larmor phase aberrations and provide robust coding of neutron scattering angles with simple equipment.

  1. Representability of Hom implies flatness

    Indian Academy of Sciences (India)

    ... A basic result of Grothendieck ([EGA], III 7.7.9) says that if F is flat over then hom ( E , F ) is representable for all E . We prove the converse of the above, in fact, we show that if is a relatively ample line bundle on over such that the functor hom ( L − n , F ) is representable for infinitely many positive integers , then F ...

  2. The Fifth Mode of Representation

    DEFF Research Database (Denmark)

    Hansen, Per Krogh; Behrendt, Poul Olaf

    2011-01-01

    “The fifth mode of representation: Ambiguous voices in unreliable third person narration”. Sammen med Poul Behrendt. In Per Krogh Hansen, Stefan Iversen, Henrik Skov Nielsen og Rolf Reitan (red.): Strange Voices. Walter de Gruyter, Berlin & New York......“The fifth mode of representation: Ambiguous voices in unreliable third person narration”. Sammen med Poul Behrendt. In Per Krogh Hansen, Stefan Iversen, Henrik Skov Nielsen og Rolf Reitan (red.): Strange Voices. Walter de Gruyter, Berlin & New York...

  3. Representation theory for strange attractors.

    Science.gov (United States)

    Cross, Daniel J; Gilmore, R

    2009-11-01

    Embeddings are diffeomorphisms between some unseen physical attractor and a reconstructed image. Different embeddings may or may not be equivalent under isotopy. We regard embeddings as representations of the attractor, review the labels required to distinguish inequivalent representations for an important class of dynamical systems, and discuss the systematic ways inequivalent embeddings become equivalent as the embedding dimension increases until there is finally only one "universal" embedding in a suitable dimension.

  4. Functional representations of integrable hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2006-01-01

    We consider a general framework for integrable hierarchies in Lax form and derive certain universal equations from which 'functional representations' of particular hierarchies (such as KP, discrete KP, mKP, AKNS), i.e. formulations in terms of functional equations, are systematically and quite easily obtained. The formalism genuinely applies to hierarchies where the dependent variables live in a noncommutative (typically matrix) algebra. The obtained functional representations can be understood as 'noncommutative' analogues of 'Fay identities' for the KP hierarchy

  5. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  6. Multiple scattering of polarized light in a turbid medium

    International Nuclear Information System (INIS)

    Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.

    2007-01-01

    It is shown that multiple scattering of polarized light in a turbid medium can be represented as independent propagation of three basic modes: intensity and linearly and circularly polarized modes. Weak interaction between the basic modes can be described by perturbation theory and gives rise to 'overtones' (additional polarization modes). Transport equations for the basic and additional modes are derived from a vector radiative transfer equation. Analytical solutions to these equations are found in the practically important cases of diffusive light propagation and small-angle multiple scattering. The results obtained are in good agreement with experimental and numerical results and provide an explanation for the experimentally observed difference in depolarization between linearly and circularly polarized waves

  7. Study and Operational Implementation of a Tileted Crossing Angle in LHCB

    CERN Document Server

    Alemany-Fernandez, R; Holzer, B; Jacquet, D; Versteegen, R; Wenninger, J

    2013-01-01

    The current crossing angle scheme at LHCb interaction point (horizontal crossing angle and vertical beam separation) prohibits the use of the LHCb dipole positive polarity for 25 ns bunch spacing operation since the beam separation at the first parasitic encounter is very small inducing unwanted beam encounters. To overcome this limitation a different crossing angle scheme was proposed in 2007 by W. Herr and Y. Papaphilippou. The new schema implies a vertical external crossing angle that together with the horizontal internal crossing angle, from the LHCb dipole and its three compensator magnets, defines a new tilted crossing and separation plane providing enough beam separation at the parasitic encounters. This paper summarizes the feasibility study of the new crossing scheme, the implementation in routine operation and analyzes the beam stability during the building up of the tilted crossing plane.

  8. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  9. Polarization of Hazes and Aurorae on Jupiter

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; McLean, Will; PACA_Jupiter

    2017-10-01

    Our solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Changes in the clouds/thermal filed can be brought about by endogenic dynamical processes such merger of vortices; global, planetary scale upheavals, and external factors such as celestial collisions (such as D/Shoemaker-Levy 9 impact with Jupiter in 1994, etc.). Although the range of phase angles available from Earth for outer planets is restricted to a narrow range, limb polarization measurements provide constraints on the polarimetric properties. For example, at the equator, much of the observed reflected radiation is due to the presence of clouds and therefore, low polarization. Polar asymmetry exists between the two poles, while the planetary disk is unpolarized. Jupiter is known to exhibit a strong polar limb polarization and a low equatorial limb polarization due to the presence of haze particles and Rayleigh scattering at the poles. In contrast, at the equator, the concentration of particulates in the high atmosphere might change, changing the polarimetric signature and aurorae at both poles. The polarimetric maps, in conjunction with thermal maps and albedo maps, can provide constraints on modeling efforts to understand the nature of the aerosols/hazes in Jovian atmosphere. With Jupiter experiencing morphological changes at many latitudes, we have initiated a polarimetric observing campaign of Jupiter, in conjunction with The PACA Project. With NASA/Juno mission in a 53-day orbit around Jupiter, and recent outbreaks in the atmosphere, changes in the polarimetric signature will provide insight to the changes occurring in the atmosphere. Some of our observations are acquired by a team of professional/amateur planetary imagers astronomers based in the U.K., Australia and Europe. France

  10. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Xiao, Sanshui

    2017-01-01

    -shaped graphene arrays. By simply stacking the double layer cross-shaped graphene with careful design, the working bandwidth can be broadened compared with the single-layer graphene-based absorber. The proposed absorbers have the properties of being polarization insensitive and having large angle tolerance...

  11. Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.

    Science.gov (United States)

    Alagappan, G; Wu, P

    2009-07-06

    We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r light reflection.

  12. V4: The Small Angle Scattering Instrument (SANS at BER II

    Directory of Open Access Journals (Sweden)

    Uwe Keiderling

    2016-11-01

    Full Text Available V4 is a small-angle neutron scatting instrument with an accessible range of scattering vector 0.01 nm-1 < Q < 8.5 nm-1. Outstanding features of the instrument are the polarized neutron option and the list mode data acquisition, allowing for time-resolved measurements with µs time resolution.

  13. A microwave method for measuring moisture content, density, and grain angle of wood

    Science.gov (United States)

    W. L. James; Y.-H. Yen; R. J. King

    1985-01-01

    The attenuation, phase shift and depolarization of a polarized 4.81-gigahertz wave as it is transmitted through a wood specimen can provide estimates of the moisture content (MC), density, and grain angle of the specimen. Calibrations are empirical, and computations are complicated, with considerable interaction between parameters. Measured dielectric parameters,...

  14. Modeling optical and UV polarization of AGNs. III. From uniform-density to clumpy regions

    Science.gov (United States)

    Marin, F.; Goosmann, R. W.; Gaskell, C. M.

    2015-05-01

    Context. A growing body of evidence suggests that some, if not all, scattering regions of active galactic nuclei (AGNs) are clumpy. The inner AGN components cannot be spatially resolved with current instruments and must be studied by numerical simulations of observed spectroscopy and polarization data. Aims: We run radiative transfer models in the optical/UV for a variety of AGN reprocessing regions with different distributions of clumpy scattering media. We obtain geometry-sensitive polarization spectra and images to improve our previous AGN models and their comparison with the observations. Methods: We use the latest public version 1.2 of the Monte Carlo code stokes presented in the first two papers of this series to model AGN reprocessing regions of increasing morphological complexity. We replace previously uniform-density media with up to thousands of constant-density clumps. We couple a continuum source to fragmented equatorial scattering regions, polar outflows, and toroidal obscuring dust regions and investigate a wide range of geometries. We also consider different levels of fragmentation in each scattering region to evaluate the importance of fragmentation for the net polarization of the AGN. Results: In comparison with uniform-density models, equatorial distributions of gas and dust clouds result in grayer spectra and show a decrease in the net polarization percentage at all lines of sight. The resulting polarization position angle depends on the morphology of the clumpy structure, with extended tori favoring parallel polarization while compact tori produce orthogonal polarization position angles. In the case of polar scattering regions, fragmentation increases the net polarization unless the cloud filling factor is small. A complete AGN model constructed from the individual, fragmented regions can produce low polarization percentages (<2%), with a parallel polarization angle for observer inclinations up to 70° for a torus half opening angle of 60°. For

  15. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology...... of a shape is uniquely embedded in the mesh connectivity of a PAM, enabling both surface and skeletal modeling operations, interchangeably and directly on the mesh itself. We develop an algorithm to convert arbitrary triangle meshes into PAMs as well as techniques to simplify PAMs and a method to convert...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  16. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  17. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  18. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  19. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  20. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  1. In-line Fiber Polarizer

    OpenAIRE

    Perumalsamy, Priya

    1998-01-01

    Polarizers and polarization devices are important components in fiber optic communication and sensor systems. There is a growing need for efficient low loss components that are compatible with optical fibers. An all fiber in-line polarizer is a more desirable alternative that could be placed at appropriate intervals along communication links. An in-line fiber polarizer was fabricated and tested. The in-line fiber polarizer operates by coupling optical energy propagatin...

  2. Polarized photon transport through fog

    Science.gov (United States)

    Farmer, Jonathan; Persons, Christopher M.; DeSilva, Robert; Kirkland, James H.; Finney, Greg A.; Fuller, Kirk A.; Hokr, Brett H.

    2017-09-01

    Anyone who has driven through fog understands the detrimental effect scattering can have on your ability to see. When light interacts with a scattering center, in this case a fog droplet, it is scattered into a new direction, ultimately turning the world around you into a dull gray haze. In some fogs, visibility can be less than 100 meters. It would be possible to see through turbid media like fog if you can separate the scattered light from the unscattered, or ballistic, light; however, we must understand the light transport properties of the atmosphere to determine the optimum scheme. Here, we present an end-to-end simulation for polarized light transport through fog. Our approach can be summarized in three steps: compute the Mueller matrix for a single scattering interaction, ensemble average a distribution of sizes and shapes, and solve the light transport using a Monte Carlo simulation. For small spherical particles, such as fog, we use Mie theory to calculate the single scattering Mueller matrix, but this approach can be generalized to non-spherical particles using ray tracing for large particles or a T-matrix approach for smaller particles. Through this simulation, we are able to determine a backscattering Mueller matrix and a forward scattering Mueller matrix response function for the atmosphere as a function of position and detection angle.

  3. Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal

    International Nuclear Information System (INIS)

    Guan Rong-Hua; Ye Wen-Jiang; Xing Hong-Yu

    2015-01-01

    The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction. All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U. Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered. (paper)

  4. Polarization state of an inhomogenously refracted compressional-wave induced at interface between two anisotropic rocks.

    Science.gov (United States)

    Fa, Lin; Li, Wenya; Zhao, Jie; Han, Yonglan; Liang, Meng; Ding, Pengfei; Zhao, Meishan

    2017-01-01

    This paper is concerned with the polarization states of an inhomogenously refracted P-wave induced from the interface of two anisotropic rocks. Two realistic physical models have been studied: Model-1 is an interface between anisotropic shale and Taylor sandstone; Model-2 is an interface between anisotropic shale and oil shale. For each model, an analytical expression of the polarization states was derived and its elliptical-polarization trajectory was examined. It is shown that an anomalous incident-angle leads not only to a sudden elliptical-polarization directional variation but also to an abrupt change in size and shape of its elliptical-polarization trajectory. The calculated results and analyses provide a theoretical base for the understandings of an anomalous incident-angle recently reported in the literature [e.g., Fa, Fa, Zhang, Ding, Gong, Li, Li, Tang, and Zhao (2015). Sci. Rep. 5, 12700].

  5. Tailoring polarization of electromagnetically induced transparency based on non-centrosymmetric metasurfaces

    Science.gov (United States)

    Li, Hai-ming; Xue, Feng

    2017-09-01

    In this manuscript, tailoring polarization of analogy of electromagnetically induced transparency (EIT-like) based on non-centrosymmetric metasurfaces has been numerically and experimentally demonstrated. The EIT-like metamaterial is composed of a rectangle ring and two cut wires. The rectangle ring and the cut wire are chosen as the bright mode and the quasi-dark mode, respectively. Under the incident electromagnetic wave excitation, a polarization insensitive EIT-like transmission window can be observed at specific polarization angles. Within the transmission window, the phase steeply changes, which leads to the large group index. Tailoring polarization of EIT-like metamaterial with large group index at specific polarization angles may have potential application in slow light devices.

  6. On integral representation of the Clebsh-Gordan coefficients of SU(3) group

    International Nuclear Information System (INIS)

    Mal'tsev, V.M.

    1985-01-01

    The projection of arbitrary quark-gluon state on a singlet representation of SU(3) group is considered. It is given by an integral on the group. In this case the square of a Clebsch-Gordan coefficient is evaluated as the eight-fold integral over corresponding Eulerian angles

  7. Hubble Space Telescope NICMOS Polarization Measurements of OMC-1

    Science.gov (United States)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Schultz, A. S. B.

    2006-01-01

    We present 2 micrometer polarization measurements of positions in the BN region of the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2" resolution) on Hubble Space Telescope. Our goals are to seek the sources of heating for IRc2, 3, 4, and 7, identify possible young stellar objects (YSOs), and characterize the grain alignment in the dust clouds along the lines-of-sight to the stars. Our results are as follows: BN is approximately 29% polarized by dichroic absorption and appears to be the illuminating source for most of the nebulosity to its north and up to approximately 5" to its south. Although the stars are probably all polarized by dichroic absorption, there are a number of compact, but non-point-source, objects that could be polarized by a combination of both dichroic absorption and local scattering of star light. We identify several candidate YSOs, including an approximately edge-on bipolar YSO 8.7" east of BN, and a deeply-embedded IRc7, all of which are obviously self-luminous at mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula illuminated by a star located near radio source I, as was previously suggested. Other IRc sources are clearly reflection nebulae: IRc3 appears to be illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5 appear to be illuminated by an unseen star in the vicinity of radio source I, or by Star n or IRc2-A. Trends in the magnetic field direction are inferred from the polarization of the 26 stars that are bright enough to be seen as NICMOS point sources. Their polarization ranges from N less than or equal to 1% (all stars with this low polarization are optically visible) to greater than 40%. The most polarized star has a polarization position angle different from its neighbors by approximately 40 degrees, but in agreement with the grain alignment inferred from millimeter polarization measurements of the cold dust cloud in the southern part of OMC-1. The polarization

  8. Political Competition and Polarization

    DEFF Research Database (Denmark)

    Schultz, Christian

    This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signa...... for costs before an upcoming election. It is shown that the more polarized the political parties the more distorted the incumbent's policy choice.......This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signal...

  9. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  10. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy...... and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...... between the two as well as different types of motivations filling in the gap between the two polar types, is urgently needed in the organizational science literature. By drawing on the research on intrinsic and extrinsic motivation conducted in social psychology and combining this with contributions from...

  11. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  12. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  13. Emergence and Dynamics of Polar Order in Developing Epithelia

    Science.gov (United States)

    Farhadifar, Reza

    2011-03-01

    Planar Cell Polarity (PCP) is a conserved process in many vertebrate and invertebrate tissues, and is fundamental for the coordination of cell behavior and patterning. A well-studied example is the orientational pattern of hairs in the wing of the adult fruit fly Drosophila, which is an important model organism in biology. The Drosophila wing is an epithelium, i.e., a two-dimensional sheet of cells, which grows from a few cells to thousands of cells during the course of development. In the wing epithelium, planar polarity is established by an anisotropic distribution of PCP proteins within cells. The distribution of these proteins in a given cell affects the polarity of neighboring cells, such that at the end of wing development a large-scale PCP orientational order emerges. Here we present a theoretical study of planar polarity in developing epithelia based on a vertex model, which takes into account cell mechanics, cell adhesion, and cell division, combined with experimental results obtained from time-lapse imaging of the wing development. We show that in experiment, polarity order does not develop de novo at the end of wing development, but rather cells are initially polarized at an angle with respect to their final polarity axis. During wing development, the polarity axes of cells reorient towards their final direction. We identify a basic mechanism to generate such a large-scale initial polarization, based on the growth of a small number of cells with an initially random PCP distribution. Finally, we study the effect of shear and oriented cell division on dynamics of PCP order, showing that these two processes can robustly reorient the polarity axes of cells.

  14. Variety of Polarized Line Profiles in Interacting Supernovae

    Science.gov (United States)

    Hoffman, Jennifer L.; Huk, L. N.; Peters, C. L.

    2013-01-01

    The dense circumstellar material that creates strong emission lines in the spectra of interacting supernovae also gives rise to complex line polarization behavior. Viewed in polarized light, the emission line profiles of these supernovae encode information about the geometrical and optical characteristics of their surrounding circumstellar material (CSM) that is inaccessible by other observational techniques. To facilitate quantitative interpretation of these spectropolarimetric signatures, we have created a large grid of model polarized line profiles using a three-dimensional radiative transfer code that simulates polarization via electron and resonant/fluorescent line scattering. The simulated polarized lines take on an array of profile shapes that vary with viewing angle and CSM properties. We present the major results from the grid and investigate the dependence of polarized line profiles on CSM characteristics including temperature, optical depth, and geometry. These results will allow more straightforward interpretation of polarized line profiles in interacting supernovae than has previously been possible. This research is supported by the National Science Foundation through the AAG program and the XSEDE collaboration, and uses the resources of the Texas Advanced Computing Center.

  15. Statistics of polarization and Stokes parameters of stochastic waves

    Science.gov (United States)

    Hole, M. J.; Robinson, P. A.; Cairns, Iver H.

    2004-09-01

    Several theories now exist to describe the probability distribution functions (PDFs) for the electric field strength, intensity, and power of signals. In this work, a model is developed for the PDFs of the polarization properties of the superposition of multiple transverse wave populations. The polarization of each transverse wave population is described by a polarization ellipse with fixed axial ratio and polarization angle, and PDFs for the field strength and phase. Wave populations are vectorially added, and expressions found for the Stokes parameters I , U , Q , and V , as well as the degrees of linear and circular polarization, and integral expressions for their statistics. In this work, lognormal distributions are chosen for the electric field, corresponding to stochastic growth, and polarization PDFs are numerically calculated for the superposition of orthonormal mode populations, which might represent the natural modes emitted by a source. Examples are provided of the superposition of linear, circular, and elliptically polarized wave populations in cases where the component field strength PDFs are the same, and where one field strength PDF is dominant.

  16. Polarized absorption in determination of impurities in olive oil

    Science.gov (United States)

    Alias, A. N.; Zabidi, Z. M.; Yaacob, Y.; Amir, I. S.; Alshurdin, S. H. N.; Aini, N. A.

    2017-08-01

    The effect of impurities in olive oil blending with palm oil was characterized using polarized absorption method. Polarized absorption was based on the absorption of light which vibrating in a particular plane to pass through the sample. This polarized light allowed the molecule to absorb at the specific orientation. There were four samples have been prepared that were 100:0, 70:30, 50:50 and 0:100 with volume ratio of the olives to palm oil. Two linear polarizers were mounting between the samples in order to get linearly polarized. This specific orientation was affected the absorption spectra of the sample. The results have shown that the analyzing polarizer with angle 00 has bell shape spectra. All the orientation of analyzing polarizer had shown the maximum current output at 100% olive oil. Whereas 100% palm oil has shown the minimum current output. The changing in absorption spectra indicates that the anisotropic properties of each sample were different due to the present of impurities.

  17. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  18. Evolved Representation and Computational Creativity

    Directory of Open Access Journals (Sweden)

    Ashraf Fouad Hafez Ismail

    2001-01-01

    Full Text Available Advances in science and technology have influenced designing activity in architecture throughout its history. Observing the fundamental changes to architectural designing due to the substantial influences of the advent of the computing era, we now witness our design environment gradually changing from conventional pencil and paper to digital multi-media. Although designing is considered to be a unique human activity, there has always been a great dependency on design aid tools. One of the greatest aids to architectural design, amongst the many conventional and widely accepted computational tools, is the computer-aided object modeling and rendering tool, commonly known as a CAD package. But even though conventional modeling tools have provided designers with fast and precise object handling capabilities that were not available in the pencil-and-paper age, they normally show weaknesses and limitations in covering the whole design process.In any kind of design activity, the design worked on has to be represented in some way. For a human designer, designs are for example represented using models, drawings, or verbal descriptions. If a computer is used for design work, designs are usually represented by groups of pixels (paintbrush programs, lines and shapes (general-purpose CAD programs or higher-level objects like ‘walls’ and ‘rooms’ (purpose-specific CAD programs.A human designer usually has a large number of representations available, and can use the representation most suitable for what he or she is working on. Humans can also introduce new representations and thereby represent objects that are not part of the world they experience with their sensory organs, for example vector representations of four and five dimensional objects. In design computing on the other hand, the representation or representations used have to be explicitly defined. Many different representations have been suggested, often optimized for specific design domains

  19. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Kayser, B.; Sphicas, P.

    1993-01-01

    The angle γ at least as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This conclusion certainly depends crucially on the assumed trigger and tagging efficiencies and also on the expected backgrounds. The work summarized here represents but a first step in the direction of extracting the third angle of the unitarity triangle. The theoretical developments during the workshop have resulted in a clearer understanding of the quantities studied. On the experimental side, new decay modes (i.e. in addition to the traditional ρK s decay) have resulted in expections for observing CP violation in B s decays which are not unreasonable. It is conceivable that a dedicated B experiment can probe a fundamental aspect of the Standard Model, the CKM matrix, in multiple ways. In the process, new physics can appear anywhere along the line

  20. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  1. On Behavioral Equivalence of Rational Representations

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, JC; Hara, S; Ohta, Y; Fujioka, H

    2010-01-01

    This article deals with the equivalence of representations of behaviors of linear differential systems In general. the behavior of a given linear differential system has many different representations. In this paper we restrict ourselves to kernel representations and image representations Two kernel

  2. 32 CFR 724.215 - Military representation.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Military representation. 724.215 Section 724.215... BOARD Authority/Policy for Departmental Discharge Review § 724.215 Military representation. Military... consult legal counsel before undertaking such representation. Such representation may be prohibited by 18...

  3. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber.

    Science.gov (United States)

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-07-23

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic "I" shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process.

  4. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Binzhen Zhang

    2016-07-01

    Full Text Available The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process.

  5. Dark Polar Dunes

    Science.gov (United States)

    2005-01-01

    20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  6. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  7. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  8. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  9. South polar permanent CO2 ice cap presentation in the Global Mars Multiscale Model

    Science.gov (United States)

    Fazel-Rastgar, Farahnaz

    2018-02-01

    The atmospheric influence caused by the Martian permanent south CO2 ice cap is examined to improve the Global Mars Multiscale Model (GM3) to see if it can significantly improve the representation of south polar meteorology. However, the seasonal carbon dioxide ice in the polar regions is presented in the surface ice simulation by the Global Mars Multiscale Model but the model does not produce a permanent south CO2 ice cap, and the physics code must modify to capture the realistic physical such as ice process detail; probably makes a bias in terms of total CO2 ice and meteorological processes in the model aside from ice formation. The permanent south CO2 ice cap in the model can significantly improve the representation of south polar meteorology for example in predicted surface temperatures, surface pressures, horizontal and zonal winds over the south cap and possible initiation of dust storms at south polar region during the southern summer period.

  10. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  11. Ocular biometry in angle closure.

    Science.gov (United States)

    Razeghinejad, Mohammad Reza; Banifatemi, Mohammad

    2013-01-01

    To compare ocular biometric parameters in primary angle closure suspects (PACS), primary angle closure glaucoma (PACG) and acute primary angle closure (APAC). This cross-sectional study was performed on 113 patients including 33 cases of PACS, 45 patients with PACG and 35 subjects with APAC. Central corneal thickness (CCT), axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) were measured with an ultrasonic biometer. Lens-axial length factor (LAF), relative lens position, corrected ACD (CACD) and corrected lens position were calculated. The parameters were measured bilaterally but only data from the right eyes were compared. In the APAC group, biometric parameters were also compared between affected and unaffected fellow eyes. Logistic regression analysis was performed to identify risk factors. No statistically significant difference was observed in biometric parameters between PACS and PACG eyes, or between affected and fellow eyes in the APAC group (P>0.05 for all comparisons). However, eyes with APAC had thicker cornea (P=0.001), thicker lens (PAPAC. In the APAC group, LAF (PAPAC.

  12. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  13. Angle comparison using an autocollimator

    Science.gov (United States)

    Geckeler, Ralf D.; Just, Andreas; Vasilev, Valentin; Prieto, Emilio; Dvorácek, František; Zelenika, Slobodan; Przybylska, Joanna; Duta, Alexandru; Victorov, Ilya; Pisani, Marco; Saraiva, Fernanda; Salgado, Jose-Antonio; Gao, Sitian; Anusorn, Tonmueanwai; Leng Tan, Siew; Cox, Peter; Watanabe, Tsukasa; Lewis, Andrew; Chaudhary, K. P.; Thalmann, Ruedi; Banreti, Edit; Nurul, Alfiyati; Fira, Roman; Yandayan, Tanfer; Chekirda, Konstantin; Bergmans, Rob; Lassila, Antti

    2018-01-01

    Autocollimators are versatile optical devices for the contactless measurement of the tilt angles of reflecting surfaces. An international key comparison (KC) on autocollimator calibration, EURAMET.L-K3.2009, was initiated by the European Association of National Metrology Institutes (EURAMET) to provide information on the capabilities in this field. The Physikalisch-Technische Bundesanstalt (PTB) acted as the pilot laboratory, with a total of 25 international participants from EURAMET and from the Asia Pacific Metrology Programme (APMP) providing measurements. This KC was the first one to utilise a high-resolution electronic autocollimator as a standard. In contrast to KCs in angle metrology which usually involve the full plane angle, it focused on relatively small angular ranges (+/-10 arcsec and +/-1000 arcsec) and step sizes (10 arcsec and 0.1 arcsec, respectively). This document represents the approved final report on the results of the KC. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud

    Science.gov (United States)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Li, Zhi-Yun; Yang, Haifeng; Tobin, John J.; Stephens, Ian

    2018-03-01

    We present 870 μm ALMA dust polarization observations of 10 young Class 0/I protostars in the Perseus Molecular Cloud. At ∼0.″35 (80 au) resolution, all of our sources show some degree of polarization, with most (9/10) showing significantly extended emission in the polarized continuum. Each source has incredibly intricate polarization signatures. In particular, all three disk-candidates have polarization vectors roughly along the minor axis, which is indicative of polarization produced by dust scattering. On ∼100 au scales, the polarization is at a relatively low level (≲1%) and is quite ordered. In sources with significant envelope emission, the envelope is typically polarized at a much higher (≳5%) level and has a far more disordered morphology. We compute the cumulative probability distributions for both the small (disk-scale) and large (envelope-scale) polarization percentage. We find that the two are intrinsically different, even after accounting for the different detection thresholds in the high/low surface brightness regions. We perform Kolmogorov–Smirnov and Anderson–Darling tests on the distributions of angle offsets of the polarization from the outflow axis. We find disk-candidate sources are different from the non-disk-candidate sources. We conclude that the polarization on the 100 au scale is consistent with the signature of dust scattering for disk-candidates and that the polarization on the envelope-scale in all sources may come from another mechanism, most likely magnetically aligned grains.

  15. On Representation in Information Theory

    Directory of Open Access Journals (Sweden)

    Joseph E. Brenner

    2011-09-01

    Full Text Available Semiotics is widely applied in theories of information. Following the original triadic characterization of reality by Peirce, the linguistic processes involved in information—production, transmission, reception, and understanding—would all appear to be interpretable in terms of signs and their relations to their objects. Perhaps the most important of these relations is that of the representation-one, entity, standing for or representing some other. For example, an index—one of the three major kinds of signs—is said to represent something by being directly related to its object. My position, however, is that the concept of symbolic representations having such roles in information, as intermediaries, is fraught with the same difficulties as in representational theories of mind. I have proposed an extension of logic to complex real phenomena, including mind and information (Logic in Reality; LIR, most recently at the 4th International Conference on the Foundations of Information Science (Beijing, August, 2010. LIR provides explanations for the evolution of complex processes, including information, that do not require any entities other than the processes themselves. In this paper, I discuss the limitations of the standard relation of representation. I argue that more realistic pictures of informational systems can be provided by reference to information as an energetic process, following the categorial ontology of LIR. This approach enables naïve, anti-realist conceptions of anti-representationalism to be avoided, and enables an approach to both information and meaning in the same novel logical framework.

  16. The physics of polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14

  17. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  18. Resolving 3D magnetism in nanoparticles using polarization analyzed SANS

    Science.gov (United States)

    Krycka, K. L.; Booth, R.; Borchers, J. A.; Chen, W. C.; Conlon, C.; Gentile, T. R.; Hogg, C.; Ijiri, Y.; Laver, M.; Maranville, B. B.; Majetich, S. A.; Rhyne, J. J.; Watson, S. M.

    2009-09-01

    Utilizing a polarized 3He cell as an analyzer we were able to perform a full polarization analysis on small-angle neutron scattering (SANS) data from an ensemble of 7 nm magnetite nanoparticles. The results led to clear separation of magnetic and nuclear scattering plus a 3D vectorial decomposition of the magnetism observed. At remanence variation in long-range magnetic correlation length was found to be highly dependent on temperature from 50 to 300 K. Additionally, we were able to compare the magnetic scattering from moments along and perpendicular to an applied field at saturation and in remanence.

  19. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  20. SL(2, 7) representations and their relevance to neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Aliferis, G.; Vlachos, N.D. [University of Thessaloniki, Department of Nuclear and Particle Physics, Thessaloniki (Greece); Leontaris, G.K. [University of Ioannina, Physics Department, Ioannina (Greece); CERN, Department of Physics, Geneva 23 (Switzerland)

    2017-06-15

    The investigation of the role of finite groups in flavor physics and, particularly, in the interpretation of the neutrino data has been the subject of intensive research. Motivated by this fact, in this work we derive the three-dimensional unitary representations of the projective linear group PSL{sub 2}(7). Based on the observation that the generators of the group exhibit a Latin square pattern, we use available computational packages on discrete algebra to determine the generic properties of the group elements. We present analytical expressions and discuss several examples which reproduce the neutrino mixing angles in accordance with the experimental data. (orig.)

  1. On the polarization of light in atmospheres and oceans

    Science.gov (United States)

    Yang, P.; Kattawar, G. W.; Mishchenko, M. I.

    2016-12-01

    In this talk, we will briefly review the genesis and evolution of the polarization of light, dating back to the Vikings' questionable use of sunstones for navigation. Also to be presented are the first use of polarimetry in the study of planetary atmospheres and stars as well as the latest results on the use of polarization by both terrestrial and marine organisms. In particular, our presentation will focus on the representation of the polarization characteristics of light in terms of the Stokes vector-Mueller matrix formalism. In addition, we will discuss the features of the polarization properties of nonspherical particles. Furthermore, we will illustrate the great potential of using the polarization properties of light in downstream applications, particularly remote sensing of the optical and microphysical properties of airborne dust and ice crystals. We will also show the effect of coherence of the illuminating source on the polarization properties of atmospheric particles since sunlight only has a lateral coherence length of roughly 60 μm.

  2. Calculation of the QED correction to the recoil proton polarization by the electron structure function method

    International Nuclear Information System (INIS)

    Afanasev, A.V.; Akushevich, I.; Merenkov, N.P.

    2000-01-01

    The recoil proton polarization for the quasielastic electron-proton scattering is represented as a contraction of the electron structure and the hard part of the polarization dependent contribution into cross-section. The calculation of the hard part with first order radiative correction is performed. The obtained representation includes the leading radiative corrections in all orders of perturbation theory and the main part of the second order next-to-leading ones

  3. An introduction to quiver representations

    CERN Document Server

    Derksen, Harm

    2017-01-01

    This book is an introduction to the representation theory of quivers and finite dimensional algebras. It gives a thorough and modern treatment of the algebraic approach based on Auslander-Reiten theory as well as the approach based on geometric invariant theory. The material in the opening chapters is developed starting slowly with topics such as homological algebra, Morita equivalence, and Gabriel's theorem. Next, the book presents Auslander-Reiten theory, including almost split sequences and the Auslander-Reiten transform, and gives a proof of Kac's generalization of Gabriel's theorem. Once this basic material is established, the book goes on with developing the geometric invariant theory of quiver representations. The book features the exposition of the saturation theorem for semi-invariants of quiver representations and its application to Littlewood-Richardson coefficients. In the final chapters, the book exposes tilting modules, exceptional sequences and a connection to cluster categories. The book is su...

  4. Preon representations and composite models

    International Nuclear Information System (INIS)

    Kang, Kyungsik

    1982-01-01

    This is a brief report on the preon models which are investigated by In-Gyu Koh, A. N. Schellekens and myself and based on complex, anomaly-free and asymptotically free representations of SU(3) to SU(8), SO(4N+2) and E 6 with no more than two different preons. Complete list of the representations that are complex anomaly-free and asymptotically free has been given by E. Eichten, I.-G. Koh and myself. The assumptions made about the ground state composites and the role of Fermi statistics to determine the metaflavor wave functions are discussed in some detail. We explain the method of decompositions of tensor products with definite permutation properties which has been developed for this purpose by I.-G. Koh, A.N. Schellekens and myself. An example based on an anomaly-free representation of the confining metacolor group SU(5) is discussed

  5. Vivid Representations and Their Effects

    Directory of Open Access Journals (Sweden)

    Kengo Miyazono

    2018-04-01

    Full Text Available Sinhababu’s Humean Nature contains many interesting and important ideas, but in this short commentary I focus on the idea of vivid representations. Sinhababu inherits his idea of vivid representations from Hume’s discussions, in particular his discussion of calm and violent passions. I am sympathetic to the idea of developing Hume’s insight that has been largely neglected by philosophers. I believe that Sinhababu and Hume are on the right track. What I do in this short commentary is to raise some questions about the details. The aim of asking these questions is not to challenge Sinhababu’s proposal (at least his main ideas, but rather to point at some interesting issues arising out of his proposal. The questions are about (1 the nature of vividness, (2 the effects of vivid representations, and (3 Sinhababu’s account of alief cases.

  6. Executive control influences linguistic representations.

    Science.gov (United States)

    Lev-Ari, Shiri; Keysar, Boaz

    2014-02-01

    Although it is known that words acquire their meanings partly from the contexts in which they are used, we proposed that the way in which words are processed can also influence their representation. We further propose that individual differences in the way that words are processed can consequently lead to individual differences in the way that they are represented. Specifically, we showed that executive control influences linguistic representations by influencing the coactivation of competing and reinforcing terms. Consequently, people with poorer executive control perceive the meanings of homonymous terms as being more similar to one another, and those of polysemous terms as being less similar to one another, than do people with better executive control. We also showed that bilinguals with poorer executive control experience greater cross-linguistic interference than do bilinguals with better executive control. These results have implications for theories of linguistic representation and language organization.

  7. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  8. Polarized radiation in magnetic white dwarfs

    International Nuclear Information System (INIS)

    Rosi, L.A.; Zimmerman, R.L.; Kemp, J.C.

    1976-01-01

    A model for magnetic white dwarfs is proposed which attributes the partially polarized light to synchrotron radiation. The source of the radiation is relativistic electrons trapped in the magnetosphere of a white dwarf. The white dwarf's magnetic field is assumed to be dipolar. The Stokes parameters for the synchrotron radiation are tabulated as a function of frequency, observer's orientation, and energy and spatial distribution of the relativistic electrons. The results of the synchrotron calculations are applied to the polarization observations of Grw+70degree8247 and DQ Herculis. This model can account for the major features of the polarized radiation coming from these two magnetic white dwarfs. The calculations predict for Grw+70degree8247 that the surface magnetic field is B/sub s/approximately-less-than4 x 10 6 gauss, that the incident viewing angle is 45degreeapproximately-less-thantheta 0 approximately-less-than75degree, and that the electrons are trapped with nearly an isotropic distribution about the white dwarf. For DQ Herculis the surface magnetic field is B/sub s/approximately-less-than7 x 10 6 gauss and the trapped electrons are confined to a dislike region about the white dwarf. For both cases the density of electrons in the magnetosphere falls in the range of 10 5 approximately-less-thannapproximately-less-than10 7 cm -3 with energies of about 4--35 MeV

  9. Lobbying and political polarization

    OpenAIRE

    Ursprung, Heinrich W.

    2002-01-01

    Standard spatial models of political competition give rise to equilibria in which the competing political parties or candidates converge to a common position. In this paper I show how political polarization can be generated in models that focus on the nexus between pre-election interest group lobbying and electoral competition.

  10. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  11. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  12. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  13. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  14. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  15. Magic angle for barrier-controlled double quantum dots

    Science.gov (United States)

    Yang, Xu-Chen; Wang, Xin

    2018-01-01

    We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.

  16. Study of an efficient application of the tagged bremsstrahlung in double-polarization experiments in the GeV range and the use of the inelastic electron scattering under extremely forward angles as alternative to the tagged bremsstrahlung; Studie eines effizienten Einsatzes der markierten Bremsstrahlung bei Doppelpolarisationsexperimenten im GeV-Bereich und der Nutzung der inelastischen Elektronstreuung unter extremen Vorwaertswinkeln als Alternative zur markierten Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, M.

    2006-03-15

    For the preparation of photonic probes for hadron physics the determination of energy and polarization of the photons is essential. In this dissertation in a first part a possibility of the determination of the degree of polarization by use of the asymmetry observables is presented. In a second part a possibility isd discussed to perform an energy and polarization tagging of nearly real photons in electron scattering under small Q{sup 2}. By this method it should be possible to tag billions of photons per second.

  17. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    Science.gov (United States)

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  18. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    Science.gov (United States)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  19. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    International Nuclear Information System (INIS)

    Boll, D I R; Fojón, O A

    2017-01-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets. (paper)

  20. Investigation of the polarization state of dual APPLE-II undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hand, Matthew; Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Dhesi, Sarnjeet S.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  1. Investigation of the polarization state of dual APPLE-II undulators

    International Nuclear Information System (INIS)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S.; Sawhney, Kawal

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used

  2. Concepts, ontologies, and knowledge representation

    CERN Document Server

    Jakus, Grega; Omerovic, Sanida; Tomažic, Sašo

    2013-01-01

    Recording knowledge in a common framework that would make it possible to seamlessly share global knowledge remains an important challenge for researchers. This brief examines several ideas about the representation of knowledge addressing this challenge. A widespread general agreement is followed that states uniform knowledge representation should be achievable by using ontologies populated with concepts. A separate chapter is dedicated to each of the three introduced topics, following a uniform outline: definition, organization, and use. This brief is intended for those who want to get to know

  3. Medieval theories of mental representation.

    Science.gov (United States)

    Kemp, S

    1998-11-01

    Throughout most of the Middle ages, it was generally held that stored mental representations of perceived objects or events preserved the forms or species of such objects. This belief was consistent with a metaphor used by Plato. It was also consistent with the medieval belief that a number of cognitive processes took place in the ventricles of the brain and with the phenomenology of afterimages and imagination itself. In the 14th century, William of Ockham challenged this belief by claiming that mental representations are not stored but instead constructed in the basis of past learned experiences.

  4. Congruence properties of induced representations

    DEFF Research Database (Denmark)

    Mayer, Dieter; Momeni, Arash; Venkov, Alexei

    In this paper we study representations of the projective modular group induced from the Hecke congruence group of level 4 with Selberg's character. We show that the well known congruence properties of Selberg's character are equivalent to the congruence properties of the induced representations. ...... by Zograf's geometric method. They belong to the class of character groups of type $\\rm I$ for the principal congruence subgroup $\\Gamma(4)$ and have, contrary to the noncongruence groups determined by Selberg's character which all have genus $g=0$, arbitrary genus $g\\geq 0$....

  5. Style representation in design grammars

    DEFF Research Database (Denmark)

    Ahmad, Sumbul; Chase, Scott Curland

    2012-01-01

    to be transformed according to changing design style needs. Issues of formalizing stylistic change necessitate a lucid and formal definition of style in the design language generated by a grammar. Furthermore, a significant aspect of the definition of style is the representation of aesthetic qualities attributed...... to the style. We focus on grammars for representing and generating styles of design and review the use of grammar transformations for modelling changes in style and design language. We identify a gap in knowledge in the representation of style in grammars and in driving strategic style change using grammar...

  6. Characteristics of volume polarization holography with linear polarization light

    Science.gov (United States)

    Zang, Jinliang; Wu, An'an; Liu, Ying; Wang, Jue; Lin, Xiao; Tan, Xiaodi; Shimura, Tsutomu; Kuroda, Kazuo

    2015-10-01

    Volume polarization holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) (PQ-PMMA) photopolymer with linear polarized light is obtained. The characteristics of the volume polarization hologram are experimentally investigated. It is found that beyond the paraxial approximation the polarization states of the holographic reconstruction light are generally different from the signal light. Based on vector wave theoretical analyses and material properties, the special exposure condition for correctly holographic reconstruction is obtained and experimentally demonstrated.

  7. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  8. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  9. Ocular Biometry in Angle Closure

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Razeghinejad

    2013-01-01

    Full Text Available Purpose: To compare ocular biometric parameters in primary angle closure suspects (PACS, primary angle closure glaucoma (PACG and acute primary angle closure (APAC. Methods: This cross-sectional study was performed on 113 patients including 33 cases of PACS, 45 patients with PACG and 35 subjects with APAC. Central corneal thickness (CCT, axial length (AL, anterior chamber depth (ACD and lens thickness (LT were measured with an ultrasonic biometer. Lens-axial length factor (LAF, relative lens position, corrected ACD (CACD and corrected lens position were calculated. The parameters were measured bilaterally but only data from the right eyes were compared. In the APAC group, biometric parameters were also compared between affected and unaffected fellow eyes. Logistic regression analysis was performed to identify risk factors. Results: No statistically significant difference was observed in biometric parameters between PACS and PACG eyes, or between affected and fellow eyes in the APAC group (P>0.05 for all comparisons. However, eyes with APAC had thicker cornea (P=0.001, thicker lens (P<0.0001, shallower ACD (P=0.009, shallower CACD (P=0.003 and larger LAF (P<0.0001. Based on ROC curve analysis, lower ACD, and larger LT, LAF and CCT values were associated with APAC. In the APAC group, LAF (P<0.0001 and CCT (P=0.001 were significant risk factors. Conclusion: This study revealed no significant difference in biometric characteristics in eyes with PACS and PACG. However, larger LAF and CCT were predictive of APAC.

  10. Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering

    NARCIS (Netherlands)

    Grigoriev, S.V.; Napolskii, K.S.; Grigoryeva, N.A.; Vasilieva, A.V.; Mistonov, A.A.; Chernyshov, D.Y.; Petukhov, A.V.; Belov, D.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Sinitskii, A.S.; Eckerlebe, H.

    2009-01-01

    The structural and magnetic properties of nickel inverse opal photonic crystal have been studied by complementary experimental techniques, including scanning electron microscopy, wide-angle and small-angle diffraction of synchrotron radiation, and polarized neutrons. The sample was fabricated by

  11. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  12. Geomagnetic polarity transitions

    Science.gov (United States)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    The top of Earth's liquid outer core is nearly 2900 km beneath Earth's surface, so we will never be able to observe it directly. This hot, dense, molten iron-rich body is continuously in motion and is the source of Earth's magnetic field. One of the most dynamic manifestations at Earth's surface of this fluid body is, perhaps, a reversal of the geomagnetic field. Unfortunately, the most recent polarity transition occurred at about 780 ka, so we have never observed a transition directly. It seems that a polarity transition spans many human lifetimes, so no human will ever witness the phenomenon in its entirety. Thus we are left with the tantalizing prospect that paleomagnetic records of polarity transitions may betray some of the secrets of the deep Earth. Certainly, if there are systematics in the reversal process and they can be documented, then this will reveal substantial information about the nature of the lowermost mantle and of the outer core. Despite their slowness on a human timescale, polarity transitions occur almost instantaneously on a geological timescale. This rapidity, together with limitations in the paleomagnetic recording process, prohibits a comprehensive description of any reversal transition both now and into the foreseeable future, which limits the questions that may at this stage be sensibly asked. The natural model for the geomagnetic field is a set of spherical harmonic components, and we are not able to obtain a reliable model for even the first few harmonic terms during a transition. Nevertheless, it is possible, in principle, to make statements about the harmonic character of a geomagnetic polarity transition without having a rigorous spherical harmonic description of one. For example, harmonic descriptions of recent geomagnetic polarity transitions that are purely zonal can be ruled out (a zonal harmonic does not change along a line of latitude). Gleaning information about transitions has proven to be difficult, but it does seem

  13. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over...... the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated...... of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti...

  14. Terahertz transmission control using polarization-independent metamaterials.

    Science.gov (United States)

    Lee, Sang-Hun; Lee, Dong-Kyu; Kim, Chulki; Jhon, Young Min; Son, Joo-Hiuk; Seo, Minah

    2017-05-15

    We present terahertz (THz) transmission control by several uniquely designed patterns of nano-slot antenna array. Collinearly aligned slot antenna arrays have been usually applied to THz filters with frequency band tunability by their geometry. Normally the amplitude in transmission (reflection) in the collinear alignment case can be varied via rotating the azimuthal angle with a sinusoidal trend, which can limit their utilization and performance only at fixed angle between the alignment of the resonant antennas and incident beam polarization. To pursue a variety of metamaterial uses, here, we present polarization-independent THz filters using variously aligned antenna array (asterisk, chlorophyll, and honeycomb patterns) in such counter-intuitive aspects. Besides, unprecedented multi resonance behaviors were observed in chlorophyll and honeycomb patterns, which can be explained with interferences by adjacent structures. The measured spectra were analyzed by harmonic oscillator model with simplified coupling between slots and their adjacent.

  15. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  16. Analytical polarization calculations beyond SLIM

    International Nuclear Information System (INIS)

    Barber, D.P.

    1989-01-01

    A comparison is made between the theories of Bell and Leinaas and of Derbenev and Kondratenko for the spin polarization in electron storage rings. A calculation of polarization in HERA using the program SMILE of Mane is presented

  17. Thinking together with material representations

    DEFF Research Database (Denmark)

    Stege Bjørndahl, Johanne; Fusaroli, Riccardo; Østergaard, Svend

    2014-01-01

    How do material representations such as models, diagrams and drawings come to shape and aid collective, epistemic processes? This study investigated how groups of participants spontaneously recruited material objects (in this case LEGO blocks) to support collective creative processes in the conte...

  18. Non-Hermitian Heisenberg representation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2015-01-01

    Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015

  19. Paired structures in knowledge representation

    DEFF Research Database (Denmark)

    Montero, J.; Bustince, H.; Franco de los Ríos, Camilo

    2016-01-01

    In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here...

  20. Develop Reasoning through Pictorial Representations

    Science.gov (United States)

    Ruchti, Wendy P.; Bennett, Cory A.

    2013-01-01

    This article describes some of the benefits derived from encouraging math drawing in a class of seventh-and eighth-grade students in line with promoting mathematical proficiency. The authors report teaching pictorial representations as part of the solution process, where both students and teachers gained insight into various areas of…