WorldWideScience

Sample records for point-spread function models

  1. Plasmon point spread functions: How do we model plasmon-mediated emission processes?

    Science.gov (United States)

    Willets, Katherine A.

    2014-02-01

    A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ˜5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the location of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread functions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.

  2. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  3. Scattering and the Point Spread Function of the New Generation Space Telescope

    Science.gov (United States)

    Schreur, Julian J.

    1996-01-01

    Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called

  4. High precision wavefront control in point spread function engineering for single emitter localization

    NARCIS (Netherlands)

    Siemons, M.E.; Thorsen, R.Ø; Smith, C.S.; Stallinga, S.

    2018-01-01

    Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can

  5. Proper Analytic Point Spread Function for Lateral Modulation

    Science.gov (United States)

    Sumi, Chikayoshi; Shimizu, Kunio; Matsui, Norihiko

    2010-07-01

    For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.

  6. In-flight calibration of the Swift XRT Point Spread Function

    International Nuclear Information System (INIS)

    Moretti, A.; Campana, S.; Chincarini, G.; Covino, S.; Romano, P.; Tagliaferri, G.; Capalbi, M.; Giommi, P.; Perri, M.; Cusumano, G.; La Parola, V.; Mangano, V.; Mineo, T.

    2006-01-01

    The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2-10 keV. Here we report the results of the analysis of Swift XRT Point Spread Function (PSF) as measured in the first four months of the mission during the instrument calibration phase. The analysis includes the study of the PSF of different point-like sources both on-axis and off-axis with different spectral properties. We compare the in-flight data with the expectations from the on-ground calibration. On the basis of the calibration data we built an analytical model to reproduce the PSF as a function of the energy and the source position within the detector which can be applied in the PSF correction calculation for any extraction region geometry. All the results of this study are implemented in the standard public software

  7. Point-spread function in depleted and partially depleted CCDs

    International Nuclear Information System (INIS)

    Groom, D.E.; Eberhard, P.H.; Holland, S.E.; Levi, M.E.; Palaio, N.P.; Perlmutter, S.; Stover, R.J.; Wei, M.

    1999-01-01

    The point spread function obtainable in an astronomical instrument using CCD readout is limited by a number of factors, among them the lateral diffusion of charge before it is collected in the potential wells. They study this problem both theoretically and experimentally, with emphasis on the thick CCDs on high-resistivity n-type substrates being developed at Lawrence Berkeley National Laboratory

  8. Fast and accurate three-dimensional point spread function computation for fluorescence microscopy.

    Science.gov (United States)

    Li, Jizhou; Xue, Feng; Blu, Thierry

    2017-06-01

    The point spread function (PSF) plays a fundamental role in fluorescence microscopy. A realistic and accurately calculated PSF model can significantly improve the performance in 3D deconvolution microscopy and also the localization accuracy in single-molecule microscopy. In this work, we propose a fast and accurate approximation of the Gibson-Lanni model, which has been shown to represent the PSF suitably under a variety of imaging conditions. We express the Kirchhoff's integral in this model as a linear combination of rescaled Bessel functions, thus providing an integral-free way for the calculation. The explicit approximation error in terms of parameters is given numerically. Experiments demonstrate that the proposed approach results in a significantly smaller computational time compared with current state-of-the-art techniques to achieve the same accuracy. This approach can also be extended to other microscopy PSF models.

  9. Estimation Methods of the Point Spread Function Axial Position: A Comparative Computational Study

    Directory of Open Access Journals (Sweden)

    Javier Eduardo Diaz Zamboni

    2017-01-01

    Full Text Available The precise knowledge of the point spread function is central for any imaging system characterization. In fluorescence microscopy, point spread function (PSF determination has become a common and obligatory task for each new experimental device, mainly due to its strong dependence on acquisition conditions. During the last decade, algorithms have been developed for the precise calculation of the PSF, which fit model parameters that describe image formation on the microscope to experimental data. In order to contribute to this subject, a comparative study of three parameter estimation methods is reported, namely: I-divergence minimization (MIDIV, maximum likelihood (ML and non-linear least square (LSQR. They were applied to the estimation of the point source position on the optical axis, using a physical model. Methods’ performance was evaluated under different conditions and noise levels using synthetic images and considering success percentage, iteration number, computation time, accuracy and precision. The main results showed that the axial position estimation requires a high SNR to achieve an acceptable success level and higher still to be close to the estimation error lower bound. ML achieved a higher success percentage at lower SNR compared to MIDIV and LSQR with an intrinsic noise source. Only the ML and MIDIV methods achieved the error lower bound, but only with data belonging to the optical axis and high SNR. Extrinsic noise sources worsened the success percentage, but no difference was found between noise sources for the same method for all methods studied.

  10. Point spread functions and deconvolution of ultrasonic images.

    Science.gov (United States)

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  11. In-flight calibration of the Hitomi Soft X-ray Spectrometer. (2) Point spread function

    Science.gov (United States)

    Maeda, Yoshitomo; Sato, Toshiki; Hayashi, Takayuki; Iizuka, Ryo; Angelini, Lorella; Asai, Ryota; Furuzawa, Akihiro; Kelley, Richard; Koyama, Shu; Kurashima, Sho; Ishida, Manabu; Mori, Hideyuki; Nakaniwa, Nozomi; Okajima, Takashi; Serlemitsos, Peter J.; Tsujimoto, Masahiro; Yaqoob, Tahir

    2018-03-01

    We present results of inflight calibration of the point spread function of the Soft X-ray Telescope that focuses X-rays onto the pixel array of the Soft X-ray Spectrometer system. We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9 ks and limited knowledge of the systematic uncertainties, we find that the raytracing model of 1 {^'.} 2 half-power-diameter is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 σ). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.

  12. Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models

    NARCIS (Netherlands)

    Hara, T.; Hofstad, van der R.W.; Slade, G.

    2003-01-01

    We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on ${\\mathbb{Z}^d}$, having long finite-range connections, above their upper critical dimensions $d=4$ (self-avoiding walk), $d=6$ (percolation) and $d=8$ (trees and animals). The two-point

  13. Finding Exoplanets Using Point Spread Function Photometry on Kepler Data

    Science.gov (United States)

    Amaro, Rachael Christina; Scolnic, Daniel; Montet, Ben

    2018-01-01

    The Kepler Mission has been able to identify over 5,000 exoplanet candidates using mostly aperture photometry. Despite the impressive number of discoveries, a large portion of Kepler’s data set is neglected due to limitations using aperture photometry on faint sources in crowded fields. We present an alternate method that overcomes those restrictions — Point Spread Function (PSF) photometry. This powerful tool, which is already used in supernova astronomy, was used for the first time on Kepler Full Frame Images, rather than just looking at the standard light curves. We present light curves for stars in our data set and demonstrate that PSF photometry can at least get down to the same photometric precision as aperture photometry. As a check for the robustness of this method, we change small variables (stamp size, interpolation amount, and noise correction) and show that the PSF light curves maintain the same repeatability across all combinations for one of our models. We also present our progress in the next steps of this project, including the creation of a PSF model from the data itself and applying the model across the entire data set at once.

  14. Fluorescence microscopy point spread function model accounting for aberrations due to refractive index variability within a specimen.

    Science.gov (United States)

    Ghosh, Sreya; Preza, Chrysanthe

    2015-07-01

    A three-dimensional (3-D) point spread function (PSF) model for wide-field fluorescence microscopy, suitable for imaging samples with variable refractive index (RI) in multilayered media, is presented. This PSF model is a key component for accurate 3-D image restoration of thick biological samples, such as lung tissue. Microscope- and specimen-derived parameters are combined with a rigorous vectorial formulation to obtain a new PSF model that accounts for additional aberrations due to specimen RI variability. Experimental evaluation and verification of the PSF model was accomplished using images from 175-nm fluorescent beads in a controlled test sample. Fundamental experimental validation of the advantage of using improved PSFs in depth-variant restoration was accomplished by restoring experimental data from beads (6  μm in diameter) mounted in a sample with RI variation. In the investigated study, improvement in restoration accuracy in the range of 18 to 35% was observed when PSFs from the proposed model were used over restoration using PSFs from an existing model. The new PSF model was further validated by showing that its prediction compares to an experimental PSF (determined from 175-nm beads located below a thick rat lung slice) with a 42% improved accuracy over the current PSF model prediction.

  15. Measurement of the point spread function of a pixelated detector array

    Energy Technology Data Exchange (ETDEWEB)

    Ritzer, Christian; Hallen, Patrick; Schug, David; Schulz, Volkmar [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany)

    2015-05-18

    In order to further understand the PET/MRI scanner of our group, we measured the point spread function of a preclinical scintillation crystal array with a pitch of 1 mm and a total size of 30 mm ~ 30 mm ~ 12 mm. It is coupled via a lightguide to a dSiPM from Philips Digital Photon Counting, used on the TEK-setup. Crystal identification is done with a centre of gravity algorithm and the whole data analysis is performed with the same processing software as for the PET insert, giving comparable results. The beam is created with a 22 NA-Point-Source and a lead collimator, with 0.5 mm bore diameter. The algorithm sorted 62 % of the coincidences into the correct crystal.

  16. Measurement of the point spread function of a pixelated detector array

    International Nuclear Information System (INIS)

    Ritzer, Christian; Hallen, Patrick; Schug, David; Schulz, Volkmar

    2015-01-01

    In order to further understand the PET/MRI scanner of our group, we measured the point spread function of a preclinical scintillation crystal array with a pitch of 1 mm and a total size of 30 mm ~ 30 mm ~ 12 mm. It is coupled via a lightguide to a dSiPM from Philips Digital Photon Counting, used on the TEK-setup. Crystal identification is done with a centre of gravity algorithm and the whole data analysis is performed with the same processing software as for the PET insert, giving comparable results. The beam is created with a 22 NA-Point-Source and a lead collimator, with 0.5 mm bore diameter. The algorithm sorted 62 % of the coincidences into the correct crystal.

  17. Relationship between line spread function (LSF), or slice sensitivity profile (SSP), and point spread function (PSF) in CT image system

    International Nuclear Information System (INIS)

    Ohkubo, Masaki; Wada, Shinichi; Kobayashi, Teiji; Lee, Yongbum; Tsai, Du-Yih

    2004-01-01

    In the CT image system, we revealed the relationship between line spread function (LSF), or slice sensitivity profile (SSP), and point spread function (PSF). In the system, the following equation has been reported; I(x,y)=O(x,y) ** PSF(x,y), in which I(x,y) and O(x,y) are CT image and object function, respectively, and ** is 2-dimensional convolution. In the same way, the following 3-dimensional expression applies; I'(x,y,z)=O'(x,y,z) *** PSF'(x,y,z), in which z-axis is the direction perpendicular to the x/y-scan plane. We defined that the CT image system was separable, when the above two equations could be transformed into following equations; I(x,y)=[O(x,y) * LSF x (x)] * LSF y (y) and I'(x,y,z) =[O'(x,y,z) * SSP(z)] ** PSF(x,y), respectively, in which LSF x (x) and LSF y (y) are LSFs in x- and y-direction, respectively. Previous reports for the LSF and SSP are considered to assume the separable-system. Under the condition of separable-system, we derived following equations; PSF(x,y)=LSF x (x) ·LSF y (y) and PSF'(x,y,z)=PSF(x,y)·SSP(z). They were validated by the computer-simulations. When the study based on 1-dimensional functions of LSF and SSP are expanded to that based on 2- or 3-dimensional functions of PSF, derived equations must be required. (author)

  18. Analysis of point source size on measurement accuracy of lateral point-spread function of confocal Raman microscopy

    Science.gov (United States)

    Fu, Shihang; Zhang, Li; Hu, Yao; Ding, Xiang

    2018-01-01

    Confocal Raman Microscopy (CRM) has matured to become one of the most powerful instruments in analytical science because of its molecular sensitivity and high spatial resolution. Compared with conventional Raman Microscopy, CRM can perform three dimensions mapping of tiny samples and has the advantage of high spatial resolution thanking to the unique pinhole. With the wide application of the instrument, there is a growing requirement for the evaluation of the imaging performance of the system. Point-spread function (PSF) is an important approach to the evaluation of imaging capability of an optical instrument. Among a variety of measurement methods of PSF, the point source method has been widely used because it is easy to operate and the measurement results are approximate to the true PSF. In the point source method, the point source size has a significant impact on the final measurement accuracy. In this paper, the influence of the point source sizes on the measurement accuracy of PSF is analyzed and verified experimentally. A theoretical model of the lateral PSF for CRM is established and the effect of point source size on full-width at half maximum of lateral PSF is simulated. For long-term preservation and measurement convenience, PSF measurement phantom using polydimethylsiloxane resin, doped with different sizes of polystyrene microspheres is designed. The PSF of CRM with different sizes of microspheres are measured and the results are compared with the simulation results. The results provide a guide for measuring the PSF of the CRM.

  19. Influence of Signal-to-Noise Ratio and Point Spread Function on Limits of Super-Resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Vliet, L.J. van; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of low resolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  20. Influence of signal-to-noise ratio and point spread function on limits of super-resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of lowresolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  1. 4Pi microscopy deconvolution with a variable point-spread function.

    Science.gov (United States)

    Baddeley, David; Carl, Christian; Cremer, Christoph

    2006-09-20

    To remove the axial sidelobes from 4Pi images, deconvolution forms an integral part of 4Pi microscopy. As a result of its high axial resolution, the 4Pi point spread function (PSF) is particularly susceptible to imperfect optical conditions within the sample. This is typically observed as a shift in the position of the maxima under the PSF envelope. A significantly varying phase shift renders deconvolution procedures based on a spatially invariant PSF essentially useless. We present a technique for computing the forward transformation in the case of a varying phase at a computational expense of the same order of magnitude as that of the shift invariant case, a method for the estimation of PSF phase from an acquired image, and a deconvolution procedure built on these techniques.

  2. Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors

    International Nuclear Information System (INIS)

    Nowlin, C.H.

    1976-07-01

    This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions

  3. Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions.

    Science.gov (United States)

    Braat, Joseph; Dirksen, Peter; Janssen, Augustus J E M

    2002-05-01

    We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on ecently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.

  4. Point spread function engineering for iris recognition system design.

    Science.gov (United States)

    Ashok, Amit; Neifeld, Mark A

    2010-04-01

    Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple subpixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.

  5. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    International Nuclear Information System (INIS)

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier

    2015-01-01

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  6. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  7. Point spread function due to multiple scattering of light in the atmosphere

    International Nuclear Information System (INIS)

    Pękala, J.; Wilczyński, H.

    2013-01-01

    The atmospheric scattering of light has a significant influence on the results of optical observations of air showers. It causes attenuation of direct light from the shower, but also contributes a delayed signal to the observed light. The scattering of light therefore should be accounted for, both in simulations of air shower detection and reconstruction of observed events. In this work a Monte Carlo simulation of multiple scattering of light has been used to determine the contribution of the scattered light in observations of a point source of light. Results of the simulations and a parameterization of the angular distribution of the scattered light contribution to the observed signal (the point spread function) are presented. -- Author-Highlights: •Analysis of atmospheric scattering of light from an isotropic point source. •Different geometries and atmospheric conditions were investigated. •A parameterization of scattered light distribution has been developed. •The parameterization allows one to easily account for the light scattering in air. •The results will be useful in analyses of observations of extensive air shower

  8. The point spread function of the human head and its implications for transcranial current stimulation

    International Nuclear Information System (INIS)

    Dmochowski, Jacek P; Bikson, Marom; Parra, Lucas C

    2012-01-01

    Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode–cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown. (paper)

  9. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations

    Science.gov (United States)

    Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A.

    2018-02-01

    Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary.

  10. The point-spread function measure of resolution for the 3-D electrical resistivity experiment

    Science.gov (United States)

    Oldenborger, Greg A.; Routh, Partha S.

    2009-02-01

    The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.

  11. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  12. High precision wavefront control in point spread function engineering for single emitter localization

    Science.gov (United States)

    Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.

    2018-04-01

    Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.

  13. Extended Nijboer-Zernike approach for the computation of optical point-spread functions.

    Science.gov (United States)

    Janssen, Augustus J E M

    2002-05-01

    New Bessel-series representations for the calculation of the diffraction integral are presented yielding the point-spread function of the optical system, as occurs in the Nijboer-Zernike theory of aberrations. In this analysis one can allow an arbitrary aberration and a defocus part. The representations are presented in full detail for the cases of coma and astigmatism. The analysis leads to stably converging results in the case of large aberration or defocus values, while the applicability of the original Nijboer-Zernike theory is limited mainly to wave-front deviations well below the value of one wavelength. Because of its intrinsic speed, the analysis is well suited to supplement or to replace numerical calculations that are currently used in the fields of (scanning) microscopy, lithography, and astronomy. In a companion paper [J. Opt. Soc. Am. A 19, 860 (2002)], physical interpretations and applications in a lithographic context are presented, a convergence analysis is given, and a comparison is made with results obtained by using a numerical package.

  14. Optimization of hybrid imaging systems based on maximization of kurtosis of the restored point spread function

    DEFF Research Database (Denmark)

    Demenikov, Mads

    2011-01-01

    to optimization results based on full-reference image measures of restored images. In comparison with full-reference measures, the kurtosis measure is fast to compute and requires no images, noise distributions, or alignment of restored images, but only the signal-to-noise-ratio. © 2011 Optical Society of America.......I propose a novel, but yet simple, no-reference, objective image quality measure based on the kurtosis of the restored point spread function. Using this measure, I optimize several phase masks for extended-depth-of-field in hybrid imaging systems and obtain results that are identical...

  15. Hidden symmetry of the beam spread function resulting from the reciprocity theorem

    International Nuclear Information System (INIS)

    Dolin, Lev S.

    2016-01-01

    It is shown that the optical reciprocity theorem imposes certain constraints on the radiation field structure of a unidirectional point source (beam spread function (BSF)) in a turbid medium with spatially uniform optical properties. To satisfy the reciprocal relation, the BSF should have an additional symmetry property along with axial symmetry. This paper mathematically formulates the BSF symmetry condition that follows from the reciprocity theorem and discusses test results of some approximate analytical BSF models for their compliance with the symmetry requirement. A universal method for eliminating symmetry errors of approximate BSF models is proposed. - Highlights: • Symmetry properties of beam spread function (BSF) are considered. • In uniform turbid medium BSF has hidden symmetry property besides axial symmetry. • The examples of BSF models with and without the required symmetry are given. • A universal method for BSF symmetry error elimination is proposed.

  16. Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source

    Directory of Open Access Journals (Sweden)

    Taisuke Murata

    2016-10-01

    Full Text Available Abstract Background The point spread function (PSF of positron emission tomography (PET depends on the position across the field of view (FOV. Reconstruction based on PSF improves spatial resolution and quantitative accuracy. The present study aimed to quantify the effects of PSF correction as a function of the position of a traceable point-like 22Na source over the FOV on two PET scanners with a different detector design. Methods We used Discovery 600 and Discovery 710 (GE Healthcare PET scanners and traceable point-like 22Na sources (<1 MBq with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons. The source was moved in three directions at intervals of 1 cm from the center towards the peripheral FOV using a three-dimensional (3D-positioning robot, and data were acquired over a period of 2 min per point. The PET data were reconstructed by filtered back projection (FBP, the ordered subset expectation maximization (OSEM, OSEM + PSF, and OSEM + PSF + time-of-flight (TOF. Full width at half maximum (FWHM was determined according to the NEMA method, and total counts in regions of interest (ROI for each reconstruction were quantified. Results The radial FWHM of FBP and OSEM increased towards the peripheral FOV, whereas PSF-based reconstruction recovered the FWHM at all points in the FOV of both scanners. The radial FWHM for PSF was 30–50 % lower than that of OSEM at the center of the FOV. The accuracy of PSF correction was independent of detector design. Quantitative values were stable across the FOV in all reconstruction methods. The effect of TOF on spatial resolution and quantitation accuracy was less noticeable. Conclusions The traceable 22Na point-like source allowed the evaluation of spatial resolution and quantitative accuracy across the FOV using different reconstruction methods and scanners. PSF-based reconstruction reduces dependence of the spatial resolution on the

  17. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  18. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  19. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET.

    Science.gov (United States)

    Rapisarda, E; Bettinardi, V; Thielemans, K; Gilardi, M C

    2010-07-21

    The interest in positron emission tomography (PET) and particularly in hybrid integrated PET/CT systems has significantly increased in the last few years due to the improved quality of the obtained images. Nevertheless, one of the most important limits of the PET imaging technique is still its poor spatial resolution due to several physical factors originating both at the emission (e.g. positron range, photon non-collinearity) and at detection levels (e.g. scatter inside the scintillating crystals, finite dimensions of the crystals and depth of interaction). To improve the spatial resolution of the images, a possible way consists of measuring the point spread function (PSF) of the system and then accounting for it inside the reconstruction algorithm. In this work, the system response of the GE Discovery STE operating in 3D mode has been characterized by acquiring (22)Na point sources in different positions of the scanner field of view. An image-based model of the PSF was then obtained by fitting asymmetric two-dimensional Gaussians on the (22)Na images reconstructed with small pixel sizes. The PSF was then incorporated, at the image level, in a three-dimensional ordered subset maximum likelihood expectation maximization (OS-MLEM) reconstruction algorithm. A qualitative and quantitative validation of the algorithm accounting for the PSF has been performed on phantom and clinical data, showing improved spatial resolution, higher contrast and lower noise compared with the corresponding images obtained using the standard OS-MLEM algorithm.

  20. On soft clipping of Zernike moments for deblurring and enhancement of optical point spread functions

    Science.gov (United States)

    Becherer, Nico; Jödicke, Hanna; Schlosser, Gregor; Hesser, Jürgen; Zeilfelder, Frank; Männer, Reinhard

    2006-02-01

    Blur and noise originating from the physical imaging processes degrade the microscope data. Accurate deblurring techniques require, however, an accurate estimation of the underlying point-spread function (PSF). A good representation of PSFs can be achieved by Zernike Polynomials since they offer a compact representation where low-order coefficients represent typical aberrations of optical wavefronts while noise is represented in higher order coefficients. A quantitative description of the noise distribution (Gaussian) over the Zernike moments of various orders is given which is the basis for the new soft clipping approach for denoising of PSFs. Instead of discarding moments beyond a certain order, those Zernike moments that are more sensitive to noise are dampened according to the measured distribution and the present noise model. Further, a new scheme to combine experimental and theoretical PSFs in Zernike space is presented. According to our experimental reconstructions, using the new improved PSF the correlation between reconstructed and original volume is raised by 15% on average cases and up to 85% in the case of thin fibre structures, compared to reconstructions where a non improved PSF was used. Finally, we demonstrate the advantages of our approach on 3D images of confocal microscopes by generating visually improved volumes. Additionally, we are presenting a method to render the reconstructed results using a new volume rendering method that is almost artifact-free. The new approach is based on a Shear-Warp technique, wavelet data encoding techniques and a recent approach to approximate the gray value distribution by a Super spline model.

  1. “Hot Hand” in the National Basketball Association Point Spread Betting Market: A 34-Year Analysis

    Directory of Open Access Journals (Sweden)

    Benjamin Waggoner

    2014-11-01

    Full Text Available Several articles have looked at factors that affect the adjustments of point spreads, based on hot hands or streaks, for smaller durations of time. This study examines these effects for 34 regular seasons in the National Basketball Association (NBA. Estimating a Seemingly Unrelated Regression model using all 34 seasons, all streaks significantly impacted point spreads and difference in actual points. When estimating each season individually, differences emerged particularly examining winning and losing streaks of six games or more. The results indicate both the presence of momentum effects and the gambler’s fallacy.

  2. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea; Sjoeholm, Nils; Gulyas, Balazs; Halldin, Christer; Farde, Lars [Karolinska Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm (Sweden); Eriksson, Lars [Karolinska Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm (Sweden); Siemens Molecular Imaging, Knoxville, TN (United States); University of Stockholm, Department of Physics, Stockholm (Sweden)

    2009-10-15

    Image reconstruction including the modelling of the point spread function (PSF) is an approach improving the resolution of the PET images. This study assessed the quantitative improvements provided by the implementation of the PSF modelling in the reconstruction of the PET data using the High Resolution Research Tomograph (HRRT). Measurements were performed on the NEMA-IEC/2001 (Image Quality) phantom for image quality and on an anthropomorphic brain phantom (STEPBRAIN). PSF reconstruction was also applied to PET measurements in two cynomolgus monkeys examined with [{sup 18}F]FE-PE2I (dopamine transporter) and with [{sup 11}C]MNPA (D{sub 2} receptor), and in one human subject examined with [{sup 11}C]raclopride (D{sub 2} receptor). PSF reconstruction increased the recovery coefficient (RC) in the NEMA phantom by 11-40% and the grey to white matter ratio in the STEPBRAIN phantom by 17%. PSF reconstruction increased binding potential (BP{sub ND}) in the striatum and midbrain by 14 and 18% in the [{sup 18}F]FE-PE2I study, and striatal BP{sub ND} by 6 and 10% in the [{sup 11}C]MNPA and [{sup 11}C]raclopride studies. PSF reconstruction improved quantification by increasing the RC and thus reducing the partial volume effect. This method provides improved conditions for PET quantification in clinical studies with the HRRT system, particularly when targeting receptor populations in small brain structures. (orig.)

  3. Measurement of the point spread function and effective area of the Solar-A Soft X-ray Telescope mirror

    Science.gov (United States)

    Lemen, J. R.; Claflin, E. S.; Brown, W. A.; Bruner, M. E.; Catura, R. C.

    1989-01-01

    A grazing incidence solar X-ray telescope, Soft X-ray Telescope (SXT), will be flown on the Solar-A satellite in 1991. Measurements have been conducted to determine the focal length, Point Spread Function (PSF), and effective area of the SXT mirror. The measurements were made with pinholes, knife edges, a CCD, and a proportional counter. The results show the 1/r character of the PSF, and indicate a half power diameter of 4.9 arcsec and an effective area of 1.33 sq cm at 13.3 A (0.93 keV). The mirror was found to provide a high contrast image with very little X-ray scattering.

  4. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship.

    Science.gov (United States)

    Frostig, Ron D; Chen-Bee, Cynthia H; Johnson, Brett A; Jacobs, Nathan S

    2017-07-01

    This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.

  5. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-07

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model

    Science.gov (United States)

    Azizah, Afina; Widyaningsih, Purnami; Retno Sari Saputro, Dewi

    2017-06-01

    Ebola is a deadly infectious disease and has caused an epidemic on several countries in West Africa. Mathematical modeling to study the spread of Ebola disease has been developed, including through models susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR). Furthermore, susceptible exposed infected isolated recovered (SEIIhR) model has been derived. The aims of this research are to derive SEIIhR model for Ebola disease, to determine the patterns of its spread, to determine the equilibrium point and stability of the equilibrium point using phase plane analysis, and also to apply the SEIIhR model on Ebola epidemic in Sierra Leone in 2014. The SEIIhR model is a differential equation system. Pattern of ebola disease spread with SEIIhR model is solution of the differential equation system. The equilibrium point of SEIIhR model is unique and it is a disease-free equilibrium point that stable. Application of the model is based on the data Ebola epidemic in Sierra Leone. The free-disease equilibrium point (Se; Ee; Ie; Ihe; Re )=(5743865, 0, 0, 0, 0) is stable.

  7. Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model

    International Nuclear Information System (INIS)

    Azizah, Afina; Widyaningsih, Purnami; Saputro, Dewi Retno Sari

    2017-01-01

    Ebola is a deadly infectious disease and has caused an epidemic on several countries in West Africa. Mathematical modeling to study the spread of Ebola disease has been developed, including through models susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR). Furthermore, susceptible exposed infected isolated recovered (SEII h R) model has been derived. The aims of this research are to derive SEII h R model for Ebola disease, to determine the patterns of its spread, to determine the equilibrium point and stability of the equilibrium point using phase plane analysis, and also to apply the SEII h R model on Ebola epidemic in Sierra Leone in 2014. The SEII h R model is a differential equation system. Pattern of ebola disease spread with SEII h R model is solution of the differential equation system. The equilibrium point of SEII h R model is unique and it is a disease-free equilibrium point that stable. Application of the model is based on the data Ebola epidemic in Sierra Leone. The free-disease equilibrium point ( S e ; E e ; I e ; I he ; R e )=(5743865, 0, 0, 0, 0) is stable. (paper)

  8. Application of Deconvolution Algorithm of Point Spread Function in Improving Image Quality: An Observer Preference Study on Chest Radiography.

    Science.gov (United States)

    Chae, Kum Ju; Goo, Jin Mo; Ahn, Su Yeon; Yoo, Jin Young; Yoon, Soon Ho

    2018-01-01

    To evaluate the preference of observers for image quality of chest radiography using the deconvolution algorithm of point spread function (PSF) (TRUVIEW ART algorithm, DRTECH Corp.) compared with that of original chest radiography for visualization of anatomic regions of the chest. Prospectively enrolled 50 pairs of posteroanterior chest radiographs collected with standard protocol and with additional TRUVIEW ART algorithm were compared by four chest radiologists. This algorithm corrects scattered signals generated by a scintillator. Readers independently evaluated the visibility of 10 anatomical regions and overall image quality with a 5-point scale of preference. The significance of the differences in reader's preference was tested with a Wilcoxon's signed rank test. All four readers preferred the images applied with the algorithm to those without algorithm for all 10 anatomical regions (mean, 3.6; range, 3.2-4.0; p chest anatomical structures applied with the deconvolution algorithm of PSF was superior to the original chest radiography.

  9. Turing-like structures in a functional model of cortical spreading depression

    Science.gov (United States)

    Verisokin, A. Yu.; Verveyko, D. V.; Postnov, D. E.

    2017-12-01

    Cortical spreading depression (CSD) along with migraine waves and spreading depolarization events with stroke or injures are the front-line examples of extreme physiological behaviors of the brain cortex which manifest themselves via the onset and spreading of localized areas of neuronal hyperactivity followed by their depression. While much is known about the physiological pathways involved, the dynamical mechanisms of the formation and evolution of complex spatiotemporal patterns during CSD are still poorly understood, in spite of the number of modeling studies that have been already performed. Recently we have proposed a relatively simple mathematical model of cortical spreading depression which counts the effects of neurovascular coupling and cerebral blood flow redistribution during CSD. In the present study, we address the main dynamical consequences of newly included pathways, namely, the changes in the formation and propagation speed of the CSD front and the pattern formation features in two dimensions. Our most notable finding is that the combination of vascular-mediated spatial coupling with local regulatory mechanisms results in the formation of stationary Turing-like patterns during a CSD event.

  10. Four point functions in the SL(2,R) WZW model

    Energy Technology Data Exchange (ETDEWEB)

    Minces, Pablo [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)]. E-mail: minces@iafe.uba.ar; Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina) and Physics Department, University of Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)]. E-mail: carmen@iafe.uba.ar

    2007-04-19

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions.

  11. Four point functions in the SL(2,R) WZW model

    International Nuclear Information System (INIS)

    Minces, Pablo; Nunez, Carmen

    2007-01-01

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions

  12. Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function

    International Nuclear Information System (INIS)

    Fdida, Nicolas; Blaisot, Jean-Bernard

    2010-01-01

    Measurement of drop size distributions in a spray depends on the definition of the control volume for drop counting. For image-based techniques, this implies the definition of a depth-of-field (DOF) criterion. A sizing procedure based on an imaging model and associated with a calibration procedure is presented. Relations between image parameters and object properties are used to provide a measure of the size of the droplets, whatever the distance from the in-focus plane. A DOF criterion independent of the size of the drops and based on the determination of the width of the point spread function (PSF) is proposed. It allows to extend the measurement volume to defocused droplets and, due to the calibration of the PSF, to clearly define the depth of the measurement volume. Calibrated opaque discs, calibrated pinholes and an optical edge are used for this calibration. A comparison of the technique with a phase Doppler particle analyser and a laser diffraction granulometer is performed on an application to an industrial spray. Good agreement is found between the techniques when particular care is given to the sampling of droplets. The determination of the measurement volume is used to determine the drop concentration in the spray and the maximum drop concentration that imaging can support

  13. Clinical evaluation of whole-body oncologic PET with time-of-flight and point-spread function for the hybrid PET/MR system.

    Science.gov (United States)

    Shang, Kun; Cui, Bixiao; Ma, Jie; Shuai, Dongmei; Liang, Zhigang; Jansen, Floris; Zhou, Yun; Lu, Jie; Zhao, Guoguang

    2017-08-01

    Hybrid positron emission tomography/magnetic resonance (PET/MR) imaging is a new multimodality imaging technology that can provide structural and functional information simultaneously. The aim of this study was to investigate the effects of the time-of-flight (TOF) and point-spread function (PSF) on small lesions observed in PET/MR images from clinical patient image sets. This study evaluated 54 small lesions in 14 patients who had undergone 18 F-fluorodeoxyglucose (FDG) PET/MR. Lesions up to 30mm in diameter were included. The PET data were reconstructed with a baseline ordered-subsets expectation-maximization (OSEM) algorithm, OSEM+PSF, OSEM+TOF and OSEM+TOF+PSF. PET image quality and small lesions were visually evaluated and scored by a 3-point scale. A quantitative analysis was then performed using the mean and maximum standardized uptake value (SUV) of the small lesions (SUV mean and SUV max ). The lesions were divided into two groups according to the long-axis diameter and the location respectively and evaluated with each reconstruction algorithm. We also evaluated the background signal by analyzing the SUV liver . OSEM+TOF+PSF provided the highest value and OSEM+TOF or PSF showed a higher value than OSEM for the visual assessment and quantitative analysis. The combination of TOF and PSF increased the SUV mean by 26.6% and the SUV max by 30.0%. The SUV liver was not influenced by PSF or TOF. For the OSEM+TOF+PSF model, the change in SUV mean and SUV max for lesions PET/MR images, potentially improving small lesion detectability. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    International Nuclear Information System (INIS)

    Dong Suyalatu; Deng Yan-Bin; Huang Yong-Chang

    2017-01-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network . (paper)

  15. DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: mdwood@slac.stanford.edu, E-mail: mar0@uw.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2013-03-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from Almost-Equal-To 20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of {gamma} rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of {gamma}-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347-121.

  16. Term structure of sovereign spreads: a contingent claim model

    Directory of Open Access Journals (Sweden)

    Katia Rocha

    2007-12-01

    Full Text Available This paper proposes a simple structural model to estimate the termstructure and the implied default probability of a selected group of emerging countries, which account for 54% of the JPMorgan EMBIG index on average for the period 2000-2005. The real exchange rate dynamic, modeled as a pure diffusion process, is assumed to trigger default. The calibrated model generates sovereign spread curves consistent to market data. The results suggest that the market is systematically overpricing spreads for Brazil in 100 basis points, whereas for Mexico, Russia and Turkey the model is able to reproduce the market behavior.Este trabalho propõe um modelo estrutural para estimar a estrutura a termo e a probabilidade implícita de default de países emergentes que representam, em média, 54% do índice EMBIG do JPMorgan no período de 2000-2005. A taxa de câmbio real, modelada como um processo de difusão simples, é considerada como indicativa de default. O modelo calibrado gera a estrutura a termo dos spreads consistente com dados de mercado, indicando que o mercado sistematicamente sobre-estima os spreads para o Brasil em 100 pontos base na média, enquanto para México, Rússia e Turquia reproduz o comportamento do mercado.

  17. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    Science.gov (United States)

    Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang

    2017-10-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028

  18. Two-point functions in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i2, which is characteristic of a Kondo resonance.

  19. Two-point functions in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, D-97074 Würzburg (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany); Hoyos, Carlos [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); O’Bannon, Andy [STAG Research Centre, Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste, Via Bonomea 265, I 34136 Trieste (Italy); Probst, Jonas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Wu, Jackson M.S. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-03-07

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0+1)-dimensional impurity spin of a gauged SU(N) interacting with a (1+1)-dimensional, large-N, strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU(N)-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O{sup †}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1+1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0+1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green’s function of the form −i〈O〉{sup 2}, which is characteristic of a Kondo resonance.

  20. Two- and three-point functions in the D=1 matrix model

    International Nuclear Information System (INIS)

    Ben-Menahem, S.

    1991-01-01

    The critical behavior of the genus-zero two-point function in the D=1 matrix model is carefully analyzed for arbitrary embedding-space momentum. Kostov's result is recovered for momenta below a certain value P 0 (which is 1/√α' in the continuum language), with a non-universal form factor which is expressed simply in terms of the critical fermion trajectory. For momenta above P 0 , the Kostov scaling term is found to be subdominant. We then extend the large-N WKB treatment to calculate the genus-zero three-point function, and elucidate its critical behavior when all momenta are below P 0 . The resulting universal scaling behavior, as well as the non-universal form factor for the three-point function, are related to the two-point functions of the individual external momenta, through the factorization familiar from continuum conformal field theories. (orig.)

  1. Spreading of correlations in the Falicov-Kimball model

    Science.gov (United States)

    Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp

    2018-04-01

    We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.

  2. Effect of rotational diffusion in an orientational potential well on the point spread function of electric dipole emitters.

    Science.gov (United States)

    Stallinga, Sjoerd

    2015-02-01

    A study is presented of the point spread function (PSF) of electric dipole emitters that go through a series of absorption-emission cycles while the dipole orientation is changing due to rotational diffusion within the constraint of an orientational potential well. An analytical expression for the PSF is derived valid for arbitrary orientational potential wells in the limit of image acquisition times much larger than the rotational relaxation time. This framework is used to study the effects of the direction of incidence, polarization, and degree of coherence of the illumination. In the limit of fast rotational diffusion on the scale of the fluorescence lifetime the illumination influences only the PSF height, not its shape. In the limit of slow rotational diffusion on the scale of the fluorescence lifetime there is a significant effect on the PSF shape as well, provided the illumination is (partially) coherent. For oblique incidence, illumination asymmetries can arise in the PSF that give rise to position offsets in localization based on Gaussian spot fitting. These asymmetries persist in the limit of free diffusion in a zero orientational potential well.

  3. Physical model for membrane protrusions during spreading

    International Nuclear Information System (INIS)

    Chamaraux, F; Ali, O; Fourcade, B; Keller, S; Bruckert, F

    2008-01-01

    During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane–cytoskeleton complex, such as the membrane–cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane–cytoskeleton adherence

  4. Damage spreading for one-dimensional, non-equilibrium models with parity conserving phase transitions

    CERN Document Server

    Ódor, G; Odor, Geza; Menyhard, Nora

    1998-01-01

    The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated on the level of kinks and spins. On the level of spins the parity conservation is not satisfied and therefore studying these models provides a convenient tool to understand the dependence of DS properties on symmetries. For the model B the critical point and the DS transition point is well separated and directed percolation damage spreading transition universality was found for spin damage as well as for kink damage in spite of the conservation of damage variables modulo 2 in the latter case. For the A stochastic cellular automaton, and the NEKIM model the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition is continuous and shows regular PC class universality, the spin damage exhibits a discontinuous p...

  5. Two point function for a simple general relativistic quantum model

    OpenAIRE

    Colosi, Daniele

    2007-01-01

    We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.

  6. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.

  7. Comparative study on spreading function for directional wave spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    -dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...

  8. Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

    Directory of Open Access Journals (Sweden)

    Yuji Tsutsui

    2017-06-01

    Full Text Available Objective(s: We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF-based positron emission tomography (PET image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax and the mean recovery coefficient (RCmean in the phantom at different diameters.Results: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2. The RCmean of the OSEM with PSF images did not exceed 100%.Conclusion: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.

  9. Deterministic ripple-spreading model for complex networks.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  10. Default Spread dan Term Spread sebagai Variabel Proxy Siklus Bisnis pada Model Fama-French

    Directory of Open Access Journals (Sweden)

    Edwin Hendra

    2015-08-01

    Full Text Available This research aims to apply the Fama-French models and test the effect of alternative variable of bond yield spread, default spread (RBBB – RAAA and RAAA – RF, and the term spread (RSUN10-RSUN1, as proxy variables of the business cycle, in IDX stock data during 2005-2010. Four types of asset pricing models tested are Sharpe-Lintner CAPM, Fama-French models, Hwang et al.model, and hybrid model. The results showed that the size effect and value effect has an impact on excess stock returns. Slopes of market beta, SMB, and HML are more sensitive to stock big size and high B / M. Default spreads and term spreads in Hwang et al. model can explain the value effect, and weakly explain the size effect, meanwhile the power of explanation disappeared on Hybrid models. Based on the assessment adjusted R2 and the frequency of rejection of non-zero alpha, is found that the hybrid model is the most suitable model.  

  11. Asymptotic behaviour of two-point functions in multi-species models

    Directory of Open Access Journals (Sweden)

    Karol K. Kozlowski

    2016-05-01

    Full Text Available We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU(3-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.

  12. Global stability of a two-mediums rumor spreading model with media coverage

    Science.gov (United States)

    Huo, Liang'an; Wang, Li; Song, Guoxiang

    2017-09-01

    Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.

  13. Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Marie Aerts

    2012-11-01

    Full Text Available The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.

  14. Non-universal spreading exponents in a catalytic reaction model

    International Nuclear Information System (INIS)

    De Andrade, Marcelo F; Figueiredo, W

    2011-01-01

    We investigated the dependence of the spreading critical exponents and the ultimate survival probability exponent on the initial configuration of a nonequilibrium catalytic reaction model. The model considers the competitive reactions between two different monomers, A and B, where we take into account the energy couplings between nearest neighbor monomers, and the adsorption energies, as well as the temperature T of the catalyst. For each value of T the model shows distinct absorbing states, with different concentrations of the two monomers. Employing an epidemic analysis, we established the behavior of the spreading exponents as we started the Monte Carlo simulations with different concentrations of the monomers. The exponents were determined as a function of the initial concentration ρ A, ini of A monomers. We have also considered initial configurations with correlations for a fixed concentration of A monomers. From the determination of three spreading exponents, and the ultimate survival probability exponent, we checked the validity of the generalized hyperscaling relation for a continuous set of initial states, random and correlated, which are dependent on the temperature of the catalyst

  15. Credit Spread Modeling: Macro-financial versus HOC Approach

    Directory of Open Access Journals (Sweden)

    Sanja Dudaković

    2014-12-01

    Full Text Available The aim of this paper is to throw light on the relationship between credit spread changes and past changes of U.S. macro-financial variables when invariants do not have Gaussian distribution. The first part presents the empirical analysis which is based on 10-year AAA corporate bond yields and 10-year Treasury bond yields. Explanatory variables include lagged U.S. leading index, Russell 2000 returns, BBB bond price changes interest rate swaps, exchange rates EUR/ USD, Repo rates, S& P 500 returns and S&P 500 volatility, Treasury bill changes, liquidity index-TRSW, LIBOR rates, Moody’s default rates; credit spread volatility and Treasury bills volatility. The proposed dynamical model explains 73% of the U.S. credit spread variance for the period 1999:07-2013:07. The second part of the article introduces the parameter estimation method based on higher order cumulants. It is demonstrated empirically that much of the information about variability of Credit Spread can be extracted from higher order cumulant function (85%.

  16. An agent-based computational model for tuberculosis spreading on age-structured populations

    Science.gov (United States)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  17. One loop beta functions and fixed points in higher derivative sigma models

    International Nuclear Information System (INIS)

    Percacci, Roberto; Zanusso, Omar

    2010-01-01

    We calculate the one loop beta functions of nonlinear sigma models in four dimensions containing general two- and four-derivative terms. In the O(N) model there are four such terms and nontrivial fixed points exist for all N≥4. In the chiral SU(N) models there are in general six couplings, but only five for N=3 and four for N=2; we find fixed points only for N=2, 3. In the approximation considered, the four-derivative couplings are asymptotically free but the coupling in the two-derivative term has a nonzero limit. These results support the hypothesis that certain sigma models may be asymptotically safe.

  18. The cost of simplifying air travel when modeling disease spread.

    Directory of Open Access Journals (Sweden)

    Justin Lessler

    Full Text Available BACKGROUND: Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. METHODOLOGY/PRINCIPAL FINDINGS: Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed introductions of disease is small (<1 per day but for a few routes this rate is greatly underestimated by the pipe model. CONCLUSIONS/SIGNIFICANCE: If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.

  19. Terrestrial spreading centers under Venus conditions - Evaluation of a crustal spreading model for Western Aphrodite Terra

    Science.gov (United States)

    Sotin, C.; Senske, D. A.; Head, J. W.; Parmentier, E. M.

    1989-01-01

    The model of Reid and Jackson (1981) for terrestrial spreading centers is applied to Venus conditions. On the basis of spreading rate, mantle temperature, and surface temperature, the model predicts both isostatic topography and crustal thickness. The model and Pioneer Venus altimetry and gravity data are used to test the hypothesis of Head and Crumpler (1987) that Western Aphrodite Terra is the location of crustal spreading on Venus. It is concluded that a spreading center model for Ovda Regio in Western Aphrodite Terra could account for the observed topography and line-of-sight gravity anomalies found in the Pioneer data.

  20. Modelling indirect interactions during failure spreading in a project activity network.

    Science.gov (United States)

    Ellinas, Christos

    2018-03-12

    Spreading broadly refers to the notion of an entity propagating throughout a networked system via its interacting components. Evidence of its ubiquity and severity can be seen in a range of phenomena, from disease epidemics to financial systemic risk. In order to understand the dynamics of these critical phenomena, computational models map the probability of propagation as a function of direct exposure, typically in the form of pairwise interactions between components. By doing so, the important role of indirect interactions remains unexplored. In response, we develop a simple model that accounts for the effect of both direct and subsequent exposure, which we deploy in the novel context of failure propagation within a real-world engineering project. We show that subsequent exposure has a significant effect in key aspects, including the: (a) final spreading event size, (b) propagation rate, and (c) spreading event structure. In addition, we demonstrate the existence of 'hidden influentials' in large-scale spreading events, and evaluate the role of direct and subsequent exposure in their emergence. Given the evidence of the importance of subsequent exposure, our findings offer new insight on particular aspects that need to be included when modelling network dynamics in general, and spreading processes specifically.

  1. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    Science.gov (United States)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  2. A model for the two-point velocity correlation function in turbulent channel flow

    International Nuclear Information System (INIS)

    Sahay, A.; Sreenivasan, K.R.

    1996-01-01

    A relatively simple analytical expression is presented to approximate the equal-time, two-point, double-velocity correlation function in turbulent channel flow. To assess the accuracy of the model, we perform the spectral decomposition of the integral operator having the model correlation function as its kernel. Comparisons of the empirical eigenvalues and eigenfunctions with those constructed from direct numerical simulations data show good agreement. copyright 1996 American Institute of Physics

  3. An empirical model of global spread-f occurrence

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1974-09-01

    A method of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density into a model of the occurrence probability of the frequency spreading component of spread-F is presented. The predictions of the model are compared with spread-F occurrence data obtained under sunspot maximum conditions. Good agreement is obtained for latitudes less than 70 0 geomagnetic. At higher latitudes, the inclusion of a 'blackout factor' in the model allows it to accurately represent the data and, in so doing, resolves an apparent discrepancy in the occurrence statistics at high latitudes. The blackout factor is ascribed to the effect of polar blackout on the spread-F statistics and/or the lack of a definitve incremental electron density model for irregularities at polar latitudes. Ways of isolating these effects and assessing their relative importance in the blackout factor are discussed. The model, besides providing estimates of spread-F occurrence on a worldwide basis, which will be of value in the engineering of HF and VHF communications, also furnishes a means of further checking the irregularity incremental electron density model on which it is based. (author)

  4. Intensity-dependent point spread image processing

    International Nuclear Information System (INIS)

    Cornsweet, T.N.; Yellott, J.I.

    1984-01-01

    There is ample anatomical, physiological and psychophysical evidence that the mammilian retina contains networks that mediate interactions among neighboring receptors, resulting in intersecting transformations between input images and their corresponding neural output patterns. The almost universally accepted view is that the principal form of interaction involves lateral inhibition, resulting in an output pattern that is the convolution of the input with a ''Mexican hat'' or difference-of-Gaussians spread function, having a positive center and a negative surround. A closely related process is widely applied in digital image processing, and in photography as ''unsharp masking''. The authors show that a simple and fundamentally different process, involving no inhibitory or subtractive terms can also account for the physiological and psychophysical findings that have been attributed to lateral inhibition. This process also results in a number of fundamental effects that occur in mammalian vision and that would be of considerable significance in robotic vision, but which cannot be explained by lateral inhibitory interaction

  5. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  6. Reassessing Function Points

    Directory of Open Access Journals (Sweden)

    G.R. Finnie

    1997-05-01

    Full Text Available Accurate estimation of the size and development effort for software projects requires estimation models which can be used early enough in the development life cycle to be of practical value. Function Point Analysis (FPA has become possibly the most widely used estimation technique in practice. However the technique was developed in the data processing environment of the 1970's and, despite undergoing considerable reassessment and formalisation, still attracts criticism for the weighting scoring it employs and for the way in which the function point score is adapted for specific system characteristics. This paper reviews the validity of the weighting scheme and the value of adjusting for system characteristics by studying their effect in a sample of 299 software developments. In general the value adjustment scheme does not appear to cater for differences in productivity. The weighting scheme used to adjust system components in terms of being simple, average or complex also appears suspect and should be redesigned to provide a more realistic estimate of system functionality.

  7. Estimating Function Approaches for Spatial Point Processes

    Science.gov (United States)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting

  8. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  9. A mathematical model of the spread of the AIDS virus

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, J.M.; Stanley, E.A.

    1987-01-01

    A mathematical computer model of the spread of the AIDS epidemic in the US is being developed at Los Alamos National Laboratory. This model predicts the spreading of the HIV infection, and subsequent development of clinical AIDS in various population groups. These groups are chosen according to age, frequency and type of sexual contact, population density, and region of the country. Type of sexual contact includes not only the heterosexual, homosexual differentiation but also repeated contacts with such primary partners as spouses. In conjunction with the computer model, we are developing a database containing relevant information on the natural history of the viral infection, the prevalence of the infection and of clinical AIDS in the population, the distribution of people into sexual behavior groups as a function of age and information on interregional contacts. The effects of variable infectiousness and sexual activity during the long period from infection to disease are found to have a major impact on the predictions of the model. 24 refs., 5 figs.

  10. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-02-01

    Full Text Available To solve the problem on inaccuracy when estimating the point spread function (PSF of the ideal original image in traditional projection onto convex set (POCS super-resolution (SR reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40 three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  11. Effects of rewiring strategies on information spreading in complex dynamic networks

    Science.gov (United States)

    Ally, Abdulla F.; Zhang, Ning

    2018-04-01

    Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.

  12. Modeling universal dynamics of cell spreading on elastic substrates.

    Science.gov (United States)

    Fan, Houfu; Li, Shaofan

    2015-11-01

    A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.

  13. Web malware spread modelling and optimal control strategies

    Science.gov (United States)

    Liu, Wanping; Zhong, Shouming

    2017-02-01

    The popularity of the Web improves the growth of web threats. Formulating mathematical models for accurate prediction of malicious propagation over networks is of great importance. The aim of this paper is to understand the propagation mechanisms of web malware and the impact of human intervention on the spread of malicious hyperlinks. Considering the characteristics of web malware, a new differential epidemic model which extends the traditional SIR model by adding another delitescent compartment is proposed to address the spreading behavior of malicious links over networks. The spreading threshold of the model system is calculated, and the dynamics of the model is theoretically analyzed. Moreover, the optimal control theory is employed to study malware immunization strategies, aiming to keep the total economic loss of security investment and infection loss as low as possible. The existence and uniqueness of the results concerning the optimality system are confirmed. Finally, numerical simulations show that the spread of malware links can be controlled effectively with proper control strategy of specific parameter choice.

  14. Bayesian Estimation Of Shift Point In Poisson Model Under Asymmetric Loss Functions

    Directory of Open Access Journals (Sweden)

    uma srivastava

    2012-01-01

    Full Text Available The paper deals with estimating  shift point which occurs in any sequence of independent observations  of Poisson model in statistical process control. This shift point occurs in the sequence when  i.e. m  life data are observed. The Bayes estimator on shift point 'm' and before and after shift process means are derived for symmetric and asymmetric loss functions under informative and non informative priors. The sensitivity analysis of Bayes estimators are carried out by simulation and numerical comparisons with  R-programming. The results shows the effectiveness of shift in sequence of Poisson disribution .

  15. Perspectives on How Human Simultaneous Multi-Modal Imaging Adds Directionality to Spread Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Julia Neitzel

    2018-01-01

    Full Text Available Previous animal research suggests that the spread of pathological agents in Alzheimer’s disease (AD follows the direction of signaling pathways. Specifically, tau pathology has been suggested to propagate in an infection-like mode along axons, from transentorhinal cortices to medial temporal lobe cortices and consequently to other cortical regions, while amyloid-beta (Aβ pathology seems to spread in an activity-dependent manner among and from isocortical regions into limbic and then subcortical regions. These directed connectivity-based spread models, however, have not been tested directly in AD patients due to the lack of an in vivo method to identify directed connectivity in humans. Recently, a new method—metabolic connectivity mapping (MCM—has been developed and validated in healthy participants that uses simultaneous FDG-PET and resting-state fMRI data acquisition to identify directed intrinsic effective connectivity (EC. To this end, postsynaptic energy consumption (FDG-PET is used to identify regions with afferent input from other functionally connected brain regions (resting-state fMRI. Here, we discuss how this multi-modal imaging approach allows quantitative, whole-brain mapping of signaling direction in AD patients, thereby pointing out some of the advantages it offers compared to other EC methods (i.e., Granger causality, dynamic causal modeling, Bayesian networks. Most importantly, MCM provides the basis on which models of pathology spread, derived from animal studies, can be tested in AD patients. In particular, future work should investigate whether tau and Aβ in humans propagate along the trajectories of directed connectivity in order to advance our understanding of the neuropathological mechanisms causing disease progression.

  16. Lattice model for influenza spreading with spontaneous behavioral changes.

    Science.gov (United States)

    Fierro, Annalisa; Liccardo, Antonella

    2013-01-01

    Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself. The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts, adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through the "thought contagion" among aware and unaware individuals. The peculiarity of the present approach is that the awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of contagion. In particular, the model is validated against the A(H1N1) epidemic outbreak in Italy during the 2009/2010 season, by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI). We find that, increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in influencing the epidemic spreading of infectious diseases.

  17. Lattice model for influenza spreading with spontaneous behavioral changes.

    Directory of Open Access Journals (Sweden)

    Annalisa Fierro

    Full Text Available Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself. The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts, adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through the "thought contagion" among aware and unaware individuals. The peculiarity of the present approach is that the awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of contagion. In particular, the model is validated against the A(H1N1 epidemic outbreak in Italy during the 2009/2010 season, by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI. We find that, increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in influencing the epidemic spreading of infectious

  18. Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering

    Science.gov (United States)

    Phillips, David Michael

    liquid PFPE. The experimental analogue of replenishment is the one-dimensional spreading analysis. PFPEs with functional endgroups demonstrated coupled molecular layering and dewetting phenomena during the spreading analysis, while PFPEs with nonfunctional endgroups did not. All of the PFPE thin films spread via a diffusive process and had diffusion coefficients that depended on the local film thickness. A theoretical analysis is presented here for both the governing equation and the disjoining pressure driving force for the PFPE thin film spreading. For PFPEs with non-functional endgroups, a reasonable analysis is performed on the diffusion coefficient for two classes of film: submonolayer and multilayer. The diffusion coefficient of PFPEs with functional endgroups are qualitatively linked to the gradient of the film disjoining pressure. To augment this theory, both lattice-based and off-lattice Monte Carlo simulations are conducted for PFPE film models. The lattice-based model shows the existence of a critical functional endgroup interaction strength. It is also used to study the break-up of molecular layers for a spreading film via a fractal analysis. The off-lattice model is used to calculate the anisotropic pressure tensor for the model PFPE thin film and subsequently the film disjoining pressure. The model also qualitatively analyzes of the self diffusion in the film.

  19. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    Sun, Xin; Liu, Yan-Heng; Han, Jia-Wei; Liu, Xue-Jie; Li, Bin; Li, Jin

    2012-01-01

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  20. Dynamical Model about Rumor Spreading with Medium

    Directory of Open Access Journals (Sweden)

    Xiaxia Zhao

    2013-01-01

    Full Text Available Rumor is a kind of social remark, that is untrue, and not be confirmed, and spreads on a large scale in a short time. Usually, it can induce a cloud of pressure, anxiety, and panic. Traditionally, it is propagated by word of mouth. Nowadays, with the emergence of the internet, rumors can be spread by instant messengers, emails, or publishing. With this new pattern of spreading, an ISRW dynamical model considering the medium as a subclass is established. Beside the dynamical analysis of the model, we mainly explore the mechanism of spreading of individuals-to-individuals and medium-to-individual. By numerical simulation, we find that if we want to control the rumor spreading, it will not only need to control the rate of change of the spreader subclass, but also need to control the change of the information about rumor in medium which has larger influence. Moreover, to control the effusion of rumor is more important than deleting existing information about rumor. On the one hand, government should enhance the management of internet. On the other hand, relevant legal institutions for punishing the rumor creator and spreader on internet who can be tracked should be established. Using this way, involved authorities can propose efficient measures to control the rumor spreading to keep the stabilization of society and development of economy.

  1. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixing; Yang, LV [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Xu, Kele [College of Electronical Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Zhu, Li [Institute of Electrostatic and Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang, Hebei (China)

    2016-06-15

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape - to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.

  2. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    Directory of Open Access Journals (Sweden)

    Tsunehide Kuroki

    2017-06-01

    Full Text Available In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  3. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Tsunehide, E-mail: kuroki@dg.kagawa-nct.ac.jp [General Eduction, National Institute of Technology, Kagawa College, 551 Kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Sugino, Fumihiko, E-mail: fusugino@gmail.com [Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278 (Japan)

    2017-06-15

    In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  4. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    International Nuclear Information System (INIS)

    Kuroki, Tsunehide; Sugino, Fumihiko

    2017-01-01

    In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  5. Functional properties of a new spread based on olive oil and honeybees

    Directory of Open Access Journals (Sweden)

    Asma Tekiki

    2018-01-01

    Full Text Available a new alimentary concept has been developed since the 80’s. This one is called “functional food”.  In this context, the olive oil and honey are traditionally used in their initial state as a basic food. They are considered as a potential source of new bioactive products from which we can formulate several functional foods. This work will focus on the elaboration of a new spread of honey and olive oil using beeswax as an emulsifier. Physical-chemical characterization, antioxidant and antibacterial activity were evaluated. As for the phenols content, spreads prepared from thyme honey has the highest content (337 mg GAE/kg compared to other spreads. The antioxidant activity was evaluated by three different methods namely: DPPH test, ABTS + test and the iron reduction method (FRAP which proves that this last has a higher activity than the other spreads (EC50 of 70 mg /L using DPPH, EC50 of 20 mg /L using ABTS. An agar-well diffusion assay was used to assess the activity of honeys against seven bacteria strains. All prepared spreads honey samples showed highest antibacterial activity against all bacterial strains tested (diameter of ZI > 20mm. Hence, we note that our new spread proved by excellence to be a functional food due to the high content of phenols and the important antibacterial and antioxidant activities.

  6. METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS

    Directory of Open Access Journals (Sweden)

    E. V. Dikareva

    2015-01-01

    Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.

  7. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  8. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  9. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Science.gov (United States)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  10. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    International Nuclear Information System (INIS)

    Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.

    2016-01-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  11. A model of spreading of sudden events on social networks

    Science.gov (United States)

    Wu, Jiao; Zheng, Muhua; Zhang, Zi-Ke; Wang, Wei; Gu, Changgui; Liu, Zonghua

    2018-03-01

    Information spreading has been studied for decades, but its underlying mechanism is still under debate, especially for those ones spreading extremely fast through the Internet. By focusing on the information spreading data of six typical events on Sina Weibo, we surprisingly find that the spreading of modern information shows some new features, i.e., either extremely fast or slow, depending on the individual events. To understand its mechanism, we present a susceptible-accepted-recovered model with both information sensitivity and social reinforcement. Numerical simulations show that the model can reproduce the main spreading patterns of the six typical events. By this model, we further reveal that the spreading can be speeded up by increasing either the strength of information sensitivity or social reinforcement. Depending on the transmission probability and information sensitivity, the final accepted size can change from continuous to discontinuous transition when the strength of the social reinforcement is large. Moreover, an edge-based compartmental theory is presented to explain the numerical results. These findings may be of significance on the control of information spreading in modern society.

  12. Modelling unidirectional liquid spreading on slanted microposts

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Blow, Matthew L.; Yeomans, Julia M.

    2013-01-01

    A lattice Boltzmann algorithm is used to simulate the slow spreading of drops on a surface patterned with slanted micro-posts. Gibb's pinning of the interface on the sides or top of the posts leads to unidirectional spreading over a wide range of contact angles and inclination angles of the posts....... Regimes for spreading in no, one or two directions are identified, and shown to agree well with a two-dimensional theory proposed in Chu, Xiao and Wang. A more detailed numerical analysis of the contact line shapes allows us to understand deviations from the two dimensional model, and to identify...

  13. Two-point boundary correlation functions of dense loop models

    Directory of Open Access Journals (Sweden)

    Alexi Morin-Duchesne, Jesper Lykke Jacobsen

    2018-06-01

    Full Text Available We investigate six types of two-point boundary correlation functions in the dense loop model. These are defined as ratios $Z/Z^0$ of partition functions on the $m\\times n$ square lattice, with the boundary condition for $Z$ depending on two points $x$ and $y$. We consider: the insertion of an isolated defect (a and a pair of defects (b in a Dirichlet boundary condition, the transition (c between Dirichlet and Neumann boundary conditions, and the connectivity of clusters (d, loops (e and boundary segments (f in a Neumann boundary condition. For the model of critical dense polymers, corresponding to a vanishing loop weight ($\\beta = 0$, we find determinant and pfaffian expressions for these correlators. We extract the conformal weights of the underlying conformal fields and find $\\Delta = -\\frac18$, $0$, $-\\frac3{32}$, $\\frac38$, $1$, $\\tfrac \\theta \\pi (1+\\tfrac{2\\theta}\\pi$, where $\\theta$ encodes the weight of one class of loops for the correlator of type f. These results are obtained by analysing the asymptotics of the exact expressions, and by using the Cardy-Peschel formula in the case where $x$ and $y$ are set to the corners. For type b, we find a $\\log|x-y|$ dependence from the asymptotics, and a $\\ln (\\ln n$ term in the corner free energy. This is consistent with the interpretation of the boundary condition of type b as the insertion of a logarithmic field belonging to a rank two Jordan cell. For the other values of $\\beta = 2 \\cos \\lambda$, we use the hypothesis of conformal invariance to predict the conformal weights and find $\\Delta = \\Delta_{1,2}$, $\\Delta_{1,3}$, $\\Delta_{0,\\frac12}$, $\\Delta_{1,0}$, $\\Delta_{1,-1}$ and $\\Delta_{\\frac{2\\theta}\\lambda+1,\\frac{2\\theta}\\lambda+1}$, extending the results of critical dense polymers. With the results for type f, we reproduce a Coulomb gas prediction for the valence bond entanglement entropy of Jacobsen and Saleur.

  14. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity.

    Science.gov (United States)

    Kidera, Daisuke; Kihara, Ken; Akamatsu, Go; Mikasa, Shohei; Taniguchi, Takafumi; Tsutsui, Yuji; Takeshita, Toshiki; Maebatake, Akira; Miwa, Kenta; Sasaki, Masayuki

    2016-02-01

    The aim of this study was to quantitatively evaluate the edge artifacts in PET images reconstructed using the point-spread function (PSF) algorithm at different sphere-to-background ratios of radioactivity (SBRs). We used a NEMA IEC body phantom consisting of six spheres with 37, 28, 22, 17, 13 and 10 mm in inner diameter. The background was filled with (18)F solution with a radioactivity concentration of 2.65 kBq/mL. We prepared three sets of phantoms with SBRs of 16, 8, 4 and 2. The PET data were acquired for 20 min using a Biograph mCT scanner. The images were reconstructed with the baseline ordered subsets expectation maximization (OSEM) algorithm, and with the OSEM + PSF correction model (PSF). For the image reconstruction, the number of iterations ranged from one to 10. The phantom PET image analyses were performed by a visual assessment of the PET images and profiles, a contrast recovery coefficient (CRC), which is the ratio of SBR in the images to the true SBR, and the percent change in the maximum count between the OSEM and PSF images (Δ % counts). In the PSF images, the spheres with a diameter of 17 mm or larger were surrounded by a dense edge in comparison with the OSEM images. In the spheres with a diameter of 22 mm or smaller, an overshoot appeared in the center of the spheres as a sharp peak in the PSF images in low SBR. These edge artifacts were clearly observed in relation to the increase of the SBR. The overestimation of the CRC was observed in 13 mm spheres in the PSF images. In the spheres with a diameter of 17 mm or smaller, the Δ % counts increased with an increasing SBR. The Δ % counts increased to 91 % in the 10-mm sphere at the SBR of 16. The edge artifacts in the PET images reconstructed using the PSF algorithm increased with an increasing SBR. In the small spheres, the edge artifact was observed as a sharp peak at the center of spheres and could result in overestimation.

  15. Tectonic microplates in a wax model of sea-floor spreading

    International Nuclear Information System (INIS)

    Katz, Richard F; Ragnarsson, Rolf; Bodenschatz, Eberhard

    2005-01-01

    Rotating, growing microplates are observed in a wax analogue model of sea-floor spreading. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. Based on the wax observations, a theory for the nucleation of overlapping spreading centres, the precursors of tectonic microplates, is developed

  16. Dynamical Behaviors of Rumor Spreading Model with Control Measures

    Directory of Open Access Journals (Sweden)

    Xia-Xia Zhao

    2014-01-01

    Full Text Available Rumor has no basis in fact and flies around. And in general, it is propagated for a certain motivation, either for business, economy, or pleasure. It is found that the web does expose us to more rumor and increase the speed of the rumors spread. Corresponding to these new ways of spreading, the government should carry out some measures, such as issuing message by media, punishing the principal spreader, and enhancing management of the internet. In order to assess these measures, dynamical models without and with control measures are established. Firstly, for two models, equilibria and the basic reproduction number of models are discussed. More importantly, numerical simulation is implemented to assess control measures of rumor spread between individuals-to-individuals and medium-to-individuals. Finally, it is found that the amount of message released by government has the greatest influence on the rumor spread. The reliability of government and the cognizance ability of the public are more important. Besides that, monitoring the internet to prevent the spread of rumor is more important than deleting messages in media which already existed. Moreover, when the minority of people are punished, the control effect is obvious.

  17. A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function

    International Nuclear Information System (INIS)

    Barbee, David L; Holden, James E; Nickles, Robert J; Jeraj, Robert; Flynn, Ryan T

    2010-01-01

    Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised by partial volume effects which may affect treatment prognosis, assessment or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discovery LS at positions of increasing radii from the scanner's center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method's correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three-dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated

  18. Development and validation of a physics-based urban fire spread model

    OpenAIRE

    HIMOTO, Keisuke; TANAKA, Takeyoshi

    2008-01-01

    A computational model for fire spread in a densely built urban area is developed. The model is distinct from existing models in that it explicitly describes fire spread phenomena with physics-based knowledge achieved in the field of fire safety engineering. In the model, urban fire is interpreted as an ensemble of multiple building fires; that is, the fire spread is simulated by predicting behaviors of individual building fires under the thermal influence of neighboring building fires. Adopte...

  19. Spacing distribution functions for the one-dimensional point-island model with irreversible attachment

    Science.gov (United States)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2011-07-01

    We study the configurational structure of the point-island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density pnXY(x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for pnXY(x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system.

  20. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    Science.gov (United States)

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  1. Spreading Speed, Traveling Waves, and Minimal Domain Size in Impulsive Reaction–Diffusion Models

    KAUST Repository

    Lewis, Mark A.

    2012-08-15

    How growth, mortality, and dispersal in a species affect the species\\' spread and persistence constitutes a central problem in spatial ecology. We propose impulsive reaction-diffusion equation models for species with distinct reproductive and dispersal stages. These models can describe a seasonal birth pulse plus nonlinear mortality and dispersal throughout the year. Alternatively, they can describe seasonal harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year. The population dynamics in the seasonal pulse is described by a discrete map that gives the density of the population at the end of a pulse as a possibly nonmonotone function of the density of the population at the beginning of the pulse. The dynamics in the dispersal stage is governed by a nonlinear reaction-diffusion equation in a bounded or unbounded domain. We develop a spatially explicit theoretical framework that links species vital rates (mortality or fecundity) and dispersal characteristics with species\\' spreading speeds, traveling wave speeds, as well as minimal domain size for species persistence. We provide an explicit formula for the spreading speed in terms of model parameters, and show that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions. We also give an explicit formula for the minimal domain size using model parameters. Our results show how the diffusion coefficient, and the combination of discrete- and continuous-time growth and mortality determine the spread and persistence dynamics of the population in a wide variety of ecological scenarios. Numerical simulations are presented to demonstrate the theoretical results. © 2012 Society for Mathematical Biology.

  2. Airborne spread of foot-and-mouth disease - Model intercomparison

    DEFF Research Database (Denmark)

    Gloster, John; Jones, Andrew; Redington, Alison

    2010-01-01

    Foot-and-mouth disease virus (FMDV) spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route, with the relative importance of each mechanism depending on the particular outbreak characteristics....... Atmospheric dispersion models have been developed to assess airborne spread of FMDV in a number of countries, including the UK, Denmark, Australia, New Zealand, USA and Canada. These models were compared at a Workshop hosted by the Institute for Animal Health/Met Office in 2008. Each modeller was provided...... with data relating to the 1967 outbreak of FMD in Hampshire, UK, and asked to predict the spread of FMDV by the airborne route. A number of key issues emerged from the Workshop and subsequent modelling work: (1) in general all models predicted similar directions for livestock at risk, with much...

  3. Coexistence of an unstirred chemostat model with B-D functional response by fixed point index theory

    Directory of Open Access Journals (Sweden)

    Xiao-zhou Feng

    2016-11-01

    Full Text Available Abstract This paper deals with an unstirred chemostat model with the Beddington-DeAngelis functional response. First, some prior estimates for positive solutions are proved by the maximum principle and the method of upper and lower solutions. Second, the calculation on the fixed point index of chemostat model is obtained by degree theory and the homotopy invariance theorem. Finally, some sufficient condition on the existence of positive steady-state solutions is established by fixed point index theory and bifurcation theory.

  4. The three-point correlation function of the cosmic microwave background in inflationary models

    CERN Document Server

    Gangui, Alejandro; Matarrese, Sabino; Mollerach, Silvia

    1994-01-01

    We analyze the temperature three-point correlation function and the skewness of the Cosmic Microwave Background (CMB), providing general relations in terms of multipole coefficients. We then focus on applications to large angular scale anisotropies, such as those measured by the {\\em COBE} DMR, calculating the contribution to these quantities from primordial, inflation generated, scalar perturbations, via the Sachs--Wolfe effect. Using the techniques of stochastic inflation we are able to provide a {\\it universal} expression for the ensemble averaged three-point function and for the corresponding skewness, which accounts for all primordial second-order effects. These general expressions would moreover apply to any situation where the bispectrum of the primordial gravitational potential has a {\\em hierarchical} form. Our results are then specialized to a number of relevant models: power-law inflation driven by an exponential potential, chaotic inflation with a quartic and quadratic potential and a particular c...

  5. Stability Analysis Susceptible, Exposed, Infected, Recovered (SEIR) Model for Spread Model for Spread of Dengue Fever in Medan

    Science.gov (United States)

    Side, Syafruddin; Molliq Rangkuti, Yulita; Gerhana Pane, Dian; Setia Sinaga, Marlina

    2018-01-01

    Dengue fever is endemic disease which spread through vector, Aedes Aegypty. This disease is found more than 100 countries, such as, United State, Africa as well Asia, especially in country that have tropic climate. Mathematical modeling in this paper, discusses the speed of the spread of dengue fever. The model adopting divided over four classes, such as Susceptible (S), Exposed (E), Infected (I) and Recovered (R). SEIR model further analyzed to detect the re-breeding value based on the number reported case by dengue in Medan city. Analysis of the stability of the system in this study is asymptotically stable indicating a case of endemic and unstable that show cases the endemic cases. Simulation on the mathematical model of SEIR showed that require a very long time to produce infected humans will be free of dengue virus infection. This happens because of dengue virus infection that occurs continuously between human and vector populations.

  6. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  7. Some application of the model of partition points on a one-dimensional lattice

    International Nuclear Information System (INIS)

    Mejdani, R.

    1991-07-01

    We have shown that by using a model of the gas of partition points on one-dimensional lattice, we can find some results about the enzyme kinetics or the average domain-size, which we have obtained before by using a correlated Walks' theory or a probabilistic (combinatoric) way. We have discussed also the problem related with the spread of an infection of disease and the stochastic model of partition points. We think that this model, as a very simple model and mathematically transparent, can be advantageous for other theoretical investigations in chemistry or modern biology. (author). 14 refs, 6 figs, 1 tab

  8. Function parametrization by using 4-point transforms

    International Nuclear Information System (INIS)

    Dikusar, N.D.

    1996-01-01

    A continuous parametrization of the smooth curve f(x)=f(x;R) is suggested on a basis of four-point transformations. Coordinates of three reference points of the curve are chosen as parameters R. This approach allows to derive a number of advantages in function approximation and fitting of empiric data. The transformations have made possible to derive a new class of polynomials (monosplines) having the better approximation quality than monomials {x n }. A behaviour of an error of the approximation has a uniform character. A three-point model of the cubic spline (TPS) is proposed. The model allows to reduce a number of unknown parameters in twice and to obtain an advantage in a computing aspect. The new approach to the function approximation and fitting are shown on a number of examples. The proposed approach gives a new mathematical tool and a new possibility in both practical applications and theoretical research of numerical and computational methods. 13 refs., 13 figs., 2 tabs

  9. Smooth random change point models.

    Science.gov (United States)

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  10. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    Science.gov (United States)

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  11. Predictive validation of an influenza spread model.

    Directory of Open Access Journals (Sweden)

    Ayaz Hyder

    Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve

  12. Predictive Validation of an Influenza Spread Model

    Science.gov (United States)

    Hyder, Ayaz; Buckeridge, David L.; Leung, Brian

    2013-01-01

    Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive

  13. Numerical and physical modelling of oil spreading in broken ice

    International Nuclear Information System (INIS)

    Gjoesteen, Janne K. Oekland

    2002-01-01

    The present work focuses on oil spreading in broken ice and the content of this thesis falls into three categories: 1) The physical and numerical modelling of oil spreading in ice. 2) Ice models and parameters describing the ice cover. 3) Experiments on oil spreading in broken ice. A background study was carried out to investigate existing models for simulating oil in broken ice. Most of them describe motion of oil simply as a function of the ice motion and do not take advantage of the possibilities that recent ice models provide. We decided to choose another direction, starting from scratch with equations describing the flow of oil on top of a water surface. The equations were implemented numerically, including proper boundary conditions to account for the presence of physical restrictions in the form of ice floes in the simulation area. The implementation was designed to be able to apply data on ice motion calculated by an existing dynamic ice model. A first validation of the model was carried out using existing experimental data. As those data were obtained in a different setting, the recorded parameters and set-up of the experiment were not ideal for our purpose. However, we were able to conclude that our model behaviour was reasonable. We have carried out statistical analysis on meteorological data of wind speeds, temperatures, flow sizes and ice thickness to obtain probability distributions describing the parameters. Those data has been collected in the Pechora Sea. Wind and temperature had been recorded for a period of 30-40 years. For this region we also had available Argos satellite data from four buoys drifting in the ice in April-June 1998. The Argos data were carefully analysed to suggest probability distributions and return periods for certain speeds. (Indoor basin tests were carried out to obtain data on spreading of oil in broken ice. A set of 20 tests was conducted, each with different type of oil, ice concentration, slush concentration or ice

  14. Numerical and physical modelling of oil spreading in broken ice

    Energy Technology Data Exchange (ETDEWEB)

    Gjoesteen, Janne K. Oekland

    2002-07-01

    The present work focuses on oil spreading in broken ice and the content of this thesis falls into three categories: 1) The physical and numerical modelling of oil spreading in ice. 2) Ice models and parameters describing the ice cover. 3) Experiments on oil spreading in broken ice. A background study was carried out to investigate existing models for simulating oil in broken ice. Most of them describe motion of oil simply as a function of the ice motion and do not take advantage of the possibilities that recent ice models provide. We decided to choose another direction, starting from scratch with equations describing the flow of oil on top of a water surface. The equations were implemented numerically, including proper boundary conditions to account for the presence of physical restrictions in the form of ice floes in the simulation area. The implementation was designed to be able to apply data on ice motion calculated by an existing dynamic ice model. A first validation of the model was carried out using existing experimental data. As those data were obtained in a different setting, the recorded parameters and set-up of the experiment were not ideal for our purpose. However, we were able to conclude that our model behaviour was reasonable. We have carried out statistical analysis on meteorological data of wind speeds, temperatures, flow sizes and ice thickness to obtain probability distributions describing the parameters. Those data has been collected in the Pechora Sea. Wind and temperature had been recorded for a period of 30-40 years. For this region we also had available Argos satellite data from four buoys drifting in the ice in April-June 1998. The Argos data were carefully analysed to suggest probability distributions and return periods for certain speeds. (Indoor basin tests were carried out to obtain data on spreading of oil in broken ice. A set of 20 tests was conducted, each with different type of oil, ice concentration, slush concentration or ice

  15. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  16. Spacing distribution functions for 1D point island model with irreversible attachment

    Science.gov (United States)

    Gonzalez, Diego; Einstein, Theodore; Pimpinelli, Alberto

    2011-03-01

    We study the configurational structure of the point island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density p xy n (x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for p xy n (x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system. This work was supported by the NSF-MRSEC at the University of Maryland, Grant No. DMR 05-20471, with ancillary support from the Center for Nanophysics and Advanced Materials (CNAM).

  17. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    International Nuclear Information System (INIS)

    Marcori, Oton H.; Pereira, Thiago S.

    2017-01-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  18. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina PR (Brazil)

    2017-02-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  19. A spread willingness computing-based information dissemination model.

    Science.gov (United States)

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  20. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M S; Gyldenkaerne, S

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  1. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2018-04-01

    We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.

  2. Mechanistic movement models to understand epidemic spread.

    Science.gov (United States)

    Fofana, Abdou Moutalab; Hurford, Amy

    2017-05-05

    An overlooked aspect of disease ecology is considering how and why animals come into contact with one and other resulting in disease transmission. Mathematical models of disease spread frequently assume mass-action transmission, justified by stating that susceptible and infectious hosts mix readily, and foregoing any detailed description of host movement. Numerous recent studies have recorded, analysed and modelled animal movement. These movement models describe how animals move with respect to resources, conspecifics and previous movement directions and have been used to understand the conditions for the occurrence and the spread of infectious diseases when hosts perform a type of movement. Here, we summarize the effect of the different types of movement on the threshold conditions for disease spread. We identify gaps in the literature and suggest several promising directions for future research. The mechanistic inclusion of movement in epidemic models may be beneficial for the following two reasons. Firstly, the estimation of the transmission coefficient in an epidemic model is possible because animal movement data can be used to estimate the rate of contacts between conspecifics. Secondly, unsuccessful transmission events, where a susceptible host contacts an infectious host but does not become infected can be quantified. Following an outbreak, this enables disease ecologists to identify 'near misses' and to explore possible alternative epidemic outcomes given shifts in ecological or immunological parameters.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  3. Numerical modeling of turbulent combustion and flame spread

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenghua

    1999-01-01

    Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall

  4. Collateral damage: Spread of repeat-induced point mutation from a ...

    Indian Academy of Sciences (India)

    Unknown

    of the erg-3 gene, present in single copy, to the spread of RIP from duplications of adjoining sequences. Ge- ... RIP can spread across as much as 1 kb of unduplicated DNA. ... sequences that are > 500 bp and share > 80% similarity.

  5. Mathematical model for HIV spreads control program with ART treatment

    Science.gov (United States)

    Maimunah; Aldila, Dipo

    2018-03-01

    In this article, using a deterministic approach in a seven-dimensional nonlinear ordinary differential equation, we establish a mathematical model for the spread of HIV with an ART treatment intervention. In a simplified model, when no ART treatment is implemented, disease-free and the endemic equilibrium points were established analytically along with the basic reproduction number. The local stability criteria of disease-free equilibrium and the existing criteria of endemic equilibrium were analyzed. We find that endemic equilibrium exists when the basic reproduction number is larger than one. From the sensitivity analysis of the basic reproduction number of the complete model (with ART treatment), we find that the increased number of infected humans who follow the ART treatment program will reduce the basic reproduction number. We simulate this result also in the numerical experiment of the autonomous system to show how treatment intervention impacts the reduction of the infected population during the intervention time period.

  6. An agent-based computational model of the spread of tuberculosis

    International Nuclear Information System (INIS)

    De Espíndola, Aquino L; Bauch, Chris T; Troca Cabella, Brenno C; Martinez, Alexandre Souto

    2011-01-01

    In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed

  7. Nonlinear model of epidemic spreading in a complex social network.

    Science.gov (United States)

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  8. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.

    Science.gov (United States)

    Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung

    2017-05-31

    Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.

  9. An information spreading model based on online social networks

    Science.gov (United States)

    Wang, Tao; He, Juanjuan; Wang, Xiaoxia

    2018-01-01

    Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.

  10. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    Science.gov (United States)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  11. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M.S.; Gyldenkaerne, S.

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  12. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    Science.gov (United States)

    Wang, Ya-Qi; Yang, Xiao-Yuan; Han, Yi-Liang; Wang, Xu-An

    2013-04-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.

  13. Modelling the spread of American foulbrood in honeybees

    Science.gov (United States)

    Datta, Samik; Bull, James C.; Budge, Giles E.; Keeling, Matt J.

    2013-01-01

    We investigate the spread of American foulbrood (AFB), a disease caused by the bacterium Paenibacillus larvae, that affects bees and can be extremely damaging to beehives. Our dataset comes from an inspection period carried out during an AFB epidemic of honeybee colonies on the island of Jersey during the summer of 2010. The data include the number of hives of honeybees, location and owner of honeybee apiaries across the island. We use a spatial SIR model with an underlying owner network to simulate the epidemic and characterize the epidemic using a Markov chain Monte Carlo (MCMC) scheme to determine model parameters and infection times (including undetected ‘occult’ infections). Likely methods of infection spread can be inferred from the analysis, with both distance- and owner-based transmissions being found to contribute to the spread of AFB. The results of the MCMC are corroborated by simulating the epidemic using a stochastic SIR model, resulting in aggregate levels of infection that are comparable to the data. We use this stochastic SIR model to simulate the impact of different control strategies on controlling the epidemic. It is found that earlier inspections result in smaller epidemics and a higher likelihood of AFB extinction. PMID:24026473

  14. A Spread Willingness Computing-Based Information Dissemination Model

    Science.gov (United States)

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  15. A Spread Willingness Computing-Based Information Dissemination Model

    Directory of Open Access Journals (Sweden)

    Haojing Huang

    2014-01-01

    Full Text Available This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user’s spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  16. Mutual information as a two-point correlation function in stochastic lattice models

    International Nuclear Information System (INIS)

    Müller, Ulrich; Hinrichsen, Haye

    2013-01-01

    In statistical physics entropy is usually introduced as a global quantity which expresses the amount of information that would be needed to specify the microscopic configuration of a system. However, for lattice models with infinitely many possible configurations per lattice site it is also meaningful to introduce entropy as a local observable that describes the information content of a single lattice site. Likewise, the mutual information between two sites can be interpreted as a two-point correlation function which quantifies how much information a lattice site has about the state of another one and vice versa. Studying a particular growth model we demonstrate that the mutual information exhibits scaling properties that are consistent with the established phenomenological scaling picture. (paper)

  17. A lattice model for influenza spreading.

    Directory of Open Access Journals (Sweden)

    Antonella Liccardo

    Full Text Available We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1 during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.

  18. Logarithmic two-point correlation functions from a z=2 Lifshitz model

    International Nuclear Information System (INIS)

    Zingg, T.

    2014-01-01

    The Einstein-Proca action is known to have asymptotically locally Lifshitz spacetimes as classical solutions. For dynamical exponent z=2, two-point correlation functions for fluctuations around such a geometry are derived analytically. It is found that the retarded correlators are stable in the sense that all quasinormal modes are situated in the lower half-plane of complex frequencies. Correlators in the longitudinal channel exhibit features that are reminiscent of a structure usually obtained in field theories that are logarithmic, i.e. contain an indecomposable but non-diagonalizable highest weight representation. This provides further evidence for conjecturing the model at hand as a candidate for a gravity dual of a logarithmic field theory with anisotropic scaling symmetry

  19. a Discrete Mathematical Model to Simulate Malware Spreading

    Science.gov (United States)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  20. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    International Nuclear Information System (INIS)

    Wang Ya-Qi; Yang Xiao-Yuan; Han Yi-Liang; Wang Xu-An

    2013-01-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations. (interdisciplinary physics and related areas of science and technology)

  1. A two-point kinetic model for the PROTEUS reactor

    International Nuclear Information System (INIS)

    Dam, H. van.

    1995-03-01

    A two-point reactor kinetic model for the PROTEUS-reactor is developed and the results are described in terms of frequency dependent reactivity transfer functions for the core and the reflector. It is shown that at higher frequencies space-dependent effects occur which imply failure of the one-point kinetic model. In the modulus of the transfer functions these effects become apparent above a radian frequency of about 100 s -1 , whereas for the phase behaviour the deviation from a point model already starts at a radian frequency of 10 s -1 . (orig.)

  2. A qualitative comparison of fire spread models incorporating wind and slope effects

    Science.gov (United States)

    David R. Weise; Gregory S. Biging

    1997-01-01

    Wind velocity and slope are two critical variables that affect wildland fire rate of spread. The effects of these variables on rate of spread are often combined in rate-of-spread models using vector addition. The various methods used to combine wind and slope effects have seldom been validated or compared due to differences in the models or to lack of data. In this...

  3. A ripple-spreading genetic algorithm for the aircraft sequencing problem.

    Science.gov (United States)

    Hu, Xiao-Bing; Di Paolo, Ezequiel A

    2011-01-01

    When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.

  4. The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal

    Science.gov (United States)

    Ciddio, Manuela; Mari, Lorenzo; Sokolow, Susanne H.; De Leo, Giulio A.; Casagrandi, Renato; Gatto, Marino

    2017-10-01

    Schistosomiasis is a parasitic, water-related disease that is prevalent in tropical and subtropical areas of the world, causing severe and chronic consequences especially among children. Here we study the spatial spread of this disease within a network of connected villages in the endemic region of the Lower Basin of the Senegal River, in Senegal. The analysis is performed by means of a spatially explicit metapopulation model that couples local-scale eco-epidemiological dynamics with spatial mechanisms related to human mobility (estimated from anonymized mobile phone records), snail dispersal and hydrological transport of schistosome larvae along the main water bodies of the region. Results show that the model produces epidemiological patterns consistent with field observations, and point out the key role of spatial connectivity on the spread of the disease. These findings underline the importance of considering different transport pathways in order to elaborate disease control strategies that can be effective within a network of connected populations.

  5. PREDICTION OF DENGUE FEVER EPIDEMIC SPREADING USING DYNAMICS TRANSMISSION VECTOR MODEL

    Directory of Open Access Journals (Sweden)

    Retno Widyaningrum

    2014-05-01

    Full Text Available Increasing number of dengue cases in Surabaya shows that its city has high potential of dengue fever epidemic. Although some policies were designed by Surabaya Health Department, such as fogging and mosquito’s nest eradication, but these efforts still out of target because of inaccurate predictions. Ineffectiveness eradication of dengue fever epidemic is caused by lack of information and knowledge on environmental conditions in Surabaya. Developing spread and prediction system to minimize dengue fever epidemic is necessary to be conducted immediately. Spread and prediction system can improve eradication and prevention accuracy. The transmission dynamics vector simulation will be used as an approach to draw a complex system ofmosquito life cycle in which involve a lot offactors. Dynamics transmission model used to build model in mosquito model (oviposition rate and pre adult mosquito, infected and death cases in dengue fever. The model of mosquito and infected population can represent system. The output of this research is website of spread and prediction system of dengue fever epidemics to predict growth rate of Aedes Aegypti mosquito, infected, and death population because of dengue fever epidemics. The deviation of infected population is 0,519. The model of death cases in dengue fever is less precision with the deviation 1,229. Death cases model need improvement by adding some variables that influence to dengue fever death cases. Spread ofdengue fever prediction will help the government, health department to decide the best policies in minimizing the spread ofdengue fever epidemics.

  6. Self-exciting point process in modeling earthquake occurrences

    International Nuclear Information System (INIS)

    Pratiwi, H.; Slamet, I.; Respatiwulan; Saputro, D. R. S.

    2017-01-01

    In this paper, we present a procedure for modeling earthquake based on spatial-temporal point process. The magnitude distribution is expressed as truncated exponential and the event frequency is modeled with a spatial-temporal point process that is characterized uniquely by its associated conditional intensity process. The earthquakes can be regarded as point patterns that have a temporal clustering feature so we use self-exciting point process for modeling the conditional intensity function. The choice of main shocks is conducted via window algorithm by Gardner and Knopoff and the model can be fitted by maximum likelihood method for three random variables. (paper)

  7. Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators

    Science.gov (United States)

    Koca, Ilknur

    2018-03-01

    The model of Ebola spread within a targeted population is extended to the concept of fractional differentiation and integration with non-local and non-singular fading memory introduced by Atangana and Baleanu. It is expected that the proposed model will show better approximation than the models established before. The existence and uniqueness of solutions for the spread of Ebola disease model is given via the Picard-Lindelof method. Finally, numerical solutions for the model are given by using different parameter values.

  8. A metapopulation model for the spread of MRSA in correctional facilities

    Directory of Open Access Journals (Sweden)

    Marc Beauparlant

    2016-10-01

    Full Text Available The spread of methicillin-resistant strains of Staphylococcus aureus (MRSA in health-care settings has become increasingly difficult to control and has since been able to spread in the general community. The prevalence of MRSA within the general public has caused outbreaks in groups of people in close quarters such as military barracks, gyms, daycare centres and correctional facilities. Correctional facilities are of particular importance for spreading MRSA, as inmates are often in close proximity and have limited access to hygienic products and clean clothing. Although these conditions are ideal for spreading MRSA, a recent study has suggested that recurrent epidemics are caused by the influx of colonized or infected individuals into the correctional facility. In this paper, we further investigate the effects of community dynamics on the spread of MRSA within the correctional facility and determine whether recidivism has a significant effect on disease dynamics. Using a simplified hotspot model ignoring disease dynamics within the correctional facility, as well as two metapopulation models, we demonstrate that outbreaks in correctional facilities can be driven by community dynamics even when spread between inmates is restricted. We also show that disease dynamics within the correctional facility and their effect on the outlying community may be ignored due to the smaller size of the incarcerated population. This will allow construction of simpler models that consider the effects of many MRSA hotspots interacting with the general community. It is suspected that the cumulative effects of hotspots for MRSA would have a stronger feedback effect in other community settings. Keywords: methicillin-resistant Staphylococcus aureus, hotspots, mathematical model, metapopulation model, Latin Hypercube Sampling

  9. Modular differential equations for torus one-point functions

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Lang, Samuel

    2009-01-01

    It is shown that in a rational conformal field theory every torus one-point function of a given highest weight state satisfies a modular differential equation. We derive and solve these differential equations explicitly for some Virasoro minimal models. In general, however, the resulting amplitudes do not seem to be expressible in terms of standard transcendental functions

  10. Operator Spreading in Random Unitary Circuits

    Science.gov (United States)

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2018-04-01

    Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1 +1 D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1 +1 D , we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1 +1 D , the "front" of the OTOC broadens diffusively, with a width scaling in time as t1 /2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1 /3 in 2 +1 D and as t0.240 in 3 +1 D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2 +1 D . We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2 +1 D , our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1 +1 D , we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be

  11. A naturally large four-point function in single field inflation

    International Nuclear Information System (INIS)

    Senatore, Leonardo; Zaldarriaga, Matias

    2011-01-01

    Non-Gaussianities of the primordial density perturbations have emerged as a very powerful possible signal to test the dynamics that drove the period of inflation. While in general the most sensitive observable is the three-point function in this paper we show that there are technically natural inflationary models where the leading source of non-Gaussianity is the four-point function. Using the recently developed Effective Field Theory of Inflation, we are able to show that it is possible to impose an approximate parity symmetry and an approximate continuos shift symmetry on the inflaton fluctuations that allow, when the dispersion relation if of the form ω ∼ c s k, for a unique quartic operator, while approximately forbidding all the cubic ones. The resulting shape for the four-point function is unique. In the models where the dispersion relation is of the form ω ∼ k 2 /M a similar construction can be carried out and additional shapes are possible

  12. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging

    International Nuclear Information System (INIS)

    Li Heng; Mohan, Radhe; Zhu, X Ronald

    2008-01-01

    The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.

  13. Studies on the population dynamics of a rumor-spreading model in online social networks

    Science.gov (United States)

    Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang

    2018-02-01

    This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.

  14. Four-point functions in N=4 SYM

    International Nuclear Information System (INIS)

    Heslop, Paul J.; Howe, Paul S.

    2003-01-01

    A new derivation is given of four-point functions of charge Q chiral primary multiplets in N=4 supersymmetric Yang-Mills theory. A compact formula, valid for arbitrary Q, is given which is manifestly superconformal and analytic in the internal bosonic coordinates of analytic superspace. This formula allows one to determine the spacetime four-point function of any four component fields in the multiplets in terms of the four-point function of the leading chiral primary fields. The leading term is expressed in terms of 1/2Q(Q-1) functions of two conformal invariants and a number of single variable functions. Crossing symmetry reduces the number of independent functions, while the OPE implies that the single-variable functions arise from protected operators and should therefore take their free form. This is the partial non-renormalisation property of such four-point functions which can be viewed as a consequence of the OPE and the non-renormalisation of three-point functions of protected operators. (author)

  15. Determinantal point process models on the sphere

    DEFF Research Database (Denmark)

    Møller, Jesper; Nielsen, Morten; Porcu, Emilio

    defined on Sd × Sd . We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd , where it becomes essential to specify the eigenvalues......We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function...... and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach....

  16. Beam-width spreading of vortex beams in free space

    Science.gov (United States)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  17. A Comparison between Two Simulation Models for Spread of Foot-and-Mouth Disease

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette; Stockmarr, Anders

    2014-01-01

    Two widely used simulation models of foot-and-mouth disease (FMD) were used in order to compare the models' predictions in term of disease spread, consequence, and the ranking of the applied control strategies, and to discuss the effect of the way disease spread is modeled on the predicted outcomes...... of each model. The DTU-DADS (version 0.100), and ISP (version 2.001.11) were used to simulate a hypothetical spread of FMD in Denmark. Actual herd type, movements, and location data in the period 1st October 2006 and 30th September 2007 was used. The models simulated the spread of FMD using 3 different...... areas and 1,000 in low density swine areas, and 1,000 sheep herds. Generally, DTU-DADS predicted larger, longer duration and costlier epidemics than ISP, except when epidemics started in cattle herds located in high density cattle areas. ISP supported suppressive vaccination rather than pre...

  18. Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in California (1990-2030)

    Science.gov (United States)

    R.K. Meentemeyer; N.J. Cunniffe; A.R. Cook; J.A.N. Filipe; R.D. Hunter; D.M. Rizzo; C.A. Gilligan

    2011-01-01

    The spread of emerging infectious diseases (EIDs) in natural environments poses substantial risks to biodiversity and ecosystem function. As EIDs and their impacts grow, landscape- to regional-scale models of disease dynamics are increasingly needed for quantitative prediction of epidemic outcomes and design of practicable strategies for control. Here we use spatio-...

  19. The spread model of food safety risk under the supply-demand disturbance.

    Science.gov (United States)

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors' influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of consumer rights protection and the level of legal protection of consumer rights on the risk spread of food safety. This model contributes to the explicit investigation of the influence relationship among supply-demand factors, the regulation behavioral choice of government, the behavioral choice of food supply chain members and food safety risk spread. And this paper provides a new viewpoint for considering food safety risk spread in the food supply chain, which has a great reference for food safety management.

  20. Modeling the coupled return-spread high frequency dynamics of large tick assets

    Science.gov (United States)

    Curato, Gianbiagio; Lillo, Fabrizio

    2015-01-01

    Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.

  1. Going Multi-viral: Synthedemic Modelling of Internet-based Spreading Phenomena

    Directory of Open Access Journals (Sweden)

    Marily Nika

    2015-02-01

    Full Text Available Epidemics of a biological and technological nature pervade modern life. For centuries, scientific research focused on biological epidemics, with simple compartmental epidemiological models emerging as the dominant explanatory paradigm. Yet there has been limited translation of this effort to explain internet-based spreading phenomena. Indeed, single-epidemic models are inadequate to explain the multimodal nature of complex phenomena. In this paper we propose a novel paradigm for modelling internet-based spreading phenomena based on the composition of multiple compartmental epidemiological models. Our approach is inspired by Fourier analysis, but rather than trigonometric wave forms, our components are compartmental epidemiological models. We show results on simulated multiple epidemic data, swine flu data and BitTorrent downloads of a popular music artist. Our technique can characterise these multimodal data sets utilising a parsimonous number of subepidemic models.

  2. Modeling spreading of oil slicks based on random walk methods and Voronoi diagrams

    International Nuclear Information System (INIS)

    Durgut, İsmail; Reed, Mark

    2017-01-01

    We introduce a methodology for representation of a surface oil slick using a Voronoi diagram updated at each time step. The Voronoi cells scale the Gaussian random walk procedure representing the spreading process by individual particle stepping. The step length of stochastically moving particles is based on a theoretical model of the spreading process, establishing a relationship between the step length of diffusive spreading and the thickness of the slick at the particle locations. The Voronoi tessellation provides the areal extent of the slick particles and in turn the thicknesses of the slick and the diffusive-type spreading length for all particles. The algorithm successfully simulates the spreading process and results show very good agreement with the analytical solution. Moreover, the results are robust for a wide range of values for computational time step and total number of particles. - Highlights: • A methodology for representation of a surface oil slick using a Voronoi diagram • An algorithm simulating the spreading of oil slick with the Voronoi diagram representation • The algorithm employs the Gaussian random walk method through individual particle stepping. • The diffusive spreading is based on a theoretical model of the spreading process. • Algorithm is computationally robust and successfully reproduces analytical solutions to the spreading process.

  3. Modelling and mapping spread in pest risk analysis: a generic approach

    NARCIS (Netherlands)

    Kehlenbeck, H.; Robinet, C.; Werf, van der W.; Kriticos, D.; Reynaud, P.; Baker, R.

    2012-01-01

    Assessing the likelihood and magnitude of spread is one of the cornerstones of pest risk analysis (PRA), and is usually based on qualitative expert judgment. This paper proposes a suite of simple ecological models to support risk assessors who also wish to estimate the rate and extent of spread,

  4. ON THE INFLUENTIAL POINTS IN THE FUNCTIONAL CIRCULAR RELATIONSHIP MODELS WITH AN APPLICATION ON WIND DATA

    Directory of Open Access Journals (Sweden)

    ALi Hassan Abuzaid

    2013-12-01

    Full Text Available If the interest is to calibrate two instruments then the functional relationship model is more appropriate than regression models. Fitting a straight line when both variables are circular and subject to errors has not received much attention. In this paper, we consider the problem of detecting influential points in two functional relationship models for circular variables. The first is based on the simple circular regression the (SC, while the last is derived from the complex linear regression the (CL.   The covariance matrices are derived and then the COVRATIO statistics are formulated for both models. The cut-off points are obtained and the power of performance is assessed via simulation studies.   The performance of COVRATIO statistics depends on the concentration of error, sample size and level of contamination. In the case of linear relationship between two circular variables COVRATIO statistics of the (SC model performs better than the (CL.  On the other hand, a novel diagram, the so-called spoke plot, is utilized to detect possible influential points For illustration purposes, the proposed procedures are applied on real data of wind directions measured by two different instruments. COVRATIO statistics and the spoke plot were able to identify two observations as influential points. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"جدول عادي"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;}

  5. The effect of network topologies on the spreading of technological developments

    International Nuclear Information System (INIS)

    Kocsis, Gergely; Kun, Ferenc

    2008-01-01

    We study an agent-based model, as a special type of opinion dynamics, of the spreading of innovations in socio-economic systems varying the topology of agents' social contacts. The agents are organized on a square lattice where the connections are rewired with a certain probability. We show that the degree polydispersity and long range connections of agents can facilitate, but can also hinder the spreading of new technologies, depending on the amount of advantages provided by the innovation. We determine the critical fraction of innovative agents required to initiate spreading and to obtain a significant technological progress. As the fraction of innovative agents approaches the critical value, the spreading process slows down analogously to the critical slowing down observed at continuous phase transitions. The characteristic timescale at the critical point proved to have the same scaling as the average shortest path of the underlying social network. The model captures some relevant features of the spreading of innovations in telecommunication technologies

  6. Dynamic Modeling of CDS Index Tranche Spreads

    DEFF Research Database (Denmark)

    Dorn, Jochen

    This paper provides a Market Model which implies a dynamics for standardized CDS index tranche spreads, i.e. tranches which securitise CDS index series and dispose of predefined subordination. This model is useful for pricing options on tranches with future Issue Dates as well as for modeling...... options on structured credit derivatives. With the upcoming regulation of the CDS market in perspective, the model presented here is also an attempt to face the effects on pricing approaches provoked by an eventual Clearing Chamber . It becomes also possible to calibrate Index Tranche Options with bespoke...... tenors/tranche subordination to market data obtained by more liquid Index Tranche Options with standard characteristics....

  7. Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images. A study based on phantom experiments and clinical images

    International Nuclear Information System (INIS)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho

    2014-01-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV. (author)

  8. [Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images: a study based on phantom experiments and clinical images].

    Science.gov (United States)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho; Ito, Shigeru; Sano, Yoshitaka; Sato, Mayumi; Kanno, Toshihiko; Okada, Hiroyuki; Torizuka, Tatsuo; Nishizawa, Sadahiko

    2014-06-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV.

  9. Sensory evaluation of commercial fat spreads based on oilseeds and walnut

    Directory of Open Access Journals (Sweden)

    Dimić Etelka B.

    2013-01-01

    Full Text Available The main focus of this study was on the sensory evaluation of commercial oilseeds spreads, as the most significant characteristic of this type of product from the consumers’ point of view. Sensory analysis was conducted by five experts using a quantitative descriptive and sensory profile test, applying a scoring method according to the standard procedure. Five different spreads were evaluated: sunflower, pumpkin, sesame, peanut, and walnut. Oil content and amounts of separated oil on the surface were determined for each spread. The results have shown that the color of spreads was very different, depending on the oilseed: gray for sunflower, brown for walnut, yellowish-brown for peanut butter, ivory for sesame and profoundly dark green for pumpkin seeds spread. The flavor and odor of the spreads were characteristic for the raw materials used; however, the sunflower and walnut spreads had a slight rancid flavor. Generally, the spreadability of all spreads was good, but their mouth feel was not acceptable. During the consumption, all of them were sticking immensely to the roof of the mouth, which made the swallowing harder. The highest total score of 16.20 points (max. 20 was obtained for the peanut butter, while the lowest (10.38 was achieved by the sunflower butter. Oil separation (various degrees was noticed in all spreads, which negatively influenced the appearance and entire sensorial quality of the products. The quantity of separated oil depended on the age and total amount of oil in the spreads, and was between 1.13% in the peanut butter and 12.15% in the walnut spread in reference to the net weight of the product. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014: Development of the new functional confectionery products based on oil crops

  10. Three Point Functions in Higher Spin AdS3 Holography with 1/N Corrections

    Directory of Open Access Journals (Sweden)

    Yasuaki Hikida

    2017-10-01

    Full Text Available We examine three point functions with two scalar operators and a higher spin current in 2d W N minimal model to the next non-trivial order in 1 / N expansion. The minimal model was proposed to be dual to a 3d higher spin gauge theory, and 1 / N corrections should be interpreted as quantum effects in the dual gravity theory. We develop a simple and systematic method to obtain three point functions by decomposing four point functions of scalar operators with Virasoro conformal blocks. Applying the method, we reproduce known results at the leading order in 1 / N and obtain new ones at the next leading order. As confirmation, we check that our results satisfy relations among three point functions conjectured before.

  11. Information spreading dynamics in hypernetworks

    Science.gov (United States)

    Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong

    2018-04-01

    Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.

  12. Two-point functions and logarithmic boundary operators in boundary logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka

    2004-01-01

    Amongst conformal field theories, there exist logarithmic conformal field theories such as c p,1 models. We have investigated c p,q models with a boundary in search of logarithmic theories and have found logarithmic solutions of two-point functions in the context of the Coulomb gas picture. We have also found the relations between coefficients in the two-point functions and correlation functions of logarithmic boundary operators, and have confirmed the solutions in [hep-th/0003184]. Other two-point functions and boundary operators have also been studied in the free boson construction of boundary CFT with SU(2) k symmetry in regard to logarithmic theories. This paper is based on a part of D. Phil. Thesis [hep-th/0312160]. (author)

  13. Warning signals for eruptive events in spreading fires.

    Science.gov (United States)

    Fox, Jerome M; Whitesides, George M

    2015-02-24

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).

  14. Modeling of Ceiling Fire Spread and Thermal Radiation.

    Science.gov (United States)

    1981-10-01

    under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8

  15. Numerical study of drop spreading on a flat surface

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  16. The SIS Model of Epidemic Spreading in a Hierarchical Social Network

    International Nuclear Information System (INIS)

    Grabowski, A.; Kosinski, R.A.

    2005-01-01

    The phenomenon of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The SIS model with temporal immunity to a disease and a time of incubation is used. In our model spatial localization of individuals belonging to different social groups, effectiveness of different interpersonal interactions and the mobility of a contemporary community are taken into account. The structure of interpersonal connections is based on a scale-free network. The influence of the structure of the social network on typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, is discussed. The probability that endemic state occurs is also calculated. Surprisingly it occurs, that less contagious diseases has greater chance to survive. The influence of preventive vaccinations on the spreading process is investigated and critical range of vaccinations that is sufficient for the suppression of an epidemic is calculated. Our results of numerical calculations are compared with the solutions of the master equation for the spreading process, and good agreement is found. (author)

  17. Effects of Degree-Biased Transmission Rate and Nonlinear Infectivity on Rumor Spreading in Complex Social Networks

    International Nuclear Information System (INIS)

    Naimi, Y.; Roshani, F.

    2010-12-01

    We introduce the generalized rumor spreading model and analytically investigate the epidemic spreading for this model on scale-free networks. To generalize the standard rumor spreading model (rumor model in which each node's infectivity equals its degree and all links have a uniform connectivity strength), we introduce not only the infectivity function to determine the simultaneous contacts that a given node (individual) establishes to its connected neighbors but also the connectivity strength function (CSF) for the direct link between two connected nodes that lead to degree-biased propagation of rumors. In the case of nonlinear functions, the generalization enters the infectivity's exponent α and the CSF's exponent β into the analytical rumor model. We show that one can adjust the exponents α and β to control the epidemic threshold which is absent for the standard rumor spreading model. In addition, we obtain the critical threshold for the generalized model on the finite scale-free network and compare our results with the standard model on the same network. We show that the generalized model has a greater threshold than the standard model. (author)

  18. Theoretical predictions of the lateral spreading of implanted ions

    International Nuclear Information System (INIS)

    Ashworth, D.G.; Oven, R.

    1986-01-01

    The theoretical model and computer program (AAMPITS-3D) of Ashworth and co-workers for the calculation of three-dimensional distributions of implanted ions in multi-element amorphous targets are extended to show that the lateral rest distribution is gaussian in a form with a lateral standard deviation (lateral-spread function) which is a function of depth beneath the target surface. A method is given whereby this function may be accurately determined from a knowledge of the projected range and chord range rest distribution functions. Examples of the lateral-spread function are given for boron, phosphorus and arsenic ions implanted into silicon and a detailed description is given of how the lateral-spread function may be used in conjunction with the projected range rest distribution function to provide a fully three-dimensional rest distribution of ions implanted into amorphous targets. Examples of normalised single ion isodensity contours computed from AMPITS-3D are compared with those obtained using the previous assumption of a lateral standard deviation which was independent of distance beneath the target surface. (author)

  19. On the locus and spread of pseudo-density functions in the time-frequency plane

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1982-01-01

    Various time-frequency pseudo-density functions used in signal analysis are compared with respect to spread. Among the members of Cohen's class of pseudo-density functions satisfying the finite support property as well as Moyal's formula, the Wigner distribution is the most well-behaved one in the

  20. Identifying the starting point of a spreading process in complex networks.

    Science.gov (United States)

    Comin, Cesar Henrique; Costa, Luciano da Fontoura

    2011-11-01

    When dealing with the dissemination of epidemics, one important question that can be asked is the location where the contamination began. In this paper, we analyze three spreading schemes and propose and validate an effective methodology for the identification of the source nodes. The method is based on the calculation of the centrality of the nodes on the sampled network, expressed here by degree, betweenness, closeness, and eigenvector centrality. We show that the source node tends to have the highest measurement values. The potential of the methodology is illustrated with respect to three theoretical complex network models as well as a real-world network, the email network of the University Rovira i Virgili.

  1. Are the Intraday Effects of Central Bank Intervention on Exchange Rate Spreads Asymmetric and State Dependent?

    DEFF Research Database (Denmark)

    Fatum, Rasmus; Pedersen, Jesper; Sørensen, Peter Norman

    This paper investigates the intraday effects of unannounced foreign exchange intervention on bid-ask exchange rate spreads using official intraday intervention data provided by the Danish central bank. Our starting point is a simple theoretical model of the bid-ask spread which we use to formulate...... exert a significant influence on the exchange rate spread, but in opposite directions: intervention purchases of the smaller currency, on average, reduce the spread while intervention sales, on average, increase the spread. We also show that intervention only affects the exchange rate spread when...... the state of the market is not abnormally volatile. Our results are consistent with the notion that illiquidity arises when traders fear speculative pressure against the smaller currency and confirms the asymmetry hypothesis of our theoretical model....

  2. Model of fire spread around Krsko Power Plant

    International Nuclear Information System (INIS)

    Vidmar, P.; Petelin, S.

    2001-01-01

    The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. The study is based on thermodynamics, heat transfer and the study of hydrodynamics and combustion, which represent the bases of fire dynamics. The article shows a practical example of a leak of hazardous chemicals from a tank. Because of the inflammability of the fluid, fire may start. We have tried to model fire propagation around the Krsko power plant, and show what extended surrounding area could be affected. The model also considers weather conditions, in particular wind speed and direction. For this purpose we have used the computer code Safer Trace, which is based on zone models. That means that phenomena are described by physical and empirical equations. An imperfection in this computer code is the inability to consider ground topology. However in the case of the Krsko power plant, topology is not so important, as the plan is located in a relatively flat region. Mathematical models are presented. They show the propagation of hazardous fluid in the environment considering meteorological data. The work also shows which data are essential to define fire spread and shows the main considerations of Probabilistic Safety Assessment for external fire event.(author)

  3. The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M.; Somot, S. [Meteo-France, Centre National de Recherches Meteorologiques, CNRS/GAME, Toulouse Cedex 01 (France); Sanchez-Gomez, E. [Cerfacs/CNRS, SUC URA1875, Toulouse Cedex 01 (France); Goodess, C.M. [University of East Anglia, Climatic Research Unit, Norwich (United Kingdom); Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Lenderink, G. [KNMI, Postbus 201, De Bilt (Netherlands); Christensen, O.B. [Danish Meteorological Institute, Copenhagen Oe (Denmark)

    2012-03-15

    Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021-2050 and the 1961-1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM x GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021-2050 response which shows a similar pattern to the one obtained for 2071-2100 in PRUDENCE. The uncertainty

  4. A General Model for Performance Evaluation in DS-CDMA Systems with Variable Spreading Factors

    Science.gov (United States)

    Chiaraluce, Franco; Gambi, Ennio; Righi, Giorgia

    This paper extends previous analytical approaches for the study of CDMA systems to the relevant case of multipath environments where users can operate at different bit rates. This scenario is of interest for the Wideband CDMA strategy employed in UMTS, and the model permits the performance comparison of classic and more innovative spreading signals. The method is based on the characteristic function approach, that allows to model accurately the various kinds of interferences. Some numerical examples are given with reference to the ITU-R M. 1225 Recommendations, but the analysis could be extended to different channel descriptions.

  5. Dependence of credit spread and macro-conditions based on an alterable structure model

    Science.gov (United States)

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds. PMID:29723295

  6. Dependence of credit spread and macro-conditions based on an alterable structure model.

    Science.gov (United States)

    Xie, Yun; Tian, Yixiang; Xiao, Zhuang; Zhou, Xiangyun

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds.

  7. A global reference model of Curie-point depths based on EMAG2

    Science.gov (United States)

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-03-01

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.

  8. Practical guidelines for modelling post-entry spread in invasion ecology

    Directory of Open Access Journals (Sweden)

    Hazel Parry

    2013-09-01

    Full Text Available In this article we review a variety of methods to enable understanding and modelling the spread of a pest or pathogen post-entry. Building upon our experience of multidisciplinary research in this area, we propose practical guidelines and a framework for model development, to help with the application of mathematical modelling in the field of invasion ecology for post-entry spread. We evaluate the pros and cons of a range of methods, including references to examples of the methods in practice. We also show how issues of data deficiency and uncertainty can be addressed. The aim is to provide guidance to the reader on the most suitable elements to include in a model of post-entry dispersal in a risk assessment, under differing circumstances. We identify both the strengths and weaknesses of different methods and their application as part of a holistic, multidisciplinary approach to biosecurity research.

  9. Confidence intervals for the first crossing point of two hazard functions.

    Science.gov (United States)

    Cheng, Ming-Yen; Qiu, Peihua; Tan, Xianming; Tu, Dongsheng

    2009-12-01

    The phenomenon of crossing hazard rates is common in clinical trials with time to event endpoints. Many methods have been proposed for testing equality of hazard functions against a crossing hazards alternative. However, there has been relatively few approaches available in the literature for point or interval estimation of the crossing time point. The problem of constructing confidence intervals for the first crossing time point of two hazard functions is considered in this paper. After reviewing a recent procedure based on Cox proportional hazard modeling with Box-Cox transformation of the time to event, a nonparametric procedure using the kernel smoothing estimate of the hazard ratio is proposed. The proposed procedure and the one based on Cox proportional hazard modeling with Box-Cox transformation of the time to event are both evaluated by Monte-Carlo simulations and applied to two clinical trial datasets.

  10. Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad; Rubak, Ege Holger

    We show how a spatial point process, where to each point there is associated a random quantitative mark, can be identified with a spatio-temporal point process specified by a conditional intensity function. For instance, the points can be tree locations, the marks can express the size of trees......, and the conditional intensity function can describe the distribution of a tree (i.e., its location and size) conditionally on the larger trees. This enable us to construct parametric statistical models which are easily interpretable and where likelihood-based inference is tractable. In particular, we consider maximum...

  11. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion.

    Science.gov (United States)

    Chapman, Daniel S; Makra, László; Albertini, Roberto; Bonini, Maira; Páldy, Anna; Rodinkova, Victoria; Šikoparija, Branko; Weryszko-Chmielewska, Elżbieta; Bullock, James M

    2016-09-01

    Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion

  12. Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal

    Science.gov (United States)

    Zhao, Laijun; Wang, Qin; Cheng, Jingjing; Chen, Yucheng; Wang, Jiajia; Huang, Wei

    2011-07-01

    Rumor is an important form of social interaction, and its spreading has a significant impact on people’s lives. In the age of Web, people are using electronic media more frequently than ever before, and blog has become one of the main online social interactions. Therefore, it is essential to learn the evolution mechanism of rumor spreading on homogeneous network in consideration of the forgetting mechanism of spreaders. Here we study a rumor spreading model on an online social blogging platform called LiveJournal. In comparison with the Susceptible-Infected-Removed (SIR) model, we provide a more detailed and realistic description of rumor spreading process with combination of forgetting mechanism and the SIR model of epidemics. A mathematical model has been presented and numerical solutions of the model were used to analyze the impact factors of rumor spreading, such as the average degree, forgetting rate and stifling rate. Our results show that there exist a threshold of the average degree of LiveJournal and above which the influence of rumor reaches saturation. Forgetting mechanism and stifling rate exert great influence on rumor spreading on online social network. The analysis results can guide people’s behaviors in view of the theoretical and practical aspects.

  13. Preventing Superinfection in Malaria Spreads with Repellent and Medical Treatment Policy

    Science.gov (United States)

    Fitri, Fanny; Aldila, Dipo

    2018-03-01

    Malaria is a kind of a vector-borne disease. That means this disease needs a vector (in this case, the anopheles mosquito) to spread. In this article, a mathematical model for malaria disease spread will be discussed. The model is constructed as a seven-dimensional of a non-linear ordinary differential equation. The interventions of treatment for infected humans and use of repellent are included in the model to see how these interventions could be considered as alternative ways to control the spread of malaria. Analysis will be made of the disease-free equilibrium point along with its local stability criteria, construction of the next generation matrix which followed with the sensitivity analysis of basic reproduction number. We found that both medical treatment and repellent intervention succeeded in reducing the basic reproduction number as the endemic indicator of the model. Finally, some numerical simulations are given to give a better interpretation of the analytical results.

  14. Spatial Mixture Modelling for Unobserved Point Processes: Examples in Immunofluorescence Histology.

    Science.gov (United States)

    Ji, Chunlin; Merl, Daniel; Kepler, Thomas B; West, Mike

    2009-12-04

    We discuss Bayesian modelling and computational methods in analysis of indirectly observed spatial point processes. The context involves noisy measurements on an underlying point process that provide indirect and noisy data on locations of point outcomes. We are interested in problems in which the spatial intensity function may be highly heterogenous, and so is modelled via flexible nonparametric Bayesian mixture models. Analysis aims to estimate the underlying intensity function and the abundance of realized but unobserved points. Our motivating applications involve immunological studies of multiple fluorescent intensity images in sections of lymphatic tissue where the point processes represent geographical configurations of cells. We are interested in estimating intensity functions and cell abundance for each of a series of such data sets to facilitate comparisons of outcomes at different times and with respect to differing experimental conditions. The analysis is heavily computational, utilizing recently introduced MCMC approaches for spatial point process mixtures and extending them to the broader new context here of unobserved outcomes. Further, our example applications are problems in which the individual objects of interest are not simply points, but rather small groups of pixels; this implies a need to work at an aggregate pixel region level and we develop the resulting novel methodology for this. Two examples with with immunofluorescence histology data demonstrate the models and computational methodology.

  15. Evaluation of the Effect of Tumor Position on Standardized Uptake Value Using Time-of-Flight Reconstruction and Point Spread Function

    Directory of Open Access Journals (Sweden)

    Yasuharu Wakabayashi

    2016-01-01

    Full Text Available Objective(s: The present study was conducted to examine whether the standardized uptake value (SUV may be affected by the spatial position of a lesion in the radial direction on positron emission tomography (PET images, obtained via two methods based on time-of-flight (TOF reconstruction and point spread function (PSF. Methods: A cylinder phantom with the sphere (30mm diameter, located in the center was used in this study. Fluorine-18 fluorodeoxyglucose (18F-FDG concentrations of 5.3 kBq/ml and 21.2 kBq/ml were used for the background in the cylinder phantom and the central sphere respectively. By the use of TOF and PSF, SUVmax and SUVmean were determined while moving the phantom in a horizontal direction (X direction from the center of field of view (FOV: 0 mm at 50, 100, 150 and 200 mm positions, respectively. Furthermore, we examined 41 patients (23 male, 18 female, mean age: 68±11.2 years with lymph node tumors , who had undergone 18F-FDG PET examinations. The distance of each lymph node from FOV center was measured, based on the clinical images. Results: As the distance of a lesion from the FOV center exceeded 100 mm, the value of SUVmax, which was obtained with the cylinder phantom, was overestimated, while SUVmean by TOF and/or PSF was underestimated. Based on the clinical examinations, the average volume of interest was 8.5 cm3. Concomitant use of PSF increased SUVmax and SUVmean by 27.9% and 2.8%, respectively. However, size of VOI and distance from the FOV center did not affect SUVmax or SUVmean in clinical examinations. Conclusion: The reliability of SUV quantification by TOF and/or PSF decreased, when the tumor was located at a 100 mm distance (or farther from the center of FOV. In clinical examinations, if the lymph node was located within 100 mm distance from the center of FOV, SUV remained stable within a constantly increasing range by use of both TOF and PSF. We conclude that, use of both TOF and PSF may be helpful.

  16. Lyapunov functions for the fixed points of the Lorenz model

    International Nuclear Information System (INIS)

    Bakasov, A.A.; Govorkov, B.B. Jr.

    1992-11-01

    We have shown how the explicit Lyapunov functions can be constructed in the framework of a regular procedure suggested and completed by Lyapunov a century ago (''method of critical cases''). The method completely covers all practically encountering subtle cases of stability study for ordinary differential equations when the linear stability analysis fails. These subtle cases, ''the critical cases'', according to Lyapunov, include both bifurcations of solutions and solutions of systems with symmetry. Being properly specialized and actually powerful in case of ODE's, this Lyapunov's method is formulated in simple language and should attract a wide interest of the physical audience. The method leads to inevitable construction of the explicit Lyapunov function, takes automatically into account the Fredholm alternative and avoids infinite step calculations. Easy and apparent physical interpretation of the Lyapunov function as a potential or as a time-dependent entropy provides one with more details about the local dynamics of the system at non-equilibrium phase transition points. Another advantage is that this Lyapunov's method consists of a set of very detailed explicit prescriptions which allow one to easy programmize the method for a symbolic processor. The application of the Lyapunov theory for critical cases has been done in this work to the real Lorenz equations and it is shown, in particular, that increasing σ at the Hopf bifurcation point suppresses the contribution of one of the variables to the destabilization of the system. The relation of the method to contemporary methods and its place among them have been clearly and extensively discussed. Due to Appendices, the paper is self-contained and does not require from a reader to approach results published only in Russian. (author). 38 refs

  17. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth\\'s surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct \\'contagion maps\\' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  18. Topological data analysis of contagion maps for examining spreading processes on networks.

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  19. Topological data analysis of contagion maps for examining spreading processes on networks

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  20. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramá r, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-01-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  1. Social networks and spreading of epidemics

    Science.gov (United States)

    Trimper, Steffen; Zheng, Dafang; Brandau, Marian

    2004-05-01

    Epidemiological processes are studied within a recently proposed social network model using the susceptible-infected-refractory dynamics (SIR) of an epidemic. Within the network model, a population of individuals may be characterized by H independent hierarchies or dimensions, each of which consists of groupings of individuals into layers of subgroups. Detailed numerical simulations reveals that for H > 1, the global spreading results regardless of the degree of homophily α of the individuals forming a social circle. For H = 1, a transition from a global to a local spread occurs as the population becomes decomposed into increasingly homophilous groups. Multiple dimensions in classifying individuals (nodes) thus make a society (computer network) highly susceptible to large scale outbreaks of infectious diseases (viruses). The SIR-model can be extended by the inclusion of waiting times resulting in modified distribution function of the recovered.

  2. Modelling the influence of human behaviour on the spread of infectious diseases: a review.

    Science.gov (United States)

    Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A A

    2010-09-06

    Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.

  3. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  4. A suite of models to support the quantitative assessment of spread in pest risk analysis.

    Science.gov (United States)

    Robinet, Christelle; Kehlenbeck, Hella; Kriticos, Darren J; Baker, Richard H A; Battisti, Andrea; Brunel, Sarah; Dupin, Maxime; Eyre, Dominic; Faccoli, Massimo; Ilieva, Zhenya; Kenis, Marc; Knight, Jon; Reynaud, Philippe; Yart, Annie; van der Werf, Wopke

    2012-01-01

    Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice.

  5. Modeling Epidemics Spreading on Social Contact Networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  6. Calculus on Surfaces with General Closest Point Functions

    KAUST Repository

    Mä rz, Thomas; Macdonald, Colin B.

    2012-01-01

    The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization of this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs. © 2012 Society for Industrial and Applied Mathematics.

  7. Point-by-point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    International Nuclear Information System (INIS)

    Tudora, A.

    2013-01-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments <ν>(TKE) exhibit, especially in the case of 252 Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of <ν> at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dε slopes are also obtained by averaging the same PbP matrix ε(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for 3 fissioning systems benefiting of experimental data as a function of TKE: 252 Cf(SF), 235 U(n th ,f) and 239 Pu(n th ,f). In the case of 234 U(n,f) for the first time it was possible to calculate <ν>(TKE) and <ε>(TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3- 5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of <ν> at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments. (author)

  8. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  9. Modeling the effects of social impact on epidemic spreading in complex networks

    Science.gov (United States)

    Ni, Shunjiang; Weng, Wenguo; Zhang, Hui

    2011-11-01

    We investigate by mean-field analysis and extensive simulations the effects of social impact on epidemic spreading in various typical networks with two types of nodes: active nodes and passive nodes, of which the behavior patterns are modeled according to the social impact theory. In this study, nodes are not only the media to spread the virus, but also disseminate their opinions on the virus-whether there is a need for certain self-protection measures to be taken to reduce the risk of being infected. Our results indicate that the interaction between epidemic spreading and opinion dynamics can have significant influences on the spreading of infectious diseases and related applications, such as the implementation of prevention and control measures against the infectious diseases.

  10. Age, spreading rates, and spreading asymmetry of the world's ocean crust

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...

  11. Modelling spread of Bluetongue and other vector borne diseases in Denmark and evaluation of intervention strategies

    DEFF Research Database (Denmark)

    Græsbøll, Kaare

    that describes spread of disease using vectors or hosts as agents of the spread. The model is run with bluetongue as the primary case study, and it is demonstrated how an epidemic outbreak of bluetongue 8 in Denmark is sensitive to the use of pasture, climate, vaccination, vector abundance, and flying parameters......The main outcome of this PhD project is a generic model for non-contagious infectious vector-borne disease spread by one vector species between up to two species of hosts distributed on farms and pasture. The model features a within-herd model of disease, combined with a triple movement kernel....... In constructing a more process oriented agent-based approach to spread modeling new parameters describing vector behavior were introduced. When these vector flying parameters have been quantified by experiments, this model can be implemented on areas naïve to the modeled disease with a high predictive power...

  12. Capturing Ridge Functions in High Dimensions from Point Queries

    KAUST Repository

    Cohen, Albert

    2011-12-21

    Constructing a good approximation to a function of many variables suffers from the "curse of dimensionality". Namely, functions on ℝ N with smoothness of order s can in general be captured with accuracy at most O(n -s/N) using linear spaces or nonlinear manifolds of dimension n. If N is large and s is not, then n has to be chosen inordinately large for good accuracy. The large value of N often precludes reasonable numerical procedures. On the other hand, there is the common belief that real world problems in high dimensions have as their solution, functions which are more amenable to numerical recovery. This has led to the introduction of models for these functions that do not depend on smoothness alone but also involve some form of variable reduction. In these models it is assumed that, although the function depends on N variables, only a small number of them are significant. Another variant of this principle is that the function lives on a low dimensional manifold. Since the dominant variables (respectively the manifold) are unknown, this leads to new problems of how to organize point queries to capture such functions. The present paper studies where to query the values of a ridge function f(x)=g(a · x) when both a∈ℝ N and g ∈ C[0,1] are unknown. We establish estimates on how well f can be approximated using these point queries under the assumptions that g ∈ C s[0,1]. We also study the role of sparsity or compressibility of a in such query problems. © 2011 Springer Science+Business Media, LLC.

  13. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    Science.gov (United States)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  14. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces

    Science.gov (United States)

    Yao, Yina; Li, Cong; Zhang, Hui; Yang, Rui

    2017-10-01

    It is quite important to clearly understand the dynamic and freezing process of water droplets impacting a cold substrate for the prevention of ice accretion. In this study, a three-dimensional model including an extended phase change method was developed on OpenFOAM platform to simulate the impact, spreading and freezing of a water droplet on a cooled solid substrate. Both normal and oblique impact conditions were studied numerically. The evolution of the droplet shape and dynamic characteristics such as area ratio and spread factor were compared between numerical and experimental results. Good agreements were obtained. The effects of Weber number and Ohnersorge number on the oblique impact and freezing process were investigated. A regime map which depicts the different responses of droplets as a function of normal Weber number and Ohnesorge number was obtained. Moreover, the impact, spreading and freezing behaviour of water droplets were analyzed in detail from the numerical results.

  15. Development and Characterization of Carob Flour Based Functional Spread for Increasing Use as Nutritious Snack for Children

    Directory of Open Access Journals (Sweden)

    Sema Aydın

    2017-01-01

    Full Text Available Carob flour enriched functional spread was developed and textural, sensory, colour, and some nutritional properties of the product were investigated. Spread samples were prepared with major ingredients for optimisation and minor ingredients for improving texture and aroma. Major ingredients were carob flour and hydrogenated palm oil (HPO and minor ingredients were commercial skim milk powder, soya flour, lecithin, and hazelnut puree. The ratio of major ingredients was optimised using sensory scores and instrumental texture values to produce a carob spread that most closely resembles commercial chocolate spread (control, in both spreadability and overall acceptability. The amounts of minor ingredients (milk powder, 10%; soybean flour, 5%; lecithin, 1%; hazelnut puree, 4% were kept in constant ratio (20%. Addition of hydrogenated palm oil (HPO decreased the hardness and hardness work done (HWD values in contrast to carob flour. Higher rates of carob flour were linked to lower lightness, greenness, and yellowness values. Spread was optimised at 38 g carob flour/100 g spread and 42 g hydrogenated palm oil/100 g spread level and the formulation tended to receive the highest sensory scores compared to other spreads and presented closer instrumental spreadability values to control samples. This indicates a strong market potential for optimised carob spreads.

  16. Social Distancing Strategies against Disease Spreading

    Science.gov (United States)

    Valdez, L. D.; Buono, C.; Macri, P. A.; Braunstein, L. A.

    2013-12-01

    The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.e., the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.e., the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.

  17. Spreading speed and travelling waves for a spatially discrete SIS epidemic model

    International Nuclear Information System (INIS)

    Zhang, Kate Fang; Zhao Xiaoqiang

    2008-01-01

    This paper is devoted to the study of the asymptotic speed of spread and travelling waves for a spatially discrete SIS epidemic model. By appealing to the theory of spreading speeds and travelling waves for monotonic semiflows, we establish the existence of asymptotic speed of spread and show that it coincides with the minimal wave speed for monotonic travelling waves. This also gives an affirmative answer to an open problem presented by Rass and Radcliffe (2003 Spatial Deterministic Epidemics (Mathematical Surveys and Monographs vol 102) (Providence, RI: American Mathematical Society)) in the case of discrete spatial habitat

  18. Drop spreading and penetration into pre-wetted powders

    KAUST Repository

    Marston, Jeremy

    2013-05-01

    We present results from an experimental study of the impact of liquid drops onto powder beds which are pre-wetted with the impacting liquid. Using high-speed video imaging, we study both the dynamics of the initial spreading regime and drainage times once the drop has reached its maximum spread on the surface. During the initial spreading stage, we compare our experimental data to a previously developed model which incorporates imbibition into the spreading dynamics and observe reasonable agreement. We find that the maximum spread is a strong function of the moisture content in the powder bed and that the total time from impact to complete drainage is always shorter than that for dry powder. Our results indicate that there is an optimum moisture content (or saturation) which leads to the fastest penetration. We use simple scaling arguments which also identify an optimum moisture content for fastest penetration, which agrees very well with the experimental result. © 2013 Elsevier B.V.

  19. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  20. Error associated with model predictions of wildland fire rate of spread

    Science.gov (United States)

    Miguel G. Cruz; Martin E. Alexander

    2015-01-01

    How well can we expect to predict the spread rate of wildfires and prescribed fires? The degree of accuracy in model predictions of wildland fire behaviour characteristics are dependent on the model's applicability to a given situation, the validity of the model's relationships, and the reliability of the model input data (Alexander and Cruz 2013b#. We...

  1. A Comparison of Flame Spread Characteristics over Solids in Concurrent Flow Using Two Different Pyrolysis Models

    Directory of Open Access Journals (Sweden)

    Ya-Ting Tseng

    2011-01-01

    Full Text Available Two solid pyrolysis models are employed in a concurrent-flow flame spread model to compare the flame structure and spreading characteristics. The first is a zeroth-order surface pyrolysis, and the second is a first-order in-depth pyrolysis. Comparisons are made for samples when the spread rate reaches a steady value and the flame reaches a constant length. The computed results show (1 the mass burning rate distributions at the solid surface are qualitatively different near the flame (pyrolysis base region, (2 the first-order pyrolysis model shows that the propagating flame leaves unburnt solid fuel, and (3 the flame length and spread rate dependence on sample thickness are different for the two cases.

  2. Lateral spread affects nitrogen leaching from urine patches.

    Science.gov (United States)

    Cichota, Rogerio; Vogeler, Iris; Snow, Val; Shepherd, Mark; McAuliffe, Russell; Welten, Brendon

    2018-09-01

    Nitrate leaching from urine deposited by grazing animals is a critical constraint for sustainable dairy farming in New Zealand. While considerable progress has been made to understand the fate of nitrogen (N) under urine patches, little consideration has been given to the spread of urinary N beyond the wetted area. In this study, we modelled the lateral spread of nitrogen from the wetted area of a urine patch to the soil outside the patch using a combination of two process-based models (HYDRUS and APSIM). The simulations provided insights on the extent and temporal pattern for the redistribution of N in the soil following a urine deposition and enabled investigating the effect of lateral spread of urinary N on plant growth and N leaching. The APSIM simulation, using an implementation of a dispersion-diffusion function, was tested against experimental data from a field experiment conducted in spring on a well-drained soil. Depending on the geometry considered for the dispersion-diffusion function (plate or cylindrical) the area-averaged N leaching decreased by 8 and 37% compared with simulations without lateral N spread; this was due to additional N uptake from pasture on the edge area. A sensitivity analysis showed that area-averaged pasture growth was not greatly affected by the value of the dispersion factor used in the model, whereas N leaching was very sensitive. Thus, the need to account for the edge effect may depend on the objective of the simulations. The modelling results also showed that considering lateral spread of urinary N was sufficient to describe the experimental data, but plant root uptake across urine patch zones may still be relevant in other conditions. Although further work is needed for improving accuracy, the simulated and experimental results demonstrate that accounting for the edge effect is important for determining N leaching from urine-affected areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Airborne spread of foot-and-mouth disease - model intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gloster, J; Jones, A; Redington, A; Burgin, L; Sorensen, J H; Turner, R; Dillon, M; Hullinger, P; Simpson, M; Astrup, P; Garner, G; Stewart, P; D' Amours, R; Sellers, R; Paton, D

    2008-09-04

    Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office during 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.

  4. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  5. Modeling potential Emerald Ash Borer spread through GIS/cell-based/gravity models with data bolstered by web-based inputs

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad; Davis Sydnor; Jonathan Bossenbroek; Mark W. Schwartz; Mark W. Schwartz

    2006-01-01

    We model the susceptibility and potential spread of the organism across the eastern United States and especially through Michigan and Ohio using Forest Inventory and Analysis (FIA) data. We are also developing a cell-based model for the potential spread of the organism. We have developed a web-based tool for public agencies and private individuals to enter the...

  6. A logistic regression estimating function for spatial Gibbs point processes

    DEFF Research Database (Denmark)

    Baddeley, Adrian; Coeurjolly, Jean-François; Rubak, Ege

    We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related to the p......We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related...

  7. Some exact results for the two-point function of an integrable quantum field theory

    International Nuclear Information System (INIS)

    Creamer, D.B.; Thacker, H.B.; Wilkinson, D.

    1981-01-01

    The two-point correlation function for the quantum nonlinear Schroedinger (one-dimensional delta-function gas) model is studied. An infinite-series representation for this function is derived using the quantum inverse-scattering formalism. For the case of zero temperature, the infinite-coupling (c→infinity) result of Jimbo, Miwa, Mori, and Sato is extended to give an exact expression for the order-1/c correction to the two-point function in terms of a Painleve transcendent of the fifth kind

  8. Some exact results for the two-point function of an integrable quantum field theory

    International Nuclear Information System (INIS)

    Creamer, D.B.; Thacker, H.B.; Wilkinson, D.

    1981-02-01

    The two point correlation function for the quantum nonlinear Schroedinger (delta-function gas) model is studied. An infinite series representation for this function is derived using the quantum inverse scattering formalism. For the case of zero temperature, the infinite coupling (c → infinity) result of Jimbo, Miwa, Mori and Sato is extended to give an exact expression for the order 1/c correction to the two point function in terms of a Painleve transcendent of the fifth kind

  9. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    Science.gov (United States)

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  10. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    International Nuclear Information System (INIS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-01-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue. - Highlights: • Spatial coherence radius of a spherical wave propagating in a turbulent biological tissue is developed. • Expressions of average intensity and beam spreading for GSM, LGSM and BGSM beams in a turbulent biological tissue are derived. • The contrast for the three partially coherent model beams is shown in numerical simulations. • The results are useful for any applications involved light beam propagation through tissues.

  11. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    Directory of Open Access Journals (Sweden)

    Amos Ssematimba

    Full Text Available A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km.

  12. Fire and Heat Spreading Model Based on Cellular Automata Theory

    Science.gov (United States)

    Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires.

  13. Computational model of cerebral blood flow redistribution during cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  14. A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results

    Science.gov (United States)

    D.R. Weise; E. Koo; X. Zhou; S. Mahalingam

    2011-01-01

    Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...

  15. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease

    Science.gov (United States)

    Hindle, Samantha J.; Elliott, Christopher J.H.

    2013-01-01

    Flies expressing the most common Parkinson disease (PD)-related mutation, LRRK2-G2019S, in their dopaminergic neurons show loss of visual function and degeneration of the retina, including mitochondrial abnormalities, apoptosis and autophagy. Since the photoreceptors that degenerate are not dopaminergic, this demonstrates nonautonomous degeneration, and a spread of pathology. This provides a model consistent with Braak’s hypothesis on progressive PD. The loss of visual function is specific for the G2019S mutation, implying the cause is its increased kinase activity, and is enhanced by increased neuronal activity. These data suggest novel explanations for the variability in animal models of PD. The specificity of visual loss to G2019S, coupled with the differences in neural firing rate, provide an explanation for the variability between people with PD in visual tests. PMID:23529190

  16. The reconciliation of an F-region irregularity model with sunspot-cycle variations in spread-F occurrence

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1974-11-01

    A recently proposed means of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density (ΔN) so as to simulate the global occurrence probability of the frequency spreading component of spread-F is discussed. This procedure is then used to model experimental spread-F occurrence results. It is found possible to readily simulate the sunspot-maximum results, independently of season, with only small adjustments to the amplitudes of the empirical expressions used to ΔN in the several latitude regimes. However, at sunspot minimum and for each season, the ΔN model requires modification in the equatorial and mid-latitude regions of high irregularity incidence, before successful simulations of the spread-F data can be obtained. These modifications, which include a broadening of the equatorial region and a polewards shift to the mid-latitude region with decreasing sunspot number, are discussed in detail. It is concluded that the scintillation data base, from which the original ΔN model derives, is not sufficiently representative with regard to sunspot number and magnetic index. The use of the spread-F adaptation of the ΔN model, as well as its original scintillation version, to rectify these failings of the ΔN model are also discussed. (author)

  17. Visual attention spreads broadly but selects information locally.

    Science.gov (United States)

    Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro

    2016-10-19

    Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.

  18. Conformal four point functions and the operator product expansion

    International Nuclear Information System (INIS)

    Dolan, F.A.; Osborn, H.

    2001-01-01

    Various aspects of the four point function for scalar fields in conformally invariant theories are analysed. This depends on an arbitrary function of two conformal invariants u,v. A recurrence relation for the function corresponding to the contribution of an arbitrary spin field in the operator product expansion to the four point function is derived. This is solved explicitly in two and four dimensions in terms of ordinary hypergeometric functions of variables z,x which are simply related to u,v. The operator product expansion analysis is applied to the explicit expressions for the four point function found for free scalar, fermion and vector field theories in four dimensions. The results for four point functions obtained by using the AdS/CFT correspondence are also analysed in terms of functions related to those appearing in the operator product discussion

  19. Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies

    Science.gov (United States)

    Bzowski, Adam; McFadden, Paul; Skenderis, Kostas

    2016-03-01

    We present a comprehensive discussion of renormalisation of 3-point functions of scalar operators in conformal field theories in general dimension. We have previously shown that conformal symmetry uniquely determines the momentum-space 3-point functions in terms of certain integrals involving a product of three Bessel functions (triple- K integrals). The triple- K integrals diverge when the dimensions of operators satisfy certain relations and we discuss how to obtain renormalised 3-point functions in all cases. There are three different types of divergences: ultralocal, semilocal and nonlocal, and a given divergent triple- K integral may have any combination of them. Ultralocal divergences may be removed using local counterterms and this results in new conformal anomalies. Semilocal divergences may be removed by renormalising the sources, and this results in CFT correlators that satisfy Callan-Symanzik equations with beta functions. In the case of non-local divergences, it is the triple- K representation that is singular, not the 3-point function. Here, the CFT correlator is the coefficient of the leading nonlocal singularity, which satisfies all the expected conformal Ward identities. Such correlators exhibit enhanced symmetry: they are also invariant under dual conformal transformations where the momenta play the role of coordinates. When both anomalies and beta functions are present the correlators exhibit novel analytic structure containing products of logarithms of momenta. We illustrate our discussion with numerous examples, including free field realisations and AdS/CFT computations.

  20. Model, prediction, and experimental verification of composition and thickness in continuous spread thin film combinatorial libraries grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bassim, N. D.; Schenck, P. K.; Otani, M.; Oguchi, H.

    2007-01-01

    Pulsed laser deposition was used to grow continuous spread thin film libraries of continuously varying composition as a function of position on a substrate. The thickness of each component that contributes to a library can be empirically modeled to a bimodal cosine power distribution. We deposited ternary continuous spread thin film libraries from Al 2 O 3 , HfO 2 , and Y 2 O 3 targets, at two different background pressures of O 2 : 1.3 and 13.3 Pa. Prior to library deposition, we deposited single component calibration films at both pressures in order to measure and fit the thickness distribution. Following the deposition and fitting of the single component films, we predict both the compositional coverage and the thickness of the libraries. Then, we map the thickness of the continuous spread libraries using spectroscopic reflectometry and measure the composition of the libraries as a function of position using mapping wavelength-dispersive spectrometry (WDS). We then compare the compositional coverage of the libraries and observe that compositional coverage is enhanced in the case of 13.3 Pa library. Our models demonstrate linear correlation coefficients of 0.98 for 1.3 Pa and 0.98 for 13.3 Pa with the WDS

  1. Analytical Solutions for Rumor Spreading Dynamical Model in a Social Network

    Science.gov (United States)

    Fallahpour, R.; Chakouvari, S.; Askari, H.

    2015-03-01

    In this paper, Laplace Adomian decomposition method is utilized for evaluating of spreading model of rumor. Firstly, a succinct review is constructed on the subject of using analytical methods such as Adomian decomposion method, Variational iteration method and Homotopy Analysis method for epidemic models and biomathematics. In continue a spreading model of rumor with consideration of forgetting mechanism is assumed and subsequently LADM is exerted for solving of it. By means of the aforementioned method, a general solution is achieved for this problem which can be readily employed for assessing of rumor model without exerting any computer program. In addition, obtained consequences for this problem are discussed for different cases and parameters. Furthermore, it is shown the method is so straightforward and fruitful for analyzing equations which have complicated terms same as rumor model. By employing numerical methods, it is revealed LADM is so powerful and accurate for eliciting solutions of this model. Eventually, it is concluded that this method is so appropriate for this problem and it can provide researchers a very powerful vehicle for scrutinizing rumor models in diverse kinds of social networks such as Facebook, YouTube, Flickr, LinkedIn and Tuitor.

  2. An interplay model for authorities' actions and rumor spreading in emergency event

    Science.gov (United States)

    Huo, Liang-an; Huang, Peiqing; Fang, Xing

    2011-10-01

    Rumor spreading influences how rational individuals assess risks and evaluate needs, especially, it affects authorities to make decisions in an emergency-affected environments. Conversely, authorities' response to emergency will induct public opinions as well. In this paper, we present a simple model to describe the interplay between rumor spreading and authorities' actions in emergency situation based on utility theory. By drawing from differential equations we found that it is possible to minimize negative social utility of rumor spreading in the control of situation. At the same time, authorities' proactive actions can improve rumor management in emergency situation and yield positive social utility. Finally, we outline strategies for authorities that can contribute to rumor management in an emergency event.

  3. Ray tracing the Wigner distribution function for optical simulations

    Science.gov (United States)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  4. Spreading gossip in social networks

    Science.gov (United States)

    Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  5. Spreading gossip in social networks.

    Science.gov (United States)

    Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  6. Two-point correlation function for Dirichlet L-functions

    Science.gov (United States)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  7. Two-point correlation function for Dirichlet L-functions

    International Nuclear Information System (INIS)

    Bogomolny, E; Keating, J P

    2013-01-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy–Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question. (paper)

  8. Modeling the spread of vector-borne diseases on bipartite networks.

    Directory of Open Access Journals (Sweden)

    Donal Bisanzio

    Full Text Available BACKGROUND: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled as spreading on a bipartite network. METHODOLOGY/PRINCIPAL FINDINGS: In such models the spreading of the disease strongly depends on the degree distribution of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail of the empirical distribution. CONCLUSIONS/SIGNIFICANCE: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically.

  9. Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water

    International Nuclear Information System (INIS)

    Johnson, David W.; Cornwell, John B.

    2007-01-01

    Current interest in the shipment of liquefied natural gas (LNG) has renewed the debate about the safety of shipping large volumes of flammable fuels. The size of a spreading pool following a release of LNG from an LNG tank ship has been the subject of numerous papers and studies dating back to the mid-1970s. Several papers have presented idealized views of how the LNG would be released and spread across a quiescent water surface. There is a considerable amount of publicly available material describing these idealized releases, but little discussion of how other flammable fuels would behave if released from similar sized ships. The purpose of this paper is to determine whether the models currently available from the United States Federal Energy Regulatory Commission (FERC) can be used to simulate the release, spreading, vaporization, and pool fire impacts for materials other than LNG, and if so, identify which material-specific parameters are required. The review of the basic equations and principles in FERC's LNG release, spreading, and burning models did not reveal a critical fault that would prevent their use in evaluating the consequences of other flammable fluid releases. With the correct physical data, the models can be used with the same level of confidence for materials such as LPG and gasoline as they are for LNG

  10. Relationship between the Amplitude and Phase of a Signal Scattered by a Point-Like Acoustic Inhomogeneity

    Science.gov (United States)

    Burov, V. A.; Morozov, S. A.

    2001-11-01

    Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.

  11. Model simulations of the drift and spread of the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Venkatesh, S.

    1990-01-01

    In this paper the drift and spread of the Exxon-Valdez oil spill that occurred on March 24, 1989 are simulated using a modified version of the Canadian Atmospheric Environment Service oil spill behavior model. The model simulations show that the movement of the oil out of Prince William Sound and beyond is sensitive to the wind/ocean currents taken into account is three to four times that with either wind or ocean currents only. While 12-day drift of the spill containing the higher concentrations of oil parcels is in very good agreement with observations, model simulations show the presence of oil further to the south, albeit in lower concentrations. The lateral spread of the oil is also very well simulated by the model

  12. Comparing fire spread algorithms using equivalence testing and neutral landscape models

    Science.gov (United States)

    Brian R. Miranda; Brian R. Sturtevant; Jian Yang; Eric J. Gustafson

    2009-01-01

    We demonstrate a method to evaluate the degree to which a meta-model approximates spatial disturbance processes represented by a more detailed model across a range of landscape conditions, using neutral landscapes and equivalence testing. We illustrate this approach by comparing burn patterns produced by a relatively simple fire spread algorithm with those generated by...

  13. Modelling fast spreading patterns of airborne infectious diseases using complex networks

    Science.gov (United States)

    Brenner, Frank; Marwan, Norbert; Hoffmann, Peter

    2017-04-01

    The pandemics of SARS (2002/2003) and H1N1 (2009) have impressively shown the potential of epidemic outbreaks of infectious diseases in a world that is strongly connected. Global air travelling established an easy and fast opportunity for pathogens to migrate globally in only a few days. This made epidemiological prediction harder. By understanding this complex development and its link to climate change we can suggest actions to control a part of global human health affairs. In this study we combine the following data components to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human: em{Global Air Traffic Network (from openflights.org) with information on airports, airport location, direct flight connection, airplane type} em{Global population dataset (from SEDAC, NASA)} em{Susceptible-Infected-Recovered (SIR) compartmental model to simulate disease spreading in the vicinity of airports. A modified Susceptible-Exposed-Infected-Recovered (SEIR) model to analyze the impact of the incubation period.} em{WATCH-Forcing-Data-ERA-Interim (WFDEI) climate data: temperature, specific humidity, surface air pressure, and water vapor pressure} These elements are implemented into a complex network. Nodes inside the network represent airports. Each single node is equipped with its own SIR/SEIR compartmental model with node specific attributes. Edges between those nodes represent direct flight connections that allow infected individuals to move between linked nodes. Therefore the interaction of the set of unique SIR models creates the model dynamics we will analyze. To better figure out the influence on climate change on disease spreading patterns, we focus on Influenza-like-Illnesses (ILI). The transmission rate of ILI has a dependency on climate parameters like humidity and temperature. Even small changes of environmental variables can trigger significant differences in the global outbreak behavior. Apart from the direct

  14. Analysis of an SEIR Epidemic Model with Saturated Incidence and Saturated Treatment Function

    Directory of Open Access Journals (Sweden)

    Jinhong Zhang

    2014-01-01

    Full Text Available The dynamics of SEIR epidemic model with saturated incidence rate and saturated treatment function are explored in this paper. The basic reproduction number that determines disease extinction and disease survival is given. The existing threshold conditions of all kinds of the equilibrium points are obtained. Sufficient conditions are established for the existence of backward bifurcation. The local asymptotical stability of equilibrium is verified by analyzing the eigenvalues and using the Routh-Hurwitz criterion. We also discuss the global asymptotical stability of the endemic equilibrium by autonomous convergence theorem. The study indicates that we should improve the efficiency and enlarge the capacity of the treatment to control the spread of disease. Numerical simulations are presented to support and complement the theoretical findings.

  15. Enhancement of epidemic spread by noise and stochastic resonance in spatial network models with viral dynamics.

    Science.gov (United States)

    Tuckwell, H C; Toubiana, L; Vibert, J F

    2000-05-01

    We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations for the viral and immune effector densities within a host population of size n are bilinear, and the noise is white, additive, and Gaussian. The individuals are connected with an n x n transmission matrix, with terms which decay exponentially with distance. In a single individual, for the range of noise parameters considered, it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the virulence as the noise amplitude sigma is increased, and there is no evidence of a stochastic resonance. However, the speed of transmission, both with respect to its mean and variance, undergoes rapid increases as sigma changes by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean population virion level increases only

  16. The Rothermel surface fire spread model and associated developments: A comprehensive explanation

    Science.gov (United States)

    Patricia L. Andrews

    2018-01-01

    The Rothermel surface fire spread model, with some adjustments by Frank A. Albini in 1976, has been used in fire and fuels management systems since 1972. It is generally used with other models including fireline intensity and flame length. Fuel models are often used to define fuel input parameters. Dynamic fuel models use equations for live fuel curing. Models have...

  17. Epidemic spreading in annealed directed networks: susceptible-infected-susceptible model and contact process.

    Science.gov (United States)

    Kwon, Sungchul; Kim, Yup

    2013-01-01

    We investigate epidemic spreading in annealed directed scale-free networks with the in-degree (k) distribution P(in)(k)~k(-γ(in)) and the out-degree (ℓ) distribution, P(out)(ℓ)~ℓ(-γ(out)). The correlation of each node on the networks is controlled by the probability r(0≤r≤1) in two different algorithms, the so-called k and ℓ algorithms. For r=1, the k algorithm gives =, whereas the ℓ algorithm gives =. For r=0, = for both algorithms. As the prototype of epidemic spreading, the susceptible-infected-susceptible model and contact process on the networks are analyzed using the heterogeneous mean-field theory and Monte Carlo simulations. The directedness of links and the correlation of the network are found to play important roles in the spreading, so that critical behaviors of both models are distinct from those on undirected scale-free networks.

  18. Evaluating crown fire rate of spread predictions from physics-based models

    Science.gov (United States)

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  19. The spread model of food safety risk under the supply-demand disturbance

    OpenAIRE

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors? influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of c...

  20. Toda 3-point functions from topological strings

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Pomoni, Elli; National Technical Univ. of Athens

    2014-09-01

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In (L. Bao, V. Mitev, E. Pomoni, M. Taki, and F. Yagi, JHEP 1401 (2014), 175) we computed the partition function of 5D T N theories on S 4 x S 1 and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T N partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T N theories on S 4 , or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  1. Toda 3-point functions from topological strings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2015-06-08

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In http://dx.doi.org/10.1007/JHEP01(2014)175 we computed the partition function of 5D T{sub N} theories on S{sup 4}×S{sup 1} and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T{sub N} partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T{sub N} theories on S{sup 4}, or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  2. Toda 3-point functions from topological strings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; National Technical Univ. of Athens (Greece). Physics Div.

    2014-09-15

    We consider the long-standing problem of obtaining the 3-point functions of Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge theories and 2D CFTs. In (L. Bao, V. Mitev, E. Pomoni, M. Taki, and F. Yagi, JHEP 1401 (2014), 175) we computed the partition function of 5D T{sub N} theories on S{sup 4} x S{sup 1} and suggested that they should be interpreted as the three-point structure constants of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation and rewrite the 5D T{sub N} partition function in a form that makes taking the 4D limit possible. Thus, we obtain a prescription for the computation of the partition function of the 4D T{sub N} theories on S{sup 4}, or equivalently the undeformed 3-point Toda structure constants. Our formula, has the correct symmetry properties, the zeros that it should and, for N=2, gives the known answer for Liouville CFT.

  3. Cooperative spreading processes in multiplex networks.

    Science.gov (United States)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  4. Reliability and Efficiency of Generalized Rumor Spreading Model on Complex Social Networks

    International Nuclear Information System (INIS)

    Naimi, Yaghoob; Naimi, Mohammad

    2013-01-01

    We introduce the generalized rumor spreading model and investigate some properties of this model on different complex social networks. Despite pervious rumor models that both the spreader-spreader (SS) and the spreader-stifler (SR) interactions have the same rate α, we define α (1) and α (2) for SS and SR interactions, respectively. The effect of variation of α (1) and α (2) on the final density of stiflers is investigated. Furthermore, the influence of the topological structure of the network in rumor spreading is studied by analyzing the behavior of several global parameters such as reliability and efficiency. Our results show that while networks with homogeneous connectivity patterns reach a higher reliability, scale-free topologies need a less time to reach a steady state with respect the rumor. (interdisciplinary physics and related areas of science and technology)

  5. A random walk evolution model of wireless sensor networks and virus spreading

    International Nuclear Information System (INIS)

    Wang Ya-Qi; Yang Xiao-Yuan

    2013-01-01

    In this paper, considering both cluster heads and sensor nodes, we propose a novel evolving a network model based on a random walk to study the fault tolerance decrease of wireless sensor networks (WSNs) due to node failure, and discuss the spreading dynamic behavior of viruses in the evolution model. A theoretical analysis shows that the WSN generated by such an evolution model not only has a strong fault tolerance, but also can dynamically balance the energy loss of the entire network. It is also found that although the increase of the density of cluster heads in the network reduces the network efficiency, it can effectively inhibit the spread of viruses. In addition, the heterogeneity of the network improves the network efficiency and enhances the virus prevalence. We confirm all the theoretical results with sufficient numerical simulations. (general)

  6. Using a network model to assess risk of forest pest spread via recreational travel

    Science.gov (United States)

    Frank H. Koch; Denys Yemshanov; Robert A. Haack; Roger D. Magarey

    2014-01-01

    Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially...

  7. Fusion rules and four-point functions in the AdS3 Wess-Zumino-Novikov-Witten model

    International Nuclear Information System (INIS)

    Baron, Walter H.; Nunez, Carmen A.

    2009-01-01

    We study the operator product expansion in the AdS 3 Wess-Zumino-Novikov-Witten (WZNW) model. The operator-product expansion of primary fields and their spectral flow images is computed from the analytic continuation of the expressions in the H 3 + WZNW model, adding spectral flow. We argue that the symmetries of the affine algebra require a truncation which establishes the closure of the fusion rules on the Hilbert space of the theory. Although the physical mechanism determining the decoupling is not completely understood, we present several consistency checks on the results. A preliminary analysis of factorization allows to obtain some properties of four-point functions involving fields in generic sectors of the theory, to verify that they agree with the spectral flow selection rules and to show that the truncation must be realized in physical amplitudes for consistency.

  8. Spatial Stochastic Point Models for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Syversveen, Anne Randi

    1997-12-31

    The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.

  9. Using a network model to assess risk of forest pest spread via recreational travel.

    Directory of Open Access Journals (Sweden)

    Frank H Koch

    Full Text Available Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially infested firewood. We constructed the model from US National Recreation Reservation Service data documenting more than seven million visitor reservations (including visitors from Canada at campgrounds nationwide. This bi-directional model can be used to identify likely origin and destination locations for a camper-transported pest. To support broad-scale decision making, we used the model to generate summary maps for 48 US states and seven Canadian provinces that depict the most likely origins of campers traveling from outside the target state or province. The maps generally showed one of two basic spatial patterns of out-of-state (or out-of-province origin risk. In the eastern United States, the riskiest out-of-state origin locations were usually found in a localized region restricted to portions of adjacent states. In the western United States, the riskiest out-of-state origin locations were typically associated with major urban areas located far from the state of interest. A few states and the Canadian provinces showed characteristics of both patterns. These model outputs can guide deployment of resources for surveillance, firewood inspections, or other activities. Significantly, the contrasting map patterns indicate that no single response strategy is appropriate for all states and provinces. If most out-of-state campers are traveling from distant areas, it may be effective to deploy resources at key points along major roads (e.g., interstate highways, since these locations could effectively represent bottlenecks of camper movement. If most campers are from nearby areas, they may

  10. Spread F in the Midlatitude Ionosphere According to DPS-4 Ionosonde Data

    Science.gov (United States)

    Panchenko, V. A.; Telegin, V. A.; Vorob'ev, V. G.; Zhbankov, G. A.; Yagodkina, O. I.; Rozhdestvenskaya, V. I.

    2018-03-01

    The results of studying spread F obtained from the DPS-4 ionosonde data at the observatory of the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Moscow) are presented. The methodical questions that arise during the study of a spread F phenomenon in the ionosphere are considered; the current results of terrestrial observations are compared with previously published data and the results of sounding onboard an Earth-satellite vehicle. The automated algorithm for estimation of the intensity of frequency spread F, which was developed by the authors and was successfully verified via comparison of the data of the digisonde DPS-4 and the results of manual processing, is described. The algorithm makes it possible to quantify the intensity of spread F in megahertz (the dFs parameter) and in the number of points (0, 1, 2, 3). The strongest spread (3 points) is shown to be most likely around midnight, while the weakest spread (0 points) is highly likely to occur during the daytime. The diurnal distribution of a 1-2 point spread F in the winter indicates the presence of additional maxima at 0300-0600 UT and 1400-1700 UT, which may appear due to the terminator. Despite the large volume of processed data, we can not definitively state that the appearance of spread F depends on the magnetic activity indices Kp, Dst, and AL, although the values of the dFs frequency spread interval strongly increased both at day and night during the magnetic storm of March 17-22, 2015, especially in the phase of storm recovery on March 20-22.

  11. Energy spread of different electron beams. Part I: thermoionic electron beams

    International Nuclear Information System (INIS)

    Troyon, M.; Zinzindohoue, P.

    1987-01-01

    Energy spread ΔE and brightness B are the two important parameters for defining electron beam quality. An attempt in this paper for three types of generally used thermionic cathodes (hairpin, pointed and LaB6) and three particular Wehnelt shapes (re-entrant, flat and conical) has been made. It has been demonstrated that the energy spread is much more dependent on brightness than on total emitted current; for a given brightness the best gun is the one that gives smaller total emitted current. One can expect with pointed and LaB6 filaments when compared with hairpin filament at a given constant energy spread, the brightness increases by about 2 to 3 times. Higher brightness is obtained simultaneously with larger energy spread: for example, at 20 kV, the maximum brightness and corresponding energy spread of a pointed and a hairpin filament mounted in a flat Wehnelt are B = 4x10 5 Acm -2 sr -1 , ΔE = 3.3 eV and B = 6 x 10 4 Acm -2 sr -1 , ΔE = 2 eV respectively

  12. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long...... quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation...

  13. Time Eigenstates for Potential Functions without Extremal Points

    Directory of Open Access Journals (Sweden)

    Gabino Torres-Vega

    2013-09-01

    Full Text Available In a previous paper, we introduced a way to generate a time coordinate system for classical and quantum systems when the potential function has extremal points. In this paper, we deal with the case in which the potential function has no extremal points at all, and we illustrate the method with the harmonic and linear potentials.

  14. Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks

    Science.gov (United States)

    Wang, Jing; Wang, Ya-Qi; Li, Ming

    2017-12-01

    In order to prevent and control the spread of rumors, the implementation of immunization strategies for ignorant individuals is very necessary, where the immunization usually means letting them learn the truth of rumors. Considering the facts that there is always a delay time between rumor spreading and implementing immunization, and that the truth of rumors can also be spread out, this paper constructs a novel susceptible-infected-removed (SIR) model. The propagation dynamical behaviors of the SIR model on homogeneous networks are investigated by using the mean-field theory and the Monte Carlo method. Research shows that the greater the delay time, the worse the immune effect of the immunization strategy. It is also found that the spread of the truth can inhibit to some extent the propagation of rumors, and the trend will become more obvious with the increase of reliability of the truth. Moreover, under the influence of delay time, the existence of nodes’ identification force still slightly reduces the propagation degree of rumors. Supported by the National Natural Science Foundation of China under Grant No. 61402531, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant Nos. 2014JQ8358, 2015JQ6231, and 2014JQ8307, the China Postdoctoral Science Foundation under Grant No. 2015M582910, and the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force under Grant Nos. WJY201419, WJY201605 and JLX201686

  15. Epidemic spreading and global stability of an SIS model with an infective vector on complex networks

    Science.gov (United States)

    Kang, Huiyan; Fu, Xinchu

    2015-10-01

    In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.

  16. Measurements of the β function near the B0 interaction point

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1992-01-01

    To successfully provide beam to experiments from the Tevatron requires that we be able to perform many distinct operations on the internal accelerator beam. These include injecting beam, correcting the orbit, accelerating and then squeezing or extracting the beam. To perform many of these operations we depend on a knowledge of the lattice functions at various points in the lattice. The values of the lattice functions used in calculating the value for a bump or for the setting of a corrector come from a computer model of the Tevatron. If the model does not give the correct values of the lattice functions then the desired operation may not be performed correctly. It is therefore important that we be able to experimentally verify our model of the Tevatron. With the installation of the new low-Β magnets at B0, and the modifications of the lattice at D0, it is necessary that we measure the β functions at different locations in the lattice and compare them with the values calculated from our model

  17. Modeling solvation effects in real-space and real-time within density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  18. Numerical simulations of fire spread in a Pinus pinaster needles fuel bed

    International Nuclear Information System (INIS)

    Menage, D; Chetehouna, K; Mell, W

    2012-01-01

    The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.

  19. Numerical simulations of fire spread in a Pinus pinaster needles fuel bed

    Science.gov (United States)

    Menage, D.; Chetehouna, K.; Mell, W.

    2012-11-01

    The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.

  20. Points of Economic and Innovative Growth: a Model for Organizing the Effective Functioning of the Region

    Directory of Open Access Journals (Sweden)

    D. D. Burkaltseva

    2017-01-01

    Full Text Available Abstract Purpose: the main goal of the article is to build a conceptual model for the organization of effective functioning of the points of economic and innovative growth of the region in modern conditions, taking into account regional and municipal limitations of internal and external nature, with the aim of ensuring economic security, effective interaction of subjects of the "business-power" system Taking into account the influence of institutional factors. Methods: the methodological basis of research in the article is the dialectical method of scientific cognition, the systemic and institutional approach to studying and building an organization for the effective functioning of the regional economy in order to ensure its economic security from internal and external threats. Results: the existing mechanism of interaction "business and power" is considered. The financial stability of economic entities of the Republic of Crimea is determined. The financial independence of the regional budget of the Republic of Crimea has been determined. The dynamics of financing of the Federal Target Program "Social and Economic Development of the Republic of Crimea and Sevastopol until 2020" has been revealed. The regional and municipal restrictions of internal and external nature, which constitute a threat to social and economic development, are indicated. Points of economic and innovative growth at the present stage and their advantages and stages of technical organization of their implementation have been determined. A conceptual model of building effective interaction between subjects of the "business-power" system is proposed taking into account the influence of institutional factors. The conceptual model of organization of effective functioning of points of economic and innovative growth of the region, as a territorial socio-economic system, under modern conditions is constructed. Conclusions and Relevance: we propose to define four

  1. Comprehensive overview of the Point-by-Point model of prompt emission in fission

    Energy Technology Data Exchange (ETDEWEB)

    Tudora, A. [University of Bucharest, Faculty of Physics, Bucharest Magurele (Romania); Hambsch, F.J. [European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Unit G2, Geel (Belgium)

    2017-08-15

    The investigation of prompt emission in fission is very important in understanding the fission process and to improve the quality of evaluated nuclear data required for new applications. In the last decade remarkable efforts were done for both the development of prompt emission models and the experimental investigation of the properties of fission fragments and the prompt neutrons and γ-ray emission. The accurate experimental data concerning the prompt neutron multiplicity as a function of fragment mass and total kinetic energy for {sup 252}Cf(SF) and {sup 235}U(n,f) recently measured at JRC-Geel (as well as other various prompt emission data) allow a consistent and very detailed validation of the Point-by-Point (PbP) deterministic model of prompt emission. The PbP model results describe very well a large variety of experimental data starting from the multi-parametric matrices of prompt neutron multiplicity ν(A,TKE) and γ-ray energy E{sub γ}(A,TKE) which validate the model itself, passing through different average prompt emission quantities as a function of A (e.g., ν(A), E{sub γ}(A), left angle ε right angle (A) etc.), as a function of TKE (e.g., ν(TKE), E{sub γ}(TKE)) up to the prompt neutron distribution P(ν) and the total average prompt neutron spectrum. The PbP model does not use free or adjustable parameters. To calculate the multi-parametric matrices it needs only data included in the reference input parameter library RIPL of IAEA. To provide average prompt emission quantities as a function of A, of TKE and total average quantities the multi-parametric matrices are averaged over reliable experimental fragment distributions. The PbP results are also in agreement with the results of the Monte Carlo prompt emission codes FIFRELIN, CGMF and FREYA. The good description of a large variety of experimental data proves the capability of the PbP model to be used in nuclear data evaluations and its reliability to predict prompt emission data for fissioning

  2. Oscillations in epidemic models with spread of awareness.

    Science.gov (United States)

    Just, Winfried; Saldaña, Joan; Xin, Ying

    2018-03-01

    We study ODE models of epidemic spreading with a preventive behavioral response that is triggered by awareness of the infection. Previous studies of such models have mostly focused on the impact of the response on the initial growth of an outbreak and the existence and location of endemic equilibria. Here we study the question whether this type of response is sufficient to prevent future flare-ups from low endemic levels if awareness is assumed to decay over time. In the ODE context, such flare-ups would translate into sustained oscillations with significant amplitudes. Our results show that such oscillations are ruled out in Susceptible-Aware-Infectious-Susceptible models with a single compartment of aware hosts, but can occur if we consider two distinct compartments of aware hosts who differ in their willingness to alert other susceptible hosts.

  3. Modelling dengue epidemic spreading with human mobility

    Science.gov (United States)

    Barmak, D. H.; Dorso, C. O.; Otero, M.

    2016-04-01

    We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly affects the spread of infection by increasing the final size and by changing the morphology of the epidemic outbreaks. When the spreading of the disease is driven only by mosquito dispersal (flight), a main central focus expands diffusively. On the contrary, when human mobility is taken into account, multiple foci appear throughout the evolution of the outbreaks. These secondary foci generated throughout the outbreaks could be of little importance according to their mass or size compared with the largest main focus. However, the coalescence of these foci with the main one generates an effect, through which the latter develops a size greater than the one obtained in the case driven only by mosquito dispersal. This increase in growth rate due to human mobility and the coalescence of the foci are particularly relevant in temperate cities such as the city of Buenos Aires, since they give more possibilities to the outbreak to grow before the arrival of the low-temperature season. The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector epidemics.

  4. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  5. Radial Basis Functional Model of Multi-Point Dieless Forming Process for Springback Reduction and Compensation

    Directory of Open Access Journals (Sweden)

    Misganaw Abebe

    2017-11-01

    Full Text Available Springback in multi-point dieless forming (MDF is a common problem because of the small deformation and blank holder free boundary condition. Numerical simulations are widely used in sheet metal forming to predict the springback. However, the computational time in using the numerical tools is time costly to find the optimal process parameters value. This study proposes radial basis function (RBF to replace the numerical simulation model by using statistical analyses that are based on a design of experiment (DOE. Punch holding time, blank thickness, and curvature radius are chosen as effective process parameters for determining the springback. The Latin hypercube DOE method facilitates statistical analyses and the extraction of a prediction model in the experimental process parameter domain. Finite element (FE simulation model is conducted in the ABAQUS commercial software to generate the springback responses of the training and testing samples. The genetic algorithm is applied to find the optimal value for reducing and compensating the induced springback for the different blank thicknesses using the developed RBF prediction model. Finally, the RBF numerical result is verified by comparing with the FE simulation result of the optimal process parameters and both results show that the springback is almost negligible from the target shape.

  6. Incorporation of intraocular scattering in schematic eye models

    International Nuclear Information System (INIS)

    Navarro, R.

    1985-01-01

    Beckmann's theory of scattering from rough surfaces is applied to obtain, from the experimental veiling glare functions, a diffuser that when placed at the pupil plane would produce the same scattering halo as the ocular media. This equivalent diffuser is introduced in a schematic eye model, and its influence on the point-spread function and the modulation-transfer function of the eye is analyzed

  7. Information spread in networks: Games, optimal control, and stabilization

    Science.gov (United States)

    Khanafer, Ali

    This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack

  8. A method of PSF generation for 3D brightfield deconvolution.

    Science.gov (United States)

    Tadrous, P J

    2010-02-01

    This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.

  9. Multivariate Product-Shot-noise Cox Point Process Models

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Mateu, Jorge

    We introduce a new multivariate product-shot-noise Cox process which is useful for model- ing multi-species spatial point patterns with clustering intra-specific interactions and neutral, negative or positive inter-specific interactions. The auto and cross pair correlation functions of the process...... can be obtained in closed analytical forms and approximate simulation of the process is straightforward. We use the proposed process to model interactions within and among five tree species in the Barro Colorado Island plot....

  10. Generalized correlation of latent heats of vaporization of coal liquid model compounds between their freezing points and critical points

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Kobuyashi, R.; Mayee, J.W.

    1984-02-01

    Based on Pitzer's three-parameter corresponding states principle, the authors have developed a correlation of the latent heat of vaporization of aromatic coal liquid model compounds for a temperature range from the freezing point to the critical point. An expansion of the form L = L/sub 0/ + ..omega..L /sub 1/ is used for the dimensionless latent heat of vaporization. This model utilizes a nonanalytic functional form based on results derived from renormalization group theory of fluids in the vicinity of the critical point. A simple expression for the latent heat of vaporization L = D/sub 1/epsilon /SUP 0.3333/ + D/sub 2/epsilon /SUP 0.8333/ + D/sub 4/epsilon /SUP 1.2083/ + E/sub 1/epsilon + E/sub 2/epsilon/sup 2/ + E/sub 3/epsilon/sup 3/ is cast in a corresponding states principle correlation for coal liquid compounds. Benzene, the basic constituent of the functional groups of the multi-ring coal liquid compounds, is used as the reference compound in the present correlation. This model works very well at both low and high reduced temperatures approaching the critical point (0.02 < epsilon = (T /SUB c/ - T)/(T /SUB c/- 0.69)). About 16 compounds, including single, two, and three-ring compounds, have been tested and the percent root-mean-square deviations in latent heat of vaporization reported and estimated through the model are 0.42 to 5.27%. Tables of the coefficients of L/sub 0/ and L/sub 1/ are presented. The contributing terms of the latent heat of vaporization function are also presented in a table for small increments of epsilon.

  11. Epidemic spreading in time-varying community networks.

    Science.gov (United States)

    Ren, Guangming; Wang, Xingyuan

    2014-06-01

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q epidemic spreading in complex networks with community structure.

  12. Correlation functions of the Ising model and the eight-vertex model

    International Nuclear Information System (INIS)

    Ko, L.F.

    1986-01-01

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. In Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations

  13. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    ’ involves only the significant wave height, zero crossing wave period and water depth, the spreading function based on ‘s 3 ’ can be used for practical appli- cation. In the model based on ‘s 3 ’ the mean wave direction is an input and this has...-linearity parameter can be recommended for practical use as it provides an averaged distribution. Acknowledgements The authors would like to thank the Department of Science and Technology, New Delhi, for funding the project titled “Directional wave modelling...

  14. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    Science.gov (United States)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  15. A J–function for inhomogeneous point processes

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette)

    2010-01-01

    htmlabstractWe propose new summary statistics for intensity-reweighted moment stationary point processes that generalise the well known J-, empty space, and nearest-neighbour distance dis- tribution functions, represent them in terms of generating functionals and conditional intensities, and relate

  16. New results on holographic three-point functions

    International Nuclear Information System (INIS)

    Bianchi, Massimo; Prisco, Maurizio; Mueck, Wolfgang

    2003-01-01

    We exploit a gauge invariant approach for the analysis of the equations governing the dynamics of active scalar fluctuations coupled to the fluctuations of the metric along holographic RG flows. In the present approach, a second order ODE for the active scalar emerges rather simply and makes it possible to use the Green's function method to deal with (quadratic) interaction terms. We thus fill a gap for active scalar operators, whose three-point functions have been inaccessible so far, and derive a general, explicitly Bose symmetric formula thereof. As an application we compute the relevant three-point function along the GPPZ flow and extract the irreducible trilinear couplings of the corresponding super glueballs by amputating the external legs on-shell. (author)

  17. Sequential function approximation on arbitrarily distributed point sets

    Science.gov (United States)

    Wu, Kailiang; Xiu, Dongbin

    2018-02-01

    We present a randomized iterative method for approximating unknown function sequentially on arbitrary point set. The method is based on a recently developed sequential approximation (SA) method, which approximates a target function using one data point at each step and avoids matrix operations. The focus of this paper is on data sets with highly irregular distribution of the points. We present a nearest neighbor replacement (NNR) algorithm, which allows one to sample the irregular data sets in a near optimal manner. We provide mathematical justification and error estimates for the NNR algorithm. Extensive numerical examples are also presented to demonstrate that the NNR algorithm can deliver satisfactory convergence for the SA method on data sets with high irregularity in their point distributions.

  18. Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks

    Science.gov (United States)

    Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong

    2018-02-01

    Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.

  19. Two- and three-point functions in Liouville theory

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1994-04-01

    Based on our generalization of the Goulian-Li continuation in the power of the 2D cosmological term we construct the two and three-point correlation functions for Liouville exponentials with generic real coefficients. As a strong argument in favour of the procedure we prove the Liouville equation of motion on the level of three-point functions. The analytical structure of the correlation functions as well as some of its consequences for string theory are discussed. This includes a conjecture on the mass shell condition for excitations of noncritical strings. We also make a comment concerning the correlation functions of the Liouville field itself. (orig.)

  20. Second-order analysis of inhomogeneous spatial point processes with proportional intensity functions

    DEFF Research Database (Denmark)

    Guan, Yongtao; Waagepetersen, Rasmus; Beale, Colin M.

    2008-01-01

    of the intensity functions. The first approach is based on nonparametric kernel-smoothing, whereas the second approach uses a conditional likelihood estimation approach to fit a parametric model for the pair correlation function. A great advantage of the proposed methods is that they do not require the often...... to two spatial point patterns regarding the spatial distributions of birds in the U.K.'s Peak District in 1990 and 2004....

  1. Marked point process for modelling seismic activity (case study in Sumatra and Java)

    Science.gov (United States)

    Pratiwi, Hasih; Sulistya Rini, Lia; Wayan Mangku, I.

    2018-05-01

    Earthquake is a natural phenomenon that is random, irregular in space and time. Until now the forecast of earthquake occurrence at a location is still difficult to be estimated so that the development of earthquake forecast methodology is still carried out both from seismology aspect and stochastic aspect. To explain the random nature phenomena, both in space and time, a point process approach can be used. There are two types of point processes: temporal point process and spatial point process. The temporal point process relates to events observed over time as a sequence of time, whereas the spatial point process describes the location of objects in two or three dimensional spaces. The points on the point process can be labelled with additional information called marks. A marked point process can be considered as a pair (x, m) where x is the point of location and m is the mark attached to the point of that location. This study aims to model marked point process indexed by time on earthquake data in Sumatra Island and Java Island. This model can be used to analyse seismic activity through its intensity function by considering the history process up to time before t. Based on data obtained from U.S. Geological Survey from 1973 to 2017 with magnitude threshold 5, we obtained maximum likelihood estimate for parameters of the intensity function. The estimation of model parameters shows that the seismic activity in Sumatra Island is greater than Java Island.

  2. Using the gravity model to estimate the spatial spread of vector-borne diseases

    NARCIS (Netherlands)

    Barrios, J.M.; Verstraeten, W.W.; Maes, P.; Aerts, J.; Farifteh, J.; Coppin, P.

    2012-01-01

    The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the

  3. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  4. Status of the assessment of the spreading code Thema against the Corine experiments

    International Nuclear Information System (INIS)

    Spindler, B.; Veteau, J.M.

    1999-01-01

    In the framework of severe accident research on PWR, the Thema code aims at predicting the spreading extent of Corium in given conditions of pouring rate, initial Corium composition and temperature and considers phenomena as complex as top, bottom freezing and melting of the substrate. This paper makes the current status of the assessment of the code against the Corine experimental program which considers separate effect tests working out non freezing and low melting point simulating materials to validate some essential models present in spreading codes. Isothermal tests using water-glycerol mixtures are first considered to investigate the validity of the friction law and the extent of surface tension effects at the front. Non isothermal spreading with bottom freezing is then considered. Comparison of results of the code with known solutions of different problems related to solidification of a moving warm liquid, thermal chock and conduction in the bottom plate appears to be a very useful tool to verify the relevance of the models and to adjust numerical parameters. Finally, first spreading calculations with bottom freezing are compared with Corine experiments using the eutectic Bismuth-Tin alloy as working material. (author)

  5. Generation and reception of spread-spectrum signals

    Science.gov (United States)

    Moser, R.

    1983-05-01

    The term 'spread-spectrum' implies a technique whereby digitized information is added to a pseudo-random number sequence and the resultant bit stream changes some parameter of the carrier frequency in discrete increments. The discrete modulation of the carrier frequency is usually realized either as a multiple level phase shift keyed or frequency shift keyed signal. The resultant PSK-modulated frequency spectrum is referred to as direct sequence spread-spectrum, whereas the FSK-modulated carrier frequency is referred to as a frequency hopped spread spectrum. These can be considered the major subsets of the more general term 'spread-spectrum'. In discussing signal reception, it is pointed out that active correlation methods are used for channel synchronization when the psuedo random sequences are long or when the processing gain is large, whereas the passive methods may be used for either short pseudo-random noise generation codes or to assist in attaining initial synchronization in long sequence spread-spectrum systems.

  6. Disentangling interacting dark energy cosmologies with the three-point correlation function

    Science.gov (United States)

    Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea

    2014-10-01

    We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.

  7. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    International Nuclear Information System (INIS)

    Kirsch, Ingo; Kucharski, Piotr

    2012-11-01

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  8. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Kucharski, Piotr [Warsaw Univ. (Poland). Inst. of Theoretical Physics

    2012-11-15

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  9. Gasification of the southern spread of Bolivia-Brazil gas pipeline

    International Nuclear Information System (INIS)

    Frisoli, Caetano; Senna, Ferando Jose Ennes de; Faria, Jose Aurelio Carvalho de

    2000-01-01

    As to the commissioning of the Northern spread, Inert Direct Purging was also adopted for purging the Southern Spread of Bolivia-Brazil Gas Pipeline. This section is 1191 km long and lies between the city of Paulinia in the State of Sao Paulo up to Canoas in the Sate of Rio Grande do Sul. The Inert Direct Purging is based on the principle of high gas injection flow rates at the initial point and the purging of air at the other end, separated by a nitrogen plug. A purging model, developed by The Gas Research Institute, was used in conjunction with the software Pipeline Studio for planning purposes. The arrival of gas at each valve and the size of gas/nitrogen/air interfaces were also recorded. Graphs and tables compare calculated and recorded data. Final results demonstrated model accuracy and its suitable applicability for purging, as well as the Inert Direct Purging method for gas pipelines of extensive lengths. (author)

  10. Point kinetics modeling

    International Nuclear Information System (INIS)

    Kimpland, R.H.

    1996-01-01

    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  11. Electron beam lithographic modeling assisted by artificial intelligence technology

    Science.gov (United States)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  12. Epidemic spreading in time-varying community networks

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-06-15

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.

  13. Epidemic spreading in time-varying community networks

    International Nuclear Information System (INIS)

    Ren, Guangming; Wang, Xingyuan

    2014-01-01

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q c . The epidemic will survive when q > q c and die when q  c . These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure

  14. A stochastic model of depolarization enhancement due to large energy spread in electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1988-10-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of isolated spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA and LEP, at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  15. Dissipative N-point-vortex Models in the Plane

    Science.gov (United States)

    Shashikanth, Banavara N.

    2010-02-01

    A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu-Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.

  16. Explaining the level of credit spreads: Option-implied jump risk premia in a firm value model

    NARCIS (Netherlands)

    Cremers, K.J.M.; Driessen, J.; Maenhout, P.

    2008-01-01

    We study whether option-implied jump risk premia can explain the high observed level of credit spreads. We use a structural jump-diffusion firm value model to assess the level of credit spreads generated by option-implied jump risk premia. Prices and returns of equity index and individual options

  17. Modeling and Optimization of Recycled Water Systems to Augment Urban Groundwater Recharge through Underutilized Stormwater Spreading Basins.

    Science.gov (United States)

    Bradshaw, Jonathan L; Luthy, Richard G

    2017-10-17

    Infrastructure systems that use stormwater and recycled water to augment groundwater recharge through spreading basins represent cost-effective opportunities to diversify urban water supplies. However, technical questions remain about how these types of managed aquifer recharge systems should be designed; furthermore, existing planning tools are insufficient for performing robust design comparisons. Addressing this need, we present a model for identifying the best-case design and operation schedule for systems that deliver recycled water to underutilized stormwater spreading basins. Resulting systems are optimal with respect to life cycle costs and water deliveries. Through a case study of Los Angeles, California, we illustrate how delivering recycled water to spreading basins could be optimally implemented. Results illustrate trade-offs between centralized and decentralized configurations. For example, while a centralized Hyperion system could deliver more recycled water to the Hansen Spreading Grounds, this system incurs approximately twice the conveyance cost of a decentralized Tillman system (mean of 44% vs 22% of unit life cycle costs). Compared to existing methods, our model allows for more comprehensive and precise analyses of cost, water volume, and energy trade-offs among different design scenarios. This model can inform decisions about spreading basin operation policies and the development of new water supplies.

  18. A Simple Model to Rank Shellfish Farming Areas Based on the Risk of Disease Introduction and Spread.

    Science.gov (United States)

    Thrush, M A; Pearce, F M; Gubbins, M J; Oidtmann, B C; Peeler, E J

    2017-08-01

    The European Union Council Directive 2006/88/EC requires that risk-based surveillance (RBS) for listed aquatic animal diseases is applied to all aquaculture production businesses. The principle behind this is the efficient use of resources directed towards high-risk farm categories, animal types and geographic areas. To achieve this requirement, fish and shellfish farms must be ranked according to their risk of disease introduction and spread. We present a method to risk rank shellfish farming areas based on the risk of disease introduction and spread and demonstrate how the approach was applied in 45 shellfish farming areas in England and Wales. Ten parameters were used to inform the risk model, which were grouped into four risk themes based on related pathways for transmission of pathogens: (i) live animal movement, (ii) transmission via water, (iii) short distance mechanical spread (birds) and (iv) long distance mechanical spread (vessels). Weights (informed by expert knowledge) were applied both to individual parameters and to risk themes for introduction and spread to reflect their relative importance. A spreadsheet model was developed to determine quantitative scores for the risk of pathogen introduction and risk of pathogen spread for each shellfish farming area. These scores were used to independently rank areas for risk of introduction and for risk of spread. Thresholds were set to establish risk categories (low, medium and high) for introduction and spread based on risk scores. Risk categories for introduction and spread for each area were combined to provide overall risk categories to inform a risk-based surveillance programme directed at the area level. Applying the combined risk category designation framework for risk of introduction and spread suggested by European Commission guidance for risk-based surveillance, 4, 10 and 31 areas were classified as high, medium and low risk, respectively. © 2016 Crown copyright.

  19. Second feature of the matter two-point function

    Science.gov (United States)

    Tansella, Vittorio

    2018-05-01

    We point out the existence of a second feature in the matter two-point function, besides the acoustic peak, due to the baryon-baryon correlation in the early Universe and positioned at twice the distance of the peak. We discuss how the existence of this feature is implied by the well-known heuristic argument that explains the baryon bump in the correlation function. A standard χ2 analysis to estimate the detection significance of the second feature is mimicked. We conclude that, for realistic values of the baryon density, a SKA-like galaxy survey will not be able to detect this feature with standard correlation function analysis.

  20. Customer Order Decoupling Point Selection Model in Mass Customization Based on MAS

    Institute of Scientific and Technical Information of China (English)

    XU Xuanguo; LI Xiangyang

    2006-01-01

    Mass customization relates to the ability of providing individually designed products or services to customer with high process flexibility or integration. Literatures on mass customization have been focused on mechanism of MC, but little on customer order decoupling point selection. The aim of this paper is to present a model for customer order decoupling point selection of domain knowledge interactions between enterprises and customers in mass customization. Based on the analysis of other researchers' achievements combining the demand problems of customer and enterprise, a model of group decision for customer order decoupling point selection is constructed based on quality function deployment and multi-agent system. Considering relatively the decision makers of independent functional departments as independent decision agents, a decision agent set is added as the third dimensionality to house of quality, the cubic quality function deployment is formed. The decision-making can be consisted of two procedures: the first one is to build each plane house of quality in various functional departments to express each opinions; the other is to evaluate and gather the foregoing sub-decisions by a new plane quality function deployment. Thus, department decision-making can well use its domain knowledge by ontology, and total decision-making can keep simple by avoiding too many customer requirements.

  1. A model for multiseasonal spread of verticillium wilt of lettuce.

    Science.gov (United States)

    Wu, B M; Subbarao, K V

    2014-09-01

    Verticillium wilt, caused by Verticillium dahliae, is a destructive disease in lettuce, and the pathogen is seedborne. Even though maximum seed infestation rates of lettuce seed lots, it is necessary to establish acceptable contamination thresholds to prevent introduction and establishment of the pathogen in lettuce production fields. However, introduction of inoculum into lettuce fields for experimental purposes to determine its long term effects is undesirable. Therefore, we constructed a simulation model to study the spread of Verticillium wilt following pathogen introduction from seed. The model consists of four components: the first for simulating infection of host plants, the second for simulating reproduction of microsclerotia on diseased plants, the third for simulating the survival of microsclerotia, and the fourth for simulating the dispersal of microsclerotia. The simulation results demonstrated that the inoculum density-disease incidence curve parameters and the dispersal gradients affect disease spread in the field. Although a steep dispersal gradient facilitated the establishment of the disease in a new field with a low inoculum density, a long-tail gradient allowed microsclerotia to be dispersed over greater distances, promoting the disease spread in fields with high inoculum density. The simulation results also revealed the importance of avoiding successive lettuce crops in the same field, reducing survival rate of microsclerotia between crops, and the need for breeding resistance against V. dahliae in lettuce cultivars to lower the number of microsclerotia formed on each diseased plant. The simulation results, however, suggested that, even with a low seed infestation rate, the pathogen would eventually become established if susceptible lettuce cultivars were grown consecutively in the same field for many years. A threshold for seed infestation can be established only when two of the three drivers of the disease-(i) low microsclerotia production per

  2. A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs

    Directory of Open Access Journals (Sweden)

    Yanfeng Liang

    2016-01-01

    Full Text Available We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs studied by Greenhalgh and Hay (1997. This was based on the original model constructed by Kaplan (1989 which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1 provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.

  3. A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs.

    Science.gov (United States)

    Liang, Yanfeng; Greenhalgh, David; Mao, Xuerong

    2016-01-01

    We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.

  4. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  5. Reducing Spread in Climate Model Projections of a September Ice-Free Arctic

    Science.gov (United States)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2013-01-01

    This paper addresses the specter of a September ice-free Arctic in the 21st century using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that large spread in the projected timing of the September ice-free Arctic in 30 CMIP5 models is associated at least as much with different atmospheric model components as with initial conditions. Here we reduce the spread in the timing of an ice-free state using two different approaches for the 30 CMIP5 models: (i) model selection based on the ability to reproduce the observed sea ice climatology and variability since 1979 and (ii) constrained estimation based on the strong and persistent relationship between present and future sea ice conditions. Results from the two approaches show good agreement. Under a high-emission scenario both approaches project that September ice extent will drop to approx. 1.7 million sq km in the mid 2040s and reach the ice-free state (defined as 1 million sq km) in 2054-2058. Under a medium-mitigation scenario, both approaches project a decrease to approx.1.7 million sq km in the early 2060s, followed by a leveling off in the ice extent.

  6. Nonthermal fixed points and the functional renormalization group

    International Nuclear Information System (INIS)

    Berges, Juergen; Hoffmeister, Gabriele

    2009-01-01

    Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium

  7. Modelling the minislump spread of superplasticized PPC paste using RLS with the application of Random Kitchen sink

    Science.gov (United States)

    Sathyan, Dhanya; Anand, K. B.; Jose, Chinnu; Aravind, N. R.

    2018-02-01

    Super plasticizers(SPs) are added to the concrete to improve its workability with out changing the water cement ratio. Property of fresh concrete is mainly governed by the cement paste which depends on the dispersion of cement particle. Cement dispersive properties of the SP depends up on its dosage and the family. Mini slump spread diameter with different dosages and families of SP is taken as the measure of workability characteristic of cement paste chosen for measuring the rheological properties of cement paste. The main purpose of this study includes measure the dispersive ability of different families of SP by conducting minislump test and model the minislump spread diameter of the super plasticized Portland Pozzolona Cement (PPC)paste using regularized least square (RLS) approach along with the application of Random kitchen sink (RKS) algorithm. For preparing test and training data for the model 287 different mixes were prepared in the laboratory at a water cement ratio of 0.37 using four locally available brand of Portland Pozzolona cement (PPC) and SP belonging to four different families. Water content, cement weight and amount of SP (by considering it as seven separate input based on their family and brand) were the input parameters and mini slump spread diameter was the output parameter for the model. The variation of predicted and measured values of spread diameters were compared and validated. From this study it was observed that, the model could effectively predict the minislump spread of cement paste

  8. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    Science.gov (United States)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  9. How Crime Spreads Through Imitation in Social Networks: A Simulation Model

    Science.gov (United States)

    Punzo, Valentina

    In this chapter an agent-based model for investigating how crime spreads through social networks is presented. Some theoretical issues related to the sociological explanation of crime are tested through simulation. The agent-based simulation allows us to investigate the relative impact of some mechanisms of social influence on crime, within a set of controlled simulated experiments.

  10. Competing spreading processes on multiplex networks: awareness and epidemics.

    Science.gov (United States)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2014-07-01

    Epidemiclike spreading processes on top of multilayered interconnected complex networks reveal a rich phase diagram of intertwined competition effects. A recent study by the authors [C. Granell et al., Phys. Rev. Lett. 111, 128701 (2013).] presented an analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the spreading of information awareness to prevent infection, on top of multiplex networks. The results in the case in which awareness implies total immunization to the disease revealed the existence of a metacritical point at which the critical onset of the epidemics starts, depending on completion of the awareness process. Here we present a full analysis of these critical properties in the more general scenario where the awareness spreading does not imply total immunization, and where infection does not imply immediate awareness of it. We find the critical relation between the two competing processes for a wide spectrum of parameters representing the interaction between them. We also analyze the consequences of a massive broadcast of awareness (mass media) on the final outcome of the epidemic incidence. Importantly enough, the mass media make the metacritical point disappear. The results reveal that the main finding, i.e., existence of a metacritical point, is rooted in the competition principle and holds for a large set of scenarios.

  11. Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks

    Science.gov (United States)

    Wan, Chen; Li, Tao; Zhang, Wu; Dong, Jing

    2018-03-01

    Considering the influence of the virus' drug-resistant variation, a novel SIVRS (susceptible-infected-variant-recovered-susceptible) epidemic spreading model with variation characteristic on scale-free networks is proposed in this paper. By using the mean-field theory, the spreading dynamics of the model is analyzed in detail. Then, the basic reproductive number R0 and equilibriums are derived. Studies show that the existence of disease-free equilibrium is determined by the basic reproductive number R0. The relationships between the basic reproductive number R0, the variation characteristic and the topology of the underlying networks are studied in detail. Furthermore, our studies prove the global stability of the disease-free equilibrium, the permanence of epidemic and the global attractivity of endemic equilibrium. Numerical simulations are performed to confirm the analytical results.

  12. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  13. Efficiently Synchronized Spread-Spectrum Audio Watermarking with Improved Psychoacoustic Model

    Directory of Open Access Journals (Sweden)

    Xing He

    2008-01-01

    Full Text Available This paper presents an audio watermarking scheme which is based on an efficiently synchronized spread-spectrum technique and a new psychoacoustic model computed using the discrete wavelet packet transform. The psychoacoustic model takes advantage of the multiresolution analysis of a wavelet transform, which closely approximates the standard critical band partition. The goal of this model is to include an accurate time-frequency analysis and to calculate both the frequency and temporal masking thresholds directly in the wavelet domain. Experimental results show that this watermarking scheme can successfully embed watermarks into digital audio without introducing audible distortion. Several common watermark attacks were applied and the results indicate that the method is very robust to those attacks.

  14. Disease spreading in real-life networks

    Science.gov (United States)

    Gallos, Lazaros; Argyrakis, Panos

    2002-08-01

    In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.

  15. A travel time forecasting model based on change-point detection method

    Science.gov (United States)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  16. Ex-vessel corium spreading: results from the VULCANO spreading tests

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe E-mail: christophe.journeau@cea.fr; Boccaccio, Eric E-mail: eric.boccaccio@cea.fr; Brayer, Claude; Cognet, Gerard E-mail: gerard.cognet@cea.fr; Haquet, Jean-Francois E-mail: haquet@eloise.cad.cea.fr; Jegou, Claude E-mail: claude.jegou@cea.fr; Piluso, Pascal E-mail: pascal.piluso@cea.fr; Monerris, Jose E-mail: jose.monerris@cea.fr

    2003-07-01

    function of the nature of the atmosphere, of the phases (FeO{sub x}, UO{sub y}, ...) and of the substrate. These tests with prototypic material have improved our knowledge on corium and contributed to validate spreading models and codes which are used for the assessment of corium mastering concepts.

  17. ON THE ESTIMATION OF DISTANCE DISTRIBUTION FUNCTIONS FOR POINT PROCESSES AND RANDOM SETS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2011-05-01

    Full Text Available This paper discusses various estimators for the nearest neighbour distance distribution function D of a stationary point process and for the quadratic contact distribution function Hq of a stationary random closed set. It recommends the use of Hanisch's estimator of D, which is of Horvitz-Thompson type, and the minussampling estimator of Hq. This recommendation is based on simulations for Poisson processes and Boolean models.

  18. New results for 5-point functions

    International Nuclear Information System (INIS)

    Gluza, J.

    2007-12-01

    Bhabha scattering is one of the processes at the ILC where high precision data will be expected. The complete NNLO corrections include radiative loop corrections, with contributions from Feynman diagrams with five external legs. We take these diagrams as an example and discuss several features of the evaluation of pentagon diagrams. The tensor functions are usually reduced to simpler scalar functions. Here we study, as an alternative, the application of Mellin-Barnes representations to 5-point functions. There is no evidence for an improved numerical evaluation of their finite, physical parts. However, the approach gives interesting insights into the treatment of the IR- singularities. (orig.)

  19. Traveling waves and spreading speed on a lattice model with age structure

    Directory of Open Access Journals (Sweden)

    Zongyi Wang

    2012-09-01

    Full Text Available In this article, we study a lattice differential model for a single species with distributed age-structure in an infinite patchy environment. Using method of approaches by Diekmann and Thieme, we develop a comparison principle and construct a suitable sub-solution to the given model, and show that there exists a spreading speed of the system which in fact coincides with the minimal wave speed.

  20. Modelling of the over-exposed pixel area of CCD cameras caused by laser dazzling

    NARCIS (Netherlands)

    Benoist, K.W.; Schleijpen, R.M.A.

    2014-01-01

    A simple model has been developed and implemented in Matlab code, predicting the over-exposed pixel area of cameras caused by laser dazzling. Inputs of this model are the laser irradiance on the front optics of the camera, the Point Spread Function (PSF) of the used optics, the integration time of

  1. Mapping Pn amplitude spreading and attenuation in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Laboratory; Phillips, William S [Los Alamos National Laboratory; Stead, Richard J [Los Alamos National Laboratory

    2010-12-06

    Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.

  2. Credit Spreads Across the Business Cycle

    DEFF Research Database (Denmark)

    Nielsen, Mads Stenbo

    This paper studies how corporate bond spreads vary with the business cycle. I show that both level and slope of empirical credit spread curves are correlated with the state of the economy, and I link this to variation in idiosyncratic jump risk. I develop a structural credit risk model...... that accounts for both business cycle and jump risk, and show by estimation that the model captures the counter-cyclical level and pro-cyclical slope of empirical credit spread curves. In addition, I provide a new procedure for estimation of idiosyncratic jump risk, which is consistent with observed shocks...

  3. A density functional theory based approach for predicting melting points of ionic liquids.

    Science.gov (United States)

    Chen, Lihua; Bryantsev, Vyacheslav S

    2017-02-01

    Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro

  4. Multiscale analysis of spreading in a large communication network

    International Nuclear Information System (INIS)

    Kivelä, Mikko; Pan, Raj Kumar; Kaski, Kimmo; Kertész, János; Saramäki, Jari; Karsai, Márton

    2012-01-01

    In temporal networks, both the topology of the underlying network and the timings of interaction events can be crucial in determining how a dynamic process mediated by the network unfolds. We have explored the limiting case of the speed of spreading in the SI model, set up such that an event between an infectious and a susceptible individual always transmits the infection. The speed of this process sets an upper bound for the speed of any dynamic process that is mediated through the interaction events of the network. With the help of temporal networks derived from large-scale time-stamped data on mobile phone calls, we extend earlier results that indicate the slowing-down effects of burstiness and temporal inhomogeneities. In such networks, links are not permanently active, but dynamic processes are mediated by recurrent events taking place on the links at specific points in time. We perform a multiscale analysis and pinpoint the importance of the timings of event sequences on individual links, their correlations with neighboring sequences, and the temporal pathways taken by the network-scale spreading process. This is achieved by studying empirically and analytically different characteristic relay times of links, relevant to the respective scales, and a set of temporal reference models that allow for removing selected time-domain correlations one by one. Our analysis shows that for the spreading velocity, time-domain inhomogeneities are as important as the network topology, which indicates the need to take time-domain information into account when studying spreading dynamics. In particular, results for the different characteristic relay times underline the importance of the burstiness of individual links

  5. Spread and Liquidity Issues: A markets comparison

    Directory of Open Access Journals (Sweden)

    Strašek Sebastjan

    2016-03-01

    Full Text Available The financial crises are closely connected with spread changes and liquidity issues. After defining and addressing spread considerations, we research in this paper the topic of liquidity issues in times of economic crisis. We analyse the liquidity effects as recorded on spreads of securities from different markets. We stipulate that higher international risk aversion in times of financial crises coincides with widening security spreads. The paper then introduces liquidity as a risk factor into the standard value-at-risk framework, using GARCH methodology. The comparison of results of these models suggests that the size of the tested markets does not have a strong effect on the models. Thus, we find that spread analysis is an appropriate tool for analysing liquidity issues during a financial crisis.

  6. Exploitation of geoinformatics at modelling of functional effects of forest functions

    International Nuclear Information System (INIS)

    Sitko, R.

    2005-01-01

    From point of view of space modelling geoinformatics has wide application in group of ecologic function of forest because they directly depend on natural conditions of site. A causa de cy modelling application was realised on the territory of TANAP (Tatras National Park), West Tatras, in the part Liptovske Kopy. The size of this territory is about 4,900 hectares and forests there subserve the first of all significant ecological functions, what are soil protection from erosion, water management, and anti-avalanche function. Of environmental functions they have recreational role of the forest and function of nature protection. Anti-avalanche and anti-erosion function of forest is evaluated in this presentation

  7. Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels

    Science.gov (United States)

    David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi

    2016-01-01

    Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...

  8. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    Science.gov (United States)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  9. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2009-01-01

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  10. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  11. New Experiments and a Model-Driven Approach for Interpreting Middle Stone Age Lithic Point Function Using the Edge Damage Distribution Method.

    Science.gov (United States)

    Schoville, Benjamin J; Brown, Kyle S; Harris, Jacob A; Wilkins, Jayne

    2016-01-01

    The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout the MSA. How these tools were being used and discarded across a changing Pleistocene landscape can provide insight into how MSA populations prioritized technological and foraging decisions. Creating inferential links between experimental and archaeological tool use helps to establish prehistoric tool function, but is complicated by the overlaying of post-depositional damage onto behaviorally worn tools. Taphonomic damage patterning can provide insight into site formation history, but may preclude behavioral interpretations of tool function. Here, multiple experimental processes that form edge damage on unretouched lithic points from taphonomic and behavioral processes are presented. These provide experimental distributions of wear on tool edges from known processes that are then quantitatively compared to the archaeological patterning of stone point edge damage from three MSA lithic assemblages-Kathu Pan 1, Pinnacle Point Cave 13B, and Die Kelders Cave 1. By using a model-fitting approach, the results presented here provide evidence for variable MSA behavioral strategies of stone point utilization on the landscape consistent with armature tips at KP1, and cutting tools at PP13B and DK1, as well as damage contributions from post-depositional sources across assemblages. This study provides a method with which landscape-scale questions of early modern human tool-use and site-use can be addressed.

  12. Analytical solution of a stochastic model of risk spreading with global coupling

    Science.gov (United States)

    Morita, Satoru; Yoshimura, Jin

    2013-11-01

    We study a stochastic matrix model to understand the mechanics of risk spreading (or bet hedging) by dispersion. Up to now, this model has been mostly dealt with numerically, except for the well-mixed case. Here, we present an analytical result that shows that optimal dispersion leads to Zipf's law. Moreover, we found that the arithmetic ensemble average of the total growth rate converges to the geometric one, because the sample size is finite.

  13. Mathematical Models of Cardiac Pacemaking Function

    Science.gov (United States)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  14. Modelling the effect of an alternative host population on the spread of citrus Huanglongbing

    Science.gov (United States)

    d'A. Vilamiu, Raphael G.; Ternes, Sonia; Laranjeira, Francisco F.; de C. Santos, Tâmara T.

    2013-10-01

    The objective of this work was to model the spread of citrus Huanglongbing (HLB) considering the presence of a population of alternative hosts (Murraya paniculata). We developed a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delays in the latency and incubation phases of the disease in the plants and a delay period on the nymphal stage of Diaphorina citri, the insect vector of HLB in Brazil. The results of numerical simulations indicate that alternative hosts should not play a crucial role on HLB dynamics considering a typical scenario for the Recôncavo Baiano region in Brazil . Also, the current policy of removing symptomatic plants every three months should not be expected to significantly hinder HLB spread.

  15. Influence of trust in the spreading of information

    Science.gov (United States)

    Wu, Hongrun; Arenas, Alex; Gómez, Sergio

    2017-01-01

    The understanding and prediction of information diffusion processes on networks is a major challenge in network theory with many implications in social sciences. Many theoretical advances occurred due to stochastic spreading models. Nevertheless, these stochastic models overlooked the influence of rational decisions on the outcome of the process. For instance, different levels of trust in acquaintances do play a role in information spreading, and actors may change their spreading decisions during the information diffusion process accordingly. Here, we study an information-spreading model in which the decision to transmit or not is based on trust. We explore the interplay between the propagation of information and the trust dynamics happening on a two-layer multiplex network. Actors' trustable or untrustable states are defined as accumulated cooperation or defection behaviors, respectively, in a Prisoner's Dilemma setup, and they are controlled by a memory span. The propagation of information is abstracted as a threshold model on the information-spreading layer, where the threshold depends on the trustability of agents. The analysis of the model is performed using a tree approximation and validated on homogeneous and heterogeneous networks. The results show that the memory of previous actions has a significant effect on the spreading of information. For example, the less memory that is considered, the higher is the diffusion. Information is highly promoted by the emergence of trustable acquaintances. These results provide insight into the effect of plausible biases on spreading dynamics in a multilevel networked system.

  16. Spreading in online social networks: the role of social reinforcement.

    Science.gov (United States)

    Zheng, Muhua; Lü, Linyuan; Zhao, Ming

    2013-07-01

    Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.

  17. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere–fire numerical model

    OpenAIRE

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-01-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In t...

  18. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: Pumas as a case study

    Science.gov (United States)

    Katherine A. Zeller; Kevin McGarigal; Paul Beier; Samuel A. Cushman; T. Winston Vickers; Walter M. Boyce

    2014-01-01

    Estimating landscape resistance to animal movement is the foundation for connectivity modeling, and resource selection functions based on point data are commonly used to empirically estimate resistance. In this study, we used GPS data points acquired at 5-min intervals from radiocollared pumas in southern California to model context-dependent point selection...

  19. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  20. Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.

    Science.gov (United States)

    Denis, Marie; Cochard, Benoît; Syahputra, Indra; de Franqueville, Hubert; Tisné, Sébastien

    2018-02-01

    In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Epidemic spreading between two coupled subpopulations with inner structures

    Science.gov (United States)

    Ruan, Zhongyuan; Tang, Ming; Gu, Changgui; Xu, Jinshan

    2017-10-01

    The structure of underlying contact network and the mobility of agents are two decisive factors for epidemic spreading in reality. Here, we study a model consisting of two coupled subpopulations with intra-structures that emphasizes both the contact structure and the recurrent mobility pattern of individuals simultaneously. We show that the coupling of the two subpopulations (via interconnections between them and round trips of individuals) makes the epidemic threshold in each subnetwork to be the same. Moreover, we find that the interconnection probability between two subpopulations and the travel rate are important factors for spreading dynamics. In particular, as a function of interconnection probability, the epidemic threshold in each subpopulation decreases monotonously, which enhances the risks of an epidemic. While the epidemic threshold displays a non-monotonic variation as travel rate increases. Moreover, the asymptotic infected density as a function of travel rate in each subpopulation behaves differently depending on the interconnection probability.

  2. Experimental oil release on Haltenbanken 1982. Drifting and spreading of oil. [Norway

    Energy Technology Data Exchange (ETDEWEB)

    Soerstroem, S.E.; Johansen, Oe; Celius, K.K.; Audunson, T.; Steinbakke, P.

    1984-03-29

    In the experiment, 100 m/sup 3/ of Statfjord crude oil was released at Haltenbanken. The oil was followed for 7 days and projects concerning drifting and spreading of oil, microbiological decay and ecological effects, ecological studies of the impact on fish, zooplancton, fish eggs and larvae, training with equipment and control functions and experiment leading and coordination were carried out. In this project ''drifting and spreading of oil'' information on physical environment, decay of oil, mixing of oil in water, oil spill surveillance, warning and simulation and numerical modelling are collected. The results of these areas were compared to the mathematical simulation and warning models Oilsim and Sliktrak. New methods for in situ measurements for relative values of oil in water were used. It was found that most of the physical and chemical changes of oil spills occur during the first 24 hours. The drifting and alterations of the oil was recorded and a new simulation model for three-dimentional spreading of oil in water was made. 49 tables, 130 drawings, 32 references.

  3. Measuring landscape-scale spread and persistence of an invaded submerged plant community from airborne remote sensing.

    Science.gov (United States)

    Santos, Maria J; Khanna, Shruti; Hestir, Erin L; Greenberg, Jonathan A; Ustin, Susan L

    2016-09-01

    Processes of spread and patterns of persistence of invasive species affect species and communities in the new environment. Predicting future rates of spread is of great interest for timely management decisions, but this depends on models that rely on understanding the processes of invasion and historic observations of spread and persistence. Unfortunately, the rates of spread and patterns of persistence are difficult to model or directly observe, especially when multiple rates of spread and diverse persistence patterns may be co-occurring over the geographic distribution of the invaded ecosystem. Remote sensing systematically acquires data over large areas at fine spatial and spectral resolutions over multiple time periods that can be used to quantify spread processes and persistence patterns. We used airborne imaging spectroscopy data acquired once a year for 5 years from 2004 to 2008 to map an invaded submerged aquatic vegetation (SAV) community across 2220 km 2 of waterways in the Sacramento-San Joaquin River Delta, California, USA, and measured its spread rate and its persistence. Submerged aquatic vegetation covered 13-23 km 2 of the waterways (6-11%) every year. Yearly new growth accounted for 40-60% of the SAV area, ~50% of which survived to following year. Spread rates were overall negative and persistence decreased with time. From this dataset, we were able to identify both radial and saltatorial spread of the invaded SAV in the entire extent of the Delta over time. With both decreasing spread rate and persistence, it is possible that over time the invasion of this SAV community could decrease its ecological impact. A landscape-scale approach allows measurements of all invasion fronts and the spatial anisotropies associated with spread processes and persistence patterns, without spatial interpolation, at locations both proximate and distant to the focus of invasion at multiple points in time. © 2016 by the Ecological Society of America.

  4. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  5. Stochastic spatio-temporal modelling of African swine fever spread in the European Union during the high risk period.

    Science.gov (United States)

    Nigsch, Annette; Costard, Solenne; Jones, Bryony A; Pfeiffer, Dirk U; Wieland, Barbara

    2013-03-01

    African swine fever (ASF) is a notifiable viral pig disease with high mortality and serious socio-economic consequences. Since ASF emerged in Georgia in 2007 the disease has spread to several neighbouring countries and cases have been detected in areas bordering the European Union (EU). It is uncertain how fast the virus would be able to spread within the unrestricted European trading area if it were introduced into the EU. This project therefore aimed to develop a model for the spread of ASF within and between the 27 Member States (MS) of the EU during the high risk period (HRP) and to identify MS during that period would most likely contribute to ASF spread ("super-spreaders") or MS that would most likely receive cases from other MS ("super-receivers"). A stochastic spatio-temporal state-transition model using simulated individual farm records was developed to assess silent ASF virus spread during different predefined HRPs of 10-60 days duration. Infection was seeded into farms of different pig production types in each of the 27 MS. Direct pig-to-pig transmission and indirect transmission routes (pig transport lorries and professional contacts) were considered the main pathways during the early stages of an epidemic. The model was parameterised using data collated from EUROSTAT, TRACES, a questionnaire sent to MS, and the scientific literature. Model outputs showed that virus circulation was generally limited to 1-2 infected premises per outbreak (95% IQR: 1-4; maximum: 10) with large breeder farms as index case resulting in most infected premises. Seven MS caused between-MS spread due to intra-Community trade during the first 10 days after seeding infection. For a HRP of 60 days from virus introduction, movements of infected pigs will originate at least once from 16 MS, with 6 MS spreading ASF in more than 10% of iterations. Two thirds of all intra-Community spread was linked to six trade links only. Denmark, the Netherlands, Lithuania and Latvia were identified

  6. User Modeling for Point-of-Interest Recommendations in Location-Based Social Networks: The State of the Art

    Directory of Open Access Journals (Sweden)

    Shudong Liu

    2018-01-01

    Full Text Available The rapid growth of location-based services (LBSs has greatly enriched people’s urban lives and attracted millions of users in recent years. Location-based social networks (LBSNs allow users to check-in at a physical location and share daily tips on points of interest (POIs with their friends anytime and anywhere. Such a check-in behavior can make daily real-life experiences spread quickly through the Internet. Moreover, such check-in data in LBSNs can be fully exploited to understand the basic laws of humans’ daily movement and mobility. This paper focuses on reviewing the taxonomy of user modeling for POI recommendations through the data analysis of LBSNs. First, we briefly introduce the structure and data characteristics of LBSNs, and then we present a formalization of user modeling for POI recommendations in LBSNs. Depending on which type of LBSNs data was fully utilized in user modeling approaches for POI recommendations, we divide user modeling algorithms into four categories: pure check-in data-based user modeling, geographical information-based user modeling, spatiotemporal information-based user modeling, and geosocial information-based user modeling. Finally, summarizing the existing works, we point out the future challenges and new directions in five possible aspects.

  7. A suite of models to support the quantitative assessment of spread in pest risk analysis

    NARCIS (Netherlands)

    Robinet, C.; Kehlenbeck, H.; Werf, van der W.

    2012-01-01

    In the frame of the EU project PRATIQUE (KBBE-2007-212459 Enhancements of pest risk analysis techniques) a suite of models was developed to support the quantitative assessment of spread in pest risk analysis. This dataset contains the model codes (R language) for the four models in the suite. Three

  8. Correlation function of four spins in the percolation model

    Directory of Open Access Journals (Sweden)

    Vladimir S. Dotsenko

    2016-10-01

    It is known that the four-point functions define the actual fusion rules of a particular model. In this respect, we find that fusion of two spins, of dimension Δσ=596, produce a new channel, in the 4-point function, which is due to the operator with dimension Δ=5/8.

  9. Model for Semantically Rich Point Cloud Data

    Science.gov (United States)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  10. MODEL FOR SEMANTICALLY RICH POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    F. Poux

    2017-10-01

    Full Text Available This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  11. Forecasting oil price movements with crack spread futures

    International Nuclear Information System (INIS)

    Murat, Atilim; Tokat, Ekin

    2009-01-01

    In oil markets, the crack spread refers to the crude-product price relationship. Refiners are major participants in oil markets and they are primarily exposed to the crack spread. In other words, refiner activity is substantially driven by the objective of protecting the crack spread. Moreover, oil consumers are active participants in the oil hedging market and they are frequently exposed to the crack spread. From another perspective, hedge funds are heavily using crack spread to speculate in oil markets. Based on the high volume of crack spread futures trading in oil markets, the question we want to raise is whether the crack spread futures can be a good predictor of oil price movements. We investigated first whether there is a causal relationship between the crack spread futures and the spot oil markets in a vector error correction framework. We found the causal impact of crack spread futures on spot oil market both in the long- and the short-run after April 2003 where we detected a structural break in the model. To examine the forecasting performance, we use the random walk model (RWM) as a benchmark, and we also evaluate the forecasting power of crack spread futures against the crude oil futures. The results showed that (a) both the crack spread futures and the crude oil futures outperformed the RWM; and (b) the crack spread futures are almost as good as the crude oil futures in predicting the movements in spot oil markets. (author)

  12. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    International Nuclear Information System (INIS)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  13. The (lack of) relation between straylight and visual acuity. Two domains of the point-spread-function

    NARCIS (Netherlands)

    van den Berg, Thomas J T P

    2017-01-01

    PURPOSE: The effect of cataract and other media opacities on functional vision is typically assessed clinically using visual acuity. In both clinical and basic research, straylight (the functional result of light scattering in the eye) is commonly measured. The purpose of the present study was to

  14. Three-Factor Market-Timing Models with Fama and French's Spread Variables

    Directory of Open Access Journals (Sweden)

    Joanna Olbryś

    2010-01-01

    Full Text Available The traditional performance measurement literature has attempted to distinguish security selection, or stock-picking ability, from market-timing, or the ability to predict overall market returns. However, the literature finds that it is not easy to separate ability into such dichotomous categories. Some researchers have developed models that allow the decomposition of manager performance into market-timing and selectivity skills. The main goal of this paper is to present modified versions of classical market-timing models with Fama and French’s spread variables SMB and HML, in the case of Polish equity mutual funds. (original abstract

  15. Heterogeneous incidence and propagation of spreading depolarizations

    Science.gov (United States)

    Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek

    2016-01-01

    Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866

  16. Three point functions in the large N=4 holography

    International Nuclear Information System (INIS)

    Ahn, Changhyun; Kim, Hyunsu

    2015-01-01

    Sixteen higher spin currents with spins (1,(3/2),(3/2),2), ((3/2),2,2,(5/2)), ((3/2),2,2,(5/2)), and (2,(5/2),(5/2),3) were previously obtained in an extension of the large N=4 ‘nonlinear’ superconformal algebra in two dimensions. By carefully analyzing the zero-mode eigenvalue equations, three-point functions of bosonic (higher spin) currents are obtained with two scalars for any finite N (where SU(N+2) is the group of coset) and k (the level of spin-1 Kac Moody current). Furthermore, these 16 higher spin currents are implicitly obtained in an extension of large N=4 ‘linear’ superconformal algebra for generic N and k. The corresponding three-point functions are also determined. Under the large N ’t Hooft limit, the two corresponding three-point functions in the nonlinear and linear versions coincide even though they are completely different for finite N and k.

  17. SNARE-mediated trafficking of α5β1 integrin is required for spreading in CHO cells

    International Nuclear Information System (INIS)

    Skalski, Michael; Coppolino, Marc G.

    2005-01-01

    In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cell spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of α 5 β 1 integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading

  18. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  19. Blurred image restoration using knife-edge function and optimal window Wiener filtering

    Science.gov (United States)

    Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects. PMID:29377950

  20. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT.

    Science.gov (United States)

    Lee, Young Sub; Kim, Jin Su; Kim, Kyeong Min; Kang, Joo Hyun; Lim, Sang Moo; Kim, Hee-Joung

    2014-05-01

    The Siemens Biograph TruePoint TrueV (B-TPTV) positron emission tomography (PET) scanner performs 3D PET reconstruction using a system matrix with point spread function (PSF) modeling (called the True X reconstruction). PET resolution was dramatically improved with the True X method. In this study, we assessed the spatial resolution and image quality on a B-TPTV PET scanner. In addition, we assessed the feasibility of animal imaging with a B-TPTV PET and compared it with a microPET R4 scanner. Spatial resolution was measured at center and at 8 cm offset from the center in transverse plane with warm background activity. True X, ordered subset expectation maximization (OSEM) without PSF modeling, and filtered back-projection (FBP) reconstruction methods were used. Percent contrast (% contrast) and percent background variability (% BV) were assessed according to NEMA NU2-2007. The recovery coefficient (RC), non-uniformity, spill-over ratio (SOR), and PET imaging of the Micro Deluxe Phantom were assessed to compare image quality of B-TPTV PET with that of the microPET R4. When True X reconstruction was used, spatial resolution was RC with True X reconstruction was higher than that with the FBP method and the OSEM without PSF modeling method on the microPET R4. The non-uniformity with True X reconstruction was higher than that with FBP and OSEM without PSF modeling on microPET R4. SOR with True X reconstruction was better than that with FBP or OSEM without PSF modeling on the microPET R4. This study assessed the performance of the True X reconstruction. Spatial resolution with True X reconstruction was improved by 45 % and its % contrast was significantly improved compared to those with the conventional OSEM without PSF modeling reconstruction algorithm. The noise level was higher than that with the other reconstruction algorithm. Therefore, True X reconstruction should be used with caution when quantifying PET data.

  1. The small world yields the most effective information spreading

    International Nuclear Information System (INIS)

    Lü Linyuan; Chen Duanbing; Zhou Tao

    2011-01-01

    The spreading dynamics of information and diseases are usually analyzed by using a unified framework and analogous models. In this paper, we propose a model to emphasize the essential difference between information spreading and epidemic spreading, where the memory effects, the social reinforcement and the non-redundancy of contacts are taken into account. Under certain conditions, the information spreads faster and broader in regular networks than in random networks, which to some extent supports the recent experimental observation of spreading in online society (Centola D 2010 Science 329 1194). At the same time, the simulation result indicates that the random networks tend to be favorable for effective spreading when the network size increases. This challenges the validity of the above-mentioned experiment for large-scale systems. More importantly, we show that the spreading effectiveness can be sharply enhanced by introducing a little randomness into the regular structure, namely the small-world networks yield the most effective information spreading. This work provides insights into the role of local clustering in information spreading. (paper)

  2. Farm-retail price spread for pork in Malaysia

    OpenAIRE

    Tey, (John) Yeong-Sheng; Randy, Stringer; Wendy, Umberger

    2009-01-01

    The price difference between farm and retail levels is called price spread, which is constituted mostly by marketing costs and profits. From the price spread, this paper intends to estimate elasticities of price transmission for pork in Malaysia via different empirical model specifications of markup pricing model. Using data from January 1997 to December 2007, a quantitative analysis of farm-to-retail price spreads was undertaken for pork in Malaysia. It was found that retail price is the onl...

  3. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  4. One-point functions in defect CFT and integrability

    Energy Technology Data Exchange (ETDEWEB)

    Leeuw, Marius de; Kristjansen, Charlotte [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Zarembo, Konstantin [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 08 (Sweden)

    2015-08-19

    We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX{sub 1/2} spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k=2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k→∞.

  5. Einstein gravity 3-point functions from conformal field theory

    Science.gov (United States)

    Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-12-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.

  6. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  7. On the $a$-points of the derivatives of the Riemann zeta function

    OpenAIRE

    Onozuka, Tomokazu

    2016-01-01

    We prove three results on the $a$-points of the derivatives of the Riemann zeta function. The first result is a formula of the Riemann-von Mangoldt type; we estimate the number of the $a$-points of the derivatives of the Riemann zeta function. The second result is on certain exponential sum involving $a$-points. The third result is an analogue of the zero density theorem. We count the $a$-points of the derivatives of the Riemann zeta function in $1/2-(\\log\\log T)^2/\\log T

  8. The Effect of Scalp Point Cluster-Needling on Learning and Memory Function and Neurotransmitter Levels in Rats with Vascular Dementia

    OpenAIRE

    Yang, Junli; Litscher, Gerhard; Li, Haitao; Guo, Wenhai; Liang, Zhang; Zhang, Ting; Wang, Weihua; Li, Xiaoyan; Zhou, Yao; Zhao, Bing; Rong, Qi; Sheng, Zemin; Gaischek, Ingrid; Litscher, Daniela; Wang, Lu

    2014-01-01

    We observed the effect of scalp point cluster-needling treatment on learning and memory function and neurotransmitter levels in rats with vascular dementia (VD). Permanent ligation of the bilateral carotid arteries was used to create the VD rat model. A Morris water maze was used to measure the rats' learning and memory function, and the changes in neurotransmitter levels in the rats' hippocampus were analyzed. The results show that scalp point cluster-needling can increase the VD rat model's...

  9. A mechanistic model for spread of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) within a pig herd

    DEFF Research Database (Denmark)

    Sørensen, Anna Irene Vedel; Toft, Nils; Boklund, Anette

    2017-01-01

    Before an efficient control strategy for livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) in pigs can be decided upon, it is necessary to obtain a betterunderstanding of how LA-MRSA spreads and persists within a pig herd, once it is introduced.We here present a mechanistic...... stochastic discrete-event simulation model forspread of LA-MRSA within a farrow-to-finish sow herd to aid in this. The model was individual-based and included three different disease compartments: susceptible, intermittent or persistent shedder of MRSA. The model was used for studying transmission dynamics...... and within-farm prevalence after different introductions of LA-MRSA into a farm. The spread of LA-MRSA throughout the farm mainly followed the movement of pigs. After spread of LA-MRSA had reached equilibrium, the prevalence of LA-MRSA shedders was predicted to be highest in the farrowing unit, independent...

  10. On the regularization of extremal three-point functions involving giant gravitons

    Directory of Open Access Journals (Sweden)

    Charlotte Kristjansen

    2015-11-01

    Full Text Available In the AdS5/CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match the corresponding three-point functions obtained in the tree-level gauge theory. The string theory computation relies on a certain regularization procedure whose justification is based on the match between gauge and string theory. We revisit the regularization procedure and reformulate it in a way which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are not protected and where a match between tree-level gauge theory and semi-classical string theory is hence not expected.

  11. Topology dependent epidemic spreading velocity in weighted networks

    International Nuclear Information System (INIS)

    Duan, Wei; Qiu, Xiaogang; Quax, Rick; Lees, Michael; Sloot, Peter M A

    2014-01-01

    Many diffusive processes occur on structured networks with weighted links, such as disease spread by airplane transport or information diffusion in social networks or blogs. Understanding the impact of weight-connectivity correlations on epidemic spreading in weighted networks is crucial to support decision-making on disease control and other diffusive processes. However, a real understanding of epidemic spreading velocity in weighted networks is still lacking. Here we conduct a numerical study of the velocity of a Reed–Frost epidemic spreading process in various weighted network topologies as a function of the correlations between edge weights and node degrees. We find that a positive weight-connectivity correlation leads to a faster epidemic spreading compared to an unweighted network. In contrast, we find that both uncorrelated and negatively correlated weight distributions lead to slower spreading processes. In the case of positive weight-connectivity correlations, the acceleration of spreading velocity is weak when the heterogeneity of weight distribution increases. (paper)

  12. Diet models with linear goal programming: impact of achievement functions.

    Science.gov (United States)

    Gerdessen, J C; de Vries, J H M

    2015-11-01

    Diet models based on goal programming (GP) are valuable tools in designing diets that comply with nutritional, palatability and cost constraints. Results derived from GP models are usually very sensitive to the type of achievement function that is chosen.This paper aims to provide a methodological insight into several achievement functions. It describes the extended GP (EGP) achievement function, which enables the decision maker to use either a MinSum achievement function (which minimizes the sum of the unwanted deviations) or a MinMax achievement function (which minimizes the largest unwanted deviation), or a compromise between both. An additional advantage of EGP models is that from one set of data and weights multiple solutions can be obtained. We use small numerical examples to illustrate the 'mechanics' of achievement functions. Then, the EGP achievement function is demonstrated on a diet problem with 144 foods, 19 nutrients and several types of palatability constraints, in which the nutritional constraints are modeled with fuzzy sets. Choice of achievement function affects the results of diet models. MinSum achievement functions can give rise to solutions that are sensitive to weight changes, and that pile all unwanted deviations on a limited number of nutritional constraints. MinMax achievement functions spread the unwanted deviations as evenly as possible, but may create many (small) deviations. EGP comprises both types of achievement functions, as well as compromises between them. It can thus, from one data set, find a range of solutions with various properties.

  13. Unbounded critical points for a class of lower semicontinuous functionals

    OpenAIRE

    Pellacci, Benedetta; Squassina, Marco

    2003-01-01

    In this paper we prove existence and multiplicity results of unbounded critical points for a general class of weakly lower semicontinuous functionals. We will apply a suitable nonsmooth critical point theory.

  14. Oil Price Forecasting Using Crack Spread Futures and Oil Exchange Traded Funds

    Directory of Open Access Journals (Sweden)

    Hankyeung Choi

    2015-04-01

    Full Text Available Given the emerging consensus from previous studies that crude oil and refined product (as well as crack spread prices are cointegrated, this study examines the link between the crude oil spot and crack spread derivatives markets. Specifically, the usefulness of the two crack spread derivatives products (namely, crack spread futures and the ETF crack spread for modeling and forecasting daily OPEC crude oil spot prices is evaluated. Based on the results of a structural break test, the sample is divided into pre-crisis, crisis, and post-crisis periods. We find a unidirectional relationship from the two crack spread derivatives markets to the crude oil spot market during the post-crisis period. In terms of forecasting performance, the forecasting models based on crack spread futures and the ETF crack spread outperform the Random Walk Model (RWM, both in-sample and out-of-sample. In addition, on average, the results suggest that information from the ETF crack spread market contributes more to the forecasting models than information from the crack spread futures market.

  15. Two-point model for electron transport in EBT

    International Nuclear Information System (INIS)

    Chiu, S.C.; Guest, G.E.

    1980-01-01

    The electron transport in EBT is simulated by a two-point model corresponding to the central plasma and the edge. The central plasma is assumed to obey neoclassical collisionless transport. The edge plasma is assumed turbulent and modeled by Bohm diffusion. The steady-state temperatures and densities in both regions are obtained as functions of neutral influx and microwave power. It is found that as the neutral influx decreases and power increases, the edge density decreases while the core density increases. We conclude that if ring instability is responsible for the T-M mode transition, and if stability is correlated with cold electron density at the edge, it will depend sensitively on ambient gas pressure and microwave power

  16. Pseudo-dynamic source modelling with 1-point and 2-point statistics of earthquake source parameters

    KAUST Repository

    Song, S. G.

    2013-12-24

    Ground motion prediction is an essential element in seismic hazard and risk analysis. Empirical ground motion prediction approaches have been widely used in the community, but efficient simulation-based ground motion prediction methods are needed to complement empirical approaches, especially in the regions with limited data constraints. Recently, dynamic rupture modelling has been successfully adopted in physics-based source and ground motion modelling, but it is still computationally demanding and many input parameters are not well constrained by observational data. Pseudo-dynamic source modelling keeps the form of kinematic modelling with its computational efficiency, but also tries to emulate the physics of source process. In this paper, we develop a statistical framework that governs the finite-fault rupture process with 1-point and 2-point statistics of source parameters in order to quantify the variability of finite source models for future scenario events. We test this method by extracting 1-point and 2-point statistics from dynamically derived source models and simulating a number of rupture scenarios, given target 1-point and 2-point statistics. We propose a new rupture model generator for stochastic source modelling with the covariance matrix constructed from target 2-point statistics, that is, auto- and cross-correlations. Our sensitivity analysis of near-source ground motions to 1-point and 2-point statistics of source parameters provides insights into relations between statistical rupture properties and ground motions. We observe that larger standard deviation and stronger correlation produce stronger peak ground motions in general. The proposed new source modelling approach will contribute to understanding the effect of earthquake source on near-source ground motion characteristics in a more quantitative and systematic way.

  17. Spreading dynamics of an e-commerce preferential information model on scale-free networks

    Science.gov (United States)

    Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding

    2017-02-01

    In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.

  18. On the change points of mean residual life and failure rate functions for some generalized gamma type distributions

    Directory of Open Access Journals (Sweden)

    Parsa M.

    2014-01-01

    Full Text Available Mean residual life and failure rate functions are ubiquitously employed in reliability analysis. The term of useful period of lifetime distributions of bathtub-shaped failure rate functions is referred to the flat rigion of this function and has attracted authors and researchers in reliability, actuary, and survival analysis. In recent years, considering the change points of mean residual life and failure rate functions has been extensively utelized in determining the optimum burn-in time. In this paper we investigate the difference between the change points of failure rate and mean residual life functions of some generalized gamma type distributions due to the capability of these distributions in modeling various bathtub-shaped failure rate functions.

  19. Model plant Key Measurement Points

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    For IAEA safeguards a Key Measurement Point is defined as the location where nuclear material appears in such a form that it may be measured to determine material flow or inventory. This presentation describes in an introductory manner the key measurement points and associated measurements for the model plant used in this training course

  20. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core

  1. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  2. New models of hematogenous ovarian cancer metastasis demonstrate preferential spread to the ovary and a requirement for the ovary for abdominal dissemination.

    Science.gov (United States)

    Coffman, Lan G; Burgos-Ojeda, Daniela; Wu, Rong; Cho, Kathleen; Bai, Shoumei; Buckanovich, Ronald J

    2016-09-01

    Emerging evidence suggest that many high-grade serous "ovarian" cancers (HGSOC) start in the fallopian tube. Cancer cells are then recruited to the ovary and then spread diffusely through the abdomen. The mechanism of ovarian cancer spread was thought to be largely due to direct shedding of tumor cells into the peritoneal cavity with vascular spread being of limited importance. Recent work challenges this dogma, suggesting hematogenous spread of ovarian cancer may play a larger role in ovarian cancer cell metastasis than previously thought. One reason the role of vascular spread of ovarian cancer has not been fully elucidated is the lack of easily accessible models of vascular ovarian cancer metastasis. Here, we present 3 metastatic models of ovarian cancer which confirm the ability of ovarian cancer to hematogenously spread. Strikingly, we observe a high rate of metastasis to the ovary with the development of ascites in these models. Interestingly, oophorectomy resulted in a complete loss of peritoneal metastases and ascites. Taken together, our data indicate that hematogenously disseminated HGSOC cells have a unique tropism for the ovary and that hematogenous spread in ovarian cancer may be more common than appreciated. Furthermore, our studies support a critical role for the ovary in promoting HGSOC cell metastasis to the abdomen. The models developed here represent important new tools to evaluate both the mechanism of cancer cell recruitment to the ovary and understand and target key steps in ovarian cancer metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans in the Americas: use of Maxent and NicheA to assure strict model transference

    Directory of Open Access Journals (Sweden)

    Luis E. Escobar

    2014-11-01

    Full Text Available Emerging infectious diseases can present serious threats to wildlife, even to the point of causing extinction. White- nose fungus (Pseudogymnoascus destructans is causing an epizootic in bats that is expanding rapidly, both geographically and taxonomically. Little is known of the ecology and distributional potential of this intercontinental pathogen. We address this gap via ecological niche models that characterise coarse resolution niche differences between fungus populations on dif- ferent continents, identifying areas potentially vulnerable to infection in South America. Here we explore a novel approach to identifying areas of potential distribution across novel geographic regions that avoids perilious extrapolation into novel environments. European and North American fungus populations show differential use of environmental space, but rather than niche differentiation, we find that changes are best attributed to climatic differences between the two continents. Suitable areas for spread of the pathogen were identified across southern South America; however caution should be taken to avoid underestimating the potential for spread of this pathogen in South America.

  4. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference.

    Science.gov (United States)

    Escobar, Luis E; Lira-Noriega, Andrés; Medina-Vogel, Gonzalo; Townsend Peterson, A

    2014-11-01

    Emerging infectious diseases can present serious threats to wildlife, even to the point of causing extinction. Whitenose fungus (Pseudogymnoascus destructans) is causing an epizootic in bats that is expanding rapidly, both geographically and taxonomically. Little is known of the ecology and distributional potential of this intercontinental pathogen. We address this gap via ecological niche models that characterise coarse resolution niche differences between fungus populations on different continents, identifying areas potentially vulnerable to infection in South America. Here we explore a novel approach to identifying areas of potential distribution across novel geographic regions that avoids perilious extrapolation into novel environments. European and North American fungus populations show differential use of environmental space, but rather than niche differentiation, we find that changes are best attributed to climatic differences between the two continents. Suitable areas for spread of the pathogen were identified across southern South America; however caution should be taken to avoid underestimating the potential for spread of this pathogen in South America.

  5. Epidemic spreading with activity-driven awareness diffusion on multiplex network.

    Science.gov (United States)

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  6. Epidemic spreading with activity-driven awareness diffusion on multiplex network

    Science.gov (United States)

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  7. Spreading to localized targets in complex networks

    Science.gov (United States)

    Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu

    2016-12-01

    As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.

  8. Lattice Three-Species Models of the Spatial Spread of Rabies among FOXES

    Science.gov (United States)

    Benyoussef, A.; Boccara, N.; Chakib, H.; Ez-Zahraouy, H.

    Lattice models describing the spatial spread of rabies among foxes are studied. In these models, the fox population is divided into three-species: susceptible (S), infected or incubating (I), and infectious or rabid (R). They are based on the fact that susceptible and incubating foxes are territorial while rabid foxes have lost their sense of direction and move erratically. Two different models are investigated: a one-dimensional coupled-map lattice model, and a two-dimensional automata network model. Both models take into account the short-range character of the infection process and the diffusive motion of rabid foxes. Numerical simulations show how the spatial distribution of rabies, and the speed of propagation of the epizootic front depend upon the carrying capacity of the environment and diffusion of rabid foxes out of their territory.

  9. ["Point by point" approach to structure-function correlation of glaucoma on the ganglion cell complex in the posterior pole].

    Science.gov (United States)

    Zeitoun, M

    2017-01-01

    To try to establish a "point by point" relationship between the local thickness of the retinal ganglion cell complex and its sensitivity. In total, 104 glaucomatous eyes of 89 patients with a confirmed 24-2 visual field, were measured by superimposing the visual field, using imaging software, with the Wide 40° by 30° measurements of retinal ganglion cell complex obtained from the Topcon © 3D 2000 OCT, after upward adjustment, inversion and scaling. Visual fields were classified into two groups according to the extent of the disease: 58 mild to moderate (MD up to -12dB), and 46 severe (MD beyond -12dB). The 6mm by 6mm central region, equipped with a normative database, was studied, corresponding to 16 points in the visual field. These points were individually matched one by one to the local ganglion cell complex, which was classified into 2 groups depending on whether it was greater or less than 70 microns. The normative database confirmed the pathological nature of the thin areas, with a significance of 95 to 99%. Displacement of central retinal ganglion cells was compensated for. Of 1664 points (16 central points for 104 eyes), 283 points were found to be "borderline" and excluded. Of the 1381 analyzed points, 727 points were classified as "over 70 microns" and 654 points "under 70 microns". (1) For all stages combined, 85.8% of the 727 points which were greater than 70 microns had a deviation between -3 and +3dB: areas above 70 microns had no observable loss of light sensitivity. (2) In total, 92.5% of the 428 points having a gap ranging from -6 to -35dB were located on ganglion cell complex areas below 70 microns: functional visual loss was identified in thin areas, which were less than 70 microns. (3) Areas which were less than 70 microns, that is 654 points, had quite variable sensitivity and can be divided into three groups: the first with preserved sensitivity, another with obliterated sensitivity, and an intermediate group connecting

  10. Detector line spread functions determined analytically by transport of Compton recoil electrons

    International Nuclear Information System (INIS)

    Veld, A.A. van't; Luijk, P. van; Praamstra, F.; Hulst, P.C. van der

    2001-01-01

    To achieve the maximum benefit of conformal radiation therapy it is necessary to obtain accurate knowledge of radiation beam penumbras based on high-resolution relative dosimetry of beam profiles. For this purpose there is a need to perform high-resolution dosimetry with well-established routine dosimeters, such as ionization chambers or diodes. Profiles measured with these detectors must be corrected for the dosimeter's nonideal response, caused by finite dimensions and, in the case of an ionization chamber, the alteration of electron transport and a contribution of electrons recoiled in the chamber wall and the central electrode. For this purpose the line spread function (LSF) of the detector is needed. The experimental determination of LSFs is cumbersome and restricted to the specific detector and beam energy spectrum used. Therefore, a previously reported analytical model [Med. Phys. 27, 923-934 (2000)] has been extended to determine response profiles of routine dosimeters: shielded diodes and, in particular, ionization chambers, in primary dose slit beams. The model combines Compton scattering of incident photons, the transport of recoiled electrons by Fermi-Eyges small-angle multiple scattering theory, and functions to limit electron transport. It yields the traveling direction and the energy of electrons upon incidence on the detector surface. In the case of ionization chambers, geometrical considerations are then sufficient to calculate the relative amount of ionization in chamber air, i.e., the detector response, as a function of the detector location in the slit beam. In combination with the previously reported slit beam dose profiles, the LSF can then readily be derived by reconstruction techniques. Since the spectral contributions are preserved, the LSF of a dosimeter is defined for any beam for which the effective spectrum is known. The detector response profiles calculated in this study have been verified in a telescopic slit beam geometry, and were

  11. Fire spread estimation on forest wildfire using ensemble kalman filter

    Science.gov (United States)

    Syarifah, Wardatus; Apriliani, Erna

    2018-04-01

    Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.

  12. Simplifying numerical ray tracing for two-dimensional non circularly symmetric models of the human eye.

    Science.gov (United States)

    Jesus, Danilo A; Iskander, D Robert

    2015-12-01

    Ray tracing is a powerful technique to understand the light behavior through an intricate optical system such as that of a human eye. The prediction of visual acuity can be achieved through characteristics of an optical system such as the geometrical point spread function. In general, its precision depends on the number of discrete rays and the accurate surface representation of each eye's components. Recently, a method that simplifies calculation of the geometrical point spread function has been proposed for circularly symmetric systems [Appl. Opt.53, 4784 (2014)]. An extension of this method to 2D noncircularly symmetric systems is proposed. In this method, a two-dimensional ray tracing procedure for an arbitrary number of surfaces and arbitrary surface shapes has been developed where surfaces, rays, and refractive indices are all represented in functional forms being approximated by Chebyshev polynomials. The Liou and Brennan anatomically accurate eye model has been adapted and used for evaluating the method. Further, real measurements of the anterior corneal surface of normal, astigmatic, and keratoconic eyes were substituted for the first surface in the model. The results have shown that performing ray tracing, utilizing the two-dimensional Chebyshev function approximation, is possible for noncircularly symmetric models, and that such calculation can be performed with a newly created Chebfun toolbox.

  13. Computing three-point functions for short operators

    International Nuclear Information System (INIS)

    Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul

    2013-11-01

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  14. Computing three-point functions for short operators

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy

    2013-11-15

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  15. FCJ-131 Pervasive Computing and Prosopopoietic Modelling – Notes on computed function and creative action

    Directory of Open Access Journals (Sweden)

    Anders Michelsen

    2011-12-01

    Full Text Available This article treats the philosophical underpinnings of the notions of ubiquity and pervasive computing from a historical perspective. The current focus on these notions reflects the ever increasing impact of new media and the underlying complexity of computed function in the broad sense of ICT that have spread vertiginiously since Mark Weiser coined the term ‘pervasive’, e.g., digitalised sensoring, monitoring, effectuation, intelligence, and display. Whereas Weiser’s original perspective may seem fulfilled since computing is everywhere, in his and Seely Brown’s (1997 terms, ‘invisible’, on the horizon, ’calm’, it also points to a much more important and slightly different perspective: that of creative action upon novel forms of artifice. Most importantly for this article, ubiquity and pervasive computing is seen to point to the continuous existence throughout the computational heritage since the mid-20th century of a paradoxical distinction/complicity between the technical organisation of computed function and the human Being, in the sense of creative action upon such function. This paradoxical distinction/complicity promotes a chiastic (Merleau-Ponty relationship of extension of one into the other. It also indicates a generative creation that itself points to important issues of ontology with methodological implications for the design of computing. In this article these implications will be conceptualised as prosopopoietic modeling on the basis of Bernward Joerges introduction of the classical rhetoric term of ’prosopopoeia’ into the debate on large technological systems. First, the paper introduces the paradoxical distinction/complicity by debating Gilbert Simondon’s notion of a ‘margin of indeterminacy’ vis-a-vis computing. Second, it debates the idea of prosopopoietic modeling, pointing to a principal role of the paradoxical distinction/complicity within the computational heritage in three cases: a. Prosopopoietic

  16. Longitudinal mixed-effects models for latent cognitive function

    NARCIS (Netherlands)

    van den Hout, Ardo; Fox, Gerardus J.A.; Muniz-Terrera, Graciela

    2015-01-01

    A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response

  17. The Euclidean three-point function in loop and perturbative gravity

    International Nuclear Information System (INIS)

    Rovelli, Carlo; Zhang Mingyi

    2011-01-01

    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of γ < 1. We find results consistent with Regge calculus in the limit γ → 0, j → ∞. We also compute the tree-level three-point function of perturbative quantum general relativity in position space and discuss the possibility of directly comparing the two results.

  18. Two Point Correlation Functions for a Periodic Box-Ball System

    Directory of Open Access Journals (Sweden)

    Jun Mada

    2011-03-01

    Full Text Available We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific N-point functions is also presented.

  19. Quantitative functional analysis of Late Glacial projectile points from northern Europe

    DEFF Research Database (Denmark)

    Dev, Satya; Riede, Felix

    2012-01-01

    This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...

  20. Fluorescent visualization of a spreading surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-15

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  1. Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale

    Science.gov (United States)

    Bellon, Marc P.; Clavier, Pierre J.

    2018-02-01

    Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.

  2. Functional summary statistics for the Johnson-Mehl model

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    The Johnson-Mehl germination-growth model is a spatio-temporal point process model which among other things have been used for the description of neurotransmitters datasets. However, for such datasets parametric Johnson-Mehl models fitted by maximum likelihood have yet not been evaluated by means...... of functional summary statistics. This paper therefore invents four functional summary statistics adapted to the Johnson-Mehl model, with two of them based on the second-order properties and the other two on the nuclei-boundary distances for the associated Johnson-Mehl tessellation. The functional summary...... statistics theoretical properties are investigated, non-parametric estimators are suggested, and their usefulness for model checking is examined in a simulation study. The functional summary statistics are also used for checking fitted parametric Johnson-Mehl models for a neurotransmitters dataset....

  3. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  4. Low- and High-Pathogenic Avian Influenza H5 and H7 Spread Risk Assessment Within and Between Australian Commercial Chicken Farms.

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann L M L; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5-95%, 0.0058-0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10 -5 ; 5-95%, 1.47 × 10 -6 -0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit spread of

  5. A study of the spreading scheme for viral marketing based on a complex network model

    Science.gov (United States)

    Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong

    2010-02-01

    Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.

  6. Maximum spreading of liquid drop on various substrates with different wettabilities

    Science.gov (United States)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  7. A Practical Point Spread Model for Ocean Waters

    National Research Council Canada - National Science Library

    Hou, Weilin; Gray, Deric; Weidemann, Alan D; Arnone, Robert A

    2008-01-01

    .... These inherent optical properties (IOP), although measured frequently due to their important applications in ocean optics, especially in remote sensing, cannot be applied to underwater imaging issues directly, since they inherently reflect the chance of the single scattering.

  8. Higher-order superclustering in the Ostriker explosion scenario I. Three-point correlation functions of clusters in the constant and power-law models

    International Nuclear Information System (INIS)

    Jing Yipeng.

    1989-08-01

    We study the three-point correlation functions ρ(r, u, v) of clusters in the two types of explosion models by numerical simulations. The clusters are identified as the ''knots'' where three shells intersect. The shells are assumed to have the constant radii (the constant models) or have the power law radius distributions (the power law models). In both kinds of models, we find that ρ can be approximately expressed by the scaling form: ρ = Q(ξ 1 ξ 2 + ξ 2 ξ 3 + ξ 3 ξ 1 ), and Q is about 1, which are consistent with the observations. More detailed studies of r-, u- and v-dependences of Q show that Q remains constant in the constant models. In the power-law models, Q is independent of the shape parameters u and v, while it has some moderate r-dependences (variations with r about a factor of 1 or 2). (author). 27 refs, 9 figs

  9. Cell adhesion and spreading at a charged interface: Insight into the mechanism using surface techniques and mathematical modelling

    International Nuclear Information System (INIS)

    DeNardis, Nadica Ivošević; Ilić, Jadranka Pečar; Ružić, Ivica; Pletikapić, Galja

    2015-01-01

    Highlights: • Kinetics of adhesion and spreading of the algal cell at a charged interface is explored. • Amperometric signals are analyzed using extended methodology and the reaction kinetics model. • The model reconstructs and quantifies individual states of the three-step adhesion process. • Adhesion kinetics of the algal cell is slower than that of its plasma membrane vesicle. • Slow spreading of organic film at the interface could be due to the attenuated effect of the potential. - Abstract: We study the kinetics of adhesion and spreading of an algal cell and its plasma membrane vesicle at the charged interface. A simple system of an isolated plasma membrane vesicle without internal content has been developed and characterized by atomic force microscopy (AFM). We extend the methodology based on the reaction kinetics model and empirical fitting for the analysis of amperometric signals, and demonstrate its validity and pertinence in a wide range of surface charge densities. Adhesion kinetics of the algal cell is slower than that of its plasma membrane vesicle. Isolated plasma membrane contributes about one quarter to the cell contact area. The model reconstructs and quantifies individual states of the three-step adhesion process of the algal cell and makes it possible to associate them with various features of amperometric signal. At the time of current amplitude, the ruptured state predominates and the cell spread contact area is larger than its initial area as well as the contact area of the plasma membrane vesicle. These results suggest that a major structural disruption of the cell membrane, collapse of cytoskeleton and leakage of intracellular material could appear close to the time of current amplitude. Further, slow kinetics of the organic film spreading at the interface to its maximal extent is considered as the rate determining step, which could be a consequence of the attenuated effect of potential at the modified interface, stronger

  10. Modelling of fire spread in car parks

    NARCIS (Netherlands)

    Noordijk, L.M.; Lemaire, A.D.

    2005-01-01

    Currently, design codes assume that in a car park fire at most 3-4 vehicles are on fire at the same time. Recent incidents in car parks have drawn international attention to such assumptions and have raised questions as to the fire spreading mechanism and the resulting fire load on the structure.

  11. Hierarchical modeling of an invasive spread: The eurasian collared-dove streptopelia decaocto in the United States

    Science.gov (United States)

    Bled, F.; Royle, J. Andrew; Cam, E.

    2011-01-01

    Invasive species are regularly claimed as the second threat to biodiversity. To apply a relevant response to the potential consequences associated with invasions (e.g., emphasize management efforts to prevent new colonization or to eradicate the species in places where it has already settled), it is essential to understand invasion mechanisms and dynamics. Quantifying and understanding what influences rates of spatial spread is a key research area for invasion theory. In this paper, we develop a model to account for occupancy dynamics of an invasive species. Our model extends existing models to accommodate several elements of invasive processes; we chose the framework of hierarchical modeling to assess site occupancy status during an invasion. First, we explicitly accounted for spatial structure and how distance among sites and position relative to one another affect the invasion spread. In particular, we accounted for the possibility of directional propagation and provided a way of estimating the direction of this possible spread. Second, we considered the influence of local density on site occupancy. Third, we decided to split the colonization process into two subprocesses, initial colonization and recolonization, which may be ground-breaking because these subprocesses may exhibit different relationships with environmental variations (such as density variation) or colonization history (e.g., initial colonization might facilitate further colonization events). Finally, our model incorporates imperfection in detection, which might be a source of substantial bias in estimating population parameters. We focused on the case of the Eurasian Collared-Dove (Streptopelia decaocto) and its invasion of the United States since its introduction in the early 1980s, using data from the North American BBS (Breeding Bird Survey). The Eurasian Collared-Dove is one of the most successful invasive species, at least among terrestrial vertebrates. Our model provided estimation of the

  12. Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez y Silva, F.; Guijarro, M.; Madrigal, J.; Jiménez, E.; Molina, J.R.; Hernando, C.; Vélez, R.; Vega, J.A.

    2017-11-01

    Aims of study: To conduct the first full-scale crown fire experiment carried out in a Mediterranean conifer stand in Spain; to use different data sources to assess crown fire initiation and spread models, and to evaluate the role of convection in crown fire initiation. Area of study: The Sierra Morena mountains (Coordinates ETRS89 30N: X: 284793-285038; Y: 4218650-4218766), southern Spain, and the outdoor facilities of the Lourizán Forest Research Centre, northwestern Spain. Material and methods: The full-scale crown fire experiment was conducted in a young Pinus pinea stand. Field data were compared with data predicted using the most used crown fire spread models. A small-scale experiment was developed with Pinus pinaster trees to evaluate the role of convection in crown fire initiation. Mass loss calorimeter tests were conducted with P. pinea needles to estimate residence time of the flame, which was used to validate the crown fire spread model. Main results: The commonly used crown fire models underestimated the crown fire spread rate observed in the full-scale experiment, but the proposed new integrated approach yielded better fits. Without wind-forced convection, tree crowns did not ignite until flames from an intense surface fire contacted tree foliage. Bench-scale tests based on radiation heat flux therefore offer a limited insight to full-scale phenomena. Research highlights: Existing crown fire behaviour models may underestimate the rate of spread of crown fires in many Mediterranean ecosystems. New bench-scale methods based on flame buoyancy and more crown field experiments allowing detailed measurements of fire behaviour are needed.

  13. Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments

    International Nuclear Information System (INIS)

    Rodríguez y Silva, F.; Guijarro, M.; Madrigal, J.; Jiménez, E.; Molina, J.R.; Hernando, C.; Vélez, R.; Vega, J.A.

    2017-01-01

    Aims of study: To conduct the first full-scale crown fire experiment carried out in a Mediterranean conifer stand in Spain; to use different data sources to assess crown fire initiation and spread models, and to evaluate the role of convection in crown fire initiation. Area of study: The Sierra Morena mountains (Coordinates ETRS89 30N: X: 284793-285038; Y: 4218650-4218766), southern Spain, and the outdoor facilities of the Lourizán Forest Research Centre, northwestern Spain. Material and methods: The full-scale crown fire experiment was conducted in a young Pinus pinea stand. Field data were compared with data predicted using the most used crown fire spread models. A small-scale experiment was developed with Pinus pinaster trees to evaluate the role of convection in crown fire initiation. Mass loss calorimeter tests were conducted with P. pinea needles to estimate residence time of the flame, which was used to validate the crown fire spread model. Main results: The commonly used crown fire models underestimated the crown fire spread rate observed in the full-scale experiment, but the proposed new integrated approach yielded better fits. Without wind-forced convection, tree crowns did not ignite until flames from an intense surface fire contacted tree foliage. Bench-scale tests based on radiation heat flux therefore offer a limited insight to full-scale phenomena. Research highlights: Existing crown fire behaviour models may underestimate the rate of spread of crown fires in many Mediterranean ecosystems. New bench-scale methods based on flame buoyancy and more crown field experiments allowing detailed measurements of fire behaviour are needed.

  14. On the spread of changes in marine low cloud cover in climate model simulations of the 21st century

    Science.gov (United States)

    Qu, Xin; Hall, Alex; Klein, Stephen A.; Caldwell, Peter M.

    2014-05-01

    In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low cloud cover (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model's premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the clouds' large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate's sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of cloud and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational cloud and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC

  15. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kazuhiro eMatsui

    2014-06-01

    Full Text Available Functional electrical stimulation (FES is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly nonlinearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define theelectrical agonist-antagonist muscle ratio (EAA ratio and electrical agonist-antagonist muscle activity (EAA activity in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  16. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    Science.gov (United States)

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  17. Using special functions to model the propagation of airborne diseases

    Science.gov (United States)

    Bolaños, Daniela

    2014-06-01

    Some special functions of the mathematical physics are using to obtain a mathematical model of the propagation of airborne diseases. In particular we study the propagation of tuberculosis in closed rooms and we model the propagation using the error function and the Bessel function. In the model, infected individual emit pathogens to the environment and this infect others individuals who absorb it. The evolution in time of the concentration of pathogens in the environment is computed in terms of error functions. The evolution in time of the number of susceptible individuals is expressed by a differential equation that contains the error function and it is solved numerically for different parametric simulations. The evolution in time of the number of infected individuals is plotted for each numerical simulation. On the other hand, the spatial distribution of the pathogen around the source of infection is represented by the Bessel function K0. The spatial and temporal distribution of the number of infected individuals is computed and plotted for some numerical simulations. All computations were made using software Computer algebra, specifically Maple. It is expected that the analytical results that we obtained allow the design of treatment rooms and ventilation systems that reduce the risk of spread of tuberculosis.

  18. Analysis of relationship between registration performance of point cloud statistical model and generation method of corresponding points

    International Nuclear Information System (INIS)

    Yamaoka, Naoto; Watanabe, Wataru; Hontani, Hidekata

    2010-01-01

    Most of the time when we construct statistical point cloud model, we need to calculate the corresponding points. Constructed statistical model will not be the same if we use different types of method to calculate the corresponding points. This article proposes the effect to statistical model of human organ made by different types of method to calculate the corresponding points. We validated the performance of statistical model by registering a surface of an organ in a 3D medical image. We compare two methods to calculate corresponding points. The first, the 'Generalized Multi-Dimensional Scaling (GMDS)', determines the corresponding points by the shapes of two curved surfaces. The second approach, the 'Entropy-based Particle system', chooses corresponding points by calculating a number of curved surfaces statistically. By these methods we construct the statistical models and using these models we conducted registration with the medical image. For the estimation, we use non-parametric belief propagation and this method estimates not only the position of the organ but also the probability density of the organ position. We evaluate how the two different types of method that calculates corresponding points affects the statistical model by change in probability density of each points. (author)

  19. Analysing the distribution of synaptic vesicles using a spatial point process model

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Waagepetersen, Rasmus; Nava, Nicoletta

    2014-01-01

    functionality by statistically modelling the distribution of the synaptic vesicles in two groups of rats: a control group subjected to sham stress and a stressed group subjected to a single acute foot-shock (FS)-stress episode. We hypothesize that the synaptic vesicles have different spatial distributions...... in the two groups. The spatial distributions are modelled using spatial point process models with an inhomogeneous conditional intensity and repulsive pairwise interactions. Our results verify the hypothesis that the two groups have different spatial distributions....

  20. Joint Clustering and Component Analysis of Correspondenceless Point Sets: Application to Cardiac Statistical Modeling.

    Science.gov (United States)

    Gooya, Ali; Lekadir, Karim; Alba, Xenia; Swift, Andrew J; Wild, Jim M; Frangi, Alejandro F

    2015-01-01

    Construction of Statistical Shape Models (SSMs) from arbitrary point sets is a challenging problem due to significant shape variation and lack of explicit point correspondence across the training data set. In medical imaging, point sets can generally represent different shape classes that span healthy and pathological exemplars. In such cases, the constructed SSM may not generalize well, largely because the probability density function (pdf) of the point sets deviates from the underlying assumption of Gaussian statistics. To this end, we propose a generative model for unsupervised learning of the pdf of point sets as a mixture of distinctive classes. A Variational Bayesian (VB) method is proposed for making joint inferences on the labels of point sets, and the principal modes of variations in each cluster. The method provides a flexible framework to handle point sets with no explicit point-to-point correspondences. We also show that by maximizing the marginalized likelihood of the model, the optimal number of clusters of point sets can be determined. We illustrate this work in the context of understanding the anatomical phenotype of the left and right ventricles in heart. To this end, we use a database containing hearts of healthy subjects, patients with Pulmonary Hypertension (PH), and patients with Hypertrophic Cardiomyopathy (HCM). We demonstrate that our method can outperform traditional PCA in both generalization and specificity measures.

  1. Emittance growth in displaced, space-charge-dominated beams with energy spread

    International Nuclear Information System (INIS)

    Barnard, J.J.; Miller, J.; Haber, I.

    1993-01-01

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, they authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of the results is presented. This study is applicable to an inertial fusion reactor driven by a heavy ion accelerator

  2. Epidemic Spreading with Heterogeneous Awareness on Human Networks

    Directory of Open Access Journals (Sweden)

    Yanling Lu

    2017-01-01

    Full Text Available The spontaneous awareness behavioral responses of individuals have a significant impact on epidemic spreading. In this paper, a modified Susceptible-Alert-Infected-Susceptible (SAIS epidemic model with heterogeneous awareness is presented to study epidemic spreading in human networks and the impact of heterogeneous awareness on epidemic dynamics. In this model, when susceptible individuals receive awareness information about the presence of epidemic from their infected neighbor nodes, they will become alert individuals with heterogeneous awareness rate. Theoretical analysis and numerical simulations show that heterogeneous awareness can enhance the epidemic threshold with certain conditions and reduce the scale of virus outbreaks compared with no awareness. What is more, for the same awareness parameter, it also shows that heterogeneous awareness can slow effectively the spreading size and does not delay the arrival time of epidemic spreading peak compared with homogeneous awareness.

  3. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    Science.gov (United States)

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  4. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen

    2011-01-01

    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  5. Sensory evaluation of commercial fat spreads based on oilseeds and walnut

    OpenAIRE

    Dimić, Etelka B.; Vujasinović, Vesna B.; Radočaj, Olga F.; Borić, Bojan D.

    2013-01-01

    The main focus of this study was on the sensory evaluation of commercial oilseeds spreads, as the most significant characteristic of this type of product from the consumers’ point of view. Sensory analysis was conducted by five experts using a quantitative descriptive and sensory profile test, applying a scoring method according to the standard procedure. Five different spreads were evaluated: sunflower, pumpkin, sesame, peanut, and walnut. Oil content and ...

  6. SEIIrR: Drug abuse model with rehabilitation

    Science.gov (United States)

    Sutanto, Azizah, Afina; Widyaningsih, Purnami; Saputro, Dewi Retno Sari

    2017-05-01

    Drug abuse in the world quite astonish and tend to increase. The increase and decrease on the number of drug abusers showed a pattern of spread that had the same characteristics with patterns of spread of infectious disease. The susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR) epidemic models for infectious disease was developed to study social epidemic. In this paper, SEIR model for disease epidemic was developed to study drug abuse epidemic with rehabilitation treatment. The aims of this paper were to analogize susceptible exposed infected isolated recovered (SEIIrR) model on the drug abusers, to determine solutions of the model, to determine equilibrium point, and to do simulation on β. The solutions of SEIIrR model was determined by using fourth order of Runge-Kutta algorithm, equilibrium point obtained was free-drug equilibrium point. Solutions of SEIIrR showed that the model was able to suppress the spread of drug abuse. The increasing value of contact rate was not affect the number of infected individuals due to rehabilitation treatment.

  7. Minimizing Energy Spread In The REX/HIE-ISOLDE Linac

    CERN Document Server

    Yucemoz, Mert

    2017-01-01

    This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.

  8. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  9. Ray tracing the Wigner distribution function for optical simulations

    NARCIS (Netherlands)

    Mout, B.M.; Wick, Michael; Bociort, F.; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems

  10. The simulation of surface fire spread based on Rothermel model in windthrow area of Changbai Mountain (Jilin, China)

    Science.gov (United States)

    Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying

    2018-03-01

    The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.

  11. Experiments on non-isothermal spreading

    International Nuclear Information System (INIS)

    Ehrhard, P.

    1992-09-01

    Experiments are performed on axisymmetric spreading of viscous drops on glass plates. Two liquids are investigated: silicone oil (M-100) spreads to 'infinity' and paraffin oil spreads to a finite-radius steady state. The experiments with silicone oil partly recover the behaviour of previous workers data; those experiments with paraffin oil provide new data. It is found that gravitational forces dominate at long enough times while at shorter times capillary forces dominate. When the plate is heated or cooled with respect to the ambient gas, thermocapillary forces generate flows that alter the spreading dynamics. Heating (cooling) the plate is found to retard (augment) the streading. Moreover, in case of partial wetting, the finally-approached drop radius is smaller (larger) for a heated (cooled) plate. These data are all new. All these observations are in excellent quantitative agreement with the related model predictions of Ehrhard and Davis (1991). A breakdown of the axisymmetric character of the flow is observed only for very long times and/or very thin liquid layers. (orig.) [de

  12. PLANNING QUALITY ASSURANCE PROCESSES IN A LARGE SCALE GEOGRAPHICALLY SPREAD HYBRID SOFTWARE DEVELOPMENT PROJECT

    Directory of Open Access Journals (Sweden)

    Святослав Аркадійович МУРАВЕЦЬКИЙ

    2016-02-01

    Full Text Available There have been discussed key points of operational activates in a large scale geographically spread software development projects. A look taken at required QA processes structure in such project. There have been given up to date methods of integration quality assurance processes into software development processes. There have been reviewed existing groups of software development methodologies. Such as sequential, agile and based on RPINCE2. There have been given a condensed overview of quality assurance processes in each group. There have been given a review of common challenges that sequential and agile models are having in case of large geographically spread hybrid software development project. Recommendations were given in order to tackle those challenges.  The conclusions about the best methodology choice and appliance to the particular project have been made.

  13. IMAGE TO POINT CLOUD METHOD OF 3D-MODELING

    Directory of Open Access Journals (Sweden)

    A. G. Chibunichev

    2012-07-01

    Full Text Available This article describes the method of constructing 3D models of objects (buildings, monuments based on digital images and a point cloud obtained by terrestrial laser scanner. The first step is the automated determination of exterior orientation parameters of digital image. We have to find the corresponding points of the image and point cloud to provide this operation. Before the corresponding points searching quasi image of point cloud is generated. After that SIFT algorithm is applied to quasi image and real image. SIFT algorithm allows to find corresponding points. Exterior orientation parameters of image are calculated from corresponding points. The second step is construction of the vector object model. Vectorization is performed by operator of PC in an interactive mode using single image. Spatial coordinates of the model are calculated automatically by cloud points. In addition, there is automatic edge detection with interactive editing available. Edge detection is performed on point cloud and on image with subsequent identification of correct edges. Experimental studies of the method have demonstrated its efficiency in case of building facade modeling.

  14. FACTORS INFLUENCING YIELD SPREADS OF THE MALAYSIAN BONDS

    Directory of Open Access Journals (Sweden)

    Norliza Ahmad

    2009-01-01

    Full Text Available Malaysian bond market is developing rapidly but not much is understood in terms of macroeconomic factors that could influence the yield spread of the Ringgit Malaysian denominated bonds. Based on a multifactor model, this paper examines the impact of four macroeconomic factors namely: Kuala Lumpur Composite Index (KLCI, Industry Production Index (IPI, Consumer Price Index (CPI and interest rates (IR on bond yield spread of the Malaysian Government Securities (MGS and Corporate Bonds (CBs for a period from January 2001 to December 2008. The findings support the expected hypotheses that CPI and IR are the major drivers that influence the changes in MGS yield spreads. However IPI and KLCI have weak and no influence on MGS yield spreads respectively Whilst IR, CPI and IPI have significant influence on the yield spreads of CB1, CB2 and CB3, KLCI has significant influence only on the CB1 yield spread but not on CB2 and CB3 yield spreads.

  15. Unidirectional spreading of oil under solid ice

    International Nuclear Information System (INIS)

    Weerasuriya, S.A.; Yapa, P.D.

    1993-01-01

    Equations are presented to describe the unidirectional spreading of oil under solid ice covers floating in calm water. These spreading equations are derived using a simplified form of the Navier-Stokes equations, and cover both the constant discharge and the constant volume modes. An equation for computing final slick length is also given. Laboratory experiments using physical models were conducted to verify the equations. The experiments used oils of different viscosities, ice cover roughnesses varying from smooth to rough, and a variety of discharge conditions. The emphasis of the study was on the dominant spreading mechanism for oil under ice, which is the buoyancy-viscous phase. The laboratory results agree closely with the theoretical predictions. Discrepancies can be attributed to the experimental difficulties and errors introduced from the assumptions made in deriving the theory. The equations presented will be useful in computing spreading rate during an accidental oil spill or in contingency planning. The equations are simple to use, suitable for hand calculations or for incorporation into numerical models for oil spill simulation. 24 refs., 10 figs., 1 tab

  16. The spreading time in SIS epidemics on networks

    Science.gov (United States)

    He, Zhidong; Van Mieghem, Piet

    2018-03-01

    In a Susceptible-Infected-Susceptible (SIS) process, we investigate the spreading time Tm, which is the time when the number of infected nodes in the metastable state is first reached, starting from the outbreak of the epidemics. We observe that the spreading time Tm resembles a lognormal-like distribution, though with different deep tails, both for the Markovian and the non-Markovian infection process, which implies that the spreading time can be very long with a relatively high probability. In addition, we show that a stronger virus, with a higher effective infection rate τ or an earlier timing of the infection attempts, does not always lead to a shorter average spreading time E [Tm ] . We numerically demonstrate that the average spreading time E [Tm ] in the complete graph and the star graph scales logarithmically as a function of the network size N for a fixed fraction of infected nodes in the metastable state.

  17. Analysis of a Heroin Epidemic Model with Saturated Treatment Function

    Directory of Open Access Journals (Sweden)

    Isaac Mwangi Wangari

    2017-01-01

    Full Text Available A mathematical model is developed that examines how heroin addiction spreads in society. The model is formulated to take into account the treatment of heroin users by incorporating a realistic functional form that “saturates” representing the limited availability of treatment. Bifurcation analysis reveals that the model has an intrinsic backward bifurcation whenever the saturation parameter is larger than a fixed threshold. We are particularly interested in studying the model’s global stability. In the absence of backward bifurcations, Lyapunov functions can often be found and used to prove global stability. However, in the presence of backward bifurcations, such Lyapunov functions may not exist or may be difficult to construct. We make use of the geometric approach to global stability to derive a condition that ensures that the system is globally asymptotically stable. Numerical simulations are also presented to give a more complete representation of the model dynamics. Sensitivity analysis performed by Latin hypercube sampling (LHS suggests that the effective contact rate in the population, the relapse rate of heroin users undergoing treatment, and the extent of saturation of heroin users are mechanisms fuelling heroin epidemic proliferation.

  18. A new statistical scission-point model fed with microscopic ingredients to predict fission fragments distributions; Developpement d'un nouveau modele de point de scission base sur des ingredients microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, S

    2006-07-01

    Nucleus fission process is a very complex phenomenon and, even nowadays, no realistic models describing the overall process are available. The work presented here deals with a theoretical description of fission fragments distributions in mass, charge, energy and deformation. We have reconsidered and updated the B.D. Wilking Scission Point model. Our purpose was to test if this statistic model applied at the scission point and by introducing new results of modern microscopic calculations allows to describe quantitatively the fission fragments distributions. We calculate the surface energy available at the scission point as a function of the fragments deformations. This surface is obtained from a Hartree Fock Bogoliubov microscopic calculation which guarantee a realistic description of the potential dependence on the deformation for each fragment. The statistic balance is described by the level densities of the fragment. We have tried to avoid as much as possible the input of empirical parameters in the model. Our only parameter, the distance between each fragment at the scission point, is discussed by comparison with scission configuration obtained from full dynamical microscopic calculations. Also, the comparison between our results and experimental data is very satisfying and allow us to discuss the success and limitations of our approach. We finally proposed ideas to improve the model, in particular by applying dynamical corrections. (author)

  19. On two-point boundary correlations in the six-vertex model with domain wall boundary conditions

    Science.gov (United States)

    Colomo, F.; Pronko, A. G.

    2005-05-01

    The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.

  20. Dynamics of spread of intestinal colonization with extended-spectrum beta-lactamases in E.coli: a mathematical model

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Bootsma, M. C. J.; Leverstein-van Hall, M.A.

    In this study a mathematical model for the spread of ESBL resistant E.coli among patients in a hospital and the surrounding catchment population has been introduced and used to described prevalence data from the Netherlands. Several statistical methods have been applied to estimate the model...

  1. End to end distribution functions for a class of polymer models

    International Nuclear Information System (INIS)

    Khandekar, D.C.; Wiegel, F.W.

    1988-01-01

    The two point end-to-end distribution functions for a class of polymer models have been obtained within the first cumulant approximation. The trial distribution function this purpose is chosen to correspond to a general non-local quadratic functional. An Exact expression for the trial distribution function is obtained. It is pointed out that these trial distribution functions themselves can be used to study certain aspects of the configurational behaviours of polymers. These distribution functions are also used to obtain the averaged mean square size 2 > of a polymer characterized by the non-local quadratic potential energy functional. Finally, we derive an analytic expression for 2 > of a polyelectrolyte model and show that for a long polymer a weak electrostatic interaction does not change the behaviour of 2 > from that of a free polymer. (author). 16 refs

  2. A gravity model for the spread of a pollinator-borne plant pathogen.

    Science.gov (United States)

    Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis

    2006-09-01

    Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.

  3. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...

  4. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  5. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies.

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  6. Low- and High-Pathogenic Avian Influenza H5 and H7 Spread Risk Assessment Within and Between Australian Commercial Chicken Farms

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann L. M. L.; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5–95%, 0.0058–0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10−5; 5–95%, 1.47 × 10−6–0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit

  7. Low- and High-Pathogenic Avian Influenza H5 and H7 Spread Risk Assessment Within and Between Australian Commercial Chicken Farms

    Directory of Open Access Journals (Sweden)

    Angela Bullanday Scott

    2018-04-01

    Full Text Available This study quantified and compared the probability of avian influenza (AI spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms. If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5–95%, 0.0058–0.036 and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10−5; 5–95%, 1.47 × 10−6–0.00034. As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices

  8. Accuracy limit of rigid 3-point water models

    Science.gov (United States)

    Izadi, Saeed; Onufriev, Alexey V.

    2016-08-01

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  9. A fundamental look at fire spread in California chaparral

    Science.gov (United States)

    David R. Weise; Thomas Fletcher; Larry Baxter; Shankar Mahalingam; Xiangyang Zhou; Patrick Pagni; Rod Linn; Bret Butler

    2004-01-01

    The USDA Forest Service National Fire Plan funded a research program to study fire spread in live fuels of the southwestern United States. In the U.S. current operational fire spread models do not distinguish between live and dead fuels in a sophisticated manner because the study of live fuels has been limited. The program is experimentally examining fire spread at 3...

  10. Interference Excision in Spread Spectrum Communications Using Adaptive Positive Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Krishnan Sridhar

    2007-01-01

    Full Text Available This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT. Initially, the received spread spectrum signal is decomposed into its time-frequency (TF functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of  dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane.

  11. Regularity of p(ṡ)-superharmonic functions, the Kellogg property and semiregular boundary points

    Science.gov (United States)

    Adamowicz, Tomasz; Björn, Anders; Björn, Jana

    2014-11-01

    We study various boundary and inner regularity questions for $p(\\cdot)$-(super)harmonic functions in Euclidean domains. In particular, we prove the Kellogg property and introduce a classification of boundary points for $p(\\cdot)$-harmonic functions into three disjoint classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many ways. The discussion is illustrated by examples. Along the way, we present a removability result for bounded $p(\\cdot)$-harmonic functions and give some new characterizations of $W^{1, p(\\cdot)}_0$ spaces. We also show that $p(\\cdot)$-superharmonic functions are lower semicontinuously regularized, and characterize them in terms of lower semicontinuously regularized supersolutions.

  12. A Mathematical Model of Intra-Colony Spread of American Foulbrood in European Honeybees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    Eduardo O Jatulan

    Full Text Available American foulbrood (AFB is one of the severe infectious diseases of European honeybees (Apis mellifera L. and other Apis species. This disease is caused by a gram-positive, spore-forming bacterium Paenibacillus larvae. In this paper, a compartmental (SI framework model is constructed to represent the spread of AFB within a colony. The model is analyzed to determine the long-term fate of the colony once exposed to AFB spores. It was found out that without effective and efficient treatment, AFB infection eventually leads to colony collapse. Furthermore, infection thresholds were predicted based on the stability of the equilibrium states. The number of infected cell combs is one of the factors that drive disease spread. Our results can be used to forecast the transmission timeline of AFB infection and to evaluate the control strategies for minimizing a possible epidemic.

  13. An integral constraint for the evolution of the galaxy two-point correlation function

    International Nuclear Information System (INIS)

    Peebles, P.J.E.; Groth, E.J.

    1976-01-01

    Under some conditions an integral over the galaxy two-point correlation function, xi(x,t), evolves with the expansion of the universe in a simple manner easily computed from linear perturbation theory.This provides a useful constraint on the possible evolution of xi(x,t) itself. We test the integral constraint with both an analytic model and numerical N-body simulations for the evolution of irregularities in an expanding universe. Some applications are discussed. (orig.) [de

  14. Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)

    2016-12-15

    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  15. Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks

    Science.gov (United States)

    Hu, Yanqing; Havlin, Shlomo; Makse, Hernán A.

    2014-04-01

    A fundamental problem in network science is to predict how certain individuals are able to initiate new networks to spring up "new ideas." Frequently, these changes in trends are triggered by a few innovators who rapidly impose their ideas through "viral" influence spreading, producing cascades of followers and fragmenting an old network to create a new one. Typical examples include the rise of scientific ideas or abrupt changes in social media, like the rise of Facebook to the detriment of Myspace. How this process arises in practice has not been conclusively demonstrated. Here, we show that a condition for sustaining a viral spreading process is the existence of a multiplex-correlated graph with hidden "influence links." Analytical solutions predict percolation-phase transitions, either abrupt or continuous, where networks are disintegrated through viral cascades of followers, as in empirical data. Our modeling predicts the strict conditions to sustain a large viral spreading via a scaling form of the local correlation function between multilayers, which we also confirm empirically. Ultimately, the theory predicts the conditions for viral cascading in a large class of multiplex networks ranging from social to financial systems and markets.

  16. Methods for deconvolving sparse positive delta function series

    International Nuclear Information System (INIS)

    Trussell, H.J.; Schwalbe, L.A.

    1981-01-01

    Sparse delta function series occur as data in many chemical analyses and seismic methods. These original data are often sufficiently degraded by the recording instrument response that the individual delta function peaks are difficult to distinguish and measure. A method, which has been used to measure these peaks, is to fit a parameterized model by a nonlinear least-squares fitting algorithm. The deconvolution approaches described have the advantage of not requiring a parameterized point spread function, nor do they expect a fixed number of peaks. Two new methods are presented. The maximum power technique is reviewed. A maximum a posteriori technique is introduced. Results on both simulated and real data by the two methods are presented. The characteristics of the data can determine which method gives superior results. 5 figures

  17. Modeling the potential spread of the recently identified non-native panther grouper (Chromileptes altivelis) in the Atlantic using a cellular automaton approach.

    Science.gov (United States)

    Johnston, Matthew W; Purkis, Sam J

    2013-01-01

    The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species.

  18. Modeling the potential spread of the recently identified non-native panther grouper (Chromileptes altivelis in the Atlantic using a cellular automaton approach.

    Directory of Open Access Journals (Sweden)

    Matthew W Johnston

    Full Text Available The Indo-pacific panther grouper (Chromileptes altiveli is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles, which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species.

  19. Assessment of left ventricular function with single breath-hold highly accelerated cine MRI combined with guide-point modeling

    International Nuclear Information System (INIS)

    Heilmaier, Christina; Nassenstein, Kai; Nielles-Vallespin, Sonia; Zuehlsdorff, Sven; Hunold, Peter; Barkhausen, Joerg

    2010-01-01

    Purpose: To prospectively assess the performance of highly accelerated cine MRI in multi-orientations combined with a new guide-point modeling post-processing technique (GPM approach) for assessment of left ventricular (LV) function compared to the standard summation of slices method based on a stack of short axis views (SoS approach). Materials and methods: 33 consecutive patients were examined on a 1.5 T scanner with a standard steady state free precession (SSFP) sequence (TR, 3.0 ms; TE, 1.5 m; flip angle (FA), 60 o ; acceleration factor (AF), 2) analyzed with the SoS method and a highly accelerated, single breath-hold temporal parallel acquisition SSFP sequence (TR, 4.6 ms; TE, 1.1 ms; AF, 3) post-processed with the GPM method. LV function values were measured by two independent readers with different experience in cardiac MRI and compared by using the paired t-test and F-test. Inter- and intraobserver agreements were calculated using Bland-Altman-Plots. Results: Mean acquisition and post-processing time was significantly shorter with the GPM approach (15 s/3 min versus 360 s/6 min). For all LV function parameters interobserver agreement between the experienced and non-experienced reader was significantly improved when the GPM approach was used. However, end-diastolic and end-systolic volumes were larger for the GPM technique when compared to the SoS method (P 0.121). In both readers and for all parameters variances did not differ significantly (P ≥ 0.409) and the two approaches showed an excellent linear correlation (r > 0.951). Conclusion: Due to its accurate, fast and reproducible assessment of LV function parameters highly accelerated MRI combined with the GPM technique may become the technique of first choice for assessment of LV function in clinical routine.

  20. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    Mechkov, S; Oshanin, G; Cazabat, A M

    2009-01-01

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.