WorldWideScience

Sample records for poisson distributed random

  1. Poisson distribution

    NARCIS (Netherlands)

    Hallin, M.; Piegorsch, W.; El Shaarawi, A.

    2012-01-01

    The random variable X taking values 0,1,2,…,x,… with probabilities pλ(x) = e−λλx/x!, where λ∈R0+ is called a Poisson variable, and its distribution a Poisson distribution, with parameter λ. The Poisson distribution with parameter λ can be obtained as the limit, as n → ∞ and p → 0 in such a way that

  2. On bounds in Poisson approximation for distributions of independent negative-binomial distributed random variables.

    Science.gov (United States)

    Hung, Tran Loc; Giang, Le Truong

    2016-01-01

    Using the Stein-Chen method some upper bounds in Poisson approximation for distributions of row-wise triangular arrays of independent negative-binomial distributed random variables are established in this note.

  3. Extended Poisson Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Anum Fatima

    2015-09-01

    Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.

  4. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    Science.gov (United States)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  5. Compound Poisson Approximations for Sums of Random Variables

    OpenAIRE

    Serfozo, Richard F.

    1986-01-01

    We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of...

  6. Cumulative Poisson Distribution Program

    Science.gov (United States)

    Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert

    1990-01-01

    Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.

  7. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    Science.gov (United States)

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Newton/Poisson-Distribution Program

    Science.gov (United States)

    Bowerman, Paul N.; Scheuer, Ernest M.

    1990-01-01

    NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C.

  9. NEWTPOIS- NEWTON POISSON DISTRIBUTION PROGRAM

    Science.gov (United States)

    Bowerman, P. N.

    1994-01-01

    The cumulative poisson distribution program, NEWTPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714), can be used independently of one another. NEWTPOIS determines percentiles for gamma distributions with integer shape parameters and calculates percentiles for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. NEWTPOIS determines the Poisson parameter (lambda), that is; the mean (or expected) number of events occurring in a given unit of time, area, or space. Given that the user already knows the cumulative probability for a specific number of occurrences (n) it is usually a simple matter of substitution into the Poisson distribution summation to arrive at lambda. However, direct calculation of the Poisson parameter becomes difficult for small positive values of n and unmanageable for large values. NEWTPOIS uses Newton's iteration method to extract lambda from the initial value condition of the Poisson distribution where n=0, taking successive estimations until some user specified error term (epsilon) is reached. The NEWTPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting epsilon, n, and the cumulative probability of the occurrence of n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 30K. NEWTPOIS was developed in 1988.

  10. Scaling the Poisson Distribution

    Science.gov (United States)

    Farnsworth, David L.

    2014-01-01

    We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.

  11. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.

    Science.gov (United States)

    Hougaard, P; Lee, M L; Whitmore, G A

    1997-12-01

    Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.

  12. Is neutron evaporation from highly excited nuclei a poisson random process

    International Nuclear Information System (INIS)

    Simbel, M.H.

    1982-01-01

    It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)

  13. Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process?

    International Nuclear Information System (INIS)

    Greco, A.; Matthaeus, W. H.; Servidio, S.; Dmitruk, P.

    2009-01-01

    Using solar wind data from the Advanced Composition Explorer spacecraft, with the support of Hall magnetohydrodynamic simulations, the waiting-time distributions of magnetic discontinuities have been analyzed. A possible phenomenon of clusterization of these discontinuities is studied in detail. We perform a local Poisson's analysis in order to establish if these intermittent events are randomly distributed or not. Possible implications about the nature of solar wind discontinuities are discussed.

  14. Reduction of Nambu-Poisson Manifolds by Regular Distributions

    Science.gov (United States)

    Das, Apurba

    2018-03-01

    The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure.

  15. A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.

    Science.gov (United States)

    Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep

    2017-01-01

    The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.

  16. The applicability of the Poisson distribution in radiochemical measurements

    International Nuclear Information System (INIS)

    Luthardt, M.; Proesch, U.

    1980-01-01

    The fact that, on principle, the Poisson distribution describes the statistics of nuclear decay is generally accepted. The applicability of this distribution to nuclear radiation measurements has recently been questioned. Applying the chi-squared test for goodness of fit on the analogy of the moving average, at least 3 cases may be distinguished, which lead to an incorrect rejection of the Poisson distribution for measurements. Examples are given. Distributions, which make allowance for special parameters, should only be used after careful examination of the data with regard to other interfering effects. The Poisson distribution will further on be applicable to many simple measuring operations. Some basic equations for the analysis of poisson-distributed data are given. (author)

  17. Study of some arithmetic properties of poisson distribution

    International Nuclear Information System (INIS)

    Freycenon, J.

    1965-01-01

    One considers a random number on following a Poisson probability distribution function, which is divided by a constant a (n = am + b) and one studies the probability distribution of the rest b and of the quotient m. The mean and mean squared values of m and b are computed. A numerical example shows that the distribution of the rest may be likened with a rectangular distribution when the divisor a is less than or equal to 2 5 for n = 1000: the knowledge of b is then non-significant of the measure of n until this value of a. If one may avoid to reset, between each trial, that part of the sealer which holds the rest, the mean value of the successive quotients is an unbiased measure of n/a. (author) [fr

  18. Some applications of the fractional Poisson probability distribution

    International Nuclear Information System (INIS)

    Laskin, Nick

    2009-01-01

    Physical and mathematical applications of the recently invented fractional Poisson probability distribution have been presented. As a physical application, a new family of quantum coherent states has been introduced and studied. As mathematical applications, we have developed the fractional generalization of Bell polynomials, Bell numbers, and Stirling numbers of the second kind. The appearance of fractional Bell polynomials is natural if one evaluates the diagonal matrix element of the evolution operator in the basis of newly introduced quantum coherent states. Fractional Stirling numbers of the second kind have been introduced and applied to evaluate the skewness and kurtosis of the fractional Poisson probability distribution function. A representation of the Bernoulli numbers in terms of fractional Stirling numbers of the second kind has been found. In the limit case when the fractional Poisson probability distribution becomes the Poisson probability distribution, all of the above listed developments and implementations turn into the well-known results of the quantum optics and the theory of combinatorial numbers.

  19. Prescription-induced jump distributions in multiplicative Poisson processes.

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  20. Prescription-induced jump distributions in multiplicative Poisson processes

    Science.gov (United States)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  1. A comparison of Poisson-one-inflated power series distributions for ...

    African Journals Online (AJOL)

    A class of Poisson-one-inflated power series distributions (the binomial, the Poisson, the negative binomial, the geometric, the log-series and the misrecorded Poisson) are proposed for modeling rural out-migration at the household level. The probability mass functions of the mixture distributions are derived and fitted to the ...

  2. A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture

    OpenAIRE

    Van Nguyen, Thu

    2011-01-01

    In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random variables X and Y is radial Poisson, then each of them must be radial Poisson."

  3. On poisson-stopped-sums that are mixed poisson

    OpenAIRE

    Valero Baya, Jordi; Pérez Casany, Marta; Ginebra Molins, Josep

    2013-01-01

    Maceda (1948) characterized the mixed Poisson distributions that are Poisson-stopped-sum distributions based on the mixing distribution. In an alternative characterization of the same set of distributions here the Poisson-stopped-sum distributions that are mixed Poisson distributions is proved to be the set of Poisson-stopped-sums of either a mixture of zero-truncated Poisson distributions or a zero-modification of it. Peer Reviewed

  4. Seasonally adjusted birth frequencies follow the Poisson distribution.

    Science.gov (United States)

    Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A

    2015-12-15

    Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.

  5. Application of Poisson random effect models for highway network screening.

    Science.gov (United States)

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Independent production and Poisson distribution

    International Nuclear Information System (INIS)

    Golokhvastov, A.I.

    1994-01-01

    The well-known statement of factorization of inclusive cross-sections in case of independent production of particles (or clusters, jets etc.) and the conclusion of Poisson distribution over their multiplicity arising from it do not follow from the probability theory in any way. Using accurately the theorem of the product of independent probabilities, quite different equations are obtained and no consequences relative to multiplicity distributions are obtained. 11 refs

  7. Transforming spatial point processes into Poisson processes using random superposition

    DEFF Research Database (Denmark)

    Møller, Jesper; Berthelsen, Kasper Klitgaaard

    with a complementary spatial point process Y  to obtain a Poisson process X∪Y  with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...

  8. Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems

    International Nuclear Information System (INIS)

    Akin, Osman C; Grigolini, Paolo; Paradisi, Paolo

    2009-01-01

    The response of a system with ON–OFF intermittency to an external harmonic perturbation is discussed. ON–OFF intermittency is described by means of a sequence of random events, i.e., the transitions from the ON to the OFF state and vice versa. The unperturbed waiting times (WTs) between two events are assumed to satisfy a renewal condition, i.e., the WTs are statistically independent random variables. The response of a renewal model with non-Poisson ON–OFF intermittency, associated with non-exponential WT distribution, is analyzed by looking at the changes induced in the WT statistical distribution by the harmonic perturbation. The scaling properties are also studied by means of diffusion entropy analysis. It is found that, in the range of fast and relatively strong perturbation, the non-Poisson system displays a Poisson-like behavior in both WT distribution and scaling. In particular, the histogram of perturbed WTs becomes a sequence of equally spaced peaks, with intensity decaying exponentially in time. Further, the diffusion entropy detects an ordinary scaling (related to normal diffusion) instead of the expected unperturbed anomalous scaling related to the inverse power-law decay. Thus, an analysis based on the WT histogram and/or on scaling methods has to be considered with some care when dealing with perturbed intermittent systems

  9. Efficient rare-event simulation for multiple jump events in regularly varying random walks and compound Poisson processes

    NARCIS (Netherlands)

    B. Chen (Bohan); J. Blanchet; C.H. Rhee (Chang-Han); A.P. Zwart (Bert)

    2017-01-01

    textabstractWe propose a class of strongly efficient rare event simulation estimators for random walks and compound Poisson processes with a regularly varying increment/jump-size distribution in a general large deviations regime. Our estimator is based on an importance sampling strategy that hinges

  10. Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.

    Science.gov (United States)

    Le Bihan, Nicolas; Margerin, Ludovic

    2009-07-01

    In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.

  11. Generalization of Poisson distribution for the case of changing probability of consequential events

    International Nuclear Information System (INIS)

    Kushnirenko, E.

    1995-01-01

    The generalization of the Poisson distribution for the case of changing probabilities of the consequential events is done. It is shown that the classical Poisson distribution is the special case of this generalized distribution when the probabilities of the consequential events are constant. The using of the generalized Poisson distribution gives the possibility in some cases to obtain analytical result instead of making Monte-Carlo calculation

  12. Statistics of weighted Poisson events and its applications

    International Nuclear Information System (INIS)

    Bohm, G.; Zech, G.

    2014-01-01

    The statistics of the sum of random weights where the number of weights is Poisson distributed has important applications in nuclear physics, particle physics and astrophysics. Events are frequently weighted according to their acceptance or relevance to a certain type of reaction. The sum is described by the compound Poisson distribution (CPD) which is shortly reviewed. It is shown that the CPD can be approximated by a scaled Poisson distribution (SPD). The SPD is applied to parameter estimation in situations where the data are distorted by resolution effects. It performs considerably better than the normal approximation that is usually used. A special Poisson bootstrap technique is presented which permits to derive confidence limits for observations following the CPD

  13. Estimation of Poisson noise in spatial domain

    Science.gov (United States)

    Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana

    2017-09-01

    This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.

  14. TCP (truncated compound Poisson) process for multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Srivastave, P.P.

    1990-01-01

    On using the Poisson distribution truncated at zero for intermediate cluster decay in a compound Poisson process, the authors obtain TCP distribution which describes quite well the multiplicity distributions in high energy collisions. A detailed comparison is made between TCP and NB for UA5 data. The reduced moments up to the fifth agree very well with the observed ones. The TCP curves are narrower than NB at high multiplicity tail, look narrower at very high energy and develop shoulders and oscillations which become increasingly pronounced as the energy grows. At lower energies the distributions, of the data for fixed intervals of rapidity for UA5 data and for the data (at low energy) for e + e - annihilation and pion-proton, proton-proton and muon-proton scattering. A discussion of compound Poisson distribution, expression of reduced moments and Poisson transforms are also given. The TCP curves and curves of the reduced moments for different values of the parameters are also presented

  15. An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces.

    Science.gov (United States)

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-03-08

    Poisson disk sampling plays an important role in a variety of visual computing, due to its useful statistical property in distribution and the absence of aliasing artifacts. While many effective techniques have been proposed to generate Poisson disk distribution in Euclidean space, relatively few work has been reported to the surface counterpart. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. We propose a new technique for parallelizing the dart throwing. Rather than the conventional approaches that explicitly partition the spatial domain to generate the samples in parallel, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. It is worth noting that our algorithm is accurate as the generated Poisson disks are uniformly and randomly distributed without bias. Our method is intrinsic in that all the computations are based on the intrinsic metric and are independent of the embedding space. This intrinsic feature allows us to generate Poisson disk distributions on arbitrary surfaces. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  16. Time distributions of solar energetic particle events: Are SEPEs really random?

    Science.gov (United States)

    Jiggens, P. T. A.; Gabriel, S. B.

    2009-10-01

    Solar energetic particle events (SEPEs) can exhibit flux increases of several orders of magnitude over background levels and have always been considered to be random in nature in statistical models with no dependence of any one event on the occurrence of previous events. We examine whether this assumption of randomness in time is correct. Engineering modeling of SEPEs is important to enable reliable and efficient design of both Earth-orbiting and interplanetary spacecraft and future manned missions to Mars and the Moon. All existing engineering models assume that the frequency of SEPEs follows a Poisson process. We present analysis of the event waiting times using alternative distributions described by Lévy and time-dependent Poisson processes and compared these with the usual Poisson distribution. The results show significant deviation from a Poisson process and indicate that the underlying physical processes might be more closely related to a Lévy-type process, suggesting that there is some inherent “memory” in the system. Inherent Poisson assumptions of stationarity and event independence are investigated, and it appears that they do not hold and can be dependent upon the event definition used. SEPEs appear to have some memory indicating that events are not completely random with activity levels varying even during solar active periods and are characterized by clusters of events. This could have significant ramifications for engineering models of the SEP environment, and it is recommended that current statistical engineering models of the SEP environment should be modified to incorporate long-term event dependency and short-term system memory.

  17. Comparison between two bivariate Poisson distributions through the ...

    African Journals Online (AJOL)

    These two models express themselves by their probability mass function. ... To remedy this problem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation as well negative, equal to zero, that positive.

  18. Zero-inflated Conway-Maxwell Poisson Distribution to Analyze Discrete Data.

    Science.gov (United States)

    Sim, Shin Zhu; Gupta, Ramesh C; Ong, Seng Huat

    2018-01-09

    In this paper, we study the zero-inflated Conway-Maxwell Poisson (ZICMP) distribution and develop a regression model. Score and likelihood ratio tests are also implemented for testing the inflation/deflation parameter. Simulation studies are carried out to examine the performance of these tests. A data example is presented to illustrate the concepts. In this example, the proposed model is compared to the well-known zero-inflated Poisson (ZIP) and the zero- inflated generalized Poisson (ZIGP) regression models. It is shown that the fit by ZICMP is comparable or better than these models.

  19. The solution of the Poisson-Boltzmann's equation for self-consistent potential of infinite, random, nonlinear and non-uniform system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu

    1998-01-01

    A study has been made of a system of charged particles and inhomogeneities randomly distributed in accordance with the same law in the neighborhoods of corresponding sites of a planar crystal lattice. The existence and uniqueness of the solution of the generalized Poisson-Boltzmann's equation for the average self-consistent potential and average density of surface charges are proved. (author)

  20. Random walk in dynamically disordered chains: Poisson white noise disorder

    International Nuclear Information System (INIS)

    Hernandez-Garcia, E.; Pesquera, L.; Rodriguez, M.A.; San Miguel, M.

    1989-01-01

    Exact solutions are given for a variety of models of random walks in a chain with time-dependent disorder. Dynamic disorder is modeled by white Poisson noise. Models with site-independent (global) and site-dependent (local) disorder are considered. Results are described in terms of an affective random walk in a nondisordered medium. In the cases of global disorder the effective random walk contains multistep transitions, so that the continuous limit is not a diffusion process. In the cases of local disorder the effective process is equivalent to usual random walk in the absence of disorder but with slower diffusion. Difficulties associated with the continuous-limit representation of random walk in a disordered chain are discussed. In particular, the authors consider explicit cases in which taking the continuous limit and averaging over disorder sources do not commute

  1. Investigation of Random Switching Driven by a Poisson Point Process

    DEFF Research Database (Denmark)

    Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef

    2015-01-01

    This paper investigates the switching mechanism of a two-dimensional switched system, when the switching events are generated by a Poisson point process. A model, in the shape of a stochastic process, for such a system is derived and the distribution of the trajectory's position is developed...... together with marginal density functions for the coordinate functions. Furthermore, the joint probability distribution is given explicitly....

  2. Modeling Repeated Count Data : Some Extensions of the Rasch Poisson Counts Model

    NARCIS (Netherlands)

    van Duijn, M.A.J.; Jansen, Margo

    1995-01-01

    We consider data that can be summarized as an N X K table of counts-for example, test data obtained by administering K tests to N subjects. The cell entries y(ij) are assumed to be conditionally independent Poisson-distributed random variables, given the NK Poisson intensity parameters mu(ij). The

  3. An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.

    Science.gov (United States)

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-09-01

    Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  4. Ship-Track Models Based on Poisson-Distributed Port-Departure Times

    National Research Council Canada - National Science Library

    Heitmeyer, Richard

    2006-01-01

    ... of those ships, and their nominal speeds. The probability law assumes that the ship departure times are Poisson-distributed with a time-varying departure rate and that the ship speeds and ship routes are statistically independent...

  5. Dirichlet forms methods for Poisson point measures and Lévy processes with emphasis on the creation-annihilation techniques

    CERN Document Server

    Bouleau, Nicolas

    2015-01-01

    A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the “lent particle method” it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Lévy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calcul...

  6. Coordination of Conditional Poisson Samples

    Directory of Open Access Journals (Sweden)

    Grafström Anton

    2015-12-01

    Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.

  7. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    Science.gov (United States)

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. POISSON SUPERFISH, Poisson Equation Solver for Radio Frequency Cavity

    International Nuclear Information System (INIS)

    Colman, J.

    2001-01-01

    1 - Description of program or function: POISSON, SUPERFISH is a group of (1) codes that solve Poisson's equation and are used to compute field quality for both magnets and fixed electric potentials and (2) RF cavity codes that calculate resonant frequencies and field distributions of the fundamental and higher modes. The group includes: POISSON, PANDIRA, SUPERFISH, AUTOMESH, LATTICE, FORCE, MIRT, PAN-T, TEKPLOT, SF01, and SHY. POISSON solves Poisson's (or Laplace's) equation for the vector (scalar) potential with nonlinear isotropic iron (dielectric) and electric current (charge) distributions for two-dimensional Cartesian or three-dimensional cylindrical symmetry. It calculates the derivatives of the potential, the stored energy, and performs harmonic (multipole) analysis of the potential. PANDIRA is similar to POISSON except it allows anisotropic and permanent magnet materials and uses a different numerical method to obtain the potential. SUPERFISH solves for the accelerating (TM) and deflecting (TE) resonant frequencies and field distributions in an RF cavity with two-dimensional Cartesian or three-dimensional cylindrical symmetry. Only the azimuthally symmetric modes are found for cylindrically symmetric cavities. AUTOMESH prepares input for LATTICE from geometrical data describing the problem, (i.e., it constructs the 'logical' mesh and generates (x,y) coordinate data for straight lines, arcs of circles, and segments of hyperbolas). LATTICE generates an irregular triangular (physical) mesh from the input data, calculates the 'point current' terms at each mesh point in regions with distributed current density, and sets up the mesh point relaxation order needed to write the binary problem file for the equation-solving POISSON, PANDIRA, or SUPERFISH. FORCE calculates forces and torques on coils and iron regions from POISSON or PANDIRA solutions for the potential. MIRT optimizes magnet profiles, coil shapes, and current densities from POISSON output based on a

  9. Avoiding negative populations in explicit Poisson tau-leaping.

    Science.gov (United States)

    Cao, Yang; Gillespie, Daniel T; Petzold, Linda R

    2005-08-01

    The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically reacting system by approximating the number of firings of each reaction channel during a chosen time increment tau as a Poisson random variable. Since the Poisson random variable can have arbitrarily large sample values, there is always the possibility that this procedure will cause one or more reaction channels to fire so many times during tau that the population of some reactant species will be driven negative. Two recent papers have shown how that unacceptable occurrence can be avoided by replacing the Poisson random variables with binomial random variables, whose values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that also avoids negative populations, but is easier to implement than the binomial procedure. The new Poisson procedure also introduces a second control parameter, whose value essentially dials the procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation algorithm at the other; therefore, the modified Poisson procedure will generally be more accurate than the original Poisson procedure.

  10. Understanding poisson regression.

    Science.gov (United States)

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  11. Fission meter and neutron detection using poisson distribution comparison

    Science.gov (United States)

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  12. Poisson processes

    NARCIS (Netherlands)

    Boxma, O.J.; Yechiali, U.; Ruggeri, F.; Kenett, R.S.; Faltin, F.W.

    2007-01-01

    The Poisson process is a stochastic counting process that arises naturally in a large variety of daily life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the

  13. Use of the negative binomial-truncated Poisson distribution in thunderstorm prediction

    Science.gov (United States)

    Cohen, A. C.

    1971-01-01

    A probability model is presented for the distribution of thunderstorms over a small area given that thunderstorm events (1 or more thunderstorms) are occurring over a larger area. The model incorporates the negative binomial and truncated Poisson distributions. Probability tables for Cape Kennedy for spring, summer, and fall months and seasons are presented. The computer program used to compute these probabilities is appended.

  14. Species Abundance in a Forest Community in South China: A Case of Poisson Lognormal Distribution

    Institute of Scientific and Technical Information of China (English)

    Zuo-Yun YIN; Hai REN; Qian-Mei ZHANG; Shao-Lin PENG; Qin-Feng GUO; Guo-Yi ZHOU

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.

  15. Asymptotic Poisson distribution for the number of system failures of a monotone system

    International Nuclear Information System (INIS)

    Aven, Terje; Haukis, Harald

    1997-01-01

    It is well known that for highly available monotone systems, the time to the first system failure is approximately exponentially distributed. Various normalising factors can be used as the parameter of the exponential distribution to ensure the asymptotic exponentiality. More generally, it can be shown that the number of system failures is asymptotic Poisson distributed. In this paper we study the performance of some of the normalising factors by using Monte Carlo simulation. The results show that the exponential/Poisson distribution gives in general very good approximations for highly available components. The asymptotic failure rate of the system gives best results when the process is in steady state, whereas other normalising factors seem preferable when the process is not in steady state. From a computational point of view the asymptotic system failure rate is most attractive

  16. ON THE ESTIMATION OF DISTANCE DISTRIBUTION FUNCTIONS FOR POINT PROCESSES AND RANDOM SETS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2011-05-01

    Full Text Available This paper discusses various estimators for the nearest neighbour distance distribution function D of a stationary point process and for the quadratic contact distribution function Hq of a stationary random closed set. It recommends the use of Hanisch's estimator of D, which is of Horvitz-Thompson type, and the minussampling estimator of Hq. This recommendation is based on simulations for Poisson processes and Boolean models.

  17. Updating a Classic: "The Poisson Distribution and the Supreme Court" Revisited

    Science.gov (United States)

    Cole, Julio H.

    2010-01-01

    W. A. Wallis studied vacancies in the US Supreme Court over a 96-year period (1837-1932) and found that the distribution of the number of vacancies per year could be characterized by a Poisson model. This note updates this classic study.

  18. Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles

    International Nuclear Information System (INIS)

    Akemann, G.; Bender, M.

    2010-01-01

    We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.

  19. The Marginal Distributions of a Crossing Time and Renewal Numbers Related with Two Poisson Processes are as Ph-Distributions

    Directory of Open Access Journals (Sweden)

    Mir G. H. Talpur

    2006-01-01

    Full Text Available In this paper we consider, how to find the marginal distributions of crossing time and renewal numbers related with two poisson processes by using probability arguments. The obtained results show that the one-dimension marginal distributions are N+1 order PH-distributions.

  20. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

    Science.gov (United States)

    Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

    2017-11-01

    Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

  1. Poisson Processes in Free Probability

    OpenAIRE

    An, Guimei; Gao, Mingchu

    2015-01-01

    We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in classical probability. We proved that the sum of finitely many freely independent compound free Poisson processes is a compound free Poisson processes. We give a step by step procedure for constructing a (compound) free Poisso...

  2. The Poisson model limits in NBA basketball: Complexity in team sports

    Science.gov (United States)

    Martín-González, Juan Manuel; de Saá Guerra, Yves; García-Manso, Juan Manuel; Arriaza, Enrique; Valverde-Estévez, Teresa

    2016-12-01

    Team sports are frequently studied by researchers. There is presumption that scoring in basketball is a random process and that can be described using the Poisson Model. Basketball is a collaboration-opposition sport, where the non-linear local interactions among players are reflected in the evolution of the score that ultimately determines the winner. In the NBA, the outcomes of close games are often decided in the last minute, where fouls play a main role. We examined 6130 NBA games in order to analyze the time intervals between baskets and scoring dynamics. Most numbers of baskets (n) over a time interval (ΔT) follow a Poisson distribution, but some (e.g., ΔT = 10 s, n > 3) behave as a Power Law. The Poisson distribution includes most baskets in any game, in most game situations, but in close games in the last minute, the numbers of events are distributed following a Power Law. The number of events can be adjusted by a mixture of two distributions. In close games, both teams try to maintain their advantage solely in order to reach the last minute: a completely different game. For this reason, we propose to use the Poisson model as a reference. The complex dynamics will emerge from the limits of this model.

  3. Subdiffusivity of a random walk among a Poisson system of moving traps on ${\\mathbb Z}$

    OpenAIRE

    Athreya, Siva; Drewitz, Alexander; Sun, Rongfeng

    2016-01-01

    We consider a random walk among a Poisson system of moving traps on ${\\mathbb Z}$. In earlier work [DGRS12], the quenched and annealed survival probabilities of this random walk have been investigated. Here we study the path of the random walk conditioned on survival up to time $t$ in the annealed case and show that it is subdiffusive. As a by-product, we obtain an upper bound on the number of so-called thin points of a one-dimensional random walk, as well as a bound on the total volume of th...

  4. Filling of a Poisson trap by a population of random intermittent searchers

    KAUST Repository

    Bressloff, Paul C.

    2012-03-01

    We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N, we show that there exists a well-defined mean-field limit N→ in which the stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density f n(t). The latter is determined by the integrated Poisson rate μ(t)=0tλ(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion equation using a quasisteady-state analysis. We compare our analytical results for the

  5. Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks

    Science.gov (United States)

    Frahm, Klaus M.; Shepelyansky, Dima L.

    2014-04-01

    We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.

  6. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    Science.gov (United States)

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Hands-on Activity for Teaching the Poisson Distribution Using the Stock Market

    Science.gov (United States)

    Dunlap, Mickey; Studstill, Sharyn

    2014-01-01

    The number of increases a particular stock makes over a fixed period follows a Poisson distribution. This article discusses using this easily-found data as an opportunity to let students become involved in the data collection and analysis process.

  8. Alternative Forms of Compound Fractional Poisson Processes

    Directory of Open Access Journals (Sweden)

    Luisa Beghin

    2012-01-01

    Full Text Available We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012, we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators. These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one.

  9. Moments analysis of concurrent Poisson processes

    International Nuclear Information System (INIS)

    McBeth, G.W.; Cross, P.

    1975-01-01

    A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)

  10. Poisson's ratio of fiber-reinforced composites

    Science.gov (United States)

    Christiansson, Henrik; Helsing, Johan

    1996-05-01

    Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.

  11. Perbandingan Regresi Binomial Negatif dan Regresi Conway-Maxwell-Poisson dalam Mengatasi Overdispersi pada Regresi Poisson

    Directory of Open Access Journals (Sweden)

    Lusi Eka Afri

    2017-03-01

    estimation and to downward bias parameter estimation (underestimate. This study aims to compare the Negative Binomial Regression model and Conway-Maxwell-Poisson (COM- Poisson regression model to overcome over dispersion of Poisson distribution data based on deviance test statistics. The data used in this study are simulation data and applied case data. The simulation data were obtained by generating the Poisson distribution data containing over dispersion using the R programming language based on data characteristic such as ?, the probability (p of zero value and the sample size (n. The generated data is used to get the estimated parameter coefficient of the negative binomial regression and COM-Poisson. Keywords: overdispersion, negative binomial regression and Conway-Maxwell-Poisson regression

  12. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    Science.gov (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  13. Geometric discretization of the multidimensional Dirac delta distribution - Application to the Poisson equation with singular source terms

    Science.gov (United States)

    Egan, Raphael; Gibou, Frédéric

    2017-10-01

    We present a discretization method for the multidimensional Dirac distribution. We show its applicability in the context of integration problems, and for discretizing Dirac-distributed source terms in Poisson equations with constant or variable diffusion coefficients. The discretization is cell-based and can thus be applied in a straightforward fashion to Quadtree/Octree grids. The method produces second-order accurate results for integration. Superlinear convergence is observed when it is used to model Dirac-distributed source terms in Poisson equations: the observed order of convergence is 2 or slightly smaller. The method is consistent with the discretization of Dirac delta distribution for codimension one surfaces presented in [1,2]. We present Quadtree/Octree construction procedures to preserve convergence and present various numerical examples, including multi-scale problems that are intractable with uniform grids.

  14. Poisson branching point processes

    International Nuclear Information System (INIS)

    Matsuo, K.; Teich, M.C.; Saleh, B.E.A.

    1984-01-01

    We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers

  15. Saddlepoint approximation to the distribution of the total distance of the continuous time random walk

    Science.gov (United States)

    Gatto, Riccardo

    2017-12-01

    This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  16. Mixed-Poisson Point Process with Partially-Observed Covariates: Ecological Momentary Assessment of Smoking.

    Science.gov (United States)

    Neustifter, Benjamin; Rathbun, Stephen L; Shiffman, Saul

    2012-01-01

    Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.

  17. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  18. Principles of applying Poisson units in radiology

    International Nuclear Information System (INIS)

    Benyumovich, M.S.

    2000-01-01

    The probability that radioactive particles hit particular space patterns (e.g. cells in the squares of a count chamber net) and time intervals (e.g. radioactive particles hit a given area per time unit) follows the Poisson distribution. The mean is the only parameter from which all this distribution depends. A metrological base of counting the cells and radioactive particles is a property of the Poisson distribution assuming equality of a standard deviation to a root square of mean (property 1). The application of Poisson units in counting of blood formed elements and cultured cells was proposed by us (Russian Federation Patent No. 2126230). Poisson units relate to the means which make the property 1 valid. In a case of cells counting, the square of these units is equal to 1/10 of one of count chamber net where they count the cells. Thus one finds the means from the single cell count rate divided by 10. Finding the Poisson units when counting the radioactive particles should assume determination of a number of these particles sufficient to make equality 1 valid. To this end one should subdivide a time interval used in counting a single particle count rate into different number of equal portions (count numbers). Next one should pick out the count number ensuring the satisfaction of equality 1. Such a portion is taken as a Poisson unit in the radioactive particles count. If the flux of particles is controllable one should set up a count rate sufficient to make equality 1 valid. Operations with means obtained by with the use of Poisson units are performed on the base of approximation of the Poisson distribution by a normal one. (author)

  19. Lindley frailty model for a class of compound Poisson processes

    Science.gov (United States)

    Kadilar, Gamze Özel; Ata, Nihal

    2013-10-01

    The Lindley distribution gain importance in survival analysis for the similarity of exponential distribution and allowance for the different shapes of hazard function. Frailty models provide an alternative to proportional hazards model where misspecified or omitted covariates are described by an unobservable random variable. Despite of the distribution of the frailty is generally assumed to be continuous, it is appropriate to consider discrete frailty distributions In some circumstances. In this paper, frailty models with discrete compound Poisson process for the Lindley distributed failure time are introduced. Survival functions are derived and maximum likelihood estimation procedures for the parameters are studied. Then, the fit of the models to the earthquake data set of Turkey are examined.

  20. Non-uniform approximations for sums of discrete m-dependent random variables

    OpenAIRE

    Vellaisamy, P.; Cekanavicius, V.

    2013-01-01

    Non-uniform estimates are obtained for Poisson, compound Poisson, translated Poisson, negative binomial and binomial approximations to sums of of m-dependent integer-valued random variables. Estimates for Wasserstein metric also follow easily from our results. The results are then exemplified by the approximation of Poisson binomial distribution, 2-runs and $m$-dependent $(k_1,k_2)$-events.

  1. Estimation of equivalent dose and its uncertainty in the OSL SAR protocol when count numbers do not follow a Poisson distribution

    International Nuclear Information System (INIS)

    Bluszcz, Andrzej; Adamiec, Grzegorz; Heer, Aleksandra J.

    2015-01-01

    The current work focuses on the estimation of equivalent dose and its uncertainty using the single aliquot regenerative protocol in optically stimulated luminescence measurements. The authors show that the count numbers recorded with the use of photomultiplier tubes are well described by negative binomial distributions, different ones for background counts and photon induced counts. This fact is then exploited in pseudo-random count number generation and simulations of D e determination assuming a saturating exponential growth. A least squares fitting procedure is applied using different types of weights to determine whether the obtained D e 's and their error estimates are unbiased and accurate. A weighting procedure is suggested that leads to almost unbiased D e estimates. It is also shown that the assumption of Poisson distribution in D e estimation may lead to severe underestimation of the D e error. - Highlights: • Detailed analysis of statistics of count numbers in luminescence readers. • Generation of realistically scattered pseudo-random numbers of counts in luminescence measurements. • A practical guide for stringent analysis of D e values and errors assessment.

  2. On the fractal characterization of Paretian Poisson processes

    Science.gov (United States)

    Eliazar, Iddo I.; Sokolov, Igor M.

    2012-06-01

    Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.

  3. Zero inflated Poisson and negative binomial regression models: application in education.

    Science.gov (United States)

    Salehi, Masoud; Roudbari, Masoud

    2015-01-01

    The number of failed courses and semesters in students are indicators of their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of students. This cross-sectional study performed in 2008-2009 at Iran University of Medical Sciences (IUMS) with a population of almost 6000 students, 670 students selected using stratified random sampling. The educational and demographical data were collected using the University records. The study design was approved at IUMS and the students' data kept confidential. The descriptive statistics and ZI Poisson and negative binomial regressions were used to analyze the data. The data were analyzed using STATA. In the number of failed semesters, Poisson and negative binomial distributions with ZI, students' total average and quota system had the most roles. For the number of failed courses, total average, and being in undergraduate or master levels had the most effect in both models. In all models the total average have the most effect on the number of failed courses or semesters. The next important factor is quota system in failed semester and undergraduate and master levels in failed courses. Therefore, average has an important inverse effect on the numbers of failed courses and semester.

  4. Bayes allocation of the sample for estimation of the mean when each stratum has a Poisson distribution

    International Nuclear Information System (INIS)

    Wright, T.

    1983-01-01

    Consider a stratified population with L strata, so that a Poisson random variable is associated with each stratum. The parameter associated with the hth stratum is theta/sub h/, h = 1, 2, ..., L. Let ω/sub h/ be the known proportion of the population in the hth stratum, h = 1, 2, ..., L. The authors want to estimate the parameter theta = summation from h = 1 to L ω/sub h/theta/sub h/. We assume that prior information is available on theta/sub h/ and that it can be expressed in terms of a gamma distribution with parameters α/sub h/ and β/sub h/, h = 1, 2, ..., L. We also assume that the prior distributions are independent. Using squared error loss function, a Bayes allocation of total sample size with a cost constraint is given. The Bayes estimate using the Bayes allocation is shown to have an adjusted mean square error which is strictly less than the adjusted mean square error of the classical estimate using the classical allocation

  5. Poisson-process generalization for the trading waiting-time distribution in a double-auction mechanism

    Science.gov (United States)

    Cincotti, Silvano; Ponta, Linda; Raberto, Marco; Scalas, Enrico

    2005-05-01

    In this paper, empirical analyses and computational experiments are presented on high-frequency data for a double-auction (book) market. Main objective of the paper is to generalize the order waiting time process in order to properly model such empirical evidences. The empirical study is performed on the best bid and best ask data of 7 U.S. financial markets, for 30-stock time series. In particular, statistical properties of trading waiting times have been analyzed and quality of fits is evaluated by suitable statistical tests, i.e., comparing empirical distributions with theoretical models. Starting from the statistical studies on real data, attention has been focused on the reproducibility of such results in an artificial market. The computational experiments have been performed within the Genoa Artificial Stock Market. In the market model, heterogeneous agents trade one risky asset in exchange for cash. Agents have zero intelligence and issue random limit or market orders depending on their budget constraints. The price is cleared by means of a limit order book. The order generation is modelled with a renewal process. Based on empirical trading estimation, the distribution of waiting times between two consecutive orders is modelled by a mixture of exponential processes. Results show that the empirical waiting-time distribution can be considered as a generalization of a Poisson process. Moreover, the renewal process can approximate real data and implementation on the artificial stocks market can reproduce the trading activity in a realistic way.

  6. Poisson-like shape and shoulder structure of hadron multiplicity distributions in e+e- annihilation at Z0 energy region

    International Nuclear Information System (INIS)

    Xie Yigang; Chai Yong

    1994-01-01

    The charged multiplicity distributions of hadron final states in the e + e - annihilation at the 91.2 GeV Z 0 energy region are fitted with Poisson shape in different rapidity windows for double and single hemisphere. The multiplicities which are in Poisson-like shapes can be got according to the parameter /D and fitting qualities are compared with the results derived from the relevant theoretical models. The relationship between the Poisson-like shape and KNO scaling is discussed. The connection between the parameters expressing the deviation from the Poisson shape and non-independent particle emission and multiplicity correlation strength is analyzed. The 'shoulder structure' is observed in the central rapidity region and analyzed with multi-jets by using the JADE jet analysis algorithm

  7. A note on asymptotic expansions for sums over a weakly dependent random field with application to the Poisson and Strauss processes

    DEFF Research Database (Denmark)

    Jensen, J.L.

    1993-01-01

    Previous results on Edgeworth expansions for sums over a random field are extended to the case where the strong mixing coefficient depends not only on the distance between two sets of random variables, but also on the size of the two sets. The results are applied to the Poisson and the Strauss...

  8. Nonlocal Poisson-Fermi model for ionic solvent.

    Science.gov (United States)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  9. A Poisson-like closed-form expression for the steady-state wealth distribution in a kinetic model of gambling

    Science.gov (United States)

    Garcia, Jane Bernadette Denise M.; Esguerra, Jose Perico H.

    2017-08-01

    An approximate but closed-form expression for a Poisson-like steady state wealth distribution in a kinetic model of gambling was formulated from a finite number of its moments, which were generated from a βa,b(x) exchange distribution. The obtained steady-state wealth distributions have tails which are qualitatively similar to those observed in actual wealth distributions.

  10. A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution.

    Science.gov (United States)

    Seong, Ki Moon; Park, Hweon; Kim, Seong Jung; Ha, Hyo Nam; Lee, Jae Yung; Kim, Joon

    2007-06-01

    A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.

  11. Stochastic interest model driven by compound Poisson process andBrownian motion with applications in life contingencies

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2018-03-01

    Full Text Available In this paper, we introduce a class of stochastic interest model driven by a compoundPoisson process and a Brownian motion, in which the jumping times of force of interest obeyscompound Poisson process and the continuous tiny fluctuations are described by Brownian motion, andthe adjustment in each jump of interest force is assumed to be random. Based on the proposed interestmodel, we discuss the expected discounted function, the validity of the model and actuarial presentvalues of life annuities and life insurances under different parameters and distribution settings. Ournumerical results show actuarial values could be sensitive to the parameters and distribution settings,which shows the importance of introducing this kind interest model.

  12. Multivariate fractional Poisson processes and compound sums

    OpenAIRE

    Beghin, Luisa; Macci, Claudio

    2015-01-01

    In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.

  13. Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest

    Science.gov (United States)

    Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.

    2018-04-01

    Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction.

  14. Nonhomogeneous Poisson process with nonparametric frailty

    International Nuclear Information System (INIS)

    Slimacek, Vaclav; Lindqvist, Bo Henry

    2016-01-01

    The failure processes of heterogeneous repairable systems are often modeled by non-homogeneous Poisson processes. The common way to describe an unobserved heterogeneity between systems is to multiply the basic rate of occurrence of failures by a random variable (a so-called frailty) having a specified parametric distribution. Since the frailty is unobservable, the choice of its distribution is a problematic part of using these models, as are often the numerical computations needed in the estimation of these models. The main purpose of this paper is to develop a method for estimation of the parameters of a nonhomogeneous Poisson process with unobserved heterogeneity which does not require parametric assumptions about the heterogeneity and which avoids the frequently encountered numerical problems associated with the standard models for unobserved heterogeneity. The introduced method is illustrated on an example involving the power law process, and is compared to the standard gamma frailty model and to the classical model without unobserved heterogeneity. The derived results are confirmed in a simulation study which also reveals several not commonly known properties of the gamma frailty model and the classical model, and on a real life example. - Highlights: • A new method for estimation of a NHPP with frailty is introduced. • Introduced method does not require parametric assumptions about frailty. • The approach is illustrated on an example with the power law process. • The method is compared to the gamma frailty model and to the model without frailty.

  15. Generalized master equations for non-Poisson dynamics on networks.

    Science.gov (United States)

    Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud

    2012-10-01

    The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.

  16. Intertime jump statistics of state-dependent Poisson processes.

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  17. The Fractional Poisson Process and the Inverse Stable Subordinator

    OpenAIRE

    Meerschaert, Mark; Nane, Erkan; Vellaisamy, P.

    2011-01-01

    The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extend...

  18. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    Science.gov (United States)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  19. A heuristic for the distribution of point counts for random curves over a finite field.

    Science.gov (United States)

    Achter, Jeffrey D; Erman, Daniel; Kedlaya, Kiran S; Wood, Melanie Matchett; Zureick-Brown, David

    2015-04-28

    How many rational points are there on a random algebraic curve of large genus g over a given finite field Fq? We propose a heuristic for this question motivated by a (now proven) conjecture of Mumford on the cohomology of moduli spaces of curves; this heuristic suggests a Poisson distribution with mean q+1+1/(q-1). We prove a weaker version of this statement in which g and q tend to infinity, with q much larger than g. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra

    OpenAIRE

    Lecoutre, César

    2014-01-01

    We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...

  1. Universal Poisson Statistics of mRNAs with Complex Decay Pathways.

    Science.gov (United States)

    Thattai, Mukund

    2016-01-19

    Messenger RNA (mRNA) dynamics in single cells are often modeled as a memoryless birth-death process with a constant probability per unit time that an mRNA molecule is synthesized or degraded. This predicts a Poisson steady-state distribution of mRNA number, in close agreement with experiments. This is surprising, since mRNA decay is known to be a complex process. The paradox is resolved by realizing that the Poisson steady state generalizes to arbitrary mRNA lifetime distributions. A mapping between mRNA dynamics and queueing theory highlights an identifiability problem: a measured Poisson steady state is consistent with a large variety of microscopic models. Here, I provide a rigorous and intuitive explanation for the universality of the Poisson steady state. I show that the mRNA birth-death process and its complex decay variants all take the form of the familiar Poisson law of rare events, under a nonlinear rescaling of time. As a corollary, not only steady-states but also transients are Poisson distributed. Deviations from the Poisson form occur only under two conditions, promoter fluctuations leading to transcriptional bursts or nonindependent degradation of mRNA molecules. These results place severe limits on the power of single-cell experiments to probe microscopic mechanisms, and they highlight the need for single-molecule measurements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Limitations of Poisson statistics in describing radioactive decay.

    Science.gov (United States)

    Sitek, Arkadiusz; Celler, Anna M

    2015-12-01

    The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    International Nuclear Information System (INIS)

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-01-01

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt –γ . The SEEs display a broken power-law WTD. The power-law index is γ 1 = 0.99 for the short waiting times (<70 hr) and γ 2 = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ –α exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt α –3 , where 0 ≤ α < 2

  4. Confidence limits for parameters of Poisson and binomial distributions

    International Nuclear Information System (INIS)

    Arnett, L.M.

    1976-04-01

    The confidence limits for the frequency in a Poisson process and for the proportion of successes in a binomial process were calculated and tabulated for the situations in which the observed values of the frequency or proportion and an a priori distribution of these parameters are available. Methods are used that produce limits with exactly the stated confidence levels. The confidence interval [a,b] is calculated so that Pr [a less than or equal to lambda less than or equal to b c,μ], where c is the observed value of the parameter, and μ is the a priori hypothesis of the distribution of this parameter. A Bayesian type analysis is used. The intervals calculated are narrower and appreciably different from results, known to be conservative, that are often used in problems of this type. Pearson and Hartley recognized the characteristics of their methods and contemplated that exact methods could someday be used. The calculation of the exact intervals requires involved numerical analyses readily implemented only on digital computers not available to Pearson and Hartley. A Monte Carlo experiment was conducted to verify a selected interval from those calculated. This numerical experiment confirmed the results of the analytical methods and the prediction of Pearson and Hartley that their published tables give conservative results

  5. Two new bivariate zero-inflated generalized Poisson distributions with a flexible correlation structure

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2015-05-01

    Full Text Available To model correlated bivariate count data with extra zero observations, this paper proposes two new bivariate zero-inflated generalized Poisson (ZIGP distributions by incorporating a multiplicative factor (or dependency parameter λ, named as Type I and Type II bivariate ZIGP distributions, respectively. The proposed distributions possess a flexible correlation structure and can be used to fit either positively or negatively correlated and either over- or under-dispersed count data, comparing to the existing models that can only fit positively correlated count data with over-dispersion. The two marginal distributions of Type I bivariate ZIGP share a common parameter of zero inflation while the two marginal distributions of Type II bivariate ZIGP have their own parameters of zero inflation, resulting in a much wider range of applications. The important distributional properties are explored and some useful statistical inference methods including maximum likelihood estimations of parameters, standard errors estimation, bootstrap confidence intervals and related testing hypotheses are developed for the two distributions. A real data are thoroughly analyzed by using the proposed distributions and statistical methods. Several simulation studies are conducted to evaluate the performance of the proposed methods.

  6. Independence of the effective dielectric constant of an electrolytic solution on the ionic distribution in the linear Poisson-Nernst-Planck model.

    Science.gov (United States)

    Alexe-Ionescu, A L; Barbero, G; Lelidis, I

    2014-08-28

    We consider the influence of the spatial dependence of the ions distribution on the effective dielectric constant of an electrolytic solution. We show that in the linear version of the Poisson-Nernst-Planck model, the effective dielectric constant of the solution has to be considered independent of any ionic distribution induced by the external field. This result follows from the fact that, in the linear approximation of the Poisson-Nernst-Planck model, the redistribution of the ions in the solvent due to the external field gives rise to a variation of the dielectric constant that is of the first order in the effective potential, and therefore it has to be neglected in the Poisson's equation that relates the actual electric potential across the electrolytic cell to the bulk density of ions. The analysis is performed in the case where the electrodes are perfectly blocking and the adsorption at the electrodes is negligible, and in the absence of any ion dissociation-recombination effect.

  7. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    Science.gov (United States)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also

  8. Test of Poisson Process for Earthquakes in and around Korea

    International Nuclear Information System (INIS)

    Noh, Myunghyun; Choi, Hoseon

    2015-01-01

    Since Cornell's work on the probabilistic seismic hazard analysis (hereafter, PSHA), majority of PSHA computer codes are assuming that the earthquake occurrence is Poissonian. To the author's knowledge, it is uncertain who first opened the issue of the Poisson process for the earthquake occurrence. The systematic PSHA in Korea, led by the nuclear industry, were carried out for more than 25 year with the assumption of the Poisson process. However, the assumption of the Poisson process has never been tested. Therefore, the test is of significance. We tested whether the Korean earthquakes follow the Poisson process or not. The Chi-square test with the significance level of 5% was applied. The test turned out that the Poisson process could not be rejected for the earthquakes of magnitude 2.9 or larger. However, it was still observed in the graphical comparison that some portion of the observed distribution significantly deviated from the Poisson distribution. We think this is due to the small earthquake data. The earthquakes of magnitude 2.9 or larger occurred only 376 times during 34 years. Therefore, the judgment on the Poisson process derived in the present study is not conclusive

  9. Modeling laser velocimeter signals as triply stochastic Poisson processes

    Science.gov (United States)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  10. Study on two-dimensional POISSON design of large-scale FFAG magnet

    International Nuclear Information System (INIS)

    Ouyang Huafu

    2006-01-01

    In order to decrease the edge effect of the field, the designed magnetic field distribution in a large-scale FFAG magnet is realized by both the trim coil and the shape of the magnet pole-face. Through two-dimensional POISSON simulations, the distribution about the current and the position of the trim coil and the shape of the magnet pole are determined. In order to facilitate the POISSON design, two codes are writteen to automatically adjust the current and the position of the trim coil and the shape of magnet pole-face appeared in the POISSON input file. With the two codes, the efficiency of POISSON simulations is improved and the mistakes which might occur in writing and adjusting the POISSON input file manually could be avoided. (authors)

  11. Differential expression analysis for RNAseq using Poisson mixed models.

    Science.gov (United States)

    Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang

    2017-06-20

    Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Double generalized linear compound poisson models to insurance claims data

    DEFF Research Database (Denmark)

    Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo

    2017-01-01

    This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....

  13. Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.

    Science.gov (United States)

    Frejlich, Pedro; Mărcuț, Ioan

    2018-01-01

    Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.

  14. Comparison of Poisson structures and Poisson-Lie dynamical r-matrices

    OpenAIRE

    Enriquez, B.; Etingof, P.; Marshall, I.

    2004-01-01

    We construct a Poisson isomorphism between the formal Poisson manifolds g^* and G^*, where g is a finite dimensional quasitriangular Lie bialgebra. Here g^* is equipped with its Lie-Poisson (or Kostant-Kirillov-Souriau) structure, and G^* with its Poisson-Lie structure. We also quantize Poisson-Lie dynamical r-matrices of Balog-Feher-Palla.

  15. On Poisson functions

    OpenAIRE

    Terashima, Yuji

    2008-01-01

    In this paper, defining Poisson functions on super manifolds, we show that the graphs of Poisson functions are Dirac structures, and find Poisson functions which include as special cases both quasi-Poisson structures and twisted Poisson structures.

  16. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    Science.gov (United States)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  17. PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON

    Directory of Open Access Journals (Sweden)

    PUTU SUSAN PRADAWATI

    2013-09-01

    Full Text Available Poisson regression was used to analyze the count data which Poisson distributed. Poisson regression analysis requires state equidispersion, in which the mean value of the response variable is equal to the value of the variance. However, there are deviations in which the value of the response variable variance is greater than the mean. This is called overdispersion. If overdispersion happens and Poisson Regression analysis is being used, then underestimated standard errors will be obtained. Negative Binomial Regression can handle overdispersion because it contains a dispersion parameter. From the simulation data which experienced overdispersion in the Poisson Regression model it was found that the Negative Binomial Regression was better than the Poisson Regression model.

  18. A random matrix approach to the crossover of energy-level statistics from Wigner to Poisson

    International Nuclear Information System (INIS)

    Datta, Nilanjana; Kunz, Herve

    2004-01-01

    We analyze a class of parametrized random matrix models, introduced by Rosenzweig and Porter, which is expected to describe the energy level statistics of quantum systems whose classical dynamics varies from regular to chaotic as a function of a parameter. We compute the generating function for the correlations of energy levels, in the limit of infinite matrix size. The crossover between Poisson and Wigner statistics is measured by a renormalized coupling constant. The model is exactly solved in the sense that, in the limit of infinite matrix size, the energy-level correlation functions and their generating function are given in terms of a finite set of integrals

  19. Formal equivalence of Poisson structures around Poisson submanifolds

    NARCIS (Netherlands)

    Marcut, I.T.

    2012-01-01

    Let (M,π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives rise to a Lie algebroid AP → P. Formal deformations of π around P are controlled by certain cohomology groups associated to AP. Assuming that these groups vanish, we prove that π is formally rigid around P; that is, any other Poisson

  20. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  1. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  2. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  3. Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.

    Science.gov (United States)

    Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique

    2015-05-01

    The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.

  4. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    OpenAIRE

    Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

    2017-01-01

    Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

  5. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    Science.gov (United States)

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  6. Fractional Poisson process (II)

    International Nuclear Information System (INIS)

    Wang Xiaotian; Wen Zhixiong; Zhang Shiying

    2006-01-01

    In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution

  7. Poisson solvers for self-consistent multi-particle simulations

    International Nuclear Information System (INIS)

    Qiang, J; Paret, S

    2014-01-01

    Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation

  8. Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Den Hartog, D.J.

    1996-06-01

    The fitting of data by χ 2 -minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimates for the fit parameters. They compare this method with a χ 2 -minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than ∼20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers

  9. Relaxed Poisson cure rate models.

    Science.gov (United States)

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  11. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  12. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag

    This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...

  13. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag

    This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model...

  14. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  15. The negative binomial distribution as a model for external corrosion defect counts in buried pipelines

    International Nuclear Information System (INIS)

    Valor, Alma; Alfonso, Lester; Caleyo, Francisco; Vidal, Julio; Perez-Baruch, Eloy; Hallen, José M.

    2015-01-01

    Highlights: • Observed external-corrosion defects in underground pipelines revealed a tendency to cluster. • The Poisson distribution is unable to fit extensive count data for these type of defects. • In contrast, the negative binomial distribution provides a suitable count model for them. • Two spatial stochastic processes lead to the negative binomial distribution for defect counts. • They are the Gamma-Poisson mixed process and the compound Poisson process. • A Rogeŕs process also arises as a plausible temporal stochastic process leading to corrosion defect clustering and to negative binomially distributed defect counts. - Abstract: The spatial distribution of external corrosion defects in buried pipelines is usually described as a Poisson process, which leads to corrosion defects being randomly distributed along the pipeline. However, in real operating conditions, the spatial distribution of defects considerably departs from Poisson statistics due to the aggregation of defects in groups or clusters. In this work, the statistical analysis of real corrosion data from underground pipelines operating in southern Mexico leads to conclude that the negative binomial distribution provides a better description for defect counts. The origin of this distribution from several processes is discussed. The analysed processes are: mixed Gamma-Poisson, compound Poisson and Roger’s processes. The physical reasons behind them are discussed for the specific case of soil corrosion.

  16. Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.

    Science.gov (United States)

    Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah

    2012-01-01

    Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression. © 2011 Society for Risk Analysis.

  17. MEASUREMENT ERROR EFFECT ON THE POWER OF CONTROL CHART FOR ZERO-TRUNCATED POISSON DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Ashit Chakraborty

    2013-09-01

    Full Text Available Measurement error is the difference between the true value and the measured value of a quantity that exists in practice and may considerably affect the performance of control charts in some cases. Measurement error variability has uncertainty which can be from several sources. In this paper, we have studied the effect of these sources of variability on the power characteristics of control chart and obtained the values of average run length (ARL for zero-truncated Poisson distribution (ZTPD. Expression of the power of control chart for variable sample size under standardized normal variate for ZTPD is also derived.

  18. POISSON, Analysis Solution of Poisson Problems in Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1986-01-01

    1 - Description of program or function: Purpose of program: Analytic treatment of two-stage Poisson problem in Probabilistic Risk Assessment. Input: estimated a-priori mean failure rate and error factor of system considered (for calculation of stage-1 prior), number of failures and operating times for similar systems (for calculation of stage-2 prior). Output: a-posteriori probability distributions on linear and logarithmic time scale (on specified time grid) and expectation values of failure rate and error factors are calculated for: - stage-1 a-priori distribution, - stage-1 a-posteriori distribution, - stage-2 a-priori distribution, - stage-2 a-posteriori distribution. 2 - Method of solution: Bayesian approach with conjugate stage-1 prior, improved with experience from similar systems to yield stage-2 prior, and likelihood function from experience with system under study (documentation see below under 10.). 3 - Restrictions on the complexity of the problem: Up to 100 similar systems (including the system considered), arbitrary number of problems (failure types) with same grid

  19. Beating the odds: The poisson distribution of all input cells during limiting dilution grossly underestimates whether a cell line is clonally-derived or not.

    Science.gov (United States)

    Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram

    2017-09-23

    Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.

  20. Topological Poisson Sigma models on Poisson-Lie groups

    International Nuclear Information System (INIS)

    Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David

    2003-01-01

    We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)

  1. Elementary Statistical Models for Vector Collision-Sequence Interference Effects with Poisson-Distributed Collision Times

    International Nuclear Information System (INIS)

    Lewis, J.C.

    2011-01-01

    In a recent paper (Lewis, 2008) a class of models suitable for application to collision-sequence interference was introduced. In these models velocities are assumed to be completely randomized in each collision. The distribution of velocities was assumed to be Gaussian. The integrated induced dipole moment μk, for vector interference, or the scalar modulation μk, for scalar interference, was assumed to be a function of the impulse (integrated force) fk, or its magnitude fk, experienced by the molecule in a collision. For most of (Lewis, 2008) it was assumed that μk fk and μk fk, but it proved to be possible to extend the models, so that the magnitude of the induced dipole moment is equal to an arbitrary power or sum of powers of the intermolecular force. This allows estimates of the in filling of the interference dip by the dis proportionality of the induced dipole moment and force. One particular such model, using data from (Herman and Lewis, 2006), leads to the most realistic estimate for the in filling of the vector interference dip yet obtained. In (Lewis, 2008) the drastic assumption was made that collision times occurred at equal intervals. In the present paper that assumption is removed: the collision times are taken to form a Poisson process. This is much more realistic than the equal-intervals assumption. The interference dip is found to be a Lorentzian in this model

  2. Reliability Analysis of a Cold Standby System with Imperfect Repair and under Poisson Shocks

    Directory of Open Access Journals (Sweden)

    Yutian Chen

    2014-01-01

    Full Text Available This paper considers the reliability analysis of a two-component cold standby system with a repairman who may have vacation. The system may fail due to intrinsic factors like aging or deteriorating, or external factors such as Poisson shocks. The arrival time of the shocks follows a Poisson process with the intensity λ>0. Whenever the magnitude of a shock is larger than the prespecified threshold of the operating component, the operating component will fail. The paper assumes that the intrinsic lifetime and the repair time on the component are an extended Poisson process, the magnitude of the shock and the threshold of the operating component are nonnegative random variables, and the vacation time of the repairman obeys the general continuous probability distribution. By using the vector Markov process theory, the supplementary variable method, Laplace transform, and Tauberian theory, the paper derives a number of reliability indices: system availability, system reliability, the rate of occurrence of the system failure, and the mean time to the first failure of the system. Finally, a numerical example is given to validate the derived indices.

  3. Radio pulsar glitches as a state-dependent Poisson process

    Science.gov (United States)

    Fulgenzi, W.; Melatos, A.; Hughes, B. D.

    2017-10-01

    Gross-Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited computationally to ≲102 vortices and ≲102 avalanches, making it hard to study the long-term statistics of radio pulsar glitches in realistically sized systems. Here, an idealized, mean-field model of the observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a state-dependent, compound Poisson process in a single random variable, the spatially averaged crust-superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-driven lag decrements are inputs into the model, which is solved numerically (via Monte Carlo simulations) and analytically (via a master equation). The output statistics are controlled by two dimensionless free parameters: α, the glitch rate at a reference lag, multiplied by the critical lag for unpinning, divided by the spin-down rate; and β, the minimum fraction of the lag that can be restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose properties are determined by α/αc(β), where αc(β) ≈ β-1/2 is a transition value. In the regime α ≳ αc(β), one recovers qualitatively the power-law size and exponential waiting-time distributions observed in many radio pulsars and Gross-Pitaevskii simulations. For α ≪ αc(β), the size and waiting-time distributions are both power-law-like, and a correlation emerges between size and waiting time until the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data are restricted by the small sample sizes available at present, with ≤35 events observed per pulsar.

  4. Systematic review of treatment modalities for gingival depigmentation: a random-effects poisson regression analysis.

    Science.gov (United States)

    Lin, Yi Hung; Tu, Yu Kang; Lu, Chun Tai; Chung, Wen Chen; Huang, Chiung Fang; Huang, Mao Suan; Lu, Hsein Kun

    2014-01-01

    Repigmentation variably occurs with different treatment methods in patients with gingival pigmentation. A systemic review was conducted of various treatment modalities for eliminating melanin pigmentation of the gingiva, comprising bur abrasion, scalpel surgery, cryosurgery, electrosurgery, gingival grafts, and laser techniques, to compare the recurrence rates (Rrs) of these treatment procedures. Electronic databases, including PubMed, Web of Science, Google, and Medline were comprehensively searched, and manual searches were conducted for studies published from January 1951 to June 2013. After applying inclusion and exclusion criteria, the final list of articles was reviewed in depth to achieve the objectives of this review. A Poisson regression was used to analyze the outcome of depigmentation using the various treatment methods. The systematic review was based on case reports mainly. In total, 61 eligible publications met the defined criteria. The various therapeutic procedures showed variable clinical results with a wide range of Rrs. A random-effects Poisson regression showed that cryosurgery (Rr = 0.32%), electrosurgery (Rr = 0.74%), and laser depigmentation (Rr = 1.16%) yielded superior result, whereas bur abrasion yielded the highest Rr (8.89%). Within the limit of the sampling level, the present evidence-based results show that cryosurgery exhibits the optimal predictability for depigmentation of the gingiva among all procedures examined, followed by electrosurgery and laser techniques. It is possible to treat melanin pigmentation of the gingiva with various methods and prevent repigmentation. Among those treatment modalities, cryosurgery, electrosurgery, and laser surgery appear to be the best choices for treating gingival pigmentation. © 2014 Wiley Periodicals, Inc.

  5. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.

    Science.gov (United States)

    Chen, Duan

    2017-11-01

    In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.

  6. Poisson point processes imaging, tracking, and sensing

    CERN Document Server

    Streit, Roy L

    2010-01-01

    This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection.

  7. The probability distribution of extreme precipitation

    Science.gov (United States)

    Korolev, V. Yu.; Gorshenin, A. K.

    2017-12-01

    On the basis of the negative binomial distribution of the duration of wet periods calculated per day, an asymptotic model is proposed for distributing the maximum daily rainfall volume during the wet period, having the form of a mixture of Frechet distributions and coinciding with the distribution of the positive degree of a random variable having the Fisher-Snedecor distribution. The method of proving the corresponding result is based on limit theorems for extreme order statistics in samples of a random volume with a mixed Poisson distribution. The adequacy of the models proposed and methods of their statistical analysis is demonstrated by the example of estimating the extreme distribution parameters based on real data.

  8. Variational Gaussian approximation for Poisson data

    Science.gov (United States)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  9. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  10. NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes

    Directory of Open Access Journals (Sweden)

    Ana C. Cebrián

    2015-03-01

    Full Text Available NHPoisson is an R package for the modeling of nonhomogeneous Poisson processes in one dimension. It includes functions for data preparation, maximum likelihood estimation, covariate selection and inference based on asymptotic distributions and simulation methods. It also provides specific methods for the estimation of Poisson processes resulting from a peak over threshold approach. In addition, the package supports a wide range of model validation tools and functions for generating nonhomogenous Poisson process trajectories. This paper is a description of the package and aims to help those interested in modeling data using nonhomogeneous Poisson processes.

  11. Fractional poisson--a simple dose-response model for human norovirus.

    Science.gov (United States)

    Messner, Michael J; Berger, Philip; Nappier, Sharon P

    2014-10-01

    This study utilizes old and new Norovirus (NoV) human challenge data to model the dose-response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta-Poisson dose-response model that includes parameters for virus aggregation and for a beta-distribution that describes variable susceptibility among hosts. The quality of the beta-Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two-parameter beta-distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta-Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta-Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta-Poisson model. At low, environmentally relevant exposure levels (Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low-dose data would be of great value to further clarify the NoV dose-response relationship and to support improved risk assessment for environmentally relevant exposures. © 2014 Society for Risk Analysis Published 2014. This article is a U.S. Government work and is in the public domain for the U.S.A.

  12. Measured PET Data Characterization with the Negative Binomial Distribution Model.

    Science.gov (United States)

    Santarelli, Maria Filomena; Positano, Vincenzo; Landini, Luigi

    2017-01-01

    Accurate statistical model of PET measurements is a prerequisite for a correct image reconstruction when using statistical image reconstruction algorithms, or when pre-filtering operations must be performed. Although radioactive decay follows a Poisson distribution, deviation from Poisson statistics occurs on projection data prior to reconstruction due to physical effects, measurement errors, correction of scatter and random coincidences. Modelling projection data can aid in understanding the statistical nature of the data in order to develop efficient processing methods and to reduce noise. This paper outlines the statistical behaviour of measured emission data evaluating the goodness of fit of the negative binomial (NB) distribution model to PET data for a wide range of emission activity values. An NB distribution model is characterized by the mean of the data and the dispersion parameter α that describes the deviation from Poisson statistics. Monte Carlo simulations were performed to evaluate: (a) the performances of the dispersion parameter α estimator, (b) the goodness of fit of the NB model for a wide range of activity values. We focused on the effect produced by correction for random and scatter events in the projection (sinogram) domain, due to their importance in quantitative analysis of PET data. The analysis developed herein allowed us to assess the accuracy of the NB distribution model to fit corrected sinogram data, and to evaluate the sensitivity of the dispersion parameter α to quantify deviation from Poisson statistics. By the sinogram ROI-based analysis, it was demonstrated that deviation on the measured data from Poisson statistics can be quantitatively characterized by the dispersion parameter α, in any noise conditions and corrections.

  13. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.

    Science.gov (United States)

    de Nijs, Robin

    2015-07-21

    In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.

  14. Bayesian regression of piecewise homogeneous Poisson processes

    Directory of Open Access Journals (Sweden)

    Diego Sevilla

    2015-12-01

    Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015

  15. GEPOIS: a two dimensional nonuniform mesh Poisson solver

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Freeman, J.R.

    1979-06-01

    A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces

  16. Evaluating the double Poisson generalized linear model.

    Science.gov (United States)

    Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique

    2013-10-01

    The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag

    2009-01-01

    In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric...

  18. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'

    DEFF Research Database (Denmark)

    de Nijs, Robin

    2015-01-01

    In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed...... by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all...... methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics...

  19. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    International Nuclear Information System (INIS)

    Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.

    2016-01-01

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes

  20. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.

    Science.gov (United States)

    Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  1. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  2. Efficient Levenberg-Marquardt minimization of the maximum likelihood estimator for Poisson deviates

    International Nuclear Information System (INIS)

    Laurence, T.; Chromy, B.

    2010-01-01

    Histograms of counted events are Poisson distributed, but are typically fitted without justification using nonlinear least squares fitting. The more appropriate maximum likelihood estimator (MLE) for Poisson distributed data is seldom used. We extend the use of the Levenberg-Marquardt algorithm commonly used for nonlinear least squares minimization for use with the MLE for Poisson distributed data. In so doing, we remove any excuse for not using this more appropriate MLE. We demonstrate the use of the algorithm and the superior performance of the MLE using simulations and experiments in the context of fluorescence lifetime imaging. Scientists commonly form histograms of counted events from their data, and extract parameters by fitting to a specified model. Assuming that the probability of occurrence for each bin is small, event counts in the histogram bins will be distributed according to the Poisson distribution. We develop here an efficient algorithm for fitting event counting histograms using the maximum likelihood estimator (MLE) for Poisson distributed data, rather than the non-linear least squares measure. This algorithm is a simple extension of the common Levenberg-Marquardt (L-M) algorithm, is simple to implement, quick and robust. Fitting using a least squares measure is most common, but it is the maximum likelihood estimator only for Gaussian-distributed data. Non-linear least squares methods may be applied to event counting histograms in cases where the number of events is very large, so that the Poisson distribution is well approximated by a Gaussian. However, it is not easy to satisfy this criterion in practice - which requires a large number of events. It has been well-known for years that least squares procedures lead to biased results when applied to Poisson-distributed data; a recent paper providing extensive characterization of these biases in exponential fitting is given. The more appropriate measure based on the maximum likelihood estimator (MLE

  3. A Generalized QMRA Beta-Poisson Dose-Response Model.

    Science.gov (United States)

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.

  4. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    Science.gov (United States)

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  5. Random walk on random walks

    NARCIS (Netherlands)

    Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.

    2014-01-01

    In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to

  6. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.

    Science.gov (United States)

    Poplová, Michaela; Sovka, Pavel; Cifra, Michal

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.

  7. A stochastic model for stationary dynamics of prices in real estate markets. A case of random intensity for Poisson moments of prices changes

    Science.gov (United States)

    Rusakov, Oleg; Laskin, Michael

    2017-06-01

    We consider a stochastic model of changes of prices in real estate markets. We suppose that in a book of prices the changes happen in points of jumps of a Poisson process with a random intensity, i.e. moments of changes sequently follow to a random process of the Cox process type. We calculate cumulative mathematical expectations and variances for the random intensity of this point process. In the case that the process of random intensity is a martingale the cumulative variance has a linear grows. We statistically process a number of observations of real estate prices and accept hypotheses of a linear grows for estimations as well for cumulative average, as for cumulative variance both for input and output prises that are writing in the book of prises.

  8. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.

    Science.gov (United States)

    Zhang, Jiachao; Hirakawa, Keigo

    2017-04-01

    This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.

  9. Singular Poisson tensors

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1982-01-01

    The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular

  10. Nambu–Poisson gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)

    2014-06-02

    We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.

  11. Nambu–Poisson gauge theory

    International Nuclear Information System (INIS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-01-01

    We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.

  12. A Note On the Estimation of the Poisson Parameter

    Directory of Open Access Journals (Sweden)

    S. S. Chitgopekar

    1985-01-01

    distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.

  13. Spectral statistics in semiclassical random-matrix ensembles

    International Nuclear Information System (INIS)

    Feingold, M.; Leitner, D.M.; Wilkinson, M.

    1991-01-01

    A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms

  14. A comparison between Poisson and zero-inflated Poisson regression models with an application to number of black spots in Corriedale sheep

    Directory of Open Access Journals (Sweden)

    Rodrigues-Motta Mariana

    2008-07-01

    Full Text Available Abstract Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep.

  15. Application of zero-inflated poisson mixed models in prognostic factors of hepatitis C.

    Science.gov (United States)

    Akbarzadeh Baghban, Alireza; Pourhoseingholi, Asma; Zayeri, Farid; Jafari, Ali Akbar; Alavian, Seyed Moayed

    2013-01-01

    In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic factors of hepatitis C. The data was collected from a longitudinal study during 2005-2010. First, mixed Poisson regression (PR) model was fitted to the data. Then, a mixed zero-inflated Poisson model was fitted with compound Poisson random effects. For evaluating the performance of the proposed mixed model, standard errors of estimators were compared. The results obtained from mixed PR showed that genotype 3 and treatment protocol were statistically significant. Results of zero-inflated Poisson mixed model showed that age, sex, genotypes 2 and 3, the treatment protocol, and having risk factors had significant effects on viral load of HCV patients. Of these two models, the estimators of zero-inflated Poisson mixed model had the minimum standard errors. The results showed that a mixed zero-inflated Poisson model was the almost best fit. The proposed model can capture serial dependence, additional overdispersion, and excess zeros in the longitudinal count data.

  16. Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation

    Directory of Open Access Journals (Sweden)

    Wantao Jia

    2018-02-01

    Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.

  17. Optimized thick-wall cylinders by virtue of Poisson's ratio selection

    International Nuclear Information System (INIS)

    Whitty, J.P.M.; Henderson, B.; Francis, J.; Lloyd, N.

    2011-01-01

    The principal stress distributions in thick-wall cylinders due to variation in the Poisson's ratio are predicted using analytical and finite element methods. Analyses of appropriate brittle and ductile failure criteria show that under the isochoric pressure conditions investigated that auextic (i.e. those possessing a negative Poisson's ratio) materials act as stress concentrators; hence they are predicted to fail before their conventional (i.e. possessing a positive Poisson's ratio) material counterparts. The key finding of the work presented shows that for constrained thick-wall cylinders the maximum tensile principal stress can vanish at a particular Poisson's ratio and aspect ratio. This phenomenon is exploited in order to present an optimized design criterion for thick-wall cylinders. Moreover, via the use of a cogent finite element model, this criterion is also shown to be applicable for the design of micro-porous materials.

  18. [Downscaling research of spatial distribution of incidence of hand foot and mouth disease based on area-to-area Poisson Kriging method].

    Science.gov (United States)

    Wang, J X; Hu, M G; Yu, S C; Xiao, G X

    2017-09-10

    Objective: To understand the spatial distribution of incidence of hand foot and mouth disease (HFMD) at scale of township and provide evidence for the better prevention and control of HFMD and allocation of medical resources. Methods: The incidence data of HFMD in 108 counties (district) in Shandong province in 2010 were collected. Downscaling interpolation was conducted by using area-to-area Poisson Kriging method. The interpolation results were visualized by using geographic information system (GIS). The county (district) incidence was interpolated into township incidence to get the distribution of spatial distribution of incidence of township. Results: In the downscaling interpolation, the range of the fitting semi-variance equation was 20.38 km. Within the range, the incidence had correlation with each other. The fitting function of scatter diagram of estimated and actual incidence of HFMD at country level was y =1.053 1 x , R (2)=0.99. The incidences at different scale were consistent. Conclusions: The incidence of HFMD had spatial autocorrelation within 20.38 km. When HFMD occurs in one place, it is necessary to strengthen the surveillance and allocation of medical resource in the surrounding area within 20.38 km. Area to area Poisson Kriging method based downscaling research can be used in spatial visualization of HFMD incidence.

  19. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    International Nuclear Information System (INIS)

    Theodorsen, A; Garcia, O E; Rypdal, M

    2017-01-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type. (paper)

  20. On the Distribution of Random Geometric Graphs

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Coon, Justin P.

    2018-01-01

    as a measure of the graph’s topological uncertainty (or information content). Moreover, the distribution is also relevant for determining average network performance or designing protocols. However, a major impediment in deducing the graph distribution is that it requires the joint probability distribution......Random geometric graphs (RGGs) are commonly used to model networked systems that depend on the underlying spatial embedding. We concern ourselves with the probability distribution of an RGG, which is crucial for studying its random topology, properties (e.g., connectedness), or Shannon entropy...... of the n(n − 1)/2 distances between n nodes randomly distributed in a bounded domain. As no such result exists in the literature, we make progress by obtaining the joint distribution of the distances between three nodes confined in a disk in R 2. This enables the calculation of the probability distribution...

  1. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

    Science.gov (United States)

    Penland, C.

    2013-12-01

    Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

  2. Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises

    International Nuclear Information System (INIS)

    Wu, Y.; Zhu, W.Q.

    2008-01-01

    The stationary response of multi-degree-of-freedom (MDOF) vibro-impact (VI) systems to random pulse trains is studied. The system is formulated as a stochastically excited and dissipated Hamiltonian system. The constraints are modeled as non-linear springs according to the Hertz contact law. The random pulse trains are modeled as Poisson white noises. The approximate stationary probability density function (PDF) for the response of MDOF dissipated Hamiltonian systems to Poisson white noises is obtained by solving the fourth-order generalized Fokker-Planck-Kolmogorov (FPK) equation using perturbation approach. As examples, two-degree-of-freedom (2DOF) VI systems under external and parametric Poisson white noise excitations, respectively, are investigated. The validity of the proposed approach is confirmed by using the results obtained from Monte Carlo simulation. It is shown that the non-Gaussian behaviour depends on the product of the mean arrival rate of the impulses and the relaxation time of the oscillator

  3. On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action

    Science.gov (United States)

    Chekhov, L. O.; Mazzocco, M.

    2017-12-01

    Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.

  4. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    Science.gov (United States)

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse; Zhou, Kevin

    2017-09-01

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that track multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a "soft drop multiplicity" which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.

  5. Homogeneous Poisson structures

    International Nuclear Information System (INIS)

    Shafei Deh Abad, A.; Malek, F.

    1993-09-01

    We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs

  6. Likelihood inference for COM-Poisson cure rate model with interval-censored data and Weibull lifetimes.

    Science.gov (United States)

    Pal, Suvra; Balakrishnan, N

    2017-10-01

    In this paper, we consider a competing cause scenario and assume the number of competing causes to follow a Conway-Maxwell Poisson distribution which can capture both over and under dispersion that is usually encountered in discrete data. Assuming the population of interest having a component cure and the form of the data to be interval censored, as opposed to the usually considered right-censored data, the main contribution is in developing the steps of the expectation maximization algorithm for the determination of the maximum likelihood estimates of the model parameters of the flexible Conway-Maxwell Poisson cure rate model with Weibull lifetimes. An extensive Monte Carlo simulation study is carried out to demonstrate the performance of the proposed estimation method. Model discrimination within the Conway-Maxwell Poisson distribution is addressed using the likelihood ratio test and information-based criteria to select a suitable competing cause distribution that provides the best fit to the data. A simulation study is also carried out to demonstrate the loss in efficiency when selecting an improper competing cause distribution which justifies the use of a flexible family of distributions for the number of competing causes. Finally, the proposed methodology and the flexibility of the Conway-Maxwell Poisson distribution are illustrated with two known data sets from the literature: smoking cessation data and breast cosmesis data.

  7. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation

    International Nuclear Information System (INIS)

    Bardsley, Johnathan M; Goldes, John

    2009-01-01

    In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness

  8. Partial transpose of random quantum states: Exact formulas and meanders

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Motohisa [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Sniady, Piotr [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa (Poland); Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw (Poland)

    2013-04-15

    We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.

  9. Partial transpose of random quantum states: Exact formulas and meanders

    Science.gov (United States)

    Fukuda, Motohisa; Śniady, Piotr

    2013-04-01

    We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.

  10. Lower limits for distribution tails of randomly stopped sums

    NARCIS (Netherlands)

    Denisov, D.E.; Korshunov, D.A.; Foss, S.G.

    2008-01-01

    We study lower limits for the ratio $\\overline{F^{*\\tau}}(x)/\\,\\overline F(x)$ of tail distributions, where $F^{*\\tau}$ is a distribution of a sum of a random size $\\tau$ of independent identically distributed random variables having a common distribution $F$, and a random variable $\\tau$ does not

  11. Effects of unstratified and centre-stratified randomization in multi-centre clinical trials.

    Science.gov (United States)

    Anisimov, Vladimir V

    2011-01-01

    This paper deals with the analysis of randomization effects in multi-centre clinical trials. The two randomization schemes most often used in clinical trials are considered: unstratified and centre-stratified block-permuted randomization. The prediction of the number of patients randomized to different treatment arms in different regions during the recruitment period accounting for the stochastic nature of the recruitment and effects of multiple centres is investigated. A new analytic approach using a Poisson-gamma patient recruitment model (patients arrive at different centres according to Poisson processes with rates sampled from a gamma distributed population) and its further extensions is proposed. Closed-form expressions for corresponding distributions of the predicted number of the patients randomized in different regions are derived. In the case of two treatments, the properties of the total imbalance in the number of patients on treatment arms caused by using centre-stratified randomization are investigated and for a large number of centres a normal approximation of imbalance is proved. The impact of imbalance on the power of the study is considered. It is shown that the loss of statistical power is practically negligible and can be compensated by a minor increase in sample size. The influence of patient dropout is also investigated. The impact of randomization on predicted drug supply overage is discussed. Copyright © 2010 John Wiley & Sons, Ltd.

  12. The analysis of incontinence episodes and other count data in patients with overactive bladder by Poisson and negative binomial regression.

    Science.gov (United States)

    Martina, R; Kay, R; van Maanen, R; Ridder, A

    2015-01-01

    Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non-parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  14. Stationary and non-stationary occurrences of miniature end plate potentials are well described as stationary and non-stationary Poisson processes in the mollusc Navanax inermis.

    Science.gov (United States)

    Cappell, M S; Spray, D C; Bennett, M V

    1988-06-28

    Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.

  15. Modifications to POISSON

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed

  16. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2017-01-01

    Full Text Available Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.

  17. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

    Science.gov (United States)

    Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

    2011-01-01

    Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

  18. A new non-commutative representation of the Wiener and Poisson processes

    International Nuclear Information System (INIS)

    Privault, N.

    1996-01-01

    Using two different constructions of the chaotic and variational calculus on Poisson space, we show that the Wiener and Poisson processes have a non-commutative representation which is different from the one obtained by transfer of the Fock space creation and annihilation operators. We obtain in this way an extension of the non-commutative It calculus. The associated commutation relations show a link between the geometric and exponential distributions. (author). 11 refs

  19. Prediction accident triangle in maintenance of underground mine facilities using Poisson distribution analysis

    Science.gov (United States)

    Khuluqi, M. H.; Prapdito, R. R.; Sambodo, F. P.

    2018-04-01

    In Indonesia, mining is categorized as a hazardous industry. In recent years, a dramatic increase of mining equipment and technological complexities had resulted in higher maintenance expectations that accompanied by the changes in the working conditions, especially on safety. Ensuring safety during the process of conducting maintenance works in underground mine is important as an integral part of accident prevention programs. Accident triangle has provided a support to safety practitioner to draw a road map in preventing accidents. Poisson distribution is appropriate for the analysis of accidents at a specific site in a given time period. Based on the analysis of accident statistics in the underground mine maintenance of PT. Freeport Indonesia from 2011 through 2016, it is found that 12 minor accidents for 1 major accident and 66 equipment damages for 1 major accident as a new value of accident triangle. The result can be used for the future need for improving the accident prevention programs.

  20. Wick calculus on spaces of generalized functions of compound poisson white noise

    Science.gov (United States)

    Lytvynov, Eugene W.; Rebenko, Alexei L.; Shchepan'ur, Gennadi V.

    1997-04-01

    We derive white noise calculus for a compound Poisson process. Namely, we consider, on the Schwartz space of tempered distributions, S', a measure of compound Poisson white noise, μcp, and construct a whole scale of standard nuclear triples ( Scp) - x ⊃ L2cp) ≡ L2( S', dμcp) ⊃( Scpx, x≥ 0, which are obtained as images under some isomorphism of the corresponding triples centred at a Fock space. It turns out that the most interesting case is x = 1, when our triple coincides with the triple that is constructed by using a system of Appell polynomials in the framework of non-Gaussian biorthogonal analysis. Our special attention is paid to the Wick calculus of the Poisson field, or the quantum compound Poisson white noise process in other terms, which is the family of operators acting from ( Scp) 1 into ( Scp) 1 as multiplication by the compound Poisson white noise ω( t).

  1. Non-equal-time Poisson brackets

    OpenAIRE

    Nikolic, H.

    1998-01-01

    The standard definition of the Poisson brackets is generalized to the non-equal-time Poisson brackets. Their relationship to the equal-time Poisson brackets, as well as to the equal- and non-equal-time commutators, is discussed.

  2. Ruin probabilities for a regenerative Poisson gap generated risk process

    DEFF Research Database (Denmark)

    Asmussen, Søren; Biard, Romain

    A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is defined for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F...

  3. Branes in Poisson sigma models

    International Nuclear Information System (INIS)

    Falceto, Fernando

    2010-01-01

    In this review we discuss possible boundary conditions (branes) for the Poisson sigma model. We show how to carry out the perturbative quantization in the presence of a general pre-Poisson brane and how this is related to the deformation quantization of Poisson structures. We conclude with an open problem: the perturbative quantization of the system when the boundary has several connected components and we use a different pre-Poisson brane in every component.

  4. High-Order Finite-Difference Solution of the Poisson Equation Involving Complex Geometries in Embedded Meshes

    Science.gov (United States)

    Marques, Alexandre; Nave, Jean-Christophe; Rosales, Ruben

    2011-11-01

    The Poisson equation is of central importance in the description of fluid flows and other physical phenomena. In prior work, Marques, Nave, and Rosales introduced the Correction Function Method (CFM) to obtain fourth-order accurate solutions for the constant coefficient Poisson problem with prescribed jump conditions for the solution and its normal derivative across arbitrary interfaces. Here we combine this method with the ideas introduced by Mayo to solve other Poisson problems involving complex geometries. In summary, we are able to rewrite the problem as a boundary integral equation in terms of a potential distribution over the boundary or interface. The solution of this integral equation is discontinuous across the boundary or interface. Hence, after this integral equation is solved using standard techniques, the potential distribution can be used to determine the jump discontinuities. We are then able to use the CFM to solve the resulting Poisson equation with jump discontinuities. The outcome is a fourth-order accurate scheme to solve general Poisson problems which, over arbitrary geometries, has a cost that is approximately twice that of a fast Poisson solver using FFT on a rectangular geometry of the same size. Details of the method and applications will be presented.

  5. On (co)homology of Frobenius Poisson algebras

    OpenAIRE

    Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo

    2014-01-01

    In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...

  6. Blind beam-hardening correction from Poisson measurements

    Science.gov (United States)

    Gu, Renliang; Dogandžić, Aleksandar

    2016-02-01

    We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.

  7. Normal forms in Poisson geometry

    NARCIS (Netherlands)

    Marcut, I.T.

    2013-01-01

    The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric

  8. Discrete scale-free distributions and associated limit theorems

    International Nuclear Information System (INIS)

    Hopcraft, K I; Jakeman, E; Matthews, J O

    2004-01-01

    Consideration is given to the convergence properties of sums of identical, independently distributed random variables drawn from a class of discrete distributions with power-law tails, which are relevant to scale-free networks. Different limiting distributions, and rates of convergence to these limits, are identified and depend on the index of the tail. For indices ≥2, the topology evolves to a random Poisson network, but the rate of convergence can be extraordinarily slow and unlikely to be yet evident for the current size of the WWW for example. It is shown that treating discrete scale-free behaviour with continuum or mean-field approximations can lead to incorrect results. (letter to the editor)

  9. The Jackson Queueing Network Model Built Using Poisson Measures. Application To A Bank Model

    Directory of Open Access Journals (Sweden)

    Ciuiu Daniel

    2014-07-01

    Full Text Available In this paper we will build a bank model using Poisson measures and Jackson queueing networks. We take into account the relationship between the Poisson and the exponential distributions, and we consider for each credit/deposit type a node where shocks are modeled as the compound Poisson processes. The transmissions of the shocks are modeled as moving between nodes in Jackson queueing networks, the external shocks are modeled as external arrivals, and the absorption of shocks as departures from the network.

  10. The distribution of the number of node neighbors in random hypergraphs

    International Nuclear Information System (INIS)

    López, Eduardo

    2013-01-01

    Hypergraphs, the generalization of graphs in which edges become conglomerates of r nodes called hyperedges of rank r ⩾ 2, are excellent models to study systems with interactions that are beyond the pairwise level. For hypergraphs, the node degree ℓ (number of hyperedges connected to a node) and the number of neighbors k of a node differ from each other in contrast to the case of graphs, where counting the number of edges is equivalent to counting the number of neighbors. In this paper, I calculate the distribution of the number of node neighbors in random hypergraphs in which hyperedges of uniform rank r have a homogeneous (equal for all hyperedges) probability p to appear. This distribution is equivalent to the degree distribution of ensembles of graphs created as projections of hypergraph or bipartite network ensembles, where the projection connects any two nodes in the projected graph when they are also connected in the hypergraph or bipartite network. The calculation is non-trivial due to the possibility that neighbor nodes belong simultaneously to multiple hyperedges (node overlaps). From the exact results, the traditional asymptotic approximation to the distribution in the sparse regime (small p) where overlaps are ignored is rederived and improved; the approximation exhibits Poisson-like behavior accompanied by strong fluctuations modulated by power-law decays in the system size N with decay exponents equal to the minimum number of overlapping nodes possible for a given number of neighbors. It is shown that the dense limit cannot be explained if overlaps are ignored, and the correct asymptotic distribution is provided. The neighbor distribution requires the calculation of a new combinatorial coefficient Q r−1 (k, ℓ), which counts the number of distinct labeled hypergraphs of k nodes, ℓ hyperedges of rank r − 1, and where every node is connected to at least one hyperedge. Some identities of Q r−1 (k, ℓ) are derived and applied to the

  11. Statistical properties of random clique networks

    Science.gov (United States)

    Ding, Yi-Min; Meng, Jun; Fan, Jing-Fang; Ye, Fang-Fu; Chen, Xiao-Song

    2017-10-01

    In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.

  12. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  13. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)

  14. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-06-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering

  15. Poisson regression for modeling count and frequency outcomes in trauma research.

    Science.gov (United States)

    Gagnon, David R; Doron-LaMarca, Susan; Bell, Margret; O'Farrell, Timothy J; Taft, Casey T

    2008-10-01

    The authors describe how the Poisson regression method for analyzing count or frequency outcome variables can be applied in trauma studies. The outcome of interest in trauma research may represent a count of the number of incidents of behavior occurring in a given time interval, such as acts of physical aggression or substance abuse. Traditional linear regression approaches assume a normally distributed outcome variable with equal variances over the range of predictor variables, and may not be optimal for modeling count outcomes. An application of Poisson regression is presented using data from a study of intimate partner aggression among male patients in an alcohol treatment program and their female partners. Results of Poisson regression and linear regression models are compared.

  16. Extreme value theory, Poisson-Dirichlet distributions, and first passage percolation on random networks

    NARCIS (Netherlands)

    Bhamidi, S.; Van der Hofstad, R.; Hooghiemstra, G.

    2010-01-01

    We study first passage percolation (FPP) on the configuration model (CM) having power-law degrees with exponent ? ? [1, 2) and exponential edge weights. We derive the distributional limit of the minimal weight of a path between typical vertices in the network and the number of edges on the

  17. A test for judging the presence of additional scatter in a Poisson process

    International Nuclear Information System (INIS)

    Mueller, J.W.

    1978-01-01

    The effect of additional scatter on a Poisson process is studied. Possible causes for such fluctuations are insufficient stability of the detection efficiency or of the associated electronics. It is shown with a simple model that the presence of fluctuations results in a characteristic broadening of the counting distribution. Comparison of the observed distribution with the one expected for a Poisson process with the same mean value will show three different regions, each with predictable sign of the deviation; the presence of scatter can thus be decided upon by a sign test. Experimental results are in excellent agreement with this expectation

  18. A twisted generalization of Novikov-Poisson algebras

    OpenAIRE

    Yau, Donald

    2010-01-01

    Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.

  19. Poisson hierarchy of discrete strings

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Niemi, Antti J.

    2016-01-01

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  20. Poisson hierarchy of discrete strings

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2016-01-28

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  1. Poisson and negative binomial item count techniques for surveys with sensitive question.

    Science.gov (United States)

    Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin

    2017-04-01

    Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.

  2. Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere

    International Nuclear Information System (INIS)

    Sheu, A.J.L.

    1991-01-01

    We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.)

  3. Nonlinear Poisson equation for heterogeneous media.

    Science.gov (United States)

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Dynamics of a prey-predator system under Poisson white noise excitation

    Science.gov (United States)

    Pan, Shan-Shan; Zhu, Wei-Qiu

    2014-10-01

    The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.

  5. Performance of Overlaid MIMO Cellular Networks with TAS/MRC under Hybrid-Access Small Cells and Poisson Field Interference

    KAUST Repository

    AbdelNabi, Amr A.

    2018-02-12

    This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.

  6. Performance of Overlaid MIMO Cellular Networks with TAS/MRC under Hybrid-Access Small Cells and Poisson Field Interference

    KAUST Repository

    AbdelNabi, Amr A.; Al-Qahtani, Fawaz S.; Radaydeh, Redha Mahmoud Mesleh; Shaqfeh, Mohammad; Manna, Raed F.

    2018-01-01

    This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.

  7. Pricing Zero-Coupon Catastrophe Bonds Using EVT with Doubly Stochastic Poisson Arrivals

    Directory of Open Access Journals (Sweden)

    Zonggang Ma

    2017-01-01

    Full Text Available The frequency and severity of climate abnormal change displays an irregular upward cycle as global warming intensifies. Therefore, this paper employs a doubly stochastic Poisson process with Black Derman Toy (BDT intensity to describe the catastrophic characteristics. By using the Property Claim Services (PCS loss index data from 2001 to 2010 provided by the US Insurance Services Office (ISO, the empirical result reveals that the BDT arrival rate process is superior to the nonhomogeneous Poisson and lognormal intensity process due to its smaller RMSE, MAE, MRPE, and U and larger E and d. Secondly, to depict extreme features of catastrophic risks, this paper adopts the Peak Over Threshold (POT in extreme value theory (EVT to characterize the tail characteristics of catastrophic loss distribution. And then the loss distribution is analyzed and assessed using a quantile-quantile (QQ plot to visually check whether the PCS index observations meet the generalized Pareto distribution (GPD assumption. Furthermore, this paper derives a pricing formula for zero-coupon catastrophe bonds with a stochastic interest rate environment and aggregate losses generated by a compound doubly stochastic Poisson process under the forward measure. Finally, simulation results verify pricing model predictions and show how catastrophic risks and interest rate risk affect the prices of zero-coupon catastrophe bonds.

  8. Simulation on Poisson and negative binomial models of count road accident modeling

    Science.gov (United States)

    Sapuan, M. S.; Razali, A. M.; Zamzuri, Z. H.; Ibrahim, K.

    2016-11-01

    Accident count data have often been shown to have overdispersion. On the other hand, the data might contain zero count (excess zeros). The simulation study was conducted to create a scenarios which an accident happen in T-junction with the assumption the dependent variables of generated data follows certain distribution namely Poisson and negative binomial distribution with different sample size of n=30 to n=500. The study objective was accomplished by fitting Poisson regression, negative binomial regression and Hurdle negative binomial model to the simulated data. The model validation was compared and the simulation result shows for each different sample size, not all model fit the data nicely even though the data generated from its own distribution especially when the sample size is larger. Furthermore, the larger sample size indicates that more zeros accident count in the dataset.

  9. Group-buying inventory policy with demand under Poisson process

    Directory of Open Access Journals (Sweden)

    Tammarat Kleebmek

    2016-02-01

    Full Text Available The group-buying is the modern business of selling in the uncertain market. With an objective to minimize costs for sellers arising from ordering and reordering, we present in this paper the group buying inventory model, with the demand governed by a Poisson process and the product sale distributed as Binomial distribution. The inventory level is under continuous review, while the lead time is fixed. A numerical example is illustrated.

  10. [Application of detecting and taking overdispersion into account in Poisson regression model].

    Science.gov (United States)

    Bouche, G; Lepage, B; Migeot, V; Ingrand, P

    2009-08-01

    Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.

  11. The Poisson-exponential regression model under different latent activation schemes

    OpenAIRE

    Louzada, Francisco; Cancho, Vicente G; Barriga, Gladys D.C

    2012-01-01

    In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activationschemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Infer...

  12. The randomly renewed general item and the randomly inspected item with exponential life distribution

    International Nuclear Information System (INIS)

    Schneeweiss, W.G.

    1979-01-01

    For a randomly renewed item the probability distributions of the time to failure and of the duration of down time and the expectations of these random variables are determined. Moreover, it is shown that the same theory applies to randomly checked items with exponential probability distribution of life such as electronic items. The case of periodic renewals is treated as an example. (orig.) [de

  13. A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA

    NARCIS (Netherlands)

    WEDEL, M; DESARBO, WS; BULT, [No Value; RAMASWAMY, [No Value

    1993-01-01

    In this paper an approach is developed that accommodates heterogeneity in Poisson regression models for count data. The model developed assumes that heterogeneity arises from a distribution of both the intercept and the coefficients of the explanatory variables. We assume that the mixing

  14. Poisson goodness-of-fit tests for radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Merkle, W.

    1981-01-01

    Asymptotic and exact Poisson goodness-to-fit tests have been reviewed with regard to their applicability in analysing distributional properties of data on chromosome aberrations. It has been demonstrated that for typical cytogenetic samples, i.e. when the average number of aberrations per cell is smaller than one, results of asymptotic tests, especially of the most commonly used u-test, differ greatly from results of corresponding exact tests. While the u-statistic can serve as a qualitative index to indicate a tendency towards under- or over-dispersion, exact tests should be used if the assumption of a Poisson distribution is crucial, e.g. in investigating induction mechanisms. If the main interest is to detect a difference between the mean and the variance of a sample it is furthermore important to realize that a much larger sample size is required to detect underdispersion than it is to detect overdispersion. (author)

  15. Beta-Poisson model for single-cell RNA-seq data analyses.

    Science.gov (United States)

    Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Rantalainen, Mattias; Pawitan, Yudi

    2016-07-15

    Single-cell RNA-sequencing technology allows detection of gene expression at the single-cell level. One typical feature of the data is a bimodality in the cellular distribution even for highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequencing are not able to capture this property. We introduce a beta-Poisson mixture model that can capture the bimodality of the single-cell gene expression distribution. We further integrate the model into the generalized linear model framework in order to perform differential expression analyses. The whole analytical procedure is called BPSC. The results from several real single-cell RNA-seq datasets indicate that ∼90% of the transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better than the fit of the standard gamma-Poisson model in > 80% of the transcripts. Moreover, in differential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST, two recent methods specifically designed for single-cell RNA-seq data. An R package BPSC for model fitting and differential expression analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/nghiavtr/BPSC CONTACT: yudi.pawitan@ki.se or mattias.rantalainen@ki.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Events in time: Basic analysis of Poisson data

    International Nuclear Information System (INIS)

    Engelhardt, M.E.

    1994-09-01

    The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given

  17. Events in time: Basic analysis of Poisson data

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, M.E.

    1994-09-01

    The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.

  18. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Science.gov (United States)

    Konno, Hidetoshi; Tamura, Yoshiyasu

    2018-01-01

    In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).

  19. Bayesian spatial modeling of HIV mortality via zero-inflated Poisson models.

    Science.gov (United States)

    Musal, Muzaffer; Aktekin, Tevfik

    2013-01-30

    In this paper, we investigate the effects of poverty and inequality on the number of HIV-related deaths in 62 New York counties via Bayesian zero-inflated Poisson models that exhibit spatial dependence. We quantify inequality via the Theil index and poverty via the ratios of two Census 2000 variables, the number of people under the poverty line and the number of people for whom poverty status is determined, in each Zip Code Tabulation Area. The purpose of this study was to investigate the effects of inequality and poverty in addition to spatial dependence between neighboring regions on HIV mortality rate, which can lead to improved health resource allocation decisions. In modeling county-specific HIV counts, we propose Bayesian zero-inflated Poisson models whose rates are functions of both covariate and spatial/random effects. To show how the proposed models work, we used three different publicly available data sets: TIGER Shapefiles, Census 2000, and mortality index files. In addition, we introduce parameter estimation issues of Bayesian zero-inflated Poisson models and discuss MCMC method implications. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Extension of the application of conway-maxwell-poisson models: analyzing traffic crash data exhibiting underdispersion.

    Science.gov (United States)

    Lord, Dominique; Geedipally, Srinivas Reddy; Guikema, Seth D

    2010-08-01

    The objective of this article is to evaluate the performance of the COM-Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM-Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over- or underdispersion. Over the last year, the COM-Poisson GLM has been evaluated in the context of crash data analysis and it has been shown that the model performs as well as the Poisson-gamma model for crash data exhibiting overdispersion. To accomplish the objective of this study, several COM-Poisson models were estimated using crash data collected at 162 railway-highway crossings in South Korea between 1998 and 2002. This data set has been shown to exhibit underdispersion when models linking crash data to various explanatory variables are estimated. The modeling results were compared to those produced from the Poisson and gamma probability models documented in a previous published study. The results of this research show that the COM-Poisson GLM can handle crash data when the modeling output shows signs of underdispersion. Finally, they also show that the model proposed in this study provides better statistical performance than the gamma probability and the traditional Poisson models, at least for this data set.

  1. Nonhomogeneous fractional Poisson processes

    International Nuclear Information System (INIS)

    Wang Xiaotian; Zhang Shiying; Fan Shen

    2007-01-01

    In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)

  2. Non-holonomic dynamics and Poisson geometry

    International Nuclear Information System (INIS)

    Borisov, A V; Mamaev, I S; Tsiganov, A V

    2014-01-01

    This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie-Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them. Bibliography: 95 titles

  3. Poisson brackets of orthogonal polynomials

    OpenAIRE

    Cantero, María José; Simon, Barry

    2009-01-01

    For the standard symplectic forms on Jacobi and CMV matrices, we compute Poisson brackets of OPRL and OPUC, and relate these to other basic Poisson brackets and to Jacobians of basic changes of variable.

  4. The Dependent Poisson Race Model and Modeling Dependence in Conjoint Choice Experiments

    Science.gov (United States)

    Ruan, Shiling; MacEachern, Steven N.; Otter, Thomas; Dean, Angela M.

    2008-01-01

    Conjoint choice experiments are used widely in marketing to study consumer preferences amongst alternative products. We develop a class of choice models, belonging to the class of Poisson race models, that describe a "random utility" which lends itself to a process-based description of choice. The models incorporate a dependence structure which…

  5. The relationship between randomness and power-law distributed move lengths in random walk algorithms

    Science.gov (United States)

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2014-05-01

    Recently, we proposed a new random walk algorithm, termed the REV algorithm, in which the agent alters the directional rule that governs it using the most recent four random numbers. Here, we examined how a non-bounded number, i.e., "randomness" regarding move direction, was important for optimal searching and power-law distributed step lengths in rule change. We proposed two algorithms: the REV and REV-bounded algorithms. In the REV algorithm, one of the four random numbers used to change the rule is non-bounded. In contrast, all four random numbers in the REV-bounded algorithm are bounded. We showed that the REV algorithm exhibited more consistent power-law distributed step lengths and flexible searching behavior.

  6. Poisson regression approach for modeling fatal injury rates amongst Malaysian workers

    International Nuclear Information System (INIS)

    Kamarulzaman Ibrahim; Heng Khai Theng

    2005-01-01

    Many safety studies are based on the analysis carried out on injury surveillance data. The injury surveillance data gathered for the analysis include information on number of employees at risk of injury in each of several strata where the strata are defined in terms of a series of important predictor variables. Further insight into the relationship between fatal injury rates and predictor variables may be obtained by the poisson regression approach. Poisson regression is widely used in analyzing count data. In this study, poisson regression is used to model the relationship between fatal injury rates and predictor variables which are year (1995-2002), gender, recording system and industry type. Data for the analysis were obtained from PERKESO and Jabatan Perangkaan Malaysia. It is found that the assumption that the data follow poisson distribution has been violated. After correction for the problem of over dispersion, the predictor variables that are found to be significant in the model are gender, system of recording, industry type, two interaction effects (interaction between recording system and industry type and between year and industry type). Introduction Regression analysis is one of the most popular

  7. Constructions and classifications of projective Poisson varieties.

    Science.gov (United States)

    Pym, Brent

    2018-01-01

    This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.

  8. Constructions and classifications of projective Poisson varieties

    Science.gov (United States)

    Pym, Brent

    2018-03-01

    This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.

  9. Assessment of Poisson, logit, and linear models for genetic analysis of clinical mastitis in Norwegian Red cows.

    Science.gov (United States)

    Vazquez, A I; Gianola, D; Bates, D; Weigel, K A; Heringstad, B

    2009-02-01

    Clinical mastitis is typically coded as presence/absence during some period of exposure, and records are analyzed with linear or binary data models. Because presence includes cows with multiple episodes, there is loss of information when a count is treated as a binary response. The Poisson model is designed for counting random variables, and although it is used extensively in epidemiology of mastitis, it has rarely been used for studying the genetics of mastitis. Many models have been proposed for genetic analysis of mastitis, but they have not been formally compared. The main goal of this study was to compare linear (Gaussian), Bernoulli (with logit link), and Poisson models for the purpose of genetic evaluation of sires for mastitis in dairy cattle. The response variables were clinical mastitis (CM; 0, 1) and number of CM cases (NCM; 0, 1, 2, ..). Data consisted of records on 36,178 first-lactation daughters of 245 Norwegian Red sires distributed over 5,286 herds. Predictive ability of models was assessed via a 3-fold cross-validation using mean squared error of prediction (MSEP) as the end-point. Between-sire variance estimates for NCM were 0.065 in Poisson and 0.007 in the linear model. For CM the between-sire variance was 0.093 in logit and 0.003 in the linear model. The ratio between herd and sire variances for the models with NCM response was 4.6 and 3.5 for Poisson and linear, respectively, and for model for CM was 3.7 in both logit and linear models. The MSEP for all cows was similar. However, within healthy animals, MSEP was 0.085 (Poisson), 0.090 (linear for NCM), 0.053 (logit), and 0.056 (linear for CM). For mastitic animals the MSEP values were 1.206 (Poisson), 1.185 (linear for NCM response), 1.333 (logit), and 1.319 (linear for CM response). The models for count variables had a better performance when predicting diseased animals and also had a similar performance between them. Logit and linear models for CM had better predictive ability for healthy

  10. Comparison of probabilistic models of the distribution of counts

    International Nuclear Information System (INIS)

    Salma, I.; Zemplen-Papp, E.

    1992-01-01

    The binominal, Poisson and modified Poisson models for describing the statistical nature of the distribution of counts are compared theoretically, and conclusions for application are proposed. The validity of the Poisson and the modified Poisson distribution for observing k events in a short time interval is investigated experimentally for various measuring times. The experiments to measure the influence of the significant radioactive decay were performed with 89m Y (T 1/2 =16.06 s), using a multichannel analyser (4096 channels) in the multiscaling mode. According to the results, Poisson distribution describes the counting experiment for short measuring times (up to T=0.5 T 1/2 ) and its application is recommended. However, the analysis of the data demonstrated that for long measurements (T≥1 T 1/2 ) Poisson distribution is not valid and the modified Poisson distribution is preferable. The practical implications in calculating uncertainties and in optimizing the measuring time are discussed. (author) 20 refs.; 7 figs.; 1 tab

  11. Concurrent topological design of composite structures and materials containing multiple phases of distinct Poisson's ratios

    Science.gov (United States)

    Long, Kai; Yuan, Philip F.; Xu, Shanqing; Xie, Yi Min

    2018-04-01

    Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson's ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson's ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young's modulus and Poisson's ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson's ratios between the macrostructural and microstructural levels under a single constraint of the total mass.

  12. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Directory of Open Access Journals (Sweden)

    Hidetoshi Konno

    2018-01-01

    Full Text Available In neural spike counting experiments, it is known that there are two main features: (i the counting number has a fractional power-law growth with time and (ii the waiting time (i.e., the inter-spike-interval distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii can be modeled by the method of SSPPs. Namely, the first one (i associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP.

  13. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2018-02-01

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.

  14. Poisson-Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain.

    Science.gov (United States)

    Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi

    2018-03-29

    The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson-Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson-Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods.

  15. Periodic Poisson Solver for Particle Tracking

    International Nuclear Information System (INIS)

    Dohlus, M.; Henning, C.

    2015-05-01

    A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.

  16. Nonhomogeneous fractional Poisson processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)

    2007-01-15

    In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)

  17. Linear response in aging glassy systems, intermittency and the Poisson statistics of record fluctuations

    DEFF Research Database (Denmark)

    Sibani, Paolo

    2007-01-01

    in a correlated fashion and through irreversible bursts, `quakes', which punctuate reversible and equilibrium-like fluctuations of zero average. The temporal distribution of the quakes is a Poisson distribution with an average growing logarithmically on time, indicating that the quakes are triggered by record...

  18. Probabilistic SSME blades structural response under random pulse loading

    Science.gov (United States)

    Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.

    1987-01-01

    The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.

  19. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    Science.gov (United States)

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  20. Improved mesh generator for the POISSON Group Codes

    International Nuclear Information System (INIS)

    Gupta, R.C.

    1987-01-01

    This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

  1. Random graph states, maximal flow and Fuss-Catalan distributions

    International Nuclear Information System (INIS)

    Collins, BenoIt; Nechita, Ion; Zyczkowski, Karol

    2010-01-01

    For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.

  2. Influence of random setup error on dose distribution

    International Nuclear Information System (INIS)

    Zhai Zhenyu

    2008-01-01

    Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)

  3. Singular reduction of Nambu-Poisson manifolds

    Science.gov (United States)

    Das, Apurba

    The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.

  4. On the Fractional Poisson Process and the Discretized Stable Subordinator

    Directory of Open Access Journals (Sweden)

    Rudolf Gorenflo

    2015-08-01

    Full Text Available We consider the renewal counting number process N = N(t as a forward march over the non-negative integers with independent identically distributed waiting times. We embed the values of the counting numbers N in a “pseudo-spatial” non-negative half-line x ≥ 0 and observe that for physical time likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to both variables x and t. Applying then a modification of the Montroll-Weiss-Cox formalism of continuous time random walk we obtain the essential characteristics of a renewal process in the transform domain and, if we are lucky, also in the physical domain. The process t = t(N of accumulation of waiting times is inverse to the counting number process, in honour of the Danish mathematician and telecommunication engineer A.K. Erlang we call it the Erlang process. It yields the probability of exactly n renewal events in the interval (0; t]. We apply our Laplace-Laplace formalism to the fractional Poisson process whose waiting times are of Mittag-Leffler type and to a renewal process whose waiting times are of Wright type. The process of Mittag-Leffler type includes as a limiting case the classical Poisson process, the process of Wright type represents the discretized stable subordinator and a re-scaled version of it was used in our method of parametric subordination of time-space fractional diffusion processes. Properly rescaling the counting number process N(t and the Erlang process t(N yields as diffusion limits the inverse stable and the stable subordinator, respectively.

  5. Poisson versus threshold models for genetic analysis of clinical mastitis in US Holsteins.

    Science.gov (United States)

    Vazquez, A I; Weigel, K A; Gianola, D; Bates, D M; Perez-Cabal, M A; Rosa, G J M; Chang, Y M

    2009-10-01

    Typically, clinical mastitis is coded as the presence or absence of disease in a given lactation, and records are analyzed with either linear models or binary threshold models. Because the presence of mastitis may include cows with multiple episodes, there is a loss of information when counts are treated as binary responses. Poisson models are appropriated for random variables measured as the number of events, and although these models are used extensively in studying the epidemiology of mastitis, they have rarely been used for studying the genetic aspects of mastitis. Ordinal threshold models are pertinent for ordered categorical responses; although one can hypothesize that the number of clinical mastitis episodes per animal reflects a continuous underlying increase in mastitis susceptibility, these models have rarely been used in genetic analysis of mastitis. The objective of this study was to compare probit, Poisson, and ordinal threshold models for the genetic evaluation of US Holstein sires for clinical mastitis. Mastitis was measured as a binary trait or as the number of mastitis cases. Data from 44,908 first-parity cows recorded in on-farm herd management software were gathered, edited, and processed for the present study. The cows were daughters of 1,861 sires, distributed over 94 herds. Predictive ability was assessed via a 5-fold cross-validation using 2 loss functions: mean squared error of prediction (MSEP) as the end point and a cost difference function. The heritability estimates were 0.061 for mastitis measured as a binary trait in the probit model and 0.085 and 0.132 for the number of mastitis cases in the ordinal threshold and Poisson models, respectively; because of scale differences, only the probit and ordinal threshold models are directly comparable. Among healthy animals, MSEP was smallest for the probit model, and the cost function was smallest for the ordinal threshold model. Among diseased animals, MSEP and the cost function were smallest

  6. Binomial vs poisson statistics in radiation studies

    International Nuclear Information System (INIS)

    Foster, J.; Kouris, K.; Spyrou, N.M.; Matthews, I.P.; Welsh National School of Medicine, Cardiff

    1983-01-01

    The processes of radioactive decay, decay and growth of radioactive species in a radioactive chain, prompt emission(s) from nuclear reactions, conventional activation and cyclic activation are discussed with respect to their underlying statistical density function. By considering the transformation(s) that each nucleus may undergo it is shown that all these processes are fundamentally binomial. Formally, when the number of experiments N is large and the probability of success p is close to zero, the binomial is closely approximated by the Poisson density function. In radiation and nuclear physics, N is always large: each experiment can be conceived of as the observation of the fate of each of the N nuclei initially present. Whether p, the probability that a given nucleus undergoes a prescribed transformation, is close to zero depends on the process and nuclide(s) concerned. Hence, although a binomial description is always valid, the Poisson approximation is not always adequate. Therefore further clarification is provided as to when the binomial distribution must be used in the statistical treatment of detected events. (orig.)

  7. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.

    Science.gov (United States)

    Schmidt, Philip J; Pintar, Katarina D M; Fazil, Aamir M; Topp, Edward

    2013-09-01

    Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility. © Her Majesty the Queen in Right of Canada 2013. Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  8. Joint Asymptotic Distributions of Smallest and Largest Insurance Claims

    Directory of Open Access Journals (Sweden)

    Hansjörg Albrecher

    2014-07-01

    Full Text Available Assume that claims in a portfolio of insurance contracts are described by independent and identically distributed random variables with regularly varying tails and occur according to a near mixed Poisson process. We provide a collection of results pertaining to the joint asymptotic Laplace transforms of the normalised sums of the smallest and largest claims, when the length of the considered time interval tends to infinity. The results crucially depend on the value of the tail index of the claim distribution, as well as on the number of largest claims under consideration.

  9. Wavelets, ridgelets, and curvelets for Poisson noise removal.

    Science.gov (United States)

    Zhang, Bo; Fadili, Jalal M; Starck, Jean-Luc

    2008-07-01

    In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are asymptotically normally distributed with known variances. A classical hypothesis-testing framework is adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly the final estimate. A range of examples show the power of this MS-VST approach for recovering important structures of various morphologies in (very) low-count images. These results also demonstrate that the MS-VST approach is competitive relative to many existing denoising methods.

  10. A Poisson process approximation for generalized K-5 confidence regions

    Science.gov (United States)

    Arsham, H.; Miller, D. R.

    1982-01-01

    One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems.

  11. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  12. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  13. Polypeptoids from N -Substituted Glycine N -Carboxyanhydrides: Hydrophilic, Hydrophobic, and Amphiphilic Polymers with Poisson Distribution

    KAUST Repository

    Fetsch, Corinna

    2011-09-13

    Preparation of defined and functional polymers has been one of the hottest topics in polymer science and drug delivery in the recent decade. Also, research on (bio)degradable polymers gains more and more interest, in particular at the interface of these two disciplines. However, in the majority of cases, combination of definition, functionality and degradability, is problematic. Here we present the preparation and characterization (MALDI-ToF MS, NMR, GPC) of nonionic hydrophilic, hydrophobic, and amphiphilic N-substituted polyglycines (polypeptoids), which are expected to be main-chain degradable and are able to disperse a hydrophobic model compound in aqueous media. Polymerization kinetics suggest that the polymerization is well controlled with strictly linear pseudo first-order kinetic plots to high monomer consumption. Moreover, molar mass distributions of products are Poisson-type and molar mass can be controlled by the monomer to initiator ratio. The presented polymer platform is nonionic, backbone degradable, and synthetically highly flexible and may therefore be valuable for a broad range of applications, in particular as a biomaterial. © 2011 American Chemical Society.

  14. Polypeptoids from N -Substituted Glycine N -Carboxyanhydrides: Hydrophilic, Hydrophobic, and Amphiphilic Polymers with Poisson Distribution

    KAUST Repository

    Fetsch, Corinna; Grossmann, Arlett; Holz, Lisa; Nawroth, Jonas F.; Luxenhofer, Robert

    2011-01-01

    Preparation of defined and functional polymers has been one of the hottest topics in polymer science and drug delivery in the recent decade. Also, research on (bio)degradable polymers gains more and more interest, in particular at the interface of these two disciplines. However, in the majority of cases, combination of definition, functionality and degradability, is problematic. Here we present the preparation and characterization (MALDI-ToF MS, NMR, GPC) of nonionic hydrophilic, hydrophobic, and amphiphilic N-substituted polyglycines (polypeptoids), which are expected to be main-chain degradable and are able to disperse a hydrophobic model compound in aqueous media. Polymerization kinetics suggest that the polymerization is well controlled with strictly linear pseudo first-order kinetic plots to high monomer consumption. Moreover, molar mass distributions of products are Poisson-type and molar mass can be controlled by the monomer to initiator ratio. The presented polymer platform is nonionic, backbone degradable, and synthetically highly flexible and may therefore be valuable for a broad range of applications, in particular as a biomaterial. © 2011 American Chemical Society.

  15. Singularities of Poisson structures and Hamiltonian bifurcations

    NARCIS (Netherlands)

    Meer, van der J.C.

    2010-01-01

    Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom

  16. Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems

    International Nuclear Information System (INIS)

    Chang, Liu; Peng, Chang; Shi-Xing, Liu; Yong-Xin, Guo

    2010-01-01

    This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient condition for the decomposition of the almost-Poisson bracket to be two Poisson ones is obtained. As an application, the almost-Poisson structure for generalised Chaplygin's systems is discussed in the framework of the decomposition theory. It proves that the almost-Poisson bracket for the systems can be decomposed into the sum of a canonical Poisson bracket and another two noncanonical Poisson brackets in some special cases, which is useful for integrating the equations of motion

  17. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-10-15

    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Poisson Spot with Magnetic Levitation

    Science.gov (United States)

    Hoover, Matthew; Everhart, Michael; D'Arruda, Jose

    2010-01-01

    In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.

  19. Poisson-event-based analysis of cell proliferation.

    Science.gov (United States)

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.

  20. [Application of negative binomial regression and modified Poisson regression in the research of risk factors for injury frequency].

    Science.gov (United States)

    Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan

    2011-11-01

    To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.

  1. Non-chiral, molecular model of negative Poisson ratio in two dimensions

    International Nuclear Information System (INIS)

    Wojciechowski, K W

    2003-01-01

    A two-dimensional model of tri-atomic molecules (in which 'atoms' are distributed on vertices of equilateral triangles, and which are further referred to as cyclic trimers) is solved exactly in the static (zero-temperature) limit for the nearest-neighbour site-site interactions. It is shown that the cyclic trimers form a mechanically stable and elastically isotropic non-chiral phase of negative Poisson ratio. The properties of the system are illustrated by three examples of atom-atom interaction potentials: (i) the purely repulsive (n-inverse-power) potential, (ii) the purely attractive (n-power) potential and (iii) the Lennard-Jones potential which shows both the repulsive and the attractive part. The analytic form of the dependence of the Poisson ratio on the interatomic potential is obtained. It is shown that the Poisson ratio depends, in a universal way, only on the trimer anisotropy parameter both (1) in the limit of n → ∞ for cases (i) and (ii), as well as (2) at the zero external pressure for any potential with a doubly differentiable minimum, case (iii) is an example

  2. A Martingale Characterization of Mixed Poisson Processes.

    Science.gov (United States)

    1985-10-01

    03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht

  3. Pareto genealogies arising from a Poisson branching evolution model with selection.

    Science.gov (United States)

    Huillet, Thierry E

    2014-02-01

    We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.

  4. Poisson-Hopf limit of quantum algebras

    International Nuclear Information System (INIS)

    Ballesteros, A; Celeghini, E; Olmo, M A del

    2009-01-01

    The Poisson-Hopf analogue of an arbitrary quantum algebra U z (g) is constructed by introducing a one-parameter family of quantizations U z,ℎ (g) depending explicitly on ℎ and by taking the appropriate ℎ → 0 limit. The q-Poisson analogues of the su(2) algebra are discussed and the novel su q P (3) case is introduced. The q-Serre relations are also extended to the Poisson limit. This approach opens the perspective for possible applications of higher rank q-deformed Hopf algebras in semiclassical contexts

  5. A story about distributions of dimensions and locations of boulders

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2006-01-01

    for making a bored tunnel through the till deposit. Geographical universality was discovered through the statistical analysis of observations of boulder coordinates and dimension measures from wide spread cliff beach locations. One conclusion is that the joint size distribution up to some degree of modeling...... distribution. Moreover, these ratios are independent of the maximal dimension. The random point field structure of the boulder coordinates as isolated points or as clusters of points makes Poisson fields reasonable modeling candidates for the fields of both single points and cluster points. The cluster size...

  6. Poisson's spot and Gouy phase

    Science.gov (United States)

    da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos

    2016-12-01

    Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.

  7. Development of planning level transportation safety tools using Geographically Weighted Poisson Regression.

    Science.gov (United States)

    Hadayeghi, Alireza; Shalaby, Amer S; Persaud, Bhagwant N

    2010-03-01

    A common technique used for the calibration of collision prediction models is the Generalized Linear Modeling (GLM) procedure with the assumption of Negative Binomial or Poisson error distribution. In this technique, fixed coefficients that represent the average relationship between the dependent variable and each explanatory variable are estimated. However, the stationary relationship assumed may hide some important spatial factors of the number of collisions at a particular traffic analysis zone. Consequently, the accuracy of such models for explaining the relationship between the dependent variable and the explanatory variables may be suspected since collision frequency is likely influenced by many spatially defined factors such as land use, demographic characteristics, and traffic volume patterns. The primary objective of this study is to investigate the spatial variations in the relationship between the number of zonal collisions and potential transportation planning predictors, using the Geographically Weighted Poisson Regression modeling technique. The secondary objective is to build on knowledge comparing the accuracy of Geographically Weighted Poisson Regression models to that of Generalized Linear Models. The results show that the Geographically Weighted Poisson Regression models are useful for capturing spatially dependent relationships and generally perform better than the conventional Generalized Linear Models. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Auditory detection of an increment in the rate of a random process

    International Nuclear Information System (INIS)

    Brown, W.S.; Emmerich, D.S.

    1994-01-01

    Recent experiments have presented listeners with complex tonal stimuli consisting of components with values (i.e., intensities or frequencies) randomly sampled from probability distributions [e.g., R. A. Lutfi, J. Acoust. Soc. Am. 86, 934--944 (1989)]. In the present experiment, brief tones were presented at intervals corresponding to the intensity of a random process. Specifically, the intervals between tones were randomly selected from exponential probability functions. Listeners were asked to decide whether tones presented during a defined observation interval represented a ''noise'' process alone or the ''noise'' with a ''signal'' process added to it. The number of tones occurring in any observation interval is a Poisson variable; receiver operating characteristics (ROCs) arising from Poisson processes have been considered by Egan [Signal Detection Theory and ROC Analysis (Academic, New York, 1975)]. Several sets of noise and signal intensities and observation interval durations were selected which were expected to yield equivalent performance. Rating ROCs were generated based on subjects' responses in a single-interval, yes--no task. The performance levels achieved by listeners and the effects of intensity and duration are compared to those predicted for an ideal observer

  9. Experimental investigation of statistical models describing distribution of counts

    International Nuclear Information System (INIS)

    Salma, I.; Zemplen-Papp, E.

    1992-01-01

    The binomial, Poisson and modified Poisson models which are used for describing the statistical nature of the distribution of counts are compared theoretically, and conclusions for application are considered. The validity of the Poisson and the modified Poisson statistical distribution for observing k events in a short time interval is investigated experimentally for various measuring times. The experiments to measure the influence of the significant radioactive decay were performed with 89 Y m (T 1/2 =16.06 s), using a multichannel analyser (4096 channels) in the multiscaling mode. According to the results, Poisson statistics describe the counting experiment for short measuring times (up to T=0.5T 1/2 ) and its application is recommended. However, analysis of the data demonstrated, with confidence, that for long measurements (T≥T 1/2 ) Poisson distribution is not valid and the modified Poisson function is preferable. The practical implications in calculating uncertainties and in optimizing the measuring time are discussed. Differences between the standard deviations evaluated on the basis of the Poisson and binomial models are especially significant for experiments with long measuring time (T/T 1/2 ≥2) and/or large detection efficiency (ε>0.30). Optimization of the measuring time for paired observations yields the same solution for either the binomial or the Poisson distribution. (orig.)

  10. Unimodularity criteria for Poisson structures on foliated manifolds

    Science.gov (United States)

    Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury

    2018-03-01

    We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.

  11. Non-isothermal Smoluchowski-Poisson equation as a singular limit of the Navier-Stokes-Fourier-Poisson system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Laurençot, P.

    2007-01-01

    Roč. 88, - (2007), s. 325-349 ISSN 0021-7824 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier- Poisson system * Smoluchowski- Poisson system * singular limit Subject RIV: BA - General Mathematics Impact factor: 1.118, year: 2007

  12. Nonparametric Estimation of Distributions in Random Effects Models

    KAUST Repository

    Hart, Jeffrey D.

    2011-01-01

    We propose using minimum distance to obtain nonparametric estimates of the distributions of components in random effects models. A main setting considered is equivalent to having a large number of small datasets whose locations, and perhaps scales, vary randomly, but which otherwise have a common distribution. Interest focuses on estimating the distribution that is common to all datasets, knowledge of which is crucial in multiple testing problems where a location/scale invariant test is applied to every small dataset. A detailed algorithm for computing minimum distance estimates is proposed, and the usefulness of our methodology is illustrated by a simulation study and an analysis of microarray data. Supplemental materials for the article, including R-code and a dataset, are available online. © 2011 American Statistical Association.

  13. Poisson Approximation-Based Score Test for Detecting Association of Rare Variants.

    Science.gov (United States)

    Fang, Hongyan; Zhang, Hong; Yang, Yaning

    2016-07-01

    Genome-wide association study (GWAS) has achieved great success in identifying genetic variants, but the nature of GWAS has determined its inherent limitations. Under the common disease rare variants (CDRV) hypothesis, the traditional association analysis methods commonly used in GWAS for common variants do not have enough power for detecting rare variants with a limited sample size. As a solution to this problem, pooling rare variants by their functions provides an efficient way for identifying susceptible genes. Rare variant typically have low frequencies of minor alleles, and the distribution of the total number of minor alleles of the rare variants can be approximated by a Poisson distribution. Based on this fact, we propose a new test method, the Poisson Approximation-based Score Test (PAST), for association analysis of rare variants. Two testing methods, namely, ePAST and mPAST, are proposed based on different strategies of pooling rare variants. Simulation results and application to the CRESCENDO cohort data show that our methods are more powerful than the existing methods. © 2016 John Wiley & Sons Ltd/University College London.

  14. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  15. Poisson geometry from a Dirac perspective

    Science.gov (United States)

    Meinrenken, Eckhard

    2018-03-01

    We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.

  16. Thermal interaction effect on nucleation site distribution in subcooled boiling

    International Nuclear Information System (INIS)

    Zou, Ling; Jones, Barclay

    2012-01-01

    An experimental work on subcooled boiling of refrigerant, R134a, to examine nucleation site distributions on both copper and stainless steel heating surfaces was performed. In order to obtain high fidelity active nucleation site density and distribution data, a high-speed digital camera was utilized to record bubble emission images from a view normal to heating surfaces. Statistical analyses on nucleation site data were done and their statistical distributions were obtained. Those experimentally observed nucleation site distributions were compared to the random spatial Poisson distribution. The comparisons showed that, rather than purely random, active nucleation site distributions on boiling surfaces are relatively more uniform. Experimental results also showed that on the copper heating surface, nucleation site distributions are slightly more uniform than on the stainless steel surface. This was concluded as the results of thermal interactions between nucleation sites with different solid thermal conductivities. A two dimensional thermal interaction model was then developed to quantitatively examine the thermal interactions between nucleation sites. The results give a reasonable explanation to the experimental observation on nucleation site distributions.

  17. A note on the time decay of solutions for the linearized Wigner-Poisson system

    KAUST Repository

    Gamba, Irene; Gualdani, Maria; Sparber, Christof

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give

  18. On Partial Defaults in Portfolio Credit Risk : A Poisson Mixture Model Approach

    OpenAIRE

    Weißbach, Rafael; von Lieres und Wilkau, Carsten

    2005-01-01

    Most credit portfolio models exclusively calculate the loss distribution for a portfolio of performing counterparts. Conservative default definitions cause considerable insecurity about the loss for a long time after the default. We present three approaches to account for defaulted counterparts in the calculation of the economic capital. Two of the approaches are based on the Poisson mixture model CreditRisk+ and derive a loss distribution for an integrated portfolio. The third method treats ...

  19. Log-normal frailty models fitted as Poisson generalized linear mixed models.

    Science.gov (United States)

    Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

    2016-12-01

    The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Approximations for the single-product production-inventory problem with compound Poisson demand and service-level constraints

    NARCIS (Netherlands)

    Kok, de A.G.; Tijms, H.C.; Duyn Schouten, van der F.A.

    1984-01-01

    We consider a production-inventory problem in which the production rate can be continuously controlled in order to cope with random fluctuations in the demand. The demand process for a single product is a compound Poisson process. Excess demand is backlogged. Two production rates are available and

  1. Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions

    International Nuclear Information System (INIS)

    Akıncı, Ümit

    2012-01-01

    The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.

  2. Birth and Death Process Modeling Leads to the Poisson Distribution: A Journey Worth Taking

    Science.gov (United States)

    Rash, Agnes M.; Winkel, Brian J.

    2009-01-01

    This paper describes details of development of the general birth and death process from which we can extract the Poisson process as a special case. This general process is appropriate for a number of courses and units in courses and can enrich the study of mathematics for students as it touches and uses a diverse set of mathematical topics, e.g.,…

  3. Theoretical analysis of radiographic images by nonstationary Poisson processes

    International Nuclear Information System (INIS)

    Tanaka, Kazuo; Uchida, Suguru; Yamada, Isao.

    1980-01-01

    This paper deals with the noise analysis of radiographic images obtained in the usual fluorescent screen-film system. The theory of nonstationary Poisson processes is applied to the analysis of the radiographic images containing the object information. The ensemble averages, the autocorrelation functions, and the Wiener spectrum densities of the light-energy distribution at the fluorescent screen and of the film optical-density distribution are obtained. The detection characteristics of the system are evaluated theoretically. Numerical examples one-dimensional image are shown and the results are compared with those obtained under the assumption that the object image is related to the background noise by the additive process. (author)

  4. A Local Poisson Graphical Model for inferring networks from sequencing data.

    Science.gov (United States)

    Allen, Genevera I; Liu, Zhandong

    2013-09-01

    Gaussian graphical models, a class of undirected graphs or Markov Networks, are often used to infer gene networks based on microarray expression data. Many scientists, however, have begun using high-throughput sequencing technologies such as RNA-sequencing or next generation sequencing to measure gene expression. As the resulting data consists of counts of sequencing reads for each gene, Gaussian graphical models are not optimal for this discrete data. In this paper, we propose a novel method for inferring gene networks from sequencing data: the Local Poisson Graphical Model. Our model assumes a Local Markov property where each variable conditional on all other variables is Poisson distributed. We develop a neighborhood selection algorithm to fit our model locally by performing a series of l1 penalized Poisson, or log-linear, regressions. This yields a fast parallel algorithm for estimating networks from next generation sequencing data. In simulations, we illustrate the effectiveness of our methods for recovering network structure from count data. A case study on breast cancer microRNAs (miRNAs), a novel application of graphical models, finds known regulators of breast cancer genes and discovers novel miRNA clusters and hubs that are targets for future research.

  5. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    , and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can......This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  6. The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Rackauskas, Alfredas

    2010-01-01

    In this paper, we deal with the asymptotic distribution of the maximum increment of a random walk with a regularly varying jump size distribution. This problem is motivated by a long-standing problem on change point detection for epidemic alternatives. It turns out that the limit distribution...... of the maximum increment of the random walk is one of the classical extreme value distributions, the Fréchet distribution. We prove the results in the general framework of point processes and for jump sizes taking values in a separable Banach space...

  7. Randomized central limit theorems: A unified theory.

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-08-01

    The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles' aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles' extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic-scaling all ensemble components by a common deterministic scale. However, there are "random environment" settings in which the underlying scaling schemes are stochastic-scaling the ensemble components by different random scales. Examples of such settings include Holtsmark's law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)-in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes-and present "randomized counterparts" to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.

  8. On the generation of log-Levy distributions and extreme randomness

    International Nuclear Information System (INIS)

    Eliazar, Iddo; Klafter, Joseph

    2011-01-01

    The log-normal distribution is prevalent across the sciences, as it emerges from the combination of multiplicative processes and the central limit theorem (CLT). The CLT, beyond yielding the normal distribution, also yields the class of Levy distributions. The log-Levy distributions are the Levy counterparts of the log-normal distribution, they appear in the context of ultraslow diffusion processes, and they are categorized by Mandelbrot as belonging to the class of extreme randomness. In this paper, we present a natural stochastic growth model from which both the log-normal distribution and the log-Levy distributions emerge universally-the former in the case of deterministic underlying setting, and the latter in the case of stochastic underlying setting. In particular, we establish a stochastic growth model which universally generates Mandelbrot's extreme randomness. (paper)

  9. Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.

    Science.gov (United States)

    Mao, Tianqi; Wang, Zhaocheng; Wang, Qi

    2017-01-23

    Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.

  10. General solution of Poisson equation in three dimensions for disk-like galaxies

    International Nuclear Information System (INIS)

    Tong, Y.; Zheng, X.; Peng, O.

    1982-01-01

    The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies

  11. Randomness determines practical security of BB84 quantum key distribution

    Science.gov (United States)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  12. A heterogeneous CPU+GPU Poisson solver for space charge calculations in beam dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dawei; Rienen, Ursula van [University of Rostock, Institute of General Electrical Engineering (Germany)

    2016-07-01

    In beam dynamics studies in accelerator physics, space charge plays a central role in the low energy regime of an accelerator. Numerical space charge calculations are required, both, in the design phase and in the operation of the machines as well. Due to its efficiency, mostly the Particle-In-Cell (PIC) method is chosen for the space charge calculation. Then, the solution of Poisson's equation for the charge distribution in the rest frame is the most prominent part within the solution process. The Poisson solver directly affects the accuracy of the self-field applied on the charged particles when the equation of motion is solved in the laboratory frame. As the Poisson solver consumes the major part of the computing time in most simulations it has to be as fast as possible since it has to be carried out once per time step. In this work, we demonstrate a novel heterogeneous CPU+GPU routine for the Poisson solver. The novel solver also benefits from our new research results on the utilization of a discrete cosine transform within the classical Hockney and Eastwood's convolution routine.

  13. Generic Schemes for Single-Molecule Kinetics. 2: Information Content of the Poisson Indicator.

    Science.gov (United States)

    Avila, Thomas R; Piephoff, D Evan; Cao, Jianshu

    2017-08-24

    Recently, we described a pathway analysis technique (paper 1) for analyzing generic schemes for single-molecule kinetics based upon the first-passage time distribution. Here, we employ this method to derive expressions for the Poisson indicator, a normalized measure of stochastic variation (essentially equivalent to the Fano factor and Mandel's Q parameter), for various renewal (i.e., memoryless) enzymatic reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which can be used to tune substrate concentration to the stochastic fluctuations and to estimate the largest number of underlying consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and microscopic kinetic mechanisms.

  14. A note on the time decay of solutions for the linearized Wigner-Poisson system

    KAUST Repository

    Gamba, Irene

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.

  15. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    Lee, P.A.

    1983-06-01

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  16. Information content of poisson images

    International Nuclear Information System (INIS)

    Cederlund, J.

    1979-04-01

    One major problem when producing images with the aid of Poisson distributed quanta is how best to compromise between spatial and contrast resolution. Increasing the number of image elements improves spatial resolution, but at the cost of fewer quanta per image element, which reduces contrast resolution. Information theory arguments are used to analyse this problem. It is argued that information capacity is a useful concept to describe an important property of the imaging device, but that in order to compute the information content of an image produced by this device some statistical properties (such as the a priori probability of the densities) of the object to be depicted must be taken into account. If these statistical properties are not known one cannot make a correct choice between spatial and contrast resolution. (author)

  17. Introduction to probability with Mathematica

    CERN Document Server

    Hastings, Kevin J

    2009-01-01

    Discrete ProbabilityThe Cast of Characters Properties of Probability Simulation Random SamplingConditional ProbabilityIndependenceDiscrete DistributionsDiscrete Random Variables, Distributions, and ExpectationsBernoulli and Binomial Random VariablesGeometric and Negative Binomial Random Variables Poisson DistributionJoint, Marginal, and Conditional Distributions More on ExpectationContinuous ProbabilityFrom the Finite to the (Very) Infinite Continuous Random Variables and DistributionsContinuous ExpectationContinuous DistributionsThe Normal Distribution Bivariate Normal DistributionNew Random Variables from OldOrder Statistics Gamma DistributionsChi-Square, Student's t, and F-DistributionsTransformations of Normal Random VariablesAsymptotic TheoryStrong and Weak Laws of Large Numbers Central Limit TheoremStochastic Processes and ApplicationsMarkov ChainsPoisson Processes QueuesBrownian MotionFinancial MathematicsAppendixIntroduction to Mathematica Glossary of Mathematica Commands for Probability Short Answers...

  18. A test of inflated zeros for Poisson regression models.

    Science.gov (United States)

    He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan

    2017-01-01

    Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.

  19. Poisson denoising on the sphere

    Science.gov (United States)

    Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.

    2009-08-01

    In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.

  20. Fully-distributed randomized cooperation in wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2015-01-07

    When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.

  1. Fully-distributed randomized cooperation in wireless sensor networks

    KAUST Repository

    Bader, Ahmed; Abed-Meraim, Karim; Alouini, Mohamed-Slim

    2015-01-01

    When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.

  2. Selective Contrast Adjustment by Poisson Equation

    Directory of Open Access Journals (Sweden)

    Ana-Belen Petro

    2013-09-01

    Full Text Available Poisson Image Editing is a new technique permitting to modify the gradient vector field of an image, and then to recover an image with a gradient approaching this modified gradient field. This amounts to solve a Poisson equation, an operation which can be efficiently performed by Fast Fourier Transform (FFT. This paper describes an algorithm applying this technique, with two different variants. The first variant enhances the contrast by increasing the gradient in the dark regions of the image. This method is well adapted to images with back light or strong shadows, and reveals details in the shadows. The second variant of the same Poisson technique enhances all small gradients in the image, thus also sometimes revealing details and texture.

  3. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

    Science.gov (United States)

    Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

    2018-03-13

    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

  4. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    Science.gov (United States)

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  5. Analyzing hospitalization data: potential limitations of Poisson regression.

    Science.gov (United States)

    Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R

    2015-08-01

    Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  6. The quantum poisson-Lie T-duality and mirror symmetry

    International Nuclear Information System (INIS)

    Parkhomenko, S.E.

    1999-01-01

    Poisson-Lie T-duality in quantum N=2 superconformal Wess-Zumino-Novikov-Witten models is considered. The Poisson-Lie T-duality transformation rules of the super-Kac-Moody algebra currents are found from the conjecture that, as in the classical case, the quantum Poisson-Lie T-duality transformation is given by an automorphism which interchanges the isotropic subalgebras of the underlying Manin triple in one of the chirality sectors of the model. It is shown that quantum Poisson-Lie T-duality acts on the N=2 super-Virasoro algebra generators of the quantum models as a mirror symmetry acts: in one of the chirality sectors it is a trivial transformation while in another chirality sector it changes the sign of the U(1) current and interchanges the spin-3/2 currents. A generalization of Poisson-Lie T-duality for the quantum Kazama-Suzuki models is proposed. It is shown that quantum Poisson-Lie T-duality acts in these models as a mirror symmetry also

  7. Thinning spatial point processes into Poisson processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Schoenberg, Frederic Paik

    2010-01-01

    are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....

  8. Randomness at the root of things 1: Random walks

    Science.gov (United States)

    Ogborn, Jon; Collins, Simon; Brown, Mick

    2003-09-01

    This is the first of a pair of articles about randomness in physics. In this article, we use some variations on the idea of a `random walk' to consider first the path of a particle in Brownian motion, and then the random variation to be expected in radioactive decay. The arguments are set in the context of the general importance of randomness both in physics and in everyday life. We think that the ideas could usefully form part of students' A-level work on random decay and quantum phenomena, as well as being good for their general education. In the second article we offer a novel and simple approach to Poisson sequences.

  9. A physiologically based nonhomogeneous Poisson counter model of visual identification.

    Science.gov (United States)

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren

    2018-04-30

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr × Holstein F2 population

    Science.gov (United States)

    Silva, Fabyano Fonseca; Tunin, Karen P.; Rosa, Guilherme J.M.; da Silva, Marcos V.B.; Azevedo, Ana Luisa Souza; da Silva Verneque, Rui; Machado, Marco Antonio; Packer, Irineu Umberto

    2011-01-01

    Now a days, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr × Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. PMID:22215960

  11. Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population

    Directory of Open Access Journals (Sweden)

    Fabyano Fonseca Silva

    2011-01-01

    Full Text Available Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable.

  12. Free energy distribution function of a random Ising ferromagnet

    International Nuclear Information System (INIS)

    Dotsenko, Victor; Klumov, Boris

    2012-01-01

    We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging

  13. Noncommutative gauge theory for Poisson manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de

    2000-09-25

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  14. Noncommutative gauge theory for Poisson manifolds

    International Nuclear Information System (INIS)

    Jurco, Branislav; Schupp, Peter; Wess, Julius

    2000-01-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem

  15. The contribution of simple random sampling to observed variations in faecal egg counts.

    Science.gov (United States)

    Torgerson, Paul R; Paul, Michaela; Lewis, Fraser I

    2012-09-10

    It has been over 100 years since the classical paper published by Gosset in 1907, under the pseudonym "Student", demonstrated that yeast cells suspended in a fluid and measured by a haemocytometer conformed to a Poisson process. Similarly parasite eggs in a faecal suspension also conform to a Poisson process. Despite this there are common misconceptions how to analyse or interpret observations from the McMaster or similar quantitative parasitic diagnostic techniques, widely used for evaluating parasite eggs in faeces. The McMaster technique can easily be shown from a theoretical perspective to give variable results that inevitably arise from the random distribution of parasite eggs in a well mixed faecal sample. The Poisson processes that lead to this variability are described and illustrative examples of the potentially large confidence intervals that can arise from observed faecal eggs counts that are calculated from the observations on a McMaster slide. Attempts to modify the McMaster technique, or indeed other quantitative techniques, to ensure uniform egg counts are doomed to failure and belie ignorance of Poisson processes. A simple method to immediately identify excess variation/poor sampling from replicate counts is provided. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Generating clustered scale-free networks using Poisson based localization of edges

    Science.gov (United States)

    Türker, İlker

    2018-05-01

    We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.

  17. Almost Poisson integration of rigid body systems

    International Nuclear Information System (INIS)

    Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang

    1993-01-01

    In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs

  18. On the Expected Discounted Penalty Function for the Classical Risk Model with Potentially Delayed Claims and Random Incomes

    Directory of Open Access Journals (Sweden)

    Huiming Zhu

    2014-01-01

    Full Text Available We focus on the expected discounted penalty function of a compound Poisson risk model with random incomes and potentially delayed claims. It is assumed that each main claim will produce a byclaim with a certain probability and the occurrence of the byclaim may be delayed depending on associated main claim amount. In addition, the premium number process is assumed as a Poisson process. We derive the integral equation satisfied by the expected discounted penalty function. Given that the premium size is exponentially distributed, the explicit expression for the Laplace transform of the expected discounted penalty function is derived. Finally, for the exponential claim sizes, we present the explicit formula for the expected discounted penalty function.

  19. Study of non-Hodgkin's lymphoma mortality associated with industrial pollution in Spain, using Poisson models

    Directory of Open Access Journals (Sweden)

    Lope Virginia

    2009-01-01

    Full Text Available Abstract Background Non-Hodgkin's lymphomas (NHLs have been linked to proximity to industrial areas, but evidence regarding the health risk posed by residence near pollutant industries is very limited. The European Pollutant Emission Register (EPER is a public register that furnishes valuable information on industries that release pollutants to air and water, along with their geographical location. This study sought to explore the relationship between NHL mortality in small areas in Spain and environmental exposure to pollutant emissions from EPER-registered industries, using three Poisson-regression-based mathematical models. Methods Observed cases were drawn from mortality registries in Spain for the period 1994–2003. Industries were grouped into the following sectors: energy; metal; mineral; organic chemicals; waste; paper; food; and use of solvents. Populations having an industry within a radius of 1, 1.5, or 2 kilometres from the municipal centroid were deemed to be exposed. Municipalities outside those radii were considered as reference populations. The relative risks (RRs associated with proximity to pollutant industries were estimated using the following methods: Poisson Regression; mixed Poisson model with random provincial effect; and spatial autoregressive modelling (BYM model. Results Only proximity of paper industries to population centres (>2 km could be associated with a greater risk of NHL mortality (mixed model: RR:1.24, 95% CI:1.09–1.42; BYM model: RR:1.21, 95% CI:1.01–1.45; Poisson model: RR:1.16, 95% CI:1.06–1.27. Spatial models yielded higher estimates. Conclusion The reported association between exposure to air pollution from the paper, pulp and board industry and NHL mortality is independent of the model used. Inclusion of spatial random effects terms in the risk estimate improves the study of associations between environmental exposures and mortality. The EPER could be of great utility when studying the effects of

  20. Square root approximation to the poisson channel

    NARCIS (Netherlands)

    Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J.

    2013-01-01

    Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding

  1. Duality and modular class of a Nambu-Poisson structure

    International Nuclear Information System (INIS)

    Ibanez, R.; Leon, M. de; Lopez, B.; Marrero, J.C.; Padron, E.

    2001-01-01

    In this paper we introduce cohomology and homology theories for Nambu-Poisson manifolds. Also we study the relation between the existence of a duality for these theories and the vanishing of a particular Nambu-Poisson cohomology class, the modular class. The case of a regular Nambu-Poisson structure and some singular examples are discussed. (author)

  2. A scatter-corrected list-mode reconstruction and a practical scatter/random approximation technique for dynamic PET imaging

    International Nuclear Information System (INIS)

    Cheng, J-C; Rahmim, Arman; Blinder, Stephan; Camborde, Marie-Laure; Raywood, Kelvin; Sossi, Vesna

    2007-01-01

    We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies

  3. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    Angles d'Auriac, J.Ch.; Maillard, J.M.; Viallet, C.M.

    2002-01-01

    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  4. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    KAUST Repository

    Sepúlveda, Nuno

    2013-02-26

    Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.

  5. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data.

    Science.gov (United States)

    Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-02-26

    The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.

  6. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    KAUST Repository

    Sepú lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-01-01

    Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.

  7. Analisis Faktor – Faktor yang Mempengaruhi Jumlah Kejahatan Pencurian Kendaraan Bermotor (Curanmor) Menggunakan Model Geographically Weighted Poisson Regression (Gwpr)

    OpenAIRE

    Haris, Muhammad; Yasin, Hasbi; Hoyyi, Abdul

    2015-01-01

    Theft is an act taking someone else's property, partially or entierely, with intention to have it illegally. Motor vehicle theft is one of the most highlighted crime type and disturbing the communities. Regression analysis is a statistical analysis for modeling the relationships between response variable and predictor variable. If the response variable follows a Poisson distribution or categorized as a count data, so the regression model used is Poisson regression. Geographically Weighted Poi...

  8. Background stratified Poisson regression analysis of cohort data.

    Science.gov (United States)

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  9. Poisson-Lie T-plurality

    International Nuclear Information System (INIS)

    Unge, Rikard von

    2002-01-01

    We extend the path-integral formalism for Poisson-Lie T-duality to include the case of Drinfeld doubles which can be decomposed into bi-algebras in more than one way. We give the correct shift of the dilaton, correcting a mistake in the literature. We then use the fact that the six dimensional Drinfeld doubles have been classified to write down all possible conformal Poisson-Lie T-duals of three dimensional space times and we explicitly work out two duals to the constant dilaton and zero anti-symmetric tensor Bianchi type V space time and show that they satisfy the string equations of motion. This space-time was previously thought to have no duals because of the tracefulness of the structure constants. (author)

  10. Study of Landau spectrum for a two-dimensional random magnetic field

    International Nuclear Information System (INIS)

    Furtlehner, C.

    1997-01-01

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of 'strong' mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author)

  11. On lower limits and equivalences for distribution tails of randomly stopped sums

    NARCIS (Netherlands)

    Denisov, D.E.; Foss, S.G.; Korshunov, D.A.

    2008-01-01

    For a distribution F*t of a random sum St=¿1+¿+¿t of i.i.d. random variables with a common distribution F on the half-line [0, 8), we study the limits of the ratios of tails as x¿8 (here, t is a counting random variable which does not depend on {¿n}n=1). We also consider applications of the results

  12. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  13. Poisson Growth Mixture Modeling of Intensive Longitudinal Data: An Application to Smoking Cessation Behavior

    Science.gov (United States)

    Shiyko, Mariya P.; Li, Yuelin; Rindskopf, David

    2012-01-01

    Intensive longitudinal data (ILD) have become increasingly common in the social and behavioral sciences; count variables, such as the number of daily smoked cigarettes, are frequently used outcomes in many ILD studies. We demonstrate a generalized extension of growth mixture modeling (GMM) to Poisson-distributed ILD for identifying qualitatively…

  14. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    Science.gov (United States)

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  15. A comparison of multiple indicator kriging and area-to-point Poisson kriging for mapping patterns of herbivore species abundance in Kruger National Park, South Africa.

    Science.gov (United States)

    Kerry, Ruth; Goovaerts, Pierre; Smit, Izak P J; Ingram, Ben R

    Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of the African savannah. For the past 40 years, annual aerial surveys of herbivores have been conducted to aid management decisions based on (1) the spatial distribution of species throughout the park and (2) total species populations in a year. The surveys are extremely time consuming and costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the distance method currently employed by the park only gives estimates of total species populations but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-validation approach indicates that multiple indicator kriging makes poor estimates of the number of animals, particularly the few large counts, as the indicator variograms for such high thresholds are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: spatial density and proportion of a given species. Both Poisson approaches had standardized mean absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the most abundant species and the proportion, Poisson approach (2), did for the least abundant species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs.

  16. Limit distributions of random walks on stochastic matrices

    Indian Academy of Sciences (India)

    condition that μm(P) > 0 for some positive integer m (as opposed to just 1, instead of m, considered in [1]), where μm is the ...... Limit distributions of random walks. 611. PROPOSITION 3.2. Let f be as introduced before Proposition 3.1. The probability distribution λ is the image of π by the map b ↦→ f (b). In other words, λ = ∑.

  17. Random numbers spring from alpha decay

    International Nuclear Information System (INIS)

    Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Clark, N.A.; Tyler, S.A.

    1980-05-01

    Congruential random number generators, which are widely used in Monte Carlo simulations, are deficient in that the number they generate are concentrated in a relatively small number of hyperplanes. While this deficiency may not be a limitation in small Monte Carlo studies involving a few variables, it introduces a significant bias in large simulations requiring high resolution. This bias was recognized and assessed during preparations for an accident analysis study of nuclear power plants. This report describes a random number device based on the radioactive decay of alpha particles from a 235 U source in a high-resolution gas proportional counter. The signals were fed to a 4096-channel analyzer and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts (0 for an even count and 1 for an odd count) were then assembled in sequence to form 31-bit binary random numbers and transcribed to a magnetic tape. This cycle was repeated as many times as were necessary to create 3 million random numbers. The frequency distribution of counts from the present device conforms to the Brockwell-Moyal distribution, which takes into account the dead time of the counter (both the dead time and decay constant of the underlying Poisson process were estimated). Analysis of the count data and tests of randomness on a sample set of the 31-bit binary numbers indicate that this random number device is a highly reliable source of truly random numbers. Its use is, therefore, recommended in Monte Carlo simulations for which the congruential pseudorandom number generators are found to be inadequate. 6 figures, 5 tables

  18. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    Science.gov (United States)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  19. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  20. Zero Distribution of System with Unknown Random Variables Case Study: Avoiding Collision Path

    Directory of Open Access Journals (Sweden)

    Parman Setyamartana

    2014-07-01

    Full Text Available This paper presents the stochastic analysis of finding the feasible trajectories of robotics arm motion at obstacle surrounding. Unknown variables are coefficients of polynomials joint angle so that the collision-free motion is achieved. ãk is matrix consisting of these unknown feasible polynomial coefficients. The pattern of feasible polynomial in the obstacle environment shows as random. This paper proposes to model the pattern of this randomness values using random polynomial with unknown variables as coefficients. The behavior of the system will be obtained from zero distribution as the characteristic of such random polynomial. Results show that the pattern of random polynomial of avoiding collision can be constructed from zero distribution. Zero distribution is like building block of the system with obstacles as uncertainty factor. By scale factor k, which has range, the random coefficient pattern can be predicted.

  1. Zero-truncated negative binomial - Erlang distribution

    Science.gov (United States)

    Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana

    2017-11-01

    The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.

  2. Laplace-Laplace analysis of the fractional Poisson process

    OpenAIRE

    Gorenflo, Rudolf; Mainardi, Francesco

    2013-01-01

    We generate the fractional Poisson process by subordinating the standard Poisson process to the inverse stable subordinator. Our analysis is based on application of the Laplace transform with respect to both arguments of the evolving probability densities.

  3. A Study on The Mixture of Exponentiated-Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Adel Tawfik Elshahat

    2016-12-01

    Full Text Available Mixtures of measures or distributions occur frequently in the theory and applications of probability and statistics. In the simplest case it may, for example, be reasonable to assume that one is dealing with the mixture in given proportions of a finite number of normal populations with different means or variances. The mixture parameter may also be denumerable infinite, as in the theory of sums of a random number of random variables, or continuous, as in the compound Poisson distribution. The use of finite mixture distributions, to control for unobserved heterogeneity, has become increasingly popular among those estimating dynamic discrete choice models. One of the barriers to using mixture models is that parameters that could previously be estimated in stages must now be estimated jointly: using mixture distributions destroys any additive reparability of the log likelihood function. In this thesis, the maximum likelihood estimators have been obtained for the parameters of the mixture of exponentiated Weibull distribution when sample is available from censoring scheme. The maximum likelihood estimators of the parameters and the asymptotic variance covariance matrix have been also obtained. A numerical illustration for these new results is given.

  4. Nearest neighbor spacing distributions of low-lying levels of vibrational nuclei

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Simbel, M.H.

    1996-01-01

    Energy-level statistics are considered for nuclei whose Hamiltonian is divided into intrinsic and collective-vibrational terms. The levels are described as a random superposition of independent sequences, each corresponding to a given number of phonons. The intrinsic motion is assumed chaotic. The level spacing distribution is found to be intermediate between the Wigner and Poisson distributions and similar in form to the spacing distribution of a system with classical phase space divided into separate regular and chaotic domains. We have obtained approximate expressions for the nearest neighbor spacing and cumulative spacing distribution valid when the level density is described by a constant-temperature formula and not involving additional free parameters. These expressions have been able to achieve good agreement with the experimental spacing distributions. copyright 1996 The American Physical Society

  5. Background stratified Poisson regression analysis of cohort data

    International Nuclear Information System (INIS)

    Richardson, David B.; Langholz, Bryan

    2012-01-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

  6. On Poisson Nonlinear Transformations

    Directory of Open Access Journals (Sweden)

    Nasir Ganikhodjaev

    2014-01-01

    Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.

  7. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  8. Network Traffic Monitoring Using Poisson Dynamic Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-09

    In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.

  9. Raney Distributions and Random Matrix Theory

    Science.gov (United States)

    Forrester, Peter J.; Liu, Dang-Zheng

    2015-03-01

    Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.

  10. Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models.

    Science.gov (United States)

    Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I

    2018-01-01

    Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.

  11. Real-time definition of non-randomness in the distribution of genomic events.

    Directory of Open Access Journals (Sweden)

    Ulrich Abel

    Full Text Available Features such as mutations or structural characteristics can be non-randomly or non-uniformly distributed within a genome. So far, computer simulations were required for statistical inferences on the distribution of sequence motifs. Here, we show that these analyses are possible using an analytical, mathematical approach. For the assessment of non-randomness, our calculations only require information including genome size, number of (sampled sequence motifs and distance parameters. We have developed computer programs evaluating our analytical formulas for the real-time determination of expected values and p-values. This approach permits a flexible cluster definition that can be applied to most effectively identify non-random or non-uniform sequence motif distribution. As an example, we show the effectivity and reliability of our mathematical approach in clinical retroviral vector integration site distribution.

  12. Measuring mouse retina response near the detection threshold to direct stimulation of photons with sub-poisson statistics

    Science.gov (United States)

    Tavala, Amir; Dovzhik, Krishna; Schicker, Klaus; Koschak, Alexandra; Zeilinger, Anton

    Probing the visual system of human and animals at very low photon rate regime has recently attracted the quantum optics community. In an experiment on the isolated photoreceptor cells of Xenopus, the cell output signal was measured while stimulating it by pulses with sub-poisson distributed photons. The results showed single photon detection efficiency of 29 +/-4.7% [1]. Another behavioral experiment on human suggests a less detection capability at perception level with the chance of 0.516 +/-0.01 (i.e. slightly better than random guess) [2]. Although the species are different, both biological models and experimental observations with classical light stimuli expect that a fraction of single photon responses is filtered somewhere within the retina network and/or during the neural processes in the brain. In this ongoing experiment, we look for a quantitative answer to this question by measuring the output signals of the last neural layer of WT mouse retina using microelectrode arrays. We use a heralded downconversion single-photon source. We stimulate the retina directly since the eye lens (responsible for 20-50% of optical loss and scattering [2]) is being removed. Here, we demonstrate our first results that confirms the response to the sub-poisson distributied pulses. This project was supported by Austrian Academy of Sciences, SFB FoQuS F 4007-N23 funded by FWF and ERC QIT4QAD 227844 funded by EU Commission.

  13. A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests.

    Science.gov (United States)

    Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea

    2017-11-01

    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    Science.gov (United States)

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2017-06-05

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Poisson sigma model with branes and hyperelliptic Riemann surfaces

    International Nuclear Information System (INIS)

    Ferrario, Andrea

    2008-01-01

    We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder [''A path integral approach to the Kontsevich quantization formula,'' Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ['Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model', Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., 'Deformation quantization of Poisson manifolds I', e-print arXiv:hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P n with particular ''alternating'' boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions

  16. Method of Poisson's ratio imaging within a material part

    Science.gov (United States)

    Roth, Don J. (Inventor)

    1996-01-01

    The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.

  17. EL MODELO POISSON GENERALIZADO INFLADO DE CEROS: UNA APLICACIÓN EN EL ENTORNO EDUCATIVO UNIVERSITARIO

    Directory of Open Access Journals (Sweden)

    García-Artiles, María Dolores

    2014-12-01

    Full Text Available This paper presents the zero-inflated generalised Poisson distribution, which is useful when there is a large presence of zeros in the sample. After presenting the model, we develop a specific program based on Mathematica, overcoming some limitations of alternative approaches such as STATA or EViews, which do not include the zero-inflated Poisson distribution among its routines. The advantages of the model used and the proposed program are illustrated with a real example that is very appropriate to its features, namely an analysis of the factors influencing university students’ attendance at tutoring sessions. This example is particularly suitable to show the usefulness of the methodology presented because it includes a large number of zeros, reflecting the many occasions on which the students do not attend these sessions. The students’ place of residence, their attendance at lectures and the application of continual assessment are variables that seem to account for attendance at tutoring sessions.

  18. Application of random matrix theory to biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Luo Feng [Department of Computer Science, Clemson University, 100 McAdams Hall, Clemson, SC 29634 (United States); Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhong Jianxin [Department of Physics, Xiangtan University, Hunan 411105 (China) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhongjn@ornl.gov; Yang Yunfeng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Scheuermann, Richard H. [Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhou Jizhong [Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019 (United States) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhouj@ornl.gov

    2006-09-25

    We show that spectral fluctuation of interaction matrices of a yeast protein-protein interaction network and a yeast metabolic network follows the description of the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT). Furthermore, we demonstrate that while the global biological networks evaluated belong to GOE, removal of interactions between constituents transitions the networks to systems of isolated modules described by the Poisson distribution. Our results indicate that although biological networks are very different from other complex systems at the molecular level, they display the same statistical properties at network scale. The transition point provides a new objective approach for the identification of functional modules.

  19. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  20. Monitoring Poisson observations using combined applications of Shewhart and EWMA charts

    Science.gov (United States)

    Abujiya, Mu'azu Ramat

    2017-11-01

    The Shewhart and exponentially weighted moving average (EWMA) charts for nonconformities are the most widely used procedures of choice for monitoring Poisson observations in modern industries. Individually, the Shewhart EWMA charts are only sensitive to large and small shifts, respectively. To enhance the detection abilities of the two schemes in monitoring all kinds of shifts in Poisson count data, this study examines the performance of combined applications of the Shewhart, and EWMA Poisson control charts. Furthermore, the study proposes modifications based on well-structured statistical data collection technique, ranked set sampling (RSS), to detect shifts in the mean of a Poisson process more quickly. The relative performance of the proposed Shewhart-EWMA Poisson location charts is evaluated in terms of the average run length (ARL), standard deviation of the run length (SDRL), median run length (MRL), average ratio ARL (ARARL), average extra quadratic loss (AEQL) and performance comparison index (PCI). Consequently, all the new Poisson control charts based on RSS method are generally more superior than most of the existing schemes for monitoring Poisson processes. The use of these combined Shewhart-EWMA Poisson charts is illustrated with an example to demonstrate the practical implementation of the design procedure.

  1. Poisson-Jacobi reduction of homogeneous tensors

    International Nuclear Information System (INIS)

    Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P

    2004-01-01

    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N

  2. Number-counts slope estimation in the presence of Poisson noise

    Science.gov (United States)

    Schmitt, Juergen H. M. M.; Maccacaro, Tommaso

    1986-01-01

    The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution.

  3. Lifetime Reliability Estimate and Extreme Permanent Deformations of Randomly Excited Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1983-01-01

    plastic deformation during several loadings can be modelled as a filtered Poisson process. Using the Markov property of this quantity the considered first-passage problem as well as the related extreme distribution problems are then solved numerically, and the results are compared to simulation studies.......A method is presented for life-time reliability' estimates of randomly excited yielding systems, assuming the structure to be safe, when the plastic deformations are confined below certain limits. The accumulated plastic deformations during any single significant loading history are considered...

  4. Poisson image reconstruction with Hessian Schatten-norm regularization.

    Science.gov (United States)

    Lefkimmiatis, Stamatios; Unser, Michael

    2013-11-01

    Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.

  5. Weak convergence to isotropic complex [Formula: see text] random measure.

    Science.gov (United States)

    Wang, Jun; Li, Yunmeng; Sang, Liheng

    2017-01-01

    In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  6. The Concepts of Pseudo Compound Poisson and Partition Representations in Discrete Probability

    Directory of Open Access Journals (Sweden)

    Werner Hürlimann

    2015-01-01

    Full Text Available The mathematical/statistical concepts of pseudo compound Poisson and partition representations in discrete probability are reviewed and clarified. A combinatorial interpretation of the convolution of geometric distributions in terms of a variant of Newton’s identities is obtained. The practical use of the twofold convolution leads to an improved goodness-of-fit for a data set from automobile insurance that was up to now not fitted satisfactorily.

  7. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  8. A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League

    NARCIS (Netherlands)

    Koopman, S.J.; Lit, R.

    2015-01-01

    Summary: We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results

  9. Gamma processes and peaks-over-threshold distributions for time-dependent reliability

    International Nuclear Information System (INIS)

    Noortwijk, J.M. van; Weide, J.A.M. van der; Kallen, M.J.; Pandey, M.D.

    2007-01-01

    In the evaluation of structural reliability, a failure is defined as the event in which stress exceeds a resistance that is liable to deterioration. This paper presents a method to combine the two stochastic processes of deteriorating resistance and fluctuating load for computing the time-dependent reliability of a structural component. The deterioration process is modelled as a gamma process, which is a stochastic process with independent non-negative increments having a gamma distribution with identical scale parameter. The stochastic process of loads is generated by a Poisson process. The variability of the random loads is modelled by a peaks-over-threshold distribution (such as the generalised Pareto distribution). These stochastic processes of deterioration and load are combined to evaluate the time-dependent reliability

  10. Randomly displaced phase distribution design and its advantage in page-data recording of Fourier transform holograms.

    Science.gov (United States)

    Emoto, Akira; Fukuda, Takashi

    2013-02-20

    For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.

  11. Exact solution of two interacting run-and-tumble random walkers with finite tumble duration

    International Nuclear Information System (INIS)

    Slowman, A B; Evans, M R; Blythe, R A

    2017-01-01

    We study a model of interacting run-and-tumble random walkers operating under mutual hardcore exclusion on a one-dimensional lattice with periodic boundary conditions. We incorporate a finite, poisson-distributed, tumble duration so that a particle remains stationary whilst tumbling, thus generalising the persistent random walker model. We present the exact solution for the nonequilibrium stationary state of this system in the case of two random walkers. We find this to be characterised by two lengthscales, one arising from the jamming of approaching particles, and the other from one particle moving when the other is tumbling. The first of these lengthscales vanishes in a scaling limit where the continuous-space dynamics is recovered whilst the second remains finite. Thus the nonequilibrium stationary state reveals a rich structure of attractive, jammed and extended pieces. (paper)

  12. Statistical distributions of optimal global alignment scores of random protein sequences

    Directory of Open Access Journals (Sweden)

    Tang Jiaowei

    2005-10-01

    Full Text Available Abstract Background The inference of homology from statistically significant sequence similarity is a central issue in sequence alignments. So far the statistical distribution function underlying the optimal global alignments has not been completely determined. Results In this study, random and real but unrelated sequences prepared in six different ways were selected as reference datasets to obtain their respective statistical distributions of global alignment scores. All alignments were carried out with the Needleman-Wunsch algorithm and optimal scores were fitted to the Gumbel, normal and gamma distributions respectively. The three-parameter gamma distribution performs the best as the theoretical distribution function of global alignment scores, as it agrees perfectly well with the distribution of alignment scores. The normal distribution also agrees well with the score distribution frequencies when the shape parameter of the gamma distribution is sufficiently large, for this is the scenario when the normal distribution can be viewed as an approximation of the gamma distribution. Conclusion We have shown that the optimal global alignment scores of random protein sequences fit the three-parameter gamma distribution function. This would be useful for the inference of homology between sequences whose relationship is unknown, through the evaluation of gamma distribution significance between sequences.

  13. Cluster X-varieties, amalgamation, and Poisson-Lie groups

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2006-01-01

    In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie...

  14. Optimal redundant systems for works with random processing time

    International Nuclear Information System (INIS)

    Chen, M.; Nakagawa, T.

    2013-01-01

    This paper studies the optimal redundant policies for a manufacturing system processing jobs with random working times. The redundant units of the parallel systems and standby systems are subject to stochastic failures during the continuous production process. First, a job consisting of only one work is considered for both redundant systems and the expected cost functions are obtained. Next, each redundant system with a random number of units is assumed for a single work. The expected cost functions and the optimal expected numbers of units are derived for redundant systems. Subsequently, the production processes of N tandem works are introduced for parallel and standby systems, and the expected cost functions are also summarized. Finally, the number of works is estimated by a Poisson distribution for the parallel and standby systems. Numerical examples are given to demonstrate the optimization problems of redundant systems

  15. Poisson traces, D-modules, and symplectic resolutions.

    Science.gov (United States)

    Etingof, Pavel; Schedler, Travis

    2018-01-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  16. Poisson traces, D-modules, and symplectic resolutions

    Science.gov (United States)

    Etingof, Pavel; Schedler, Travis

    2018-03-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  17. Survival analysis of clinical mastitis data using a nested frailty Cox model fit as a mixed-effects Poisson model.

    Science.gov (United States)

    Elghafghuf, Adel; Dufour, Simon; Reyher, Kristen; Dohoo, Ian; Stryhn, Henrik

    2014-12-01

    Mastitis is a complex disease affecting dairy cows and is considered to be the most costly disease of dairy herds. The hazard of mastitis is a function of many factors, both managerial and environmental, making its control a difficult issue to milk producers. Observational studies of clinical mastitis (CM) often generate datasets with a number of characteristics which influence the analysis of those data: the outcome of interest may be the time to occurrence of a case of mastitis, predictors may change over time (time-dependent predictors), the effects of factors may change over time (time-dependent effects), there are usually multiple hierarchical levels, and datasets may be very large. Analysis of such data often requires expansion of the data into the counting-process format - leading to larger datasets - thus complicating the analysis and requiring excessive computing time. In this study, a nested frailty Cox model with time-dependent predictors and effects was applied to Canadian Bovine Mastitis Research Network data in which 10,831 lactations of 8035 cows from 69 herds were followed through lactation until the first occurrence of CM. The model was fit to the data as a Poisson model with nested normally distributed random effects at the cow and herd levels. Risk factors associated with the hazard of CM during the lactation were identified, such as parity, calving season, herd somatic cell score, pasture access, fore-stripping, and proportion of treated cases of CM in a herd. The analysis showed that most of the predictors had a strong effect early in lactation and also demonstrated substantial variation in the baseline hazard among cows and between herds. A small simulation study for a setting similar to the real data was conducted to evaluate the Poisson maximum likelihood estimation approach with both Gaussian quadrature method and Laplace approximation. Further, the performance of the two methods was compared with the performance of a widely used estimation

  18. Evolutionary inference via the Poisson Indel Process.

    Science.gov (United States)

    Bouchard-Côté, Alexandre; Jordan, Michael I

    2013-01-22

    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.

  19. Particle-wave discrimination in Poisson spot experiments

    International Nuclear Information System (INIS)

    Reisinger, T; Bracco, G; Holst, B

    2011-01-01

    Matter-wave interferometry has been used extensively over the last few years to demonstrate the quantum-mechanical wave nature of increasingly larger and more massive particles. We have recently suggested the use of the historical Poisson spot setup to test the diffraction properties of larger objects. In this paper, we present the results of a classical particle van der Waals (vdW) force model for a Poisson spot experimental setup and compare these to Fresnel diffraction calculations with a vdW phase term. We include the effect of disc-edge roughness in both models. Calculations are performed with D 2 and with C 70 using realistic parameters. We find that the sensitivity of the on-axis interference/focus spot to disc-edge roughness is very different in the two cases. We conclude that by measuring the intensity on the optical axis as a function of disc-edge roughness, it can be determined whether the objects behave as de Broglie waves or classical particles. The scaling of the Poisson spot experiment to larger molecular masses is, however, not as favorable as in the case of near-field light-grating-based interferometers. Instead, we discuss the possibility of studying the Casimir-Polder potential using the Poisson spot setup.

  20. Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets

    Science.gov (United States)

    Carlet, Guido; Casati, Matteo; Shadrin, Sergey

    2017-04-01

    We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with D independent variables. We find that the second and third cohomology groups are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the deformation theory in the multivariable case is non-trivial.

  1. Quantum algebras and Poisson geometry in mathematical physics

    CERN Document Server

    Karasev, M V

    2005-01-01

    This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc.

  2. Poisson's ratio and Young's modulus of lipid bilayers in different phases

    Directory of Open Access Journals (Sweden)

    Tayebeh eJadidi

    2014-04-01

    Full Text Available A general computational method is introduced to estimate the Poisson's ratio for membranes with small thickness.In this method, the Poisson's ratio is calculated by utilizing a rescaling of inter-particle distancesin one lateral direction under periodic boundary conditions. As an example for the coarse grained lipid model introduced by Lenz and Schmid, we calculate the Poisson's ratio in the gel, fluid, and interdigitated phases. Having the Poisson's ratio, enable us to obtain the Young's modulus for the membranes in different phases. The approach may be applied to other membranes such as graphene and tethered membranes in orderto predict the temperature dependence of its Poisson's ratio and Young's modulus.

  3. Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes

    Science.gov (United States)

    2012-06-10

    ESTIMATING BIRD/AIRCRAFT COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE...AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE RESEARCH PAPER Presented to the Faculty Department of Operational Sciences...COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES Brady J. Vaira, BS, MS Major, USAF Approved

  4. Poisson structures for reduced non-holonomic systems

    International Nuclear Information System (INIS)

    Ramos, Arturo

    2004-01-01

    Borisov, Mamaev and Kilin have recently found certain Poisson structures with respect to which the reduced and rescaled systems of certain non-holonomic problems, involving rolling bodies without slipping, become Hamiltonian, the Hamiltonian function being the reduced energy. We study further the algebraic origin of these Poisson structures, showing that they are of rank 2 and therefore the mentioned rescaling is not necessary. We show that they are determined, up to a non-vanishing factor function, by the existence of a system of first-order differential equations providing two integrals of motion. We generalize the form of the Poisson structures and extend their domain of definition. We apply the theory to the rolling disc, the Routh's sphere, the ball rolling on a surface of revolution, and its special case of a ball rolling inside a cylinder

  5. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...

  6. Fermi-dirac and random carrier distributions in quantum dot lasers

    OpenAIRE

    Hutchings, M.; O'Driscoll, Ian; Smowton, P. M.; Blood, P.

    2014-01-01

    Using experimental gain and emission measurements as functions of temperature, a method is described to characterise the carrier distribution of radiative states in a quantum dot (QD) laser structure in terms of a temperature. This method is independent of the form of the inhomogeneous dot distribution. A thermal distribution at the lattice temperature is found between 200 and 300K. Below 200K the characteristic temperature exceeds the lattice temperature and the distribution becomes random b...

  7. Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.

    Science.gov (United States)

    Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng

    2018-06-01

    The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.

  8. On covariant Poisson brackets in classical field theory

    International Nuclear Information System (INIS)

    Forger, Michael; Salles, Mário O.

    2015-01-01

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra

  9. On covariant Poisson brackets in classical field theory

    Energy Technology Data Exchange (ETDEWEB)

    Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)

    2015-10-15

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.

  10. Classifying next-generation sequencing data using a zero-inflated Poisson model.

    Science.gov (United States)

    Zhou, Yan; Wan, Xiang; Zhang, Baoxue; Tong, Tiejun

    2018-04-15

    With the development of high-throughput techniques, RNA-sequencing (RNA-seq) is becoming increasingly popular as an alternative for gene expression analysis, such as RNAs profiling and classification. Identifying which type of diseases a new patient belongs to with RNA-seq data has been recognized as a vital problem in medical research. As RNA-seq data are discrete, statistical methods developed for classifying microarray data cannot be readily applied for RNA-seq data classification. Witten proposed a Poisson linear discriminant analysis (PLDA) to classify the RNA-seq data in 2011. Note, however, that the count datasets are frequently characterized by excess zeros in real RNA-seq or microRNA sequence data (i.e. when the sequence depth is not enough or small RNAs with the length of 18-30 nucleotides). Therefore, it is desired to develop a new model to analyze RNA-seq data with an excess of zeros. In this paper, we propose a Zero-Inflated Poisson Logistic Discriminant Analysis (ZIPLDA) for RNA-seq data with an excess of zeros. The new method assumes that the data are from a mixture of two distributions: one is a point mass at zero, and the other follows a Poisson distribution. We then consider a logistic relation between the probability of observing zeros and the mean of the genes and the sequencing depth in the model. Simulation studies show that the proposed method performs better than, or at least as well as, the existing methods in a wide range of settings. Two real datasets including a breast cancer RNA-seq dataset and a microRNA-seq dataset are also analyzed, and they coincide with the simulation results that our proposed method outperforms the existing competitors. The software is available at http://www.math.hkbu.edu.hk/∼tongt. xwan@comp.hkbu.edu.hk or tongt@hkbu.edu.hk. Supplementary data are available at Bioinformatics online.

  11. Estimating safety effects of pavement management factors utilizing Bayesian random effect models.

    Science.gov (United States)

    Jiang, Ximiao; Huang, Baoshan; Zaretzki, Russell L; Richards, Stephen; Yan, Xuedong

    2013-01-01

    Previous studies of pavement management factors that relate to the occurrence of traffic-related crashes are rare. Traditional research has mostly employed summary statistics of bidirectional pavement quality measurements in extended longitudinal road segments over a long time period, which may cause a loss of important information and result in biased parameter estimates. The research presented in this article focuses on crash risk of roadways with overall fair to good pavement quality. Real-time and location-specific data were employed to estimate the effects of pavement management factors on the occurrence of crashes. This research is based on the crash data and corresponding pavement quality data for the Tennessee state route highways from 2004 to 2009. The potential temporal and spatial correlations among observations caused by unobserved factors were considered. Overall 6 models were built accounting for no correlation, temporal correlation only, and both the temporal and spatial correlations. These models included Poisson, negative binomial (NB), one random effect Poisson and negative binomial (OREP, ORENB), and two random effect Poisson and negative binomial (TREP, TRENB) models. The Bayesian method was employed to construct these models. The inference is based on the posterior distribution from the Markov chain Monte Carlo (MCMC) simulation. These models were compared using the deviance information criterion. Analysis of the posterior distribution of parameter coefficients indicates that the pavement management factors indexed by Present Serviceability Index (PSI) and Pavement Distress Index (PDI) had significant impacts on the occurrence of crashes, whereas the variable rutting depth was not significant. Among other factors, lane width, median width, type of terrain, and posted speed limit were significant in affecting crash frequency. The findings of this study indicate that a reduction in pavement roughness would reduce the likelihood of traffic

  12. Exact solution for the Poisson field in a semi-infinite strip.

    Science.gov (United States)

    Cohen, Yossi; Rothman, Daniel H

    2017-04-01

    The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.

  13. The Canopy Graph and Level Statistics for Random Operators on Trees

    International Nuclear Information System (INIS)

    Aizenman, Michael; Warzel, Simone

    2006-01-01

    For operators with homogeneous disorder, it is generally expected that there is a relation between the spectral characteristics of a random operator in the infinite setup and the distribution of the energy gaps in its finite volume versions, in corresponding energy ranges. Whereas pure point spectrum of the infinite operator goes along with Poisson level statistics, it is expected that purely absolutely continuous spectrum would be associated with gap distributions resembling the corresponding random matrix ensemble. We prove that on regular rooted trees, which exhibit both spectral types, the eigenstate point process has always Poissonian limit. However, we also find that this does not contradict the picture described above if that is carefully interpreted, as the relevant limit of finite trees is not the infinite homogenous tree graph but rather a single-ended 'canopy graph.' For this tree graph, the random Schroedinger operator is proven here to have only pure-point spectrum at any strength of the disorder. For more general single-ended trees it is shown that the spectrum is always singular - pure point possibly with singular continuous component which is proven to occur in some cases

  14. A random sampling procedure for anisotropic distributions

    International Nuclear Information System (INIS)

    Nagrajan, P.S.; Sethulakshmi, P.; Raghavendran, C.P.; Bhatia, D.P.

    1975-01-01

    A procedure is described for sampling the scattering angle of neutrons as per specified angular distribution data. The cosine of the scattering angle is written as a double Legendre expansion in the incident neutron energy and a random number. The coefficients of the expansion are given for C, N, O, Si, Ca, Fe and Pb and these elements are of interest in dosimetry and shielding. (author)

  15. A Method of Poisson's Ration Imaging Within a Material Part

    Science.gov (United States)

    Roth, Don J. (Inventor)

    1994-01-01

    The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.

  16. Bayesian random-effect model for predicting outcome fraught with heterogeneity--an illustration with episodes of 44 patients with intractable epilepsy.

    Science.gov (United States)

    Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H

    2006-01-01

    The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p dispersion attributed either to correlated property or to subject-to-subject variability.

  17. A note on optimal (s,S) and (R,nQ) policies under a stuttering Poisson demand process

    DEFF Research Database (Denmark)

    Larsen, Christian

    2015-01-01

    In this note, a new efficient algorithm is proposed to find an optimal (s, S) replenishment policy for inventory systems with continuous reviews and where the demand follows a stuttering Poisson process (the compound element is geometrically distributed). We also derive three upper bounds...

  18. Action-angle variables and a KAM theorem for b-Poisson manifolds

    OpenAIRE

    Kiesenhofer, Anna; Miranda Galcerán, Eva; Scott, Geoffrey

    2015-01-01

    In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (C) 2015 Elsevier Masson SAS. All rights reserved.

  19. On the application of nonhomogeneous Poisson process to the reliability analysis of service water pumps of nuclear power plants

    International Nuclear Information System (INIS)

    Cruz Saldanha, Pedro Luiz da.

    1995-12-01

    The purpose of this study is to evaluate the nonhomogeneous Poisson process as a model to rate of occurrence of failures when it is not constant, and the times between failures are not independent nor identically distributed. To this evaluation, an analyse of reliability of service water pumps of a typical nuclear power plant is made considering the model discussed in the last paragraph, as long as the pumps are effectively repairable components. Standard statistical techniques, such as maximum likelihood and linear regression, are applied to estimate parameters of nonhomogeneous Poisson process model. As a conclusion of the study, the nonhomogeneous Poisson process is adequate to model rate of occurrence of failures that are function of time, and can be used where the aging mechanisms are present in operation of repairable systems. (author). 72 refs., 45 figs., 21 tabs

  20. Non-Poisson Processes: Regression to Equilibrium Versus Equilibrium Correlation Functions

    Science.gov (United States)

    2004-07-07

    ARTICLE IN PRESSPhysica A 347 (2005) 268–2880378-4371/$ - doi:10.1016/j Correspo E-mail adwww.elsevier.com/locate/physaNon- Poisson processes : regression...05.40.a; 89.75.k; 02.50.Ey Keywords: Stochastic processes; Non- Poisson processes ; Liouville and Liouville-like equations; Correlation function...which is not legitimate with renewal non- Poisson processes , is a correct property if the deviation from the exponential relaxation is obtained by time

  1. Multi-parameter full waveform inversion using Poisson

    KAUST Repository

    Oh, Juwon

    2016-07-21

    In multi-parameter full waveform inversion (FWI), the success of recovering each parameter is dependent on characteristics of the partial derivative wavefields (or virtual sources), which differ according to parameterisation. Elastic FWIs based on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P-wave velocity or (one of the Lame constants) are related only to P-P diffracted waves, and generate isotropic explosions, which reduce the spatial resolution of the FWI for these parameters. To increase the spatial resolution, we propose a new parameterisation using P-wave velocity, Poisson\\'s ratio, and density for frequency-domain multi-parameter FWI for isotropic elastic media. By introducing Poisson\\'s ratio instead of S-wave velocity, the virtual source for the P-wave velocity generates P-S and S-S diffracted waves as well as P-P diffracted waves in the partial derivative wavefields for the P-wave velocity. Numerical examples of the cross-triangle-square (CTS) model indicate that the new parameterisation provides highly resolved descent directions for the P-wave velocity. Numerical examples of noise-free and noisy data synthesised for the elastic Marmousi-II model support the fact that the new parameterisation is more robust for noise than the two conventional parameterisations.

  2. Correlated random sampling for multivariate normal and log-normal distributions

    International Nuclear Information System (INIS)

    Žerovnik, Gašper; Trkov, Andrej; Kodeli, Ivan A.

    2012-01-01

    A method for correlated random sampling is presented. Representative samples for multivariate normal or log-normal distribution can be produced. Furthermore, any combination of normally and log-normally distributed correlated variables may be sampled to any requested accuracy. Possible applications of the method include sampling of resonance parameters which are used for reactor calculations.

  3. Boundary Lax pairs from non-ultra-local Poisson algebras

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia

    2009-01-01

    We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.

  4. Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting

    OpenAIRE

    Rein, Gerhard; Rendall, Alan D.

    1993-01-01

    The initial value problem for the Vlasov-Poisson system is by now well understood in the case of an isolated system where, by definition, the distribution function of the particles as well as the gravitational potential vanish at spatial infinity. Here we start with homogeneous solutions, which have a spatially constant, non-zero mass density and which describe the mass distribution in a Newtonian model of the universe. These homogeneous states can be constructed explicitly, and we consider d...

  5. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    Science.gov (United States)

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  6. The BRST complex of homological Poisson reduction

    Science.gov (United States)

    Müller-Lennert, Martin

    2017-02-01

    BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.

  7. Poisson's Ratio and Auxetic Properties of Natural Rocks

    Science.gov (United States)

    Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H.

    2018-02-01

    Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust.

  8. Estimation of a Non-homogeneous Poisson Model: An Empirical ...

    African Journals Online (AJOL)

    This article aims at applying the Nonhomogeneous Poisson process to trends of economic development. For this purpose, a modified Nonhomogeneous Poisson process is derived when the intensity rate is considered as a solution of stochastic differential equation which satisfies the geometric Brownian motion. The mean ...

  9. Prediction error variance and expected response to selection, when selection is based on the best predictor – for Gaussian and threshold characters, traits following a Poisson mixed model and survival traits

    Directory of Open Access Journals (Sweden)

    Jensen Just

    2002-05-01

    Full Text Available Abstract In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed or random effects. In the different models, expressions are given (when these can be found – otherwise unbiased estimates are given for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non Gaussian traits are generalisations of the well-known formulas for Gaussian traits – and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part of the model (heritability on the normally distributed level of the model or a generalised version of heritability plays a central role in these formulas.

  10. Poisson and Porter-Thomas fluctuations in off-yrast rotational transitions

    International Nuclear Information System (INIS)

    Matsuo, M.; Doessing, T.; Herskind, B.; Frauendorf, S.

    1993-01-01

    Fluctuations associated with stretched E2 transitions from high-spin levels in nuclei around 168 Yb are investigated by a cranked shell model extended to include residual two-body interactions. In the cranked mean-field model without residual interactions, it is found that gamma-ray energies behave like random variables and the energy spectra show Poisson fluctuation. With two-body residual interactions included, the discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE-type fluctuations for both energy levels and transition strengths (Porter-Thomas fluctuations). (orig.)

  11. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    Science.gov (United States)

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  12. Adaptive maximal poisson-disk sampling on surfaces

    KAUST Repository

    Yan, Dongming

    2012-01-01

    In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which is the key ingredient of the adaptive maximal Poisson-disk sampling framework. Moreover, we adapt the presented sampling framework for remeshing applications. Several novel and efficient operators are developed for improving the sampling/meshing quality over the state-of-theart. © 2012 ACM.

  13. Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes

    NARCIS (Netherlands)

    Belitser, E.N.; Serra, P.; van Zanten, H.

    2015-01-01

    We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. To motivate our results we start by analyzing count data coming from a call center which we model as a Poisson process. This analysis is carried out using a certain

  14. Statistics for Ratios of Rayleigh, Rician, Nakagami-m, and Weibull Distributed Random Variables

    Directory of Open Access Journals (Sweden)

    Dragana Č. Pavlović

    2013-01-01

    Full Text Available The distributions of ratios of random variables are of interest in many areas of the sciences. In this brief paper, we present the joint probability density function (PDF and PDF of maximum of ratios μ1=R1/r1 and μ2=R2/r2 for the cases where R1, R2, r1, and r2 are Rayleigh, Rician, Nakagami-m, and Weibull distributed random variables. Random variables R1 and R2, as well as random variables r1 and r2, are correlated. Ascertaining on the suitability of the Weibull distribution to describe fading in both indoor and outdoor environments, special attention is dedicated to the case of Weibull random variables. For this case, analytical expressions for the joint PDF, PDF of maximum, PDF of minimum, and product moments of arbitrary number of ratios μi=Ri/ri, i=1,…,L are obtained. Random variables in numerator, Ri, as well as random variables in denominator, ri, are exponentially correlated. To the best of the authors' knowledge, analytical expressions for the PDF of minimum and product moments of {μi}i=1L are novel in the open technical literature. The proposed mathematical analysis is complemented by various numerical results. An application of presented theoretical results is illustrated with respect to performance assessment of wireless systems.

  15. Effect of non-Poisson samples on turbulence spectra from laser velocimetry

    Science.gov (United States)

    Sree, Dave; Kjelgaard, Scott O.; Sellers, William L., III

    1994-01-01

    Spectral analysis of laser velocimetry (LV) data plays an important role in characterizing a turbulent flow and in estimating the associated turbulence scales, which can be helpful in validating theoretical and numerical turbulence models. The determination of turbulence scales is critically dependent on the accuracy of the spectral estimates. Spectral estimations from 'individual realization' laser velocimetry data are typically based on the assumption of a Poisson sampling process. What this Note has demonstrated is that the sampling distribution must be considered before spectral estimates are used to infer turbulence scales.

  16. Generating log-normally distributed random numbers by using the Ziggurat algorithm

    International Nuclear Information System (INIS)

    Choi, Jong Soo

    2016-01-01

    Uncertainty analyses are usually based on the Monte Carlo method. Using an efficient random number generator(RNG) is a key element in success of Monte Carlo simulations. Log-normal distributed variates are very typical in NPP PSAs. This paper proposes an approach to generate log normally distributed variates based on the Ziggurat algorithm and evaluates the efficiency of the proposed Ziggurat RNG. The proposed RNG can be helpful to improve the uncertainty analysis of NPP PSAs. This paper focuses on evaluating the efficiency of the Ziggurat algorithm from a NPP PSA point of view. From this study, we can draw the following conclusions. - The Ziggurat algorithm is one of perfect random number generators to product normal distributed variates. - The Ziggurat algorithm is computationally much faster than the most commonly used method, Marsaglia polar method

  17. Poisson's ratio analysis (Vp/Vs) on volcanoes and geothermal potential areas in Central Java using tomography travel time method of grid search relocation hypocenter

    International Nuclear Information System (INIS)

    Raharjo, W.; Palupi, I. R.; Nurdian, S. W.; Giamboro, W. S.; Soesilo, J.

    2016-01-01

    Poisson's Ratio illustrates the elasticity properties of a rock. The value is affected by the ratio between the value of P and S wave velocity, where the high value ratio associated with partial melting while the low associated with gas saturated rock. Java which has many volcanoes as a result of the collision between the Australian and Eurasian plates also effects of earthquakes that result the P and S wave. By tomography techniques the distribution of the value of Poisson's ratio can be known. Western Java was dominated by high Poisson's Ratio until Mount Slamet and Dieng in Central Java, while the eastern part of Java is dominated by low Poisson's Ratio. The difference of Poisson's Ratio is located in Central Java that is also supported by the difference characteristic of hot water manifestation in geothermal potential area in the west and east of Central Java Province. Poisson's ratio value is also lower with increasing depth proving that the cold oceanic plate entrance under the continental plate. (paper)

  18. CONVERGENCE OF THE FRACTIONAL PARTS OF THE RANDOM VARIABLES TO THE TRUNCATED EXPONENTIAL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Bogdan Gheorghe Munteanu

    2013-01-01

    Full Text Available Using the stochastic approximations, in this paper it was studiedthe convergence in distribution of the fractional parts of the sum of random variables to the truncated exponential distribution with parameter lambda. This fact is feasible by means of the Fourier-Stieltjes sequence (FSS of the random variable.

  19. Gyrokinetic energy conservation and Poisson-bracket formulation

    International Nuclear Information System (INIS)

    Brizard, A.

    1989-01-01

    An integral expression for the gyrokinetic total energy of a magnetized plasma, with general magnetic field configuration perturbed by fully electromagnetic fields, was recently derived through the use of a gyrocenter Lie transformation. It is shown that the gyrokinetic energy is conserved by the gyrokinetic Hamiltonian flow to all orders in perturbed fields. An explicit demonstration that a gyrokinetic Hamiltonian containing quadratic nonlinearities preserves the gyrokinetic energy up to third order is given. The Poisson-bracket formulation greatly facilitates this demonstration with the help of the Jacobi identity and other properties of the Poisson brackets

  20. Hamiltonian field description of the one-dimensional Poisson-Vlasov equations

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1981-07-01

    The one-dimensional Poisson-Vlasov equations are cast into Hamiltonian form. A Poisson Bracket in terms of the phase space density, as sole dynamical variable, is presented. This Poisson bracket is not of the usual form, but possesses the commutator properties of antisymmetry, bilinearity, and nonassociativity by virtue of the Jacobi requirement. Clebsch potentials are seen to yield a conventional (canonical) formulation. This formulation is discretized by expansion in terms of an arbitrary complete set of basis functions. In particular, a wave field representation is obtained

  1. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory

    Science.gov (United States)

    Pato, Mauricio P.; Oshanin, Gleb

    2013-03-01

    We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.

  2. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory

    International Nuclear Information System (INIS)

    Pato, Mauricio P; Oshanin, Gleb

    2013-01-01

    We study the probability distribution function P (β) n (w) of the Schmidt-like random variable w = x 2 1 /(∑ j=1 n x 2 j /n), where x j , (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P (β) n (w) converges to the Marčenko–Pastur form, i.e. is defined as P n (β) (w)∼√((4 - w)/w) for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P (β=2) n (w) which are valid for arbitrary n and analyse their behaviour. (paper)

  3. Poisson-type inequalities for growth properties of positive superharmonic functions.

    Science.gov (United States)

    Luan, Kuan; Vieira, John

    2017-01-01

    In this paper, we present new Poisson-type inequalities for Poisson integrals with continuous data on the boundary. The obtained inequalities are used to obtain growth properties at infinity of positive superharmonic functions in a smooth cone.

  4. Clarification of basic factorization identity is for the almost semi-continuous latticed Poisson processes on the Markov chain

    Directory of Open Access Journals (Sweden)

    Gerich M. S.

    2012-12-01

    Full Text Available Let ${xi(t, x(t}$ be a homogeneous semi-continuous lattice Poisson process on the Markov chain.The jumps of one sign are geometrically distributed, and jumps of the opposite sign are arbitrary latticed distribution. For a suchprocesses the relations for the components of two-sided matrix factorization are established.This relations define the moment genereting functions for extremumf of the process and their complements.

  5. Soft network materials with isotropic negative Poisson's ratios over large strains.

    Science.gov (United States)

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  6. Developments in Characterizing Capture Zone Distributions in Island Growth

    Science.gov (United States)

    Einstein, T. L.; Pimpinelli, Alberto; GonzáLez, Diego Luis; Sathiyanarayanan, Rajesh

    2013-03-01

    The utility of using the distribution of capture zones (CZD) to characterize epitaxial growth continues to mount. For non-Poisson deposition (i.e. when island nucleation is not fully random) the areas of these Voronoi cells (proximity polygons) can be well described by the generalized Wigner distribution (GWD), particularly in the central region around the mean area. We discuss several recent applications to experimental systems, showing how this perspective leads to insights about the critical nucleus size. In contrast, several studies have shown that the GWD may not describe the numerical data from painstaking simulations in both tails. We discuss some refinements that have been proposed. Finally, we comment on applications to social phenomena such as area distributions of secondary administrative units (like counties) and of Voronoi cells around Metro stops. Work at UMD supported by NSF-MRSEC Grant DMR 05-20471 and NSF CHE 07-49949

  7. Fermi-dirac and random carrier distributions in quantum dot lasers

    International Nuclear Information System (INIS)

    Hutchings, M.; Smowton, P. M.; Blood, P.; O'Driscoll, I.

    2014-01-01

    Using experimental gain and emission measurements as functions of temperature, a method is described to characterise the carrier distribution of radiative states in a quantum dot (QD) laser structure in terms of a temperature. This method is independent of the form of the inhomogeneous dot distribution. A thermal distribution at the lattice temperature is found between 200 and 300 K. Below 200 K the characteristic temperature exceeds the lattice temperature and the distribution becomes random below about 60 K. This enables the temperature range for which Fermi-Dirac statistics are applicable in QD laser threshold calculations to be identified

  8. Evidence for a bimodal distribution in human communication.

    Science.gov (United States)

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-11-02

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.

  9. Systems with randomly failing repairable components

    DEFF Research Database (Denmark)

    Der Kiureghian, Armen; Ditlevsen, Ove Dalager; Song, Junho

    2005-01-01

    Closed-form expressions are derived for the steady-state availability, mean rate of failure, mean duration of downtime and reliability of a general system with randomly and independently failing repairable components. Component failures are assumed to be homogeneous Poisson events in time and rep...

  10. The Lie-Poisson structure of integrable classical non-linear sigma models

    International Nuclear Information System (INIS)

    Bordemann, M.; Forger, M.; Schaeper, U.; Laartz, J.

    1993-01-01

    The canonical structure of classical non-linear sigma models on Riemannian symmetric spaces, which constitute the most general class of classical non-linear sigma models known to be integrable, is shown to be governed by a fundamental Poisson bracket relation that fits into the r-s-matrix formalism for non-ultralocal integrable models first discussed by Maillet. The matrices r and s are computed explicitly and, being field dependent, satisfy fundamental Poisson bracket relations of their own, which can be expressed in terms of a new numerical matrix c. It is proposed that all these Poisson brackets taken together are representation conditions for a new kind of algebra which, for this class of models, replaces the classical Yang-Baxter algebra governing the canonical structure of ultralocal models. The Poisson brackets for the transition matrices are also computed, and the notorious regularization problem associated with the definition of the Poisson brackets for the monodromy matrices is discussed. (orig.)

  11. Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

    Science.gov (United States)

    Neshveyev, Sergey; Tuset, Lars

    2012-05-01

    Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).

  12. The limit distribution of the maximum increment of a random walk with dependent regularly varying jump sizes

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Moser, Martin

    2013-01-01

    We investigate the maximum increment of a random walk with heavy-tailed jump size distribution. Here heavy-tailedness is understood as regular variation of the finite-dimensional distributions. The jump sizes constitute a strictly stationary sequence. Using a continuous mapping argument acting...... on the point processes of the normalized jump sizes, we prove that the maximum increment of the random walk converges in distribution to a Fréchet distributed random variable....

  13. Poisson-Lie T-duality open strings and D-branes

    CERN Document Server

    Klimcik, C.

    1996-01-01

    Global issues of the Poisson-Lie T-duality are addressed. It is shown that oriented open strings propagating on a group manifold G are dual to D-brane - anti-D-brane pairs propagating on the dual group manifold \\ti G. The D-branes coincide with the symplectic leaves of the standard Poisson structure induced on the dual group \\ti G by the dressing action of the group G. T-duality maps the momentum of the open string into the mutual distance of the D-branes in the pair. The whole picture is then extended to the full modular space M(D) of the Poisson-Lie equivalent \\si-models which is the space of all Manin triples of a given Drinfeld double.T-duality rotates the zero modes of pairs of D-branes living on targets belonging to M(D). In this more general case the D-branes are preimages of symplectic leaves in certain Poisson homogeneous spaces of their targets and, as such, they are either all even or all odd dimensional.

  14. Exterior differentials in superspace and Poisson brackets

    International Nuclear Information System (INIS)

    Soroka, Dmitrij V.; Soroka, Vyacheslav A.

    2003-01-01

    It is shown that two definitions for an exterior differential in superspace, giving the same exterior calculus, yet lead to different results when applied to the Poisson bracket. A prescription for the transition with the help of these exterior differentials from the given Poisson bracket of definite Grassmann parity to another bracket is introduced. It is also indicated that the resulting bracket leads to generalization of the Schouten-Nijenhuis bracket for the cases of superspace and brackets of diverse Grassmann parities. It is shown that in the case of the Grassmann-odd exterior differential the resulting bracket is the bracket given on exterior forms. The above-mentioned transition with the use of the odd exterior differential applied to the linear even/odd Poisson brackets, that correspond to semi-simple Lie groups, results, respectively, in also linear odd/even brackets which are naturally connected with the Lie superalgebra. The latter contains the BRST and anti-BRST charges and can be used for calculation of the BRST operator cogomology. (author)

  15. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    International Nuclear Information System (INIS)

    Nutku, Yavuz

    2003-01-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems

  16. Chaotic motion and random matrix theories

    International Nuclear Information System (INIS)

    Bohigas, O.; Giannoni, M.J.

    1983-01-01

    The authors discussed how to characterize level fluctuations. In full generality, one needs the set of k-level cluster functions Y/sub k/. Some of the most relevant qualitative features of GOE fluctuations have been emphasized: level repulsion (small probability of occurrence of small spacings) and spectral rigidity (for instance, logarithmic increase with L of the variance of the number of levels to be found in an interval of length L). This is in contrast with what happens for a spectrum obtained by adding spacings coming from random independent trials distributed like e/sup - x/, viz.a Poisson spectrum. In this case there is by construction no level repulsion but level clustering (the variance of the number of levels increases linearly with L). The effect of level repulsion is that levels appear rather evenly distributed, and when spectral rigidity is present the spectrum looks incompressible. It is important to notice that the spacing distribution p(x) contains no information about spacing correlations, one of the main characteristics of GOE-fluctuation patterns. The role of exact symmetries is prominent and GOE-predictions apply to levels having the same set of exact quantum number (Jπ)

  17. Numerical methods for realizing nonstationary Poisson processes with piecewise-constant instantaneous-rate functions

    DEFF Research Database (Denmark)

    Harrod, Steven; Kelton, W. David

    2006-01-01

    Nonstationary Poisson processes are appropriate in many applications, including disease studies, transportation, finance, and social policy. The authors review the risks of ignoring nonstationarity in Poisson processes and demonstrate three algorithms for generation of Poisson processes...

  18. Evaluating the Use of Random Distribution Theory to Introduce Statistical Inference Concepts to Business Students

    Science.gov (United States)

    Larwin, Karen H.; Larwin, David A.

    2011-01-01

    Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…

  19. Poisson Regression Analysis of Illness and Injury Surveillance Data

    Energy Technology Data Exchange (ETDEWEB)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson

  20. Thermodynamic method for generating random stress distributions on an earthquake fault

    Science.gov (United States)

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  1. Filling of a Poisson trap by a population of random intermittent searchers

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2012-01-01

    We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a

  2. Maximum Likelihood and Bayes Estimation in Randomly Censored Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Hare Krishna

    2017-01-01

    Full Text Available In this article, we study the geometric distribution under randomly censored data. Maximum likelihood estimators and confidence intervals based on Fisher information matrix are derived for the unknown parameters with randomly censored data. Bayes estimators are also developed using beta priors under generalized entropy and LINEX loss functions. Also, Bayesian credible and highest posterior density (HPD credible intervals are obtained for the parameters. Expected time on test and reliability characteristics are also analyzed in this article. To compare various estimates developed in the article, a Monte Carlo simulation study is carried out. Finally, for illustration purpose, a randomly censored real data set is discussed.

  3. Quadratic Hamiltonians on non-symmetric Poisson structures

    International Nuclear Information System (INIS)

    Arribas, M.; Blesa, F.; Elipe, A.

    2007-01-01

    Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

  4. Formality theory from Poisson structures to deformation quantization

    CERN Document Server

    Esposito, Chiara

    2015-01-01

    This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.

  5. Statistical mechanics of the $N$-point vortex system with random intensities on $R^2$

    Directory of Open Access Journals (Sweden)

    Cassio Neri

    2005-01-01

    Full Text Available The system of N -point vortices on $mathbb{R}^2$ is considered under the hypothesis that vortex intensities are independent and identically distributed random variables with respect to a law $P$ supported on $(0,1]$. It is shown that, in the limit as $N$ approaches $infty$, the 1-vortex distribution is a minimizer of the free energy functional and is associated to (some solutions of the following non-linear Poisson Equation:$$ -Delta u(x = C^{-1}int_{(0,1]} rhbox{e}^{-eta ru(x- gamma r|x|^2}P(hbox{d}r, quadforall xin mathbb{R}^2, $$where $displaystyle C = int_{(0,1]}int_{mathbb{R}^2}hbox{e}^{-eta ru(y - gamma r|y|^2}hbox{d} yP(hbox{d}r$

  6. A distribution-free newsvendor model with balking penalty and random yield

    Directory of Open Access Journals (Sweden)

    Chongfeng Lan

    2015-05-01

    Full Text Available Purpose: The purpose of this paper is to extend the analysis of the distribution-free newsvendor problem in an environment of customer balking, which occurs when customers are reluctant to buy a product if its available inventory falls below a threshold level. Design/methodology/approach: We provide a new tradeoff tool as a replacement of the traditional one to weigh the holding cost and the goodwill costs segment: in addition to the shortage penalty, we also introduce the balking penalty. Furthermore, we extend our model to the case of random yield. Findings: A model is presented for determining both an optimal order quantity and a lower bound on the profit under the worst possible distribution of the demand. We also study the effects of shortage penalty and the balking penalty on the optimal order quantity, which have been largely bypassed in the existing distribution free single period models with balking. Numerical examples are presented to illustrate the result. Originality/value: The incorporation of balking penalty and random yield represents an important improvement in inventory policy performance for distribution-free newsvendor problem when customer balking occurs and the distributional form of demand is unknown.

  7. Football goal distributions and extremal statistics

    Science.gov (United States)

    Greenhough, J.; Birch, P. C.; Chapman, S. C.; Rowlands, G.

    2002-12-01

    We analyse the distributions of the number of goals scored by home teams, away teams, and the total scored in the match, in domestic football games from 169 countries between 1999 and 2001. The probability density functions (PDFs) of goals scored are too heavy-tailed to be fitted over their entire ranges by Poisson or negative binomial distributions which would be expected for uncorrelated processes. Log-normal distributions cannot include zero scores and here we find that the PDFs are consistent with those arising from extremal statistics. In addition, we show that it is sufficient to model English top division and FA Cup matches in the seasons of 1970/71-2000/01 on Poisson or negative binomial distributions, as reported in analyses of earlier seasons, and that these are not consistent with extremal statistics.

  8. Online distribution channel increases article usage on Mendeley: a randomized controlled trial.

    Science.gov (United States)

    Kudlow, Paul; Cockerill, Matthew; Toccalino, Danielle; Dziadyk, Devin Bissky; Rutledge, Alan; Shachak, Aviv; McIntyre, Roger S; Ravindran, Arun; Eysenbach, Gunther

    2017-01-01

    Prior research shows that article reader counts (i.e. saves) on the online reference manager, Mendeley, correlate to future citations. There are currently no evidenced-based distribution strategies that have been shown to increase article saves on Mendeley. We conducted a 4-week randomized controlled trial to examine how promotion of article links in a novel online cross-publisher distribution channel (TrendMD) affect article saves on Mendeley. Four hundred articles published in the Journal of Medical Internet Research were randomized to either the TrendMD arm ( n  = 200) or the control arm ( n  = 200) of the study. Our primary outcome compares the 4-week mean Mendeley saves of articles randomized to TrendMD versus control. Articles randomized to TrendMD showed a 77% increase in article saves on Mendeley relative to control. The difference in mean Mendeley saves for TrendMD articles versus control was 2.7, 95% CI (2.63, 2.77), and statistically significant ( p  < 0.01). There was a positive correlation between pageviews driven by TrendMD and article saves on Mendeley (Spearman's rho r  = 0.60). This is the first randomized controlled trial to show how an online cross-publisher distribution channel (TrendMD) enhances article saves on Mendeley. While replication and further study are needed, these data suggest that cross-publisher article recommendations via TrendMD may enhance citations of scholarly articles.

  9. Cumulative sum control charts for monitoring geometrically inflated Poisson processes: An application to infectious disease counts data.

    Science.gov (United States)

    Rakitzis, Athanasios C; Castagliola, Philippe; Maravelakis, Petros E

    2018-02-01

    In this work, we study upper-sided cumulative sum control charts that are suitable for monitoring geometrically inflated Poisson processes. We assume that a process is properly described by a two-parameter extension of the zero-inflated Poisson distribution, which can be used for modeling count data with an excessive number of zero and non-zero values. Two different upper-sided cumulative sum-type schemes are considered, both suitable for the detection of increasing shifts in the average of the process. Aspects of their statistical design are discussed and their performance is compared under various out-of-control situations. Changes in both parameters of the process are considered. Finally, the monitoring of the monthly cases of poliomyelitis in the USA is given as an illustrative example.

  10. The cylindrical K-function and Poisson line cluster point processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Safavimanesh, Farzaneh; Rasmussen, Jakob G.

    Poisson line cluster point processes, is also introduced. Parameter estimation based on moment methods or Bayesian inference for this model is discussed when the underlying Poisson line process and the cluster memberships are treated as hidden processes. To illustrate the methodologies, we analyze two...

  11. Estimating the period of a cyclic non-homogeneous Poisson process

    NARCIS (Netherlands)

    Belitser, E.; Andrade Serra, De P.J.; Zanten, van J.H.

    2013-01-01

    Motivated by applications of Poisson processes for modelling periodic time-varying phenomena, we study a semi-parametric estimator of the period of cyclic intensity function of a non-homogeneous Poisson process. There are no parametric assumptions on the intensity function which is treated as an

  12. Formulation of Hamiltonian mechanics with even and odd Poisson brackets

    International Nuclear Information System (INIS)

    Khudaverdyan, O.M.; Nersesyan, A.P.

    1987-01-01

    A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs

  13. Tetrahedral meshing via maximal Poisson-disk sampling

    KAUST Repository

    Guo, Jianwei

    2016-02-15

    In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.

  14. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    Science.gov (United States)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  15. Control Multivariante Estadístico de Variables Discretas tipo Poisson

    OpenAIRE

    GARCIA BUSTOS, SANDRA LORENA

    2016-01-01

    En algunos casos, cuando el número de defectos de un proceso de producción tiene que ser controlada, la distribución de Poisson se emplea para modelar la frecuencia de estos defectos y para desarrollar un gráfico de control. En este trabajo se analiza el control de características de calidad p> 1 de Poisson . Cuando este control se necesita, hay dos enfoques principales: 1 - Un gráfico para cada variable de Poisson, el esquema múltiple.. 2 -. Sólo una gráfico para todas las variables, el sist...

  16. Pêche thonière et dispositifs de concentration de poissons

    OpenAIRE

    Le Gall, Jean-yves; Cayre, Patrice; Taquet, Marc

    2000-01-01

    Le colloque international « Pêche thonière et dispositifs de concentration de poissons» organisé en octobre 1999, en Martinique, permet de dresser un bilan, sous forme de synthèses régionales, de l'exploitation des grands poissons pélagiques à l'aide de DCP dans les trois océans et en Méditerranée. La technologie, les méthodes de pêche, l'impact sur les ressources, le comportement agrégatif des poissons et les aspects socio-économiques de l'utilisation des DCP sont les principaux thèmes dével...

  17. The coupling of Poisson sigma models to topological backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)

    2016-12-13

    We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.

  18. Random matrices and the New York City subway system

    OpenAIRE

    Jagannath, Aukosh; Trogdon, Thomas

    2017-01-01

    We analyze subway arrival times in the New York City subway system. We find regimes where the gaps between trains exhibit both (unitarily invariant) random matrix statistics and Poisson statistics. The departure from random matrix statistics is captured by the value of the Coulomb potential along the subway route. This departure becomes more pronounced as trains make more stops.

  19. A chi-square goodness-of-fit test for non-identically distributed random variables: with application to empirical Bayes

    International Nuclear Information System (INIS)

    Conover, W.J.; Cox, D.D.; Martz, H.F.

    1997-12-01

    When using parametric empirical Bayes estimation methods for estimating the binomial or Poisson parameter, the validity of the assumed beta or gamma conjugate prior distribution is an important diagnostic consideration. Chi-square goodness-of-fit tests of the beta or gamma prior hypothesis are developed for use when the binomial sample sizes or Poisson exposure times vary. Nine examples illustrate the application of the methods, using real data from such diverse applications as the loss of feedwater flow rates in nuclear power plants, the probability of failure to run on demand and the failure rates of the high pressure coolant injection systems at US commercial boiling water reactors, the probability of failure to run on demand of emergency diesel generators in US commercial nuclear power plants, the rate of failure of aircraft air conditioners, baseball batting averages, the probability of testing positive for toxoplasmosis, and the probability of tumors in rats. The tests are easily applied in practice by means of corresponding Mathematica reg-sign computer programs which are provided

  20. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance

    Czech Academy of Sciences Publication Activity Database

    Poplová, Michaela; Sovka, P.; Cifra, Michal

    2017-01-01

    Roč. 12, č. 12 (2017), č. článku e0188622. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA13-29294S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Poisson distribution * Photons * Neutrophils Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 2.806, year: 2016

  1. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    Science.gov (United States)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  2. A method for generating skewed random numbers using two overlapping uniform distributions

    International Nuclear Information System (INIS)

    Ermak, D.L.; Nasstrom, J.S.

    1995-02-01

    The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence

  3. Complete synchronization of the global coupled dynamical network induced by Poisson noises.

    Science.gov (United States)

    Guo, Qing; Wan, Fangyi

    2017-01-01

    The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.

  4. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-07-01

    Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.

  5. A symplectic Poisson solver based on Fast Fourier Transformation. The first trial

    International Nuclear Information System (INIS)

    Vorobiev, L.G.; Hirata, Kohji.

    1995-11-01

    A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)

  6. Four-dimensional gravity as an almost-Poisson system

    Science.gov (United States)

    Ita, Eyo Eyo

    2015-04-01

    In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.

  7. 2D Poisson sigma models with gauged vectorial supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)

    2015-08-12

    In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.

  8. Remarks on 'Poisson ratio beyond the limits of the elasticity theory'

    International Nuclear Information System (INIS)

    Wojciechowski, K.W.

    2002-12-01

    The non-chiral, elastically isotropic model exhibits Poison ratios in the range -1 ≤ σ ≤ 1 without any molecular rotation. The centres of discs-atoms are replaced in the vertices of a perfect triangle of the side length equal to σ. The positive sign of the Lame constant λ is not necessary for the stability of an isotropic system at any dimensionality. As the upper limit for the Poisson ratio in 2D isotropic systems is 1, crystalline or polycrystalline 2D systems can be obtained having the Poisson ratio exceeding 1/2. Both the traditional theory of elasticity and the Cosserat one exclude Poisson ratios exceeding 1/2 in 3D isotropic systems. Neighter anisotropy nor rotation are necessary to obtain extreme values of the Poisson ratio (author)

  9. Computation of solar perturbations with Poisson series

    Science.gov (United States)

    Broucke, R.

    1974-01-01

    Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.

  10. Analysis of correlated count data using generalised linear mixed models exemplified by field data on aggressive behaviour of boars

    Directory of Open Access Journals (Sweden)

    N. Mielenz

    2015-01-01

    Full Text Available Population-averaged and subject-specific models are available to evaluate count data when repeated observations per subject are present. The latter are also known in the literature as generalised linear mixed models (GLMM. In GLMM repeated measures are taken into account explicitly through random animal effects in the linear predictor. In this paper the relevant GLMMs are presented based on conditional Poisson or negative binomial distribution of the response variable for given random animal effects. Equations for the repeatability of count data are derived assuming normal distribution and logarithmic gamma distribution for the random animal effects. Using count data on aggressive behaviour events of pigs (barrows, sows and boars in mixed-sex housing, we demonstrate the use of the Poisson »log-gamma intercept«, the Poisson »normal intercept« and the »normal intercept« model with negative binomial distribution. Since not all count data can definitely be seen as Poisson or negative-binomially distributed, questions of model selection and model checking are examined. Emanating from the example, we also interpret the least squares means, estimated on the link as well as the response scale. Options provided by the SAS procedure NLMIXED for estimating model parameters and for estimating marginal expected values are presented.

  11. The Poisson equation on Klein surfaces

    Directory of Open Access Journals (Sweden)

    Monica Rosiu

    2016-04-01

    Full Text Available We obtain a formula for the solution of the Poisson equation with Dirichlet boundary condition on a region of a Klein surface. This formula reveals the symmetric character of the solution.

  12. Linear odd Poisson bracket on Grassmann variables

    International Nuclear Information System (INIS)

    Soroka, V.A.

    1999-01-01

    A linear odd Poisson bracket (antibracket) realized solely in terms of Grassmann variables is suggested. It is revealed that the bracket, which corresponds to a semi-simple Lie group, has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, the second and the third orders with respect to Grassmann derivatives, in contrast with the canonical odd Poisson bracket having the only Grassmann-odd nilpotent differential Δ-operator of the second order. It is shown that these Δ-like operators together with a Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Microergodicity effects on ebullition of methane modelled by Mixed Poisson process with Pareto mixing variable

    Czech Academy of Sciences Publication Activity Database

    Jordanova, P.; Dušek, Jiří; Stehlík, M.

    2013-01-01

    Roč. 128, OCT 15 (2013), s. 124-134 ISSN 0169-7439 R&D Projects: GA ČR(CZ) GAP504/11/1151; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : environmental chemistry * ebullition of methane * mixed poisson processes * renewal process * pareto distribution * moving average process * robust statistics * sedge–grass marsh Subject RIV: EH - Ecology, Behaviour Impact factor: 2.381, year: 2013

  14. Fiber-wise linear Poisson structures related to W∗-algebras

    Science.gov (United States)

    Odzijewicz, Anatol; Jakimowicz, Grzegorz; Sliżewska, Aneta

    2018-01-01

    In the framework of Banach differential geometry we investigate the fiber-wise linear Poisson structures as well as the Lie groupoid and Lie algebroid structures which are defined in the canonical way by the structure of a W∗-algebra (von Neumann algebra) M. The main role in this theory is played by the complex Banach-Lie groupoid G(M) ⇉ L(M) of partially invertible elements of M over the lattice L(M) of orthogonal projections of M. The Atiyah sequence and the predual Atiyah sequence corresponding to this groupoid are investigated from the point of view of Banach Poisson geometry. In particular we show that the predual Atiyah sequence fits in a short exact sequence of complex Banach sub-Poisson V B-groupoids with G(M) ⇉ L(M) as the side groupoid.

  15. A relation between Liapunov stability, non-wanderingness and Poisson stability

    International Nuclear Information System (INIS)

    Ahmad, K.H.

    1985-07-01

    In this work, some of the relations among Liapunov stability, non-wanderingness and Poisson stability are considered. In particular it is shown that for a non-wandering point in a set, positive (resp. negative) Liapunov stability in that set implies positive (resp. negative) Poisson stability in the same set. (author)

  16. Poisson-Boltzmann-Nernst-Planck model

    International Nuclear Information System (INIS)

    Zheng Qiong; Wei Guowei

    2011-01-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  17. Hessian eigenvalue distribution in a random Gaussian landscape

    Science.gov (United States)

    Yamada, Masaki; Vilenkin, Alexander

    2018-03-01

    The energy landscape of multiverse cosmology is often modeled by a multi-dimensional random Gaussian potential. The physical predictions of such models crucially depend on the eigenvalue distribution of the Hessian matrix at potential minima. In particular, the stability of vacua and the dynamics of slow-roll inflation are sensitive to the magnitude of the smallest eigenvalues. The Hessian eigenvalue distribution has been studied earlier, using the saddle point approximation, in the leading order of 1/ N expansion, where N is the dimensionality of the landscape. This approximation, however, is insufficient for the small eigenvalue end of the spectrum, where sub-leading terms play a significant role. We extend the saddle point method to account for the sub-leading contributions. We also develop a new approach, where the eigenvalue distribution is found as an equilibrium distribution at the endpoint of a stochastic process (Dyson Brownian motion). The results of the two approaches are consistent in cases where both methods are applicable. We discuss the implications of our results for vacuum stability and slow-roll inflation in the landscape.

  18. Two-state Markov-chain Poisson nature of individual cellphone call statistics

    Science.gov (United States)

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Zhou, Wei-Xing; Sornette, Didier

    2016-07-01

    Unfolding the burst patterns in human activities and social interactions is a very important issue especially for understanding the spreading of disease and information and the formation of groups and organizations. Here, we conduct an in-depth study of the temporal patterns of cellphone conversation activities of 73 339 anonymous cellphone users, whose inter-call durations are Weibull distributed. We find that the individual call events exhibit a pattern of bursts, that high activity periods are alternated with low activity periods. In both periods, the number of calls are exponentially distributed for individuals, but power-law distributed for the population. Together with the exponential distributions of inter-call durations within bursts and of the intervals between consecutive bursts, we demonstrate that the individual call activities are driven by two independent Poisson processes, which can be combined within a minimal model in terms of a two-state first-order Markov chain, giving significant fits for nearly half of the individuals. By measuring directly the distributions of call rates across the population, which exhibit power-law tails, we purport the existence of power-law distributions, via the ‘superposition of distributions’ mechanism. Our findings shed light on the origins of bursty patterns in other human activities.

  19. Distribution-free Inference of Zero-inated Binomial Data for Longitudinal Studies.

    Science.gov (United States)

    He, H; Wang, W J; Hu, J; Gallop, R; Crits-Christoph, P; Xia, Y L

    2015-10-01

    Count reponses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated poisson (ZIP) and zero-inflated negative binomial (ZINB) models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or zero-inflated Poisson (ZIP) distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling zero-inflated binomial (ZIB)-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.

  20. An efficient method of randomly sampling the coherent angular scatter distribution

    International Nuclear Information System (INIS)

    Williamson, J.F.; Morin, R.L.

    1983-01-01

    Monte Carlo simulations of photon transport phenomena require random selection of an interaction process at each collision site along the photon track. Possible choices are usually limited to photoelectric absorption and incoherent scatter as approximated by the Klein-Nishina distribution. A technique is described for sampling the coherent angular scatter distribution, for the benefit of workers in medical physics. (U.K.)