Hallin, M.; Piegorsch, W.; El Shaarawi, A.
2012-01-01
The random variable X taking values 0,1,2,…,x,… with probabilities pλ(x) = e−λλx/x!, where λ∈R0+ is called a Poisson variable, and its distribution a Poisson distribution, with parameter λ. The Poisson distribution with parameter λ can be obtained as the limit, as n → ∞ and p → 0 in such a way that
Hung, Tran Loc; Giang, Le Truong
2016-01-01
Using the Stein-Chen method some upper bounds in Poisson approximation for distributions of row-wise triangular arrays of independent negative-binomial distributed random variables are established in this note.
Extended Poisson Exponential Distribution
Directory of Open Access Journals (Sweden)
Anum Fatima
2015-09-01
Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.
Cumulative Poisson Distribution Program
Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert
1990-01-01
Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.
Scaling the Poisson Distribution
Farnsworth, David L.
2014-01-01
We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.
Newton/Poisson-Distribution Program
Bowerman, Paul N.; Scheuer, Ernest M.
1990-01-01
NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C.
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu
2016-12-01
We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NEWTPOIS- NEWTON POISSON DISTRIBUTION PROGRAM
Bowerman, P. N.
1994-01-01
The cumulative poisson distribution program, NEWTPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714), can be used independently of one another. NEWTPOIS determines percentiles for gamma distributions with integer shape parameters and calculates percentiles for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. NEWTPOIS determines the Poisson parameter (lambda), that is; the mean (or expected) number of events occurring in a given unit of time, area, or space. Given that the user already knows the cumulative probability for a specific number of occurrences (n) it is usually a simple matter of substitution into the Poisson distribution summation to arrive at lambda. However, direct calculation of the Poisson parameter becomes difficult for small positive values of n and unmanageable for large values. NEWTPOIS uses Newton's iteration method to extract lambda from the initial value condition of the Poisson distribution where n=0, taking successive estimations until some user specified error term (epsilon) is reached. The NEWTPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting epsilon, n, and the cumulative probability of the occurrence of n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 30K. NEWTPOIS was developed in 1988.
Compound Poisson Approximations for Sums of Random Variables
Serfozo, Richard F.
1986-01-01
We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of...
International Nuclear Information System (INIS)
Theodorsen, A; Garcia, O E; Rypdal, M
2017-01-01
Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type. (paper)
Independent production and Poisson distribution
International Nuclear Information System (INIS)
Golokhvastov, A.I.
1994-01-01
The well-known statement of factorization of inclusive cross-sections in case of independent production of particles (or clusters, jets etc.) and the conclusion of Poisson distribution over their multiplicity arising from it do not follow from the probability theory in any way. Using accurately the theorem of the product of independent probabilities, quite different equations are obtained and no consequences relative to multiplicity distributions are obtained. 11 refs
Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes
Orsingher, Enzo; Polito, Federico
2012-08-01
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.
Bhamidi, S.; Van der Hofstad, R.; Hooghiemstra, G.
2010-01-01
We study first passage percolation (FPP) on the configuration model (CM) having power-law degrees with exponent ? ? [1, 2) and exponential edge weights. We derive the distributional limit of the minimal weight of a path between typical vertices in the network and the number of edges on the
Reduction of Nambu-Poisson Manifolds by Regular Distributions
Das, Apurba
2018-03-01
The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure.
Study of some arithmetic properties of poisson distribution
International Nuclear Information System (INIS)
Freycenon, J.
1965-01-01
One considers a random number on following a Poisson probability distribution function, which is divided by a constant a (n = am + b) and one studies the probability distribution of the rest b and of the quotient m. The mean and mean squared values of m and b are computed. A numerical example shows that the distribution of the rest may be likened with a rectangular distribution when the divisor a is less than or equal to 2 5 for n = 1000: the knowledge of b is then non-significant of the measure of n until this value of a. If one may avoid to reset, between each trial, that part of the sealer which holds the rest, the mean value of the successive quotients is an unbiased measure of n/a. (author) [fr
Transforming spatial point processes into Poisson processes using random superposition
DEFF Research Database (Denmark)
Møller, Jesper; Berthelsen, Kasper Klitgaaard
with a complementary spatial point process Y to obtain a Poisson process X∪Y with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...
The applicability of the Poisson distribution in radiochemical measurements
International Nuclear Information System (INIS)
Luthardt, M.; Proesch, U.
1980-01-01
The fact that, on principle, the Poisson distribution describes the statistics of nuclear decay is generally accepted. The applicability of this distribution to nuclear radiation measurements has recently been questioned. Applying the chi-squared test for goodness of fit on the analogy of the moving average, at least 3 cases may be distinguished, which lead to an incorrect rejection of the Poisson distribution for measurements. Examples are given. Distributions, which make allowance for special parameters, should only be used after careful examination of the data with regard to other interfering effects. The Poisson distribution will further on be applicable to many simple measuring operations. Some basic equations for the analysis of poisson-distributed data are given. (author)
Prescription-induced jump distributions in multiplicative Poisson processes.
Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos
2011-06-01
Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.
Prescription-induced jump distributions in multiplicative Poisson processes
Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos
2011-06-01
Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.
Comparison between two bivariate Poisson distributions through the ...
African Journals Online (AJOL)
These two models express themselves by their probability mass function. ... To remedy this problem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation as well negative, equal to zero, that positive.
Application of Poisson random effect models for highway network screening.
Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer
2014-02-01
In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Investigation of Random Switching Driven by a Poisson Point Process
DEFF Research Database (Denmark)
Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef
2015-01-01
This paper investigates the switching mechanism of a two-dimensional switched system, when the switching events are generated by a Poisson point process. A model, in the shape of a stochastic process, for such a system is derived and the distribution of the trajectory's position is developed...... together with marginal density functions for the coordinate functions. Furthermore, the joint probability distribution is given explicitly....
Seasonally adjusted birth frequencies follow the Poisson distribution.
Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A
2015-12-15
Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.
Random walk in dynamically disordered chains: Poisson white noise disorder
International Nuclear Information System (INIS)
Hernandez-Garcia, E.; Pesquera, L.; Rodriguez, M.A.; San Miguel, M.
1989-01-01
Exact solutions are given for a variety of models of random walks in a chain with time-dependent disorder. Dynamic disorder is modeled by white Poisson noise. Models with site-independent (global) and site-dependent (local) disorder are considered. Results are described in terms of an affective random walk in a nondisordered medium. In the cases of global disorder the effective random walk contains multistep transitions, so that the continuous limit is not a diffusion process. In the cases of local disorder the effective process is equivalent to usual random walk in the absence of disorder but with slower diffusion. Difficulties associated with the continuous-limit representation of random walk in a disordered chain are discussed. In particular, the authors consider explicit cases in which taking the continuous limit and averaging over disorder sources do not commute
Is neutron evaporation from highly excited nuclei a poisson random process
International Nuclear Information System (INIS)
Simbel, M.H.
1982-01-01
It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)
Some applications of the fractional Poisson probability distribution
International Nuclear Information System (INIS)
Laskin, Nick
2009-01-01
Physical and mathematical applications of the recently invented fractional Poisson probability distribution have been presented. As a physical application, a new family of quantum coherent states has been introduced and studied. As mathematical applications, we have developed the fractional generalization of Bell polynomials, Bell numbers, and Stirling numbers of the second kind. The appearance of fractional Bell polynomials is natural if one evaluates the diagonal matrix element of the evolution operator in the basis of newly introduced quantum coherent states. Fractional Stirling numbers of the second kind have been introduced and applied to evaluate the skewness and kurtosis of the fractional Poisson probability distribution function. A representation of the Bernoulli numbers in terms of fractional Stirling numbers of the second kind has been found. In the limit case when the fractional Poisson probability distribution becomes the Poisson probability distribution, all of the above listed developments and implementations turn into the well-known results of the quantum optics and the theory of combinatorial numbers.
A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture
Van Nguyen, Thu
2011-01-01
In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random variables X and Y is radial Poisson, then each of them must be radial Poisson."
Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process?
International Nuclear Information System (INIS)
Greco, A.; Matthaeus, W. H.; Servidio, S.; Dmitruk, P.
2009-01-01
Using solar wind data from the Advanced Composition Explorer spacecraft, with the support of Hall magnetohydrodynamic simulations, the waiting-time distributions of magnetic discontinuities have been analyzed. A possible phenomenon of clusterization of these discontinuities is studied in detail. We perform a local Poisson's analysis in order to establish if these intermittent events are randomly distributed or not. Possible implications about the nature of solar wind discontinuities are discussed.
A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.
Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep
2017-01-01
The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.
Le Bihan, Nicolas; Margerin, Ludovic
2009-07-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
Fission meter and neutron detection using poisson distribution comparison
Rowland, Mark S; Snyderman, Neal J
2014-11-18
A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.
A comparison of Poisson-one-inflated power series distributions for ...
African Journals Online (AJOL)
A class of Poisson-one-inflated power series distributions (the binomial, the Poisson, the negative binomial, the geometric, the log-series and the misrecorded Poisson) are proposed for modeling rural out-migration at the household level. The probability mass functions of the mixture distributions are derived and fitted to the ...
B. Chen (Bohan); J. Blanchet; C.H. Rhee (Chang-Han); A.P. Zwart (Bert)
2017-01-01
textabstractWe propose a class of strongly efficient rare event simulation estimators for random walks and compound Poisson processes with a regularly varying increment/jump-size distribution in a general large deviations regime. Our estimator is based on an importance sampling strategy that hinges
Generalization of Poisson distribution for the case of changing probability of consequential events
International Nuclear Information System (INIS)
Kushnirenko, E.
1995-01-01
The generalization of the Poisson distribution for the case of changing probabilities of the consequential events is done. It is shown that the classical Poisson distribution is the special case of this generalized distribution when the probabilities of the consequential events are constant. The using of the generalized Poisson distribution gives the possibility in some cases to obtain analytical result instead of making Monte-Carlo calculation
Confidence limits for parameters of Poisson and binomial distributions
International Nuclear Information System (INIS)
Arnett, L.M.
1976-04-01
The confidence limits for the frequency in a Poisson process and for the proportion of successes in a binomial process were calculated and tabulated for the situations in which the observed values of the frequency or proportion and an a priori distribution of these parameters are available. Methods are used that produce limits with exactly the stated confidence levels. The confidence interval [a,b] is calculated so that Pr [a less than or equal to lambda less than or equal to b c,μ], where c is the observed value of the parameter, and μ is the a priori hypothesis of the distribution of this parameter. A Bayesian type analysis is used. The intervals calculated are narrower and appreciably different from results, known to be conservative, that are often used in problems of this type. Pearson and Hartley recognized the characteristics of their methods and contemplated that exact methods could someday be used. The calculation of the exact intervals requires involved numerical analyses readily implemented only on digital computers not available to Pearson and Hartley. A Monte Carlo experiment was conducted to verify a selected interval from those calculated. This numerical experiment confirmed the results of the analytical methods and the prediction of Pearson and Hartley that their published tables give conservative results
Ship-Track Models Based on Poisson-Distributed Port-Departure Times
National Research Council Canada - National Science Library
Heitmeyer, Richard
2006-01-01
... of those ships, and their nominal speeds. The probability law assumes that the ship departure times are Poisson-distributed with a time-varying departure rate and that the ship speeds and ship routes are statistically independent...
A Hands-on Activity for Teaching the Poisson Distribution Using the Stock Market
Dunlap, Mickey; Studstill, Sharyn
2014-01-01
The number of increases a particular stock makes over a fixed period follows a Poisson distribution. This article discusses using this easily-found data as an opportunity to let students become involved in the data collection and analysis process.
International Nuclear Information System (INIS)
Akemann, G.; Bender, M.
2010-01-01
We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.
Zero-inflated Conway-Maxwell Poisson Distribution to Analyze Discrete Data.
Sim, Shin Zhu; Gupta, Ramesh C; Ong, Seng Huat
2018-01-09
In this paper, we study the zero-inflated Conway-Maxwell Poisson (ZICMP) distribution and develop a regression model. Score and likelihood ratio tests are also implemented for testing the inflation/deflation parameter. Simulation studies are carried out to examine the performance of these tests. A data example is presented to illustrate the concepts. In this example, the proposed model is compared to the well-known zero-inflated Poisson (ZIP) and the zero- inflated generalized Poisson (ZIGP) regression models. It is shown that the fit by ZICMP is comparable or better than these models.
Subdiffusivity of a random walk among a Poisson system of moving traps on ${\\mathbb Z}$
Athreya, Siva; Drewitz, Alexander; Sun, Rongfeng
2016-01-01
We consider a random walk among a Poisson system of moving traps on ${\\mathbb Z}$. In earlier work [DGRS12], the quenched and annealed survival probabilities of this random walk have been investigated. Here we study the path of the random walk conditioned on survival up to time $t$ in the annealed case and show that it is subdiffusive. As a by-product, we obtain an upper bound on the number of so-called thin points of a one-dimensional random walk, as well as a bound on the total volume of th...
International Nuclear Information System (INIS)
Rasulova, M.Yu
1998-01-01
A study has been made of a system of charged particles and inhomogeneities randomly distributed in accordance with the same law in the neighborhoods of corresponding sites of a planar crystal lattice. The existence and uniqueness of the solution of the generalized Poisson-Boltzmann's equation for the average self-consistent potential and average density of surface charges are proved. (author)
Use of the negative binomial-truncated Poisson distribution in thunderstorm prediction
Cohen, A. C.
1971-01-01
A probability model is presented for the distribution of thunderstorms over a small area given that thunderstorm events (1 or more thunderstorms) are occurring over a larger area. The model incorporates the negative binomial and truncated Poisson distributions. Probability tables for Cape Kennedy for spring, summer, and fall months and seasons are presented. The computer program used to compute these probabilities is appended.
Species Abundance in a Forest Community in South China: A Case of Poisson Lognormal Distribution
Institute of Scientific and Technical Information of China (English)
Zuo-Yun YIN; Hai REN; Qian-Mei ZHANG; Shao-Lin PENG; Qin-Feng GUO; Guo-Yi ZHOU
2005-01-01
Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.
e+-e- hadronic multiplicity distributions: negative binomial or Poisson
International Nuclear Information System (INIS)
Carruthers, P.; Shih, C.C.
1986-01-01
On the basis of fits to the multiplicity distributions for variable rapidity windows and the forward backward correlation for the 2 jet subset of e + e - data it is impossible to distinguish between a global negative binomial and its generalization, the partially coherent distribution. It is suggested that intensity interferometry, especially the Bose-Einstein correlation, gives information which will discriminate among dynamical models. 16 refs
Directory of Open Access Journals (Sweden)
Mir G. H. Talpur
2006-01-01
Full Text Available In this paper we consider, how to find the marginal distributions of crossing time and renewal numbers related with two poisson processes by using probability arguments. The obtained results show that the one-dimension marginal distributions are N+1 order PH-distributions.
TCP (truncated compound Poisson) process for multiplicity distributions in high energy collisions
International Nuclear Information System (INIS)
Srivastave, P.P.
1990-01-01
On using the Poisson distribution truncated at zero for intermediate cluster decay in a compound Poisson process, the authors obtain TCP distribution which describes quite well the multiplicity distributions in high energy collisions. A detailed comparison is made between TCP and NB for UA5 data. The reduced moments up to the fifth agree very well with the observed ones. The TCP curves are narrower than NB at high multiplicity tail, look narrower at very high energy and develop shoulders and oscillations which become increasingly pronounced as the energy grows. At lower energies the distributions, of the data for fixed intervals of rapidity for UA5 data and for the data (at low energy) for e + e - annihilation and pion-proton, proton-proton and muon-proton scattering. A discussion of compound Poisson distribution, expression of reduced moments and Poisson transforms are also given. The TCP curves and curves of the reduced moments for different values of the parameters are also presented
Boxma, O.J.; Yechiali, U.; Ruggeri, F.; Kenett, R.S.; Faltin, F.W.
2007-01-01
The Poisson process is a stochastic counting process that arises naturally in a large variety of daily life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the
Updating a Classic: "The Poisson Distribution and the Supreme Court" Revisited
Cole, Julio H.
2010-01-01
W. A. Wallis studied vacancies in the US Supreme Court over a 96-year period (1837-1932) and found that the distribution of the number of vacancies per year could be characterized by a Poisson model. This note updates this classic study.
International Nuclear Information System (INIS)
Lewis, J.C.
2011-01-01
In a recent paper (Lewis, 2008) a class of models suitable for application to collision-sequence interference was introduced. In these models velocities are assumed to be completely randomized in each collision. The distribution of velocities was assumed to be Gaussian. The integrated induced dipole moment μk, for vector interference, or the scalar modulation μk, for scalar interference, was assumed to be a function of the impulse (integrated force) fk, or its magnitude fk, experienced by the molecule in a collision. For most of (Lewis, 2008) it was assumed that μk fk and μk fk, but it proved to be possible to extend the models, so that the magnitude of the induced dipole moment is equal to an arbitrary power or sum of powers of the intermolecular force. This allows estimates of the in filling of the interference dip by the dis proportionality of the induced dipole moment and force. One particular such model, using data from (Herman and Lewis, 2006), leads to the most realistic estimate for the in filling of the vector interference dip yet obtained. In (Lewis, 2008) the drastic assumption was made that collision times occurred at equal intervals. In the present paper that assumption is removed: the collision times are taken to form a Poisson process. This is much more realistic than the equal-intervals assumption. The interference dip is found to be a Lorentzian in this model
Asymptotic Poisson distribution for the number of system failures of a monotone system
International Nuclear Information System (INIS)
Aven, Terje; Haukis, Harald
1997-01-01
It is well known that for highly available monotone systems, the time to the first system failure is approximately exponentially distributed. Various normalising factors can be used as the parameter of the exponential distribution to ensure the asymptotic exponentiality. More generally, it can be shown that the number of system failures is asymptotic Poisson distributed. In this paper we study the performance of some of the normalising factors by using Monte Carlo simulation. The results show that the exponential/Poisson distribution gives in general very good approximations for highly available components. The asymptotic failure rate of the system gives best results when the process is in steady state, whereas other normalising factors seem preferable when the process is not in steady state. From a computational point of view the asymptotic system failure rate is most attractive
A random matrix approach to the crossover of energy-level statistics from Wigner to Poisson
International Nuclear Information System (INIS)
Datta, Nilanjana; Kunz, Herve
2004-01-01
We analyze a class of parametrized random matrix models, introduced by Rosenzweig and Porter, which is expected to describe the energy level statistics of quantum systems whose classical dynamics varies from regular to chaotic as a function of a parameter. We compute the generating function for the correlations of energy levels, in the limit of infinite matrix size. The crossover between Poisson and Wigner statistics is measured by a renormalized coupling constant. The model is exactly solved in the sense that, in the limit of infinite matrix size, the energy-level correlation functions and their generating function are given in terms of a finite set of integrals
Filling of a Poisson trap by a population of random intermittent searchers
Bressloff, Paul C.
2012-03-01
We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N, we show that there exists a well-defined mean-field limit N→ in which the stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density f n(t). The latter is determined by the integrated Poisson rate μ(t)=0tλ(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion equation using a quasisteady-state analysis. We compare our analytical results for the
On poisson-stopped-sums that are mixed poisson
Valero Baya, Jordi; Pérez Casany, Marta; Ginebra Molins, Josep
2013-01-01
Maceda (1948) characterized the mixed Poisson distributions that are Poisson-stopped-sum distributions based on the mixing distribution. In an alternative characterization of the same set of distributions here the Poisson-stopped-sum distributions that are mixed Poisson distributions is proved to be the set of Poisson-stopped-sums of either a mixture of zero-truncated Poisson distributions or a zero-modification of it. Peer Reviewed
MEASUREMENT ERROR EFFECT ON THE POWER OF CONTROL CHART FOR ZERO-TRUNCATED POISSON DISTRIBUTION
Directory of Open Access Journals (Sweden)
Ashit Chakraborty
2013-09-01
Full Text Available Measurement error is the difference between the true value and the measured value of a quantity that exists in practice and may considerably affect the performance of control charts in some cases. Measurement error variability has uncertainty which can be from several sources. In this paper, we have studied the effect of these sources of variability on the power characteristics of control chart and obtained the values of average run length (ARL for zero-truncated Poisson distribution (ZTPD. Expression of the power of control chart for variable sample size under standardized normal variate for ZTPD is also derived.
Lin, Yi Hung; Tu, Yu Kang; Lu, Chun Tai; Chung, Wen Chen; Huang, Chiung Fang; Huang, Mao Suan; Lu, Hsein Kun
2014-01-01
Repigmentation variably occurs with different treatment methods in patients with gingival pigmentation. A systemic review was conducted of various treatment modalities for eliminating melanin pigmentation of the gingiva, comprising bur abrasion, scalpel surgery, cryosurgery, electrosurgery, gingival grafts, and laser techniques, to compare the recurrence rates (Rrs) of these treatment procedures. Electronic databases, including PubMed, Web of Science, Google, and Medline were comprehensively searched, and manual searches were conducted for studies published from January 1951 to June 2013. After applying inclusion and exclusion criteria, the final list of articles was reviewed in depth to achieve the objectives of this review. A Poisson regression was used to analyze the outcome of depigmentation using the various treatment methods. The systematic review was based on case reports mainly. In total, 61 eligible publications met the defined criteria. The various therapeutic procedures showed variable clinical results with a wide range of Rrs. A random-effects Poisson regression showed that cryosurgery (Rr = 0.32%), electrosurgery (Rr = 0.74%), and laser depigmentation (Rr = 1.16%) yielded superior result, whereas bur abrasion yielded the highest Rr (8.89%). Within the limit of the sampling level, the present evidence-based results show that cryosurgery exhibits the optimal predictability for depigmentation of the gingiva among all procedures examined, followed by electrosurgery and laser techniques. It is possible to treat melanin pigmentation of the gingiva with various methods and prevent repigmentation. Among those treatment modalities, cryosurgery, electrosurgery, and laser surgery appear to be the best choices for treating gingival pigmentation. © 2014 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.
2014-01-01
We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt –γ . The SEEs display a broken power-law WTD. The power-law index is γ 1 = 0.99 for the short waiting times (<70 hr) and γ 2 = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ –α exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt α –3 , where 0 ≤ α < 2
Directory of Open Access Journals (Sweden)
Chi Zhang
2015-05-01
Full Text Available To model correlated bivariate count data with extra zero observations, this paper proposes two new bivariate zero-inflated generalized Poisson (ZIGP distributions by incorporating a multiplicative factor (or dependency parameter λ, named as Type I and Type II bivariate ZIGP distributions, respectively. The proposed distributions possess a flexible correlation structure and can be used to fit either positively or negatively correlated and either over- or under-dispersed count data, comparing to the existing models that can only fit positively correlated count data with over-dispersion. The two marginal distributions of Type I bivariate ZIGP share a common parameter of zero inflation while the two marginal distributions of Type II bivariate ZIGP have their own parameters of zero inflation, resulting in a much wider range of applications. The important distributional properties are explored and some useful statistical inference methods including maximum likelihood estimations of parameters, standard errors estimation, bootstrap confidence intervals and related testing hypotheses are developed for the two distributions. A real data are thoroughly analyzed by using the proposed distributions and statistical methods. Several simulation studies are conducted to evaluate the performance of the proposed methods.
Random distributed feedback fibre lasers
Energy Technology Data Exchange (ETDEWEB)
Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)
2014-09-10
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the
Random distributed feedback fibre lasers
International Nuclear Information System (INIS)
Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.
2014-01-01
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the
Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
Hougaard, P; Lee, M L; Whitmore, G A
1997-12-01
Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.
Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V
2013-04-01
Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.
Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.
2013-04-01
Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.
Cincotti, Silvano; Ponta, Linda; Raberto, Marco; Scalas, Enrico
2005-05-01
In this paper, empirical analyses and computational experiments are presented on high-frequency data for a double-auction (book) market. Main objective of the paper is to generalize the order waiting time process in order to properly model such empirical evidences. The empirical study is performed on the best bid and best ask data of 7 U.S. financial markets, for 30-stock time series. In particular, statistical properties of trading waiting times have been analyzed and quality of fits is evaluated by suitable statistical tests, i.e., comparing empirical distributions with theoretical models. Starting from the statistical studies on real data, attention has been focused on the reproducibility of such results in an artificial market. The computational experiments have been performed within the Genoa Artificial Stock Market. In the market model, heterogeneous agents trade one risky asset in exchange for cash. Agents have zero intelligence and issue random limit or market orders depending on their budget constraints. The price is cleared by means of a limit order book. The order generation is modelled with a renewal process. Based on empirical trading estimation, the distribution of waiting times between two consecutive orders is modelled by a mixture of exponential processes. Results show that the empirical waiting-time distribution can be considered as a generalization of a Poisson process. Moreover, the renewal process can approximate real data and implementation on the artificial stocks market can reproduce the trading activity in a realistic way.
Khuluqi, M. H.; Prapdito, R. R.; Sambodo, F. P.
2018-04-01
In Indonesia, mining is categorized as a hazardous industry. In recent years, a dramatic increase of mining equipment and technological complexities had resulted in higher maintenance expectations that accompanied by the changes in the working conditions, especially on safety. Ensuring safety during the process of conducting maintenance works in underground mine is important as an integral part of accident prevention programs. Accident triangle has provided a support to safety practitioner to draw a road map in preventing accidents. Poisson distribution is appropriate for the analysis of accidents at a specific site in a given time period. Based on the analysis of accident statistics in the underground mine maintenance of PT. Freeport Indonesia from 2011 through 2016, it is found that 12 minor accidents for 1 major accident and 66 equipment damages for 1 major accident as a new value of accident triangle. The result can be used for the future need for improving the accident prevention programs.
Seong, Ki Moon; Park, Hweon; Kim, Seong Jung; Ha, Hyo Nam; Lee, Jae Yung; Kim, Joon
2007-06-01
A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.
International Nuclear Information System (INIS)
Wright, T.
1983-01-01
Consider a stratified population with L strata, so that a Poisson random variable is associated with each stratum. The parameter associated with the hth stratum is theta/sub h/, h = 1, 2, ..., L. Let ω/sub h/ be the known proportion of the population in the hth stratum, h = 1, 2, ..., L. The authors want to estimate the parameter theta = summation from h = 1 to L ω/sub h/theta/sub h/. We assume that prior information is available on theta/sub h/ and that it can be expressed in terms of a gamma distribution with parameters α/sub h/ and β/sub h/, h = 1, 2, ..., L. We also assume that the prior distributions are independent. Using squared error loss function, a Bayes allocation of total sample size with a cost constraint is given. The Bayes estimate using the Bayes allocation is shown to have an adjusted mean square error which is strictly less than the adjusted mean square error of the classical estimate using the classical allocation
Lucarini, Valerio
2009-01-01
We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space
Poisson Processes in Free Probability
An, Guimei; Gao, Mingchu
2015-01-01
We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in classical probability. We proved that the sum of finitely many freely independent compound free Poisson processes is a compound free Poisson processes. We give a step by step procedure for constructing a (compound) free Poisso...
Egan, Raphael; Gibou, Frédéric
2017-10-01
We present a discretization method for the multidimensional Dirac distribution. We show its applicability in the context of integration problems, and for discretizing Dirac-distributed source terms in Poisson equations with constant or variable diffusion coefficients. The discretization is cell-based and can thus be applied in a straightforward fashion to Quadtree/Octree grids. The method produces second-order accurate results for integration. Superlinear convergence is observed when it is used to model Dirac-distributed source terms in Poisson equations: the observed order of convergence is 2 or slightly smaller. The method is consistent with the discretization of Dirac delta distribution for codimension one surfaces presented in [1,2]. We present Quadtree/Octree construction procedures to preserve convergence and present various numerical examples, including multi-scale problems that are intractable with uniform grids.
Fetsch, Corinna
2011-09-13
Preparation of defined and functional polymers has been one of the hottest topics in polymer science and drug delivery in the recent decade. Also, research on (bio)degradable polymers gains more and more interest, in particular at the interface of these two disciplines. However, in the majority of cases, combination of definition, functionality and degradability, is problematic. Here we present the preparation and characterization (MALDI-ToF MS, NMR, GPC) of nonionic hydrophilic, hydrophobic, and amphiphilic N-substituted polyglycines (polypeptoids), which are expected to be main-chain degradable and are able to disperse a hydrophobic model compound in aqueous media. Polymerization kinetics suggest that the polymerization is well controlled with strictly linear pseudo first-order kinetic plots to high monomer consumption. Moreover, molar mass distributions of products are Poisson-type and molar mass can be controlled by the monomer to initiator ratio. The presented polymer platform is nonionic, backbone degradable, and synthetically highly flexible and may therefore be valuable for a broad range of applications, in particular as a biomaterial. © 2011 American Chemical Society.
Fetsch, Corinna; Grossmann, Arlett; Holz, Lisa; Nawroth, Jonas F.; Luxenhofer, Robert
2011-01-01
Preparation of defined and functional polymers has been one of the hottest topics in polymer science and drug delivery in the recent decade. Also, research on (bio)degradable polymers gains more and more interest, in particular at the interface of these two disciplines. However, in the majority of cases, combination of definition, functionality and degradability, is problematic. Here we present the preparation and characterization (MALDI-ToF MS, NMR, GPC) of nonionic hydrophilic, hydrophobic, and amphiphilic N-substituted polyglycines (polypeptoids), which are expected to be main-chain degradable and are able to disperse a hydrophobic model compound in aqueous media. Polymerization kinetics suggest that the polymerization is well controlled with strictly linear pseudo first-order kinetic plots to high monomer consumption. Moreover, molar mass distributions of products are Poisson-type and molar mass can be controlled by the monomer to initiator ratio. The presented polymer platform is nonionic, backbone degradable, and synthetically highly flexible and may therefore be valuable for a broad range of applications, in particular as a biomaterial. © 2011 American Chemical Society.
Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph
2018-07-01
To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also
Birth and Death Process Modeling Leads to the Poisson Distribution: A Journey Worth Taking
Rash, Agnes M.; Winkel, Brian J.
2009-01-01
This paper describes details of development of the general birth and death process from which we can extract the Poisson process as a special case. This general process is appropriate for a number of courses and units in courses and can enrich the study of mathematics for students as it touches and uses a diverse set of mathematical topics, e.g.,…
Filling of a Poisson trap by a population of random intermittent searchers
Bressloff, Paul C.; Newby, Jay M.
2012-01-01
We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a
DEFF Research Database (Denmark)
Jensen, J.L.
1993-01-01
Previous results on Edgeworth expansions for sums over a random field are extended to the case where the strong mixing coefficient depends not only on the distance between two sets of random variables, but also on the size of the two sets. The results are applied to the Poisson and the Strauss...
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2018-04-01
Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction.
Garcia, Jane Bernadette Denise M.; Esguerra, Jose Perico H.
2017-08-01
An approximate but closed-form expression for a Poisson-like steady state wealth distribution in a kinetic model of gambling was formulated from a finite number of its moments, which were generated from a βa,b(x) exchange distribution. The obtained steady-state wealth distributions have tails which are qualitatively similar to those observed in actual wealth distributions.
Estimation of Poisson noise in spatial domain
Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana
2017-09-01
This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model...
ON THE ESTIMATION OF DISTANCE DISTRIBUTION FUNCTIONS FOR POINT PROCESSES AND RANDOM SETS
Directory of Open Access Journals (Sweden)
Dietrich Stoyan
2011-05-01
Full Text Available This paper discusses various estimators for the nearest neighbour distance distribution function D of a stationary point process and for the quadratic contact distribution function Hq of a stationary random closed set. It recommends the use of Hanisch's estimator of D, which is of Horvitz-Thompson type, and the minussampling estimator of Hq. This recommendation is based on simulations for Poisson processes and Boolean models.
Zhang, Ling Yu; Liu, Zhao Gang
2017-12-01
Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
International Nuclear Information System (INIS)
Bluszcz, Andrzej; Adamiec, Grzegorz; Heer, Aleksandra J.
2015-01-01
The current work focuses on the estimation of equivalent dose and its uncertainty using the single aliquot regenerative protocol in optically stimulated luminescence measurements. The authors show that the count numbers recorded with the use of photomultiplier tubes are well described by negative binomial distributions, different ones for background counts and photon induced counts. This fact is then exploited in pseudo-random count number generation and simulations of D e determination assuming a saturating exponential growth. A least squares fitting procedure is applied using different types of weights to determine whether the obtained D e 's and their error estimates are unbiased and accurate. A weighting procedure is suggested that leads to almost unbiased D e estimates. It is also shown that the assumption of Poisson distribution in D e estimation may lead to severe underestimation of the D e error. - Highlights: • Detailed analysis of statistics of count numbers in luminescence readers. • Generation of realistically scattered pseudo-random numbers of counts in luminescence measurements. • A practical guide for stringent analysis of D e values and errors assessment.
International Nuclear Information System (INIS)
Xie Yigang; Chai Yong
1994-01-01
The charged multiplicity distributions of hadron final states in the e + e - annihilation at the 91.2 GeV Z 0 energy region are fitted with Poisson shape in different rapidity windows for double and single hemisphere. The multiplicities which are in Poisson-like shapes can be got according to the parameter /D and fitting qualities are compared with the results derived from the relevant theoretical models. The relationship between the Poisson-like shape and KNO scaling is discussed. The connection between the parameters expressing the deviation from the Poisson shape and non-independent particle emission and multiplicity correlation strength is analyzed. The 'shoulder structure' is observed in the central rapidity region and analyzed with multi-jets by using the JADE jet analysis algorithm
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
2009-01-01
In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric...
On the Distribution of Random Geometric Graphs
DEFF Research Database (Denmark)
Badiu, Mihai Alin; Coon, Justin P.
2018-01-01
as a measure of the graph’s topological uncertainty (or information content). Moreover, the distribution is also relevant for determining average network performance or designing protocols. However, a major impediment in deducing the graph distribution is that it requires the joint probability distribution......Random geometric graphs (RGGs) are commonly used to model networked systems that depend on the underlying spatial embedding. We concern ourselves with the probability distribution of an RGG, which is crucial for studying its random topology, properties (e.g., connectedness), or Shannon entropy...... of the n(n − 1)/2 distances between n nodes randomly distributed in a bounded domain. As no such result exists in the literature, we make progress by obtaining the joint distribution of the distances between three nodes confined in a disk in R 2. This enables the calculation of the probability distribution...
Li, Xian-Ying; Hu, Shi-Min
2013-02-01
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
Poisson branching point processes
International Nuclear Information System (INIS)
Matsuo, K.; Teich, M.C.; Saleh, B.E.A.
1984-01-01
We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers
Time distributions of solar energetic particle events: Are SEPEs really random?
Jiggens, P. T. A.; Gabriel, S. B.
2009-10-01
Solar energetic particle events (SEPEs) can exhibit flux increases of several orders of magnitude over background levels and have always been considered to be random in nature in statistical models with no dependence of any one event on the occurrence of previous events. We examine whether this assumption of randomness in time is correct. Engineering modeling of SEPEs is important to enable reliable and efficient design of both Earth-orbiting and interplanetary spacecraft and future manned missions to Mars and the Moon. All existing engineering models assume that the frequency of SEPEs follows a Poisson process. We present analysis of the event waiting times using alternative distributions described by Lévy and time-dependent Poisson processes and compared these with the usual Poisson distribution. The results show significant deviation from a Poisson process and indicate that the underlying physical processes might be more closely related to a Lévy-type process, suggesting that there is some inherent “memory” in the system. Inherent Poisson assumptions of stationarity and event independence are investigated, and it appears that they do not hold and can be dependent upon the event definition used. SEPEs appear to have some memory indicating that events are not completely random with activity levels varying even during solar active periods and are characterized by clusters of events. This could have significant ramifications for engineering models of the SEP environment, and it is recommended that current statistical engineering models of the SEP environment should be modified to incorporate long-term event dependency and short-term system memory.
Terashima, Yuji
2008-01-01
In this paper, defining Poisson functions on super manifolds, we show that the graphs of Poisson functions are Dirac structures, and find Poisson functions which include as special cases both quasi-Poisson structures and twisted Poisson structures.
Bouleau, Nicolas
2015-01-01
A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the “lent particle method” it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Lévy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calcul...
Statistics of weighted Poisson events and its applications
International Nuclear Information System (INIS)
Bohm, G.; Zech, G.
2014-01-01
The statistics of the sum of random weights where the number of weights is Poisson distributed has important applications in nuclear physics, particle physics and astrophysics. Events are frequently weighted according to their acceptance or relevance to a certain type of reaction. The sum is described by the compound Poisson distribution (CPD) which is shortly reviewed. It is shown that the CPD can be approximated by a scaled Poisson distribution (SPD). The SPD is applied to parameter estimation in situations where the data are distorted by resolution effects. It performs considerably better than the normal approximation that is usually used. A special Poisson bootstrap technique is presented which permits to derive confidence limits for observations following the CPD
Modeling Repeated Count Data : Some Extensions of the Rasch Poisson Counts Model
van Duijn, M.A.J.; Jansen, Margo
1995-01-01
We consider data that can be summarized as an N X K table of counts-for example, test data obtained by administering K tests to N subjects. The cell entries y(ij) are assumed to be conditionally independent Poisson-distributed random variables, given the NK Poisson intensity parameters mu(ij). The
Rusakov, Oleg; Laskin, Michael
2017-06-01
We consider a stochastic model of changes of prices in real estate markets. We suppose that in a book of prices the changes happen in points of jumps of a Poisson process with a random intensity, i.e. moments of changes sequently follow to a random process of the Cox process type. We calculate cumulative mathematical expectations and variances for the random intensity of this point process. In the case that the process of random intensity is a martingale the cumulative variance has a linear grows. We statistically process a number of observations of real estate prices and accept hypotheses of a linear grows for estimations as well for cumulative average, as for cumulative variance both for input and output prises that are writing in the book of prises.
Fractional Poisson process (II)
International Nuclear Information System (INIS)
Wang Xiaotian; Wen Zhixiong; Zhang Shiying
2006-01-01
In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution
Non-uniform approximations for sums of discrete m-dependent random variables
Vellaisamy, P.; Cekanavicius, V.
2013-01-01
Non-uniform estimates are obtained for Poisson, compound Poisson, translated Poisson, negative binomial and binomial approximations to sums of of m-dependent integer-valued random variables. Estimates for Wasserstein metric also follow easily from our results. The results are then exemplified by the approximation of Poisson binomial distribution, 2-runs and $m$-dependent $(k_1,k_2)$-events.
Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram
2017-09-23
Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.
A random sampling procedure for anisotropic distributions
International Nuclear Information System (INIS)
Nagrajan, P.S.; Sethulakshmi, P.; Raghavendran, C.P.; Bhatia, D.P.
1975-01-01
A procedure is described for sampling the scattering angle of neutrons as per specified angular distribution data. The cosine of the scattering angle is written as a double Legendre expansion in the incident neutron energy and a random number. The coefficients of the expansion are given for C, N, O, Si, Ca, Fe and Pb and these elements are of interest in dosimetry and shielding. (author)
Coordination of Conditional Poisson Samples
Directory of Open Access Journals (Sweden)
Grafström Anton
2015-12-01
Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.
Bristow, Quentin
1990-01-01
Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and
Alexe-Ionescu, A L; Barbero, G; Lelidis, I
2014-08-28
We consider the influence of the spatial dependence of the ions distribution on the effective dielectric constant of an electrolytic solution. We show that in the linear version of the Poisson-Nernst-Planck model, the effective dielectric constant of the solution has to be considered independent of any ionic distribution induced by the external field. This result follows from the fact that, in the linear approximation of the Poisson-Nernst-Planck model, the redistribution of the ions in the solvent due to the external field gives rise to a variation of the dielectric constant that is of the first order in the effective potential, and therefore it has to be neglected in the Poisson's equation that relates the actual electric potential across the electrolytic cell to the bulk density of ions. The analysis is performed in the case where the electrodes are perfectly blocking and the adsorption at the electrodes is negligible, and in the absence of any ion dissociation-recombination effect.
Lower limits for distribution tails of randomly stopped sums
Denisov, D.E.; Korshunov, D.A.; Foss, S.G.
2008-01-01
We study lower limits for the ratio $\\overline{F^{*\\tau}}(x)/\\,\\overline F(x)$ of tail distributions, where $F^{*\\tau}$ is a distribution of a sum of a random size $\\tau$ of independent identically distributed random variables having a common distribution $F$, and a random variable $\\tau$ does not
Raney Distributions and Random Matrix Theory
Forrester, Peter J.; Liu, Dang-Zheng
2015-03-01
Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.
A heuristic for the distribution of point counts for random curves over a finite field.
Achter, Jeffrey D; Erman, Daniel; Kedlaya, Kiran S; Wood, Melanie Matchett; Zureick-Brown, David
2015-04-28
How many rational points are there on a random algebraic curve of large genus g over a given finite field Fq? We propose a heuristic for this question motivated by a (now proven) conjecture of Mumford on the cohomology of moduli spaces of curves; this heuristic suggests a Poisson distribution with mean q+1+1/(q-1). We prove a weaker version of this statement in which g and q tend to infinity, with q much larger than g. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems
International Nuclear Information System (INIS)
Akin, Osman C; Grigolini, Paolo; Paradisi, Paolo
2009-01-01
The response of a system with ON–OFF intermittency to an external harmonic perturbation is discussed. ON–OFF intermittency is described by means of a sequence of random events, i.e., the transitions from the ON to the OFF state and vice versa. The unperturbed waiting times (WTs) between two events are assumed to satisfy a renewal condition, i.e., the WTs are statistically independent random variables. The response of a renewal model with non-Poisson ON–OFF intermittency, associated with non-exponential WT distribution, is analyzed by looking at the changes induced in the WT statistical distribution by the harmonic perturbation. The scaling properties are also studied by means of diffusion entropy analysis. It is found that, in the range of fast and relatively strong perturbation, the non-Poisson system displays a Poisson-like behavior in both WT distribution and scaling. In particular, the histogram of perturbed WTs becomes a sequence of equally spaced peaks, with intensity decaying exponentially in time. Further, the diffusion entropy detects an ordinary scaling (related to normal diffusion) instead of the expected unperturbed anomalous scaling related to the inverse power-law decay. Thus, an analysis based on the WT histogram and/or on scaling methods has to be considered with some care when dealing with perturbed intermittent systems
Wang, J X; Hu, M G; Yu, S C; Xiao, G X
2017-09-10
Objective: To understand the spatial distribution of incidence of hand foot and mouth disease (HFMD) at scale of township and provide evidence for the better prevention and control of HFMD and allocation of medical resources. Methods: The incidence data of HFMD in 108 counties (district) in Shandong province in 2010 were collected. Downscaling interpolation was conducted by using area-to-area Poisson Kriging method. The interpolation results were visualized by using geographic information system (GIS). The county (district) incidence was interpolated into township incidence to get the distribution of spatial distribution of incidence of township. Results: In the downscaling interpolation, the range of the fitting semi-variance equation was 20.38 km. Within the range, the incidence had correlation with each other. The fitting function of scatter diagram of estimated and actual incidence of HFMD at country level was y =1.053 1 x , R (2)=0.99. The incidences at different scale were consistent. Conclusions: The incidence of HFMD had spatial autocorrelation within 20.38 km. When HFMD occurs in one place, it is necessary to strengthen the surveillance and allocation of medical resource in the surrounding area within 20.38 km. Area to area Poisson Kriging method based downscaling research can be used in spatial visualization of HFMD incidence.
Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea
2017-11-01
Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moments analysis of concurrent Poisson processes
International Nuclear Information System (INIS)
McBeth, G.W.; Cross, P.
1975-01-01
A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)
Swanson, C.; Jandovitz, P.; Cohen, S. A.
2018-02-01
We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.
POISSON SUPERFISH, Poisson Equation Solver for Radio Frequency Cavity
International Nuclear Information System (INIS)
Colman, J.
2001-01-01
1 - Description of program or function: POISSON, SUPERFISH is a group of (1) codes that solve Poisson's equation and are used to compute field quality for both magnets and fixed electric potentials and (2) RF cavity codes that calculate resonant frequencies and field distributions of the fundamental and higher modes. The group includes: POISSON, PANDIRA, SUPERFISH, AUTOMESH, LATTICE, FORCE, MIRT, PAN-T, TEKPLOT, SF01, and SHY. POISSON solves Poisson's (or Laplace's) equation for the vector (scalar) potential with nonlinear isotropic iron (dielectric) and electric current (charge) distributions for two-dimensional Cartesian or three-dimensional cylindrical symmetry. It calculates the derivatives of the potential, the stored energy, and performs harmonic (multipole) analysis of the potential. PANDIRA is similar to POISSON except it allows anisotropic and permanent magnet materials and uses a different numerical method to obtain the potential. SUPERFISH solves for the accelerating (TM) and deflecting (TE) resonant frequencies and field distributions in an RF cavity with two-dimensional Cartesian or three-dimensional cylindrical symmetry. Only the azimuthally symmetric modes are found for cylindrically symmetric cavities. AUTOMESH prepares input for LATTICE from geometrical data describing the problem, (i.e., it constructs the 'logical' mesh and generates (x,y) coordinate data for straight lines, arcs of circles, and segments of hyperbolas). LATTICE generates an irregular triangular (physical) mesh from the input data, calculates the 'point current' terms at each mesh point in regions with distributed current density, and sets up the mesh point relaxation order needed to write the binary problem file for the equation-solving POISSON, PANDIRA, or SUPERFISH. FORCE calculates forces and torques on coils and iron regions from POISSON or PANDIRA solutions for the potential. MIRT optimizes magnet profiles, coil shapes, and current densities from POISSON output based on a
Gatto, Riccardo
2017-12-01
This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Alternative Forms of Compound Fractional Poisson Processes
Directory of Open Access Journals (Sweden)
Luisa Beghin
2012-01-01
Full Text Available We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012, we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators. These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one.
A New Distribution-Random Limit Normal Distribution
Gong, Xiaolin; Yang, Shuzhen
2013-01-01
This paper introduces a new distribution to improve tail risk modeling. Based on the classical normal distribution, we define a new distribution by a series of heat equations. Then, we use market data to verify our model.
The randomly renewed general item and the randomly inspected item with exponential life distribution
International Nuclear Information System (INIS)
Schneeweiss, W.G.
1979-01-01
For a randomly renewed item the probability distributions of the time to failure and of the duration of down time and the expectations of these random variables are determined. Moreover, it is shown that the same theory applies to randomly checked items with exponential probability distribution of life such as electronic items. The case of periodic renewals is treated as an example. (orig.) [de
Poisson's ratio of fiber-reinforced composites
Christiansson, Henrik; Helsing, Johan
1996-05-01
Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.
Amalia, Junita; Purhadi, Otok, Bambang Widjanarko
2017-11-01
Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.
Directory of Open Access Journals (Sweden)
Lusi Eka Afri
2017-03-01
estimation and to downward bias parameter estimation (underestimate. This study aims to compare the Negative Binomial Regression model and Conway-Maxwell-Poisson (COM- Poisson regression model to overcome over dispersion of Poisson distribution data based on deviance test statistics. The data used in this study are simulation data and applied case data. The simulation data were obtained by generating the Poisson distribution data containing over dispersion using the R programming language based on data characteristic such as ?, the probability (p of zero value and the sample size (n. The generated data is used to get the estimated parameter coefficient of the negative binomial regression and COM-Poisson. Keywords: overdispersion, negative binomial regression and Conway-Maxwell-Poisson regression
An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-03-08
Poisson disk sampling plays an important role in a variety of visual computing, due to its useful statistical property in distribution and the absence of aliasing artifacts. While many effective techniques have been proposed to generate Poisson disk distribution in Euclidean space, relatively few work has been reported to the surface counterpart. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. We propose a new technique for parallelizing the dart throwing. Rather than the conventional approaches that explicitly partition the spatial domain to generate the samples in parallel, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. It is worth noting that our algorithm is accurate as the generated Poisson disks are uniformly and randomly distributed without bias. Our method is intrinsic in that all the computations are based on the intrinsic metric and are independent of the embedding space. This intrinsic feature allows us to generate Poisson disk distributions on arbitrary surfaces. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Nonhomogeneous fractional Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)
2007-01-15
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)
Nonhomogeneous fractional Poisson processes
International Nuclear Information System (INIS)
Wang Xiaotian; Zhang Shiying; Fan Shen
2007-01-01
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)
An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-09-01
Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
Nonhomogeneous Poisson process with nonparametric frailty
International Nuclear Information System (INIS)
Slimacek, Vaclav; Lindqvist, Bo Henry
2016-01-01
The failure processes of heterogeneous repairable systems are often modeled by non-homogeneous Poisson processes. The common way to describe an unobserved heterogeneity between systems is to multiply the basic rate of occurrence of failures by a random variable (a so-called frailty) having a specified parametric distribution. Since the frailty is unobservable, the choice of its distribution is a problematic part of using these models, as are often the numerical computations needed in the estimation of these models. The main purpose of this paper is to develop a method for estimation of the parameters of a nonhomogeneous Poisson process with unobserved heterogeneity which does not require parametric assumptions about the heterogeneity and which avoids the frequently encountered numerical problems associated with the standard models for unobserved heterogeneity. The introduced method is illustrated on an example involving the power law process, and is compared to the standard gamma frailty model and to the classical model without unobserved heterogeneity. The derived results are confirmed in a simulation study which also reveals several not commonly known properties of the gamma frailty model and the classical model, and on a real life example. - Highlights: • A new method for estimation of a NHPP with frailty is introduced. • Introduced method does not require parametric assumptions about frailty. • The approach is illustrated on an example with the power law process. • The method is compared to the gamma frailty model and to the model without frailty.
Random graph states, maximal flow and Fuss-Catalan distributions
International Nuclear Information System (INIS)
Collins, BenoIt; Nechita, Ion; Zyczkowski, Karol
2010-01-01
For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.
Distribution functions for fluids in random media
International Nuclear Information System (INIS)
Madden, W.G.; Glandt, E.D.
1988-01-01
A random medium is considered, composed of identifiable interactive sites or obstacles equilibrated at a high temperature and then quenched rapidly to form a rigid structure, statistically homogeneous on all but molecular length scales. The equilibrium statistical mechanics of a fluid contained inside this quenched medium is discussed. Various particle-particle and particle-obstacle correlation functions, which differ form the corresponding functions for a fully equilibrated binary mixture, are defined through an averaging process over the static ensemble of obstacle configurations and applications of topological reduction techniques. The Ornstein-Zernike equations also differ from their equilibrium counterparts
Eigenvalue distribution of large random matrices
Pastur, Leonid
2011-01-01
Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries). The text includes many of the authors' results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach essentially based on the Stieltjes transform and orthogonal polynomials. The exposition is supplemented by numerous comments, remarks, and problems. This results in a book that presents a detailed and self-contained treatment of the basic random matrix ensembles and asymptotic regimes. This book will be an important refer...
Poisson point processes imaging, tracking, and sensing
Streit, Roy L
2010-01-01
This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection.
Distributed authentication for randomly compromised networks
International Nuclear Information System (INIS)
Beals, Travis R; Hynes, Kevin P; Sanders, Barry C
2009-01-01
We introduce a simple, practical approach with probabilistic information-theoretic security to solve one of quantum key distribution's major security weaknesses: the requirement of an authenticated classical channel to prevent man-in-the-middle attacks. Our scheme employs classical secret sharing and partially trusted intermediaries to provide arbitrarily high confidence in the security of the protocol. Although certain failures elude detection, we discuss preemptive strategies to reduce the probability of failure to an arbitrarily small level: the probability of such failures is exponentially suppressed with increases in connectivity (i.e. connections per node).
Random distribution of nucleoli in metabolic cells
Energy Technology Data Exchange (ETDEWEB)
Beckman, R.J.; Waterman, M.S.
1977-01-01
Hasofer (1974) has studied a probabilistic model for the fusion of nucleoli in metabolic cells. The nucleoli are uniformly distributed at points in the nucleus, assumed to be a sphere. The nucleoli grow from a point to a maximum size during interphase, and fusion is said to occur if the nucleoli touch. For this model, Hasofer calculated the probability of fusion and found it much smaller than experimental data would indicate. Experimental data of this type is taken by use of a microscope where a two-dimensional view or projection of the three-dimensional cell is obtained. Hasofer implicitly assumes that actual fusion can be distinguished from the case where the two nucleoli do not touch but their two-dimensional projections overlap. It is assumed, in this letter, that these two cases cannot be distinguished. The probability obtained by Beckman and Waterman is larger than Hasofer's and a much better fit to the experimental data is obtained. Even if true fusion can be unfailingly distinguished from overlap of the two-dimensional projections, it is hoped that these calculations will allow someone to propose the correct (non-uniform) model. It is concluded, for the assumptions used, that there is not sufficient evidence to reject the hypothesis of uniform distribution of the nucleoli.
Homogeneous Poisson structures
International Nuclear Information System (INIS)
Shafei Deh Abad, A.; Malek, F.
1993-09-01
We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs
International Nuclear Information System (INIS)
Littlejohn, R.G.
1982-01-01
The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular
Multivariate fractional Poisson processes and compound sums
Beghin, Luisa; Macci, Claudio
2015-01-01
In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.
The Fractional Poisson Process and the Inverse Stable Subordinator
Meerschaert, Mark; Nane, Erkan; Vellaisamy, P.
2011-01-01
The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extend...
Fully-distributed randomized cooperation in wireless sensor networks
Bader, Ahmed
2015-01-07
When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.
Fully-distributed randomized cooperation in wireless sensor networks
Bader, Ahmed; Abed-Meraim, Karim; Alouini, Mohamed-Slim
2015-01-01
When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.
Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
Martínez-Torres, David; Miranda, Eva
2018-01-01
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Influence of random setup error on dose distribution
International Nuclear Information System (INIS)
Zhai Zhenyu
2008-01-01
Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)
International Nuclear Information System (INIS)
Ivanov, Alexei
2000-08-01
A model system, described by the consistent Vlasov-Poisson equations under periodical boundary conditions, has been studied numerically near the point of a marginal stability. The power laws, typical for a system, undergoing a second-order phase transition, hold in a vicinity of the critical point: (i) A ∝ -θ β , β=1.907±0.006 for θ ≤ 0, where A is the saturated amplitude of the marginally-stable mode; (ii) χ ∝ θ -γ as θ → 0, γ=γ - =1.020±0.008 for θ + =0.995±0.020 for θ > 0, where χ=∂A/∂F 1 at F 1 → 0 is the susceptibility to external drive of the strain F 1 ; (iii) at θ=0 the system responds to external drive as A ∝ F 1 1/δ , and δ=1.544±0.002. θ=( 2 >- cr 2 >)/ cr 2 > is the dimensionless reduced velocity dispersion. Within the error of computation these critical exponents satisfy to equality γ=β(δ-1), known in thermodynamics as the Widom equality, which is direct consequence of scaling invariance of the Fourier components f m of the distribution function f at |θ| m (λ at t, λ av v, λ aθ θ, λ aA0 A 0 , λ aF F 1 )=λf m (t, v, θ, A 0 , F 1 ) at θ approx. = 0. On the contrary to thermodynamics these critical indices indicate to a very wide critical area. In turn, it means that critical phenomena may determine macroscopic dynamics of a large fraction of systems. (author)
International Nuclear Information System (INIS)
Harwood, L.H.
1981-01-01
At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed
Randomness determines practical security of BB84 quantum key distribution
Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2015-11-01
Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.
Maximum Likelihood and Bayes Estimation in Randomly Censored Geometric Distribution
Directory of Open Access Journals (Sweden)
Hare Krishna
2017-01-01
Full Text Available In this article, we study the geometric distribution under randomly censored data. Maximum likelihood estimators and confidence intervals based on Fisher information matrix are derived for the unknown parameters with randomly censored data. Bayes estimators are also developed using beta priors under generalized entropy and LINEX loss functions. Also, Bayesian credible and highest posterior density (HPD credible intervals are obtained for the parameters. Expected time on test and reliability characteristics are also analyzed in this article. To compare various estimates developed in the article, a Monte Carlo simulation study is carried out. Finally, for illustration purpose, a randomly censored real data set is discussed.
The relationship between randomness and power-law distributed move lengths in random walk algorithms
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2014-05-01
Recently, we proposed a new random walk algorithm, termed the REV algorithm, in which the agent alters the directional rule that governs it using the most recent four random numbers. Here, we examined how a non-bounded number, i.e., "randomness" regarding move direction, was important for optimal searching and power-law distributed step lengths in rule change. We proposed two algorithms: the REV and REV-bounded algorithms. In the REV algorithm, one of the four random numbers used to change the rule is non-bounded. In contrast, all four random numbers in the REV-bounded algorithm are bounded. We showed that the REV algorithm exhibited more consistent power-law distributed step lengths and flexible searching behavior.
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Principles of applying Poisson units in radiology
International Nuclear Information System (INIS)
Benyumovich, M.S.
2000-01-01
The probability that radioactive particles hit particular space patterns (e.g. cells in the squares of a count chamber net) and time intervals (e.g. radioactive particles hit a given area per time unit) follows the Poisson distribution. The mean is the only parameter from which all this distribution depends. A metrological base of counting the cells and radioactive particles is a property of the Poisson distribution assuming equality of a standard deviation to a root square of mean (property 1). The application of Poisson units in counting of blood formed elements and cultured cells was proposed by us (Russian Federation Patent No. 2126230). Poisson units relate to the means which make the property 1 valid. In a case of cells counting, the square of these units is equal to 1/10 of one of count chamber net where they count the cells. Thus one finds the means from the single cell count rate divided by 10. Finding the Poisson units when counting the radioactive particles should assume determination of a number of these particles sufficient to make equality 1 valid. To this end one should subdivide a time interval used in counting a single particle count rate into different number of equal portions (count numbers). Next one should pick out the count number ensuring the satisfaction of equality 1. Such a portion is taken as a Poisson unit in the radioactive particles count. If the flux of particles is controllable one should set up a count rate sufficient to make equality 1 valid. Operations with means obtained by with the use of Poisson units are performed on the base of approximation of the Poisson distribution by a normal one. (author)
Limit distributions of random walks on stochastic matrices
Indian Academy of Sciences (India)
condition that μm(P) > 0 for some positive integer m (as opposed to just 1, instead of m, considered in [1]), where μm is the ...... Limit distributions of random walks. 611. PROPOSITION 3.2. Let f be as introduced before Proposition 3.1. The probability distribution λ is the image of π by the map b ↦→ f (b). In other words, λ = ∑.
On the fractal characterization of Paretian Poisson processes
Eliazar, Iddo I.; Sokolov, Igor M.
2012-06-01
Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Lindley frailty model for a class of compound Poisson processes
Kadilar, Gamze Özel; Ata, Nihal
2013-10-01
The Lindley distribution gain importance in survival analysis for the similarity of exponential distribution and allowance for the different shapes of hazard function. Frailty models provide an alternative to proportional hazards model where misspecified or omitted covariates are described by an unobservable random variable. Despite of the distribution of the frailty is generally assumed to be continuous, it is appropriate to consider discrete frailty distributions In some circumstances. In this paper, frailty models with discrete compound Poisson process for the Lindley distributed failure time are introduced. Survival functions are derived and maximum likelihood estimation procedures for the parameters are studied. Then, the fit of the models to the earthquake data set of Turkey are examined.
Relaxed Poisson cure rate models.
Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N
2016-03-01
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Free energy distribution function of a random Ising ferromagnet
International Nuclear Information System (INIS)
Dotsenko, Victor; Klumov, Boris
2012-01-01
We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging
Nonparametric Estimation of Distributions in Random Effects Models
Hart, Jeffrey D.
2011-01-01
We propose using minimum distance to obtain nonparametric estimates of the distributions of components in random effects models. A main setting considered is equivalent to having a large number of small datasets whose locations, and perhaps scales, vary randomly, but which otherwise have a common distribution. Interest focuses on estimating the distribution that is common to all datasets, knowledge of which is crucial in multiple testing problems where a location/scale invariant test is applied to every small dataset. A detailed algorithm for computing minimum distance estimates is proposed, and the usefulness of our methodology is illustrated by a simulation study and an analysis of microarray data. Supplemental materials for the article, including R-code and a dataset, are available online. © 2011 American Statistical Association.
Energy Technology Data Exchange (ETDEWEB)
Lvanov, Alexei [Theory and Computer Simulation Center, National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-08-01
A model system, described by the consistent Vlasov-Poisson equations under periodical boundary conditions, has been studied numerically near the point of a marginal stability. The power laws, typical for a system, undergoing a second-order phase transition, hold in a vicinity of the critical point: (i) A {proportional_to} -{theta}{sup {beta}}, {beta}=1.907{+-}0.006 for {theta} {<=} 0, where A is the saturated amplitude of the marginally-stable mode; (ii) {chi} {proportional_to} {theta}{sup -{gamma}} as {theta} {yields} 0, {gamma}={gamma}{sub -}=1.020{+-}0.008 for {theta} < 0, and {gamma}={gamma}{sub +}=0.995{+-}0.020 for {theta} > 0, where {chi}={partial_derivative}A/{partial_derivative}F{sub 1} at F{sub 1} {yields} 0 is the susceptibility to external drive of the strain F{sub 1}; (iii) at {theta}=0 the system responds to external drive as A {proportional_to} F{sub 1}{sup 1/{delta}}, and {delta}=1.544{+-}0.002. {theta}=(
A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.
Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi
2016-10-01
Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new multivariate zero-adjusted Poisson model with applications to biomedicine.
Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen
2018-05-25
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C
2013-10-08
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
Gravitational lensing by eigenvalue distributions of random matrix models
Martínez Alonso, Luis; Medina, Elena
2018-05-01
We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.
Double generalized linear compound poisson models to insurance claims data
DEFF Research Database (Denmark)
Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo
2017-01-01
This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....
Random generation of RNA secondary structures according to native distributions
Directory of Open Access Journals (Sweden)
Nebel Markus E
2011-10-01
Full Text Available Abstract Background Random biological sequences are a topic of great interest in genome analysis since, according to a powerful paradigm, they represent the background noise from which the actual biological information must differentiate. Accordingly, the generation of random sequences has been investigated for a long time. Similarly, random object of a more complicated structure like RNA molecules or proteins are of interest. Results In this article, we present a new general framework for deriving algorithms for the non-uniform random generation of combinatorial objects according to the encoding and probability distribution implied by a stochastic context-free grammar. Briefly, the framework extends on the well-known recursive method for (uniform random generation and uses the popular framework of admissible specifications of combinatorial classes, introducing weighted combinatorial classes to allow for the non-uniform generation by means of unranking. This framework is used to derive an algorithm for the generation of RNA secondary structures of a given fixed size. We address the random generation of these structures according to a realistic distribution obtained from real-life data by using a very detailed context-free grammar (that models the class of RNA secondary structures by distinguishing between all known motifs in RNA structure. Compared to well-known sampling approaches used in several structure prediction tools (such as SFold ours has two major advantages: Firstly, after a preprocessing step in time O(n2 for the computation of all weighted class sizes needed, with our approach a set of m random secondary structures of a given structure size n can be computed in worst-case time complexity Om⋅n⋅ log(n while other algorithms typically have a runtime in O(m⋅n2. Secondly, our approach works with integer arithmetic only which is faster and saves us from all the discomforting details of using floating point arithmetic with
Differential expression analysis for RNAseq using Poisson mixed models.
Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang
2017-06-20
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Avoiding negative populations in explicit Poisson tau-leaping.
Cao, Yang; Gillespie, Daniel T; Petzold, Linda R
2005-08-01
The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically reacting system by approximating the number of firings of each reaction channel during a chosen time increment tau as a Poisson random variable. Since the Poisson random variable can have arbitrarily large sample values, there is always the possibility that this procedure will cause one or more reaction channels to fire so many times during tau that the population of some reactant species will be driven negative. Two recent papers have shown how that unacceptable occurrence can be avoided by replacing the Poisson random variables with binomial random variables, whose values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that also avoids negative populations, but is easier to implement than the binomial procedure. The new Poisson procedure also introduces a second control parameter, whose value essentially dials the procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation algorithm at the other; therefore, the modified Poisson procedure will generally be more accurate than the original Poisson procedure.
Lu, Benzhuo; Zhou, Y.C.
2011-01-01
The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582
Silver, Toni O.
2013-01-01
2013 dissertation for MSc in Finance and Risk Management. Selected by academic staff as a good example of a masters level dissertation. \\ud \\ud This study investigated the two major methods of modelling the frequency of\\ud operational losses under the BCBS Accord of 1998 known as Basel II Capital\\ud Accord. It compared the Poisson method of modelling the frequency of\\ud losses to that of the Negative Binomial. The frequency of operational losses\\ud was investigated using a cross section of se...
The Poisson model limits in NBA basketball: Complexity in team sports
Martín-González, Juan Manuel; de Saá Guerra, Yves; García-Manso, Juan Manuel; Arriaza, Enrique; Valverde-Estévez, Teresa
2016-12-01
Team sports are frequently studied by researchers. There is presumption that scoring in basketball is a random process and that can be described using the Poisson Model. Basketball is a collaboration-opposition sport, where the non-linear local interactions among players are reflected in the evolution of the score that ultimately determines the winner. In the NBA, the outcomes of close games are often decided in the last minute, where fouls play a main role. We examined 6130 NBA games in order to analyze the time intervals between baskets and scoring dynamics. Most numbers of baskets (n) over a time interval (ΔT) follow a Poisson distribution, but some (e.g., ΔT = 10 s, n > 3) behave as a Power Law. The Poisson distribution includes most baskets in any game, in most game situations, but in close games in the last minute, the numbers of events are distributed following a Power Law. The number of events can be adjusted by a mixture of two distributions. In close games, both teams try to maintain their advantage solely in order to reach the last minute: a completely different game. For this reason, we propose to use the Poisson model as a reference. The complex dynamics will emerge from the limits of this model.
Formal equivalence of Poisson structures around Poisson submanifolds
Marcut, I.T.
2012-01-01
Let (M,π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives rise to a Lie algebroid AP → P. Formal deformations of π around P are controlled by certain cohomology groups associated to AP. Assuming that these groups vanish, we prove that π is formally rigid around P; that is, any other Poisson
Random phenomena; Phenomenes aleatoires
Energy Technology Data Exchange (ETDEWEB)
Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)
1963-07-01
This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.
Poisson brackets of orthogonal polynomials
Cantero, María José; Simon, Barry
2009-01-01
For the standard symplectic forms on Jacobi and CMV matrices, we compute Poisson brackets of OPRL and OPUC, and relate these to other basic Poisson brackets and to Jacobians of basic changes of variable.
The distribution of the number of node neighbors in random hypergraphs
International Nuclear Information System (INIS)
López, Eduardo
2013-01-01
Hypergraphs, the generalization of graphs in which edges become conglomerates of r nodes called hyperedges of rank r ⩾ 2, are excellent models to study systems with interactions that are beyond the pairwise level. For hypergraphs, the node degree ℓ (number of hyperedges connected to a node) and the number of neighbors k of a node differ from each other in contrast to the case of graphs, where counting the number of edges is equivalent to counting the number of neighbors. In this paper, I calculate the distribution of the number of node neighbors in random hypergraphs in which hyperedges of uniform rank r have a homogeneous (equal for all hyperedges) probability p to appear. This distribution is equivalent to the degree distribution of ensembles of graphs created as projections of hypergraph or bipartite network ensembles, where the projection connects any two nodes in the projected graph when they are also connected in the hypergraph or bipartite network. The calculation is non-trivial due to the possibility that neighbor nodes belong simultaneously to multiple hyperedges (node overlaps). From the exact results, the traditional asymptotic approximation to the distribution in the sparse regime (small p) where overlaps are ignored is rederived and improved; the approximation exhibits Poisson-like behavior accompanied by strong fluctuations modulated by power-law decays in the system size N with decay exponents equal to the minimum number of overlapping nodes possible for a given number of neighbors. It is shown that the dense limit cannot be explained if overlaps are ignored, and the correct asymptotic distribution is provided. The neighbor distribution requires the calculation of a new combinatorial coefficient Q r−1 (k, ℓ), which counts the number of distinct labeled hypergraphs of k nodes, ℓ hyperedges of rank r − 1, and where every node is connected to at least one hyperedge. Some identities of Q r−1 (k, ℓ) are derived and applied to the
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)
2014-06-02
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
International Nuclear Information System (INIS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-01-01
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
Branes in Poisson sigma models
International Nuclear Information System (INIS)
Falceto, Fernando
2010-01-01
In this review we discuss possible boundary conditions (branes) for the Poisson sigma model. We show how to carry out the perturbative quantization in the presence of a general pre-Poisson brane and how this is related to the deformation quantization of Poisson structures. We conclude with an open problem: the perturbative quantization of the system when the boundary has several connected components and we use a different pre-Poisson brane in every component.
Normal forms in Poisson geometry
Marcut, I.T.
2013-01-01
The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-01-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-06-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering
POISSON, Analysis Solution of Poisson Problems in Probabilistic Risk Assessment
International Nuclear Information System (INIS)
Froehner, F.H.
1986-01-01
1 - Description of program or function: Purpose of program: Analytic treatment of two-stage Poisson problem in Probabilistic Risk Assessment. Input: estimated a-priori mean failure rate and error factor of system considered (for calculation of stage-1 prior), number of failures and operating times for similar systems (for calculation of stage-2 prior). Output: a-posteriori probability distributions on linear and logarithmic time scale (on specified time grid) and expectation values of failure rate and error factors are calculated for: - stage-1 a-priori distribution, - stage-1 a-posteriori distribution, - stage-2 a-priori distribution, - stage-2 a-posteriori distribution. 2 - Method of solution: Bayesian approach with conjugate stage-1 prior, improved with experience from similar systems to yield stage-2 prior, and likelihood function from experience with system under study (documentation see below under 10.). 3 - Restrictions on the complexity of the problem: Up to 100 similar systems (including the system considered), arbitrary number of problems (failure types) with same grid
PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON
Directory of Open Access Journals (Sweden)
PUTU SUSAN PRADAWATI
2013-09-01
Full Text Available Poisson regression was used to analyze the count data which Poisson distributed. Poisson regression analysis requires state equidispersion, in which the mean value of the response variable is equal to the value of the variance. However, there are deviations in which the value of the response variable variance is greater than the mean. This is called overdispersion. If overdispersion happens and Poisson Regression analysis is being used, then underestimated standard errors will be obtained. Negative Binomial Regression can handle overdispersion because it contains a dispersion parameter. From the simulation data which experienced overdispersion in the Poisson Regression model it was found that the Negative Binomial Regression was better than the Poisson Regression model.
Hessian eigenvalue distribution in a random Gaussian landscape
Yamada, Masaki; Vilenkin, Alexander
2018-03-01
The energy landscape of multiverse cosmology is often modeled by a multi-dimensional random Gaussian potential. The physical predictions of such models crucially depend on the eigenvalue distribution of the Hessian matrix at potential minima. In particular, the stability of vacua and the dynamics of slow-roll inflation are sensitive to the magnitude of the smallest eigenvalues. The Hessian eigenvalue distribution has been studied earlier, using the saddle point approximation, in the leading order of 1/ N expansion, where N is the dimensionality of the landscape. This approximation, however, is insufficient for the small eigenvalue end of the spectrum, where sub-leading terms play a significant role. We extend the saddle point method to account for the sub-leading contributions. We also develop a new approach, where the eigenvalue distribution is found as an equilibrium distribution at the endpoint of a stochastic process (Dyson Brownian motion). The results of the two approaches are consistent in cases where both methods are applicable. We discuss the implications of our results for vacuum stability and slow-roll inflation in the landscape.
Bayesian regression of piecewise homogeneous Poisson processes
Directory of Open Access Journals (Sweden)
Diego Sevilla
2015-12-01
Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015
Three dimensional multi perspective imaging with randomly distributed sensors
International Nuclear Information System (INIS)
DaneshPanah, Mehdi; Javidi, Bahrain
2008-01-01
In this paper, we review a three dimensional (3D) passive imaging system that exploits the visual information captured from the scene from multiple perspectives to reconstruct the scene voxel by voxel in 3D space. The primary contribution of this work is to provide a computational reconstruction scheme based on randomly distributed sensor locations in space. In virtually all of multi perspective techniques (e.g. integral imaging, synthetic aperture integral imaging, etc), there is an implicit assumption that the sensors lie on a simple, regular pickup grid. Here, we relax this assumption and suggest a computational reconstruction framework that unifies the available methods as its special cases. The importance of this work is that it enables three dimensional imaging technology to be implemented in a multitude of novel application domains such as 3D aerial imaging, collaborative imaging, long range 3D imaging and etc, where sustaining a regular pickup grid is not possible and/or the parallax requirements call for a irregular or sparse synthetic aperture mode. Although the sensors can be distributed in any random arrangement, we assume that the pickup position is measured at the time of capture of each elemental image. We demonstrate the feasibility of the methods proposed here by experimental results.
Ifremer
1992-01-01
Vous trouverez dans ce document les 24 poissons les plus courants de Guyane (sur un nombre d'espèces approchant les 200) avec leurs principales caractéristiques, leurs noms scientifiques, français, anglais et espagnol et leurs photographies. Ils sont classés, de l'acoupa au vivaneau ti yeux, par ordre alphabétique. Si vous ne trouvez pas de chiffres sur la production de telle ou telle espèce, c'est parce qu'ils n'existent pas, mais aussi et surtout parce qu'ils ne signifieraient rien, l...
Information content of poisson images
International Nuclear Information System (INIS)
Cederlund, J.
1979-04-01
One major problem when producing images with the aid of Poisson distributed quanta is how best to compromise between spatial and contrast resolution. Increasing the number of image elements improves spatial resolution, but at the cost of fewer quanta per image element, which reduces contrast resolution. Information theory arguments are used to analyse this problem. It is argued that information capacity is a useful concept to describe an important property of the imaging device, but that in order to compute the information content of an image produced by this device some statistical properties (such as the a priori probability of the densities) of the object to be depicted must be taken into account. If these statistical properties are not known one cannot make a correct choice between spatial and contrast resolution. (author)
Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks
Frahm, Klaus M.; Shepelyansky, Dima L.
2014-04-01
We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.
Fitting and Analyzing Randomly Censored Geometric Extreme Exponential Distribution
Directory of Open Access Journals (Sweden)
Muhammad Yameen Danish
2016-06-01
Full Text Available The paper presents the Bayesian analysis of two-parameter geometric extreme exponential distribution with randomly censored data. The continuous conjugate prior of the scale and shape parameters of the model does not exist while computing the Bayes estimates, it is assumed that the scale and shape parameters have independent gamma priors. It is seen that the closed-form expressions for the Bayes estimators are not possible; we suggest the Lindley’s approximation to obtain the Bayes estimates. However, the Bayesian credible intervals cannot be constructed while using this method, we propose Gibbs sampling to obtain the Bayes estimates and also to construct the Bayesian credible intervals. Monte Carlo simulation study is carried out to observe the behavior of the Bayes estimators and also to compare with the maximum likelihood estimators. One real data analysis is performed for illustration.
Smooth conditional distribution function and quantiles under random censorship.
Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine
2002-09-01
We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).
Evaluating the double Poisson generalized linear model.
Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique
2013-10-01
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Models for randomly distributed nanoscopic domains on spherical vesicles
Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John
2018-06-01
The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.
Kauhl, Boris; Heil, Jeanne; Hoebe, Christian J P A; Schweikart, Jürgen; Krafft, Thomas; Dukers-Muijrers, Nicole H T M
2015-01-01
Hepatitis C Virus (HCV) infections are a major cause for liver diseases. A large proportion of these infections remain hidden to care due to its mostly asymptomatic nature. Population-based screening and screening targeted on behavioural risk groups had not proven to be effective in revealing these hidden infections. Therefore, more practically applicable approaches to target screenings are necessary. Geographic Information Systems (GIS) and spatial epidemiological methods may provide a more feasible basis for screening interventions through the identification of hotspots as well as demographic and socio-economic determinants. Analysed data included all HCV tests (n = 23,800) performed in the southern area of the Netherlands between 2002-2008. HCV positivity was defined as a positive immunoblot or polymerase chain reaction test. Population data were matched to the geocoded HCV test data. The spatial scan statistic was applied to detect areas with elevated HCV risk. We applied global regression models to determine associations between population-based determinants and HCV risk. Geographically weighted Poisson regression models were then constructed to determine local differences of the association between HCV risk and population-based determinants. HCV prevalence varied geographically and clustered in urban areas. The main population at risk were middle-aged males, non-western immigrants and divorced persons. Socio-economic determinants consisted of one-person households, persons with low income and mean property value. However, the association between HCV risk and demographic as well as socio-economic determinants displayed strong regional and intra-urban differences. The detection of local hotspots in our study may serve as a basis for prioritization of areas for future targeted interventions. Demographic and socio-economic determinants associated with HCV risk show regional differences underlining that a one-size-fits-all approach even within small geographic
Intertime jump statistics of state-dependent Poisson processes.
Daly, Edoardo; Porporato, Amilcare
2007-01-01
A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.
International Nuclear Information System (INIS)
Akıncı, Ümit
2012-01-01
The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.
Poisson Spot with Magnetic Levitation
Hoover, Matthew; Everhart, Michael; D'Arruda, Jose
2010-01-01
In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.
Asymptotic distribution of products of sums of independent random ...
Indian Academy of Sciences (India)
integrable random variables (r.v.) are asymptotically log-normal. This fact ... the product of the partial sums of i.i.d. positive random variables as follows. .... Now define ..... by Henan Province Foundation and Frontier Technology Research Plan.
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
A Generalized QMRA Beta-Poisson Dose-Response Model.
Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie
2016-10-01
Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
DEFF Research Database (Denmark)
Mikosch, Thomas Valentin; Rackauskas, Alfredas
2010-01-01
In this paper, we deal with the asymptotic distribution of the maximum increment of a random walk with a regularly varying jump size distribution. This problem is motivated by a long-standing problem on change point detection for epidemic alternatives. It turns out that the limit distribution...... of the maximum increment of the random walk is one of the classical extreme value distributions, the Fréchet distribution. We prove the results in the general framework of point processes and for jump sizes taking values in a separable Banach space...
International Nuclear Information System (INIS)
Mejlikhov, E.Z.; Farzetdinova, R.M.
1997-01-01
Critical current of inhomogeneous intergranular Josephson transition is calculated in the assumption concerning superconductivity suppression by local strains of boundary dislocations with random distribution
Random Access Performance of Distributed Sensors Attacked by Unknown Jammers
Directory of Open Access Journals (Sweden)
Dae-Kyo Jeong
2017-11-01
Full Text Available In this paper, we model and investigate the random access (RA performance of sensor nodes (SN in a wireless sensor network (WSN. In the WSN, a central head sensor (HS collects the information from distributed SNs, and jammers disturb the information transmission primarily by generating interference. In this paper, two jamming attacks are considered: power and code jamming. Power jammers (if they are friendly jammers generate noises and, as a result, degrade the quality of the signal from SNs. Power jamming is equally harmful to all the SNs that are accessing HS and simply induces denial of service (DoS without any need to hack HS or SNs. On the other hand, code jammers mimic legitimate SNs by sending fake signals and thus need to know certain system parameters that are used by the legitimate SNs. As a result of code jamming, HS falsely allocates radio resources to SNs. The code jamming hence increases the failure probability in sending the information messages, as well as misleads the usage of radio resources. In this paper, we present the probabilities of successful preamble transmission with power ramping according to the jammer types and provide the resulting throughput and delay of information transmission by SNs, respectively. The effect of two jamming attacks on the RA performances is compared with numerical investigation. The results show that, compared to RA without jammers, power and code jamming degrade the throughput by up to 30.3% and 40.5%, respectively, while the delay performance by up to 40.1% and 65.6%, respectively.
Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra
Lecoutre, César
2014-01-01
We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...
Test of Poisson Process for Earthquakes in and around Korea
International Nuclear Information System (INIS)
Noh, Myunghyun; Choi, Hoseon
2015-01-01
Since Cornell's work on the probabilistic seismic hazard analysis (hereafter, PSHA), majority of PSHA computer codes are assuming that the earthquake occurrence is Poissonian. To the author's knowledge, it is uncertain who first opened the issue of the Poisson process for the earthquake occurrence. The systematic PSHA in Korea, led by the nuclear industry, were carried out for more than 25 year with the assumption of the Poisson process. However, the assumption of the Poisson process has never been tested. Therefore, the test is of significance. We tested whether the Korean earthquakes follow the Poisson process or not. The Chi-square test with the significance level of 5% was applied. The test turned out that the Poisson process could not be rejected for the earthquakes of magnitude 2.9 or larger. However, it was still observed in the graphical comparison that some portion of the observed distribution significantly deviated from the Poisson distribution. We think this is due to the small earthquake data. The earthquakes of magnitude 2.9 or larger occurred only 376 times during 34 years. Therefore, the judgment on the Poisson process derived in the present study is not conclusive
Non-equal-time Poisson brackets
Nikolic, H.
1998-01-01
The standard definition of the Poisson brackets is generalized to the non-equal-time Poisson brackets. Their relationship to the equal-time Poisson brackets, as well as to the equal- and non-equal-time commutators, is discussed.
Zero inflated Poisson and negative binomial regression models: application in education.
Salehi, Masoud; Roudbari, Masoud
2015-01-01
The number of failed courses and semesters in students are indicators of their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of students. This cross-sectional study performed in 2008-2009 at Iran University of Medical Sciences (IUMS) with a population of almost 6000 students, 670 students selected using stratified random sampling. The educational and demographical data were collected using the University records. The study design was approved at IUMS and the students' data kept confidential. The descriptive statistics and ZI Poisson and negative binomial regressions were used to analyze the data. The data were analyzed using STATA. In the number of failed semesters, Poisson and negative binomial distributions with ZI, students' total average and quota system had the most roles. For the number of failed courses, total average, and being in undergraduate or master levels had the most effect in both models. In all models the total average have the most effect on the number of failed courses or semesters. The next important factor is quota system in failed semester and undergraduate and master levels in failed courses. Therefore, average has an important inverse effect on the numbers of failed courses and semester.
Poisson solvers for self-consistent multi-particle simulations
International Nuclear Information System (INIS)
Qiang, J; Paret, S
2014-01-01
Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation
Speech parts as Poisson processes.
Badalamenti, A F
2001-09-01
This paper presents evidence that six of the seven parts of speech occur in written text as Poisson processes, simple or recurring. The six major parts are nouns, verbs, adjectives, adverbs, prepositions, and conjunctions, with the interjection occurring too infrequently to support a model. The data consist of more than the first 5000 words of works by four major authors coded to label the parts of speech, as well as periods (sentence terminators). Sentence length is measured via the period and found to be normally distributed with no stochastic model identified for its occurrence. The models for all six speech parts but the noun significantly distinguish some pairs of authors and likewise for the joint use of all words types. Any one author is significantly distinguished from any other by at least one word type and sentence length very significantly distinguishes each from all others. The variety of word type use, measured by Shannon entropy, builds to about 90% of its maximum possible value. The rate constants for nouns are close to the fractions of maximum entropy achieved. This finding together with the stochastic models and the relations among them suggest that the noun may be a primitive organizer of written text.
Radio pulsar glitches as a state-dependent Poisson process
Fulgenzi, W.; Melatos, A.; Hughes, B. D.
2017-10-01
Gross-Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited computationally to ≲102 vortices and ≲102 avalanches, making it hard to study the long-term statistics of radio pulsar glitches in realistically sized systems. Here, an idealized, mean-field model of the observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a state-dependent, compound Poisson process in a single random variable, the spatially averaged crust-superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-driven lag decrements are inputs into the model, which is solved numerically (via Monte Carlo simulations) and analytically (via a master equation). The output statistics are controlled by two dimensionless free parameters: α, the glitch rate at a reference lag, multiplied by the critical lag for unpinning, divided by the spin-down rate; and β, the minimum fraction of the lag that can be restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose properties are determined by α/αc(β), where αc(β) ≈ β-1/2 is a transition value. In the regime α ≳ αc(β), one recovers qualitatively the power-law size and exponential waiting-time distributions observed in many radio pulsars and Gross-Pitaevskii simulations. For α ≪ αc(β), the size and waiting-time distributions are both power-law-like, and a correlation emerges between size and waiting time until the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data are restricted by the small sample sizes available at present, with ≤35 events observed per pulsar.
Directory of Open Access Journals (Sweden)
Yiwo Thecle Noée Veline N'GUESSAM
2018-03-01
Full Text Available Fish is one of the main sources of animal protein commercialized fresh or processed in Côte d’Ivoire. Health problems and even nutritional risks were noticed in spite of the existence of self-control systems and official controls in place. The objective of this study is to determine the causes of the sanitary insecurity and to evaluate the microbiological quality of the fish sold in the distribution channels of Abidjan. The Ishikawa method was used to identify the causes of health insecurity. The results of the microbiological analyzes carried out on frozen fish (Trachurus trachurus, Scombers combrus and fresh (Chrysichthys nigrodigitafus show that the coliform count is high (7.1 102 and 8.1 101 in fresh fish. However, Staphylococcus aureusis was below 10 CFU/g of product. Salmonella spp was absent in all the samples under the investigation. Labor remains the major source of germs and the most important “weakest link”. Appropriate corrective action will reduce the sanitary insecurity of fishsold in the distribution system by around 90%.
Modeling laser velocimeter signals as triply stochastic Poisson processes
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
A Note On the Estimation of the Poisson Parameter
Directory of Open Access Journals (Sweden)
S. S. Chitgopekar
1985-01-01
distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.
Larwin, Karen H.; Larwin, David A.
2011-01-01
Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…
Directory of Open Access Journals (Sweden)
Bogdan Gheorghe Munteanu
2013-01-01
Full Text Available Using the stochastic approximations, in this paper it was studiedthe convergence in distribution of the fractional parts of the sum of random variables to the truncated exponential distribution with parameter lambda. This fact is feasible by means of the Fourier-Stieltjes sequence (FSS of the random variable.
A simple consensus algorithm for distributed averaging in random ...
Indian Academy of Sciences (India)
Random geographical networks are realistic models for wireless sensor ... work are cheap, unreliable, with limited computational power and limited .... signal xj from node j, j does not need to transmit its degree to i in order to let i compute.
On lower limits and equivalences for distribution tails of randomly stopped sums
Denisov, D.E.; Foss, S.G.; Korshunov, D.A.
2008-01-01
For a distribution F*t of a random sum St=¿1+¿+¿t of i.i.d. random variables with a common distribution F on the half-line [0, 8), we study the limits of the ratios of tails as x¿8 (here, t is a counting random variable which does not depend on {¿n}n=1). We also consider applications of the results
Limitations of Poisson statistics in describing radioactive decay.
Sitek, Arkadiusz; Celler, Anna M
2015-12-01
The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Topological Poisson Sigma models on Poisson-Lie groups
International Nuclear Information System (INIS)
Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David
2003-01-01
We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)
Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y
2012-01-01
A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.
Variational Gaussian approximation for Poisson data
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network
2013-05-26
public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University
Peer-Assisted Content Distribution with Random Linear Network Coding
DEFF Research Database (Denmark)
Hundebøll, Martin; Ledet-Pedersen, Jeppe; Sluyterman, Georg
2014-01-01
Peer-to-peer networks constitute a widely used, cost-effective and scalable technology to distribute bandwidth-intensive content. The technology forms a great platform to build distributed cloud storage without the need of a central provider. However, the majority of todays peer-to-peer systems...
Zero Distribution of System with Unknown Random Variables Case Study: Avoiding Collision Path
Directory of Open Access Journals (Sweden)
Parman Setyamartana
2014-07-01
Full Text Available This paper presents the stochastic analysis of finding the feasible trajectories of robotics arm motion at obstacle surrounding. Unknown variables are coefficients of polynomials joint angle so that the collision-free motion is achieved. ãk is matrix consisting of these unknown feasible polynomial coefficients. The pattern of feasible polynomial in the obstacle environment shows as random. This paper proposes to model the pattern of this randomness values using random polynomial with unknown variables as coefficients. The behavior of the system will be obtained from zero distribution as the characteristic of such random polynomial. Results show that the pattern of random polynomial of avoiding collision can be constructed from zero distribution. Zero distribution is like building block of the system with obstacles as uncertainty factor. By scale factor k, which has range, the random coefficient pattern can be predicted.
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.
Zhang, Jiachao; Hirakawa, Keigo
2017-04-01
This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.
Neustifter, Benjamin; Rathbun, Stephen L; Shiffman, Saul
2012-01-01
Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.
da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos
2016-12-01
Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.
Comparison of Poisson structures and Poisson-Lie dynamical r-matrices
Enriquez, B.; Etingof, P.; Marshall, I.
2004-01-01
We construct a Poisson isomorphism between the formal Poisson manifolds g^* and G^*, where g is a finite dimensional quasitriangular Lie bialgebra. Here g^* is equipped with its Lie-Poisson (or Kostant-Kirillov-Souriau) structure, and G^* with its Poisson-Lie structure. We also quantize Poisson-Lie dynamical r-matrices of Balog-Feher-Palla.
Directory of Open Access Journals (Sweden)
Shilong Li
2018-03-01
Full Text Available In this paper, we introduce a class of stochastic interest model driven by a compoundPoisson process and a Brownian motion, in which the jumping times of force of interest obeyscompound Poisson process and the continuous tiny fluctuations are described by Brownian motion, andthe adjustment in each jump of interest force is assumed to be random. Based on the proposed interestmodel, we discuss the expected discounted function, the validity of the model and actuarial presentvalues of life annuities and life insurances under different parameters and distribution settings. Ournumerical results show actuarial values could be sensitive to the parameters and distribution settings,which shows the importance of introducing this kind interest model.
Ruin probabilities for a regenerative Poisson gap generated risk process
DEFF Research Database (Denmark)
Asmussen, Søren; Biard, Romain
A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is deﬁned for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F...
Directory of Open Access Journals (Sweden)
Yang Yang
2013-01-01
Full Text Available We investigate the tailed asymptotic behavior of the randomly weighted sums with increments with convolution-equivalent distributions. Our obtained result can be directly applied to a discrete-time insurance risk model with insurance and financial risks and derive the asymptotics for the finite-time probability of the above risk model.
A method for generating skewed random numbers using two overlapping uniform distributions
International Nuclear Information System (INIS)
Ermak, D.L.; Nasstrom, J.S.
1995-02-01
The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence
Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities
DEFF Research Database (Denmark)
Krammer, Sarah; Vannahme, Christoph; Smith, Cameron
2015-01-01
Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively....
Fermi-dirac and random carrier distributions in quantum dot lasers
Hutchings, M.; O'Driscoll, Ian; Smowton, P. M.; Blood, P.
2014-01-01
Using experimental gain and emission measurements as functions of temperature, a method is described to characterise the carrier distribution of radiative states in a quantum dot (QD) laser structure in terms of a temperature. This method is independent of the form of the inhomogeneous dot distribution. A thermal distribution at the lattice temperature is found between 200 and 300K. Below 200K the characteristic temperature exceeds the lattice temperature and the distribution becomes random b...
Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.
2014-01-01
In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
Rossi, R.; Hendrix, E.M.T.
2014-01-01
We discuss the problem of computing optimal linearisation parameters for the first order loss function of a family of arbitrarily distributed random variable. We demonstrate that, in contrast to the problem in which parameters must be determined for the loss function of a single random variable,
ESEARCH OF THE LAW OF DISTRIBUTION OF THE RANDOM VARIABLE OF THE COMPRESSION
Directory of Open Access Journals (Sweden)
I. Sarayeva
2011-01-01
Full Text Available At research of diagnosing the process of modern automobile engines by means of methods of mathematical statistics the experimental data of the random variable of compression are analysed and it is proved that the random variable of compression has the form of the normal law of distribution.
International Nuclear Information System (INIS)
Valor, Alma; Alfonso, Lester; Caleyo, Francisco; Vidal, Julio; Perez-Baruch, Eloy; Hallen, José M.
2015-01-01
Highlights: • Observed external-corrosion defects in underground pipelines revealed a tendency to cluster. • The Poisson distribution is unable to fit extensive count data for these type of defects. • In contrast, the negative binomial distribution provides a suitable count model for them. • Two spatial stochastic processes lead to the negative binomial distribution for defect counts. • They are the Gamma-Poisson mixed process and the compound Poisson process. • A Rogeŕs process also arises as a plausible temporal stochastic process leading to corrosion defect clustering and to negative binomially distributed defect counts. - Abstract: The spatial distribution of external corrosion defects in buried pipelines is usually described as a Poisson process, which leads to corrosion defects being randomly distributed along the pipeline. However, in real operating conditions, the spatial distribution of defects considerably departs from Poisson statistics due to the aggregation of defects in groups or clusters. In this work, the statistical analysis of real corrosion data from underground pipelines operating in southern Mexico leads to conclude that the negative binomial distribution provides a better description for defect counts. The origin of this distribution from several processes is discussed. The analysed processes are: mixed Gamma-Poisson, compound Poisson and Roger’s processes. The physical reasons behind them are discussed for the specific case of soil corrosion.
Periodic Poisson Solver for Particle Tracking
International Nuclear Information System (INIS)
Dohlus, M.; Henning, C.
2015-05-01
A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.
On the Fractional Poisson Process and the Discretized Stable Subordinator
Directory of Open Access Journals (Sweden)
Rudolf Gorenflo
2015-08-01
Full Text Available We consider the renewal counting number process N = N(t as a forward march over the non-negative integers with independent identically distributed waiting times. We embed the values of the counting numbers N in a “pseudo-spatial” non-negative half-line x ≥ 0 and observe that for physical time likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to both variables x and t. Applying then a modification of the Montroll-Weiss-Cox formalism of continuous time random walk we obtain the essential characteristics of a renewal process in the transform domain and, if we are lucky, also in the physical domain. The process t = t(N of accumulation of waiting times is inverse to the counting number process, in honour of the Danish mathematician and telecommunication engineer A.K. Erlang we call it the Erlang process. It yields the probability of exactly n renewal events in the interval (0; t]. We apply our Laplace-Laplace formalism to the fractional Poisson process whose waiting times are of Mittag-Leffler type and to a renewal process whose waiting times are of Wright type. The process of Mittag-Leffler type includes as a limiting case the classical Poisson process, the process of Wright type represents the discretized stable subordinator and a re-scaled version of it was used in our method of parametric subordination of time-space fractional diffusion processes. Properly rescaling the counting number process N(t and the Erlang process t(N yields as diffusion limits the inverse stable and the stable subordinator, respectively.
Reliability Analysis of a Cold Standby System with Imperfect Repair and under Poisson Shocks
Directory of Open Access Journals (Sweden)
Yutian Chen
2014-01-01
Full Text Available This paper considers the reliability analysis of a two-component cold standby system with a repairman who may have vacation. The system may fail due to intrinsic factors like aging or deteriorating, or external factors such as Poisson shocks. The arrival time of the shocks follows a Poisson process with the intensity λ>0. Whenever the magnitude of a shock is larger than the prespecified threshold of the operating component, the operating component will fail. The paper assumes that the intrinsic lifetime and the repair time on the component are an extended Poisson process, the magnitude of the shock and the threshold of the operating component are nonnegative random variables, and the vacation time of the repairman obeys the general continuous probability distribution. By using the vector Markov process theory, the supplementary variable method, Laplace transform, and Tauberian theory, the paper derives a number of reliability indices: system availability, system reliability, the rate of occurrence of the system failure, and the mean time to the first failure of the system. Finally, a numerical example is given to validate the derived indices.
On the generation of log-Levy distributions and extreme randomness
International Nuclear Information System (INIS)
Eliazar, Iddo; Klafter, Joseph
2011-01-01
The log-normal distribution is prevalent across the sciences, as it emerges from the combination of multiplicative processes and the central limit theorem (CLT). The CLT, beyond yielding the normal distribution, also yields the class of Levy distributions. The log-Levy distributions are the Levy counterparts of the log-normal distribution, they appear in the context of ultraslow diffusion processes, and they are categorized by Mandelbrot as belonging to the class of extreme randomness. In this paper, we present a natural stochastic growth model from which both the log-normal distribution and the log-Levy distributions emerge universally-the former in the case of deterministic underlying setting, and the latter in the case of stochastic underlying setting. In particular, we establish a stochastic growth model which universally generates Mandelbrot's extreme randomness. (paper)
Correlated random sampling for multivariate normal and log-normal distributions
International Nuclear Information System (INIS)
Žerovnik, Gašper; Trkov, Andrej; Kodeli, Ivan A.
2012-01-01
A method for correlated random sampling is presented. Representative samples for multivariate normal or log-normal distribution can be produced. Furthermore, any combination of normally and log-normally distributed correlated variables may be sampled to any requested accuracy. Possible applications of the method include sampling of resonance parameters which are used for reactor calculations.
An efficient method of randomly sampling the coherent angular scatter distribution
International Nuclear Information System (INIS)
Williamson, J.F.; Morin, R.L.
1983-01-01
Monte Carlo simulations of photon transport phenomena require random selection of an interaction process at each collision site along the photon track. Possible choices are usually limited to photoelectric absorption and incoherent scatter as approximated by the Klein-Nishina distribution. A technique is described for sampling the coherent angular scatter distribution, for the benefit of workers in medical physics. (U.K.)
Statistical distributions of optimal global alignment scores of random protein sequences
Directory of Open Access Journals (Sweden)
Tang Jiaowei
2005-10-01
Full Text Available Abstract Background The inference of homology from statistically significant sequence similarity is a central issue in sequence alignments. So far the statistical distribution function underlying the optimal global alignments has not been completely determined. Results In this study, random and real but unrelated sequences prepared in six different ways were selected as reference datasets to obtain their respective statistical distributions of global alignment scores. All alignments were carried out with the Needleman-Wunsch algorithm and optimal scores were fitted to the Gumbel, normal and gamma distributions respectively. The three-parameter gamma distribution performs the best as the theoretical distribution function of global alignment scores, as it agrees perfectly well with the distribution of alignment scores. The normal distribution also agrees well with the score distribution frequencies when the shape parameter of the gamma distribution is sufficiently large, for this is the scenario when the normal distribution can be viewed as an approximation of the gamma distribution. Conclusion We have shown that the optimal global alignment scores of random protein sequences fit the three-parameter gamma distribution function. This would be useful for the inference of homology between sequences whose relationship is unknown, through the evaluation of gamma distribution significance between sequences.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Real-time definition of non-randomness in the distribution of genomic events.
Directory of Open Access Journals (Sweden)
Ulrich Abel
Full Text Available Features such as mutations or structural characteristics can be non-randomly or non-uniformly distributed within a genome. So far, computer simulations were required for statistical inferences on the distribution of sequence motifs. Here, we show that these analyses are possible using an analytical, mathematical approach. For the assessment of non-randomness, our calculations only require information including genome size, number of (sampled sequence motifs and distance parameters. We have developed computer programs evaluating our analytical formulas for the real-time determination of expected values and p-values. This approach permits a flexible cluster definition that can be applied to most effectively identify non-random or non-uniform sequence motif distribution. As an example, we show the effectivity and reliability of our mathematical approach in clinical retroviral vector integration site distribution.
Lawnik, Marcin
2018-01-01
The scope of the paper is the presentation of a new method of generating numbers from a given distribution. The method uses the inverse cumulative distribution function and a method of flattening of probabilistic distributions. On the grounds of these methods, a new construction of chaotic maps was derived, which generates values from a given distribution. The analysis of the new method was conducted on the example of a newly constructed chaotic recurrences, based on the Box-Muller transformation and the quantile function of the exponential distribution. The obtained results certify that the proposed method may be successively applicable for the construction of generators of pseudo-random numbers.
A generalized gyrokinetic Poisson solver
International Nuclear Information System (INIS)
Lin, Z.; Lee, W.W.
1995-03-01
A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms
Poisson denoising on the sphere
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Singularities of Poisson structures and Hamiltonian bifurcations
Meer, van der J.C.
2010-01-01
Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom
A Martingale Characterization of Mixed Poisson Processes.
1985-10-01
03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht
Statistics for Ratios of Rayleigh, Rician, Nakagami-m, and Weibull Distributed Random Variables
Directory of Open Access Journals (Sweden)
Dragana Č. Pavlović
2013-01-01
Full Text Available The distributions of ratios of random variables are of interest in many areas of the sciences. In this brief paper, we present the joint probability density function (PDF and PDF of maximum of ratios μ1=R1/r1 and μ2=R2/r2 for the cases where R1, R2, r1, and r2 are Rayleigh, Rician, Nakagami-m, and Weibull distributed random variables. Random variables R1 and R2, as well as random variables r1 and r2, are correlated. Ascertaining on the suitability of the Weibull distribution to describe fading in both indoor and outdoor environments, special attention is dedicated to the case of Weibull random variables. For this case, analytical expressions for the joint PDF, PDF of maximum, PDF of minimum, and product moments of arbitrary number of ratios μi=Ri/ri, i=1,…,L are obtained. Random variables in numerator, Ri, as well as random variables in denominator, ri, are exponentially correlated. To the best of the authors' knowledge, analytical expressions for the PDF of minimum and product moments of {μi}i=1L are novel in the open technical literature. The proposed mathematical analysis is complemented by various numerical results. An application of presented theoretical results is illustrated with respect to performance assessment of wireless systems.
Thinning spatial point processes into Poisson processes
DEFF Research Database (Denmark)
Møller, Jesper; Schoenberg, Frederic Paik
2010-01-01
are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....
Thinning spatial point processes into Poisson processes
DEFF Research Database (Denmark)
Møller, Jesper; Schoenberg, Frederic Paik
, and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can......This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....
High-power random distributed feedback fiber laser: From science to application
Energy Technology Data Exchange (ETDEWEB)
Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2016-10-15
A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Binomial vs poisson statistics in radiation studies
International Nuclear Information System (INIS)
Foster, J.; Kouris, K.; Spyrou, N.M.; Matthews, I.P.; Welsh National School of Medicine, Cardiff
1983-01-01
The processes of radioactive decay, decay and growth of radioactive species in a radioactive chain, prompt emission(s) from nuclear reactions, conventional activation and cyclic activation are discussed with respect to their underlying statistical density function. By considering the transformation(s) that each nucleus may undergo it is shown that all these processes are fundamentally binomial. Formally, when the number of experiments N is large and the probability of success p is close to zero, the binomial is closely approximated by the Poisson density function. In radiation and nuclear physics, N is always large: each experiment can be conceived of as the observation of the fate of each of the N nuclei initially present. Whether p, the probability that a given nucleus undergoes a prescribed transformation, is close to zero depends on the process and nuclide(s) concerned. Hence, although a binomial description is always valid, the Poisson approximation is not always adequate. Therefore further clarification is provided as to when the binomial distribution must be used in the statistical treatment of detected events. (orig.)
NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes
Directory of Open Access Journals (Sweden)
Ana C. Cebrián
2015-03-01
Full Text Available NHPoisson is an R package for the modeling of nonhomogeneous Poisson processes in one dimension. It includes functions for data preparation, maximum likelihood estimation, covariate selection and inference based on asymptotic distributions and simulation methods. It also provides specific methods for the estimation of Poisson processes resulting from a peak over threshold approach. In addition, the package supports a wide range of model validation tools and functions for generating nonhomogenous Poisson process trajectories. This paper is a description of the package and aims to help those interested in modeling data using nonhomogeneous Poisson processes.
DEFF Research Database (Denmark)
Mikosch, Thomas Valentin; Moser, Martin
2013-01-01
We investigate the maximum increment of a random walk with heavy-tailed jump size distribution. Here heavy-tailedness is understood as regular variation of the finite-dimensional distributions. The jump sizes constitute a strictly stationary sequence. Using a continuous mapping argument acting...... on the point processes of the normalized jump sizes, we prove that the maximum increment of the random walk converges in distribution to a Fréchet distributed random variable....
Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science
Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai
2017-01-01
Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...
Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions
Directory of Open Access Journals (Sweden)
Liu Jinn-Liang
2017-10-01
Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.
Fermi-dirac and random carrier distributions in quantum dot lasers
International Nuclear Information System (INIS)
Hutchings, M.; Smowton, P. M.; Blood, P.; O'Driscoll, I.
2014-01-01
Using experimental gain and emission measurements as functions of temperature, a method is described to characterise the carrier distribution of radiative states in a quantum dot (QD) laser structure in terms of a temperature. This method is independent of the form of the inhomogeneous dot distribution. A thermal distribution at the lattice temperature is found between 200 and 300 K. Below 200 K the characteristic temperature exceeds the lattice temperature and the distribution becomes random below about 60 K. This enables the temperature range for which Fermi-Dirac statistics are applicable in QD laser threshold calculations to be identified
Thompson, J. R.; Taylor, M. S.
1982-01-01
Let X be a K-dimensional random variable serving as input for a system with output Y (not necessarily of dimension k). given X, an outcome Y or a distribution of outcomes G(Y/X) may be obtained either explicitly or implicity. The situation is considered in which there is a real world data set X sub j sub = 1 (n) and a means of simulating an outcome Y. A method for empirical random number generation based on the sample of observations of the random variable X without estimating the underlying density is discussed.
An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution
Campbell, C. W.
1983-01-01
An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.
Distributed Random Process for a Large-Scale Peer-to-Peer Lottery
Grumbach, Stéphane; Riemann, Robert
2017-01-01
International audience; Most online lotteries today fail to ensure the verifiability of the random process and rely on a trusted third party. This issue has received little attention since the emergence of distributed protocols like Bitcoin that demonstrated the potential of protocols with no trusted third party. We argue that the security requirements of online lotteries are similar to those of online voting, and propose a novel distributed online lottery protocol that applies techniques dev...
Group-buying inventory policy with demand under Poisson process
Directory of Open Access Journals (Sweden)
Tammarat Kleebmek
2016-02-01
Full Text Available The group-buying is the modern business of selling in the uncertain market. With an objective to minimize costs for sellers arising from ordering and reordering, we present in this paper the group buying inventory model, with the demand governed by a Poisson process and the product sale distributed as Binomial distribution. The inventory level is under continuous review, while the lead time is fixed. A numerical example is illustrated.
Directory of Open Access Journals (Sweden)
Abdou Amza
2014-09-01
Full Text Available Antibiotic use on animals demonstrates improved growth regardless of whether or not there is clinical evidence of infectious disease. Antibiotics used for trachoma control may play an unintended benefit of improving child growth.In this sub-study of a larger randomized controlled trial, we assess anthropometry of pre-school children in a community-randomized trial of mass oral azithromycin distributions for trachoma in Niger. We measured height, weight, and mid-upper arm circumference (MUAC in 12 communities randomized to receive annual mass azithromycin treatment of everyone versus 12 communities randomized to receive biannual mass azithromycin treatments for children, 3 years after the initial mass treatment. We collected measurements in 1,034 children aged 6-60 months of age.We found no difference in the prevalence of wasting among children in the 12 annually treated communities that received three mass azithromycin distributions compared to the 12 biannually treated communities that received six mass azithromycin distributions (odds ratio = 0.88, 95% confidence interval = 0.53 to 1.49.We were unable to demonstrate a statistically significant difference in stunting, underweight, and low MUAC of pre-school children in communities randomized to annual mass azithromycin treatment or biannual mass azithromycin treatment. The role of antibiotics on child growth and nutrition remains unclear, but larger studies and longitudinal trials may help determine any association.
Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory
Pato, Mauricio P.; Oshanin, Gleb
2013-03-01
We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.
Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory
International Nuclear Information System (INIS)
Pato, Mauricio P; Oshanin, Gleb
2013-01-01
We study the probability distribution function P (β) n (w) of the Schmidt-like random variable w = x 2 1 /(∑ j=1 n x 2 j /n), where x j , (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P (β) n (w) converges to the Marčenko–Pastur form, i.e. is defined as P n (β) (w)∼√((4 - w)/w) for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P (β=2) n (w) which are valid for arbitrary n and analyse their behaviour. (paper)
Study on two-dimensional POISSON design of large-scale FFAG magnet
International Nuclear Information System (INIS)
Ouyang Huafu
2006-01-01
In order to decrease the edge effect of the field, the designed magnetic field distribution in a large-scale FFAG magnet is realized by both the trim coil and the shape of the magnet pole-face. Through two-dimensional POISSON simulations, the distribution about the current and the position of the trim coil and the shape of the magnet pole are determined. In order to facilitate the POISSON design, two codes are writteen to automatically adjust the current and the position of the trim coil and the shape of magnet pole-face appeared in the POISSON input file. With the two codes, the efficiency of POISSON simulations is improved and the mistakes which might occur in writing and adjusting the POISSON input file manually could be avoided. (authors)
Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'
DEFF Research Database (Denmark)
de Nijs, Robin
2015-01-01
In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed...... by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all...... methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics...
International Nuclear Information System (INIS)
Munoz Montplet, C.; Jurado Bruggeman, D.
2010-01-01
Geometrical random uncertainty in radiotherapy is usually characterized by a unique value in each group of patients. We propose a novel approach based on a statistically accurate characterization of the uncertainty distribution, thus reducing the risk of obtaining potentially unsafe results in CTV-PTV margins or in the selection of correction protocols.
Reinforcing Sampling Distributions through a Randomization-Based Activity for Introducing ANOVA
Taylor, Laura; Doehler, Kirsten
2015-01-01
This paper examines the use of a randomization-based activity to introduce the ANOVA F-test to students. The two main goals of this activity are to successfully teach students to comprehend ANOVA F-tests and to increase student comprehension of sampling distributions. Four sections of students in an advanced introductory statistics course…
Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers
Hu, Jun; Xu, Hebing; Li, Chao
2018-03-01
Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.
Events in time: Basic analysis of Poisson data
International Nuclear Information System (INIS)
Engelhardt, M.E.
1994-09-01
The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given
Events in time: Basic analysis of Poisson data
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, M.E.
1994-09-01
The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.
Thermodynamic method for generating random stress distributions on an earthquake fault
Barall, Michael; Harris, Ruth A.
2012-01-01
This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.
Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi
2002-07-01
We investigate the pattern of particle distribution and its evolution with time in multiparticle systems using the model of random walks with memory enhancement and decay. This model describes some biological intelligent walks. With decrease in the memory decay exponent α, the distribution of particles changes from a random dispersive pattern to a locally dense one, and then returns to the random one. Correspondingly, the fractal dimension Df,p characterizing the distribution of particle positions increases from a low value to a maximum and then decreases to the low one again. This is determined by the degree of overlap of regions consisting of sites with remanent information. The second moment of the density ρ(2) was introduced to investigate the inhomogeneity of the particle distribution. The dependence of ρ(2) on α is similar to that of Df,p on α. ρ(2) increases with time as a power law in the process of adjusting the particle distribution, and then ρ(2) tends to a stable equilibrium value.
Singular reduction of Nambu-Poisson manifolds
Das, Apurba
The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.
Generating log-normally distributed random numbers by using the Ziggurat algorithm
International Nuclear Information System (INIS)
Choi, Jong Soo
2016-01-01
Uncertainty analyses are usually based on the Monte Carlo method. Using an efficient random number generator(RNG) is a key element in success of Monte Carlo simulations. Log-normal distributed variates are very typical in NPP PSAs. This paper proposes an approach to generate log normally distributed variates based on the Ziggurat algorithm and evaluates the efficiency of the proposed Ziggurat RNG. The proposed RNG can be helpful to improve the uncertainty analysis of NPP PSAs. This paper focuses on evaluating the efficiency of the Ziggurat algorithm from a NPP PSA point of view. From this study, we can draw the following conclusions. - The Ziggurat algorithm is one of perfect random number generators to product normal distributed variates. - The Ziggurat algorithm is computationally much faster than the most commonly used method, Marsaglia polar method
On Origin of Power-Law Distributions in Self-Organized Criticality from Random Walk Treatment
International Nuclear Information System (INIS)
Cao Xiaofeng; Deng Zongwei; Yang Chunbin
2008-01-01
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f 1 , to decrease by 1 with probability f 2 , or remain unchanged with probability 1-f 1 -f 2 . This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Non-holonomic dynamics and Poisson geometry
International Nuclear Information System (INIS)
Borisov, A V; Mamaev, I S; Tsiganov, A V
2014-01-01
This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie-Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them. Bibliography: 95 titles
Xie, Wen-Jie; Han, Rui-Qi; Jiang, Zhi-Qiang; Wei, Lijian; Zhou, Wei-Xing
2017-08-01
Complex network is not only a powerful tool for the analysis of complex system, but also a promising way to analyze time series. The algorithm of horizontal visibility graph (HVG) maps time series into graphs, whose degree distributions are numerically and analytically investigated for certain time series. We derive the degree distributions of HVGs through an iterative construction process of HVGs. The degree distributions of the HVG and the directed HVG for random series are derived to be exponential, which confirms the analytical results from other methods. We also obtained the analytical expressions of degree distributions of HVGs and in-degree and out-degree distributions of directed HVGs transformed from multifractal binomial measures, which agree excellently with numerical simulations.
Emoto, Akira; Fukuda, Takashi
2013-02-20
For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.
Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.
de Nijs, Robin
2015-07-21
In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.
Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.
Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah
2012-01-01
Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression. © 2011 Society for Risk Analysis.
Probability distribution for the Gaussian curvature of the zero level surface of a random function
Hannay, J. H.
2018-04-01
A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z) = 0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f = 0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.
A note on the time decay of solutions for the linearized Wigner-Poisson system
Gamba, Irene; Gualdani, Maria; Sparber, Christof
2009-01-01
We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give
Distribution of sizes of erased loops for loop-erased random walks
Dhar, Deepak; Dhar, Abhishek
1997-01-01
We study the distribution of sizes of erased loops for loop-erased random walks on regular and fractal lattices. We show that for arbitrary graphs the probability $P(l)$ of generating a loop of perimeter $l$ is expressible in terms of the probability $P_{st}(l)$ of forming a loop of perimeter $l$ when a bond is added to a random spanning tree on the same graph by the simple relation $P(l)=P_{st}(l)/l$. On $d$-dimensional hypercubical lattices, $P(l)$ varies as $l^{-\\sigma}$ for large $l$, whe...
Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.
Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen
2013-02-01
In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.
Directory of Open Access Journals (Sweden)
Wenzhi Wang
2016-07-01
Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.
On (co)homology of Frobenius Poisson algebras
Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo
2014-01-01
In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...
Square root approximation to the poisson channel
Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J.
2013-01-01
Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding
A Seemingly Unrelated Poisson Regression Model
King, Gary
1989-01-01
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
Poisson geometry from a Dirac perspective
Meinrenken, Eckhard
2018-03-01
We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Wick calculus on spaces of generalized functions of compound poisson white noise
Lytvynov, Eugene W.; Rebenko, Alexei L.; Shchepan'ur, Gennadi V.
1997-04-01
We derive white noise calculus for a compound Poisson process. Namely, we consider, on the Schwartz space of tempered distributions, S', a measure of compound Poisson white noise, μcp, and construct a whole scale of standard nuclear triples ( Scp) - x ⊃ L2cp) ≡ L2( S', dμcp) ⊃( Scpx, x≥ 0, which are obtained as images under some isomorphism of the corresponding triples centred at a Fock space. It turns out that the most interesting case is x = 1, when our triple coincides with the triple that is constructed by using a system of Appell polynomials in the framework of non-Gaussian biorthogonal analysis. Our special attention is paid to the Wick calculus of the Poisson field, or the quantum compound Poisson white noise process in other terms, which is the family of operators acting from ( Scp) 1 into ( Scp) 1 as multiplication by the compound Poisson white noise ω( t).
Long, Kai; Yuan, Philip F.; Xu, Shanqing; Xie, Yi Min
2018-04-01
Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson's ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson's ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young's modulus and Poisson's ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson's ratios between the macrostructural and microstructural levels under a single constraint of the total mass.
Online distribution channel increases article usage on Mendeley: a randomized controlled trial.
Kudlow, Paul; Cockerill, Matthew; Toccalino, Danielle; Dziadyk, Devin Bissky; Rutledge, Alan; Shachak, Aviv; McIntyre, Roger S; Ravindran, Arun; Eysenbach, Gunther
2017-01-01
Prior research shows that article reader counts (i.e. saves) on the online reference manager, Mendeley, correlate to future citations. There are currently no evidenced-based distribution strategies that have been shown to increase article saves on Mendeley. We conducted a 4-week randomized controlled trial to examine how promotion of article links in a novel online cross-publisher distribution channel (TrendMD) affect article saves on Mendeley. Four hundred articles published in the Journal of Medical Internet Research were randomized to either the TrendMD arm ( n = 200) or the control arm ( n = 200) of the study. Our primary outcome compares the 4-week mean Mendeley saves of articles randomized to TrendMD versus control. Articles randomized to TrendMD showed a 77% increase in article saves on Mendeley relative to control. The difference in mean Mendeley saves for TrendMD articles versus control was 2.7, 95% CI (2.63, 2.77), and statistically significant ( p < 0.01). There was a positive correlation between pageviews driven by TrendMD and article saves on Mendeley (Spearman's rho r = 0.60). This is the first randomized controlled trial to show how an online cross-publisher distribution channel (TrendMD) enhances article saves on Mendeley. While replication and further study are needed, these data suggest that cross-publisher article recommendations via TrendMD may enhance citations of scholarly articles.
Directory of Open Access Journals (Sweden)
Dejan Jaksic
2017-01-01
Full Text Available Mathematical modelling of the behavior of the radio propagation at mmWave bands is crucial to the development of transmission and reception algorithms of new 5G systems. In this study we will model 5G propagation in nondeterministic line-of-sight (LOS conditions, when the random nature of LOS component ratio will be observed as Inverse Gamma (IG distributed process. Closed-form expressions will be presented for the probability density function (PDF and cumulative distribution function (CDF of such random process. Further, closed-form expressions will be provided for important performance measures such as level crossing rate (LCR and average fade duration (AFD. Capitalizing on proposed expressions, LCR and AFD will be discussed in the function of transmission parameters.
The area distribution of two-dimensional random walks and non-Hermitian Hofstadter quantum mechanics
International Nuclear Information System (INIS)
Matveenko, Sergey; Ouvry, Stéphane
2014-01-01
When random walks on a square lattice are biased horizontally to move solely to the right, the probability distribution of their algebraic area can be obtained exactly (Mashkevich and Ouvry 2009 J. Stat. Phys. 137 71). We explicitly map this biased classical random system onto a non-Hermitian Hofstadter-like quantum model where a charged particle on a square lattice coupled to a perpendicular magnetic field hops only to the right. For the commensurate case, when the magnetic flux per unit cell is rational, an exact solution of the quantum model is obtained. The periodicity of the lattice allows one to relate traces of the Nth power of the Hamiltonian to probability distribution generating functions of biased walks of length N. (paper)
Effect of a data buffer on the recorded distribution of time intervals for random events
Energy Technology Data Exchange (ETDEWEB)
Barton, J C [Polytechnic of North London (UK)
1976-03-15
The use of a data buffer enables the distribution of the time intervals between events to be studied for times less than the recording system dead-time but the usual negative exponential distribution for random events has to be modified. The theory for this effect is developed for an n-stage buffer followed by an asynchronous recorder. Results are evaluated for the values of n from 1 to 5. In the language of queueing theory the system studied is of type M/D/1/n+1, i.e. with constant service time and a finite number of places.
A distribution-free newsvendor model with balking penalty and random yield
Directory of Open Access Journals (Sweden)
Chongfeng Lan
2015-05-01
Full Text Available Purpose: The purpose of this paper is to extend the analysis of the distribution-free newsvendor problem in an environment of customer balking, which occurs when customers are reluctant to buy a product if its available inventory falls below a threshold level. Design/methodology/approach: We provide a new tradeoff tool as a replacement of the traditional one to weigh the holding cost and the goodwill costs segment: in addition to the shortage penalty, we also introduce the balking penalty. Furthermore, we extend our model to the case of random yield. Findings: A model is presented for determining both an optimal order quantity and a lower bound on the profit under the worst possible distribution of the demand. We also study the effects of shortage penalty and the balking penalty on the optimal order quantity, which have been largely bypassed in the existing distribution free single period models with balking. Numerical examples are presented to illustrate the result. Originality/value: The incorporation of balking penalty and random yield represents an important improvement in inventory policy performance for distribution-free newsvendor problem when customer balking occurs and the distributional form of demand is unknown.
Poplová, Michaela; Sovka, Pavel; Cifra, Michal
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.
Universal Poisson Statistics of mRNAs with Complex Decay Pathways.
Thattai, Mukund
2016-01-19
Messenger RNA (mRNA) dynamics in single cells are often modeled as a memoryless birth-death process with a constant probability per unit time that an mRNA molecule is synthesized or degraded. This predicts a Poisson steady-state distribution of mRNA number, in close agreement with experiments. This is surprising, since mRNA decay is known to be a complex process. The paradox is resolved by realizing that the Poisson steady state generalizes to arbitrary mRNA lifetime distributions. A mapping between mRNA dynamics and queueing theory highlights an identifiability problem: a measured Poisson steady state is consistent with a large variety of microscopic models. Here, I provide a rigorous and intuitive explanation for the universality of the Poisson steady state. I show that the mRNA birth-death process and its complex decay variants all take the form of the familiar Poisson law of rare events, under a nonlinear rescaling of time. As a corollary, not only steady-states but also transients are Poisson distributed. Deviations from the Poisson form occur only under two conditions, promoter fluctuations leading to transcriptional bursts or nonindependent degradation of mRNA molecules. These results place severe limits on the power of single-cell experiments to probe microscopic mechanisms, and they highlight the need for single-molecule measurements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Shear elastic modulus of magnetic gels with random distribution of magnetizable particles
Iskakova, L. Yu; Zubarev, A. Yu
2017-04-01
Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.
Huber, Marcus; Pawlowski, Marcin
2013-01-01
We show that in device independent quantum key distribution protocols the privacy of randomness is of crucial importance. For sublinear test sample sizes even the slightest guessing probability by an eavesdropper will completely compromise security. We show that a combined attack exploiting test sample and measurement choices compromises the security even with a linear size test sample and otherwise device independent security considerations. We explicitly derive the sample size needed to ret...
Distributed Pseudo-Random Number Generation and Its Application to Cloud Database
Chen, Jiageng; Miyaji, Atsuko; Su, Chunhua
2014-01-01
Cloud database is now a rapidly growing trend in cloud computing market recently. It enables the clients run their computation on out-sourcing databases or access to some distributed database service on the cloud. At the same time, the security and privacy concerns is major challenge for cloud database to continue growing. To enhance the security and privacy of the cloud database technology, the pseudo-random number generation (PRNG) plays an important roles in data encryptions and privacy-pr...
Limit distribution function of inhomogeneities in regions with random boundary in the Hilbert space
International Nuclear Information System (INIS)
Rasulova, M.Yu.; Tashpulatov, S.M.
2004-10-01
The interaction of charged particle systems with a membrane consisting of nonhomogeneities which are randomly distributed by the same law in the vicinity of appropriate sites of a planax crystal lattice is studied. A system of equations for the self-consistent potential U 1 (x,ξ 0 ,..., ξ N ,...) and the density of induced charges σ(x,ξ 0 ,...,ξ N ,...) is solved on Hilbert space. (author)
International Nuclear Information System (INIS)
Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.
2001-01-01
Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition
Directory of Open Access Journals (Sweden)
Chih-Hsueh Lin
2016-04-01
Full Text Available In wireless sensor networks, sensing information must be transmitted from sensor nodes to the base station by multiple hopping. Every sensor node is a sender and a relay node that forwards the sensing information that is sent by other nodes. Under an attack, the sensing information may be intercepted, modified, interrupted, or fabricated during transmission. Accordingly, the development of mutual trust to enable a secure path to be established for forwarding information is an important issue. Random key pre-distribution has been proposed to establish mutual trust among sensor nodes. This article modifies the random key pre-distribution to a random secret pre-distribution and incorporates identity-based cryptography to establish an effective method of establishing mutual trust for a wireless sensor network. In the proposed method, base station assigns an identity and embeds n secrets into the private secret keys for every sensor node. Based on the identity and private secret keys, the mutual trust method is utilized to explore the types of trust among neighboring sensor nodes. The novel method can resist malicious attacks and satisfy the requirements of wireless sensor network, which are resistance to compromising attacks, masquerading attacks, forger attacks, replying attacks, authentication of forwarding messages, and security of sensing information.
Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling
2018-03-27
Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.
Pagonis, Vasilis; Kulp, Christopher; Chaney, Charity-Grace; Tachiya, M
2017-09-13
During the past 10 years, quantum tunneling has been established as one of the dominant mechanisms for recombination in random distributions of electrons and positive ions, and in many dosimetric materials. Specifically quantum tunneling has been shown to be closely associated with two important effects in luminescence materials, namely long term afterglow luminescence and anomalous fading. Two of the common assumptions of quantum tunneling models based on random distributions of electrons and positive ions are: (a) An electron tunnels from a donor to the nearest acceptor, and (b) the concentration of electrons is much lower than that of positive ions at all times during the tunneling process. This paper presents theoretical studies for arbitrary relative concentrations of electrons and positive ions in the solid. Two new differential equations are derived which describe the loss of charge in the solid by tunneling, and they are solved analytically. The analytical solution compares well with the results of Monte Carlo simulations carried out in a random distribution of electrons and positive ions. Possible experimental implications of the model are discussed for tunneling phenomena in long term afterglow signals, and also for anomalous fading studies in feldspars and apatite samples.
Lord, Dominique; Geedipally, Srinivas Reddy; Guikema, Seth D
2010-08-01
The objective of this article is to evaluate the performance of the COM-Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM-Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over- or underdispersion. Over the last year, the COM-Poisson GLM has been evaluated in the context of crash data analysis and it has been shown that the model performs as well as the Poisson-gamma model for crash data exhibiting overdispersion. To accomplish the objective of this study, several COM-Poisson models were estimated using crash data collected at 162 railway-highway crossings in South Korea between 1998 and 2002. This data set has been shown to exhibit underdispersion when models linking crash data to various explanatory variables are estimated. The modeling results were compared to those produced from the Poisson and gamma probability models documented in a previous published study. The results of this research show that the COM-Poisson GLM can handle crash data when the modeling output shows signs of underdispersion. Finally, they also show that the model proposed in this study provides better statistical performance than the gamma probability and the traditional Poisson models, at least for this data set.
A twisted generalization of Novikov-Poisson algebras
Yau, Donald
2010-01-01
Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.
Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
Chen, Duan
2017-11-01
In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.
International Nuclear Information System (INIS)
Moore, Stephen R.; Papworth, David; Grosovsky, Andrew J.
2006-01-01
Genomic instability is observed in tumors and in a large fraction of the progeny surviving irradiation. One of the best-characterized phenotypic manifestations of genomic instability is delayed chromosome aberrations. Our working hypothesis for the current study was that if genomic instability is in part attributable to cis mechanisms, we should observe a non-random distribution of chromosomes or sites involved in instability-associated rearrangements, regardless of radiation quality, dose, or trans factor expression. We report here the karyotypic examination of 296 instability-associated chromosomal rearrangement breaksites (IACRB) from 118 unstable TK6 human B lymphoblast, and isogenic derivative, clones. When we tested whether IACRB were distributed across the chromosomes based on target size, a significant non-random distribution was evident (p < 0.00001), and three IACRB hotspots (chromosomes 11, 12, and 22) and one IACRB coldspot (chromosome 2) were identified. Statistical analysis at the chromosomal band-level identified four IACRB hotspots accounting for 20% of all instability-associated breaks, two of which account for over 14% of all IACRB. Further, analysis of independent clones provided evidence within 14 individual clones of IACRB clustering at the chromosomal band level, suggesting a predisposition for further breaks after an initial break at some chromosomal bands. All of these events, independently, or when taken together, were highly unlikely to have occurred by chance (p < 0.000001). These IACRB band-level cluster hotspots were observed independent of radiation quality, dose, or cellular p53 status. The non-random distribution of instability-associated chromosomal rearrangements described here significantly differs from the distribution that was observed in a first-division post-irradiation metaphase analysis (p = 0.0004). Taken together, these results suggest that genomic instability may be in part driven by chromosomal cis mechanisms
A Poisson process approximation for generalized K-5 confidence regions
Arsham, H.; Miller, D. R.
1982-01-01
One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems.
Martina, R; Kay, R; van Maanen, R; Ridder, A
2015-01-01
Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non-parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd.
Tatlier, Mehmet Seha
Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.
Energy Technology Data Exchange (ETDEWEB)
Murata, Isao [Osaka Univ., Suita (Japan); Mori, Takamasa; Nakagawa, Masayuki; Itakura, Hirofumi
1996-03-01
The method to calculate neutronics parameters of a core composed of randomly distributed spherical fuels has been developed based on a statistical geometry model with a continuous energy Monte Carlo method. This method was implemented in a general purpose Monte Carlo code MCNP, and a new code MCNP-CFP had been developed. This paper describes the model and method how to use it and the validation results. In the Monte Carlo calculation, the location of a spherical fuel is sampled probabilistically along the particle flight path from the spatial probability distribution of spherical fuels, called nearest neighbor distribution (NND). This sampling method was validated through the following two comparisons: (1) Calculations of inventory of coated fuel particles (CFPs) in a fuel compact by both track length estimator and direct evaluation method, and (2) Criticality calculations for ordered packed geometries. This method was also confined by applying to an analysis of the critical assembly experiment at VHTRC. The method established in the present study is quite unique so as to a probabilistic model of the geometry with a great number of spherical fuels distributed randomly. Realizing the speed-up by vector or parallel computations in future, it is expected to be widely used in calculation of a nuclear reactor core, especially HTGR cores. (author).
Vazquez, A I; Gianola, D; Bates, D; Weigel, K A; Heringstad, B
2009-02-01
Clinical mastitis is typically coded as presence/absence during some period of exposure, and records are analyzed with linear or binary data models. Because presence includes cows with multiple episodes, there is loss of information when a count is treated as a binary response. The Poisson model is designed for counting random variables, and although it is used extensively in epidemiology of mastitis, it has rarely been used for studying the genetics of mastitis. Many models have been proposed for genetic analysis of mastitis, but they have not been formally compared. The main goal of this study was to compare linear (Gaussian), Bernoulli (with logit link), and Poisson models for the purpose of genetic evaluation of sires for mastitis in dairy cattle. The response variables were clinical mastitis (CM; 0, 1) and number of CM cases (NCM; 0, 1, 2, ..). Data consisted of records on 36,178 first-lactation daughters of 245 Norwegian Red sires distributed over 5,286 herds. Predictive ability of models was assessed via a 3-fold cross-validation using mean squared error of prediction (MSEP) as the end-point. Between-sire variance estimates for NCM were 0.065 in Poisson and 0.007 in the linear model. For CM the between-sire variance was 0.093 in logit and 0.003 in the linear model. The ratio between herd and sire variances for the models with NCM response was 4.6 and 3.5 for Poisson and linear, respectively, and for model for CM was 3.7 in both logit and linear models. The MSEP for all cows was similar. However, within healthy animals, MSEP was 0.085 (Poisson), 0.090 (linear for NCM), 0.053 (logit), and 0.056 (linear for CM). For mastitic animals the MSEP values were 1.206 (Poisson), 1.185 (linear for NCM response), 1.333 (logit), and 1.319 (linear for CM response). The models for count variables had a better performance when predicting diseased animals and also had a similar performance between them. Logit and linear models for CM had better predictive ability for healthy
Constructions and classifications of projective Poisson varieties
Pym, Brent
2018-03-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Constructions and classifications of projective Poisson varieties.
Pym, Brent
2018-01-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
International Nuclear Information System (INIS)
Ni Xiaohui; Jiang Zhiqiang; Zhou Weixing
2009-01-01
The dynamics of a complex system is usually recorded in the form of time series, which can be studied through its visibility graph from a complex network perspective. We investigate the visibility graphs extracted from fractional Brownian motions and multifractal random walks, and find that the degree distributions exhibit power-law behaviors, in which the power-law exponent α is a linear function of the Hurst index H of the time series. We also find that the degree distribution of the visibility graph is mainly determined by the temporal correlation of the original time series with minor influence from the possible multifractal nature. As an example, we study the visibility graphs constructed from three Chinese stock market indexes and unveil that the degree distributions have power-law tails, where the tail exponents of the visibility graphs and the Hurst indexes of the indexes are close to the α∼H linear relationship.
Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.
2017-09-01
In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.
Mitchell, Erica L; Lee, Dae Y; Sevdalis, Nick; Partsafas, Aaron W; Landry, Gregory J; Liem, Timothy K; Moneta, Gregory L
2011-01-01
practice influences new skill acquisition. The aim of this study was to prospectively investigate the impact of practice distribution (weekly vs monthly) on complex motor skill (end-side vascular anastomosis) acquisition and 4-month retention. twenty-four surgical interns were randomly assigned to weekly training for 4 weeks or monthly training for 4 months, with equal total training times. Performance was assessed before training, immediately after training, after the completion of distributed training, and 4 months later. there was no statistical difference in surgical skill acquisition and retention between the weekly and monthly scheduled groups, as measured by procedural checklist scores, global rating scores of operative performance, final product analysis, and overall performance or assessment of operative "competence." distributed practice results in improvement and retention of a newly acquired surgical skill independent of weekly or monthly practice schedules. Flexibility in a surgical skills laboratory curriculum is possible without adversely affecting training. 2011 Elsevier Inc. All rights reserved.
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Nagaev, Alexander; Zaigraev, Alexander
2005-01-01
A class of absolutely continuous distributions in Rd is considered. Each distribution belongs to the domain of normal attraction of an α-stable law. The limit law is characterized by a spectral measure which is absolutely continuous with respect to the spherical Lebesgue measure. The large-deviation problem for sums of independent and identically distributed random vectors when the underlying distribution belongs to that class is studied. At the focus of attention are the deviations in the di...
Effect of particle size distribution on permeability in the randomly packed porous media
Markicevic, Bojan
2017-11-01
An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.
ERROR DISTRIBUTION EVALUATION OF THE THIRD VANISHING POINT BASED ON RANDOM STATISTICAL SIMULATION
Directory of Open Access Journals (Sweden)
C. Li
2012-07-01
Full Text Available POS, integrated by GPS / INS (Inertial Navigation Systems, has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems. However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY. How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.
Error Distribution Evaluation of the Third Vanishing Point Based on Random Statistical Simulation
Li, C.
2012-07-01
POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.
Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.
2012-12-01
The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of
Poisson-Hopf limit of quantum algebras
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2009-01-01
The Poisson-Hopf analogue of an arbitrary quantum algebra U z (g) is constructed by introducing a one-parameter family of quantizations U z,ℎ (g) depending explicitly on ℎ and by taking the appropriate ℎ → 0 limit. The q-Poisson analogues of the su(2) algebra are discussed and the novel su q P (3) case is introduced. The q-Serre relations are also extended to the Poisson limit. This approach opens the perspective for possible applications of higher rank q-deformed Hopf algebras in semiclassical contexts
International Nuclear Information System (INIS)
Zhang Yu; Wang Guangyi; Lu Xinmiao; Hu Yongcai; Xu Jiangtao
2016-01-01
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. (paper)
Application of zero-inflated poisson mixed models in prognostic factors of hepatitis C.
Akbarzadeh Baghban, Alireza; Pourhoseingholi, Asma; Zayeri, Farid; Jafari, Ali Akbar; Alavian, Seyed Moayed
2013-01-01
In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic factors of hepatitis C. The data was collected from a longitudinal study during 2005-2010. First, mixed Poisson regression (PR) model was fitted to the data. Then, a mixed zero-inflated Poisson model was fitted with compound Poisson random effects. For evaluating the performance of the proposed mixed model, standard errors of estimators were compared. The results obtained from mixed PR showed that genotype 3 and treatment protocol were statistically significant. Results of zero-inflated Poisson mixed model showed that age, sex, genotypes 2 and 3, the treatment protocol, and having risk factors had significant effects on viral load of HCV patients. Of these two models, the estimators of zero-inflated Poisson mixed model had the minimum standard errors. The results showed that a mixed zero-inflated Poisson model was the almost best fit. The proposed model can capture serial dependence, additional overdispersion, and excess zeros in the longitudinal count data.
The Jackson Queueing Network Model Built Using Poisson Measures. Application To A Bank Model
Directory of Open Access Journals (Sweden)
Ciuiu Daniel
2014-07-01
Full Text Available In this paper we will build a bank model using Poisson measures and Jackson queueing networks. We take into account the relationship between the Poisson and the exponential distributions, and we consider for each credit/deposit type a node where shocks are modeled as the compound Poisson processes. The transmissions of the shocks are modeled as moving between nodes in Jackson queueing networks, the external shocks are modeled as external arrivals, and the absorption of shocks as departures from the network.
Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation
International Nuclear Information System (INIS)
Bardsley, Johnathan M; Goldes, John
2009-01-01
In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness
Poisson-Boltzmann-Nernst-Planck model
International Nuclear Information System (INIS)
Zheng Qiong; Wei Guowei
2011-01-01
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
Poisson-Boltzmann-Nernst-Planck model.
Zheng, Qiong; Wei, Guo-Wei
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
Extended q -Gaussian and q -exponential distributions from gamma random variables
Budini, Adrián A.
2015-05-01
The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.
Hacking on decoy-state quantum key distribution system with partial phase randomization
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-01
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
3D vector distribution of the electro-magnetic fields on a random gold film
Canneson, Damien; Berini, Bruno; Buil, Stéphanie; Hermier, Jean-Pierre; Quélin, Xavier
2018-05-01
The 3D vector distribution of the electro-magnetic fields at the very close vicinity of the surface of a random gold film is studied. Such films are well known for their properties of light confinement and large fluctuations of local density of optical states. Using Finite-Difference Time-Domain simulations, we show that it is possible to determine the local orientation of the electro-magnetic fields. This allows us to obtain a complete characterization of the fields. Large fluctuations of their amplitude are observed as previously shown. Here, we demonstrate large variations of their direction depending both on the position on the random gold film, and on the distance to it. Such characterization could be useful for a better understanding of applications like the coupling of point-like dipoles to such films.
Hacking on decoy-state quantum key distribution system with partial phase randomization.
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-23
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
ACORN—A new method for generating sequences of uniformly distributed Pseudo-random Numbers
Wikramaratna, R. S.
1989-07-01
A new family of pseudo-random number generators, the ACORN ( additive congruential random number) generators, is proposed. The resulting numbers are distributed uniformly in the interval [0, 1). The ACORN generators are defined recursively, and the ( k + 1)th order generator is easily derived from the kth order generator. Some theorems concerning the period length are presented and compared with existing results for linear congruential generators. A range of statistical tests are applied to the ACORN generators, and their performance is compared with that of the linear congruential generators and the Chebyshev generators. The tests show the ACORN generators to be statistically superior to the Chebyshev generators, while being statistically similar to the linear congruential generators. However, the ACORN generators execute faster than linear congruential generators for the same statistical faithfulness. The main advantages of the ACORN generator are speed of execution, long period length, and simplicity of coding.
Camposeo, Andrea; Del Carro, Pompilio; Persano, Luana; Cyprych, Konrad; Szukalski, Adam; Sznitko, Lech; Mysliwiec, Jaroslaw; Pisignano, Dario
2014-10-28
Room-temperature nanoimprinted, DNA-based distributed feedback (DFB) laser operation at 605 nm is reported. The laser is made of a pure DNA host matrix doped with gain dyes. At high excitation densities, the emission of the untextured dye-doped DNA films is characterized by a broad emission peak with an overall line width of 12 nm and superimposed narrow peaks, characteristic of random lasing. Moreover, direct patterning of the DNA films is demonstrated with a resolution down to 100 nm, enabling the realization of both surface-emitting and edge-emitting DFB lasers with a typical line width of <0.3 nm. The resulting emission is polarized, with a ratio between the TE- and TM-polarized intensities exceeding 30. In addition, the nanopatterned devices dissolve in water within less than 2 min. These results demonstrate the possibility of realizing various physically transient nanophotonics and laser architectures, including random lasing and nanoimprinted devices, based on natural biopolymers.
Dorin, Bryce; Parkinson, Patrick; Scully, Patricia
2018-04-01
The development of cost-effective electrical packaging for randomly distributed micro/nano-scale devices is a widely recognized challenge for fabrication technologies. Three-dimensional direct laser writing (DLW) has been proposed as a solution to this challenge, and has enabled the creation of rapid and low resistance graphitic wires within commercial polyimide substrates. In this work, we utilize the DLW technique to electrically contact three fully encapsulated and randomly positioned light-emitting diodes (LEDs) in a one-step process. The resolution of the contacts is in the order of 20 μ m, with an average circuit resistance of 29 ± 18 kΩ per LED contacted. The speed and simplicity of this technique is promising to meet the needs of future microelectronics and device packaging.
Spectral statistics in semiclassical random-matrix ensembles
International Nuclear Information System (INIS)
Feingold, M.; Leitner, D.M.; Wilkinson, M.
1991-01-01
A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms
Poisson versus threshold models for genetic analysis of clinical mastitis in US Holsteins.
Vazquez, A I; Weigel, K A; Gianola, D; Bates, D M; Perez-Cabal, M A; Rosa, G J M; Chang, Y M
2009-10-01
Typically, clinical mastitis is coded as the presence or absence of disease in a given lactation, and records are analyzed with either linear models or binary threshold models. Because the presence of mastitis may include cows with multiple episodes, there is a loss of information when counts are treated as binary responses. Poisson models are appropriated for random variables measured as the number of events, and although these models are used extensively in studying the epidemiology of mastitis, they have rarely been used for studying the genetic aspects of mastitis. Ordinal threshold models are pertinent for ordered categorical responses; although one can hypothesize that the number of clinical mastitis episodes per animal reflects a continuous underlying increase in mastitis susceptibility, these models have rarely been used in genetic analysis of mastitis. The objective of this study was to compare probit, Poisson, and ordinal threshold models for the genetic evaluation of US Holstein sires for clinical mastitis. Mastitis was measured as a binary trait or as the number of mastitis cases. Data from 44,908 first-parity cows recorded in on-farm herd management software were gathered, edited, and processed for the present study. The cows were daughters of 1,861 sires, distributed over 94 herds. Predictive ability was assessed via a 5-fold cross-validation using 2 loss functions: mean squared error of prediction (MSEP) as the end point and a cost difference function. The heritability estimates were 0.061 for mastitis measured as a binary trait in the probit model and 0.085 and 0.132 for the number of mastitis cases in the ordinal threshold and Poisson models, respectively; because of scale differences, only the probit and ordinal threshold models are directly comparable. Among healthy animals, MSEP was smallest for the probit model, and the cost function was smallest for the ordinal threshold model. Among diseased animals, MSEP and the cost function were smallest
Improved mesh generator for the POISSON Group Codes
International Nuclear Information System (INIS)
Gupta, R.C.
1987-01-01
This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries
The Poisson equation on Klein surfaces
Directory of Open Access Journals (Sweden)
Monica Rosiu
2016-04-01
Full Text Available We obtain a formula for the solution of the Poisson equation with Dirichlet boundary condition on a region of a Klein surface. This formula reveals the symmetric character of the solution.
Topology determines force distributions in one-dimensional random spring networks
Heidemann, Knut M.; Sageman-Furnas, Andrew O.; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F.; Wardetzky, Max
2018-02-01
Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology. Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N ,z ) . Despite the universal properties of such (N ,z ) ensembles, our analysis further reveals that a classical mean-field approach fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of force distributions in elastic spring networks.
Pure random search for ambient sensor distribution optimisation in a smart home environment.
Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming
2011-01-01
Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.
Poisson-Like Spiking in Circuits with Probabilistic Synapses
Moreno-Bote, Rubén
2014-01-01
Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705
Noncommutative gauge theory for Poisson manifolds
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2000-09-25
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.
Noncommutative gauge theory for Poisson manifolds
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2000-01-01
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem
A new non-commutative representation of the Wiener and Poisson processes
International Nuclear Information System (INIS)
Privault, N.
1996-01-01
Using two different constructions of the chaotic and variational calculus on Poisson space, we show that the Wiener and Poisson processes have a non-commutative representation which is different from the one obtained by transfer of the Fock space creation and annihilation operators. We obtain in this way an extension of the non-commutative It calculus. The associated commutation relations show a link between the geometric and exponential distributions. (author). 11 refs
Magneto-transport properties of a random distribution of few-layer graphene patches
International Nuclear Information System (INIS)
Iacovella, Fabrice; Mitioglu, Anatolie; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Plochocka, Paulina; Escoffier, Walter; Trinsoutrot, Pierre; Vergnes, Hugues; Caussat, Brigitte; Conédéra, Véronique
2014-01-01
In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime
The compaction of a random distribution of metal cylinders by the discrete element method
DEFF Research Database (Denmark)
Redanz, Pia; Fleck, N. A.
2001-01-01
-linear springs. The initial packing of the particles is generated by the ballistic deposition method. Salient micromechanical features of closed die and isostatic powder compaction are elucidated for both frictionless and sticking contacts. It is found that substantial rearrangement of frictionless particles......The cold compaction of a 2D random distribution of metal circular cylinders has been investigated numerically by the discrete element method. Each cylindrical particle is located by a node at its centre and the plastic indentation of the contacts between neighbouring particles is represented by non...
Theoretical analysis of radiographic images by nonstationary Poisson processes
International Nuclear Information System (INIS)
Tanaka, Kazuo; Uchida, Suguru; Yamada, Isao.
1980-01-01
This paper deals with the noise analysis of radiographic images obtained in the usual fluorescent screen-film system. The theory of nonstationary Poisson processes is applied to the analysis of the radiographic images containing the object information. The ensemble averages, the autocorrelation functions, and the Wiener spectrum densities of the light-energy distribution at the fluorescent screen and of the film optical-density distribution are obtained. The detection characteristics of the system are evaluated theoretically. Numerical examples one-dimensional image are shown and the results are compared with those obtained under the assumption that the object image is related to the background noise by the additive process. (author)
Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere
International Nuclear Information System (INIS)
Sheu, A.J.L.
1991-01-01
We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.)
Directory of Open Access Journals (Sweden)
Junlong Zhu
2017-01-01
Full Text Available We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.
Krivitsky, Pavel N; Handcock, Mark S; Raftery, Adrian E; Hoff, Peter D
2009-07-01
Social network data often involve transitivity, homophily on observed attributes, clustering, and heterogeneity of actor degrees. We propose a latent cluster random effects model to represent all of these features, and we describe a Bayesian estimation method for it. The model is applicable to both binary and non-binary network data. We illustrate the model using two real datasets. We also apply it to two simulated network datasets with the same, highly skewed, degree distribution, but very different network behavior: one unstructured and the other with transitivity and clustering. Models based on degree distributions, such as scale-free, preferential attachment and power-law models, cannot distinguish between these very different situations, but our model does.
Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features
Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios
2018-04-01
We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.
Heimann, G; Neuhaus, G
1998-03-01
In the random censorship model, the log-rank test is often used for comparing a control group with different dose groups. If the number of tumors is small, so-called exact methods are often applied for computing critical values from a permutational distribution. Two of these exact methods are discussed and shown to be incorrect. The correct permutational distribution is derived and studied with respect to its behavior under unequal censoring in the light of recent results proving that the permutational version and the unconditional version of the log-rank test are asymptotically equivalent even under unequal censoring. The log-rank test is studied by simulations of a realistic scenario from a bioassay with small numbers of tumors.
Sadeh, Sadra; Rotter, Stefan
2014-01-01
Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity.
Analysis and applications of a frequency selective surface via a random distribution method
International Nuclear Information System (INIS)
Xie Shao-Yi; Huang Jing-Jian; Yuan Nai-Chang; Liu Li-Guo
2014-01-01
A novel frequency selective surface (FSS) for reducing radar cross section (RCS) is proposed in this paper. This FSS is based on the random distribution method, so it can be called random surface. In this paper, the stacked patches serving as periodic elements are employed for RCS reduction. Previous work has demonstrated the efficiency by utilizing the microstrip patches, especially for the reflectarray. First, the relevant theory of the method is described. Then a sample of a three-layer variable-sized stacked patch random surface with a dimension of 260 mm×260 mm is simulated, fabricated, and measured in order to demonstrate the validity of the proposed design. For the normal incidence, the 8-dB RCS reduction can be achieved both by the simulation and the measurement in 8 GHz–13 GHz. The oblique incidence of 30° is also investigated, in which the 7-dB RCS reduction can be obtained in a frequency range of 8 GHz–14 GHz. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Distributed clone detection in static wireless sensor networks: random walk with network division.
Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
Distributed clone detection in static wireless sensor networks: random walk with network division.
Directory of Open Access Journals (Sweden)
Wazir Zada Khan
Full Text Available Wireless Sensor Networks (WSNs are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
Deviations from the Gutenberg–Richter law on account of a random distribution of block sizes
Energy Technology Data Exchange (ETDEWEB)
Sibiryakov, B. P., E-mail: sibiryakovbp@ipgg.sbras.ru [Trofimuk Institute of Oil and Gas Geology and Geophysics SB RAS, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Novosibirsk, 630090 (Russian Federation)
2015-10-27
This paper studies properties of a continuum with structure. The characteristic size of the structure governs the fact that difference relations are nonautomatically transformed into differential ones. It is impossible to consider an infinitesimal volume of a body, to which the major conservation laws could be applied, because the minimum representative volume of the body must contain at least a few elementary microstructures. The corresponding equations of motion are equations of infinite order, solutions of which include, along with usual sound waves, unusual waves with abnormally low velocities without a lower limit. It is shown that in such media weak perturbations can increase or decrease outside the limits. The number of complex roots of the corresponding dispersion equation, which can be interpreted as the number of unstable solutions, depends on the specific surface of cracks and is an almost linear dependence on a logarithmic scale, as in the seismological Gutenberg–Richter law. If the distance between one pore (crack) to another one is a random value with some distribution, we must write another dispersion equation and examine different scenarios depending on the statistical characteristics of the random distribution. In this case, there are sufficient deviations from the Gutenberg–Richter law and this theoretical result corresponds to some field and laboratory observations.
Czernik, Pawel
2013-10-01
The hardware random number generator based on the 74121 monostable multivibrators for applications in cryptographically secure distributed measurement and control systems with asymmetric resources was presented. This device was implemented on the basis of the physical electronic vibration generator in which the circuit is composed of two "loop" 74121 monostable multivibrators, D flip-flop and external clock signal source. The clock signal, witch control D flip-flop was generated by a computer on one of the parallel port pins. There was presented programmed the author's acquisition process of random data from the measuring system to a computer. The presented system was designed, builded and thoroughly tested in the term of cryptographic security in our laboratory, what there is the most important part of this publication. Real cryptographic security was tested based on the author's software and the software environment called RDieHarder. The obtained results was here presented and analyzed in detail with particular reference to the specificity of distributed measurement and control systems with asymmetric resources.
On the Distribution of Indefinite Quadratic Forms in Gaussian Random Variables
Al-Naffouri, Tareq Y.
2015-10-30
© 2015 IEEE. In this work, we propose a unified approach to evaluating the CDF and PDF of indefinite quadratic forms in Gaussian random variables. Such a quantity appears in many applications in communications, signal processing, information theory, and adaptive filtering. For example, this quantity appears in the mean-square-error (MSE) analysis of the normalized least-meansquare (NLMS) adaptive algorithm, and SINR associated with each beam in beam forming applications. The trick of the proposed approach is to replace inequalities that appear in the CDF calculation with unit step functions and to use complex integral representation of the the unit step function. Complex integration allows us then to evaluate the CDF in closed form for the zero mean case and as a single dimensional integral for the non-zero mean case. Utilizing the saddle point technique allows us to closely approximate such integrals in non zero mean case. We demonstrate how our approach can be extended to other scenarios such as the joint distribution of quadratic forms and ratios of such forms, and to characterize quadratic forms in isotropic distributed random variables.We also evaluate the outage probability in multiuser beamforming using our approach to provide an application of indefinite forms in communications.
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.
2017-07-01
This paper studies the distributed fusion estimation problem from multisensor measured outputs perturbed by correlated noises and uncertainties modelled by random parameter matrices. Each sensor transmits its outputs to a local processor over a packet-erasure channel and, consequently, random losses may occur during transmission. Different white sequences of Bernoulli variables are introduced to model the transmission losses. For the estimation, each lost output is replaced by its estimator based on the information received previously, and only the covariances of the processes involved are used, without requiring the signal evolution model. First, a recursive algorithm for the local least-squares filters is derived by using an innovation approach. Then, the cross-correlation matrices between any two local filters is obtained. Finally, the distributed fusion filter weighted by matrices is obtained from the local filters by applying the least-squares criterion. The performance of the estimators and the influence of both sensor uncertainties and transmission losses on the estimation accuracy are analysed in a numerical example.
Scattering of elastic waves on fractures randomly distributed in a three-dimensional medium
Strizhkov, S. A.; Ponyatovskaya, V. I.
1985-02-01
The purpose of this work is to determine the variation in basic characteristics of the wave field formed in a jointed medium, such as the intensity of fluctuations of amplitude, correlation radius, scattering coefficient and frequency composition of waves, as functions of jointing parameters. Fractures are simulated by flat plates randomly distributed and chaotically oriented in a three-dimensional medium. Experiments were performed using an alabaster model, a rectangular block measuring 50 x 50 x 120 mm. The plates were introduced into liquid alabaster which was then agitated. Models made in this way contain randomly distributed and chaotically oriented fractures. The influence of these fractures appears as fluctuations in the wave field formed in the medium. The data obtained in experimental studies showed that the dimensions of heterogeneities determined by waves in the jointed medium and the dimensions of the fractures themselves coincide only if the distance between fractures is rather great. If the distance between fractures is less than the wavelength, the dimensions of the heterogeneities located by the wave depend on wavelength.
Graham, John H; Robb, Daniel T; Poe, Amy R
2012-01-01
Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails. If our assumptions are true, the DPLN distribution should provide a better fit to random phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and Pareto. The best model was judged by the Akaike Information Criterion (AIC). Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions. A DPLN distribution is consistent with the hypothesis that developmental stability is mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction networks. Alternatively, multiplicative cell growth, and the mixing of
A physiologically based nonhomogeneous Poisson counter model of visual identification.
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren
2018-04-30
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Blind beam-hardening correction from Poisson measurements
Gu, Renliang; Dogandžić, Aleksandar
2016-02-01
We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.
[Application of detecting and taking overdispersion into account in Poisson regression model].
Bouche, G; Lepage, B; Migeot, V; Ingrand, P
2009-08-01
Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.
Cappell, M S; Spray, D C; Bennett, M V
1988-06-28
Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.
Optimized thick-wall cylinders by virtue of Poisson's ratio selection
International Nuclear Information System (INIS)
Whitty, J.P.M.; Henderson, B.; Francis, J.; Lloyd, N.
2011-01-01
The principal stress distributions in thick-wall cylinders due to variation in the Poisson's ratio are predicted using analytical and finite element methods. Analyses of appropriate brittle and ductile failure criteria show that under the isochoric pressure conditions investigated that auextic (i.e. those possessing a negative Poisson's ratio) materials act as stress concentrators; hence they are predicted to fail before their conventional (i.e. possessing a positive Poisson's ratio) material counterparts. The key finding of the work presented shows that for constrained thick-wall cylinders the maximum tensile principal stress can vanish at a particular Poisson's ratio and aspect ratio. This phenomenon is exploited in order to present an optimized design criterion for thick-wall cylinders. Moreover, via the use of a cogent finite element model, this criterion is also shown to be applicable for the design of micro-porous materials.
Directory of Open Access Journals (Sweden)
Zorareh Hadj Mohammad
Full Text Available The paper addresses the problem of the influence of randomly distributed corrosion wastage on the collapse strength and behaviour of unstiffened/stiffened steel plates in longitudinal compression. A series of elastic-plastic large deflection finite element analyses is performed on both-sides randomly corroded steel plates and stiffened plates. The effects of general corrosion are introduced into the finite element models using a novel random thickness surface model. Buckling strength, post-buckling behaviour, ultimate strength and post-ultimate behaviour of the models are investigated as results of both-sides random corrosion.
AbdelNabi, Amr A.
2018-02-12
This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.
AbdelNabi, Amr A.; Al-Qahtani, Fawaz S.; Radaydeh, Redha Mahmoud Mesleh; Shaqfeh, Mohammad; Manna, Raed F.
2018-01-01
This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.
Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises
International Nuclear Information System (INIS)
Wu, Y.; Zhu, W.Q.
2008-01-01
The stationary response of multi-degree-of-freedom (MDOF) vibro-impact (VI) systems to random pulse trains is studied. The system is formulated as a stochastically excited and dissipated Hamiltonian system. The constraints are modeled as non-linear springs according to the Hertz contact law. The random pulse trains are modeled as Poisson white noises. The approximate stationary probability density function (PDF) for the response of MDOF dissipated Hamiltonian systems to Poisson white noises is obtained by solving the fourth-order generalized Fokker-Planck-Kolmogorov (FPK) equation using perturbation approach. As examples, two-degree-of-freedom (2DOF) VI systems under external and parametric Poisson white noise excitations, respectively, are investigated. The validity of the proposed approach is confirmed by using the results obtained from Monte Carlo simulation. It is shown that the non-Gaussian behaviour depends on the product of the mean arrival rate of the impulses and the relaxation time of the oscillator
Fractional poisson--a simple dose-response model for human norovirus.
Messner, Michael J; Berger, Philip; Nappier, Sharon P
2014-10-01
This study utilizes old and new Norovirus (NoV) human challenge data to model the dose-response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta-Poisson dose-response model that includes parameters for virus aggregation and for a beta-distribution that describes variable susceptibility among hosts. The quality of the beta-Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two-parameter beta-distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta-Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta-Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta-Poisson model. At low, environmentally relevant exposure levels (Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low-dose data would be of great value to further clarify the NoV dose-response relationship and to support improved risk assessment for environmentally relevant exposures. © 2014 Society for Risk Analysis Published 2014. This article is a U.S. Government work and is in the public domain for the U.S.A.
Selective Contrast Adjustment by Poisson Equation
Directory of Open Access Journals (Sweden)
Ana-Belen Petro
2013-09-01
Full Text Available Poisson Image Editing is a new technique permitting to modify the gradient vector field of an image, and then to recover an image with a gradient approaching this modified gradient field. This amounts to solve a Poisson equation, an operation which can be efficiently performed by Fast Fourier Transform (FFT. This paper describes an algorithm applying this technique, with two different variants. The first variant enhances the contrast by increasing the gradient in the dark regions of the image. This method is well adapted to images with back light or strong shadows, and reveals details in the shadows. The second variant of the same Poisson technique enhances all small gradients in the image, thus also sometimes revealing details and texture.
High order Poisson Solver for unbounded flows
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2015-01-01
This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...
Poisson-Jacobi reduction of homogeneous tensors
International Nuclear Information System (INIS)
Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P
2004-01-01
The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N
The BRST complex of homological Poisson reduction
Müller-Lennert, Martin
2017-02-01
BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.
International Nuclear Information System (INIS)
Olson, Gordon L.
2008-01-01
In binary stochastic media in two- and three-dimensions consisting of randomly placed impenetrable disks or spheres, the chord lengths in the background material between disks and spheres closely follow exponential distributions if the disks and spheres occupy less than 10% of the medium. This work demonstrates that for regular spatial structures of disks and spheres, the tails of the chord length distributions (CLDs) follow power laws rather than exponentials. In dilute media, when the disks and spheres are widely spaced, the slope of the power law seems to be independent of the details of the structure. When approaching a close-packed arrangement, the exact placement of the spheres can make a significant difference. When regular structures are perturbed by small random displacements, the CLDs become power laws with steeper slopes. An example CLD from a quasi-random distribution of spheres in clusters shows a modified exponential distribution
Energy Technology Data Exchange (ETDEWEB)
Olson, Gordon L. [Computer and Computational Sciences Division (CCS-2), Los Alamos National Laboratory, 5 Foxglove Circle, Madison, WI 53717 (United States)], E-mail: olson99@tds.net
2008-11-15
In binary stochastic media in two- and three-dimensions consisting of randomly placed impenetrable disks or spheres, the chord lengths in the background material between disks and spheres closely follow exponential distributions if the disks and spheres occupy less than 10% of the medium. This work demonstrates that for regular spatial structures of disks and spheres, the tails of the chord length distributions (CLDs) follow power laws rather than exponentials. In dilute media, when the disks and spheres are widely spaced, the slope of the power law seems to be independent of the details of the structure. When approaching a close-packed arrangement, the exact placement of the spheres can make a significant difference. When regular structures are perturbed by small random displacements, the CLDs become power laws with steeper slopes. An example CLD from a quasi-random distribution of spheres in clusters shows a modified exponential distribution.
Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band
International Nuclear Information System (INIS)
Ahmad, H; Zulkifli, M Z; Jemangin, M H; Harun, S W
2013-01-01
A novel S-band multimode Brillouin–Raman random fiber laser based on distributed feedback of Rayleigh scattered light is demonstrated. It relies on a short length, 7.7 km long angle-cleaved dispersion compensating fiber in a mirror-less open cavity. Two 1425 nm laser diodes at a modest operating power amplify a Brillouin pump (BP) signal, which in turn generates a multi-wavelength laser output through the stimulated Brillouin scattering. Eleven Brillouin Stokes lines, spanning from 1515.15 to 1516.00 nm, were obtained at a Raman pump power of 361.66 mW. Out of these, five odd Brillouin Stokes lines were generated with a flat peak power of about 0 dBm. (letter)
DEFF Research Database (Denmark)
Fitzek, Frank; Toth, Tamas; Szabados, Áron
2014-01-01
This paper advocates the use of random linear network coding for storage in distributed clouds in order to reduce storage and traffic costs in dynamic settings, i.e. when adding and removing numerous storage devices/clouds on-the-fly and when the number of reachable clouds is limited. We introduce...... various network coding approaches that trade-off reliability, storage and traffic costs, and system complexity relying on probabilistic recoding for cloud regeneration. We compare these approaches with other approaches based on data replication and Reed-Solomon codes. A simulator has been developed...... to carry out a thorough performance evaluation of the various approaches when relying on different system settings, e.g., finite fields, and network/storage conditions, e.g., storage space used per cloud, limited network use, and limited recoding capabilities. In contrast to standard coding approaches, our...
Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage
DEFF Research Database (Denmark)
Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani
2015-01-01
Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...
Random distribution of background charge density for numerical simulation of discharge inception
International Nuclear Information System (INIS)
Grange, F.; Loiseau, J.F.; Spyrou, N.
1998-01-01
The models of electric streamers based on a uniform background density of electrons may appear not to be physical, as the number of electrons in the small active region located in the vicinity of the electrode tip under regular conditions can be less than one. To avoid this, the electron background is modelled by a random density distribution such that, after a certain time lag, at least one electron is present in the grid close to the point electrode. The modelling performed shows that the streamer inception is not very sensitive to the initial location of the charged particles; the ionizing front, however, may be delayed by several tens of nanoseconds, depending on the way the electron has to drift before reaching the anode. (J.U.)
Energy Technology Data Exchange (ETDEWEB)
Schubert, I; Rieger, R [Akademie der Wissenschaften der DDR, Gatersleben. Zentralinst. fuer Genetik und Kulturpflanzenforschung
1976-04-01
A reconstructed karyotype of Vicia faba, with all chromosomes individually distinguishable, was treated with X-rays, fast neutrons, (/sup 3/H) uridine (/sup 3/HU). The distribution within metaphase chromosomes of induced chromatid aberrations was non-random for all agents used. Aberration clustering, in part agent specific, occurred in chromosome segments containing heterochromatin as defined by the presence of G bands. The pattern of aberration clustering found after treatment with /sup 3/HU did not allow the recognition of chromosome regions active in transcription during treatment. Furthermore, it was impossible to obtain unambiguous indications of the presence of AT- and GC-base clusters from the patterns of /sup 3/HT- and /sup 3/HC-induced chromatid aberrations, respectively. Possible reasons underlying these observations are discussed.
Liu, Hong; Zhu, Jingping; Wang, Kai
2015-08-24
The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.
Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers
Maity, J.; Chattopadhyay, B. C.; Mukherjee, S. P.
2017-11-01
In subgrade construction for flexible road pavement, properties of clayey soils available locally can be improved by providing randomly distributed fibers in the soil. The fibers added in subgrade constructions are expected to provide better compact interlocking system between the fiber and the soil grain, greater resistance to deformation and quicker dissipation of pore water pressure, thus helping consolidation and strengthening. Many natural fibers like jute, coir, sabai grass etc. which are economical and eco-friendly, are grown in abundance in India. If suitable they can be used as additive material in the subgrade soil to result in increase in strength and decrease in deformability. Such application will also reduce the cost of construction of roads, by providing lesser thickness of pavement layer. In this paper, the efficacy of using natural jute, coir or sabai grass fibers with locally available clayey soil has been studied. A series of Standard Proctor test, Soaked and Unsoaked California Bearing Ratio (CBR) test, and Unconfined Compressive Strength test were done on locally available clayey soil mixed with different types of natural fiber for various length and proportion to study the improvement of strength properties of fiber-soil composites placed at optimum moisture content. From the test results, it was observed that there was a substantial increase in CBR value for the clayey soil when mixed with increasing percentage of all three types of randomly distributed natural fibers up to 2% of the dry weight of soil. The CBR attains maximum value when the length for all types of fibers mixed with the clay taken in this study, attains a value of 10 mm.
Directory of Open Access Journals (Sweden)
Eric S Walsh
Full Text Available Modeling the magnitude and distribution of sediment-bound pollutants in estuaries is often limited by incomplete knowledge of the site and inadequate sample density. To address these modeling limitations, a decision-support tool framework was conceived that predicts sediment contamination from the sub-estuary to broader estuary extent. For this study, a Random Forest (RF model was implemented to predict the distribution of a model contaminant, triclosan (5-chloro-2-(2,4-dichlorophenoxyphenol (TCS, in Narragansett Bay, Rhode Island, USA. TCS is an unregulated contaminant used in many personal care products. The RF explanatory variables were associated with TCS transport and fate (proxies and direct and indirect environmental entry. The continuous RF TCS concentration predictions were discretized into three levels of contamination (low, medium, and high for three different quantile thresholds. The RF model explained 63% of the variance with a minimum number of variables. Total organic carbon (TOC (transport and fate proxy was a strong predictor of TCS contamination causing a mean squared error increase of 59% when compared to permutations of randomized values of TOC. Additionally, combined sewer overflow discharge (environmental entry and sand (transport and fate proxy were strong predictors. The discretization models identified a TCS area of greatest concern in the northern reach of Narragansett Bay (Providence River sub-estuary, which was validated with independent test samples. This decision-support tool performed well at the sub-estuary extent and provided the means to identify areas of concern and prioritize bay-wide sampling.
Directory of Open Access Journals (Sweden)
Wojciech Szmyt
2017-01-01
Full Text Available In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i the gas diffusion coefficient inside such arrays, (ii the time between collisions of molecules with the nanocylinder walls (mean time of flight, (iii the surface impingement rate, and (iv the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.
The sink strengths of voids and the expected swelling for both random and ordered void distributions
International Nuclear Information System (INIS)
Quigley, T.M.; Murphy, S.M.; Bullough, R.; Wood, M.H.
1981-10-01
The sink strength of a void has been obtained when the void is a member of a random or ordered distribution of voids. The former sink strength derivation has employed the embedding model and the latter the cellular model. In each case the spatially varying size-effect interaction between the intrinsic point defects and the voids has been included together with the presence of other sink types in addition to the voids. The results are compared with previously published sink strengths that have made use of an approximate representation for the size-effect interactions, and indicate the importance of using the exact form of the interaction. In particular the bias for interstitials compared with vacancies of small voids is now much reduced and contamination of the surfaces of such voids no longer appears essential to facilitate the nucleation and growth of the voids. These new sink strengths have been used, in conjunction with recently published dislocation sink strengths, to calculate the expected swelling of materials containing network dislocations and voids. Results are presented for both the random and the void lattice situations. (author)
Ledford, Christy J W; Womack, Jasmyne J; Rider, Heather A; Seehusen, Angela B; Conner, Stephen J; Lauters, Rebecca A; Hodge, Joshua A
2018-06-01
As pregnant mothers increasingly engage in shared decision making regarding prenatal decisions, such as induction of labor, the patient's level of activation may influence pregnancy outcomes. One potential tool to increase patient activation in the clinical setting is mobile applications. However, research is limited in comparing mobile apps with other modalities of patient education and engagement tools. This study was designed to test the effectiveness of a mobile app as a replacement for a spiral notebook guide as a patient education and engagement tool in the prenatal clinical setting. This randomized controlled trial was conducted in the Women's Health Clinic and Family Health Clinic of three hospitals. Repeated-measures analysis of covariance was used to test intervention effects in the study sample of 205 patients. Mothers used a mobile app interface to more frequently record information about their pregnancy; however, across time, mothers using a mobile app reported a significant decrease in patient activation. The unexpected negative effects in the group of patients randomized to the mobile app prompt these authors to recommend that health systems pause before distributing their own version of mobile apps that may decrease patient activation. Mobile apps can be inherently empowering and engaging, but how a system encourages their use may ultimately determine their adoption and success.
DEFF Research Database (Denmark)
Sibani, Paolo
2007-01-01
in a correlated fashion and through irreversible bursts, `quakes', which punctuate reversible and equilibrium-like fluctuations of zero average. The temporal distribution of the quakes is a Poisson distribution with an average growing logarithmically on time, indicating that the quakes are triggered by record...
Partial transpose of random quantum states: Exact formulas and meanders
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Motohisa [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Sniady, Piotr [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa (Poland); Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw (Poland)
2013-04-15
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Partial transpose of random quantum states: Exact formulas and meanders
Fukuda, Motohisa; Śniady, Piotr
2013-04-01
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Quantifying spatial distribution of snow depth errors from LiDAR using Random Forests
Tinkham, W.; Smith, A. M.; Marshall, H.; Link, T. E.; Falkowski, M. J.; Winstral, A. H.
2013-12-01
There is increasing need to characterize the distribution of snow in complex terrain using remote sensing approaches, especially in isolated mountainous regions that are often water-limited, the principal source of terrestrial freshwater, and sensitive to climatic shifts and variations. We apply intensive topographic surveys, multi-temporal LiDAR, and Random Forest modeling to quantify snow volume and characterize associated errors across seven land cover types in a semi-arid mountainous catchment at a 1 and 4 m spatial resolution. The LiDAR-based estimates of both snow-off surface topology and snow depths were validated against ground-based measurements across the catchment. Comparison of LiDAR-derived snow depths to manual snow depth surveys revealed that LiDAR based estimates were more accurate in areas of low lying vegetation such as shrubs (RMSE = 0.14 m) as compared to areas consisting of tree cover (RMSE = 0.20-0.35 m). The highest errors were found along the edge of conifer forests (RMSE = 0.35 m), however a second conifer transect outside the catchment had much lower errors (RMSE = 0.21 m). This difference is attributed to the wind exposure of the first site that led to highly variable snow depths at short spatial distances. The Random Forest modeled errors deviated from the field measured errors with a RMSE of 0.09-0.34 m across the different cover types. Results show that snow drifts, which are important for maintaining spring and summer stream flows and establishing and sustaining water-limited plant species, contained 30 × 5-6% of the snow volume while only occupying 10% of the catchment area similar to findings by prior physically-based modeling approaches. This study demonstrates the potential utility of combining multi-temporal LiDAR with Random Forest modeling to quantify the distribution of snow depth with a reasonable degree of accuracy. Future work could explore the utility of Terrestrial LiDAR Scanners to produce validation of snow-on surface
Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin
2018-05-01
Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
Trophallaxis-inspired model for distributed transport between randomly interacting agents
Gräwer, Johannes; Ronellenfitsch, Henrik; Mazza, Marco G.; Katifori, Eleni
2017-08-01
Trophallaxis, the regurgitation and mouth to mouth transfer of liquid food between members of eusocial insect societies, is an important process that allows the fast and efficient dissemination of food in the colony. Trophallactic systems are typically treated as a network of agent interactions. This approach, though valuable, does not easily lend itself to analytic predictions. In this work we consider a simple trophallactic system of randomly interacting agents with finite carrying capacity, and calculate analytically and via a series of simulations the global food intake rate for the whole colony as well as observables describing how uniformly the food is distributed within the nest. Our model and predictions provide a useful benchmark to assess to what level the observed food uptake rates and efficiency in food distribution is due to stochastic effects or specific trophallactic strategies by the ant colony. Our work also serves as a stepping stone to describing the collective properties of more complex trophallactic systems, such as those including division of labor between foragers and workers.
The Dependent Poisson Race Model and Modeling Dependence in Conjoint Choice Experiments
Ruan, Shiling; MacEachern, Steven N.; Otter, Thomas; Dean, Angela M.
2008-01-01
Conjoint choice experiments are used widely in marketing to study consumer preferences amongst alternative products. We develop a class of choice models, belonging to the class of Poisson race models, that describe a "random utility" which lends itself to a process-based description of choice. The models incorporate a dependence structure which…
Poisson processes and a Bessel function integral
Steutel, F.W.
1985-01-01
The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily
Almost Poisson integration of rigid body systems
International Nuclear Information System (INIS)
Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang
1993-01-01
In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs
Measuring Poisson Ratios at Low Temperatures
Boozon, R. S.; Shepic, J. A.
1987-01-01
Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.
Affine Poisson Groups and WZW Model
Directory of Open Access Journals (Sweden)
Ctirad Klimcík
2008-01-01
Full Text Available We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
Easy Demonstration of the Poisson Spot
Gluck, Paul
2010-01-01
Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and…
Quantum fields and Poisson processes. Pt. 2
International Nuclear Information System (INIS)
Bertrand, J.; Gaveau, B.; Rideau, G.
1985-01-01
Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models; interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cutt-off ensures that the expectation values are well-defined. (orig.)
Evolutionary inference via the Poisson Indel Process.
Bouchard-Côté, Alexandre; Jordan, Michael I
2013-01-22
We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.
Poisson brackets for fluids and plasmas
International Nuclear Information System (INIS)
Morrison, P.J.
1982-01-01
Noncanonical yet Hamiltonian descriptions are presented of many of the non-dissipative field equations that govern fluids and plasmas. The dynamical variables are the usually encountered physical variables. These descriptions have the advantage that gauge conditions are absent, but at the expense of introducing peculiar Poisson brackets. Clebsch-like potential descriptions that reverse this situations are also introduced
Coherent transform, quantization, and Poisson geometry
Novikova, E; Itskov, V; Karasev, M V
1998-01-01
This volume contains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.
Efficient information transfer by Poisson neurons
Czech Academy of Sciences Publication Activity Database
Košťál, Lubomír; Shinomoto, S.
2016-01-01
Roč. 13, č. 3 (2016), s. 509-520 ISSN 1547-1063 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : information capacity * Poisson neuron * metabolic cost * decoding error Subject RIV: BD - Theory of Information Impact factor: 1.035, year: 2016
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
Directory of Open Access Journals (Sweden)
Rodrigues-Motta Mariana
2008-07-01
Full Text Available Abstract Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep.
Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.
Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai
2011-01-01
Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.
A test for judging the presence of additional scatter in a Poisson process
International Nuclear Information System (INIS)
Mueller, J.W.
1978-01-01
The effect of additional scatter on a Poisson process is studied. Possible causes for such fluctuations are insufficient stability of the detection efficiency or of the associated electronics. It is shown with a simple model that the presence of fluctuations results in a characteristic broadening of the counting distribution. Comparison of the observed distribution with the one expected for a Poisson process with the same mean value will show three different regions, each with predictable sign of the deviation; the presence of scatter can thus be decided upon by a sign test. Experimental results are in excellent agreement with this expectation
A Family of Poisson Processes for Use in Stochastic Models of Precipitation
Penland, C.
2013-12-01
Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.
Poisson-event-based analysis of cell proliferation.
Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul
2015-05-01
A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.
The probability distribution of extreme precipitation
Korolev, V. Yu.; Gorshenin, A. K.
2017-12-01
On the basis of the negative binomial distribution of the duration of wet periods calculated per day, an asymptotic model is proposed for distributing the maximum daily rainfall volume during the wet period, having the form of a mixture of Frechet distributions and coinciding with the distribution of the positive degree of a random variable having the Fisher-Snedecor distribution. The method of proving the corresponding result is based on limit theorems for extreme order statistics in samples of a random volume with a mixed Poisson distribution. The adequacy of the models proposed and methods of their statistical analysis is demonstrated by the example of estimating the extreme distribution parameters based on real data.
Yura, Harold T; Hanson, Steen G
2012-04-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.
International Nuclear Information System (INIS)
Yanchev, I.
2003-01-01
A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated
International Nuclear Information System (INIS)
Yanchev, I; Slavcheva, G.
1993-01-01
A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. 7 refs. (orig.)
International Nuclear Information System (INIS)
Slavcheva, G.; Yanchev, I.
1991-01-01
A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening due to the image charge with respect to the metal electrode in MIS-structure is taken into account, introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. (author). 7 refs, 1 fig
Yanchev, I
2003-01-01
A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.
Energy Technology Data Exchange (ETDEWEB)
Yanchev, I
2003-07-01
A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.
Effects of random pebble distribution on the multiplication factor in HTR pebble bed reactors
Energy Technology Data Exchange (ETDEWEB)
Auwerda, G.J., E-mail: g.j.auwerda@tudelft.n [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands); Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands)
2010-08-15
In pebble bed reactors the pebbles have a random distribution within the core. The usual approach in modeling the bed is homogenizing the entire bed. To quantify the errors arising in such a model, this article investigates the effect on k{sub eff} of three phenomena in random pebble distributions: non-uniform packing density, neutron streaming in between the pebbles, and variations in Dancoff factor. For a 100 cm high cylinder with reflective top and bottom boundary conditions 25 pebble beds were generated. Of each bed three core models were made: a homogeneous model, a zones model including density fluctuations, and an exact model with all pebbles modeled individually. The same was done for a model of the PROTEUS facility. k{sub eff} calculations were performed with three codes: Monte Carlo, diffusion, and finite element transport. By comparing k{sub eff} of the homogenized and zones model the effect of including density fluctuations in the pebble bed was found to increase k{sub eff} by 71 pcm for the infinite cylinder and 649 pcm for PROTEUS. The large value for PROTEUS is due to the low packing fraction near the top of the pebble bed, causing a significant lower packing fraction for the bulk of the pebble bed in the homogenized model. The effect of neutron streaming was calculated by comparing the zones model with the exact model, and was found to decrease k{sub eff} by 606 pcm for the infinite cylinder, and by 1240 pcm for PROTEUS. This was compared with the effect of using a streaming correction factor on the diffusion coefficient in the zones model, which resulted in {Delta}{sub streaming} values of 340 and 1085 pcm. From this we conclude neutron streaming is an important effect in pebble bed reactors, and is not accurately described by the correction factor on the diffusion coefficient. Changing the Dancoff factor in the outer part of the pebble bed to compensate for the lower probability of neutrons to enter other fuel pebbles caused no significant changes
Tavala, Amir; Dovzhik, Krishna; Schicker, Klaus; Koschak, Alexandra; Zeilinger, Anton
Probing the visual system of human and animals at very low photon rate regime has recently attracted the quantum optics community. In an experiment on the isolated photoreceptor cells of Xenopus, the cell output signal was measured while stimulating it by pulses with sub-poisson distributed photons. The results showed single photon detection efficiency of 29 +/-4.7% [1]. Another behavioral experiment on human suggests a less detection capability at perception level with the chance of 0.516 +/-0.01 (i.e. slightly better than random guess) [2]. Although the species are different, both biological models and experimental observations with classical light stimuli expect that a fraction of single photon responses is filtered somewhere within the retina network and/or during the neural processes in the brain. In this ongoing experiment, we look for a quantitative answer to this question by measuring the output signals of the last neural layer of WT mouse retina using microelectrode arrays. We use a heralded downconversion single-photon source. We stimulate the retina directly since the eye lens (responsible for 20-50% of optical loss and scattering [2]) is being removed. Here, we demonstrate our first results that confirms the response to the sub-poisson distributied pulses. This project was supported by Austrian Academy of Sciences, SFB FoQuS F 4007-N23 funded by FWF and ERC QIT4QAD 227844 funded by EU Commission.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
International Nuclear Information System (INIS)
Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.
2016-01-01
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
Energy Technology Data Exchange (ETDEWEB)
Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
Huang, N. E.; Tung, C.-C.
1977-01-01
The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.
Current-voltage characteristic of a Josephson junction with randomly distributed Abrikosov vortices
International Nuclear Information System (INIS)
Fistul, M.V.; Giuliani, G.F.
1997-01-01
We have developed a theory of the current-voltage characteristic of a Josephson junction in the presence of randomly distributed, pinned misaligned Abrikosov vortices oriented perpendicularly to the junction plane. Under these conditions the Josephson phase difference var-phi acquires an interesting stochastic dependence on the position in the plane of the junction. In this situation it is possible to define an average critical current which is determined by the spatial correlations of this function. Due to the inhomogeneity, we find that for finite voltage bias the electromagnetic waves propagating in the junction display a broad spectrum of wavelengths. This is at variance with the situation encountered in homogeneous junctions. The amplitude of these modes is found to decrease as the bias is increased. We predict that the presence of these excitations is directly related to a remarkable feature in the current-voltage characteristic. The dependence of the position and the magnitude of this feature on the vortex concentration has been determined. copyright 1997 The American Physical Society
Laplace-Laplace analysis of the fractional Poisson process
Gorenflo, Rudolf; Mainardi, Francesco
2013-01-01
We generate the fractional Poisson process by subordinating the standard Poisson process to the inverse stable subordinator. Our analysis is based on application of the Laplace transform with respect to both arguments of the evolving probability densities.
Collision prediction models using multivariate Poisson-lognormal regression.
El-Basyouny, Karim; Sayed, Tarek
2009-07-01
This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Poisson equation for weak gravitational lensing
International Nuclear Information System (INIS)
Kling, Thomas P.; Campbell, Bryan
2008-01-01
Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system
International Nuclear Information System (INIS)
Unge, Rikard von
2002-01-01
We extend the path-integral formalism for Poisson-Lie T-duality to include the case of Drinfeld doubles which can be decomposed into bi-algebras in more than one way. We give the correct shift of the dilaton, correcting a mistake in the literature. We then use the fact that the six dimensional Drinfeld doubles have been classified to write down all possible conformal Poisson-Lie T-duals of three dimensional space times and we explicitly work out two duals to the constant dilaton and zero anti-symmetric tensor Bianchi type V space time and show that they satisfy the string equations of motion. This space-time was previously thought to have no duals because of the tracefulness of the structure constants. (author)
Linear odd Poisson bracket on Grassmann variables
International Nuclear Information System (INIS)
Soroka, V.A.
1999-01-01
A linear odd Poisson bracket (antibracket) realized solely in terms of Grassmann variables is suggested. It is revealed that the bracket, which corresponds to a semi-simple Lie group, has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, the second and the third orders with respect to Grassmann derivatives, in contrast with the canonical odd Poisson bracket having the only Grassmann-odd nilpotent differential Δ-operator of the second order. It is shown that these Δ-like operators together with a Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Comparing two Poisson populations sequentially: an application
International Nuclear Information System (INIS)
Halteman, E.J.
1986-01-01
Rocky Flats Plant in Golden, Colorado monitors each of its employees for radiation exposure. Excess exposure is detected by comparing the means of two Poisson populations. A sequential probability ratio test (SPRT) is proposed as a replacement for the fixed sample normal approximation test. A uniformly most efficient SPRT exists, however logistics suggest using a truncated SPRT. The truncated SPRT is evaluated in detail and shown to possess large potential savings in average time spent by employees in the monitoring process
Poisson filtering of laser ranging data
Ricklefs, Randall L.; Shelus, Peter J.
1993-01-01
The filtering of data in a high noise, low signal strength environment is a situation encountered routinely in lunar laser ranging (LLR) and, to a lesser extent, in artificial satellite laser ranging (SLR). The use of Poisson statistics as one of the tools for filtering LLR data is described first in a historical context. The more recent application of this statistical technique to noisy SLR data is also described.
Irreversible thermodynamics of Poisson processes with reaction.
Méndez, V; Fort, J
1999-11-01
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.
Degenerate odd Poisson bracket on Grassmann variables
International Nuclear Information System (INIS)
Soroka, V.A.
2000-01-01
A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these Δ-like operators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional Lie superalgebra
Poisson/Superfish codes for personal computers
International Nuclear Information System (INIS)
Humphries, S.
1992-01-01
The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs
Probing the random distribution of half-metallic Co2Mn1-xFexSi Heusler alloys
Wurmehl, S.; Kohlhepp, J.T.; Swagten, H.J.M.; Koopmans, B.; Wójcik, M.; Balke, B.; Blum, C.G.F.; Ksenofontov, V.; Fecher, G.H.; Felser, C.
2007-01-01
Co2Mn1-xFexSi Heusler alloys crystallize in the L21 structure. This structure type requires random distribution of Mn and Fe in case of the mixed alloys. The spin echo nuclear magnetic resonance (NMR) technique probes the direct local environments of the active atoms and is thus able to resolve next
International Nuclear Information System (INIS)
Perotin, L.; Granger, S.
1997-01-01
In order to improve the prediction of wear problems due to flow-induced vibration in PWR components, an inverse method for identifying a distributed random excitation acting on a dynamical system has been developed at EDF. This method, whose applications go far beyond the flow-induced vibration field, has been implemented into the MEIDEE software. This method is presented. (author)
Computation of solar perturbations with Poisson series
Broucke, R.
1974-01-01
Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.
Exterior differentials in superspace and Poisson brackets
International Nuclear Information System (INIS)
Soroka, Dmitrij V.; Soroka, Vyacheslav A.
2003-01-01
It is shown that two definitions for an exterior differential in superspace, giving the same exterior calculus, yet lead to different results when applied to the Poisson bracket. A prescription for the transition with the help of these exterior differentials from the given Poisson bracket of definite Grassmann parity to another bracket is introduced. It is also indicated that the resulting bracket leads to generalization of the Schouten-Nijenhuis bracket for the cases of superspace and brackets of diverse Grassmann parities. It is shown that in the case of the Grassmann-odd exterior differential the resulting bracket is the bracket given on exterior forms. The above-mentioned transition with the use of the odd exterior differential applied to the linear even/odd Poisson brackets, that correspond to semi-simple Lie groups, results, respectively, in also linear odd/even brackets which are naturally connected with the Lie superalgebra. The latter contains the BRST and anti-BRST charges and can be used for calculation of the BRST operator cogomology. (author)
Duality and modular class of a Nambu-Poisson structure
International Nuclear Information System (INIS)
Ibanez, R.; Leon, M. de; Lopez, B.; Marrero, J.C.; Padron, E.
2001-01-01
In this paper we introduce cohomology and homology theories for Nambu-Poisson manifolds. Also we study the relation between the existence of a duality for these theories and the vanishing of a particular Nambu-Poisson cohomology class, the modular class. The case of a regular Nambu-Poisson structure and some singular examples are discussed. (author)
The Poisson-exponential regression model under different latent activation schemes
Louzada, Francisco; Cancho, Vicente G; Barriga, Gladys D.C
2012-01-01
In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activationschemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Infer...
Wavelets, ridgelets, and curvelets for Poisson noise removal.
Zhang, Bo; Fadili, Jalal M; Starck, Jean-Luc
2008-07-01
In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are asymptotically normally distributed with known variances. A classical hypothesis-testing framework is adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly the final estimate. A range of examples show the power of this MS-VST approach for recovering important structures of various morphologies in (very) low-count images. These results also demonstrate that the MS-VST approach is competitive relative to many existing denoising methods.
Koopman, S.J.; Lit, R.
2015-01-01
Summary: We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results
Shiyko, Mariya P.; Li, Yuelin; Rindskopf, David
2012-01-01
Intensive longitudinal data (ILD) have become increasingly common in the social and behavioral sciences; count variables, such as the number of daily smoked cigarettes, are frequently used outcomes in many ILD studies. We demonstrate a generalized extension of growth mixture modeling (GMM) to Poisson-distributed ILD for identifying qualitatively…
General solution of Poisson equation in three dimensions for disk-like galaxies
International Nuclear Information System (INIS)
Tong, Y.; Zheng, X.; Peng, O.
1982-01-01
The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies
A note on the time decay of solutions for the linearized Wigner-Poisson system
Gamba, Irene
2009-01-01
We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.
A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA
WEDEL, M; DESARBO, WS; BULT, [No Value; RAMASWAMY, [No Value
1993-01-01
In this paper an approach is developed that accommodates heterogeneity in Poisson regression models for count data. The model developed assumes that heterogeneity arises from a distribution of both the intercept and the coefficients of the explanatory variables. We assume that the mixing
Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.
2015-05-01
In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.
Elghafghuf, Adel; Dufour, Simon; Reyher, Kristen; Dohoo, Ian; Stryhn, Henrik
2014-12-01
Mastitis is a complex disease affecting dairy cows and is considered to be the most costly disease of dairy herds. The hazard of mastitis is a function of many factors, both managerial and environmental, making its control a difficult issue to milk producers. Observational studies of clinical mastitis (CM) often generate datasets with a number of characteristics which influence the analysis of those data: the outcome of interest may be the time to occurrence of a case of mastitis, predictors may change over time (time-dependent predictors), the effects of factors may change over time (time-dependent effects), there are usually multiple hierarchical levels, and datasets may be very large. Analysis of such data often requires expansion of the data into the counting-process format - leading to larger datasets - thus complicating the analysis and requiring excessive computing time. In this study, a nested frailty Cox model with time-dependent predictors and effects was applied to Canadian Bovine Mastitis Research Network data in which 10,831 lactations of 8035 cows from 69 herds were followed through lactation until the first occurrence of CM. The model was fit to the data as a Poisson model with nested normally distributed random effects at the cow and herd levels. Risk factors associated with the hazard of CM during the lactation were identified, such as parity, calving season, herd somatic cell score, pasture access, fore-stripping, and proportion of treated cases of CM in a herd. The analysis showed that most of the predictors had a strong effect early in lactation and also demonstrated substantial variation in the baseline hazard among cows and between herds. A small simulation study for a setting similar to the real data was conducted to evaluate the Poisson maximum likelihood estimation approach with both Gaussian quadrature method and Laplace approximation. Further, the performance of the two methods was compared with the performance of a widely used estimation
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2009-01-01
Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...
Two-sample discrimination of Poisson means
Lampton, M.
1994-01-01
This paper presents a statistical test for detecting significant differences between two random count accumulations. The null hypothesis is that the two samples share a common random arrival process with a mean count proportional to each sample's exposure. The model represents the partition of N total events into two counts, A and B, as a sequence of N independent Bernoulli trials whose partition fraction, f, is determined by the ratio of the exposures of A and B. The detection of a significant difference is claimed when the background (null) hypothesis is rejected, which occurs when the observed sample falls in a critical region of (A, B) space. The critical region depends on f and the desired significance level, alpha. The model correctly takes into account the fluctuations in both the signals and the background data, including the important case of small numbers of counts in the signal, the background, or both. The significance can be exactly determined from the cumulative binomial distribution, which in turn can be inverted to determine the critical A(B) or B(A) contour. This paper gives efficient implementations of these tests, based on lookup tables. Applications include the detection of clustering of astronomical objects, the detection of faint emission or absorption lines in photon-limited spectroscopy, the detection of faint emitters or absorbers in photon-limited imaging, and dosimetry.
Statistical properties of random clique networks
Ding, Yi-Min; Meng, Jun; Fan, Jing-Fang; Ye, Fang-Fu; Chen, Xiao-Song
2017-10-01
In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2016-05-01
Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.
Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.
2000-01-01
DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.
Haris, Muhammad; Yasin, Hasbi; Hoyyi, Abdul
2015-01-01
Theft is an act taking someone else's property, partially or entierely, with intention to have it illegally. Motor vehicle theft is one of the most highlighted crime type and disturbing the communities. Regression analysis is a statistical analysis for modeling the relationships between response variable and predictor variable. If the response variable follows a Poisson distribution or categorized as a count data, so the regression model used is Poisson regression. Geographically Weighted Poi...
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
Poisson regression for modeling count and frequency outcomes in trauma research.
Gagnon, David R; Doron-LaMarca, Susan; Bell, Margret; O'Farrell, Timothy J; Taft, Casey T
2008-10-01
The authors describe how the Poisson regression method for analyzing count or frequency outcome variables can be applied in trauma studies. The outcome of interest in trauma research may represent a count of the number of incidents of behavior occurring in a given time interval, such as acts of physical aggression or substance abuse. Traditional linear regression approaches assume a normally distributed outcome variable with equal variances over the range of predictor variables, and may not be optimal for modeling count outcomes. An application of Poisson regression is presented using data from a study of intimate partner aggression among male patients in an alcohol treatment program and their female partners. Results of Poisson regression and linear regression models are compared.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Yong; Kim, Song Hyun; Shin, Chang Ho; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)
2014-05-15
In this study, as a preliminary study to develop an implicit method having high accuracy, the distribution characteristics of spherical particles were evaluated by using explicit modeling techniques in various volume packing fractions. This study was performed to evaluate implicitly simulated distribution of randomly packed spheres in a medium. At first, an explicit modeling method to simulate random packed spheres in a hexahedron medium was proposed. The distributed characteristics of l{sub p} and r{sub p}, which are used in the particle position sampling, was estimated. It is analyzed that the use of the direct exponential distribution, which is generally used in the implicit modeling, can cause the distribution bias of the spheres. It is expected that the findings in this study can be utilized for improving the accuracy in using the implicit method. Spherical particles, which are randomly distributed in medium, are utilized for the radiation shields, fusion reactor blanket, fuels of VHTR reactors. Due to the difficulty on the simulation of the stochastic distribution, Monte Carlo (MC) method has been mainly considered as the tool for the analysis of the particle transport. For the MC modeling of the spherical particles, three methods are known; repeated structure, explicit modeling, and implicit modeling. Implicit method (called as the track length sampling method) is a modeling method that is the sampling based modeling technique of each spherical geometry (or track length of the sphere) during the MC simulation. Implicit modeling method has advantages in high computational efficiency and user convenience. However, it is noted that the implicit method has lower modeling accuracy in various finite mediums.
Directory of Open Access Journals (Sweden)
A. Stankovic
2012-12-01
Full Text Available The distributions of random variables are of interest in many areas of science. In this paper, ascertaining on the importance of multi-hop transmission in contemporary wireless communications systems operating over fading channels in the presence of cochannel interference, the probability density functions (PDFs of minimum of arbitrary number of ratios of Rayleigh, Rician, Nakagami-m, Weibull and α-µ random variables are derived. These expressions can be used to study the outage probability as an important multi-hop system performance measure. Various numerical results complement the proposed mathematical analysis.
Anastario, Michael P; Rodriguez, Hector P; Gallagher, Patricia M; Cleary, Paul D; Shaller, Dale; Rogers, William H; Bogen, Karen; Safran, Dana Gelb
2010-01-01
Objective To assess the effect of survey distribution protocol (mail versus handout) on data quality and measurement of patient care experiences. Data Sources/Study Setting Multisite randomized trial of survey distribution protocols. Analytic sample included 2,477 patients of 15 clinicians at three practice sites in New York State. Data Collection/Extraction Methods Mail and handout distribution modes were alternated weekly at each site for 6 weeks. Principal Findings Handout protocols yielded an incomplete distribution rate (74 percent) and lower overall response rates (40 percent versus 58 percent) compared with mail. Handout distribution rates decreased over time and resulted in more favorable survey scores compared with mailed surveys. There were significant mode–physician interaction effects, indicating that data cannot simply be pooled and adjusted for mode. Conclusions In-office survey distribution has the potential to bias measurement and comparison of physicians and sites on patient care experiences. Incomplete distribution rates observed in-office, together with between-office differences in distribution rates and declining rates over time suggest staff may be burdened by the process and selective in their choice of patients. Further testing with a larger physician and site sample is important to definitively establish the potential role for in-office distribution in obtaining reliable, valid assessment of patient care experiences. PMID:20579126
Müller, Christian L.; Sbalzarini, Ivo F.; van Gunsteren, Wilfred F.; Žagrović, Bojan; Hünenberger, Philippe H.
2009-06-01
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N =3,…,6 beads (or up to N =10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N =3,…,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 1028 for N =100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments
Measured PET Data Characterization with the Negative Binomial Distribution Model.
Santarelli, Maria Filomena; Positano, Vincenzo; Landini, Luigi
2017-01-01
Accurate statistical model of PET measurements is a prerequisite for a correct image reconstruction when using statistical image reconstruction algorithms, or when pre-filtering operations must be performed. Although radioactive decay follows a Poisson distribution, deviation from Poisson statistics occurs on projection data prior to reconstruction due to physical effects, measurement errors, correction of scatter and random coincidences. Modelling projection data can aid in understanding the statistical nature of the data in order to develop efficient processing methods and to reduce noise. This paper outlines the statistical behaviour of measured emission data evaluating the goodness of fit of the negative binomial (NB) distribution model to PET data for a wide range of emission activity values. An NB distribution model is characterized by the mean of the data and the dispersion parameter α that describes the deviation from Poisson statistics. Monte Carlo simulations were performed to evaluate: (a) the performances of the dispersion parameter α estimator, (b) the goodness of fit of the NB model for a wide range of activity values. We focused on the effect produced by correction for random and scatter events in the projection (sinogram) domain, due to their importance in quantitative analysis of PET data. The analysis developed herein allowed us to assess the accuracy of the NB distribution model to fit corrected sinogram data, and to evaluate the sensitivity of the dispersion parameter α to quantify deviation from Poisson statistics. By the sinogram ROI-based analysis, it was demonstrated that deviation on the measured data from Poisson statistics can be quantitatively characterized by the dispersion parameter α, in any noise conditions and corrections.
The transverse Poisson's ratio of composites.
Foye, R. L.
1972-01-01
An expression is developed that makes possible the prediction of Poisson's ratio for unidirectional composites with reference to any pair of orthogonal axes that are normal to the direction of the reinforcing fibers. This prediction appears to be a reasonable one in that it follows the trends of the finite element analysis and the bounding estimates, and has the correct limiting value for zero fiber content. It can only be expected to apply to composites containing stiff, circular, isotropic fibers bonded to a soft matrix material.
Risk Sensitive Filtering with Poisson Process Observations
International Nuclear Information System (INIS)
Malcolm, W. P.; James, M. R.; Elliott, R. J.
2000-01-01
In this paper we consider risk sensitive filtering for Poisson process observations. Risk sensitive filtering is a type of robust filtering which offers performance benefits in the presence of uncertainties. We derive a risk sensitive filter for a stochastic system where the signal variable has dynamics described by a diffusion equation and determines the rate function for an observation process. The filtering equations are stochastic integral equations. Computer simulations are presented to demonstrate the performance gain for the risk sensitive filter compared with the risk neutral filter
Randomized random walk on a random walk
International Nuclear Information System (INIS)
Lee, P.A.
1983-06-01
This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)
Tetrahedral meshing via maximal Poisson-disk sampling
Guo, Jianwei
2016-02-15
In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.
Entropy of open quantum systems and the Poisson distribution
International Nuclear Information System (INIS)
Bashkirov, A.G.; Sukhanov, A.D.
2000-01-01
The entropy of the harmonic oscillator and the Klein-Gordan-Fock quantum field with a static source, located in a coherent state, is considered. The expressions for the entropy in both cases coincide with the accuracy up to the numerical multiplier with the entropy for a black hole. Such a coincidence along with the known property of the gravitational field to provide for a decoherence of the quantum system, placed therein, makes it possible to suppose that the vacuum in the black hole vicinity is in a coherent state [ru
Sakaguchi, Hidetsugu; Kadowaki, Shuntaro
2017-07-01
We study slowly pulling block-spring models in random media. Second-order phase transitions exist in a model pulled by a constant force in the case of velocity-strengthening friction. If external forces are slowly increased, nearly critical states are self-organized. Slips of various sizes occur, and the probability distributions of slip size roughly obey power laws. The exponent is close to that in the quenched Edwards-Wilkinson model. Furthermore, the slip-size distributions are investigated in cases of Coulomb friction, velocity-weakening friction, and two-dimensional block-spring models.
Directory of Open Access Journals (Sweden)
Daniel R Feikin
Full Text Available BACKGROUND: Zinc treatment shortens diarrhea episodes and can prevent future episodes. In rural Africa, most children with diarrhea are not brought to health facilities. In a village-randomized trial in rural Kenya, we assessed if zinc treatment might have a community-level preventive effect on diarrhea incidence if available at home versus only at health facilities. METHODS: We randomized 16 Kenyan villages (1,903 eligible children to receive a 10-day course of zinc and two oral rehydration solution (ORS sachets every two months at home and 17 villages (2,241 eligible children to receive ORS at home, but zinc at the health-facility only. Children's caretakers were educated in zinc/ORS use by village workers, both unblinded to intervention arm. We evaluated whether incidence of diarrhea and acute lower respiratory illness (ALRI reported at biweekly home visits and presenting to clinic were lower in zinc villages, using poisson regression adjusting for baseline disease rates, distance to clinic, and children's age. RESULTS: There were no differences between village groups in diarrhea incidence either reported at the home or presenting to clinic. In zinc villages (1,440 children analyzed, 61.2% of diarrheal episodes were treated with zinc, compared to 5.4% in comparison villages (1,584 children analyzed, p<0.0001. There were no differences in ORS use between zinc (59.6% and comparison villages (58.8%. Among children with fever or cough without diarrhea, zinc use was low (<0.5%. There was a lower incidence of reported ALRI in zinc villages (adjusted RR 0.68, 95% CI 0.46-0.99, but not presenting at clinic. CONCLUSIONS: In this study, home zinc use to treat diarrhea did not decrease disease rates in the community. However, with proper training, availability of zinc at home could lead to more episodes of pediatric diarrhea being treated with zinc in parts of rural Africa where healthcare utilization is low. TRIAL REGISTRATION: ClinicalTrials.gov NCT
On Partial Defaults in Portfolio Credit Risk : A Poisson Mixture Model Approach
Weißbach, Rafael; von Lieres und Wilkau, Carsten
2005-01-01
Most credit portfolio models exclusively calculate the loss distribution for a portfolio of performing counterparts. Conservative default definitions cause considerable insecurity about the loss for a long time after the default. We present three approaches to account for defaulted counterparts in the calculation of the economic capital. Two of the approaches are based on the Poisson mixture model CreditRisk+ and derive a loss distribution for an integrated portfolio. The third method treats ...
Renewal characterization of Markov modulated Poisson processes
Directory of Open Access Journals (Sweden)
Marcel F. Neuts
1989-01-01
Full Text Available A Markov Modulated Poisson Process (MMPP M(t defined on a Markov chain J(t is a pure jump process where jumps of M(t occur according to a Poisson process with intensity λi whenever the Markov chain J(t is in state i. M(t is called strongly renewal (SR if M(t is a renewal process for an arbitrary initial probability vector of J(t with full support on P={i:λi>0}. M(t is called weakly renewal (WR if there exists an initial probability vector of J(t such that the resulting MMPP is a renewal process. The purpose of this paper is to develop general characterization theorems for the class SR and some sufficiency theorems for the class WR in terms of the first passage times of the bivariate Markov chain [J(t,M(t]. Relevance to the lumpability of J(t is also studied.
International Nuclear Information System (INIS)
Rosales, J.; Perez, J.; Garcia, C.; Munnoz, A.; Lira, C. A. B. O.
2015-01-01
TRISO particles are the specific features of HTR-10 and generally HTGR reactors. Their heterogeneity and random arrangement in graphite matrix of these reactors create a significant modeling challenge. In the simulation of spherical fuel elements using MCNPX are usually created repetitive structures using uniform distribution models. The use of these repetitive structures introduces two major approaches: the non-randomness of the TRISO particles inside the pebbles and the intersection of the pebble surface with the TRISO particles. These approaches could affect significantly the multiplicative properties of the core. In order to study the influence of these approaches in the multiplicative properties was estimated the K inf value in one pebble with white boundary conditions using 4 different configurations regarding the distribution of the TRISO particles inside the pebble: uniform hexagonal model, cubic uniform model, cubic uniform without the effect of cutting and a random distribution model. It was studied the impact these models on core scale solving the problem B1, from the Benchmark Problems presented in a Coordinated Research Program of the IAEA. (Author)
Poisson and negative binomial item count techniques for surveys with sensitive question.
Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin
2017-04-01
Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.
Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science
Directory of Open Access Journals (Sweden)
Shilong Li
2017-01-01
Full Text Available Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.
Marques, Alexandre; Nave, Jean-Christophe; Rosales, Ruben
2011-11-01
The Poisson equation is of central importance in the description of fluid flows and other physical phenomena. In prior work, Marques, Nave, and Rosales introduced the Correction Function Method (CFM) to obtain fourth-order accurate solutions for the constant coefficient Poisson problem with prescribed jump conditions for the solution and its normal derivative across arbitrary interfaces. Here we combine this method with the ideas introduced by Mayo to solve other Poisson problems involving complex geometries. In summary, we are able to rewrite the problem as a boundary integral equation in terms of a potential distribution over the boundary or interface. The solution of this integral equation is discontinuous across the boundary or interface. Hence, after this integral equation is solved using standard techniques, the potential distribution can be used to determine the jump discontinuities. We are then able to use the CFM to solve the resulting Poisson equation with jump discontinuities. The outcome is a fourth-order accurate scheme to solve general Poisson problems which, over arbitrary geometries, has a cost that is approximately twice that of a fast Poisson solver using FFT on a rectangular geometry of the same size. Details of the method and applications will be presented.
On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action
Chekhov, L. O.; Mazzocco, M.
2017-12-01
Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.
A test of inflated zeros for Poisson regression models.
He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan
2017-01-01
Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.
Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan
2011-11-01
To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.
Sepú lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G
2013-01-01
Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.
Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G
2013-02-26
The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.
Sepúlveda, Nuno
2013-02-26
Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.
Random distance distribution for spherical objects: general theory and applications to physics
International Nuclear Information System (INIS)
Tu Shuju; Fischbach, Ephraim
2002-01-01
A formalism is presented for analytically obtaining the probability density function, P n (s), for the random distance s between two random points in an n-dimensional spherical object of radius R. Our formalism allows P n (s) to be calculated for a spherical n-ball having an arbitrary volume density, and reproduces the well-known results for the case of uniform density. The results find applications in geometric probability, computational science, molecular biological systems, statistical physics, astrophysics, condensed matter physics, nuclear physics and elementary particle physics. As one application of these results, we propose a new statistical method derived from our formalism to study random number generators used in Monte Carlo simulations. (author)
A Method of Poisson's Ration Imaging Within a Material Part
Roth, Don J. (Inventor)
1994-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.
Method of Poisson's ratio imaging within a material part
Roth, Don J. (Inventor)
1996-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.