WorldWideScience

Sample records for pnf1 modulates mt1-mmp

  1. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells.

    Science.gov (United States)

    Wieghaus, Kristen A; Gianchandani, Erwin P; Neal, Rebekah A; Paige, Mikell A; Brown, Milton L; Papin, Jason A; Botchwey, Edward A

    2009-07-01

    We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode of action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray data set of PNF1-treated (vs. control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-alpha) and, subsequently, transforming growth factor-beta (TGF-beta) signaling networks by PNF1. Here we validate this microarray data set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this data set and identify three specific TGF-beta-induced genes with regulation by PNF1 conserved over multiple timepoints-amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)-that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1-48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode of action and important for successful promotion of the neovascularization that we have observed by the drug in vivo.

  2. Expansion of microvascular networks in vivo by phthalimide neovascular factor 1 (PNF1).

    Science.gov (United States)

    Wieghaus, Kristen A; Nickerson, Meghan M; Petrie Aronin, Caren E; Sefcik, Lauren S; Price, Richard J; Paige, Mikell A; Brown, Milton L; Botchwey, Edward A

    2008-12-01

    Phthalimide neovascular factor (PNF1, formerly SC-3-149) is a potent stimulator of proangiogenic signaling pathways in endothelial cells. In this study, we evaluated the in vivo effects of sustained PNF1 release to promote ingrowth and expansion of microvascular networks surrounding biomaterial implants. The dorsal skinfold window chamber was used to evaluate the structural remodeling response of the local microvasculature. PNF1 was released from poly(lactic-co-glycolic acid) (PLAGA) films, and a transport model was utilized to predict PNF1 penetration into the surrounding tissue. PNF1 significantly expanded microvascular networks within a 2mm radius from implants after 3 and 7 days by increasing microvessel length density and lumenal diameter of local arterioles and venules. Staining of histological sections with CD11b showed enhanced recruitment of circulating white blood cells, including monocytes, which are critical for the process of vessel enlargement through arteriogenesis. As PNF1 has been shown to modulate MT1-MMP, a facilitator of CCL2 dependent leukocyte transmigration, aspects of window chamber experiments were repeated in CCR2(-/-) (CCL2 receptor) mouse chimeras to more fully explore the critical nature of monocyte recruitment on the therapeutic benefits of PNF1 function in vivo.

  3. MT1-MMP-mediated basement membrane remodeling modulates renal development

    International Nuclear Information System (INIS)

    Riggins, Karen S.; Mernaugh, Glenda; Su, Yan; Quaranta, Vito; Koshikawa, Naohiko; Seiki, Motoharu; Pozzi, Ambra; Zent, Roy

    2010-01-01

    Extracellular matrix (ECM) remodeling regulates multiple cellular functions required for normal development and tissue repair. Matrix metalloproteinases (MMPs) are key mediators of this process and membrane targeted MMPs (MT-MMPs) in particular have been shown to be important in normal development of specific organs. In this study we investigated the role of MT1-MMP in kidney development. We demonstrate that loss of MT1-MMP leads to a renal phenotype characterized by a moderate decrease in ureteric bud branching morphogenesis and a severe proliferation defect. The kidneys of MT1-MMP-null mice have increased deposition of collagen IV, laminins, perlecan, and nidogen and the phenotype is independent of the MT-1MMP target, MMP-2. Utilizing in vitro systems we demonstrated that MTI-MMP proteolytic activity is required for renal tubule cells to proliferate in three dimensional matrices and to migrate on collagen IV and laminins. Together these data suggest an important role for MT1-MMP in kidney development, which is mediated by its ability to regulate cell proliferation and migration by proteolytically cleaving kidney basement membrane components.

  4. Contrasting expression of membrane metalloproteinases, MT1-MMP and MT3-MMP, suggests distinct functions in skeletal development.

    Science.gov (United States)

    Yang, Maozhou; Zhang, Bingbing; Zhang, Liang; Gibson, Gary

    2008-07-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.

  5. Peptide aptamers as new tools to modulate clathrin-mediated internalisation--inhibition of MT1-MMP internalisation.

    Science.gov (United States)

    Wickramasinghe, Rochana D; Ko Ferrigno, Paul; Roghi, Christian

    2010-07-23

    Peptide aptamers are combinatorial protein reagents that bind to targets with a high specificity and a strong affinity thus providing a molecular tool kit for modulating the function of their targets in vivo. Here we report the isolation of a peptide aptamer named swiggle that interacts with the very short (21 amino acid long) intracellular domain of membrane type 1-metalloproteinase (MT1-MMP), a key cell surface protease involved in numerous and crucial physiological and pathological cellular events. Expression of swiggle in mammalian cells was found to increase the cell surface expression of MT1-MMP by impairing its internalisation. Swiggle interacts with the LLY573 internalisation motif of MT1-MMP intracellular domain, thus disrupting the interaction with the mu2 subunit of the AP-2 internalisation complex required for endocytosis of the protease. Interestingly, swiggle-mediated inhibition of MT1-MMP clathrin-mediated internalisation was also found to promote MT1-MMP-mediated cell migration. Taken together, our results provide further evidence that peptide aptamers can be used to dissect molecular events mediated by individual protein domains, in contrast to the pleiotropic effects of RNA interference techniques.

  6. Peptide aptamers as new tools to modulate clathrin-mediated internalisation — inhibition of MT1-MMP internalisation

    Directory of Open Access Journals (Sweden)

    Ferrigno Paul

    2010-07-01

    Full Text Available Abstract Background Peptide aptamers are combinatorial protein reagents that bind to targets with a high specificity and a strong affinity thus providing a molecular tool kit for modulating the function of their targets in vivo. Results Here we report the isolation of a peptide aptamer named swiggle that interacts with the very short (21 amino acid long intracellular domain of membrane type 1-metalloproteinase (MT1-MMP, a key cell surface protease involved in numerous and crucial physiological and pathological cellular events. Expression of swiggle in mammalian cells was found to increase the cell surface expression of MT1-MMP by impairing its internalisation. Swiggle interacts with the LLY573 internalisation motif of MT1-MMP intracellular domain, thus disrupting the interaction with the μ2 subunit of the AP-2 internalisation complex required for endocytosis of the protease. Interestingly, swiggle-mediated inhibition of MT1-MMP clathrin-mediated internalisation was also found to promote MT1-MMP-mediated cell migration. Conclusions Taken together, our results provide further evidence that peptide aptamers can be used to dissect molecular events mediated by individual protein domains, in contrast to the pleiotropic effects of RNA interference techniques.

  7. Regulation of MT1-MMP/MMP-2/TIMP-2 axis in human placenta

    Directory of Open Access Journals (Sweden)

    Vincent ZL

    2015-10-01

    Full Text Available Zoë L Vincent,1,2 Murray D Mitchell,l,3 Anna P Ponnampalam1,2 1Liggins Institute, 2Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand; 3University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia Abstract: Matrix metalloproteinases (MMPs and specific endogenous tissue inhibitors of metalloproteinases (TIMPs mediate rupture of the fetal membranes in both physiological and pathological conditions. MMPs and TIMPs are subject to regulation by DNA methylation in human malignancies and pre-eclampsia. To determine if membrane type 1 MMP (MT1-MMP, MMP2, and TIMP2 are regulated by DNA methylation in human placentas, we employed an in vitro model where human placental tissues were collected at term gestation and cultured with methylation inhibiting agent 5-aza-2′deoxycytidine (AZA and lipopolysaccharide. The results suggest that DNA methylation is not directly involved in the regulation of MT1-MMP in placental tissue; however, remodeling of chromatin by a pharmacologic agent such as AZA potentiates an infection-related increase in MT1-MMP. MT1-MMP is a powerful activator of MMP2 and this action, coupled with either no change or a decrease in TIMP2 concentrations, favors a gelatinolytic state leading to extracellular matrix degradation, which could predispose fetal membranes to rupture prematurely during inflammation. Keywords: placenta, epigenetic regulation, DNA methylation, MMPs, labor

  8. Co-ordinated expression of MMP-2 and its putative activator, MT1-MMP, in human placentation.

    Science.gov (United States)

    Bjørn, S F; Hastrup, N; Lund, L R; Danø, K; Larsen, J F; Pyke, C

    1997-08-01

    The spatial expression of mRNA for matrix metalloproteinase 2 (MMP-2), its putative activator, the membrane-type 1 matrix metalloproteinase (MT1-MMP), and the MMP-2 substrate type IV collagen was investigated in human placentas of both normal and tubal ectopic pregnancies and in cyclic endometrium using in-situ hybridization. Cytokeratin staining applied to adjacent sections was used to identify epithelial and trophoblast cells. In both normal and tubal pregnancies MT1-MMP, MMP-2 and type IV collagen mRNA were highly expressed and co-localized in the extravillous cytotrophoblasts of anchoring villi, in cytotrophoblasts that had penatrated into the placental bed and in cytotrophoblastic cell islands. In addition, the decidual cells of normal pregnancies in some areas co-expressed MT1-MMP and MMP-2 mRNA, with moderate signals for both components. Fibroblast-like stromal cells in tubal pregnancies were positive for MMP-2 mRNA but generally negative for MT1-MMP mRNA. The consistent co-localization of MT1-MMP with MMP-2 and type IV collagen in the same subset of cytotrophoblasts strongly suggests that all three components co-operate in the tightly regulated fetal invasion process. The co-expression of MT1-MMP and MMP-2 mRNA in some of the decidual cells indicates that these cells are also actively involved in the placentation process.

  9. A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP

    DEFF Research Database (Denmark)

    Shiryaev, S A; Remacle, A G; Golubkov, V S

    2013-01-01

    Matrix metalloproteinases (MMPs) and, especially membrane type 1 (MT1)-MMP/MMP-14, are promising drug targets in malignancies. In contrast with multiple small-molecule and protein pan-inhibitors of MT1-MMP cleavage activity, the murine 9E8 monoclonal antibody targets the MMP-2-activating function...... of cellular MT1-MMP alone, rather than the general proteolytic activity and the pro-migratory function of MT1-MMP. Furthermore, the antibody does not interact in any detectable manner with other members of the membrane type (MT)-MMP family. The mechanism of this selectivity remained unknown. Using mutagenesis......, binding and activity assays, and modeling in silico, we have demonstrated that the 9E8 antibody recognizes the MT-loop structure, an eight residue insertion that is specific for MT-MMPs and that is distant from the MT1-MMP active site. The binding of the 9E8 antibody to the MT-loop, however, prevents...

  10. Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques

    International Nuclear Information System (INIS)

    Kuge, Yuji; Takai, Nozomi; Ogawa, Yuki; Temma, Takashi; Nishigori, Kantaro; Ishino, Seigo; Kamihashi, Junko; Saji, Hideo; Zhao, Yan; Kiyono, Yasushi; Shiomi, Masashi

    2010-01-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) activates pro-MMP-2 and pro-MMP-13 to their active forms and plays important roles in the destabilization of atherosclerotic plaques. This study sought to determine the usefulness of 99m Tc-labelled monoclonal antibody (mAb), recognizing MT1-MMP, for imaging atherosclerosis in a rabbit model (WHHLMI rabbits). Anti-MT1-MMP monoclonal IgG 3 and negative control IgG 3 were radiolabelled with 99m Tc after derivatization with 6-hydrazinonicotinic acid (HYNIC) to yield 99m Tc-MT1-MMP mAb and 99m Tc-IgG 3 , respectively. WHHLMI and control rabbits were injected with these radio-probes. The aorta was removed and radioactivity was measured at 24 h after the injection. Autoradiography and histological studies were performed. 99m Tc-MT1-MMP mAb accumulation in WHHLMI rabbit aortas was 5.4-fold higher than that of control rabbits. Regional 99m Tc-MT1-MMP mAb accumulation was positively correlated with MT1-MMP expression (r = 0.59, p 99m Tc-IgG 3 accumulation was independent of MT1-MMP expression (r = 0.03, p = NS). The highest 99m Tc-MT1-MMP mAb accumulation was found in atheromatous lesions (4.8 ± 1.9, %ID x BW/mm 2 x 10 2 ), followed in decreasing order by fibroatheromatous (1.8 ± 1.3), collagen-rich (1.6 ± 1.0) and neointimal lesions (1.5 ± 1.5). In contrast, 99m Tc-IgG 3 accumulation was almost independent of the histological grade of lesions. Higher 99m Tc-MT1-MMP mAb accumulation in grade IV atheroma was shown in comparison with neointimal lesions or other more stable lesions. Nuclear imaging with 99m Tc-MT1-MMP mAb, in combination with CT and MRI, could provide new diagnostic imaging capabilities for detecting vulnerable plaques, although further investigations to improve target to blood ratios are strongly required. (orig.)

  11. Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Kuge, Yuji [Kyoto University, Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Hokkaido University, Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Sapporo (Japan); Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Takai, Nozomi; Ogawa, Yuki; Temma, Takashi; Nishigori, Kantaro; Ishino, Seigo; Kamihashi, Junko; Saji, Hideo [Kyoto University, Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Zhao, Yan [Hokkaido University, Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Sapporo (Japan); Kiyono, Yasushi [Kyoto University, Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); University of Fukui, Biomedical Imaging Research Center, Fukui (Japan); Shiomi, Masashi [Kobe University Graduate School of Medicine, Institute for Experimental Animals, Kobe (Japan)

    2010-11-15

    Membrane type 1 matrix metalloproteinase (MT1-MMP) activates pro-MMP-2 and pro-MMP-13 to their active forms and plays important roles in the destabilization of atherosclerotic plaques. This study sought to determine the usefulness of {sup 99m}Tc-labelled monoclonal antibody (mAb), recognizing MT1-MMP, for imaging atherosclerosis in a rabbit model (WHHLMI rabbits). Anti-MT1-MMP monoclonal IgG{sub 3} and negative control IgG{sub 3} were radiolabelled with {sup 99m}Tc after derivatization with 6-hydrazinonicotinic acid (HYNIC) to yield {sup 99m}Tc-MT1-MMP mAb and {sup 99m}Tc-IgG{sub 3}, respectively. WHHLMI and control rabbits were injected with these radio-probes. The aorta was removed and radioactivity was measured at 24 h after the injection. Autoradiography and histological studies were performed. {sup 99m}Tc-MT1-MMP mAb accumulation in WHHLMI rabbit aortas was 5.4-fold higher than that of control rabbits. Regional {sup 99m}Tc-MT1-MMP mAb accumulation was positively correlated with MT1-MMP expression (r = 0.59, p < 0.0001), while {sup 99m}Tc-IgG{sub 3} accumulation was independent of MT1-MMP expression (r = 0.03, p = NS). The highest {sup 99m}Tc-MT1-MMP mAb accumulation was found in atheromatous lesions (4.8 {+-} 1.9, %ID x BW/mm{sup 2} x 10{sup 2}), followed in decreasing order by fibroatheromatous (1.8 {+-} 1.3), collagen-rich (1.6 {+-} 1.0) and neointimal lesions (1.5 {+-} 1.5). In contrast, {sup 99m}Tc-IgG{sub 3} accumulation was almost independent of the histological grade of lesions. Higher {sup 99m}Tc-MT1-MMP mAb accumulation in grade IV atheroma was shown in comparison with neointimal lesions or other more stable lesions. Nuclear imaging with {sup 99m}Tc-MT1-MMP mAb, in combination with CT and MRI, could provide new diagnostic imaging capabilities for detecting vulnerable plaques, although further investigations to improve target to blood ratios are strongly required. (orig.)

  12. Palmitoylation at Cys574 is essential for MT1-MMP to promote cell migration

    DEFF Research Database (Denmark)

    Anilkumar, Narayanapanicker; Uekita, Takamasa; Couchman, John R

    2005-01-01

    of the palmitoylated cysteine relative to LLY573, a motif that interacts with mu2 subunit of adaptor protein 2, is critical for the cell motility-promoting activity of MT1-MMP and its clathrin-mediated internalization. Taken together, palmitoylation of MT1-MMP is one of the key posttranslational modifications......MT1-MMP is a type I transmembrane proteinase that promotes cell migration and invasion. Here, we report that MT1-MMP is palmitoylated at Cys574 in the cytoplasmic domain, and this lipid modification is critical for its promotion of cell migration and clathrin-mediated internalization...... that determines MT1-MMP-dependent cell migration....

  13. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    Full Text Available A critical challenge in the management of Glioblastoma Multiforme (GBM tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models.An anti-human MT1-MMP monoclonal antibody (mAb, LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251 expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7 as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543 and U251 cells, with different degrees of blood-brain barrier (BBB disruption were also used for PET imaging experiments.89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90% and specific activity (78.5 MBq/mg. Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models.A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high

  14. Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP

    DEFF Research Database (Denmark)

    Ingvarsen, Signe; Porse, Astrid; Erpicum, Charlotte

    2013-01-01

    and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity. A tempting target is the membrane-associated MT1-MMP, which has well......-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks...... matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role....

  15. Lysophosphatidic Acid Up-regulates MT1-MMP Expression through a Gi –dependent Pathway in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Po-Wei Lin

    2009-11-01

    Full Text Available Lysophosphatidic acid (LPA is a low molecular weight lysophospholipid (LPL. Through binding to its specific G protein-coupled receptor family, LPA regulates various cellular functions, including proliferation, migration, invasion, and differentiation. Matrix-metalloproteinases (MMPs are zinc-dependent protease and play important roles in regulating the interaction between cells and extracellular matrix (ECM. Among these MMPs, membrane type 1-metalloproteinase (MT1-MMP not only degrades ECM protein but also activates metalloproteinase-2 (MMP-2, Gelatinase A, which are important to endothelial cell migration. Our previous study showed that LPA enhances MMP-2 expression and activity in human umbilical vein endothelial cells (HUVECs. In this study, we further revealed that LPA also induce MT1-MMP mRNA and protein expressions in HUVECs through real-time PCR and Western blotting, respectively. Furthermore, by applying chemical inhibitors, we found that LPA-induced MT1-MMP expression is mainly through a Gi- and partially through a Gq-dependent pathway. Our results provide new evidence that LPA might modulate ECM through regulating the expression of MT1-MMP.

  16. The role of MT2-MMP in cancer progression

    International Nuclear Information System (INIS)

    Ito, Emiko; Yana, Ikuo; Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa; Matsuura, Nariaki

    2010-01-01

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  17. Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking

    Science.gov (United States)

    Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian

    2012-01-01

    Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501

  18. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    International Nuclear Information System (INIS)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21 WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin α v β 3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  19. Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells

    DEFF Research Database (Denmark)

    Ingvarsen, Signe; Madsen, Daniel H.; Hillig, Thore

    2008-01-01

    The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity......, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence...... that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about...

  20. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    International Nuclear Information System (INIS)

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William

    2006-01-01

    UVA irradiation, dose-dependently (5-20 J/cm 2 ), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ( 1 O 2 ). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively

  1. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of membrane-type 1 matrix metalloproteinase (MT1-MMP)

    International Nuclear Information System (INIS)

    Terawaki, Shin-ichi; Kitano, Ken; Aoyama, Miki; Hakoshima, Toshio

    2008-01-01

    The radixin FERM domain was shown to bind the MT1-MMP cytoplasmic peptide and crystals of the complex were obtained. ERM proteins play a role in the cross-linking found between plasma membranes and actin filaments. The N-terminal FERM domains of ERM proteins are responsible for membrane association through direct interaction with the cytoplasmic tails of integral membrane proteins. During cell migration and movement, membrane-type 1 matrix metalloproteinase (MT1-MMP) on plasma membranes sheds adhesion molecule CD44 in addition to degrading the extracellular matrix. Here, the interaction between the radixin FERM domain and the MT1-MMP cytoplasmic tail is reported and preliminary crystallographic characterization of crystals of the radixin FERM domain bound to the cytoplasmic tail of MT1-MMP is presented. The crystals belong to space group P6 1 22, with unit-cell parameters a = b = 122.7, c = 128.3 Å, and contain one complex in the crystallographic asymmetric unit. The diffraction data were collected to a resolution of 2.4 Å

  2. Protein expression of MMP-2 and MT1-MMP in actinic keratosis, squamous cell carcinoma of the skin, and basal cell carcinoma.

    Science.gov (United States)

    de Oliveira Poswar, Fabiano; de Carvalho Fraga, Carlos Alberto; Gomes, Emisael Stênio Batista; Farias, Lucyana Conceição; Souza, Linton Wallis Figueiredo; Santos, Sérgio Henrique Souza; Gomez, Ricardo Santiago; de-Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2015-02-01

    Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are 2 skin neoplasms with distinct potentials to invasion and metastasis. Actinic keratosis (AK) is a precursor lesion of SCC. Immunohistochemistry was performed to evaluate the expression of MMP-2 and MT1-MMP in samples of BCC (n = 29), SCC (n = 12), and AK (n = 13). The ratio of positive cells to total cells was used to quantify the staining. Statistical significance was considered under the level P < .05. We found a higher expression of MMP-2 in tumor stroma and parenchyma of SCC as compared to BCC. The expression of this protein was also similar between SCC and its precursor actinic keratosis, and it was higher in the stroma of high-risk BCC when compared to low-risk BCC. MT1-MMP, which is an activator of MMP-2, was similarly expressed in all groups. Our results suggest that MMP-2 expression may contribute to the distinct invasive patterns seen in SCC and BCC. © The Author(s) 2014.

  3. Targeting of Breast Cancer through MT1-MMP/Tetraspanin Complexes

    Science.gov (United States)

    2011-08-01

    182, 765-776. Gordon- Alonso , M., Yanez-Mo, M., Barreiro, O., Alvarez, S., Munoz- Fernandez , M. A., Valenzuela- Fernandez , A. and Sanchez-Madrid, F...Diaz, R., Megias, D., Genis, L., Garcia -Grande, A., Garcia , M. A., Arroyo, A. G., and Montoya, M. C. (2007). MT1-MMP proinvasive activity is regulated by...metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239. Penas, P. F., Garcia -Diez, A., Sanchez-Madrid, F

  4. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.

    2009-01-01

    -expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified...... from nontransgenic MT1-MMP-deficient littermates. These observations show that type II collagen is not stringently confined to the chondrocyte but is expressed in skeletal stem/progenitor cells (able to regenerate bone, cartilage, myelosupportive stroma, marrow adipocytes) and in the chondrogenic...

  5. LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chakrabarti Ratna

    2011-01-01

    Full Text Available Abstract Background LIM kinase 1 (LIMK1 is an actin and microtubule cytoskeleton modulatory protein that is overexpressed in a number of cancerous tissues and cells and also promotes invasion and metastasis of prostate and breast cancer cells. Membrane type matrix metalloproteinase 1 (MT1-MMP is a critical modulator of extracellular matrix (ECM turnover through pericellular proteolysis and thus plays crucial roles in neoplastic cell invasion and metastasis. MT1-MMP and its substrates pro-MMP-2 and pro-MMP-9 are often overexpressed in a variety of cancers including prostate cancer and the expression levels correlate with the grade of malignancy in prostate cancer cells. The purpose of this study is to determine any functional relation between LIMK1 and MT1-MMP and its implication in cell invasion. Results Our results showed that treatment with the hydroxamate inhibitor of MT1-MMP, MMP-2 and MMP-9 ilomastat inhibited LIMK1-induced invasion of benign prostate epithelial cells. Over expression of LIMK1 resulted in increased collagenolytic activity of MMP-2, and secretion of pro-MMP2 and pro-MMP-9. Cells over expressing LIMK1 also exhibited increased expression of MT1-MMP, transcriptional activation and its localization to the plasma membrane. LIMK1 physically associates with MT1-MMP and is colocalized with it to the Golgi vesicles. We also noted increased expression of both MT1-MMP and LIMK1 in prostate tumor tissues. Conclusion Our results provide new information on regulation of MT1-MMP function by LIMK1 and showed for the first time, involvement of MMPs in LIMK1 induced cell invasion.

  6. Membrane-type-3 matrix metalloproteinase (MT3-MMP functions as a matrix composition-dependent effector of melanoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Olga Tatti

    Full Text Available In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.

  7. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo

    DEFF Research Database (Denmark)

    Botkjaer, Kenneth A; Kwok, Hang Fai; Terp, Mikkel G

    2016-01-01

    therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown......The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential...... to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332...

  8. Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester.

    Science.gov (United States)

    Bjørn, S F; Hastrup, N; Larsen, J F; Lund, L R; Pyke, C

    2000-01-01

    An intimately regulated cell surface activation of matrix metalloproteinases (MMPs) is believed to be of critical importance for the control of trophoblast invasion. A histological investigation of the expression and localization of three different MMPs, the membrane-type matrix metalloproteinases 1 and 2 (MT1-MMP, MT2-MMP) and matrix metalloproteinase 2 (MMP-2/gelatinase A) was performed by in situ hybridization on consecutive sections from human placentae of first trimester pregnancies. Cytokeratin immunostaining identified trophoblast cells. Both normal and tubal implantation sites were studied. We observed a high degree of coexpression of MT2-MMP, MT1-MMP and MMP-2 mRNAs in single extravillous cytotrophoblasts that had invaded the endometrium and tubal wall. Furthermore, mRNAs for all three genes were also seen in cytotrophoblasts of cell islands. In contrast to this coexpression pattern, MT2-MMP expression was absent from cell columns and decidual cells, in which signals for MT1-MMP and MMP-2 mRNAs were seen. The present data on the cellular expression of MT2-MMP mRNA in placenta extend our knowledge of the proteolytic events that take place during early pregnancy. The data suggest that MT2-MMP, capable of activating MMP-2 in vitro, is involved in the invasion of extravillous cytotrophoblast, possibly related to the physiological activation of MMP-2. Copyright 2000 Harcourt Publishers Ltd.

  9. Vaginal Lactoferrin Modulates PGE2, MMP-9, MMP-2, and TIMP-1 Amniotic Fluid Concentrations

    Directory of Open Access Journals (Sweden)

    Alessandro Trentini

    2016-01-01

    Full Text Available Inflammation plays an important role in pregnancy, and cytokine and matrix metalloproteases (MMPs imbalance has been associated with premature rupture of membranes and increased risk of preterm delivery. Previous studies have demonstrated that lactoferrin (LF, an iron-binding protein with anti-inflammatory properties, is able to decrease amniotic fluid (AF levels of IL-6. Therefore, we aimed to evaluate the effect of vaginal LF administration on amniotic fluid PGE2 level and MMP-TIMP system in women undergoing genetic amniocentesis. One hundred and eleven women were randomly divided into controls (n=57 or treated with LF 4 hours before amniocentesis (n=54. Amniotic fluid PGE2, active MMP-9 and MMP-2, and TIMP-1 and TIMP-2 concentrations were determined by commercially available assays and the values were normalized by AF creatinine concentration. PGE2, active MMP-9, and its inhibitor TIMP-1 were lower in LF-treated group than in controls (p<0.01, p<0.005, and p<0.001, resp.. Conversely, active MMP-2 (p<0.0001 and MMP-2/TIMP-2 molar ratio (p<0.001 were increased, whilst TIMP-2 was unchanged. Our data suggest that LF administration is able to modulate the inflammatory response following amniocentesis, which may counteract cytokine and prostanoid imbalance that leads to abortion. This trial is registered with Clinical Trial number NCT02695563.

  10. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ohkawara

    Full Text Available Membrane type 1-matrix metalloproteinase (MT1-MMP functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt in tumor necrosis factor (TNF-α-induced signaling pathways of vascular responses, including tissue factor (TF procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs. TNF-α (10 ng/mL induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1-dependent signaling pathway and nuclear factor-kB (NF-kB activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.

  11. Membrane Type 1–Matrix Metalloproteinase/Akt Signaling Axis Modulates TNF-α-Induced Procoagulant Activity and Apoptosis in Endothelial Cells

    Science.gov (United States)

    Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2014-01-01

    Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582

  12. On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth

    NARCIS (Netherlands)

    Beertsen, Wouter; Holmbeck, Kenn; Niehof, Anneke; Bianco, Paolo; Chrysovergis, Kaliiopi; Birkedal-Hansen, Henning; Everts, Vincent

    2002-01-01

    Although the connective tissues of the periodontium are subject to a high turnover rate, no conclusive evidence has yet emerged that periodontal collagen turnover is essential for the eruption of teeth or for root elongation. These processes were studied in mice deficient in MT1-MMP, a membrane type

  13. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo

    Science.gov (United States)

    Clemente, Cristina; Montalvo, María Gregoria; Seiki, Motoharu; Arroyo, Alicia G.

    2017-01-01

    Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development. PMID:28926609

  14. HMEC-1 adopt the mixed amoeboid-mesenchymal migration type during EndMT.

    Science.gov (United States)

    Kryczka, Jakub; Przygodzka, Patrycja; Bogusz, Helena; Boncela, Joanna

    2017-06-01

    The contribution of endothelial cells to scar and fibrotic tissue formation is undisputedly connected to their ability to undergo the endothelial-to-mesenchymal transition (EndMT) towards fibroblast phenotype-resembling cells. The migration model of fibroblasts and fibroblast-resembling cells is still not fully understood. It may be either a Rho/ROCK-independent, an integrin- and MMP-correlated ECM degradation-dependent, a mesenchymal model or Rho/ROCK-dependent, integrin adhesion- and MMP activity-independent, an amoeboid model. Here, we hypothesized that microvascular endothelial cells (HMEC-1) undergoing EndMT adopt an intermediate state of drifting migration model between the mesenchymal and amoeboid protrusive types in the early stages of fibrosis. We characterized the response of HMEC-1 to TGF-β2, a well-known mediator of EndMT within the microvasculature. We observed that TGF-β2 induces up to an intermediate mesenchymal phenotype in HMEC-1. In parallel, MMP-2 is upregulated and is responsible for most proteolytic activity. Interestingly, the migration of HMEC-1 undergoing EndMT is dependent on both ECM degradation and invadosome formation associated with MMP-2 proteolytic activity and Rho/ROCK cytoskeleton contraction. In conclusion, the transition from mesenchymal towards amoeboid movement highlights a molecular plasticity mechanism in endothelial cell migration in skin fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells

    International Nuclear Information System (INIS)

    Gomes, Luciana R; Terra, Letícia F; Wailemann, Rosângela AM; Labriola, Leticia; Sogayar, Mari C

    2012-01-01

    38MAPK, ERK1/2 and MMP inhibitors. Altogether, our results support that TGF-β1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-β1 still remains a promising target for breast cancer treatment

  16. 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases

    International Nuclear Information System (INIS)

    Xie, Zhihui; Yuan, Hongyan; Yin, Yuzhi; Zeng, Xiao; Bai, Renkui; Glazer, Robert I

    2006-01-01

    Metastasis is a major cause of morbidity and mortality in breast cancer with tumor cell invasion playing a crucial role in the metastatic process. PDK1 is a key molecule that couples PI3K to cell proliferation and survival signals in response to growth factor receptor activation, and is oncogenic when expressed in mouse mammary epithelial cells. We now present evidence showing that PDK1-expressing cells exhibit enhanced anchorage-dependent and -independent cell growth and are highly invasive when grown on Matrigel. These properties correlate with induction of MMP-2 activity, increased MT1-MMP expression and a unique gene expression profile. Invasion assays in Matrigel, MMP-2 zymogram analysis, gene microarray analysis and mammary isografts were used to characterize the invasive and proliferative function of cells expressing PDK1. Tissue microarray analysis of human breast cancers was used to measure PDK1 expression in invasive tumors by IHC. Enhanced invasion on Matrigel in PDK1-expressing cells was accompanied by increased MMP-2 activity resulting from stabilization against proteasomal degradation. Increased MMP-2 activity was accompanied by elevated levels of MT1-MMP, which is involved in generating active MMP-2. Gene microarray analysis identified increased expression of the ECM-associated genes decorin and type I procollagen, whose gene products are substrates of MT1-MMP. Mammary fat pad isografts of PDK1-expressing cells produced invasive adenocarcinomas. Tissue microarray analysis of human invasive breast cancer indicated that PDK1pSer241 was strongly expressed in 90% of samples. These results indicate that PDK1 serves as an important effector of mammary epithelial cell growth and invasion in the transformed phenotype. PDK1 mediates its effect in part by MT1-MMP induction, which in turn activates MMP-2 and modulates the ECM proteins decorin and collagen. The presence of increased PDK1 expression in the majority of invasive breast cancers suggests its

  17. MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells.

    Science.gov (United States)

    Kalhori, Veronica; Törnquist, Kid

    2015-03-15

    The bioactive lipid sphingosine-1-phosphate (S1P) has emerged as a potent inducer of cancer cell migration and invasion. Previously, we have shown that S1P induces invasion of ML-1 follicular thyroid cancer cells via S1P receptors 1 and 3 (S1P1,3). Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes used by cells for degradation of the extracellular matrix during invasion and migration. In the present study, we examined the role of MMP2 and MMP9 for S1P-induced invasion of ML-1 cells, and found that S1P regulates the secretion and activity of MMP2 and MMP9 via S1P1,3. Both pharmacological inhibitors and siRNA knockdown of MMP2 and MMP9 could attenuate S1P-induced invasion. Additionally, we show that calpains and Rac1 mediate S1P-induced secretion of MMP2 and MMP9. In conclusion, MMP2 and MMP9 participate in S1P-evoked follicular ML-1 thyroid cancer cell invasion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Extracellular Matrix Regulations of Membrane Type 1 - Matrix Metalloproteinasis (MT1-MMP) and Matrix Metalloproteinase-2 (MMP-2) in Human Breast Fibroblasts

    National Research Council Canada - National Science Library

    Harnandez-Barrantes, Sonia

    2001-01-01

    .... Thus, under certain conditions, TIMP-2 is a positive regulator of MMP activity. TIMP-4, a close homologue of TIMP-2 also binds to pro-MMP- 2 and can potentially participate in pro-MMP-2 activation...

  19. Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151.

    Science.gov (United States)

    Shiomi, Takayuki; Inoki, Isao; Kataoka, Fumio; Ohtsuka, Takashi; Hashimoto, Gakuji; Nemori, Ryoichi; Okada, Yasunori

    2005-12-01

    Matrix metalloproteinase-7 (MMP-7) (also known as matrilysin-1) is secreted as a proenzyme (proMMP-7) and plays a key role in the degradation of various extracellular matrix (ECM) and non-ECM molecules after activation. To identify the binding proteins related to proMMP-7 activation, a human lung cDNA library was screened by yeast two-hybrid system using proMMP-7 as bait. We identified a candidate molecule CD151, which is a member of the transmembrane 4 superfamily. Complex formation of proMMP-7 with CD151 was demonstrated by immunoprecipitation of the molecules from CaR-1 cells, a human rectal carcinoma cell line, expressing both proMMP-7 and CD151, and CD151 stable transfectants incubated with proMMP-7. Yeast two-hybrid assays using deletion mutants of proMMP-7 and CD151 suggested an interaction between the propeptide of proMMP-7 and the COOH-terminal extracellular loop of CD151. The binding activity of (125)I-labeled proMMP-7 to CD151 on the cell membranes was shown with CD151 stable transfectants. Laser-scanning confocal microscopy demonstrated that proMMP-7 colocalizes with CD151 on the cell membranes of CD151 stable transfectants and CaR-1 cells. In situ zymography using crosslinked carboxymethylated transferrin, a substrate of MMP-7, demonstrated proteinase activity on and around CD151 stable transfectants and CaR-1 cells, while the activity was abolished by their treatment with MMP inhibitors, anti-MMP-7 antibody or anti-CD151 antibody. In human lung adenocarcinoma tissues, colocalization of MMP-7 and CD151 was demonstrated on the carcinoma cells. Metalloproteinase activity was present in these tissues and could be inhibited by antibodies to MMP-7 or CD151. These data demonstrate for the first time that proMMP-7 is captured and activated on the cell membranes through interaction with CD151, and suggest the possibility that similar to the MT1-MMP/MMP-2 system, MMP-7 is involved in the pericellular activation mechanism mediated by CD151, a crucial step in

  20. Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-01-01

    Full Text Available Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist, affected activities of matrix metalloproteinase (MMP and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with nicotine at different concentrations (0, 1, 10, and 100 ng/ml for 0–120 min. Nicotine markedly stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2 and c-Jun in RAW264.7 cells. Pretreatment with U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP- 1, and regulated upon activation normal T cell expressed and secreted (RANTES. Similarly, nicotine treatment also increased phosphorylation of c-Jun and expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987, nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited. Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated. Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal aortic aneurysm.

  1. (-1607 2G/1G) and MMP-3 (-1612 5A/6A)

    Indian Academy of Sciences (India)

    Hari Om Singh

    2017-07-04

    Jul 4, 2017 ... (-1612 5A/6A) in development of HAND and modulation .... (Axygen Biosciences, Union City, CA, USA) according to ..... promoter region polymorphisms of MMP-1 and MMP-3 ... have employed the case-only study to find out the risk for ... cytokine network, which may have a role in modulation of. T able. 5.

  2. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de; Alexi, Pascal; Tihaa, Lidia; Haas, Ute; Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de

    2015-02-13

    Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model{sub ,} PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors. - Highlights: • PDGF-D signals through PDGF receptor type α and β. • PDGF-D modulates extracellular matrix homeostasis and remodeling. • Like PDGF-B, PDGF-D triggers phosphorylation of PLC-γ, Akt/PKB, JNK, ERK1/2, and p38. • PDGF-D induces TIMP-1 expression through ERK and p38 MAPK. • PDGF-D attenuates MMP-2 and MMP-9 gelatinase activities.

  3. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities

    International Nuclear Information System (INIS)

    Borkham-Kamphorst, Erawan; Alexi, Pascal; Tihaa, Lidia; Haas, Ute; Weiskirchen, Ralf

    2015-01-01

    Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model , PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors. - Highlights: • PDGF-D signals through PDGF receptor type α and β. • PDGF-D modulates extracellular matrix homeostasis and remodeling. • Like PDGF-B, PDGF-D triggers phosphorylation of PLC-γ, Akt/PKB, JNK, ERK1/2, and p38. • PDGF-D induces TIMP-1 expression through ERK and p38 MAPK. • PDGF-D attenuates MMP-2 and MMP-9 gelatinase activities

  4. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. An improved collagen zymography approach for evaluating the collagenases MMP-1, MMP-8, and MMP-13.

    Science.gov (United States)

    Inanc, Seniz; Keles, Didem; Oktay, Gulgun

    2017-10-01

    Collagen zymography is an SDS-PAGE-based method for detecting both the proenzyme and active forms of collagenases. Although collagen zymography is used for assessment of the matrix metalloproteinases MMP-1 and MMP-13, it can be difficult to detect these collagenases due to technical issues. Moreover, it remains unclear whether the collagenase activity of MMP-8 can be detected by this method. Here, we present an improved collagen zymography method that allows quantification of the activities of MMP-1, MMP-8, and MMP-13. Activities of recombinant collagenases could be detected in collagen zymogram gels copolymerized with 0.3 mg/mL type I collagen extracted from rat tail tendon. This improved method is sensitive enough to detect the activity of as little as 1 ng of collagenase. We generated standard curves for the three collagenases to quantify the collagenolytic activity levels of unknown samples. To validate our improved method, we investigated MMP-1 activity levels in human thyroid cancer (8505C) and normal thyroid (Nthy-ori-3-1) cell lines, finding that the proenzyme and active MMP-1 levels were greater in 8505C cells than in Nthy-ori-3-1 cells. Taken together, our data show that collagen zymography can be used in both molecular and clinical investigations to evaluate collagenase activities in various pathological conditions.

  6. Plasma MMP1 and MMP8 expression in breast cancer: Protective role of MMP8 against lymph node metastasis

    Directory of Open Access Journals (Sweden)

    Christiaens Marie-Rose

    2008-03-01

    Full Text Available Abstract Background Elevated levels of matrix metalloproteinases have been found to associate with poor prognosis in various carcinomas. This study aimed at evaluating plasma levels of MMP1, MMP8 and MMP13 as diagnostic and prognostic markers of breast cancer. Methods A total of 208 breast cancer patients, of which 21 with inflammatory breast cancer, and 42 healthy controls were included. Plasma MMP1, MMP8 and MMP13 levels were measured using ELISA and correlated with clinicopathological characteristics. Results Median plasma MMP1 levels were higher in controls than in breast cancer patients (3.45 vs. 2.01 ng/ml, while no difference was found for MMP8 (10.74 vs. 10.49 ng/ml. ROC analysis for MMP1 revealed an AUC of 0.67, sensitivity of 80% and specificity of 24% at a cut-off value of 4.24 ng/ml. Plasma MMP13 expression could not be detected. No correlation was found between MMP1 and MMP8 levels. We found a trend of lower MMP1 levels with increasing tumour size (p = 0.07; and higher MMP8 levels with premenopausal status (p = 0.06 and NPI (p = 0.04. The median plasma MMP1 (p = 0.02 and MMP8 (p = 0.007 levels in the non-inflammatory breast cancer patients were almost twice as high as those found in the inflammatory breast cancer patients. Intriguingly, plasma MMP8 levels were positively associated with lymph node involvement but showed a negative correlation with the risk of distant metastasis. Both controls and lymph node negative patients (pN0 had lower MMP8 levels than patients with moderate lymph node involvement (pN1, pN2 (p = 0.001; and showed a trend for higher MMP8 levels compared to patients with extensive lymph node involvement (pN3 and a strong predisposition to distant metastasis (p = 0.11. Based on the hypothesis that blood and tissue protein levels are in reverse association, these results suggest that MMP8 in the tumour may have a protective effect against lymph node metastasis. Conclusion In summary, we observed differences in MMP1

  7. Receptor for advanced glycation end products - membrane type1 matrix metalloproteinase axis regulates tissue factor expression via RhoA and Rac1 activation in high-mobility group box-1 stimulated endothelial cells.

    Directory of Open Access Journals (Sweden)

    Koichi Sugimoto

    Full Text Available BACKGROUND: Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1 plays a key role in the systemic inflammation. Tissue factor (TF is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP associates with advanced glycation endproducts (AGE triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells. METHODS AND RESULTS: Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation. CONCLUSIONS: The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.

  8. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Ivan O Rosas

    2008-04-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic progressive fibrotic lung disease associated with substantial morbidity and mortality. The objective of this study was to determine whether there is a peripheral blood protein signature in IPF and whether components of this signature may serve as biomarkers for disease presence and progression.We analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and in the plasma of 53 control individuals. We identified a combinatorial signature of five proteins-MMP7, MMP1, MMP8, IGFBP1, and TNFRSF1A-that was sufficient to distinguish patients from controls with a sensitivity of 98.6% (95% confidence interval [CI] 92.7%-100% and specificity of 98.1% (95% CI 89.9%-100%. Increases in MMP1 and MMP7 were also observed in lung tissue and bronchoalveolar lavage fluid obtained from IPF patients. MMP7 and MMP1 plasma concentrations were not increased in patients with chronic obstructive pulmonary disease or sarcoidosis and distinguished IPF compared to subacute/chronic hypersensitivity pneumonitis, a disease that may mimic IPF, with a sensitivity of 96.3% (95% CI 81.0%-100% and specificity of 87.2% (95% CI 72.6%-95.7%. We verified our results in an independent validation cohort composed of patients with IPF, familial pulmonary fibrosis, subclinical interstitial lung disease (ILD, as well as with control individuals. MMP7 and MMP1 concentrations were significantly higher in IPF patients compared to controls in this cohort. Furthermore, MMP7 concentrations were elevated in patients with subclinical ILD and negatively correlated with percent predicted forced vital capacity (FVC% and percent predicted carbon monoxide diffusing capacity (DLCO%.Our experiments provide the first evidence for a peripheral blood protein signature in IPF to our knowledge. The two main components of this signature, MMP7 and MMP1, are overexpressed in the lung microenvironment and distinguish IPF from other chronic lung

  9. Altered Expression Levels of MMP1, MMP9, MMP12, TIMP1, and IL-1β as a Risk Factor for the Elevated IOP and Optic Nerve Head Damage in the Primary Open-Angle Glaucoma Patients

    Directory of Open Access Journals (Sweden)

    Lukasz Markiewicz

    2015-01-01

    Full Text Available The aim of presented work was to analyze the impact of particular polymorphic changes in the promoter regions of the -1607 1G/2G MMP1, -1562 C/T MMP9, -82 A/G MMP12, -511 C/T IL-1β, and 372 T/C TIMP1 genes on their expression level in POAG patients. Blood and aqueous humor samples acquired from 50 patients with POAG and 50 control subjects were used for QPCR and protein levels analysis by ELISA. In vivo promoter activity assays were carried on HTM cells using dual luciferase assay. All studied subjects underwent ophthalmic examination, including BCVA, intraocular pressure, slit-lamp examination, gonioscopy, HRT, and OCT scans. Patients with POAG are characterized by an increased mRNA expression of MMP1, MMP9, MMP12, and IL-1β genes as compared to the control group (P<0.001. Aqueous humor acquired from patients with POAG displayed increased protein expression of MMP1, MMP9, MMP12, and IL-1β compared to the control group (P<0.001. Allele -1607 1G of MMP1 gene possesses only 42,91% of the -1607 2G allele transcriptional activity and allele -1562 C of MMP9 gene possesses only 21,86% of the -1562 T allele. Increased expression levels of metalloproteinases can be considered as a risk factor for the development of POAG.

  10. Polymorphism of matrix metalloproteinase genes (MMP1 and MMP3) in patients with varicose veins.

    Science.gov (United States)

    Kurzawski, M; Modrzejewski, A; Pawlik, A; Droździk, M

    2009-07-01

    Several risk factors for varicose veins have been identified: female gender, combined with obesity and pregnancy, occupations requiring standing for long periods, sedentary lifestyle, history of deep-vein thrombosis and family history. However, no specific gene variants related to a wide prevalence of varicosities in general population have been identified. Extracellular matrix composition, predominantly maintained by matrix metalloproteinases (MMPs), may affect the vein-wall structure, which may lead to dilation of vessels and cause varicosities. MMP-1 (tissue collagenase I) and MMP-3 (stromelysin I) expression was found to be raised in varicose veins compared with normal vessels. Therefore, a study was conducted to evaluate a potential association between MMP1 and MMP3 promoter polymorphisms and a risk of varicose veins. Genotyping for the presence of the polymorphisms -1607dupG (rs1799750) in MMP1 and -1171dupA (rs3025058) in the MMP3 promoter region was performed using PCR and restriction-fragment length polymorphism assays in a group of 109 patients diagnosed with varicose veins and 112 healthy controls. The frequencies of the MMP1 and MMP3 alleles (minor allele frequency 0.440 in patients vs. 0.451 in the controls for MMP1-1607*G and 0.514 vs. 0.469 for MMP3-1171*dupA, respectively) and of genotypes did not differ significantly between patients and controls. The MMP1-1607dupG and MMP3-1171dupA promoter polymorphisms are not valuable markers of susceptibility for varicose veins.

  11. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jing Lu

    Full Text Available Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced.

  12. BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK.

    Science.gov (United States)

    Liu, Jun; Ben, Qi-Wen; Yao, Wei-Yan; Zhang, Jian-Jun; Chen, Da-Fan; He, Xiang-Yi; Li, Lei; Yuan, Yao-Zong

    2012-06-01

    The emerging roles of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers have drawn great attention in cancer research. We hypothesized that BMP2 promotes cancer metastasis by modulating MMP-2 secretion and activity through intracellular ROS regulation and ERK activation in human pancreatic cancer. Our data show that stimulation of PANC-1 cells with BMP2 induced MMP-2 secretion and activation, associated with decreased E-cadherin expression, resulting in epithelial-to-mesenchymal transformation (EMT) and cell invasion. Blockade of ROS by the ROS scavenger, 2-MPG, abolished cell invasion, inhibited the EMT process and decreased MMP-2 expression, suggesting ROS accumulation caused an increase in MMP-2 expression in BMP2-stimulated PANC-1 cell invasion. Furthermore, treatment of PANC-1 cells with 2-MPG or ERK inhibitor PD98059 reduced the phosphorylation of ERK, resulting in attenuation of BMP2-induced cell invasion and MMP-2 activation. Taken together, these results suggest that BMP2 induces the cell invasion of PANC-1 cells by enhancing MMP-2 secretion and acting through ROS accumulation and ERK activation.

  13. Bone sialoprotein does not interact with pro-gelatinase A (MMP-2 or mediate MMP-2 activation

    Directory of Open Access Journals (Sweden)

    McCulloch Christopher A

    2009-04-01

    Full Text Available Abstract Background A recent model for activation of the zymogen form of matrix metalloproteinase 2 (MMP-2, also known as gelatinase A has suggested that interactions between the SIBLING protein bone sialoprotein (BSP and MMP-2 leads to conformational change in MMP-2 that initiates the conversion of the pro-enzyme into a catalytically active form. This model is particularly relevant to cancer cell metastasis to bone since BSP, bound to the αvβ3 integrin through its arginine-glycine-aspartic acid motif, could recruit MMP-2 to the cell surface. Methods We critically assessed the relationship between BSP and proMMP-2 and its activation using various forms of recombinant and purified BSP and MMP-2. Gelatinase and collagenase assays, fluorescence binding assays, real-time PCR, cell culture and pull-down assays were employed to test the model. Results Studies with a fluorogenic substrate for MMP-2 showed no activation of proMMP-2 by BSP. Binding and pull-down assays demonstrated no interaction between MMP-2 and BSP. While BSP-mediated invasiveness has been shown to depend on its integrin-binding RGD sequence, analysis of proMMP-2 activation and the level of membrane type 1 (MT1-MMP in cells grown on a BSP substratum showed that the BSP-αvβ3 integrin interaction does not induce the expression of MT1-MMP. Conclusion These studies do not support a role for BSP in promoting metastasis through interactions with pro-MMP-2.

  14. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  15. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Directory of Open Access Journals (Sweden)

    Anna Janowska-Wieczorek

    2012-07-01

    Full Text Available Membrane type-1 matrix metalloproteinase (MT1-MMP has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML cells. Because tumor necrosis factor (TNF-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  16. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    International Nuclear Information System (INIS)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta; Turner, A. Robert; Mirza, Imran; Surmawala, Amir; Larratt, Loree M.; Janowska-Wieczorek, Anna

    2012-01-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML

  17. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Turner, A. Robert [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Mirza, Imran [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2B7 (Canada); Surmawala, Amir; Larratt, Loree M. [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Janowska-Wieczorek, Anna, E-mail: anna.janowska@blood.ca [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada)

    2012-07-25

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  18. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    Science.gov (United States)

    Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  19. Identification of membrane-type 1 matrix metalloproteinase tyrosine phosphorylation in association with neuroblastoma progression

    International Nuclear Information System (INIS)

    Nyalendo, Carine; Sartelet, Hervé; Barrette, Stéphane; Ohta, Shigeru; Gingras, Denis; Béliveau, Richard

    2009-01-01

    Neuroblastoma is a pediatric tumor of neural crest cells that is clinically characterized by its variable evolution, from spontaneous regression to malignancy. Despite many advances in neuroblastoma research, 60% of neuroblastoma, which are essentially metastatic cases, are associated with poor clinical outcome due to the lack of effectiveness of current therapeutic strategies. Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), an enzyme involved in several steps in tumor progression, has previously been shown to be associated with poor clinical outcome for neuroblastoma. Based on our recent demonstration that MT1-MMP phosphorylation is involved in the growth of fibrosarcoma tumors, we examined the potential role of phosphorylated MT1-MMP in neuroblastoma progression. Tyrosine phosphorylated MT1-MMP was immunostained on tissue microarray samples from 55 patients with neuroblastoma detected by mass screening (known to be predominantly associated with favourable outcome), and from 234 patients with standard diagnosed neuroblastoma. In addition, the effects of a non phosphorylable version of MT1-MMP on neuroblastoma cell migration and proliferation were investigated within three-dimensional collagen matrices. Although there is no correlation between the extent of tyrosine phosphorylation of MT1-MMP (pMT1-MMP) and MYCN amplification or clinical stage, we observed greater phosphorylation of pMT1-MMP in standard neuroblastoma, while it is less evident in neuroblastoma from mass screening samples (P = 0.0006) or in neuroblastoma samples from patients younger than one year (P = 0.0002). In vitro experiments showed that overexpression of a non-phosphorylable version of MT1-MMP reduced MT1-MMP-mediated neuroblastoma cell migration and proliferation within a three-dimensional type I collagen matrix, suggesting a role for the phosphorylated enzyme in the invasive properties of neuroblastoma cells. Overall, these results suggest that tyrosine phosphorylated MT1-MMP

  20. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe.

    Science.gov (United States)

    Shimizu, Yoichi; Temma, Takashi; Hara, Isao; Makino, Akira; Kondo, Naoya; Ozeki, Ei-Ichi; Ono, Masahiro; Saji, Hideo

    2014-08-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease activating MMP-2 that mediates cleavage of extracellular matrix components and plays pivotal roles in tumor migration, invasion and metastasis. Because in vivo noninvasive imaging of MT1-MMP would be useful for tumor diagnosis, we developed a novel near-infrared (NIR) fluorescence probe that can be activated following interaction with MT1-MMP in vivo. MT1-hIC7L is an activatable fluorescence probe comprised of anti-MT1-MMP monoclonal antibodies conjugated to self-assembling polymer micelles that encapsulate NIR dyes (IC7-1, λem : 858 nm) at concentrations sufficient to cause fluorescence self-quenching. In aqueous buffer, MT1-hIC7L fluorescence was suppressed to background levels and increased approximately 35.5-fold in the presence of detergent. Cellular uptake experiments revealed that in MT1-MMP positive C6 glioma cells, MT1-hIC7L showed significantly higher fluorescence that increased with time as compared to hIC7L, a negative control probe lacking the anti-MT1-MMP monoclonal antibody. In MT1-MMP negative MCF-7 breast adenocarcinoma cells, both MT1-hIC7L and hIC7L showed no obvious fluorescence. In addition, the fluorescence intensity of C6 cells treated with MT1-hIC7L was suppressed by pre-treatment with an MT1-MMP endocytosis inhibitor (P imaging using probes intravenously administered to tumor-bearing mice showed that MT1-hIC7L specifically visualized C6 tumors (tumor-to-background ratios: 3.8 ± 0.3 [MT1-hIC7L] vs 3.1 ± 0.2 [hIC7L] 48 h after administration, P fluorescence in MCF-7 tumors. Together, these results show that MT1-hIC7L would be a potential activatable NIR probe for specifically detecting MT1-MMP-expressing tumors. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  1. Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9) and Their Inhibitors (TIMP-1, TIMP-2) in Inflammatory Bowel Diseases.

    Science.gov (United States)

    Jakubowska, Katarzyna; Pryczynicz, Anna; Iwanowicz, Piotr; Niewiński, Andrzej; Maciorkowska, Elżbieta; Hapanowicz, Jerzy; Jagodzińska, Dorota; Kemona, Andrzej; Guzińska-Ustymowicz, Katarzyna

    2016-01-01

    Crohn's disease (CD) and ulcerative colitis (UC) belong to a group of inflammatory bowel diseases (IBD). The aim of our study was to evaluate the expression of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 in ulcerative colitis and Crohn's disease. The study group comprised 34 patients with UC and 10 patients with CD. Evaluation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 expression in tissue samples was performed using immunohistochemistry. The overexpression of MMP-9 and TIMP-1 was dominant in both the glandular epithelium and inflammatory infiltration in UC patients. In contrast, in CD subjects the positive expression of MMP-2 and TIMP-1 was in glandular tubes while mainly MMP-7 and TIMP-2 expression was in inflammatory infiltration. Metalloproteinases' expression was associated with the presence of erosions, architectural tissue changes, and inflammatory infiltration in the lamina propria of UC patients. The expression of metalloproteinase inhibitors correlated with the presence of eosinophils and neutrophils in UC and granulomas in CD patients. Our studies indicate that the overexpression of metalloproteinases and weaker expression of their inhibitors may determine the development of IBD. It appears that MMP-2, MMP-7, and MMP-9 may be a potential therapeutic target and the use of their inhibitors may significantly reduce UC progression.

  2. Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9 and Their Inhibitors (TIMP-1, TIMP-2 in Inflammatory Bowel Diseases

    Directory of Open Access Journals (Sweden)

    Katarzyna Jakubowska

    2016-01-01

    Full Text Available Crohn’s disease (CD and ulcerative colitis (UC belong to a group of inflammatory bowel diseases (IBD. The aim of our study was to evaluate the expression of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 in ulcerative colitis and Crohn’s disease. The study group comprised 34 patients with UC and 10 patients with CD. Evaluation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 expression in tissue samples was performed using immunohistochemistry. The overexpression of MMP-9 and TIMP-1 was dominant in both the glandular epithelium and inflammatory infiltration in UC patients. In contrast, in CD subjects the positive expression of MMP-2 and TIMP-1 was in glandular tubes while mainly MMP-7 and TIMP-2 expression was in inflammatory infiltration. Metalloproteinases’ expression was associated with the presence of erosions, architectural tissue changes, and inflammatory infiltration in the lamina propria of UC patients. The expression of metalloproteinase inhibitors correlated with the presence of eosinophils and neutrophils in UC and granulomas in CD patients. Our studies indicate that the overexpression of metalloproteinases and weaker expression of their inhibitors may determine the development of IBD. It appears that MMP-2, MMP-7, and MMP-9 may be a potential therapeutic target and the use of their inhibitors may significantly reduce UC progression.

  3. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hong-hua Peng

    2012-01-01

    Full Text Available The matrix metalloprotease-1 (MMP-1/protease-activated receptor-1 (PAR-1 signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC, we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9% and 58 (68.2% tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS than those with negative ESCC (P = 0.002 and 0.003, respectively. Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR = 2.836, 95% confidence interval (CI = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068, MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127, and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883 and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681, MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279, and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881 as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  4. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-hua; Zhang, Xi; Cao, Pei-guo [Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province (China)

    2011-11-18

    The matrix metalloprotease-1 (MMP-1)/protease-activated receptor-1 (PAR-1) signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC), we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9%) and 58 (68.2%) tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM) stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS) than those with negative ESCC (P = 0.002 and 0.003, respectively). Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR) = 2.836, 95% confidence interval (CI) = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068), MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127), and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883) and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681), MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279), and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881) as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  5. Retroviral gene transfer of an antisense construct against membrane type 1 matrix metalloproteinase reduces the invasiveness of rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Rutkauskaite, Edita; Volkmer, Dagmar; Shigeyama, Yukio; Schedel, Jörg; Pap, Geza; Müller-Ladner, Ulf; Meinecke, Ingmar; Alexander, Dorothea; Gay, Renate E; Drynda, Susanne; Neumann, Wolfram; Michel, Beat A; Aicher, Wilhelm K; Gay, Steffen; Pap, Thomas

    2005-07-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed prominently in rheumatoid arthritis synovial fibroblasts (RASFs), but the specific contribution of MT1-MMP to fibroblast-mediated destruction of articular cartilage is incompletely understood. This study used gene transfer of an antisense expression construct to assess the effects of MT1-MMP inhibition on the invasiveness of RASFs. Retroviral gene transfer of a pLXIN vector-based antisense RNA expression construct (MT1-MMPalphaS) to MT1-MMP was used to stably transduce RASFs. Levels of MT1-MMP RNA and protein were determined by quantitative polymerase chain reaction, Western blotting, and immunocytochemistry in MT1-MMPalphaS-transduced RASFs as well as in control cells, with monitoring for 60 days. The effects of MT1-MMPalphaS on the invasiveness of RASFs were analyzed in the SCID mouse co-implantation model of RA. MT1-MMPalphaS-transduced RASFs produced high levels of antisense RNA that exceeded endogenous levels of MT1-MMP messenger RNA by 15-fold and resulted in a down-regulation of MT1-MMP at the protein level. Inhibition of MT1-MMP production was maintained for 60 days and significantly reduced the invasiveness of RASFs in the SCID mouse model. Whereas prominent invasion into cartilage by non-transduced and mock-transduced RASFs was observed (mean invasion scores 3.0 and 3.1, respectively), MT1-MMPalphaS-transduced cells showed only moderate invasiveness (mean invasion score 1.8; P < 0.05). The data demonstrate that an antisense RNA expression construct against MT1-MMP can be generated and expressed in RASFs for at least 60 days. Inhibition of MT1-MMP significantly reduces the cartilage degradation by RASFs.

  6. Radioimmunodetection of membrane type-1 matrix metalloproteinase relevant to tumor malignancy with a pre-targeting method

    International Nuclear Information System (INIS)

    Sano, Kohei; Temma, Takashi; Kuge, Yuji; Kudo, Takashi; Kamihashi, Junko; Saji, Hideo; Zhao, Songji

    2010-01-01

    Since membrane type-1 matrix metalloproteinase (MT1-MMP) is exclusively expressed in tumors and is closely associated with metastasis and invasion, MT1-MMP is a potential target of radiotracers for the evaluation of tumor malignancy. In this study, we planned to visualize MT1-MMP in vivo by a two-step pre-targeting strategy using a streptavidin (SAv)-biotin system combined with anti-MT1-MMP monoclonal immunoglobulin (IgG) (anti-MT1-MMP monoclonal antibody (mAb)). Streptavidinylated anti-MT1-MMP mAb was synthesized by reacting biotinylated anti-MT1-MMP mAb with SAv. In the pre-targeting study, FM3A mouse breast carcinoma-implanted mice were injected with anti-MT1-MMP mAb-SAv, followed 72 h later with radioiodinated biotin, (3-[ 123/125 I]iodobenzoyl)norbiotinamide( 123/125 I-IBB). Biodistribution and imaging (single photon emission computed tomography (SPECT)/CT) data were collected at several time points in the 24 h period following introduction of the tracer. The comparison groups were injected with 125 I-IBB alone or with 125 I-IBB pre-targeted with negative control IgG-SAv. In the pre-targeting study for MT1-MMP, within 1 h of tracer injection, rapid tumor uptake and abrupt clearance from the blood of radioactivity (2.22, 0.87% injected dose/g at 1 h) were observed. The tumor to blood (T/B) radioactivity ratios were significantly higher than those from mice dosed with the pre-targeting negative control (p 125 I-IBB alone did not accumulate in tumors. SPECT/CT image analysis of FM3A bearing mice showed high-contrast tumor images after 3 h with minimal blood-pool activity. The present study that uses a pre-targeting method showed high T/B radioactivity ratios and clear tumor images of MT1-MMP. This imaging method may be useful for the clinical diagnosis of malignant tumors. (author)

  7. EMMPRIN-induced MMP-2 activation cascade in human cervical squamous cell carcinoma

    NARCIS (Netherlands)

    Sier, Cornelis F. M.; Zuidwijk, Kim; Zijlmans, Henry J. M. A. A.; Hanemaaijer, Roeland; Mulder-Stapel, Adri A.; Prins, Frans A.; Dreef, Enno J.; Kenter, Gemma G.; Fleuren, Gert Jan; Gorter, Arko

    2006-01-01

    Tumor progression and recurrence of cervical cancer is associated with upregulation of matrix metalloproteinase 2 (MMP-2). We evaluated the location, origin and activity of MMP-2 in cervical squamous cell carcinomas in comparison with MT1-MMP (MMP-14), TIMP-2 and extracellular matrix

  8. Biological activity determination of I-BSP, a potent MMP 2 inhibitor, and its 123I tracer synthesis

    International Nuclear Information System (INIS)

    Oltenfreiter, R.; Staelens, L.; Slegers, G.; Lejeune, A.; Frankenne, F.; Dierckx, R.A.

    2002-01-01

    Aim: Matrix metalloproteinases (MMPs) are a family of at least 18 secreted and membrane-bound zinc endopeptidases. Collectively they function in the degradation of extracellular matrix proteins and play an important role in both normal and pathological tissue remodelling. Increased MMP activity is detected in a wide range of cancers and seems to be correlated to their invasive and metastatic potential. MMPs thus seem an attractive target for both diagnostic (SPECT tracer) and therapeutic purposes. Therefore, we synthesised a 123 I-labelled MMP 2 inhibitor and evaluated it in vitro. Materials and methods: The 123 I-labelled compound was synthesised by a Cu-assisted nucleophilic non-isotopic exchange starting from Br-BSP. After reaction, the mixture was purified by HPLC. IC 50 values were obtained by in vitro enzyme assays. A 1:1 mix between non-radiolabelled inhibitor (concentration range: 300 nM - 0.05 nM) and enzymes (MMP2, cMT1-MMP, cMT3-MMP) was incubated for 15 minutes at 37 0 C. The fluorescent substrate (Mca-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH2) was added and the increase of fluorescence versus time, due to the hydrolysis of substrate, was measured (GEMINI-XS, λ exc = 328 nm and λ em = 393nm). Initial velocities were calculated for different concentrations of inhibitor and the IC 50 values were then determined. Results: Radiochemical yield was 30% ±3%. Radiochemical purity was >95%. IC 50 values for inhibition of MMP2, cMT3-MMP and cMT1-MMP were 0.5 nM, 7.1 nM and 16.9 nM respectively. Conclusion: 123 I-BSP was synthesised with 30% ±3% yield. After HPLC the radiochemical purity was >95%. In vitro enzyme assays of I-BSP showed an inhibition of MMP2, cMT3-MMP and cMT1-MMP in the low nM range (0.5 nM, 7.1 nM and 16.9 nM respectively). In vivo studies (biodistribution, metabolizing) in mice will be performed in the near future

  9. MMP-1 expression has an independent prognostic value in breast cancer

    International Nuclear Information System (INIS)

    Boström, Pia; Söderström, Mirva; Vahlberg, Tero; Söderström, Karl-Ove; Roberts, Peter J; Carpén, Olli; Hirsimäki, Pirkko

    2011-01-01

    Breast cancer consists of a variety of tumours, which differ by their morphological features, molecular characteristics and outcome. Well-known prognostic factors, e.g. tumour grade and size, Ki-67, hormone receptor status, HER2 expression, lymph node status and patient age have been traditionally related to prognosis. Although the conventional prognostic markers are reliable in general, better markers to predict the outcome of an individual tumour are needed. Matrix metalloproteinase-1 (MMP-1) expression has been reported to inversely correlate with survival in advanced cancers. In breast cancer MMP-1 is often upregulated, especially in basal-type breast tumours. The purpose of this retrospective study was to analyse MMP-1 expression in breast cancer cells and in cancer associated stromal cells and to correlate the results with traditional prognostic factors including p53 and bcl-2, as well as to patient survival in breast cancer subtypes. Immunohistochemical analysis of MMP-1, ER, PR, Ki-67, HER2, bcl-2, p53 and CK5/6 expression was performed on 125 breast cancers. Statistical analyses were carried out using Kruskal-Wallis and Mann-Whitney -tests. In pairwise comparison Bonferroni-adjustment was applied. Correlations were calculated using Spearman rank-order correlation coefficients. Kaplan-Meier survival analyses were carried out to compare breast cancer-specific survival curves. Factors significantly associated with disease-specific survival in univariate models were included in multivariate stepwise. Positive correlations were found between tumour grade and MMP-1 expression in tumour cells and in stromal cells. P53 positivity significantly correlated with MMP-1 expression in tumour cells, whereas HER2 expression correlated with MMP-1 both in tumour cells and stromal cells. MMP-1 expression in stromal cells showed a significant association with luminal A and luminal B, HER2 overexpressing and triple-negative breast cancer subtypes. The most important finding of

  10. IL-1beta signals through the EGF receptor and activates Egr-1 through MMP-ADAM.

    Directory of Open Access Journals (Sweden)

    Estella Sanchez-Guerrero

    Full Text Available The immediate-early gene Egr-1 controls the inducible expression of many genes implicated in the pathogenesis of a range of vascular disorders, yet our understanding of the mechanisms controlling the rapid expression of this prototypic zinc finger transcription factor is poor. Here we show that Egr-1 expression induced by IL-1beta is dependent on metalloproteinases (MMP and a disintegrin and a metalloproteinase (ADAM. Pharmacologic MMP/ADAM inhibitors and siRNA knockdown prevent IL-1beta induction of Egr-1. Further, IL-1beta activates Egr-1 via the epidermal growth factor receptor (EGFR. This is blocked by EGFR tyrosine kinase inhibition and EGFR knockdown. IL-1beta induction of Egr-1 expression is reduced in murine embryonic fibroblasts (mEFs deficient in ADAM17 despite unbiased expression of EGFR and IL-1RI in ADAM17-deficient and wild-type mEFs. Finally, we show that IL-1beta-inducible wound repair after mechanical injury requires both EGFR and MMP/ADAM. This study reports for the first time that Egr-1 induction by IL-1beta involves EGFR and MMP/ADAM-dependent EGFR phosphorylation.

  11. Correlation Between Th1, Th2 Cells and Levels of Serum MMP-2, MMP-9 in Children with Asthma

    Directory of Open Access Journals (Sweden)

    Xuan WANG

    2015-12-01

    Full Text Available Abstract Objective: To explore the correlation between Th1 and Th2 cells and the levels of serum matrix metalloproteinase-2 (MMP-2 and MMP-9 in children with asthma. Methods: A total of 89 children with asthma were divided into acute group (n=48 and chronic group (n=41 according to the course of disease, and 40 healthy children at the same term were collected as control group. The ratios of Th1 and Th2 cells as well as levels of MMP-2 and MMP-9 were compared in three groups, and the correlation between Th1 and Th2 cells and levels of MMP-2, MMP-9 was analyzed in acute group and chronic group. Results: When compared with control group, the ratios of Th1 and Th2 cells went down in both acute group and chronic group (P<0.01, while the levels of serum MMP-2 and MMP-9 up (P<0.01. The levels of serum MMP-2 and MMP-9 in acute group were dramatically higher than those in chronic group, and there was statistical significance (P<0.01. Pearson correlation analysis revealed that there was no significant correlation between Th1 and Th2 cells and MMP-2 level (r=0.148, P=0.314, r=0.299, P=0.058; r=0.183, P=0.214, r=0.289, P=0.067, whereas both Th1 and Th2 cells were negatively correlated with MMP-9 level in acute group and chronic group (r=-0.489, P=0.000, r=-0.324, P=0.039; r=-0.352, P=0.014, r=-0.357, P=0.022. Conclusion: Aberrant secretion of Th cells can not only damage the immune function of children with asthma, but also decrease the level of serum MMP-9, consequently affecting the collagen degradation and airway remodeling.

  12. Activation of PPARs α, β/δ, and γ Impairs TGF-β1-Induced Collagens' Production and Modulates the TIMP-1/MMPs Balance in Three-Dimensional Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Paul-Emile Poleni

    2010-01-01

    Full Text Available Background and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF-β1- induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP- 1/Matrix Metalloproteinase (MMP balance in rat chondrocytes embedded in alginate beads. Experimental Approach. Collagen production was evaluated by quantitative Sirius red staining, while TIMP-1 protein levels and global MMP (-1, -2, -3, -7, and -9 or specific MMP-13 activities were measured by ELISA and fluorigenic assays in culture media, respectively. Levels of mRNA for type II collagen, TIMP-1, and MMP-3 & 13 were quantified by real-time PCR. Key Results. TGF-β1 increased collagen deposition and type II collagen mRNA levels, while inducing TIMP-1 mRNA and protein expression. In contrast, it decreased global MMP or specific MMP-13 activities, while decreasing MMP-3 or MMP-13 mRNA levels. PPAR agonists reduced most of the effects of TGF-β1 on changes in collagen metabolism and TIMP-1/MMP balance in rat in a PPAR-dependent manner, excepted for Wy14643 on MMP activities. Conclusions and Implications. PPAR agonists reduce TGF-β1-modulated ECM turnover and inhibit chondrocyte activities crucial for collagen biosynthesis, and display a different inhibitory profile depending on selectivity for PPAR isotypes.

  13. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1.

    Directory of Open Access Journals (Sweden)

    Seok-Jun Kim

    Full Text Available BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1 PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a galectin-3 silencing decreases the expression of PAR-1. b galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis.

  14. Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells.

    Science.gov (United States)

    Asuthkar, S; Velpula, K K; Nalla, A K; Gogineni, V R; Gondi, C S; Rao, J S

    2014-04-10

    Matrix metalloproteinase-9 (MMP-9) represents one of the most prominent proteins associated with tumorigenesis and is a modulator of the tumor microenvironment during angiogenesis. Recently, syndecan-1 (SDC1), a transmembrane heparan sulfate-bearing proteoglycan, was also speculated to have a critical role in contributing to angiogenesis when associated with MMP-9. However, the mechanism behind their synergistic regulation is not fully understood. In the current study, we report for the first time that ionizing radiation (IR)-induced MMP-9 enhances SDC1 shedding, corroborating to tube-inducing ability of medulloblastoma (MB) cells. Furthermore, we observed that the tumor angiogenesis is associated with higher MMP-9-SDC1 interactions on both the cell surface and extracellular medium. Our results also revealed the existence of a novel regulatory mechanism where MMP-9 drives the suppression of miR-494, resulting in enhanced SDC1 shedding and angiogenesis. From the in situ hybridization analysis, we found that MMP-9-specific shRNA (shMMP-9) treatment of mouse intracranial tumors resulted in elevated expression of miR-494. This negative correlation between MMP-9 and miR-494 levels was observed to be dependent on the methylation status of a miR-494 promoter-associated CpG island region (-186 to -20), which was confirmed by bisulfite-sequencing and methylation-specific PCR (MSP) analysis. Further, validation of MMP-9 and SDC1 3'-untranslated region (3'-UTR) targets with luciferase reporter assay provided a more favorable result for miR-494-mediated regulation of SDC1 but not of MMP-9, suggesting that the 3'-UTR of SDC1 mRNA is a direct target of miR-494. Overall, our results indicate that angiogenesis induced by radiotherapy is associated with an MMP-9-miR-494-SDC1 regulatory loop and that MMP-9-SDC1 activity creates a negative feedback loop by regulating the expression of miR-494.

  15. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism.

    Science.gov (United States)

    Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong

    2013-06-05

    DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.

  16. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells.

    Science.gov (United States)

    Pang, Jong-Hwei S; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-06-24

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.

  17. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    Science.gov (United States)

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  18. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    Science.gov (United States)

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H 2 O 2 ) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Induced sputum MMP-1, -3 & -8 concentrations during treatment of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Cesar A Ugarte-Gil

    Full Text Available Tuberculosis (TB destroys lung tissues and this immunopathology is mediated in part by Matrix Metalloproteinases (MMPs. There are no data on the relationship between local tissue MMPs concentrations, anti-tuberculosis therapy and sputum conversion.Induced sputum was collected from 68 TB patients and 69 controls in a cross-sectional study. MMPs concentrations were measured by Luminex array, TIMP concentrations by ELISA and were correlated with a disease severity score (TBscore. 46 TB patients were then studied longitudinally at the 2nd, 8th week and end of treatment.Sputum MMP-1,-2,-3,-8,-9 and TIMP-1 and -2 concentrations are increased in TB. Elevated MMP-1 and -3 concentrations are independently associated with higher TB severity scores (p<0.05. MMP-1, -3 and -8 concentrations decreased rapidly during treatment (p<0.05 whilst there was a transient increase in TIMP-1/2 concentrations at week 2. MMP-2, -8 and -9 and TIMP-2 concentrations were higher at TB diagnosis in patients who remain sputum culture positive at 2 weeks and MMP-3, -8 and TIMP-1 concentrations were higher in these patients at 2nd week of TB treatment.MMPs are elevated in TB patients and associate with disease severity. This matrix-degrading phenotype resolves rapidly with treatment. The MMP profile at presentation correlates with a delayed treatment response.

  20. Increased expression of metalloproteinase-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase-1 and -2 (TIMP-1, TIMP-2), and EMMPRIN (CD147) in multiple myeloma.

    Science.gov (United States)

    Urbaniak-Kujda, Donata; Kapelko-Slowik, Katarzyna; Prajs, Iwona; Dybko, Jarosław; Wolowiec, Dariusz; Biernat, Monika; Slowik, Miroslaw; Kuliczkowski, Kazimierz

    2016-01-01

    Activity of metalloproteinases (MMP) is controlled both by specific tissue inhibitors (TIMP) and activators (extracellular matrix metalloproteinase inducer, EMMPRIN). There are few data available concerning concentration the bone marrow of MMP-2, MMP-9, TIMP-1, and TIMP-2, or EMMPRIM expression by bone marrow mesenchymal stromal cells (BMSCs) in patients with multiple myeloma (MM). We studied 40 newly diagnosed, untreated patients: 18 males and 22 females with de novo MM and 11 healthy controls. Bone marrow was collected prior to therapy. BMSCs were derived by culturing bone marrow cells on MesenCult. Protein concentrations were determined in bone marrow plasma and culture supernatants by ELISA. EMMPRIN expression by BMSCs was assessed by flow cytometry. The median concentrations of MMP-9, TIMP-1, and TIMP-2 in both marrow plasma and culture supernatants were significantly higher in MM patients than controls. EMMPRIN expression and ratios MMP-9/TIMP-1 and MMP-2/TIMP-2 were higher in MM patients, our results demonstrate that in MM patients MMP-2 and MMP-9 are secreted in higher amounts and are not balanced by inhibitors.

  1. Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    International Nuclear Information System (INIS)

    Selvey, Saxon; Haupt, Larisa M; Thompson, Erik W; Matthaei, Klaus I; Irving, Michael G; Griffiths, Lyn R

    2004-01-01

    Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms

  2. Stimulation of MMP-11 (stromelysin-3 expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Matthaei Klaus I

    2004-07-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14 and stromelysin-3 (MMP-11 are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs were: a treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b grown on collagens I, IV and V; c treated with fibronectin, con-A and matrigel; and d co-cultured with a range of HBC (human breast cancer cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.

  3. Apparent suppression of MMP-9 activity by GD1a as determined by gelatin zymography.

    Science.gov (United States)

    Hu, Dan; Tan, Xuan; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2006-10-13

    Gelatin zymography is widely used to detect and evaluate matrix metalloproteinase-9 (MMP-9) activity. MMP-9 transcription was previously shown to be negatively regulated by ganglioside GD1a [D. Hu, Z. Man, T. Xuan, P. Wang, T. Takaku, S. Hyuga, X.S. Yao, T. Sato, S. Yamagata, T. Yamagata, Ganglioside GD1a regulation of matrix metalloproteinase-9 (MMP-9) expression in mouse FBJ cell Lines: GD1a suppression of MMP-9 expression stimulated by PI3K-Akt and p38 though not by the Erk signaling pathway, 2006, submitted for publication.]. Zymography of MMP-9 of FBJ-M5 cells preincubated with GD1a indicated a greater decrease in activity than expected from mRNA suppression. Incubation of conditioned medium containing MMP-9 with GD1a caused MMP-9 activity to decrease. Examination was thus made to confirm that MMP-9 activity is actually suppressed and/or MMP-9 protein undergoes degradation by GD1a. GD1a was found to have no effect on MMP-9 activity and Western blots indicated GD1a not to diminish MMP-9 during electrophoresis under reducing conditions. GD1a appeared to mediate the binding of a portion of MMP-9 with certain molecules, with consequently greater molecular mass on the gel, to cause decrease in the activity of MMP-9 at the site where it would normally appear. Caution should be used in doing gelatin zymography since molecules other than GD1a may similarly work, causing decrease in MMP-9 activity in zymography.

  4. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Science.gov (United States)

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  5. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling

    Directory of Open Access Journals (Sweden)

    Anthis Nicholas J

    2006-12-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D and invasion of three-dimensional (3D collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. Results LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (~700 μm over 48 hours in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (~125 μm vs. ~45 μm and velocity of invasion (~0.09 μm/min vs. ~0.03 μm/min only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. Conclusion LPA is a

  6. Immunohistochemical expression of TGF-β1 and MMP-9 in periapical lesions.

    Science.gov (United States)

    Álvares, Pâmella Recco; Arruda, José Alcides Almeida de; Silva, Leorik Pereira da; Nascimento, George João Ferreira do; Silveira, Maria Fonseca da; Sobral, Ana Paula Veras

    2017-07-03

    The objective of this study was to evaluate the expression of matrix metalloproteinase 9 (MMP-9) and transforming growth factor beta (TGF-β1) in periapical lesion samples correlated with the intensity of the inflammatory infiltrate and thickness of the epithelial lining. Forty-five cases of periapical lesions (23 periapical granulomas and 22 radicular cysts) were subjected to morphological and immunohistochemical analyses using anti-MMP-9 and anti-TGF-β1 antibodies. The data were analyzed using the following tests: non-parametric Mann-Whitney, chi-square, Fisher's exact test and Spearman's correlation test (Pperiapical granulomas presented infiltrate grade III, in contrast with 32% of radicular cysts (Pcysts revealed the presence of atrophic epithelium in 86% of the cysts. The immunostaining of MMP-9 was score 2 in 67% of the granulomas and 77% of the cysts. Both lesions were predominantly score 1 for TGF-β1. Significant differences were confirmed between the expression scores of TGF-β1 and MMP-9 in periapical granulomas (p = 0.004) and in radicular cysts (p periapical granulomas and radicular cysts. This immunoregulatory cytokine seems more representative in asymptomatic lesions. The extracellular matrix remodeling process dependent on MMP-9 seems to be similar for both periapical granulomas and radicular cysts. TGF-β1 and MMP-9 may play an important role in the maintenance of periapical lesions.

  7. Quantitative Evaluation of MMP-9 and TIMP-1 Promoter Methylation in Chronic Periodontitis.

    Science.gov (United States)

    Li, Xiting; Lu, Jiaxuan; Teng, Wei; Zhao, Chuanjiang; Ye, Xiaolei

    2018-03-01

    In this study, we investigated the promoter DNA methylation (DNAm) status of the MMP-9 and TIMP-1 genes in patients with chronic periodontitis to evaluate disease progression. Using pyrosequencing technology, DNAm levels of MMP-9 and TIMP-1 CpG islands were measured in 88 chronic periodontitis patients and 15 healthy controls. We found a positive correlation between methylation levels of MMP-9 CpG islands and the severity of chronic periodontitis. Methylated CpG islands were also closely associated with the duration of chronic periodontitis. Moreover, female patients exhibited lower methylation levels of MMP-9 but higher methylation levels of TIMP-1 compared with male patients, and the methylation levels of TIMP-1 gradually decreased with age. The findings of gender disparity in the DNAm of MMP-9 and TIMP-1 genes provide novel insights into chronic periodontitis.

  8. Involvement of CD147 in overexpression of MMP-2 and MMP-9 and enhancement of invasive potential of PMA-differentiated THP-1

    Directory of Open Access Journals (Sweden)

    Tang Hao

    2005-05-01

    Full Text Available Abstract Background During infection and inflammation, circulating blood monocytes migrate from the intravascular compartments to the extravascular compartments, where they mature into tissue macrophages. The maturation process prepares the cells to actively participate in the inflammatory and immune responses, and many factors have been reported to be involved in the process. We found in our study that CD147 played a very important role in this process. Results By using PMA-differentiated human monocyte cells line THP-1, we found that CD147 mediated matrix metalloproteinases (MMPs expression of the leukemic THP-1 cells and thus enhanced the invasiveness of THP-1 cells. After 24 hours of PMA-induced monocyte differentiation, the mean fluorescence intensity of CD147 in differentiated THP-1 cells (289.61 ± 31.63 was higher than that of the undifferentiated THP-1 cells (205.1 ± 19.25. There was a significant increase of the levels of proMMP-2, proMMP-9 and their activated forms in the differentiated THP-1 cells. Invasion assays using reconstituted basement membrane showed a good correlation between the invasiveness of THP-1 cells and the production of MMP-2 and MMP-9. The difference in the MMPs expression and the invasive ability was significantly blocked by HAb18G/CD147 antagonistic peptide AP-9. The inhibitory rate of the secretion of proMMP-9 in the undifferentiated THP-1 cells was 45.07%. The inhibitory rate of the secretion of proMMP-9, the activated MMP-9 and proMMP-2 in the differentiated THP-1 cells was 52.90%, 53.79% and 47.80%, respectively. The inhibitory rate of invasive potential in the undifferentiated cells and the differentiated THP-1 cells was 41.82 % and 25.15%, respectively. Conclusion The results suggest that the expression of CD147 is upregulated during the differentiation of monocyte THP-1 cells to macrophage cells, and CD147 induces the secretion and activation of MMP-2 and MMP-9 and enhances the invasive ability of THP-1

  9. TGF-{beta}1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-{kappa}B/IL-6/MMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Binker, Marcelo G. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina); Binker-Cosen, Andres A. [CBRHC Research Center, Buenos Aires (Argentina); Gaisano, Herbert Y. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); Cosen, Rodica H. de [CBRHC Research Center, Buenos Aires (Argentina); Cosen-Binker, Laura I., E-mail: laura.cosen.binker@utoronto.ca [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina)

    2011-02-04

    Research highlights: {yields} Rac1 mediates TGF-{beta}1-induced SW1990 invasion through MMP-2 secretion and activation. {yields} NADPH-generated ROS act downstream of Rac1 in TGF-{beta}1-challenged SW1990 cells. {yields} TGF-{beta}1-stimulated ROS activate NF-{kappa}B in SW1990 cells. {yields} NF{kappa}B-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-{beta}1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-{beta}1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-{beta}1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-{beta}1-stimulated invasion. Our results also indicate that signaling events involved in TGF-{beta}1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  10. TGF-β1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-κB/IL-6/MMP-2

    International Nuclear Information System (INIS)

    Binker, Marcelo G.; Binker-Cosen, Andres A.; Gaisano, Herbert Y.; Cosen, Rodica H. de; Cosen-Binker, Laura I.

    2011-01-01

    Research highlights: → Rac1 mediates TGF-β1-induced SW1990 invasion through MMP-2 secretion and activation. → NADPH-generated ROS act downstream of Rac1 in TGF-β1-challenged SW1990 cells. → TGF-β1-stimulated ROS activate NF-κB in SW1990 cells. → NFκB-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-β1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-β1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-β1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-β1-stimulated invasion. Our results also indicate that signaling events involved in TGF-β1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  11. Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1.

    Science.gov (United States)

    Buechner, Nicole; Schroeder, Peter; Jakob, Sascha; Kunze, Kerstin; Maresch, Tanja; Calles, Christian; Krutmann, Jean; Haendeler, Judith

    2008-07-01

    Exposure of human skin to solar radiation, which includes ultraviolet (UV) radiation (UVA and UVB) visible light and infrared radiation, induces skin aging. The effects of light have been attributed to irradiation-induced reactive oxygen species (ROS) formation, but the specific signaling pathways are not well understood. Detrimental effects of solar radiation are dermal diseases and photoaging. Exposure of cultured human dermal fibroblasts to UVA, UVB or IRA increased ROS formation in vitro. One important redox regulator is the oxidoreductase thioredoxin-1 (Trx). Trx is ubiquitously expressed and has anti-oxidative and anti-apoptotic properties. Besides its function to reduce H(2)O(2), Trx binds to and regulates transcription factors. The aim of this study was to investigate whether Trx influences the regulation of MMP-1 and collagen Ialpha1 by UVA, UVB and IRA. We irradiated human dermal fibroblasts with UVA, UVB and IRA. UVA, UVB and IRA upregulated MMP-1 expression. Trx inhibited UVA-induced MMP-1 upregulation in a NFkappaB dependent manner. UVA, UVB and IRA reduced collagen Ialpha1 expression. Incubation with Trx inhibited the effects of UVB and IRA on collagen Ialpha1 expression. In conclusion, MMP-1 and collagen Ialpha1, which play important roles in aging processes, seems to be regulated by different transcriptional mechanisms and Trx can only influence distinct signaling pathways induced by UVA, UVB and probably IRA. Thus, Trx may serve as an important contributor to an "anti-aging therapeutic cocktail".

  12. Immunohistochemical expression of TGF-β1 and MMP-9 in periapical lesions

    Directory of Open Access Journals (Sweden)

    Pâmella Recco ÁLVARES

    2017-07-01

    Full Text Available Abstract The objective of this study was to evaluate the expression of matrix metalloproteinase 9 (MMP-9 and transforming growth factor beta (TGF-β1 in periapical lesion samples correlated with the intensity of the inflammatory infiltrate and thickness of the epithelial lining. Forty-five cases of periapical lesions (23 periapical granulomas and 22 radicular cysts were subjected to morphological and immunohistochemical analyses using anti-MMP-9 and anti-TGF-β1 antibodies. The data were analyzed using the following tests: non-parametric Mann-Whitney, chi-square, Fisher’s exact test and Spearman’s correlation test (P<0.05. Analysis of inflammatory infiltrate revealed that 78% of periapical granulomas presented infiltrate grade III, in contrast with 32% of radicular cysts (P<0.001. Morphological evaluation of the epithelial thickness in radicular cysts revealed the presence of atrophic epithelium in 86% of the cysts. The immunostaining of MMP-9 was score 2 in 67% of the granulomas and 77% of the cysts. Both lesions were predominantly score 1 for TGF-β1. Significant differences were confirmed between the expression scores of TGF-β1 and MMP-9 in periapical granulomas (p = 0.004 and in radicular cysts (p < 0.001. Expression of TGF-β1 was different for periapical granulomas and radicular cysts. This immunoregulatory cytokine seems more representative in asymptomatic lesions. The extracellular matrix remodeling process dependent on MMP-9 seems to be similar for both periapical granulomas and radicular cysts. TGF-β1 and MMP-9 may play an important role in the maintenance of periapical lesions.

  13. Expression of the MT1 Melatonin Receptor in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karolina Jablonska

    2014-12-01

    Full Text Available Ovarian cancer (OC is the leading cause of death among women with genital tract disorders. Melatonin exhibits oncostatic properties which it may effect through binding to its membrane receptor, MT1. The aim of this study was to determine the expression of MT1 in OC cells and to correlate this with clinical and pathological data. Immunohistochemistry was performed on 84 cases of OC. Normal ovarian epithelial (IOSE 364 and OC (SK-OV-3, OVCAR-3 cell lines were used to examine the MT1 expression at protein level using the western blot and immunofluorescence technique. The expression of MT1 was observed as cytoplasmic-membrane (MT1CM and membrane (MT1M reactions. A positive correlation between MT1CM and MT1M was found in all the studied cases. There were no significant differences between the expression of MT1CM, MT1M, and histological type, staging, grading, presence of residual disease, or overall survival time. Immunofluorescence showed both MT1M and MT1CM expression in all the tested cell lines. Western blot illustrated the highest protein level of MT1 in IOSE 364 and the lowest in the OVCAR-3. The results indicate the limited prognostic significance of MT1 in OC cells.

  14. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Ornås, Dorte; Grigorian, Mariam

    2004-01-01

    with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. Beta-casein zymography...... demonstrates enhancement of proteolytic activity associated with MMP-13. This observation indicates that extracellular S100A4 stimulates the production of ECM degrading enzymes from endothelial cells, thereby stimulating the remodeling of ECM. This could explain the angiogenic and metastasis...

  15. MMP8, MMP9 AND TIMP1 LEVELS IN GCF AND GINGIVAL TISSUE OF PATIENTS WITH GINGIVAL OVERGROWTH DURING ORTHODONTIC TREATMENT

    Directory of Open Access Journals (Sweden)

    Petra Surlin

    2012-03-01

    Full Text Available Aim. Periodontal remodellng produced during dental orthodontic treatment represents a series of biologicallyactive substances, part of them playing some role in the initiation and propagation of inflammatory processes. The present study aims at demonstrating the MMP8, MMP9 and TIMP1 levels intervening in tissular periodontal remodeling produced during orthodontic treatments, accompanied by gingival overgrowth, as a reaction of the marginal periodontium to mechanical stress. Materials and Method. Selected for the study were 21 patients – 13 females and 8 males – with ages between 13 and 32 years (17.6±1.3 years affected with dento-maxillary anomalies, who received orthodontic treatment with fixed apparatus. Sampling from the gingival fluid was performed 6 times, namely: 1 hour prior to the application of the orthodontic apparatus, 4 hours after its application, again after 8 and 24 hours and then 1 and, respectively, 2 weeks later. If gingival hypertrophy was installed (HTG, the hypertrophic gingiva was removed, and an immuno-histo-chemical examination was made. The patient was weekly monitorized in the first 6 weeks – during the initial orthodontic treatment, then monthly, samples being taken over from the gingival sulcus on each visit made in the first 6 weeks. Results. MMP-9 immuno-marking was positive both at corione level and in the deep structures of the covering epithelium. The positive cells at MMP-9 evidenced different intensities at the level of each structure forming the gingival mucous membrane. In four of the cases under analysis, disorganization of the normal layering/stratification of the epithelium was evidenced, along with the presence of numerous red cells in the chorione of the mucous membrane. In such cases, immuno-marking to MMP8 showed a normal intensity, even if few positive cells, dispersed among the extravasated red cells could be observed. Immunologically, MMP8 and MMP9 obey the same pattern, registering maximum

  16. Selenium modulates MMP2 expression through the TGFβ1/Smad signalling pathway in human umbilical vein endothelial cells and rabbits following lipid disturbance.

    Science.gov (United States)

    Xu, Chenggui; Lu, Guihua; Li, Qinglang; Zhang, Juhong; Huang, Zhibin; Gao, Xiuren

    2017-07-01

    A high-fat diet is a major risk factor for coronary heart diseases. Matrix metalloprotease (MMP) expression is changed in many cardiovascular diseases. Selenium, which is an important trace element in animals, has a close relationship with cardiovascular diseases. The TGFβ1/Smad signalling pathway is ubiquitous in diverse tissues and cells, and it is also associated with the occurrence and development of cardiovascular diseases. Therefore, in this study, we aimed to determine selenium's effect on lipid metabolism, atherosclerotic plaque formation, and MMP2 expression, as well as the underlying functional mechanism. In vivo tests: 24 male New Zealand white rabbits were randomly divided into 4 groups: regular diet, high-fat diet, high-fat diet+selenium and regular diet+selenium groups. The high-fat diet induced the lipid disturbances of rabbits at week 12. Selenium supplementation lowered total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels (pSelenium supplementation also suppressed MMP2 over-expression in thoracic aortas. In vitro tests: Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of selenium or ox-LDL. Ox-LDL promoted MMP2 expression by increasing TGFβ1, pSmad2, pSmad3 and Smad3 expression (pSelenium attenuated MMP2 over-expression by regulating the TGFβ1/Smad signalling pathway. Selenium suppressed high-fat diet-induced MMP2 over-expression in vivo by improving lipid metabolism. In vitro, selenium attenuated MMP2 over-expression through the TGFβ1/Smad signalling pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Mycobacterium tuberculosis Upregulates TNF-α Expression via TLR2/ERK Signaling and Induces MMP-1 and MMP-9 Production in Human Pleural Mesothelial Cells.

    Directory of Open Access Journals (Sweden)

    Wei-Lin Chen

    Full Text Available Tumor necrosis factor (TNF-α and matrix metalloproteinases (MMPs are elevated in pleural fluids of tuberculous pleuritis (TBP where pleural mesothelial cells (PMCs conduct the first-line defense against Mycobacterium tuberculosis (MTB. However, the clinical implication of TNF-α and MMPs in TBP and the response of PMCs to MTB infection remain unclear.We measured pleural fluid levels of TNF-α and MMPs in patients with TBP (n = 18 or heart failure (n = 18 as controls. Radiological scores for initial effusion amount and residual pleural fibrosis at 6-month follow-up were assessed. In vitro human PMC experiments were performed to assess the effect of heat-killed M. tuberculosis H37Ra (MTBRa on the expression of TNF-α and MMPs.As compared with controls, the effusion levels of TNF-α, MMP-1 and MMP-9 were significantly higher and correlated positively with initial effusion amount in patients with TBP, while TNF-α and MMP-1, but not MMP-9, were positively associated with residual pleural fibrosis of TBP. Moreover, effusion levels of TNF-α had positive correlation with those of MMP-1 and MMP-9 in TBP. In cultured PMCs, MTBRa enhanced TLR2 and TLR4 expression, activated ERK signaling, and upregulated TNF-α mRNA and protein expression. Furthermore, knockdown of TLR2, but not TLR4, significantly inhibited ERK phosphorylation and TNF-α expression. Additionally, both MTBRa and TNF-α markedly induced MMP-1 and MMP-9 synthesis in human PMCs, and TNF-α neutralization substantially reduced the production of MMP-1, but not MMP-9, in response to MTBRa stimulation.MTBRa activates TLR2/ERK signalings to induce TNF-α and elicit MMP-1 and MMP-9 in human PMCs, which are associated with effusion volume and pleural fibrosis and may contribute to pathogenesis of TBP. Further investigation of manipulation of TNF-α and MMP expression in pleural mesothelium may provide new insights into the mechanisms and rational treatment strategies for TBP.

  18. THE ROLE OF MATRIX METALLOPROTEINASE MMP-9, ITS INHIBITOR TIMP-1 AND INTERLEUKINE-1β IN PATHOGENESIS OF TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    S. V. Ziablitsev

    2016-09-01

      Resume Traumatic brain injury (TBI is accompanied by high rates of morbidity and mortality in both developed and undeveloped countries that makes it one of the most actual medical and social problems. In recent years matrix metalloproteinases are in increasing interest while studying TBI pathogenesis because of their ability to increase permeability of the blood-brain barrier and to cause nervous tissue matrix reorganization. The goal of given study was to investigate the role of matrix metalloproteinase MMP-9, its inhibitor TIMP-1 and interleukin IL-1β in pathogenesis of TBI. Methods: The study was performed on 98 mature white rats. Moderate severity TBI was modeled with one blow on the cranial vault by means of free-fall­ing plummet. Control group included 30 rats. Cytokines (IL-1b, IL-6, IL-8, TNF-a, MMP-9 and TIMP-1 levels were investi­gated in animals blood by means of ELISA on 1st, 3rd, 7th, 14th and 21st days after trauma. Results and discussion: MMP-9 levels increased by only 38,2% on the 1st day, but on the 3rd day there was its marked increase to 538%. It is known that metalloproteinases are released from the cells under the influence of various factors, including cytokines. On the 1st day after trauma it was IL-1β which increased by 705% showing the highest rise among other cytokines and exceeding increase in MMP-9 levels. This might indicate regulatory role of IL-1β.  A marked increase in MMP-9 levels in turn lead to TIMP-1 activation. Significant increase in TIMP-1 levels was determined on the 3rd day after trauma. On the 7th day there was a critical period with the highest levels of IL-1β (2147,2%, MMP-9 (720,3% and TIMR-1 (339,3%. Then all research indicators were decreasing with the most pronounced decrease in IL-1β and MMP-9. Conclusion: MMP-9 levels began to increase on the 1st day after trauma due to influence mainly IL-1β. An abrupt increase in MMP-9 in its turn caused an increase in TIMR-1 levels. Conclusion: Identified changes in

  19. In vitro and in vivo MMP gene expression localisation by In Situ-RT-PCR in cell culture and paraffin embedded human breast cancer cell line xenografts

    International Nuclear Information System (INIS)

    Haupt, Larisa M; Thompson, Erik W; Trezise, Ann EO; Irving, Rachel E; Irving, Michael G; Griffiths, Lyn R

    2006-01-01

    Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in

  20. Expression of MMP-1/PAR-1 and patterns of invasion in oral squamous cell carcinoma as potential prognostic markers

    Directory of Open Access Journals (Sweden)

    Fan HX

    2015-07-01

    Full Text Available Hai-Xia Fan,1 Yan Chen,1 Bo-Xiong Ni,1 Shan Wang,1 Miao Sun,2 Dong Chen,2 Jin-Hua Zheng11Department of Anatomy, Basic Medical Science College, 2Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Harbin Medical University, Harbin, People’s Republic of ChinaBackground: Matrix metalloproteinase (MMP-1 degrades type I collagen of the extracellular matrix and also activates protease activated receptor (PAR-1 to induce angiogenesis. The aims of this study were to evaluate microvessel density (MVD and the expression of PAR-1 and MMP-1 in oral squamous cell carcinoma (SCC specimens with different patterns of invasion (POI and to evaluate their association with clinical outcomes.Methods: Seventy-four surgically obtained oral SCC samples were classified by POI according to hematoxylin-eosin staining. MVD and the localization and intensity of PAR-1 and MMP-1 expression were detected by immunohistochemistry.Results: Of the 74 oral SCC samples, 18, 5, 34, and 17 showed type I, II, III, and IV POI, respectively. MVD and expression levels of MMP-1 and PAR-1 differed between POI types I–II and POI types III–IV. Patients with low tumor expression of MMP-1 and PAR-1 and low MVD had a longer survival time than those with high tumor expression of MMP-1 and PAR-1. Moreover, the survival time of patients with POI types III–IV was shorter than that of patients with POI types I–II.Conclusion: POI combined with expression levels of MMP-1 and PAR-1 may be a valuable tool for assessing the clinical prognosis of patients with oral SCC.Keywords: oral squamous cell carcinoma, pattern of invasion, immunohistochemistry, clinical outcomes

  1. Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1beta.

    Science.gov (United States)

    Ainola, M M; Mandelin, J A; Liljeström, M P; Li, T F; Hukkanen, M V J; Konttinen, Y T

    2005-01-01

    Synovial inflammation in rheumatoid arthritis (RA) leads to pannus tissue invasion and destruction of cartilage/bone matrix by proteinases. Our intention was to analyze some of the key matrix metalloproteinases (MMPs) in pannus tissue overlying evolving cartilage erosions in RA. Frozen tissue samples of pannus and synovium from advanced RA and synovium from osteoarthritic patients were used for immunohistochemical, western blotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis of MMP-1, -3, -13 and -14. Synovial fibroblast cultures, stimulated with tumour necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), were analyzed with enzyme-linked immunosorbent assays (ELISA) and quantitative RT-PCR. MMP-3 was highly expressed in pannus tissue compared with significantly lower expression levels of MMP-1, -13 and -14. In fibroblast cultures IL-1beta was a potent stimulus for MMP-3, whereas TNF-alpha was more potent for MMP-1. This is the first study to demonstrate quantitatively in real time that MMP-3 mRNA expression is clearly higher in advanced RA pannus tissue compared to parallel RA or osteoarthritic synovium. MMP-3 mRNA levels were also clearly overexpressed in RA pannus compared to MMP-1, -13 and -14. Advanced RA has previously been found to overexpress IL-1beta. The high expression of MMP-3 in pannus and IL-1beta, mediated stimulation of MMP-3 suggest that MMP-3 plays a significant role in the progression of erosions through the proteoglycan-rich cartilage matrix.

  2. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression.

    Science.gov (United States)

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa

    2017-01-01

    Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.

  3. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    Science.gov (United States)

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  5. Downregulation of reversion-inducing cysteine-rich protein with Kazal motifs in malignant melanoma: inverse correlation with membrane-type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase 2.

    Science.gov (United States)

    Jacomasso, Thiago; Trombetta-Lima, Marina; Sogayar, Mari C; Winnischofer, Sheila M B

    2014-02-01

    The invasive phenotype of many tumors is associated with an imbalance between the matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the membrane-anchored reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK inhibits MMP-2, MMP-9, and MT1-MMP, and has been linked to patient survival and better prognosis in several types of tumors. However, despite the wide implication of these MMPs in melanoma establishment and progression, the role of RECK in this type of tumor is still unknown. Here, we analyzed the expression of RECK, TIMP1, TIMP2, TIMP3, MT1MMP, MMP2, and MMP9 in two publicly available melanoma microarray datasets and in a panel of human melanoma cell lines. We found that RECK is downregulated in malignant melanoma, accompanied by upregulation of MT1MMP and TIMP2. In both datasets, we observed that the group of samples displaying higher RECK levels show lower median expression levels of MT1MMP and TIMP2 and higher levels of TIMP3. When tested in a sample-wise manner, these correlations were statistically significant. Inverse correlations between RECK, MT1MMP, and TIMP2 were verified in a panel of human melanoma cell lines and in a further reduced model that includes a pair of matched primary tumor-derived and metastasis-derived cell lines. Taken together, our data indicate a consistent correlation between RECK, MT1MMP, and TIMP2 across different models of clinical samples and cell lines and suggest evidence of the potential use of this subset of genes as a gene signature for diagnosing melanoma.

  6. Serum Levels of IL-1β, IL-6, TGF-β, and MMP-9 in Patients Undergoing Carotid Artery Stenting and Regulation of MMP-9 in a New In Vitro Model of THP-1 Cells Activated by Stenting

    Directory of Open Access Journals (Sweden)

    Rongrong Zhang

    2015-01-01

    Full Text Available Inflammation plays an important role in the pathophysiological process after carotid artery stenting (CAS. Monocyte is a significant source of inflammatory cytokines in vascular remodeling. Telmisartan could reduce inflammation. In our study, we first found that, after CAS, the serum IL-1β, IL-6, TGF-β, and MMP-9 levels were significantly increased, but only MMP-9 level was elevated no less than 3 months. Second, we established a new in vitro model, where THP-1 monocytes were treated with the supernatants of human umbilical vein endothelial cells (HUVECs that were scratched by pipette tips, which mimics monocytes activated by mechanical injury of stenting. The treatment enhanced THP-1 cell adhesion, migration and invasion ability, and the phosphorylation of ERK1/2 and Elk-1 and MMP-9 expression were significantly increased. THP-1 cells pretreated with PD98095 (ERK1/2 inhibitor attenuated the phosphorylation of ERK1/2 and Elk-1 and upregulation of MMP-9, while pretreatment with telmisartan merely decreased the phosphorylation of Elk-1 and MMP-9 expression. These results suggested that IL-1β, IL-6, TGF-β, and MMP-9 participate in the pathophysiological process after CAS. Our new in vitro model mimics monocytes activated by stenting. MMP-9 expression could be regulated through ERK1/2/Elk-1 pathway, and the protective effects of telmisartan after stenting are partly attributed to its MMP-9 inhibition effects via suppression of Elk-1.

  7. Fisetin inhibits epidermal growth factor–induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression

    Science.gov (United States)

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen

    2017-01-01

    Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070

  8. SIPA1 promotes invasion and migration in human oral squamous cell carcinoma by ITGB1 and MMP7

    International Nuclear Information System (INIS)

    Takahara, Toshikazu; Kasamatsu, Atsushi; Yamatoji, Masanobu; Iyoda, Manabu; Kasama, Hiroki; Saito, Tomoaki; Takeuchi, Shin; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2017-01-01

    Signal-induced proliferation-associated protein 1 (SIPA1) is known to be a GTPase activating protein. Overexpressed SIPA1 is related to metastatic progression in breast and prostate cancers; however, the relevance of SIPA1 in oral squamous cell carcinoma (OSCC) is still unknown. The aim of this study was to examine SIPA1 expression and its functional mechanisms in OSCC. SIPA1 mRNA and protein expressions were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry. The expressions of SIPA1 were up-regulated significantly in vitro and in vivo. Moreover, SIPA1 expression was correlated with regional lymph node metastasis. We next assessed the cellular functions associated with tumoral metastasis using SIPA1 knockdown (shSIPA1) cells and analyzed the downstream molecules of SIPA1, i.e., bromodomain containing protein 4(BRD4), integrin beta1 (ITGB1), and matrix metalloproteinase 7 (MMP7). The shSIPA1 cells showed decreased invasiveness and migratory activities, however cellular adhesion ability was maintained at a high level. In addition, ITGB1 expression was greater in shSIPA1 cells, whereas MMP7 expression was lower than in control cells. This research is the first to establish that SIPA1 promotes cancer metastasis by regulating the ITGB1 and MMP7. Therefore, SIPA1 might be a novel therapeutic target for patients with lymph node metastasis of OSCC. - Highlights: • SIPA1 expression was up-regulated in oral squamous cell carcinoma (OSCC). • SIPA1-positive OSCCs were correlated with regional lymph node metastasis. • SIPA1 controlled BRD4 and influenced transcription of ITGB1and MMP7. • SIPA1 induced cellular invasion and migration and decreased cellular adhesion. • SIPA1 might be a potential biomarker of cancer metastasis for OSCC.

  9. SIPA1 promotes invasion and migration in human oral squamous cell carcinoma by ITGB1 and MMP7

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Toshikazu [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Kasamatsu, Atsushi, E-mail: kasamatsua@faculty.chiba-u.jp [Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Yamatoji, Masanobu [Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Iyoda, Manabu; Kasama, Hiroki; Saito, Tomoaki [Division of Oral Surgery, Chiba Rosai Hospital, Chiba (Japan); Takeuchi, Shin [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Endo-Sakamoto, Yosuke [Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Shiiba, Masashi [Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba (Japan); Tanzawa, Hideki [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Uzawa, Katsuhiro, E-mail: uzawak@faculty.chiba-u.jp [Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba (Japan); Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan)

    2017-03-15

    Signal-induced proliferation-associated protein 1 (SIPA1) is known to be a GTPase activating protein. Overexpressed SIPA1 is related to metastatic progression in breast and prostate cancers; however, the relevance of SIPA1 in oral squamous cell carcinoma (OSCC) is still unknown. The aim of this study was to examine SIPA1 expression and its functional mechanisms in OSCC. SIPA1 mRNA and protein expressions were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry. The expressions of SIPA1 were up-regulated significantly in vitro and in vivo. Moreover, SIPA1 expression was correlated with regional lymph node metastasis. We next assessed the cellular functions associated with tumoral metastasis using SIPA1 knockdown (shSIPA1) cells and analyzed the downstream molecules of SIPA1, i.e., bromodomain containing protein 4(BRD4), integrin beta1 (ITGB1), and matrix metalloproteinase 7 (MMP7). The shSIPA1 cells showed decreased invasiveness and migratory activities, however cellular adhesion ability was maintained at a high level. In addition, ITGB1 expression was greater in shSIPA1 cells, whereas MMP7 expression was lower than in control cells. This research is the first to establish that SIPA1 promotes cancer metastasis by regulating the ITGB1 and MMP7. Therefore, SIPA1 might be a novel therapeutic target for patients with lymph node metastasis of OSCC. - Highlights: • SIPA1 expression was up-regulated in oral squamous cell carcinoma (OSCC). • SIPA1-positive OSCCs were correlated with regional lymph node metastasis. • SIPA1 controlled BRD4 and influenced transcription of ITGB1and MMP7. • SIPA1 induced cellular invasion and migration and decreased cellular adhesion. • SIPA1 might be a potential biomarker of cancer metastasis for OSCC.

  10. Gelatinase (MMP-2 and -9 expression profiles during gestation in the bovine endometrium

    Directory of Open Access Journals (Sweden)

    Sato Takashi

    2008-12-01

    Full Text Available Abstract Background Various molecules participate in implantation and maintaining endometrial function during gestation. The remodeling of endometrial matrices is a necessary process in the coordination of gestational progress. Matrix-metalloproteinases (MMPs like gelatinases (MMP-2 and -9 and collagenase (MMP-1 are considered to play important roles in this process. We examined MMP-2 and -9 expression using zymography, in situ hybridization, real-time PCR, and microarray analysis to clarify their roles in the bovine endometrium during gestation. Methods Endometria, placentomes, and fetal membranes were collected from Japanese black cows that were killed on day 15 to 252 of gestation or during their estrous cycle. The gene expression of MMP-related molecules (mainly MMP-2 and -9 was examined using a custom-made microarray, real-time RT-PCR, and in-situ hybridization. Gelatinase activity was detected by zymography and film in situ zymography. Results Both gelatinases were expressed in the endometrium and fetal tissues throughout gestation. MMP-2 gene expression declined with the progress of gestation, but its intensity was maintained at a high level during the peri-implantation period and increased in late gestation. The expression level of MMP-9 was stably maintained, but was relatively low compared to that of MMP-2. These gene expression patterns matched those detected by zymography for the proteins. Microarray analysis suggested that the functions of MMP-2 during implantation and the last part of gestation are closely related with those of other molecules such as tissue inhibitors of metalloproteinase (TIMP-2, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS 1, membrane type 1 (MT1-MMP, and extracellular matrix metalloproteinase inducer (EMMPRIN. Conclusion We detected MMP-2 and -9 gene expression in the bovine endometrium and placentome throughout gestation. These data suggest that MMP-2 is one of the main endometrial

  11. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Yu Ming

    2010-10-01

    Full Text Available Abstract Background Stress, anxiety and depression can cause complex physiological and neuroendocrine changes, resulting in increased level of stress related hormone catecholamine, which may constitute a primary mechanism by which physiological factors impact gene expression in tumors. In the present study, we investigated the effects of catecholamine stimulation on MMP-7 expression in gastric cancer cells and elucidated the molecular mechanisms of the up-regulation of MMP-7 level by catecholamine through an adrenergic signaling pathway. Results Increased MMP-7 expression was identified at both mRNA and protein levels in the gastric cancer cells in response to isoproterenol stimulation. β2-AR antigonist effectively abrogated isoproterenol-induced MMP-7 expression. The activation of STAT3 and AP-1 was prominently induced by isoproterenol stimulation and AP-1 displayed a greater efficacy than STAT3 in isoproterenol-induced MMP-7 expression. Mutagenesis of three STAT3 binding sites in MMP-7 promoter failed to repress the transactivation of MMP-7 promoter and silencing STAT3 expression was not effective in preventing isoproterenol-induced MMP-7 expression. However, isoproterenol-induced MMP-7 promoter activities were completely disappeared when the AP-1 site was mutated. STAT3 and c-Jun could physically interact and bind to the AP-1 site, implicating that the interplay of both transcriptional factors on the AP-1 site is responsible for isoproterenol-stimulated MMP-7 expression in gastric cancer cells. The expression of MMP-7 in gastric cancer tissues was found to be at the site where β2-AR was overexpressed and the levels of MMP-7 and β2-AR were the highest in the metastatic locus of gastric cancer. Conclusions Up-regulation of MMP-7 expression through β2-AR-mediated signaling pathway is involved in invasion and metastasis of gastric cancer.

  12. Mercury exposure induces cytoskeleton disruption and loss of renal function through epigenetic modulation of MMP9 expression.

    Science.gov (United States)

    Khan, Hafizurrahman; Singh, Radha Dutt; Tiwari, Ratnakar; Gangopadhyay, Siddhartha; Roy, Somendu Kumar; Singh, Dhirendra; Srivastava, Vikas

    2017-07-01

    Mercury is one of the major heavy metal pollutants occurring in elemental, inorganic and organic forms. Due to ban on most inorganic mercury containing products, human exposure to mercury generally occurs as methylmercury (MeHg) by consumption of contaminated fish and other sea food. Animal and epidemiological studies indicate that MeHg affects neural and renal function. Our study is focused on nephrotoxic potential of MeHg. In this study, we have shown for the first time how MeHg could epigenetically modulate matrix metalloproteinase 9(MMP9) to promote nephrotoxicity using an animal model of sub chronic MeHg exposure. MeHg caused renal toxicity as was seen by increased levels of serum creatinine and expression of early nephrotoxicity markers (KIM-1, Clusterin, IP-10, and TIMP). MeHg exposure also correlated strongly with induction of MMP9 mRNA and protein in a dose dependent manner. Further, while induction of MMP9 promoted cytoskeleton disruption and loss of cell-cell adhesion (loss of F-actin, Vimentin and Fibronectin), inhibition of MMP9 was found to reduce these disruptions. Mechanistic studies by ChIP analysis showed that MeHg modulated MMP9 by promoting demethylation of its regulatory region to increase its expression. Bisulfite sequencing identified critical CpGs in the first exon of MMP9 which were demethylated following MeHg exposure. ChIP studies also showed loss of methyl binding protein, MeCP2 and transcription factor PEA3 at the demethylated site confirming decreased CpG methylation. Our studies thus show how MeHg could epigenetically modulate MMP9 to promote cytoskeleton disruption leading to loss of renal function. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway.

    Science.gov (United States)

    Su, Chao; Wang, Wenchang; Wang, Cunchuan

    2018-05-01

    The present study aimed to investigate the association between insulin-like growth factor-1 (IGF-1) and matrix metalloproteinase-11 (MMP-11) expression in gastric cancer (GC) and the underlying mechanisms in SGC-7901 cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression of IGF-1 and MMP-11 was significantly upregulated in GC tissues compared with normal gastric tissue. Furthermore, IGF-1 significantly and dose-dependently promoted MMP-11. Western blotting revealed that the addition of IGF-1 to SGC-7901 cells led to an evident enhancement in signal transducer and activator of transcription 3 (STAT3), IGF-1R and Janus kinase 1 (JAK1) phosphorylation at 20 and 40 min. A decrease in the extent of the elevated expression of MMP-11 and the enhanced phosphorylation of STAT3, JAK1 and IGF-1 receptor (IGF-1R) induced by IGF-1 in SGC-7901 cells were observed following treatment with NT157 (an IGF-1R inhibitor). Furthermore, piceatannol (a JAK1 inhibitor) or small interfering RNA against STAT3 reduced the extent of the increased expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Piceatannol treatment induced the dose-dependent decline in the enhancement of STAT3 phosphorylation induced by IGF-1, indicating that the JAK1/STAT3 pathway may be implicated in the elevated expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Finally, IGF-1 treatment significantly promoted the proliferation and invasion of SGC-7901 cells, which was inhibited following NT157, piceatannol or si-STAT3 treatment. The present study therefore demonstrated that IGF-1-induced MMP-11 may have facilitated the proliferation and invasion of SGC-7901 cells via the JAK1/STAT3 pathway.

  14. MMP-7 and TIMP-1, new targets in predicting poor wound healing in apical periodontitis.

    Science.gov (United States)

    Letra, Ariadne; Ghaneh, Ghazaleh; Zhao, Min; Ray, Herbert; Francisconi, Carolina Favaro; Garlet, Gustavo Pompermaier; Silva, Renato Menezes

    2013-09-01

    Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are strongly associated with tissue destruction because of inflammation. In this study, we investigated the expression of MMPs and TIMPs messenger RNA and protein levels in apical periodontitis lesions. Tissue samples from patients presenting clinical signs of chronic apical abscess (CAA) or asymptomatic apical periodontitis (AAP) were collected postoperatively and used for gene expression analysis of MMP-2, -3, -7, -9, -14, -16, and -25; TIMP-1; and TIMP-2 in real-time polymerase chain reaction. Immunohistochemistry was also performed to detect the expression of MMP-7 and TIMP-1 proteins. Lastly, U-937 cells were induced to terminal differentiation into macrophages, infected with purified Escherichia coli lipopolysaccharide, and assessed for the expression of MMP-7 and TIMP-1 using immunocytochemistry and confocal microscopy. Significantly higher messenger RNA levels were found for all genes in AAP and CAA samples when compared with healthy control samples (P < .001). AAP cases exhibited significantly higher TIMP-1 when compared with CAA cases, whereas CAA cases showed higher MMP-2, MMP-7, and MMP-9 messenger RNA levels (P < .05). We also detected positive the expression of MMP-7 and TIMP-1 proteins in the tissue samples. The expression of both MMP-7 and TIMP-1 were increased in lipopolysaccharide-stimulated cells compared with nonstimulated cells and appear to colocalize in the Golgi apparatus. MMPs appear to have an influential role in CAA cases in which ongoing tissue destruction is observed. TIMPs are preferentially associated with AAP, perhaps as a subsequent defense mechanism against excessive destruction. Taken together, our findings implicate MMP and TIMP molecules in the dynamics of inflammatory periapical lesion development. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  16. Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin

    Science.gov (United States)

    Chaiprasongsuk, Anyamanee; Lohakul, Jinaphat; Soontrapa, Kitipong; Sampattavanich, Somponnat; Akarasereenont, Pravit

    2017-01-01

    UVA irradiation plays a role in premature aging of the skin through triggering oxidative stress-associated stimulation of matrix metalloproteinase-1 (MMP-1) responsible for collagen degradation, a hallmark of photoaged skin. Compounds that can activate nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant gene expression, should therefore serve as effective antiphotoaging agents. We investigated whether genetic silencing of Nrf2 could relieve UVA-mediated MMP-1 upregulation via activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling using human keratinocyte cell line (HaCaT). Antiphotoaging effects of hispidulin (HPD) and sulforaphane (SFN) were assessed on their abilities to activate Nrf2 in controlling MMP-1 and collagen expressions in association with phosphorylation of MAPKs (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38), c-Jun, and c-Fos, using the skin of BALB/c mice subjected to repetitive UVA irradiation. Our findings suggested that depletion of Nrf2 promoted both mRNA expression and activity of MMP-1 in the UVA-irradiated HaCaT cells. Treatment of Nrf2 knocked-down HaCaT cells with MAPK inhibitors significantly suppressed UVA-induced MMP-1 and AP-1 activities. Moreover, pretreatment of the mouse skin with HPD and SFN, which could activate Nrf2, provided protective effects against UVA-mediated MMP-1 induction and collagen depletion in correlation with the decreased levels of phosphorylated MAPKs, c-Jun, and c-Fos in the mouse skin. In conclusion, Nrf2 could influence UVA-mediated MMP-1 upregulation through the MAPK/AP-1 signaling cascades. HPD and SFN may therefore represent promising antiphotoaging candidates. PMID:28011874

  17. Association of MMP-9 Haplotypes and TIMP-1 Polymorphism with Spontaneous Deep Intracerebral Hemorrhage in the Taiwan Population.

    Directory of Open Access Journals (Sweden)

    Wei-Min Ho

    Full Text Available Spontaneous deep intracerebral hemorrhage (SDICH is a devastating stroke subtype. The causes of SDICH are heterogeneous. Matrix metalloproteinase-9 (MMP-9, Gelantinase B has been shown to relate to stroke and the development of aneurysm and may increase risks of intracerebral hemorrhage. MMP activities are modulated by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs. We analyzed the genetic variants of MMP-9 and TIMP-1 and SDICH susceptibility.Associations were tested by logistic regression or general linear models with adjusting for multiple covariables. Multiplicative terms between genes were applied to detect the interaction effects on SDICH. Permutation testing of 1,000 replicates was performed for empirical estimates.In the group of ≥65 years old (y/o, we found associations of SDICH with rs3787268 (Odds ratio [OR] = 0.48, 95% confidence interval [CI] 0.27 to 0.86, P = 0.01 and haplotype1 (Hap1 (OR = 0.48, 95% CI 0.26 to 0.86, P = 0.014. For TIMP1 gene, rs4898 was associated with SDICH in the elder male group (OR = 0.35, 95% CI 0.15 to 0.81, P = 0.015. In contrast, in the younger male group, there were associations of SDICH with rs2250889 (OR = 0.48, 95% CI 0.27 to 0.84, P = 0.01 and Hap3 (OR = 0.61, 95% CI 0.38 to 0.97, P = 0.04. We found significant genetic interaction between TIMP-1 and MMP-9 in SDICH susceptibility among younger male subjects (P = 0.004. In subjects carrying rs4898 minor allele, carriers with Hap3 had lower SDICH risk than non-carriers (OR = 0.19, 95% CI 0.07 to 0.51, P = 0.001. In addition, this study showed that when young males were exposed to alcohol, Hap3 was a protective factor of SDICH (OR = 0.06, 95% CI 0.01 to 0.27, P = 0.0002. In contrast, when they were exposed to smoke, Hap2 carriers had increased risk of SDICH (OR = 2.45, 95% CI 1.05 to 5.73, P = 0.04.This study showed modest to moderate effects of MMP-9 and TIMP-1 polymorphisms on SDICH risks with significant age differences

  18. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients

    International Nuclear Information System (INIS)

    Tian, Mei; Cui, Ya-Zhou; Song, Guan-Hua; Zong, Mei-Juan; Zhou, Xiao-Yan; Chen, Yu; Han, Jin-Xiang

    2008-01-01

    There is an urgent need to discover more sensitive and specific biomarkers to improve early diagnosis and screen high-risk patients for pancreatic ductal adenocarcinoma (PDAC). Pancreatic juice is an ideal specimen for PDAC biomarkers discovery, because it is an exceptionally rich source of proteins released from pancreatic cancer cells. To identify novel potential biomarkers for PDAC from pancreatic juice, we carried out difference gel electrophoresis (DIGE) and tandem mass spectrometry (MS/MS) to compare the pancreatic juice profiling from 9 PDAC patients and 9 cancer-free controls. Of the identified differently expressed proteins, three up-regulated proteins in pancreatic cancer juice, matrix metalloproteinase-9 (MMP-9), oncogene DJ1 (DJ-1) and alpha-1B-glycoprotein precursor (A1BG), were selected for validation by Western blot and immunohistochemistry. Serum MMP-9 levels were also detected by enzyme linked immunosorbent assay (ELISA). Fourteen proteins were up-regulated and ten proteins were down-regulated in cancerous pancreatic juice compared with cancer-free controls. Increased MMP-9, DJ-1 and A1BG expression in cancerous pancreatic juice were confirmed by Western blot. Immunohistochemical study showed MMP-9, DJ-1 and A1BG positively expressed in 82.4%, 72.5% and 86.3% of pancreatic cancer tissues, significantly higher than that in normal pancreas tissues. Up-regulation of DJ-1 was associated with better differentiation (p < 0.05). Serum MMP-9 levels were significantly higher in PDAC (255.14 ng/ml) than those in chronic pancreatitis (210.22 ng/ml, p = 0.009) and healthy control (203.77 ng/ml, p = 0.027). The present proteome analysis revealed MMP-9, DJ-1 and A1BG proteins as elevated in pancreatic juice from PDAC, which suggest their further utility in PDAC diagnosis and screening. This is the first time A1BG was identified as a potential biomarker in pancreatic cancer associated samples. The measurement of serum MMP-9 might be clinically useful for PDAC

  19. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    Science.gov (United States)

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  20. Plasma levels of the MMP-9:TIMP-1 complex as prognostic biomarker in breast cancer: a retrospective study

    International Nuclear Information System (INIS)

    Thorsen, Stine B; Møller, Susanne; Brünner, Nils; Schrohl, Anne-Sofie; Stenvang, Jan; Christensen, Sarah LT; Würtz, Sidse Ø; Lundberg, Martin; Nielsen, Birgitte S; Vinther, Lena; Knowles, Mick; Gee, Nick; Fredriksson, Simon

    2013-01-01

    Worldwide more than one million women are annually diagnosed with breast cancer. A considerable fraction of these women receive systemic adjuvant therapy; however, some are cured by primary surgery and radiotherapy alone. Prognostic biomarkers guide stratification of patients into different risk groups and hence improve management of breast cancer patients. Plasma levels of Matrix Metalloproteinase-9 (MMP-9) and its natural inhibitor Tissue inhibitor of metalloproteinase-1 (TIMP-1) have previously been associated with poor patient outcome and resistance to certain forms of chemotherapy. To pursue additional prognostic information from MMP-9 and TIMP-1, the level of the MMP-9 and TIMP-1 complex (MMP-9:TIMP-1) was investigated in plasma from breast cancer patients. Detection of protein:protein complexes in plasma was performed using a commercially available ELISA kit and, for the first time, the highly sensitive in-solution proximity ligation assay (PLA). We screened plasma from 465 patients with primary breast cancer for prognostic value of the MMP-9:TIMP-1 complex. Both assays were validated and applied for quantification of MMP-9:TIMP-1 concentration. In this retrospective study, we analyzed the association between the concentration of the MMP-9:TIMP-1 complex and clinicopathological data and disease free survival (DFS) in univariate and multivariate survival analyses. Following successful validation both assays were applied for MMP-9:TIMP-1 measurements. Of the clinicopathological parameters, only menopausal status demonstrated significant association with the MMP-9:TIMP-1 complex; P = 0.03 and P = 0.028 for the ELISA and PLA measurements, respectively. We found no correlation between the MMP-9:TIMP-1 protein complex and DFS neither in univariate nor in multivariate survival analyses. Despite earlier reports linking MMP-9 and TIMP-1 with prognosis in breast cancer patients, we here demonstrate that plasma levels of the MMP-9:TIMP-1 protein complex hold no

  1. Biochemical properties of the matrix metalloproteinase NtMMP1 from Nicotiana tabacum cv. BY-2 suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2010-09-01

    A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K(m) of 10.55 +/- 0.9 microM, a k(cat) of 0.6 +/- 0.01 s(-1) and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAalpha1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.

  2. Resveratrol Targeting of Carcinogen-Induced Brain Endothelial Cell Inflammation Biomarkers MMP-9 and COX-2 is Sirt1-Independent

    Directory of Open Access Journals (Sweden)

    Borhane Annabi

    2012-01-01

    Full Text Available The occurrence of a functional relationship between the release of metalloproteinases (MMPs and the expression of cyclooxygenase (COX-2, two inducible pro-inflammatory biomarkers with important pro-angiogenic effects, has recently been inferred. While brain endothelial cells play an essential role as structural and functional components of the blood-brain barrier (BBB, increased BBB breakdown is thought to be linked to neuroinflammation. Chemopreventive mechanisms targeting both MMPs and COX-2 however remain poorly investigated. In this study, we evaluated the pharmacological targeting of Sirt1 by the diet-derived and antiinflammatory polyphenol resveratrol. Total RNA, cell lysates, and conditioned culture media from human brain microvascular endothelial cells (HBMEC were analyzed using qRT-PCR, immunoblotting, and zymography respectively. Tissue scan microarray analysis of grade I–IV brain tumours cDNA revealed increased gene expression of Sirt-1 from grade I–III but surprisingly not in grade IV brain tumours. HBMEC were treated with a combination of resveratrol and phorbol 12-myristate 13-acetate (PMA, a carcinogen known to increase MMP-9 and COX-2 through NF-κB. We found that resveratrol efficiently reversed the PMA-induced MMP-9 secretion and COX-2 expression. Gene silencing of Sirt1, a critical modulator of angiogenesis and putative target of resveratrol, did not lead to significant reversal of MMP-9 and COX-2 inhibition. Decreased resveratrol inhibitory potential of carcinogen-induced IκB phosphorylation in siSirt1-transfected HBMEC was however observed. Our results suggest that resveratrol may prevent BBB disruption during neuroinflammation by inhibiting MMP-9 and COX-2 and act as a pharmacological NF-κB signal transduction inhibitor independent of Sirt1.

  3. Effects of ultrasound therapy with taping PNF training and PNF training with taping in treatment and rehabilitation of sports injuries of high ankle sprain

    Directory of Open Access Journals (Sweden)

    D L Charly Daniel

    2017-01-01

    Conclusions: It was concluded that combining ultrasound with taping and PNF training with taping were found to be more beneficial in the treatment and rehabilitation of high ankle sprain injury. The combined effect of UT, PNF training, and taping may be explored by future researchers.

  4. Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation.

    Science.gov (United States)

    Zhao, Sida; Zhao, Youshan; Guo, Juan; Fei, Chengming; Zheng, Qingqing; Li, Xiao; Chang, Chunkang

    2017-03-06

    The role of mesenchymal stromal cells (MSCs) in the pathogenesis of myelodysplastic syndromes (MDS) has been increasingly addressed, but has yet to be clearly elucidated. In this investigation, we found that MDS cells proliferated to a greater extent on MDS-derived MSCs compared to normal MSCs. Matrix metalloproteinase 1(MMP1), which was downregulated in MDS-MSCs, was identified as an inhibitory factor of MDS cell proliferation, given that treatment with an MMP1 inhibitor or knock-down of MMP1 in normal MSCs resulted in increased MDS cell proliferation. Further investigations indicated that MMP1 induced apoptosis of MDS cells by interacting with PAR1 and further activating the p38 MAPK pathway. Inhibition of either PAR1 or p38 MAPK can reverse the apoptosis-inducing effect of MMP1. Taken together, these data indicate that downregulation of MMP1 in MSCs of MDS patients may contribute to the reduced capacity of MSCs to restrict MDS cell proliferation, which may account for the malignant proliferation of MDS cells.

  5. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.

    Science.gov (United States)

    Senovilla, Marta; Castro-Rodríguez, Rosario; Abreu, Isidro; Escudero, Viviana; Kryvoruchko, Igor; Udvardi, Michael K; Imperial, Juan; González-Guerrero, Manuel

    2018-04-01

    Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    Science.gov (United States)

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals.

    Directory of Open Access Journals (Sweden)

    Malathesha Ganachari

    2010-01-01

    Full Text Available We previously reported that the -2518 MCP-1 genotype GG increases the likelihood of developing tuberculosis (TB in non-BCG-vaccinated Mexicans and Koreans. Here, we tested the hypothesis that this genotype, alone or together with the -1607 MMP-1 functional polymorphism, increases the likelihood of developing TB in BCG-vaccinated individuals. We conducted population-based case-control studies of BCG-vaccinated individuals in Mexico and Peru that included 193 TB cases and 243 healthy tuberculin-positive controls from Mexico and 701 TB cases and 796 controls from Peru. We also performed immunohistochemistry (IHC analysis of lymph nodes from carriers of relevant two-locus genotypes and in vitro studies to determine how these variants may operate to increase the risk of developing active disease. We report that a joint effect between the -2518 MCP-1 genotype GG and the -1607 MMP-1 genotype 2G/2G consistently increases the odds of developing TB 3.59-fold in Mexicans and 3.9-fold in Peruvians. IHC analysis of lymph nodes indicated that carriers of the two-locus genotype MCP-1 GG MMP-1 2G/2G express the highest levels of both MCP-1 and MMP-1. Carriers of these susceptibility genotypes might be at increased risk of developing TB because they produce high levels of MCP-1, which enhances the induction of MMP-1 production by M. tuberculosis-sonicate antigens to higher levels than in carriers of the other two-locus MCP-1 MMP-1 genotypes studied. This notion was supported by in vitro experiments and luciferase based promoter activity assay. MMP-1 may destabilize granuloma formation and promote tissue damage and disease progression early in the infection. Our findings may foster the development of new and personalized therapeutic approaches targeting MCP-1 and/or MMP-1.

  8. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals.

    Science.gov (United States)

    Ganachari, Malathesha; Ruiz-Morales, Jorge A; Gomez de la Torre Pretell, Juan C; Dinh, Jeffrey; Granados, Julio; Flores-Villanueva, Pedro O

    2010-01-25

    We previously reported that the -2518 MCP-1 genotype GG increases the likelihood of developing tuberculosis (TB) in non-BCG-vaccinated Mexicans and Koreans. Here, we tested the hypothesis that this genotype, alone or together with the -1607 MMP-1 functional polymorphism, increases the likelihood of developing TB in BCG-vaccinated individuals. We conducted population-based case-control studies of BCG-vaccinated individuals in Mexico and Peru that included 193 TB cases and 243 healthy tuberculin-positive controls from Mexico and 701 TB cases and 796 controls from Peru. We also performed immunohistochemistry (IHC) analysis of lymph nodes from carriers of relevant two-locus genotypes and in vitro studies to determine how these variants may operate to increase the risk of developing active disease. We report that a joint effect between the -2518 MCP-1 genotype GG and the -1607 MMP-1 genotype 2G/2G consistently increases the odds of developing TB 3.59-fold in Mexicans and 3.9-fold in Peruvians. IHC analysis of lymph nodes indicated that carriers of the two-locus genotype MCP-1 GG MMP-1 2G/2G express the highest levels of both MCP-1 and MMP-1. Carriers of these susceptibility genotypes might be at increased risk of developing TB because they produce high levels of MCP-1, which enhances the induction of MMP-1 production by M. tuberculosis-sonicate antigens to higher levels than in carriers of the other two-locus MCP-1 MMP-1 genotypes studied. This notion was supported by in vitro experiments and luciferase based promoter activity assay. MMP-1 may destabilize granuloma formation and promote tissue damage and disease progression early in the infection. Our findings may foster the development of new and personalized therapeutic approaches targeting MCP-1 and/or MMP-1.

  9. Correlation of MMP-9, GA, HbA1c, and adipokines levels with DR

    Directory of Open Access Journals (Sweden)

    Cheng Qian

    2017-12-01

    Full Text Available AIM: To investigate the correlation of matrix metalloproteinase -9(MMP-9, glycated albumin(GA, glycosylated hemoglobin(HbA1cand adipokines(including visfatin, resistin and leptinwith diabetic retinopathy(DR. METHODS: From March 2015 to March 2017, 74 patients with DR were treated in our hospital, including 40 patients(80 eyeswith non proliferative diabetic retinopathy(NPDRand 34 patients(68 eyeswith proliferative diabetic retinopathy(PDR, and diabetes mellitus 40 patients(80 eyeswith non DR(NDRand 40 healthy volunteers(80 eyeswere selected as controls, the levels of MMP-9, GA, HbA1c, visfatin, resistin and leptin in each group were detected. RESULTS: PDR group visfatin was 4.41±0.82ng/mL, was significantly lower than the NPDR group, NDR group and control group(PPPPrs=0.523, 0.461 and 0.414, Prs=-0.433, Prs=0.401 and 0.460, PCONCLUSION: MMP-9, GA, HbA1c, and adipokines may play a role in the development and progression of DR, in which MMP-9 is associated with adipokines, both are not significantly related to the levels of GA and HbA1c.

  10. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.

    Directory of Open Access Journals (Sweden)

    Aline Semblano Carreira Falcão

    Full Text Available Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1 derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1. Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG. Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

  11. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mt

  12. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP.

    Science.gov (United States)

    Yeom, Miji; Lee, HansongI; Shin, Seoungwoo; Park, Deokhoon; Jung, Eunsun

    2018-03-23

    Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.

  13. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP

    Directory of Open Access Journals (Sweden)

    Miji Yeom

    2018-03-01

    Full Text Available Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1 and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.

  14. Extracellular matrix proteins matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) and correlations with clinical staging in euthymic bipolar disorder.

    Science.gov (United States)

    Reininghaus, Eva Z; Lackner, Nina; Birner, Armin; Bengesser, Susanne; Fellendorf, Frederike T; Platzer, Martina; Rieger, Alexandra; Queissner, Robert; Kainzbauer, Nora; Reininghaus, Bernd; McIntyre, Roger S; Mangge, Harald; Zelzer, Sieglinde; Fuchs, Dietmar; Dejonge, Silvia; Müller, Norbert

    2016-03-01

    Matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) are both involved in the restructuring of connective tissues. Evidence also implicates MMP9 and sICAM in cardiovascular and neoplastic diseases, where blood levels may be a marker of disease severity or prognosis. In individuals with bipolar disorder (BD), higher risk for cardiovascular illness has been extensively reported. The aim of this investigation was to measure and compare peripheral levels of serum MMP9 and sICAM in adults with euthymic BD and healthy controls (HC). Furthermore, we focussed on correlations with illness severity and metabolic parameters. MMP9 levels among the BD sample (n = 112) were significantly higher than among the HC (n = 80) (MMP9: F = 9.885, p = 0.002, η(2)  = 0.058) after controlling for confounding factors. Patients with BD in a later, progressive stage of disease showed significantly higher MMP9 as well as sICAM-1 levels compared to patients with BD in an earlier stage of disease (MMP9: F = 5.8, p = 0.018, η(2)  = 0.054; sICAM-1: F = 5.6, p = 0.020, η(2)  = 0.052). Correlation analyses of cognitive measures revealed a negative association between performance on the d2 Test of Attention and MMP9 (r = -0.287, p = 0.018) in the BD sample. Despite the sample being euthymic (i.e., according to conventional criteria) at the time of analysis, we found significant correlations between MMP9 as well as sICAM-1 and subthreshold depressive/hypomanic symptoms. A collection of disparate findings herein point to a role of MMP9 and cICAM-1 in the patho-progressive process of BD: the increased levels of serum MMP9 and sICAM-1, the correlation between higher levels of these parameters, progressive stage, and cognitive dysfunction in BD, and the positive correlation with subthreshold symptoms. As sICAM-1 and MMP9 are reliable biomarkers of inflammatory and early atherosclerotic disease, these markers may provide indications of the

  15. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway

    International Nuclear Information System (INIS)

    Jiang, Lili; Wu, Jueheng; Yang, Yi; Liu, Liping; Song, Libing; Li, Jun; Li, Mengfeng

    2012-01-01

    The prognosis of human glioma is poor, and the highly invasive nature of the disease represents a major impediment to current therapeutic modalities. The oncoprotein B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1) has been linked to the development and progression of glioma; however, the biological role of Bmi-1 in the invasion of glioma remains unclear. A172 and LN229 glioma cells were engineered to overexpress Bmi-1 via stable transfection or to be silenced for Bmi-1 expression using RNA interfering method. Migration and invasiveness of the engineered cells were assessed using wound healing assay, Transwell migration assay, Transwell matrix penetration assay and 3-D spheroid invasion assay. MMP-9 expression and activity were measured using real-time PCR, ELISA and the gelatin zymography methods. Expression of NF-kappaB target genes was quantified using real-time PCR. NF-kappaB transcriptional activity was assessed using an NF-kappaB luciferase reporter system. Expression of Bmi-1 and MMP-9 in clinical specimens was analyzed using immunohistochemical assay. Ectopic overexpression of Bmi-1 dramatically increased, whereas knockdown of endogenous Bmi-1 reduced, the invasiveness and migration of glioma cells. NF-kappaB transcriptional activity and MMP-9 expression and activity were significantly increased in Bmi-1-overexpressing but reduced in Bmi-1-silenced cells. The reporter luciferase activity driven by MMP-9 promoter in Bmi-1-overexpressing cells was dependent on the presence of a functional NF-kappaB binding site, and blockade of NF-kappaB signaling inhibited the upregulation of MMP-9 in Bmi-1 overexpressing cells. Furthermore, expression of Bmi-1 correlated with NF-kappaB nuclear translocation as well as MMP-9 expression in clinical glioma samples. Bmi-1 may play an important role in the development of aggressive phenotype of glioma via activating the NF-kappaB/MMP-9 pathway and therefore might represent a novel therapeutic

  16. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway

    Directory of Open Access Journals (Sweden)

    Jiang Lili

    2012-09-01

    Full Text Available Abstract Background The prognosis of human glioma is poor, and the highly invasive nature of the disease represents a major impediment to current therapeutic modalities. The oncoprotein B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1 has been linked to the development and progression of glioma; however, the biological role of Bmi-1 in the invasion of glioma remains unclear. Methods A172 and LN229 glioma cells were engineered to overexpress Bmi-1 via stable transfection or to be silenced for Bmi-1 expression using RNA interfering method. Migration and invasiveness of the engineered cells were assessed using wound healing assay, Transwell migration assay, Transwell matrix penetration assay and 3-D spheroid invasion assay. MMP-9 expression and activity were measured using real-time PCR, ELISA and the gelatin zymography methods. Expression of NF-kappaB target genes was quantified using real-time PCR. NF-kappaB transcriptional activity was assessed using an NF-kappaB luciferase reporter system. Expression of Bmi-1 and MMP-9 in clinical specimens was analyzed using immunohistochemical assay. Results Ectopic overexpression of Bmi-1 dramatically increased, whereas knockdown of endogenous Bmi-1 reduced, the invasiveness and migration of glioma cells. NF-kappaB transcriptional activity and MMP-9 expression and activity were significantly increased in Bmi-1-overexpressing but reduced in Bmi-1-silenced cells. The reporter luciferase activity driven by MMP-9 promoter in Bmi-1-overexpressing cells was dependent on the presence of a functional NF-kappaB binding site, and blockade of NF-kappaB signaling inhibited the upregulation of MMP-9 in Bmi-1 overexpressing cells. Furthermore, expression of Bmi-1 correlated with NF-kappaB nuclear translocation as well as MMP-9 expression in clinical glioma samples. Conclusions Bmi-1 may play an important role in the development of aggressive phenotype of glioma via activating the NF-kappaB/MMP

  17. 1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells.

    Science.gov (United States)

    Liu, Xiuting; Zhou, Wei; Zhang, Xin; Ding, Yang; Du, Qianming; Hu, Rong

    2018-04-01

    Indoleamine 2,3-dioxygenase 1 (IDO1), known as IDO, catabolizes tryptophan through kynurenine pathway, whose activity is correlated with impaired clinical outcome of colorectal cancer. Here we showed that 1-L-MT, a canonical IDO inhibitor, suppressed proliferation of human colorectal cancer cells through inducing mitotic death. Our results showed that inhibition of IDO decreased the transcription of CDC20, which resulted in G2/M cycle arrest of HCT-116 and HT-29. Furthermore, 1-L-MT induced mitochondria injuries and caused apoptotic cancer cells. Importantly, 1-L-MT protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and size. What is more, IDO1-/- mice exhibited fewer tumor burdens and reduced proliferation in the neoplastic epithelium, while, 1-L-MT did not exhibit any further protective effects on IDO-/- mice, confirming the critical role of IDO and the protective effect of 1-L-MT-mediated IDO inhibition in CRC. Furthermore, 1-L-MT also alleviated CRC in Rag1-/- mice, demonstrating the modulatory effects of IDO independent of its role in modulating adaptive immunity. Taken together, our findings validated that the anti-proliferation effect of 1-L-MT in vitro and the prevention of CRC in vivo were through IDO-induced cell cycle disaster of colon cancer cells. Our results identified 1-L-MT as a promising candidate for the chemoprevention of CRC. © 2018 UICC.

  18. Expression of melatonin receptor MT1 in cells of human invasive ductal breast carcinoma.

    Science.gov (United States)

    Jablonska, Karolina; Pula, Bartosz; Zemla, Agata; Owczarek, Tomasz; Wojnar, Andrzej; Rys, Janusz; Ambicka, Aleksandra; Podhorska-Okolow, Marzena; Ugorski, Maciej; Dziegiel, Piotr

    2013-04-01

    In humans, two main types of membrane melatonin receptors have been identified, MT1 and MT2. Expression of MT1 in neoplastic cells seems to increase the efficacy of melatonin's oncostatic activity. The purpose of this study was to determine the distribution and the intensity of MT1 expression in breast cancer cells and to correlate it with clinicopathological factors. Immunohistochemical studies (IHC) were conducted on 190 cases of invasive ductal breast carcinomas (IDC) and molecular studies were performed on 29 cases of frozen tumor fragments and selected breast cancer cell lines. Most of the studied tumors manifested a membranous/cytoplasmic IHC expression of MT1. In IDC, the MT1 expression was higher than in fibrocystic breast disease. MT1 expression was higher in estrogen receptor positive (ER+) and HER2 positive (HER2+) tumors. Triple negative tumors (TN) manifested the lowest MT1 expression level. The lowest MT1 protein expression level was noted in the TN breast cancer cell line MDA-MB-231 compared with ER+ cell lines MCF-7 and SK-BR-3. MT1 mRNA expression was negatively correlated with the malignancy grade of the studied IDC cases. Moreover, higher MT1 expression was associated with patients' longer overall survival (OS) in the group of ER+ breast cancers and treated with tamoxifen. Multivariate analysis indicated that MT1 was an independent prognostic factor in the ER+ tumors for OS and event-free survival in the ER+ tumors. The results of this study may point to a potential prognostic and therapeutic significance of MT1 in IDC. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  19. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    Full Text Available The ratio of matrix metalloproteinases (MMPs to the tissue inhibitors of metalloproteinases (TIMPs in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

  20. Comparison of circulating MMP-9, TIMP-1 and CA19-9 in the detection of pancreatic cancer

    DEFF Research Database (Denmark)

    Jørgensen, Maiken Thyregod; Brunner, Nils; Schaffalitzky de Muckadell, Ove B.

    2010-01-01

    , TIMP-1 and CA19-9 in detecting pancreatic ductal adenocarcinoma were 58.82%, 47.1% and 86%, respectively, with specificities of 34.6%, 69.2% and 73%. The AUCs of MMP-9, TIMP-1 and CA19-9 were 0.50, 0.64 and 0.84, respectively. Combining the three markers did not significantly improve detection......Background/Aim: The performance of the circulating tumor markers carbohydrate antigen 19-9 (CA19-9), matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) were evaluated separately and in combination for their potential value in detecting pancreatic ductal...... adenocarcinoma. PATIENTS AND METHODS: The patients had symptoms of pancreatic cancer. The discriminative strength of MMP-9 and TIMP-1 were compared to that of CA19-9 using receiver operating characteristics curves, area under the curves (AUC), specificity and sensitivity. RESULTS: The sensitivities of MMP-9...

  1. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    Science.gov (United States)

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-04

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  2. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    Science.gov (United States)

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.

  3. Regulation of Membrane-Type 4 Matrix Metalloproteinase by SLUG Contributes to Hypoxia-Mediated Metastasis12

    Science.gov (United States)

    Huang, Chi-Hung; Yang, Wen-Hao; Chang, Shyue-Yih; Tai, Shyh-Kuan; Tzeng, Cheng-Hwei; Kao, Jung-Yie; Wu, Kou-Juey; Yang, Muh-Hwa

    2009-01-01

    The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT), and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP) is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis. PMID:20019845

  4. Regulation of Membrane-Type 4 Matrix Metalloproteinase by SLUG Contributes to Hypoxia-Mediated Metastasis

    Directory of Open Access Journals (Sweden)

    Chi-Hung Huang

    2009-12-01

    Full Text Available The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT, and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis.

  5. MMP-1 is a (pre-invasive factor in Barrett-associated esophageal adenocarcinomas and is associated with positive lymph node status

    Directory of Open Access Journals (Sweden)

    Otto Christoph

    2010-10-01

    Full Text Available Abstract Background Esophageal adenocarcinomas (EACs arise due to gastroesophageal reflux, with Barrett's esophagus (BE regarded as precancerous lesion. Matrix metalloproteinases (MMPs might play a role during the multistep carcinogenetic process. Methods Expression of MMP-1 and -13 was analyzed in esophageal cancer (n = 41 EAC with BE, n = 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC, furthermore in BE without intraepithelial neoplasia (IN (n = 18, and the cell line OE-33. MMP-1 was co-labelled with Ki-67 (proliferation, Cdx-2 (marker for intestinal metaplasia, BE and analyzed on mRNA level. MMP-1 staining results were correlated with clinicopatholocical parameters. Results On protein level, MMP-1 expression was found in 39 of 41 (95% EAC with BE, in 19 of 19 (100% EAC without BE, in 6 of 10 (60% ESCC, and in 10 of 18 (56% BE without IN. No expression of MMP-13 was found in these specimens. Quantification showed 48% MMP-1 positive cells in EAC with BE, compared to 35% in adjacent BE (p Conclusions Our findings suggest that MMP-1 plays a role as preinvasive factor in BE-associated EAC. Expression of MMP-1 in proliferating BE and EAC cells suggest malignant proliferation following the clonal expansion model.

  6. MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Mautner, V.F.; Hartmann, M.; Kluwe, L.; Friedrich, R.E. [University Hospital Eppendorf, Section for Phakomatoses, Department of Maxillofacial Surgery, Hamburg (Germany); Fuensterer, C. [MRI Institute Hamburg-Othmarschen, Hamburg (Germany)

    2006-03-15

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with an incidence of 1:3000. Approximately 30% of NF1 patients develop plexiform neurofibromas (PNF) which often cause severe clinical deficits. We studied the growth patterns of 256 plexiform neurofibromas (PNF) by magnetic resonance imaging (MRI) and associated disfigurement and functional deficits to determine whether there are definable growth types of these tumors. Retrospectively, we evaluated MRI scans obtained during 1997 to 2003 of 256 plexiform neurofibromas from 202 patients with NF1. Clinical investigation was carried out at the same time as the MRI scans. We identified three growth patterns: superficial in 59, displacing in 76, and invasive growth in 121 tumors. The majority (52%) of invasive PNF were found in the face, head and neck area. While superficial PNF primarily caused aesthetic problems, displacing PNF led in most cases to aesthetic problems and pain, while invasive PNF led mainly to functional deficits and disfigurement. Our study demonstrates that PNF have different growth patterns that are associated with specific clinical features. Classification of PNF may open new opportunities in clinical management, especially regarding decisions and options associated with surgical intervention. (orig.)

  7. Fraxinus rhynchophylla ethanol extract attenuates carbon tetrachloride-induced liver fibrosis in rats via down-regulating the expressions of uPA, MMP-2, MMP-9 and TIMP-1.

    Science.gov (United States)

    Peng, Wen-Huang; Tien, Yun-Chen; Huang, Chih-Yang; Huang, Tai-Hung; Liao, Jung-Chun; Kuo, Chao-Lin; Lin, Ying-Chih

    2010-02-17

    To investigate the effect of Fraxinus rhynchophylla ethanol extract (FR(EtOH)) on liver fibrosis induced by carbon tetrachloride (CCl(4)) in rats. Rat hepatic fibrosis was induced by oral administration of CCl(4). Sixty SD rats were divided randomly into 6 groups: control, CCl(4) group, silymarin group and three FR(EtOH)-treated groups. Except for the rats in control group, all rats were administered orally with CCl(4) (20%, 0.2 mL/100g body weight) twice a week for 8 weeks. Rats in FR(EtOH) groups were treated daily with FR(EtOH) (0.1, 0.5 and 1.0 g/kg, p.o.) throughout the whole experimental period. Liver function parameters (such as activities of serum GOT and GPT levels), activities of liver anti-oxidant enzymes (such as catalase, SOD, GPx) and expressions of uPA, tPA, MMP-2, MMP-9 and TIMP-1, -2, -3, -4 in the liver fibrosis pathway were detected. The results showed that FR(EtOH) (0.1, 0.5 and 1.0 g/kg BW) significantly reduced the elevated activities of sGOT and sGPT caused by CCl(4). FR(EtOH) (0.1 and 0.5 g/kg BW) and significantly increased the activities of GSH-Px. The histopathological study showed that FR(EtOH) (0.1 and 0.5 g/kg BW) reduced the incidence of liver lesions, including hepatic cells cloudy swelling, lymphocytes infiltration, cytoplasm vacuolization hepatic necrosis and fibrous connective tissue proliferated induced by CCl(4) in rats. In our study it was showed that CCl(4)-treated group significantly increased the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. FR(EtOH) (0.1 and 0.5 g/kg BW) could inhibit the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. Finally, the amount of esculetin in the FR(EtOH) was 33.54 mg/g extract. Oral administration of FR(EtOH) significantly reduces CCl(4)-induced hepatic fibrosis in rats, probably by exerting a protective effect against hepatocellular fibrosis by its free radical scavenging ability. FR(EtOH) down-regulated the expressions of uPA, MMP-2 and MMP-9 in CCl(4)-induced liver fibrosis in rats

  8. New Radioligands for Describing the Molecular Pharmacology of MT1 and MT2 Melatonin Receptors

    Directory of Open Access Journals (Sweden)

    Olivier Nosjean

    2013-04-01

    Full Text Available Melatonin receptors have been studied for several decades. The low expression of the receptors in tissues led the scientific community to find a substitute for the natural hormone melatonin, the agonist 2-[125I]-iodomelatonin. Using the agonist, several hundreds of studies were conducted, including the discovery of agonists and antagonists for the receptors and minute details about their molecular behavior. Recently, we attempted to expand the panel of radioligands available for studying the melatonin receptors by using the newly discovered compounds SD6, DIV880, and S70254. These compounds were characterized for their affinities to the hMT1 and hMT2 recombinant receptors and their functionality in the classical GTPS system. SD6 is a full agonist, equilibrated between the receptor isoforms, whereas S70254 and DIV880 are only partial MT2 agonists, with Ki in the low nanomolar range while they have no affinity to MT1 receptors. These new tools will hopefully allow for additions to the current body of information on the native localization of the receptor isoforms in tissues.

  9. Immunohistochemical analysis of MMP-9, MMP-2 and TIMP-1, TIMP-2 expression in the central nervous system following infection with viral and bacterial meningitis.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2009-01-01

    Full Text Available Matrix metalloproteinases (MMPs are capable of degrading components of the basal lamina of cerebral vessels, thereby disrupting the blood-brain barrier and inducing leukocyte recruitment. This study provides comprehensive information regarding the cell specificity of matrix metalloproteinases (MMP-2, MMP-9 and their binding tissue inhibitors (TIMP-1, TIMP-2 in the central nervous system during viral and bacterial meningitis. Specifically, we evaluated the immunoreactivity of MMPs and TIMPs in various cell types in brain parenchyma and meninges obtained from autopsy tissues. We found that a higher proportion of endothelial cells were positive for MMP-9 during meningitis when compared to controls. In addition, the immunoreactivity of MMP-9 decreased and the immunoreactivity of TIMP-1 increased in astrocytes upon infection. Furthermore, the results of this study revealed that mononuclear cells were highly immunoreactive for TIMP-1, TIMP-2 and MMP-9 during viral meningitis and that the expression of TIMPs in polymorphonuclear cells was even higher during bacterial meningitis. Taken together the results of this study indicated that the central nervous system resident cells and inflammatory infiltrates contribute to MMPs activity and that the expression patterns vary between cell types and in response to viral and bacterial meningitis.

  10. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  11. Assessment of apoptosis and MMP-1, MMP-3 and TIMP-2 expression in tibial hyaline cartilage after viable medial meniscus transplantation in the rabbit.

    Science.gov (United States)

    Zwierzchowski, Tomasz J; Stasikowska-Kanicka, Olga; Danilewicz, Marian; Fabiś, Jarosław

    2012-12-20

    The porpuse of this animal study was to assess chondrocyte apoptosis and MMP-1, MMP-3 and TIMP-2 expression in rabbit tibial cartilage 6 months after viable medial meniscal autografts and allografts. Twenty white male New Zealand rabbits were chosen for the study. The medial meniscus was excised from 14 animals and stored under tissue culture conditions for 2 weeks, following which t of them were implantated as autografts and 7 as allografts. The control group consisted of 6 animals which underwent arthtrotomy. When the animals were eutanized, the tibial cartilage was used for immunohisochemical examination. Apoptosis (TUNEL method) and MMP-1, MMP-3 and TIMP-2 expression were estimated semiquantatively. An increased level of chodrocyte apoptosis in the tibail cartilage was observed after both kinds of transplants (p hyaline cartilage against excessive apoptosis. The results of experimantal studies on humans indicate the need to device a method of apoptosis inhibition in the hyaline cartilage to improve long-term results of meniscal transplantation.

  12. MMP-2 participates in the sclera of guinea pig with form-deprivation myopia via IGF-1/STAT3 pathway.

    Science.gov (United States)

    Liu, Y-X; Sun, Y

    2018-05-01

    To investigate the expression changes of MMP-2 (matrix metalloproteinases-2) mediated by IGF-1 (insulin-like growth factors-1) STAT3 (signal transducer and activator of transcription 3) pathway in the sclera of the form-deprivation myopia guinea pigs. Twenty-four three-week-old guinea pigs were randomly divided into 4 groups: group A (Control), B, C and D. Guinea pigs in group A were sacrificed after 21 days without any special treatment. Guinea pigs in group B were sacrificed 7 days after receiving stitch in the right eye. Guinea pigs in group C were sacrificed 14 days after receiving stitch in the right eye. Guinea pigs in group D were sacrificed 21 days after receiving stitch in the right eye. Eyeball refraction and axial length of guinea pigs were measured before sacrifice. Eyeballs of guinea pigs were enucleated after sacrifice. The expressions of IGF-1, STAT3 and MMP-2 in scleral tissue were detected by Western blot. Axial length extension and myopia appeared in the right eye of guinea pigs in group B. The expressions of IGF-1, STAT3 and MMP-2 in the sclera significantly increased after 7 days of occlusion compared with that in control group A (pIGF-1, STAT3 and MMP-2 in sclera significantly increased compared with that in group A (pIGF-1, STAT3 and MMP-2 in scleral significantly upregulated 21 days after occlusion (pIGF-1 in sclera were positively correlated (r = 0.962, pIGF-1, STAT3 and MMP-2 in the sclera and myopia of guinea pigs. The expressions of IGF-1, STAT3 and MMP-2 increased progressively over the time of deprivation. Additionally, overexpression of MMP-2 mediated by IGF-1/STAT3 pathway in sclera might promote the formation of myopia.

  13. PNF and manual therapy treatment results of patients with cervical spine osteoarthritis.

    Science.gov (United States)

    Maicki, Tomasz; Bilski, Jan; Szczygieł, Elżbieta; Trąbka, Rafał

    2017-09-22

    The aim of this study was to evaluate the effectiveness of PNF and manual therapy methods in the treatment of patients with cervical spine osteoarthritis, especially their efficacy in reducing pain and improving functionality in everyday life. Long-term results were also compared in order to determine which method of treatment is more effective. Eighty randomly selected females aged 45-65 were included in the study. They were randomly divided into two groups of 40 persons. One group received PNF treatment and the other received manual therapy (MAN.T). To evaluate functional capabilities, the Functional Rating Index was used. To evaluate changes in pain, a shortened version of the McGill Questionnaire was used. The PNF group achieved a greater reduction in pain than the MAN.T group. The PNF group showed a greater improvement in performing daily activities such as sleeping, personal care, travelling, work, recreation, lifting, walking and standing as well as decreased intensity and frequency of pain compared to the MAN.T group. The PNF method proved to be more effective in both short (after two weeks) and long (after three months) term.

  14. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease.

    Science.gov (United States)

    Liu, Bin; Li, Chenghai; Liu, Zijuan; Dai, Zonghan; Tao, Yunxia

    2012-09-11

    Polycystic Kidney Disease (PKD) kidneys exhibit increased extracellular matrix (ECM) collagen expression and metalloproteinases (MMPs) activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. We examined the role of type I collagen (collagen I) and membrane bound type 1 MMP (MT1-MMP) on cyst development using both in vitro 3 dimensional (3D) collagen gel culture and in vivo PCK rat model of PKD. We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  15. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2012-09-01

    Full Text Available Abstract Background Polycystic Kidney Disease (PKD kidneys exhibit increased extracellular matrix (ECM collagen expression and metalloproteinases (MMPs activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. Methods We examined the role of type I collagen (collagen I and membrane bound type 1 MMP (MT1-MMP on cyst development using both in vitro 3 dimensional (3D collagen gel culture and in vivo PCK rat model of PKD. Results We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Conclusions Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  16. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies

    2014-01-01

    regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model......, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1...... nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from...

  17. The Regulatory Mechanism of MLT/MT1 Signaling on the Growth of Antler Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Feifei Yang

    2017-10-01

    Full Text Available Melatonin (MLT plays an important role in regulating the physiological cycle of seasonal breeding animals. Melatonin receptor I (MT1 is effectively expressed in the cambium layer of deer antler. However, the function and metabolic mechanism of MLT/MT1 signaling in the mesenchymal cells of sika deer remain to be further elucidated. In this work, we detected the effects of MLT/MT1 signaling on mesenchymal cells proliferation and the interaction between MLT/MT1 and IGF1/IGF1-R signaling. The results show that (1 deer antler mesenchymal cells actually express MT1; (2 exogenous melatonin significantly promotes mesenchymal cells proliferation, while MT1 knock-down significantly impairs the positive effects of melatonin; and (3 melatonin significantly enhanced IGF1/IGF1-R signaling, as both the expression of IGF1 and IGF-1R increased, while MT1 knock-down significantly decreased IGF1-R expression and IGF1 synthesis. In summary, these data verified that MLT/MT1 signaling plays a crucial role in antler mesenchymal proliferation, which may be mediated by IGF1/IGF1-R.

  18. Canis mtDNA HV1 database: a web-based tool for collecting and surveying Canis mtDNA HV1 haplotype in public database.

    Science.gov (United States)

    Thai, Quan Ke; Chung, Dung Anh; Tran, Hoang-Dung

    2017-06-26

    Canine and wolf mitochondrial DNA haplotypes, which can be used for forensic or phylogenetic analyses, have been defined in various schemes depending on the region analyzed. In recent studies, the 582 bp fragment of the HV1 region is most commonly used. 317 different canine HV1 haplotypes have been reported in the rapidly growing public database GenBank. These reported haplotypes contain several inconsistencies in their haplotype information. To overcome this issue, we have developed a Canis mtDNA HV1 database. This database collects data on the HV1 582 bp region in dog mitochondrial DNA from the GenBank to screen and correct the inconsistencies. It also supports users in detection of new novel mutation profiles and assignment of new haplotypes. The Canis mtDNA HV1 database (CHD) contains 5567 nucleotide entries originating from 15 subspecies in the species Canis lupus. Of these entries, 3646 were haplotypes and grouped into 804 distinct sequences. 319 sequences were recognized as previously assigned haplotypes, while the remaining 485 sequences had new mutation profiles and were marked as new haplotype candidates awaiting further analysis for haplotype assignment. Of the 3646 nucleotide entries, only 414 were annotated with correct haplotype information, while 3232 had insufficient or lacked haplotype information and were corrected or modified before storing in the CHD. The CHD can be accessed at http://chd.vnbiology.com . It provides sequences, haplotype information, and a web-based tool for mtDNA HV1 haplotyping. The CHD is updated monthly and supplies all data for download. The Canis mtDNA HV1 database contains information about canine mitochondrial DNA HV1 sequences with reconciled annotation. It serves as a tool for detection of inconsistencies in GenBank and helps identifying new HV1 haplotypes. Thus, it supports the scientific community in naming new HV1 haplotypes and to reconcile existing annotation of HV1 582 bp sequences.

  19. A novel Drosophila injury model reveals severed axons are cleared through a Draper/MMP-1 signaling cascade

    Science.gov (United States)

    Purice, Maria D; Ray, Arpita; Münzel, Eva Jolanda; Pope, Bernard J; Park, Daniel J; Speese, Sean D; Logan, Mary A

    2017-01-01

    Neural injury triggers swift responses from glia, including glial migration and phagocytic clearance of damaged neurons. The transcriptional programs governing these complex innate glial immune responses are still unclear. Here, we describe a novel injury assay in adult Drosophila that elicits widespread glial responses in the ventral nerve cord (VNC). We profiled injury-induced changes in VNC gene expression by RNA sequencing (RNA-seq) and found that responsive genes fall into diverse signaling classes. One factor, matrix metalloproteinase-1 (MMP-1), is induced in Drosophila ensheathing glia responding to severed axons. Interestingly, glial induction of MMP-1 requires the highly conserved engulfment receptor Draper, as well as AP-1 and STAT92E. In MMP-1 depleted flies, glia do not properly infiltrate neuropil regions after axotomy and, as a consequence, fail to clear degenerating axonal debris. This work identifies Draper-dependent activation of MMP-1 as a novel cascade required for proper glial clearance of severed axons. DOI: http://dx.doi.org/10.7554/eLife.23611.001 PMID:28825401

  20. Safety and Usage of C1-Inhibitor in Hereditary Angioedema

    DEFF Research Database (Denmark)

    Riedl, Marc A; Bygum, Anette; Lumry, William

    2016-01-01

    , international patient registry documented widespread implementation of pnfC1-INH self-administration outside of a health care setting consistent with current HAE guidelines. These real-world data revealed pnfC1-INH usage for a variety of reasons in patients with HAE and showed a high level of safety regardless...... of this study was to describe safety and usage patterns of pnfC1-INH. METHODS: A multicenter, observational, registry was conducted between 2010 and 2014 at 30 United States and 7 European sites to obtain both prospective (occurring after enrollment) and retrospective (occurring before enrollment) safety...... and usage data on subjects receiving pnfC1-INH for any reason. RESULTS: Of 343 enrolled patients, 318 received 1 or more doses of pnfC1-INH for HAE attacks (11,848 infusions) or for prophylaxis (3142 infusions), comprising the safety population. Median dosages per infusion were 10.8 IU/kg (attack treatment...

  1. Elevated expression of MMP-13 and TIMP-1 in head and neck squamous cell carcinomas may reflect increased tumor invasiveness

    International Nuclear Information System (INIS)

    Culhaci, Nil; Metin, Kubilay; Copcu, Eray; Dikicioglu, Emel

    2004-01-01

    Matrix metalloproteinases [MMPs], which degrade the extracellular matrix, play an important role in the invasion and metastasis of squamous cell carcinomas. One MMP, MMP-13, is thought to play a central role in MMP activation. The purpose of this study was to investigate MMP-13 and TIMP-1 expression in squamous cell carcinomas of the head and neck and to relate these levels of expression to histologic patterns of invasion. This study included T1 lesions obtained via biopsy from the larynx, tongue, and skin/mucosa of 78 patients with head and neck squamous cell carcinomas. The relationship between expression of MMP-13 and TIMP-1 and the mode of tumor invasion [MI] was evaluated immunohistochemically, using breast carcinoma tissue as a positive control. Increased expression was observed in highly invasive tumors, as reflected by the significant correlation between the degree of staining for MMP-13 or TIMP-1 and MI grade [p < 0.05]. There was no significant relationship between the degree of staining for MMP-13 or TIMP-1 and patient age, sex, tumor site, or tumor histologic grade. In addition, levels of staining for MMP-13 did not correlate with levels of staining for TIMP-1. The expression of MMP-13 and TIMP-1 appears to play an important role in determining the invasive capacity of squamous cell carcinomas of the head and neck. Whereas additional studies are needed to confirm these findings, evaluating expression of these MMPs in small biopsy samples may be useful in determining the invasive capacity of these tumors at an earlier stage

  2. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  3. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films.

    Science.gov (United States)

    Steinhagen, Max; Hoffmeister, Peter-Georg; Nordsieck, Karoline; Hötzel, Rudi; Baumann, Lars; Hacker, Michael C; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2014-04-23

    Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.

  4. The ERK1/2 Inhibitor U0126 Attenuates Diabetes-Induced Upregulation of MMP-9 and Biomarkers of Inflammation in the Retina

    Directory of Open Access Journals (Sweden)

    Ghulam Mohammad

    2013-01-01

    Full Text Available This study was conducted to determine the expression of matrix metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1 in a time-dependent manner and the effect of extracellular-signal-regulated kinases-1/2 (ERK1/2 inhibition on the expressions of MMP-9, TIMP-1, and inflammatory biomarkers in the retinas of diabetic rats. The expression of MMP-9 was quantified by zymography, and the mRNA level of MMP-9 and TIMP-1 was quantified by RT-PCR. The expression of inducible nitric oxide synthase (iNOS, interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α was examined by Western blot analysis. MMP-9 expression was significantly higher in diabetic rat retinas compared to controls at all time points.TIMP-1 expression was nonsignificantly upregulated at 1week of diabetes and was significantly downregulated at 4 and 12 weeks of diabetes. Intravitreal administration of the ERK1/2 inhibitor U0126 prior to induction of diabetes decreased ERK1/2 activation, attenuated diabetes-induced upregulation of MMP-9, iNOS, IL-6, and TNF-α and upregulated TIMP-1 expression. In MMP-9 knockout mice, diabetes had no effect on retinal iNOS expression and its level remained unchanged. These data provide evidence that ERK1/2 signaling pathway is involved in MMP-9, iNOS, IL-6, and TNF-α induction in diabetic retinas and suggest that ERK1/2 can be a novel therapeutic target in diabetic retinopathy.

  5. Detection of the matrix metalloproteinases MMP-2 and MMP-9 and tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2 in llama (Lama glama) oviduct.

    Science.gov (United States)

    Zampini, R; Argañaraz, M E; Miceli, D C; Apichela, S A

    2014-06-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are involved in several reproductive events like oocyte-spermatozoa interaction and semen liquefaction. In order to study their role in the llama oviductal reproductive process, MMP activity in oviductal fluid (OF) was assayed. Considering that llama genome sequences are partially known, a strategy to procure cDNA sequences of MMP-2, MMP-9, TIMP-1 and TIMP-2 was designed. Afterwards, their expression patterns in the different llama oviductal segments were assayed. Gelatine zymograms detected 62 and 94 kDa protease activities that matched MMP-2 and pro-MMP-9, respectively. Expression pattern analysis showed that MMP and TIMP mRNAs were present in ampulla, isthmus, utero-tubal junction (UTJ) and papilla. Altogether, these findings support the argument that MMPs/TIMPs are produced in the oviduct and secreted into the oviductal lumen. Our results encourage further studies to elucidate the role of these proteins in reproductive oviductal events. © 2014 Blackwell Verlag GmbH.

  6. MMP3 and TIMP1 variants contribute to chronic periodontitis and may be implicated in disease progression.

    Science.gov (United States)

    Letra, Ariadne; Silva, Renato M; Rylands, Ryan J; Silveira, Elcia M; de Souza, Ana P; Wendell, Steven K; Garlet, Gustavo P; Vieira, Alexandre R

    2012-08-01

    Matrix metalloproteinases (MMPs) play a key role in the tissue destruction characteristic of chronic periodontitis. The purpose of this study was to investigate the association of MMP and TIMP polymorphisms with chronic periodontitis in two populations. A total of 34 polymorphisms spanning 12 MMP and 2 TIMP genes were genotyped in 401 individuals from Brazil (99 cases with chronic periodontitis and 302 controls), and 274 individuals from the US (70 cases and 204 controls). Individuals were considered cases if presenting at least three teeth exhibiting sites of clinical attachment loss ≥ 5 mm in two different quadrants. Controls were characterized by absence of clinical attachment loss and no sites with probing depth >3 mm. MMP3 and TIMP1 mRNA expression was evaluated in healthy and diseased periodontal tissues. TIMP1 showed association with chronic periodontitis in the Brazilian population (for rs5906435, p = 0.0004), whereas MMP3 showed association in the US population (for rs679620, p = 0.0003; and rs650108, p = 0.002) and in the Brazilian population (for rs639752, p = 0.005). MMP3 and TIMP1 mRNA expression was significantly higher in diseased tissues when compared to control tissues. Our results further support a role for variations in MMP3 in chronic periodontitis and report a novel association with TIMP1. These genes may be considered additional candidate genes for chronic periodontitis. © 2012 John Wiley & Sons A/S.

  7. VANGL2 regulates membrane trafficking of MMP14 to control cell polarity and migration.

    Science.gov (United States)

    Williams, B Blairanne; Cantrell, V Ashley; Mundell, Nathan A; Bennett, Andrea C; Quick, Rachel E; Jessen, Jason R

    2012-05-01

    Planar cell polarity (PCP) describes the polarized orientation of cells within the plane of a tissue. Unlike epithelial PCP, the mechanisms underlying PCP signaling in migrating cells remain undefined. Here, the establishment of PCP must be coordinated with dynamic changes in cell adhesion and extracellular matrix (ECM) organization. During gastrulation, the membrane type-1 matrix metalloproteinase (MT1-MMP or MMP14) is required for PCP and convergence and extension cell movements. We report that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell-surface availability of MMP14 in manner that is dependent on focal adhesion kinase. We demonstrate that zebrafish trilobite/vangl2 mutant embryos exhibit increased Mmp14 activity and decreased ECM. Furthermore, in vivo knockdown of Mmp14 partially rescues the Vangl2 loss-of-function convergence and extension phenotype. This study identifies a mechanism linking VANGL2 with MMP14 trafficking and suggests that establishment of PCP in migrating gastrula cells requires regulated proteolytic degradation or remodeling of the ECM. Our findings implicate matrix metalloproteinases as downstream effectors of PCP and suggest a broadly applicable mechanism whereby VANGL2 affects diverse morphogenetic processes.

  8. Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation.

    Science.gov (United States)

    Chowdhury, Animesh; Sarkar, Jaganmay; Pramanik, Pijush Kanti; Chakraborti, Tapati; Chakraborti, Sajal

    2016-08-01

    The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of Stretching by P.N.F and Harmonic Techniques on Hamstring Flexibility

    Directory of Open Access Journals (Sweden)

    Hassan Shakeri

    2006-01-01

    Full Text Available Objective: Improving of muscle flexibility is an important issue in physiotherapy and sport sciences. There are many methods for increasing muscle length and decreasing muscle stiffness. In research findings, PNF method has been found to be better than static and ballistic methods. There is another method named Harmonic technique (introduced by E. Lederman 1997 that has been claimed to be more effective, but there is not enough documentation about this claim. Aim of this study was to compare effects of stretching by PNF and harmonic techniques on hamstring flexibility. Materials & Methods: This research is a RCT study in that 45 colledge students aged 18-35 years were arranged in three groups (Harmonic, P.N.F, and control. Subjects haven’t had any painful pathology in low-back and lower extremities for last six months. Subjects had limited hamstring length (20 degrees deficiency in Active-Knee-Extension test and hadn’t professional sport activities. Dependent variablies were muscle stiffness and hamstring length which popliteal angle in AKE test was its indirect index. In pilot study, reliability of measurement of these variables were approved. Then hamstring muscle of subjects in harmonic and PNF groups were stretched by harmonic and PNF methods for six weeks, 5 minute per day and 3d/wks, whereas control group hadn’t any exercise. Results: Findings of this study showed that in both used techniques, changes of hamstring length were significant (P=0.000, but in control group there wasn’t significant change. There wasn’t significant differences between changes of hamstring length in PNF and Harmonic groups. Only in harmonic group, muscle stiffness had significant changes (P<0.03. Conclusion: According to findings of this research, both harmonic and PNF methods equally increased length of hamstring, and harmonic technique can be used as an alternative stretching method for other techniques. Maybe harmonic technique is better than PNF

  10. EFFECT OF PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION (PNF IN IMPROVING SENSORIMOTOR FUNCTION IN PATIENTS WITH DIABETIC NEUROPATHY AFFECTING LOWER LIMBS

    Directory of Open Access Journals (Sweden)

    Kamaljeet Singh

    2016-06-01

    Full Text Available Background: Diabetic Mellitus is a group of metabolic disease characterized by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. Distal Sensorimotor Polyneuropathy is the most common complication of diabetes which mainly affects the lower limbs. Most of the studies aimed at individually increasing muscle strength or sensation but not on overall performance enhancements of the diabetic lower limbs. The evidence supporting the effectiveness of PNF in diabetic neuropathic patients is scarce. Methods: 30 patients, with age between 50 to 70 years, diagnosed with Diabetic Sensorimotor Polyneuropathy (DSP were selected from the department of Medicine and department of Neurosurgery Guru Gobind Singh Medical College and Hospital. Patients were evaluated at the beginning and at the end of the intervention using Diabetic Neuropathy Examination scores. Patients received 3 sets of exercises one hour/day with 3 days/week for 3 months. Each set of exercises consists of 5 repetitions of PNF patterns (alternate day and techniques. Results: D1 & D2 patterns of PNF are effective in improving both motor and sensory functions of diabetic patients with neuropathic symptoms. Improvement in muscle strength, reflex and sensations occurred to a greater extent after the treatment of three months in these subjects. This study shows that PNF patterns were effective at enhancing sensorimotor problems of lower limbs. Conclusion: This study concluded that PNF is found to be effective in improving sensorimotor functions of diabetic neuropathic patients affecting lower limbs.

  11. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, Richard

    2010-12-09

    Abstract Background Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers. Results Here, we have studied the expression of the PEA3 subfamily members PEA3\\/ETV4 and ER81\\/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is MMP-1. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with MMP-1 expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas. Conclusions This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.

  12. Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ji-Su [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Cho, In-A; Kang, Kyeong-Rok [Department of Dental Bioengineering, Chosun University, Gwangju, 61452 (Korea, Republic of); You, Jae-Seek [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Yu, Sang-Joun [Department of Periodontology, Chosun University, Gwangju, 61452 (Korea, Republic of); Lee, Gyeong-Je [Department of Prosthodontics, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Yo-Seob [Department of Oral and Maxillofacial Radiology, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Chun Sung; Kim, Do Kyung [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Su-Gwan [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Young-Woo [Korea Basic Science Institute, Gwangju Center, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Im, Hee-Jeong [Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612 (United States); Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of)

    2016-09-02

    Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1β-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1β-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E{sub 2}, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1β-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1β-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling. - Highlights: • Biochanin-A is a phytoestrogen derived from medicinal plants. • It suppressed the IL-1β-induced matrix degrading enzymes and catabolic factors. • It inhibited IL-1β-induced proteoglycan loss in chondrocytes and cartilage tissues. • Its anti-catabolic effects were mediated by modulation of NFκB signaling. • It may be used as a potential anti-catabolic biomaterial for osteoarthritis.

  13. Correlation of matrix metalloproteinase (MMP)-1, -2, -3, and -9 expressions with demographic and radiological features in primary lumbar intervertebral disc disease.

    Science.gov (United States)

    Basaran, Recep; Senol, Mehmet; Ozkanli, Seyma; Efendioglu, Mustafa; Kaner, Tuncay

    2017-07-01

    Degeneration of IVD is a progressive and irreversible process and can be evaluated with immunohistochemical examination or radiological grading. MMPs are a family of proteolytic enzymes and involved in the degradation of the matrix components of the IVD. We aimed to compare MMP-1, -2, -3, and -9 expressions with demographic features, visual analogue scale (VAS), Oswestry Disability Index (ODI) and radiological (MRI) grades. The study involved 60 participants. We recorded data about age, complaint, radiological imaging, expression levels of MMP-1, -2, -3, and -9, ODI and VAS for back pain retrospectively. Intervertebral disc degeneration was graded on a 0-5 scale according to the Pfirrmann classification. As a result of the study, the median age was 52.09±12.74years. There were statistical significances between age and MMP-1, and MMP-2. There was a close correlation between grade and MMP-9. We found correlation between the VAS and the MMP-9 expression. In addition, there was relationship between expression of MMP-2 and MMP-1, MMP-3, MMP-9. In conclusion, the expressions of MMP-1 and -2 are increased with aging. There was no relationship between radiological evaluation of IVDD and aging. Increased expression of MMPs affected IVDD positively. The relationship with MMPs is not explained. This study adds to our understanding of the interaction between MMPs and IVDD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Studies on Multifunctional Effect of All-Trans Retinoic Acid (ATRA on Matrix Metalloproteinase-2 (MMP-2 and Its Regulatory Molecules in Human Breast Cancer Cells (MCF-7

    Directory of Open Access Journals (Sweden)

    Anindita Dutta

    2009-01-01

    Full Text Available Background. Vitamin A derivative all-trans retinoic acid (ATRA is considered as a potent chemotherapeutic drug for its capability of regulating cell growth and differentiation. We studied the effect of ATRA on MMP-2 in MCF-7, human breast cancer cells, and the probable signaling pathways which are affected by ATRA on regulating pro-MMP-2 activity and expression. Methods. Gelatin zymography, RT-PCR, ELISA, Western blot, Immunoprecipitation, and Cell adhesion assay are used. Results. Gelatin zymography showed that ATRA caused a dose-dependent inhibition of pro-MMP-2 activity. ATRA treatment downregulates the expression of MT1-MMP, EMMPRIN, FAK, NF-kB, and p-ERK. However, expression of E-cadherin, RAR, and CRABP increased upon ATRA treatment. Binding of cells to extra cellular matrix (ECM protein fibronectin reduced significantly after ATRA treatment. Conclusions. The experimental findings clearly showed the inhibition of MMP-2 activity upon ATRA treatment. This inhibitory effect of ATRA on MMP-2 activity in human breast cancer cells (MCF-7 may result due to its inhibitory effect on MT1-MMP, EMMPRIN, and upregulation of TIMP-2. This study is focused on the effect of ATRA on MMP, MMP-integrin-E-cadherin interrelationship, and also the effect of the drug on different signaling molecules which may involve in the progression of malignant tumor development.

  15. Exercise Intolerance and Myoglobinuria Associated with a Novel Maternally Inherited MT-ND1 Mutation

    DEFF Research Database (Denmark)

    Rafiq, Jabin; Duno, Morten; Østergaard, Elsebet

    2016-01-01

    The most common clinical phenotype caused by a mtDNA mutation in complex I of the mitochondrial respiratory chain is Leber hereditary optic neuropathy. We report a family with a novel maternally inherited homoplasmic mtDNA m.4087A>G mutation in the ND1 gene (MT-ND1) associated with isolated...... myopathy, recurrent episodes of myoglobinuria, and rhabdomyolysis. DNA from blood in seven family members and muscle from four family members were PCR amplified and sequenced directly and assessed for the m.4087A>G variation in MT-ND1. Mitochondrial enzyme activity in all muscle biopsies was measured. PCR...... myoglobinuria is a rare phenotype of mitochondrial myopathies. We report this phenotype in a family affected by a novel homoplasmic mutation in MT-ND1. It is the first time such a phenotype has been associated with complex I gene mutations and a homoplasmic mutation of mtDNA....

  16. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation.

    Science.gov (United States)

    Yang, Weiwei; Li, Qinghua; Pan, Zhifang

    2014-01-01

    Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports demonstrated that S1P receptors are expressed in the EVT cells and S1P could regulate migration and function of trophoblast cells via S1P receptors. However, little is known about roles of S1P in the invasion of EVT cells. Our study was performed to investigate S1P effect on the invasion of EVT cells. We used the extravillous trophoblast cell line HTR8/SVneo cells to evaluate the effect. In vitro invasion assay was employed to determine the invasion of HTR8/SVneo cells induced by S1P. MMP-2 enzyme activity and relative level in the supernatants of HTR8/SVneo was assessed by gelatin zymography and western blot. Based on the above, siRNA and specific inhibitors were used for the intervention and study of potential signal pathways, and Real-time qPCR and western blot were used to test the mRNA and protein level of potential signal targets. We found that S1P could promote HTR8/SVneo cell invasion and upregulates activity and level of MMP-2. The promotion requires activation of MEK-ERK and is dependent on the axis of S1P/S1PR1. Our investigation of S1P may provide new insights into the molecular mechanisms of EVT invasion.

  17. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    OpenAIRE

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  18. IGF-1R Regulates the Extracellular Level of Active MMP-2, Pathological Neovascularization, and Functionality in Retinas of OIR Mouse Model.

    Science.gov (United States)

    Lorenc, Valeria E; Subirada Caldarone, Paula V; Paz, María C; Ferrer, Darío G; Luna, José D; Chiabrando, Gustavo A; Sánchez, María C

    2018-02-01

    In ischemic proliferative diseases such as retinopathies, persistent hypoxia leads to the release of numerous neovascular factors that participate in the formation of abnormal vessels and eventually cause blindness. The upregulation and activation of metalloproteinases (MMP-2 and MMP-9) represent a final common pathway in this process. Although many regulators of the neovascular process have been identified, the complete role of the insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) appears to be significantly more complex. In this study, we used an oxygen-induced retinopathy (OIR) mouse model as well as an in vitro model of hypoxia to study the role of MMP-2 derived from Müller glial cells (MGCs) and its relation with the IGF-1/IGF-1R system. We demonstrated that MMP-2 protein expression increased in P17 OIR mice, which coincided with the active phase of the neovascular process. Also, glutamine synthetase (GS)-positive cells were also positive for MMP-2, whereas IGF-1R was expressed by GFAP-positive cells, indicating that both proteins were expressed in MGCs. In addition, in the OIR model a single intravitreal injection of the IGF-1R blocking antibody (αIR3) administered at P12 effectively prevented pathologic neovascularization, accelerated physiological revascularization, and improved retinal functionality at P17. Finally, in MGC supernatants, the blocking antibody abolished the IGF-1 effect on active MMP-2 under normoxic and hypoxic conditions without affecting the extracellular levels of pro-MMP-2. These results demonstrate, for the first time, that the IGF-1/IGF-1R system regulates active MMP-2 levels in MGCs, thus contributing to MEC remodeling during the retinal neovascular process.

  19. Transcription factor CgMTF-1 regulates CgZnT1 and CgMT expression in Pacific oyster (Crassostrea gigas) under zinc stress

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jie; Zhang, Linlin [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); Li, Li, E-mail: lili@qdio.ac.cn [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); Li, Chunyan; Wang, Ting [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Guofan, E-mail: gfzhang@qdio.ac.cn [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong (China)

    2015-08-15

    Highlights: • CgMTF-1 and CgZnT1 were first identified in oysters. • CgMTF-1 localized in cell nucleus under unstressed conditions. • CgMTF-1 proteins could bind with the typical MRE motif. • CgMTF-1 activated CgZnT1, CgMT1 and CgMT4 promoters and regulated their expressions under zinc exposure. - Abstract: Oysters accumulate zinc at high tissue concentrations, and the metal response element (MRE)-binding transcription factor (MTF) functions as the cellular zinc sensor that coordinates the expression of genes involved in zinc efflux and storage, as well as those that protect against metal toxicity. In this study, we cloned MTF-1 in oysters and examined its regulation mechanism for its classic target genes, including MTs and ZnT1 under zinc exposure conditions. We cloned CgMTF-1 and determined the subcellular locations of its protein product in HEK293 cells. CgMTF-1 has a 2826 bp open reading frame that encodes a predicted polypeptide with 707 amino acid residues, showing six well-conserved zinc finger domains that are required for metal binding. In HEK293 cell lines, CgMTF-1 primarily localizes in the cell nucleus under unstressed conditions and nuclear translocation was not critical for the activation of this gene. We searched for CgMTF-1-regulated genes in oysters using RNA interference. Decreased expression levels of CgMT1, CgMT4, and CgZnT1 were observed after CgMTF-1 interference (>70% inhibition) under zinc exposure, indicating the critical role of CgMTF-1 in the regulation of these genes. We searched for a direct regulation mechanism involving CgMTF-1 for CgMT1, CgMT4, and CgZnT1 in vitro. EMSA experiments indicated that CgMTF-1 can bind with the MREs found in the CgZnT1, CgMT1 and CgMT4 promoter regions. Additionally, luciferase reporter gene experiments indicated that CgMTF-1 could activate the CgMT1, CgMT4, and CgZnT1 promoters. Overall, our results suggest that CgMTF-1 directly coordinates the regulation of CgMTs and CgZnT1 expression and plays

  20. Transcription factor CgMTF-1 regulates CgZnT1 and CgMT expression in Pacific oyster (Crassostrea gigas) under zinc stress

    International Nuclear Information System (INIS)

    Meng, Jie; Zhang, Linlin; Li, Li; Li, Chunyan; Wang, Ting; Zhang, Guofan

    2015-01-01

    Highlights: • CgMTF-1 and CgZnT1 were first identified in oysters. • CgMTF-1 localized in cell nucleus under unstressed conditions. • CgMTF-1 proteins could bind with the typical MRE motif. • CgMTF-1 activated CgZnT1, CgMT1 and CgMT4 promoters and regulated their expressions under zinc exposure. - Abstract: Oysters accumulate zinc at high tissue concentrations, and the metal response element (MRE)-binding transcription factor (MTF) functions as the cellular zinc sensor that coordinates the expression of genes involved in zinc efflux and storage, as well as those that protect against metal toxicity. In this study, we cloned MTF-1 in oysters and examined its regulation mechanism for its classic target genes, including MTs and ZnT1 under zinc exposure conditions. We cloned CgMTF-1 and determined the subcellular locations of its protein product in HEK293 cells. CgMTF-1 has a 2826 bp open reading frame that encodes a predicted polypeptide with 707 amino acid residues, showing six well-conserved zinc finger domains that are required for metal binding. In HEK293 cell lines, CgMTF-1 primarily localizes in the cell nucleus under unstressed conditions and nuclear translocation was not critical for the activation of this gene. We searched for CgMTF-1-regulated genes in oysters using RNA interference. Decreased expression levels of CgMT1, CgMT4, and CgZnT1 were observed after CgMTF-1 interference (>70% inhibition) under zinc exposure, indicating the critical role of CgMTF-1 in the regulation of these genes. We searched for a direct regulation mechanism involving CgMTF-1 for CgMT1, CgMT4, and CgZnT1 in vitro. EMSA experiments indicated that CgMTF-1 can bind with the MREs found in the CgZnT1, CgMT1 and CgMT4 promoter regions. Additionally, luciferase reporter gene experiments indicated that CgMTF-1 could activate the CgMT1, CgMT4, and CgZnT1 promoters. Overall, our results suggest that CgMTF-1 directly coordinates the regulation of CgMTs and CgZnT1 expression and plays

  1. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells - associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    AIM: To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in...... cells is associated with poor prognosis independent of its function as inhibitor of MMP-9. MMP-9 and TIMP-1 are important mediators of the host-cancer cell interaction in the tumour microenvironment with significant influence on the histopathology and on prognosis of CRC....

  2. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong Xia

    Full Text Available Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9 is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.

  3. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    Science.gov (United States)

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  4. Increased expression of HIF-1α, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency

    Science.gov (United States)

    Misra, Sanjay; Shergill, Uday; Yang, Binxia; Janardhanan, Rajiv; Misra, Khamal D.

    2010-01-01

    Purpose A mouse model of renal insufficiency with arteriovenous fistula (AVF) and venous stenosis was created. We tested the hypothesis that there is increased gene expression of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor- A (VEGF-A) and its receptors (VEGFR-1, -2), matrix metalloproteinase-2 (MMP-2), -9 (MMP-9), tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, -2), and a disintegrin and metalloproteinase thrombospondin-1 (ADAMTS-1) at the venous stenosis. Materials and methods Nineteen male C57BL/6 mice underwent a left nephrectomy and a surgical occlusion of the right upper pole to induce renal insufficiency and characterized in eight mice. Twenty eight days later, an AVF (n=11) was created from the right carotid artery to ipsilateral jugular vein and the mice were sacrificed at day 7 (n=4) and day 14 (n=4). The outflow and control veins were removed for gene expression. Three mice were sacrificed at day 28 for histologic analysis. Results The mean serum blood urea nitrogen remained significantly elevated for 8 weeks when compared to baseline (P<0.05). By day 7, there was a significant increase in the expression of HIF-1α, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with HIF-1α and TIMP-1 being significantly elevated at day 14 (P<0.05). By day 28, the venous stenosis was characterized by a thickened vein wall and neointima. Conclusions A mouse model of renal insufficiency with AVF was developed which had increased expression of HIF-1α, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with venous stenosis by day 28. PMID:20598569

  5. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency.

    Science.gov (United States)

    Misra, Sanjay; Shergill, Uday; Yang, Binxia; Janardhanan, Rajiv; Misra, Khamal D

    2010-08-01

    A mouse model of renal insufficiency with arteriovenous fistula (AVF) and venous stenosis was created. The authors tested the hypothesis that there is increased gene expression of hypoxia-inducible factor-1 alpha (HIF-1alpha); vascular endothelial growth factor-A (VEGF-A) and its receptors (VEGFR-1, -2); matrix metalloproteinase-2 (MMP-2), -9 (MMP-9); tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, -2); and a disintegrin and metalloproteinase thrombospondin-1 (ADAMTS-1) at the venous stenosis. Nineteen male C57BL/6 mice underwent a left nephrectomy and a surgical occlusion of the right upper pole to induce renal function characterized in eight animals. Twenty eight days later, an AVF (n = 11) was created from the right carotid artery to ipsilateral jugular vein, and the mice were killed at day 7 (n = 4) and day 14 (n = 4). The outflow and control veins were removed for gene expression. Three mice were killed at day 28 for histologic analysis. The mean serum blood urea nitrogen level remained significantly elevated for 8 weeks when compared with baseline (P < .05). By day seven, there was a significant increase in the expression of HIF-1alpha, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein, with HIF-1alpha and TIMP-1 levels significantly elevated at day 14 (P < .05). By day 28, the venous stenosis was characterized by a thickened vein wall and neointima. A mouse model of renal insufficiency with AVF was developed that had increased expression of HIF-1alpha, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with venous stenosis by day 28. Copyright (c) 2010 SIR. Published by Elsevier Inc. All rights reserved.

  6. Role of Spm-Cer-S1P signalling pathway in MMP-2 mediated U46619-induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechin-3-gallate.

    Science.gov (United States)

    Chowdhury, Animesh; Sarkar, Jaganmay; Chakraborti, Tapati; Chakraborti, Sajal

    2015-10-01

    During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occurs, which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin-3-gallate (EGCG) on the TxA2 mimetic, U46619-induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p(38)MAPK, NF-κB and MMP-2 significantly inhibit U46619-induced cell proliferation. EGCG markedly abrogate U46619-induced p(38)MAPK phosphorylation, NF-κB activation, proMMP-2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619-induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP-2 markedly abrogate U46619-induced SMase activity and S1P level. EGCG markedly inhibit U46619-induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline-Ceramide-Sphingosine-1-phosphate (Spm-Cer-S1P) signalling axis plays an important role in MMP-2 mediated U46619-induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP-2 activation by modulating p(38)MAPK-NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.

  7. MtCAS31 Aids Symbiotic Nitrogen Fixation by Protecting the Leghemoglobin MtLb120-1 Under Drought Stress in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-05-01

    Full Text Available Symbiotic nitrogen fixation (SNF in legume root nodules injects millions of tons of nitrogen into agricultural lands and provides ammonia to non-legume crops under N-deficient conditions. During plant growth and development, environmental stresses, such as drought, salt, cold, and heat stress are unavoidable. This raises an interesting question as to how the legumes cope with the environmental stress along with SNF. Under drought stress, dehydrin proteins are accumulated, which function as protein protector and osmotic substances. In this study, we found that the dehydrin MtCAS31 (cold-acclimation-specific 31 functions in SNF in Medicago truncatula during drought stress. We found that MtCAS31 is expressed in nodules and interacts with leghemoglobin MtLb120-1. The interaction between the two proteins protects MtLb120-1 from denaturation under thermal stress in vivo. Compared to wild type, cas31 mutants display a lower nitrogenase activity, a lower ATP/ADP ratio, higher expression of nodule senescence genes and higher accumulation of amyloplasts under dehydration conditions. The results suggested that MtCAS31 protects MtLb120-1 from the damage of drought stress. We identified a new function for dehydrins in SNF under drought stress, which enriches the understanding of the molecular mechanism of dehydrins.

  8. Effect of Agmatine Sulfate on Modulation of Matrix Metalloproteinases via PI3K/Akt-1 in HT1080 Cells.

    Science.gov (United States)

    Kim, Hyejeong; Kim, Moon-Moo

    2017-11-01

    The purpose of this study was to investigate the mechanism by which agmatine sulfate induces an anti-metastatic effect in human HT1080 fibrosarcoma cells, by affecting matrix metalloproteinases (MMPs). For the experiments, we used a non-toxic concentration of agmatine, below 512 μM, that was determined using an MTT assay. The effect of agmatine sulfate on metastasis was gelatin zymography, western blot, immunofluorescence staining and cell invasion assay. Agmatine sulfate inhibited MMP-2 activity stimulated by phenazine methosulfate (PMS). Furthermore, the expression level of MMP-2 stimulated by PMS, was decreased, but the expression level of TIMP-1 was increased in the presence of agmatine sulfate. Moreover, it was observed that the expression levels of ERK and p38 were increased, but those of PI3K and Akt-1 associated with the modulation of MMP-2 were decreased in this study. Furthermore, agmatine sulfate decreased the invasion level of human fibrosarcoma cells stimulated by VEGF. These results suggest that agmatine sulfate could inhibit metastasis through inhibition of MMP-2 via the PI3K/Akt-1 signaling pathway. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi.

    Directory of Open Access Journals (Sweden)

    Jennifer Pöhlmann

    2014-09-01

    Full Text Available Microtubules (MTs are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.

  10. Non-coding RNA ANRIL and the number of plexiform neurofibromas in patients with NF1 microdeletions

    Directory of Open Access Journals (Sweden)

    Mußotter Tanja

    2012-10-01

    Full Text Available Abstract Background Neurofibromatosis type-1 (NF1 is caused by mutations of the NF1 gene at 17q11.2. In 95% of non-founder NF1 patients, NF1 mutations are identifiable by means of a comprehensive mutation analysis. 5-10% of these patients harbour microdeletions encompassing the NF1 gene and its flanking regions. NF1 is characterised by tumours of the peripheral nerve sheaths, the pathognomonic neurofibromas. Considerable inter- and intra-familial variation in expressivity of the disease has been observed which is influenced by genetic modifiers unrelated to the constitutional NF1 mutation. The number of plexiform neurofibromas (PNF in NF1 patients is a highly heritable genetic trait. Recently, SNP rs2151280 located within the non-coding RNA gene ANRIL at 9p21.3, was identified as being strongly associated with PNF number in a family-based association study. The T-allele of rs2151280, which correlates with reduced ANRIL expression, appears to be associated with higher PNF number. ANRIL directly binds to the SUZ12 protein, an essential component of polycomb repressive complex 2, and is required for SUZ12 occupancy of the CDKN2A/CDKN2B tumour suppressor genes as well as for their epigenetic silencing. Methods Here, we explored a potential association of PNF number and PNF volume with SNP rs2151280 in 29 patients with constitutional NF1 microdeletions using the exact Cochran-Armitage test for trends and the exact Mann–Whitney–Wilcoxon test. Both the PNF number and total tumour volume in these 29 NF1 patients were assessed by whole-body MRI. The NF1 microdeletions observed in these 29 patients encompassed the NF1 gene as well as its flanking regions, including the SUZ12 gene. Results In the 29 microdeletion patients investigated, neither the PNF number nor PNF volume was found to be associated with the T-allele of rs2151280. Conclusion Our findings imply that, at least in patients with NF1 microdeletions, PNF susceptibility is not associated with

  11. TNF-α promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    International Nuclear Information System (INIS)

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-01-01

    Highlights: ► TNF-α induces MMP-9 expression and secretion to promote RPE cell migration. ► MAPK activation is not critical for TNF-α-induced MMP-9 expression. ► Akt and mTORC1 signaling mediate TNF-α-induced MMP-9 expression. ► SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-α. -- Abstract: Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  12. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  13. Food-induced reinforcement is abrogated by the genetic deletion of the MT1 or MT2 melatonin receptor in C3H/HeN mice.

    Science.gov (United States)

    Clough, Shannon J; Hudson, Randall L; Dubocovich, Margarita L

    2018-05-02

    Palatable food is known for its ability to enhance reinforcing responses. Studies have suggested a circadian variation in both drug and natural reinforcement, with each following its own time course. The goal of this study was to determine the role of the MT 1 and MT 2 melatonin receptors in palatable snack food-induced reinforcement, as measured by the conditioned place preference (CPP) paradigm during the light and dark phases. C3H/HeN wild-type mice were trained for snack food-induced CPP at either ZT 6 - 8 (ZT: Zeitgeber time; ZT 0 = lights on), when endogenous melatonin levels are low, or ZT 19 - 21, when melatonin levels are high. These time points also correspond to the high and low points for expression of the circadian gene Period1, respectively. The amount of snack food (chow, Cheetos®, Froot Loops® and Oreos®) consumed was of similar magnitude at both times, however only C3H/HeN mice conditioned to snack food at ZT 6 - 8 developed a place preference. C3H/HeN mice with a genetic deletion of either the MT 1 (MT 1 KO) or MT 2 (MT 2 KO) receptor tested at ZT 6 - 8 did not develop a place preference for snack food. Although the MT 2 KO mice showed a similar amount of snack food consumed when compared to wild-type mice, the MT 1 KO mice consumed significantly less than either genotype. We conclude that in our mouse model snack food-induced CPP is dependent on time of day and the presence of the MT 1 or MT 2 receptors, suggesting a role for melatonin and its receptors in snack food-induced reinforcement. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Use of a C1 Inhibitor Concentrate in Adults ≥65 Years of Age with Hereditary Angioedema

    DEFF Research Database (Denmark)

    Bygum, Anette; Martinez-Saguer, Inmaculada; Bas, Murat

    2016-01-01

    BACKGROUND: Treatment of hereditary angioedema (HAE) in 'older adults' (those aged ≥65 years) has not been well studied. The international Berinert Patient Registry collected data on the use of intravenous plasma-derived, pasteurized, nanofiltered C1-inhibitor concentrate (pnfC1-INH; Berinert......(®)/CSL Behring) in patients of any age, including many older adults. METHODS: This observational registry, conducted from 2010 to 2014 at 30 US and seven European sites, gathered prospective (post-enrollment) and retrospective (pre-enrollment) usage and adverse event (AE) data on subjects treated with pnfC1-INH....... RESULTS: The registry documented 1701 pnfC1-INH infusions in 27 older adults. A total of 1511 HAE attacks treated with pnfC1-INH administration were reported among 25 of the 27 (92.6 %) older adults. Among the older adults, mean (standard deviation [SD]) (8.8 [4.1] IU/kg) and median (6.4 IU/kg) pnfC1-INH...

  15. Modulation of MMP-2 and MMP-9 in Churg-Strauss syndrome respiratory mucosa: potential monitoring parameters.

    Science.gov (United States)

    Leone, A; Uzzo, M L; Gerbino, A; Tortorici, S; Tralongo, P; Cappello, F; Incandela, S; Spatola, G F; Jurjus, A R

    2014-01-01

    Churg-Strauss (CSS) syndrome is rare and of unknown etiology. It is associated with vasculitis, blood eosinophilia and granulomatosis, and affects multiple organs and systems at various stages of the disease. Specific diagnostic and monitoring tests are not yet available. This study aims to assess the changes in MMP-2 and MMP-9 along with the histopathological alterations in two cases of CSS, as possible potential diagnostic and monitoring criteria. Two adult male patients were diagnosed with CSS in the otorhinolaryngology clinic in the University of Palermo, based on multiple clinical and histopathologic criteria. Biopsies of respiratory mucosa were taken after the consent of the patients, processed for routine histopathology and immunohistochemistry as well as quantitative polymerase chain reaction (qPCR). Similar biopsies were also taken from a non- CSS patient. The Assessment of MMP-2 and MMP-9 was performed using both immunohistochemistry and qPCR techniques. Histopathological alterations in the respiratory mucosa were consistent with vasculitis and granulomatous tissue formation, in addition to inflammatory cell infiltration with abundance of eosinophils. Immunohistochemistry assay performed on the samples derived from the two CSS patients showed a relative and remarkable increase of both MMP-2 and MMP-9 compared to controls. Such an increase was consistent with the qPCR results which depicted a significant increase between 20 and 30% for both MMP-2 and MMP-9, respectively. Since the secretion of MMPs is an essential step in angiogenesis, could these enzymatic factors be used as parameters to diagnose or monitor the evolution of CSS? The small number of samples analyzed in this study does not allow us to suggest a general statement correlating the increase in expression of MMP-2 and MMP-9 to the appearance or evolution of vasculitis; it is only speculative.

  16. MT1 melatonin receptors and their role in the oncostatic action of melatonin

    Directory of Open Access Journals (Sweden)

    Karolina Danielczyk

    2009-09-01

    Full Text Available Melatonin, the main hormone produced by the pineal gland, strongly inhibits the growth of cancer cells [i]in vitro[/i] and [i]in vivo[/i]. Some publications indicate that the addition of melatonin to culture medium slows the proliferation of some cancer cell lines. It is also suggested that melatonin used as an adjuvant benefits the effectiveness and tolerance of chemotherapy. The mechanisms of this are not fully understood, but melatonin receptors might be one of the most important elements. Two distinct types of membrane-bound melatonin receptors have been identified in humans: MT1 (Mel1a and MT2 (Mel1b receptors. These subtypes are 60�0homologous at the amino-acid level. MT1 receptors are G-protein-coupled receptors. Through the α subunit of G protein, melatonin receptors stimulate an adenylate cyclase and decrease the level of cAMP. This has a significant influence on cell proliferation and has been confirmed in many tests on different cell lines, such as S-19, B-16 murine melanoma cells, and breast cancer cells. It seems that expression of the MT1 melatonin receptors benefits the efficacy of melatonin treatment. Melatonin and its receptors may provide a promising way to establish new alternative therapeutic approaches in human cancer prevention.

  17. Association between promoter -1607 polymorphism of MMP1 and Lumbar Disc Disease in Southern Chinese

    Directory of Open Access Journals (Sweden)

    Leong John CY

    2008-04-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are involved in the degradation of the extracellular matrix of the intervertebral disc. A SNP for guanine insertion/deletion (G/D, the -1607 promoter polymorphism, of the MMP1 gene was found significantly affecting promoter activity and corresponding transcription level. Hence it is a good candidate for genetic studies in DDD. Methods Southern Chinese volunteers between 18 and 55 years were recruited from the population. DDD in the lumbar spine was defined by MRI using Schneiderman's classification. Genomic DNA was isolated from the leukocytes and genotyping was performed using the Sequenom® platform. Association and Hardy-Weinberg equilibrium checking were assessed by Chi-square test and Mann-Whitney U test. Results Our results showed substantial evidence of association between -1607 promoter polymorphism of MMP1 and DDD in the Southern Chinese subjects. D allelic was significantly associated with DDD (p value = 0.027, odds ratio = 1.41 with 95% CI = 1.04–1.90 while Genotypic association on the presence of D allele was also significantly associated with DDD (p value = 0.046, odds ratio = 1.50 with 95% CI = 1.01–2.24. Further age stratification showed significant genotypic as well as allelic association in the group of over 40 years (genotypic: p value = 0.035, odds ratio = 1.617 with 95% CI = 1.033–2.529; allelic: p value = 0.033, odds ratio = 1.445 with 95% CI = 1.029–2.029. Disc bulge, annular tears and the Schmorl's nodes were not associated with the D allele. Conclusion We demonstrated that individuals with the presence of D allele for the -1607 promoter polymorphism of MMP1 are about 1.5 times more susceptible to develop DDD when compared with those having G allele only. Further association was identified in individuals over 40 years of age. Disc bulge, annular tear as well as Schmorl's nodes were not associated with this polymorphism.

  18. Increased expressions of MMP-2 and MMP-9 in lung following 12 Gy local irradiation

    International Nuclear Information System (INIS)

    Yang Kunyu; Liu Li; Zhang Tao; Wu Gang; Hu Yu; Ruebe, C.; Ruebe, C.

    2006-01-01

    Objective: To measure expressions of metalloproteinases and tissue inhibitors of metalloproteinases in the lung following thoracic irradiation of 12 Gy, and explore its possible role in the development of radiation-induced lung damage. Methods: C57BL/6J mice at age of 8 weeks were thoracically irradiated with 12 Gy X-rays (10 MV, 2.4 Gy/min, single exposure), and the control mice were sham-irradiated. The mice were sacrificed at 4 or 8 weeks after thoracic irradiation by decapitation. Lung tissues samples were collected. Expressions of MMP-2, MMP-9, MMP-3, MMP-13, TIMP-1, TIMP-2, and TIMP-3 in lung samples were measured. Results: There was no significant difference in expressions of MMP-3, MMP-13, TIMP-1 TIMP-2, and TIMP-3 in the lung between the two groups at 4 and 8 weeks after thoracic irradiation (or sham-irradiation). However, the expressions of MMP-2 were enhanced by 1.7 and 1.9 folds, and MMP-9 by 2.7 and 2.6 folds at 4 and 8 weeks after thoracic irradiation, respectively. Conclusion: Enhanced expressions of MMP-2 and MMP-9 in the lung were involved in the development of acute lung injury after thoracic irradiation, leading to a disruption of the structure and fibrosis. (authors)

  19. Inactivation of Mycobacterium tuberculosis l,d-Transpeptidase LdtMt1 by Carbapenems and Cephalosporins

    Science.gov (United States)

    Dubée, Vincent; Triboulet, Sébastien; Mainardi, Jean-Luc; Ethève-Quelquejeu, Mélanie; Gutmann, Laurent; Marie, Arul; Dubost, Lionel

    2012-01-01

    The structure of Mycobacterium tuberculosis peptidoglycan is atypical since it contains a majority of 3→3 cross-links synthesized by l,d-transpeptidases that replace 4→3 cross-links formed by the d,d-transpeptidase activity of classical penicillin-binding proteins. Carbapenems inactivate these l,d-transpeptidases, and meropenem combined with clavulanic acid is bactericidal against extensively drug-resistant M. tuberculosis. Here, we used mass spectrometry and stopped-flow fluorimetry to investigate the kinetics and mechanisms of inactivation of the prototypic M. tuberculosis l,d-transpeptidase LdtMt1 by carbapenems (meropenem, doripenem, imipenem, and ertapenem) and cephalosporins (cefotaxime, cephalothin, and ceftriaxone). Inactivation proceeded through noncovalent drug binding and acylation of the catalytic Cys of LdtMt1, which was eventually followed by hydrolysis of the resulting acylenzyme. Meropenem rapidly inhibited LdtMt1, with a binding rate constant of 0.08 μM−1 min−1. The enzyme was unable to recover from this initial binding step since the dissociation rate constant of the noncovalent complex was low (carbapenem side chains affected both the binding and acylation steps, ertapenem being the most efficient LdtMt1 inactivator. Cephalosporins also formed covalent adducts with LdtMt1, although the acylation reaction was 7- to 1,000-fold slower and led to elimination of one of the drug side chains. Comparison of kinetic constants for drug binding, acylation, and acylenzyme hydrolysis indicates that carbapenems and cephems can both be tailored to optimize peptidoglycan synthesis inhibition in M. tuberculosis. PMID:22615283

  20. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng/ml) in the a......Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (pendogenous MMP-1...

  1. Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo

    International Nuclear Information System (INIS)

    Kopka, Klaus; Breyholz, Hans-Joerg; Wagner, Stefan; Law, Marilyn P.; Riemann, Burkhard; Schroeer, Sandra; Trub, Monika; Guilbert, Benedicte; Levkau, Bodo; Schober, Otmar; Schaefers, Michael

    2004-01-01

    Non-invasive measurement of matrix metalloproteinase (MMP) activity in vivo is a clinical challenge in many disease processes such as inflammation, tumor metastasis and atherosclerosis. Therefore, radioiodinated analogues of the non-peptidyl broad-spectrum MMP inhibitor (MMPI) CGS 27023A 1a were synthesized for non-invasive detection of MMP activity in vivo using single photon emission computed tomography (SPECT). The compounds Br-CGS 27023A 1b and HO-CGS 27023A 1d were synthesized from the amino acid D-valine and used as precursors for radioiodinated derivatives of CGS 27023A and their non-radioactive references I-CGS 27023A 1c and HO-I-CGS 27023A 1e. Radioiodination of the precursors with [ 123 I]NaI or [ 125 I]NaI produced the no-carrier-added MMP inhibitors [ 123 I]I-CGS 27023A 1f, [ 125 I]I-CGS 27023A 1g, HO-[ 123 I]I-CGS27023A 1h, and HO-[ 125 I]I-CGS 27023A 1i. In vitro studies showed that the non-radioactive analogues of the MMP inhibitors exhibited affinities against gelatinase A (MMP-2) and gelatinase B (MMP-9) in the nanomolar range, comparable to the parent compound CGS 27023A. In vivo biodistribution using HO-[ 125 I]I-CGS 27023A 1i in CL57 Bl6 mice showed rapid blood and plasma clearance and low retention in normal tissues. The preliminary biological evaluation warrant further studies of these radioiodinated MMP inhibitors as potential new radiotracers for imaging MMP activity in vivo

  2. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Science.gov (United States)

    Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S

    2013-01-01

    Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  3. Changes of MMP-9 and IL-1β in serum and cerebrospinal-fluid in children with central nervous system infection

    Institute of Scientific and Technical Information of China (English)

    Shu-Qin Jiao

    2016-01-01

    Objective:To provide a new basis for the detection of the central nervous system infection cases, we explored and compared the role of cerebrospinal-fluid (CSF), matrix metalloproteinases 9 (MMP-9) and interleukin 1 (the level of IL -1β) in the central nervous system (CNS).Methods:Sixty cases of children acute central nervous system infection were selected, including 30 cases of viral encephalitis children (VE) and 30 cases of purulent meningitis children (PM). Forty cases of non-central nervous system infection children were control group. The serum albumin (SA1b) of each group was detected by full-automatic analysis instrument, and the CSF albumin (CA1b) was detected by immunoephelometry and the albumin index (AQ) was accounted. ELISE was used to detect the levels of MMP-9 and IL-1β in serum and cerebrospinal-fluid.Results:The level of MMP-9 in the serum of groups of VE, PM and control were (267.84 ± 91.88) μg/L, (488.98 ± 159.07) μg/L and (133.04 ± 31.68) μg/L, while in the CSF were (37.18 ± 17.78) μg/L, (117.9 ± 42.87) μg/L and (10.36 ± 5.43) μg/L; The level of IL-1β in serum of groups of PM, VE and control were (19.69 ± 11.12) ng/L, (24.37 ± 4.13) ng/L and (15.01 ± 3.89) ng/L, while in the CSF were (66.94 ± 10.65) ng/L, (106.27 ± 12.79) ng/L and (49.98 ± 12.59) ng/L; The level of CAlb were (0.53 ± 0.15) g/L, (1.05 ± 0.27) g/L and (0.17 ± 0.07) g/L and AQ were (13.75 ± 3.44), (26.99 ± 7.28) and (4.63 ± 2.04). The PM, VE were respectively compared with the control, the levels of IL-1β and MMP-9 in serum and CSF all increased, with statistically significant difference.The VE, compared to the PM, the level of IL-1β in serum and CSF all decreased, with statistically significant difference; The level of MMP-9 in serum and CSF all decreased, with statistically significant difference. The level of CA1b and AQ in the VE and PM all increased, with a statistically significant difference. The level of MMP-9 and IL-1β in serum and CSF of the

  4. The effect of adjunctive chlorhexidine mouthrinse on GCF MMP-8 and TIMP-1 levels in gingivitis: a randomized placebo-controlled study

    Science.gov (United States)

    2014-01-01

    Background The aim of the present study was to evaluate the effect of adjunctive chlorhexidine (CHX) mouthrinse on gingival crevicular fluid (GCF) MMP-8 and TIMP-1 levels in plaque-associated gingivitis. Methods A total of 50 gingivitis patients were included in the present study. In addition to daily plaque control, CHX group rinsed with CHX, while placebo group rinsed with placebo mouthrinse for 4 weeks. GCF samples were collected, and clinical parameters including plaque index, papillary bleeding index, calculus index and pocket depth were recorded at baseline and 4 weeks. GCF MMP-8 and TIMP-1 levels were determined by immunofluorometric assay (IFMA) and enzyme-linked immunosorbent assay (ELISA), respectively. Results In both groups, GCF MMP-8 levels of anterior and posterior sites at four weeks were not different from baseline (p > 0.05). There were no significant differences in GCF MMP-8 levels between the study groups at four weeks (p > 0.05). GCF TIMP-1 levels of anterior and posterior sites at four weeks were higher compared to baseline in both groups (p  0.05). Conclusions CHX usage had no significant effects on the GCF MMP-8 and TIMP-1 levels in plaque-associate gingivitis. However, daily plaque control resulted in the increase of GCF TIMP-1 levels regardless of CHX usage. PMID:24886536

  5. Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kopka, Klaus E-mail: kopka@uni-muenster.de; Breyholz, Hans-Joerg; Wagner, Stefan; Law, Marilyn P.; Riemann, Burkhard; Schroeer, Sandra; Trub, Monika; Guilbert, Benedicte; Levkau, Bodo; Schober, Otmar; Schaefers, Michael

    2004-02-01

    Non-invasive measurement of matrix metalloproteinase (MMP) activity in vivo is a clinical challenge in many disease processes such as inflammation, tumor metastasis and atherosclerosis. Therefore, radioiodinated analogues of the non-peptidyl broad-spectrum MMP inhibitor (MMPI) CGS 27023A 1a were synthesized for non-invasive detection of MMP activity in vivo using single photon emission computed tomography (SPECT). The compounds Br-CGS 27023A 1b and HO-CGS 27023A 1d were synthesized from the amino acid D-valine and used as precursors for radioiodinated derivatives of CGS 27023A and their non-radioactive references I-CGS 27023A 1c and HO-I-CGS 27023A 1e. Radioiodination of the precursors with [{sup 123}I]NaI or [{sup 125}I]NaI produced the no-carrier-added MMP inhibitors [{sup 123}I]I-CGS 27023A 1f, [{sup 125}I]I-CGS 27023A 1g, HO-[{sup 123}I]I-CGS27023A 1h, and HO-[{sup 125}I]I-CGS 27023A 1i. In vitro studies showed that the non-radioactive analogues of the MMP inhibitors exhibited affinities against gelatinase A (MMP-2) and gelatinase B (MMP-9) in the nanomolar range, comparable to the parent compound CGS 27023A. In vivo biodistribution using HO-[{sup 125}I]I-CGS 27023A 1i in CL57 Bl6 mice showed rapid blood and plasma clearance and low retention in normal tissues. The preliminary biological evaluation warrant further studies of these radioiodinated MMP inhibitors as potential new radiotracers for imaging MMP activity in vivo.

  6. In vitro progesterone modulation on bacterial endotoxin-induced production of IL-1β, TNFα, IL-6, IL-8, IL-10, MIP-1α, and MMP-9 in pre-labor human term placenta.

    Science.gov (United States)

    Garcia-Ruíz, G; Flores-Espinosa, P; Preciado-Martínez, E; Bermejo-Martínez, L; Espejel-Nuñez, A; Estrada-Gutierrez, G; Maida-Claros, R; Flores-Pliego, A; Zaga-Clavellina, Veronica

    2015-10-07

    During human pregnancy, infection/inflammation represents an important factor that increases the risk of developing preterm labor. The purpose of this study was to determine if pre-treatment with progesterone has an immunomodulatory effect on human placenta production of endotoxin-induced inflammation and degradation of extracellular matrix markers. Placentas were obtained under sterile conditions from pregnancies delivered at term before the onset of labor by cesarean section. Explants from central cotyledons of 10 human placentas were pre-treated with different concentrations of progesterone (0.01, 01, 1.0 μM) and then stimulated with 1000 ng/mL of LPS of Escherichia coli. Cytokines TNFα, IL-1β, IL-6, IL-8, MIP-1α, IL-10 concentrations in the culture medium were then measured by specific ELISA. Secretion profile of MMP-9 was evaluated by ELISA and zymogram. Statistical differences were determined by one-way ANOVA followed by the appropriate ad hoc test; P progesterone significantly blunted (73, 56, 56, 75, 25, 48 %) the secretion of TNF-α, IL-1β, IL-6, IL-8, MIP-1α, IL-10, respectively. The MMP-9 induced by LPS treatment was inhibited only with the highest concentration of progesterone. Mifepristone (RU486) blocked the immunosuppressive effect of progesterone. The present results support the concept that progesterone could be part of the compensatory mechanism that limits the inflammation-induced cytotoxic effects associated with an infection process during gestation.

  7. BubR1 Acts as a Promoter in Cellular Motility of Human Oral Squamous Cancer Cells through Regulating MMP-2 and MMP-9

    Directory of Open Access Journals (Sweden)

    Chou-Kit Chou

    2015-07-01

    Full Text Available BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC. However, the effect of BubR1 on metastasis of OSCC remains unclear. This study aimed to unravel the role of BubR1 in the progression of OSCC and confirm the expression of BubR1 in a panel of malignant OSCC cell lines with different invasive abilities. The results of quantitative real-time PCR showed that the mRNA level of BubR1 was markedly increased in four OSCC cell lines, Ca9-22, HSC3, SCC9 and Cal-27 cells, compared to two normal cells, normal human oral keratinocytes (HOK and human gingival fibroblasts (HGF. Moreover, the expression of BubR1 in these four OSCC cell lines was positively correlated with their motility. Immunofluorescence revealed that BubR1 was mostly localized in the cytosol of human gingival carcinoma Ca9-22 cells. BubR1 knockdown significantly decreased cellular invasion but slightly affect cellular proliferation on both Ca9-22 and Cal-27 cells. Consistently, the activities of metastasis-associated metalloproteinases MMP-2 and MMP-9 were attenuated in BubR1 knockdown Ca9-22 cells, suggesting the role of BubR1 in promotion of OSCC migration. Our present study defines an alternative pathway in promoting metastasis of OSCC cells, and the expression of BubR1 could be a prognostic index in OSCC patients.

  8. Rac1/β-Catenin Signalling Pathway Contributes to Trophoblast Cell Invasion by Targeting Snail and MMP9

    Directory of Open Access Journals (Sweden)

    Minghua Fan

    2016-03-01

    Full Text Available Background/Aims: Preeclampsia is an idiopathic and serious complication during gestation in which placental trophoblast cells differentiate into several functional subtypes, including highly invasive extravillous trophoblasts (EVTs. Although the cause and pathogenesis of preeclampsia have remained unclear, numerous studies have suggested that the inadequacy of EVT invasion leads to imperfect uterine spiral artery remodelling, which plays a crucial role in the development of preeclampsia. Rac1, or Ras-related C3 botulinum toxin substrate 1, was found to be a key regulator of the migration, invasion uand apoptosis of various tumour cells. Because EVTs share similar invasive and migratory biological behaviours with malignant cells, this study aimed to determine whether the Rac1 signalling pathway affects trophoblast invasion and is thus involved in the pathogenesis of preeclampsia. Methods: We measured the activity of Rac1 and its downstream targets, β-catenin, Snail and MMP9 in placental tissues from patients experiencing a normal pregnancy and those with preeclampsia. Furthermore, we treated HTR-8/SVneo cells with a shRNA Rac1 vector and the β-catenin inhibitor IWP-2 and explored Rac1 signalling pathway activation as well as the effects of Snail and β-catenin on trophoblast invasion. Results: In placental samples from patients experiencing a normal pregnancy and those with preeclampsia, active Rac1 levels and MMP9 protein and mRNA levels were significantly decreased in term pregnancy samples compared to early pregnancy samples. Lower levels were found in preeclampsia samples than in normal term pregnancy samples, and these levels significantly declined in severe preeclampsia samples compared with mild preeclampsia samples. Further analyses demonstrated that both Rac1 shRNA and the β-catenin inhibitor significantly suppressed MMP9 and Snail activation in trophoblasts, thus impairing trophoblast invasion. Notably, silencing Rac1 down

  9. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.

    Science.gov (United States)

    Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G

    2016-10-14

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  10. Effects of Mutations on Structure–Function Relationships of Matrix Metalloproteinase-1

    Directory of Open Access Journals (Sweden)

    Warispreet Singh

    2016-10-01

    Full Text Available Matrix metalloproteinase-1 (MMP-1 is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX domain have been shown to modulate activity of the MMP-1 catalytic (CAT domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP. The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  11. PNF 2.0? Initial evidence that gamification can increase the efficacy of brief, web-based personalized normative feedback alcohol interventions.

    Science.gov (United States)

    Boyle, Sarah C; Earle, Andrew M; LaBrie, Joseph W; Smith, Daniel J

    2017-04-01

    Gamified interventions exploit the motivational characteristics of a game in order to provide prevention information and promote behavior change. Despite the modest effect sizes observed in increasingly popular web-based personalized normative feedback (PNF) alcohol interventions for college students, previous research has yet to consider how gamification might be used to enhance efficacy. This study examines whether a novel, gamified PNF intervention format, which includes a point-based reward system, the element of chance, and personal icons to visually represent users, is more effective in reducing short-term alcohol use than the standard web-based style of PNF currently used on college campuses. Two-hundred and thirty-seven college students were randomly assigned to receive either a standard brief, web-based PNF alcohol intervention or the same alcohol intervention components delivered within a Facebook-connected social game called CampusGANDR (Gamified Alcohol Norm Discovery and Readjustment). In both study conditions participants answered identical questions about their perceptions of peer drinking norms and own drinking and then received the same PNF slides. Two weeks following PNF delivery, participants again reported their perceptions of peers' alcohol use and own drinking. Students in the CampusGANDR condition reported significantly reduced peer drinking norms and alcohol use at the two-week follow-up relative to students who received identical PNF delivered by standard online survey. Further, a mediation model demonstrated that this effect was driven by larger reductions in perceived drinking norms among participants assigned to receive CampusGANDR, relative to control. As web-based PNF is becoming an increasingly universal prevention strategy, findings from this study suggest gamification may represent one method by which intervention efficacy could be substantially improved. The potential methodological and economic benefits associated with gamified

  12. Optimization of Beam Transmission of PAL-PNF Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kim, S. K.; Kim, E. A. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    The PNF (Pohang Neutron Facility) electron Linac is providing converted neutrons and photons from electron beams to users for nuclear physics experiments and high energy gamma-ray exposures. This linac is capable of producing 100 MeV electron beams with a beam current of pulsed 100 mA. The pulse length is 2 {mu}s and the pulse repetition rate is typically 30 Hz. This linac consists of two SLAC-type S-band accelerating columns and the thermionic RF gun. They are powered by one klystron and the matching pulse modulator. The electron beams emitted from the RF gun are bunched as they pass through the alpha magnet and are injected into the accelerating column thereafter. In this paper, we discuss procedures and results of the beam transmission optimization with technical details of the accelerator system. We also briefly discuss the future upgrade plan to obtain short-pulse or electron beams for neutron TOF experiments by adopting a triode type thermionic DC electron gun

  13. The Involvement of Mutual Inhibition of ERK and mTOR in PLCγ1-Mediated MMP-13 Expression in Human Osteoarthritis Chondrocytes

    Directory of Open Access Journals (Sweden)

    Zejun Liu

    2015-08-01

    Full Text Available The issue of whether ERK activation determines matrix synthesis or degradation in osteoarthritis (OA pathogenesis currently remains controversial. Our previous study shows that PLCγ1 and mTOR are involved in the matrix metabolism of OA cartilage. Investigating the interplays of PLCγ1, mTOR and ERK in matrix degradation of OA will facilitate future attempts to manipulate ERK in OA prevention and therapy. Here, cultured human normal chondrocytes and OA chondrocytes were treated with different inhibitors or transfected with expression vectors, respectively. The levels of ERK, p-ERK, PLCγ1, p-PLCγ1, mTOR, p-mTOR and MMP-13 were then evaluated by Western blotting analysis. The results manifested that the expression level of ERK in human OA chondrocytes was lower than that in human normal articular chondrocytes, and the up-regulation of ERK could promote matrix synthesis, including the decrease in MMP-13 level and the increase in Aggrecan level in human OA chondrocytes. Furthermore, the PLCγ1/ERK axis and a mutual inhibition of mTOR and ERK were observed in human OA chondrocytes. Interestingly, activated ERK had no inhibitory effect on MMP-13 expression in PLCγ1-transformed OA chondrocytes. Combined with our previous study, the non-effective state of ERK activation by PLCγ1 on MMP-13 may be partly attributed to the inhibition of the PLCγ1/mTOR axis on the PLCγ1/ERK axis. Therefore, the study indicates that the mutual inhibition of ERK and mTOR is involved in PLCγ1-mediated MMP-13 expression in human OA chondrocytes, with important implication for the understanding of OA pathogenesis as well as for its prevention and therapy.

  14. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Directory of Open Access Journals (Sweden)

    Jyotica Batra

    Full Text Available Matrix metalloproteinases (MMPs play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  15. Transcriptional Inhibition of Matrix Metal loproteinase 9 (MMP-9 Activity by a c-fos/Estrogen Receptor Fusion Protein is Mediated by the Proximal AP-1 Site of the MMP-9 Promoter and Correlates with Reduced Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    1999-10-01

    Full Text Available Tumor cell invasion of basement membranes is one of the hallmarks of malignant transformation. Tumor cells secrete proteolytic enzymes known as matrix metalloproteinases (MMPs which degrade extracellular matrix molecules. Increased expression of MMP-9 has been associated with acquisition of invasive phenotype in many tumors. However, multiple mechanisms for regulation of MMP-9 gene expression by tumor cell lines have been proposed. A number of transcription factor binding sites have been characterized in the upstream regulatory region of the MMP-9 gene, including those for AP-1. To determine how a specific AP-1 family member, c-fos, regulates MMP-9 promoter activity through these sites, we used an expression vector containing the c-fos coding region fused to the estrogen receptor (ER ligand binding domain. This construct is activated upon binding estradiol. Stable expression of this construct in ER negative squamous cell carcinoma (SCC lines produced an estradiol dependent decrease in the number of cells that migrated through a reconstituted basement membrane. This decreased invasiveness was accompanied by estradiol dependent downregulation of MMP-9 activity as determined by gelatin zymography. Estradiol also produced transcriptional downregulation of an MMP-9 promoter construct in cells transiently transfected with the c-fosER expression vector. This downregulation was mediated by the AP-1 site at —79 by in the MMP-9 promoter. We concluded that the proximal AP-1 site mediated the transcriptional downregulation of the MMP-9 promoter by a conditionally activated c-fos fusion protein.

  16. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and β1 integrin expression in vitro

    International Nuclear Information System (INIS)

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2 -/- myotube formation. When differentiated in horse serum-containing medium, TIMP-2 -/- myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2 -/- myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with β1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2 -/- myotube size and induces increased MMP-9 activation and decreased β1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on β1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and β1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo

  17. Periodic disruptions in the MT-1 tokamak

    International Nuclear Information System (INIS)

    Zoletnik, S.

    1988-11-01

    Disruptive instabilities are common phenomena in toroidal devices, especially in tokamaks. Three types can be distinguished: internal, minor and major disruptions. Periodic minor disruptions in the MT-1 tokamak were measured systematically with values of the limiter safety factor between 4 and 10. The density limit as a function of plasma current and horizontal displacement was investigated. Precursor oscillations always appear before the instability with increasing amplitude but can be observed at the density limit with quasi-stationary amplitude. Phase correlation between precursor oscillations were measured with Mirnov coils and x-ray detectors, and they show good agreement with a simple magnetic island model. (R.P.) 11 refs.; 6 figs

  18. Germacrane sesquiterpenes isolated from the rhizome of Curcuma xanthorrhiza Roxb. inhibit UVB-induced upregulation of MMP-1, -2, and -3 expression in human keratinocytes.

    Science.gov (United States)

    Park, Ji-Hae; Mohamed, Mohamed Antar Aziz; Jung, Ye-Jin; Shrestha, Sabina; Lee, Tae Hoon; Lee, Chang-Ho; Han, Daeseok; Kim, Jiyoung; Baek, Nam-In

    2015-10-01

    Four sesquiterpenes were isolated from the rhizome of Curcuma xanthorrhiza Roxb.: furanodiene (1), germacrone (2), furanodienone (3), and 13-hydroxygermacrone (4). Importantly, this was the first time compounds 1 and 4 were isolated from this plant. The chemical structures of these compounds were determined using 1D- and 2D-nuclear magnetic resonance, infrared spectroscopy, and electron ionization mass spectrometry analyses. Among the isolated compounds, compounds 2 and 4 inhibited UVB-induced upregulation of the mRNA and protein expression levels of MMP-1, MMP-2, and MMP-3 in human keratinocytes (HaCaT). Moreover, this upregulation occurred in a dose-dependent manner over the range of 1-10 μM for each compound.

  19. Sella turcica measurements on lateral cephalograms of patients with neurofibromatosis type 1

    Directory of Open Access Journals (Sweden)

    Friedrich, Reinhard E.

    2017-03-01

    Full Text Available The aim of this study was to measure line segments and areas of sella turcica on lateral cephalograms with respect to the clinical diagnosis of facial phenotype of patients with neurofibromatosis type 1 (NF1. Special attention was given to correlate the measured values with certain tumour types that are typical for this disease.Material and methods: Lateral cephalograms of 194 individuals were investigated. Patients with NF1 were further divided according to the detection and topography of facial plexiform neurofibromas (PNF taking into account the distribution pattern of the trigeminal nerve. All patients with PNF showed unilateral tumour localisation. Patients without any facial PNF constituted a separate group. Healthy volunteers with ideal occlusion and no history of any intervention in the maxillofacial region served as a control group. The following items were determined on the radiographs: sella entrance, sella width, sella depths, sella diagonal, and sella area.Results: Patients with PNF of the first and second trigeminal nerve branch or affected in all branches showed highly statistically significant enlarged sella tucica measurement values. On the other hand, patients with PNF restricted to one branch only or simultaneously in the second and third branches showed measurement values that were not different to those obtained in NF1 patients devoid of facial PNF. The latter group also showed no difference of sella turcica parameters obtained in the control group.Conclusion: This study provides evidence for the association of a certain NF1 phenotype with distinct skeletal alterations of the skull base, shown here using the example of the representation of the sella turcica in the lateral radiograph. These findings are also relevant in the discussion of NF1 as a disease of bones and in the assessment of brain development in NF1. Both items are discussed in relationship to a facial plexiform neurofibroma. Furthermore, the knowledge of this

  20. A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.

    Science.gov (United States)

    Yu, Lifeng; Patibanda, Varun; Smith, Harley M S

    2009-02-01

    Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events.

  1. Regulation of MMP2 and MMP9 metalloproteinases by FSH and growth factors in bovine granulosa cells

    Directory of Open Access Journals (Sweden)

    Valerio M. Portela

    2009-01-01

    Full Text Available Matrix metalloproteinases (MMP are key enzymes involved in tissue remodeling. Within the ovary, they are believed to play a major role in ovulation, and have been linked to follicle atresia. To gain insight into the regulation of MMPs, we measured the effect of hormones and growth factors on MMP2 and MMP9 mRNA levels in non-luteinizing granulosa cells in serum-free culture. FSH and IGF1 both stimulated estradiol secretion and inhibited MMP2 and MMP9 mRNA abundance. In contrast, EGF and FGF2 both inhibited estradiol secretion but had no effect on MMP expression. At physiological doses, none of these hormones altered the proportion of dead cells. Although we cannot link MMP expression with apoptosis, the specific down regulation by the gonadotropic hormones FSH and IGF1 in vitro suggests that excess MMP2 and MMP9 expression is neither required nor desired for follicle development.

  2. The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.

    Directory of Open Access Journals (Sweden)

    Marian Uhe

    Full Text Available Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.

  3. Role of MMP-3 and MMP-9 and their haplotypes in risk of bladder cancer in North Indian cohort.

    Science.gov (United States)

    Srivastava, Priyanka; Mandhani, Anil; Kapoor, Rakesh; Mittal, Rama D

    2010-11-01

    Matrix metalloproteinases (MMPs) play critical roles in cancer development and progression. Nonsynonymous single nucleotide polymorphisms (SNPs) in functional domain of MMP-3 and MMP-9 contribute appreciably to cancer predisposition and aggression. To test this proposition we examined whether six SNPs of the MMP-3 and MMP-9 genes are associated with risk of bladder cancer (BC) in a North Indian population. Six SNPs of MMP-3 and MMP-9 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in a case-control study including 200 BC patients and 200 age/gender/ethnicity-matched controls. Increased risk for BC susceptibility was observed in MMP-3 (1171) 5A/5A [P = 0.022; odds ratio (OR), 3.46; 95% confidence interval (CI), 1.20-9.98], MMP-9 (Q279R) QQ (P = 0.048; OR, 1.92; 95%CI, 1.01-3.66), MMP-9 (P574R) PR (P BCG)-treated non-muscle-invasive BC (NMIBC) patients (log-rank P = 0.025). Our data suggested that MMP-3-1171 5A/5A and MMP-9 (Q279R) QQ, MMP-9 (P574R) PR, PR + RR, and R allele are associated with high risk of BC.

  4. MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase

    Directory of Open Access Journals (Sweden)

    Sara Vidoni

    2017-02-01

    Full Text Available The biogenesis of human cytochrome c oxidase (COX is an intricate process in which three mitochondrial DNA (mtDNA-encoded core subunits are assembled in a coordinated way with at least 11 nucleus-encoded subunits. Many chaperones shared between yeast and humans are involved in COX assembly. Here, we have used a MT-CO3 mutant cybrid cell line to define the composition of assembly intermediates and identify new human COX assembly factors. Quantitative mass spectrometry analysis led us to modify the assembly model from a sequential pathway to a module-based process. Each module contains one of the three core subunits, together with different ancillary components, including HIGD1A. By the same analysis, we identified the short isoform of the myofibrillogenesis regulator 1 (MR-1S as a new COX assembly factor, which works with the highly conserved PET100 and PET117 chaperones to assist COX biogenesis in higher eukaryotes.

  5. MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase.

    Science.gov (United States)

    Vidoni, Sara; Harbour, Michael E; Guerrero-Castillo, Sergio; Signes, Alba; Ding, Shujing; Fearnley, Ian M; Taylor, Robert W; Tiranti, Valeria; Arnold, Susanne; Fernandez-Vizarra, Erika; Zeviani, Massimo

    2017-02-14

    The biogenesis of human cytochrome c oxidase (COX) is an intricate process in which three mitochondrial DNA (mtDNA)-encoded core subunits are assembled in a coordinated way with at least 11 nucleus-encoded subunits. Many chaperones shared between yeast and humans are involved in COX assembly. Here, we have used a MT-CO3 mutant cybrid cell line to define the composition of assembly intermediates and identify new human COX assembly factors. Quantitative mass spectrometry analysis led us to modify the assembly model from a sequential pathway to a module-based process. Each module contains one of the three core subunits, together with different ancillary components, including HIGD1A. By the same analysis, we identified the short isoform of the myofibrillogenesis regulator 1 (MR-1S) as a new COX assembly factor, which works with the highly conserved PET100 and PET117 chaperones to assist COX biogenesis in higher eukaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis

    DEFF Research Database (Denmark)

    List, Karin; Haudenschild, Christian C; Szabo, Roman

    2002-01-01

    of Matriptase/MT-SP1 also seriously affected hair follicle development resulting in generalized follicular hypoplasia, absence of erupted vibrissae, lack of vibrissal hair canal formation, ingrown vibrissae, and wholesale abortion of vibrissal follicles. Furthermore, Matriptase/MT-SP1-deficiency resulted...... in dramatically increased thymocyte apoptosis, and depletion of thymocytes. This study demonstrates that Matriptase/MT-SP1 has pleiotropic functions in the development of the epidermis, hair follicles, and cellular immune system....

  7. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    Science.gov (United States)

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  8. Recombinant human melatonin receptor MT1 isolated in mixed detergents shows pharmacology similar to that in mammalian cell membranes.

    Directory of Open Access Journals (Sweden)

    Christel Logez

    Full Text Available The human melatonin MT1 receptor-belonging to the large family of G protein-coupled receptors (GPCRs-plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.

  9. Recombinant human melatonin receptor MT1 isolated in mixed detergents shows pharmacology similar to that in mammalian cell membranes.

    Science.gov (United States)

    Logez, Christel; Berger, Sylvie; Legros, Céline; Banères, Jean-Louis; Cohen, William; Delagrange, Philippe; Nosjean, Olivier; Boutin, Jean A; Ferry, Gilles; Simonin, Frédéric; Wagner, Renaud

    2014-01-01

    The human melatonin MT1 receptor-belonging to the large family of G protein-coupled receptors (GPCRs)-plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.

  10. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-01-01

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: ► Mmp1 is expressed in the adult midgut. ► Mmp1 is involved in the regulation of ISC proliferation activity. ► Mmp1-related ISC proliferation is associated with EGFR signaling. ► Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  11. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shin-Hae; Park, Joung-Sun [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Young-Shin [Research Institute of Genetic Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Chung, Hae-Young [Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  12. Expression of MMP-2 and TIMP-1 in cerebrospinal fluid and the correlation with dynamic changes of serum PCT in neonatal purulent meningitis

    Science.gov (United States)

    Chen, Huilan; Wu, Fei; Fu, Rong; Feng, Xiangchun

    2018-01-01

    Matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels in cerebrospinal fluid of pediatric patients with neonatal purulent meningitis were observed to analyze changes in serum procalcitonin (PCT) and the correlation among the three factors (MMP-2, TIMP-1 and PCT). Sixty pediatric patients with neonatal purulent meningitis from April 2015 to December 2016 were enrolled as the purulent meningitis group and 60 pediatric patients with viral encephalitis treated during the same period were enrolled as the viral encephalitis group. Additionally, 60 healthy newborns who underwent physical examinations in our hospital during the same period were enrolled as the control group. The levels of MMP-2 were 136.73±25.42 ng/ml in the purulent meningitis group, 45.32±6.57 ng/ml in the viral encephalitis group and 1.32±0.51 ng/ml in the control group and the differences between the three groups were statistically significant (F=15.052, pfluid were 374.55±36.04 ng/ml in the purulent meningitis group, 176.61±21.06 ng/ml in the viral encephalitis group and 7.72±2.44 ng/ml in the control group. The serum levels of PCT were 14.56±2.21 ng/ml in the purulent meningitis group, 9.04±1.17 ng/ml in the viral encephalitis group and 0.38±0.14 ng/ml in the control group. The level of MMP-2 in cerebrospinal fluid of pediatric patients in the purulent meningitis group was positively correlated with the level of serum PCT (r=0.582, pfluid of pediatric patients in the viral encephalitis group was positively correlated with the level of serum PCT (r=0.635, p<0.05). In conclusion, MMP-2 and TIMP-1 were positively correlated with the levels of serum PCT, suggesting that MMP-2, TIMP-1 and PCT were involved in the occurrence and development of neonatal purulent meningitis. PMID:29399119

  13. Surgery-induced hippocampal angiotensin II elevation causes blood-brain barrier disruption via MMP/TIMP in aged rats

    Directory of Open Access Journals (Sweden)

    Zhengqian eLi

    2016-04-01

    Full Text Available Reversible BBB disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD. Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2 and -9 (MMP-9, as well as three of their endogenous tissue inhibitors (TIMP-1, -2, -3, and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II and Ang II receptor type 1 (AT1 after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1, as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor.

  14. Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    Science.gov (United States)

    Collier, Ivan E.; Legant, Wesley; Marmer, Barry; Lubman, Olga; Saffarian, Saveez; Wakatsuki, Tetsuro; Elson, Elliot; Goldberg, Gregory I.

    2011-01-01

    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions. PMID:21912660

  15. Diffusion of MMPs on the surface of collagen fibrils: the mobile cell surface-collagen substratum interface.

    Directory of Open Access Journals (Sweden)

    Ivan E Collier

    Full Text Available Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 can initiate (MT1-MMP and complete (MMP-2 degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 represents a Mobile Cell Surface-Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions.

  16. Suppressed invasive and migratory behaviors of SW1353 chondrosarcoma cells through the regulation of Src, Rac1 GTPase, and MMP13.

    Science.gov (United States)

    Xu, Wenxiao; Wan, Qiaoqiao; Na, Sungsoo; Yokota, Hiroki; Yan, Jing-Long; Hamamura, Kazunori

    2015-12-01

    Chondrosarcoma is the second frequent type of primary bone cancer. In response to stress to the endoplasmic reticulum, activation of eIF2α-mediated signaling is reported to induce apoptosis. However, its effects on invasive and migratory behaviors of chondrosarcoma have not been understood. Focusing on potential roles of Src kinase, Rac1 GTPase, and MMP13, we investigated eIF2α-driven regulation of SW1353 chondrosarcoma cells. In particular, we employed two chemical agents (salubrinal, Sal; and guanabenz, Gu) that elevate the level of eIF2α phosphorylation. The result revealed that both Sal and Gu reduced invasion and motility of SW1353 chondrosarcoma cells in a dose dependent manner. Live imaging using a fluorescent resonance energy transfer (FRET) technique showed that Sal and Gu downregulated activities of Src kinase as well as Rac1 GTPase in an eIF2α dependent manner. RNA interference experiments supported an eIF2α-mediated regulatory network in the inhibitory role of Sal and Gu. Partial silencing of MMP13 also suppressed malignant phenotypes of SW1353 chondrosarcoma cells. However, MMP13 was not regulated via eIF2α since administration of Sal but not Gu reduced expression of MMP13. In summary, we demonstrate that eIF2α dependent and independent pathways regulate invasion and motility of SW1353 chondrosarcoma cells, and inactivation of Src, Rac1, and MMP13 by Sal could provide a potential adjuvant therapy for combating metastatic chondrosarcoma cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Heterogeneity of serum gelatinases MMP-2 and MMP-9 isoforms and charge variants

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riviello, Lea; Coniglio, Maria Gabriella; Vandooren, Jennifer; Liuzzi, Grazia Maria; Opdenakker, Ghislain; Riccio, Paolo

    2014-01-01

    The matrix metalloproteinases (MMPs) gelatinase A (MMP-2) and gelatinase B (MMP-9) are mediators of brain injury in multiple sclerosis (MS) and valuable biomarkers of disease activity. We applied bidimensional zymography (2-DZ) as an extension of classic monodimensional zymography (1-DZ) to analyse the complete pattern of isoforms and post-translational modifications of both MMP-9 and MMP-2 present in the sera of MS patients. The enzymes were separated on the basis of their isoelectric points (pI) and apparent molecular weights (Mw) and identified both by comparison with standard enzyme preparations and by Western blot analysis. Two MMP-2 isoforms, and at least three different isoforms and two different states of organization of MMP-9 (the multimeric MMP-9 and the N-GAL-MMP-9 complex) were observed. In addition, 2-DZ revealed for the first time that all MMP-9 and MMP-2 isoforms actually exist in the form of charge variants: four or five variants in the N-GAL complex, more charge variants in the case of MMP-9; and five to seven charge variants for MMP-2. Charge variants were also observed in recombinant enzymes and, after concentration, also in sera from healthy individuals. Sialylation (MMP-9) and phosphorylation (MMP-2) contributed to molecular heterogeneity. The detection of charge variants of MMP-9 and MMP-2 in MS serum samples illustrates the power of 2-DZ and demonstrates that in previous studies MMP mixtures, rather than single molecules, were analysed. These observations open perspectives for better diagnosis and prognosis of many diseases and need to be critically interpreted when applying other methods for MS and other diseases. PMID:24616914

  18. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    Science.gov (United States)

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  19. Nonoperative Management May Be a Viable Approach to Plexiform Neurofibroma of the Porta Hepatis in Patients with Neurofibromatosis-1

    Directory of Open Access Journals (Sweden)

    Natesh Yepuri

    2018-01-01

    Full Text Available Background. Plexiform neurofibroma (PNF in the porta hepatis (PH is an unusual manifestation of neurofibromatosis-1 (NF-1. Resection is often recommended given the risk of malignant transformation. We encountered a challenging case in clinical practice which prompted us to report our findings and perform a systematic review on the management of these tumors. Methods. We reported the case of a 31-year-old woman with NF-1 and PNF of the PH. PRISMA 2009 guidelines were followed for systematic review. Results. Our patient was found to have unresectable disease at exploration. After >5 years of follow-up, she continued to have stable disease on imaging. We identified 12 studies/case reports including 10 adult and 6 pediatric patients with PNF of PH. None of the 7 adult patients with NF-1 and PNF of PH underwent a successful tumor resection. All pediatric patients were managed with surveillance alone. All but one pediatric patient had NF-1. None of the reported cases of PNF of PH had malignant transformation. Conclusion. Our findings suggest that PNFs of PH in the setting of NF-1 are often unresectable and may have an indolent course. Surveillance alone may be a reasonable option in some patients; however, further studies are needed.

  20. Resection of small plexiform neurofibromas in neurofibromatosis type 1 children

    Directory of Open Access Journals (Sweden)

    Fünsterer Carsten

    2005-01-01

    Full Text Available Abstract Background Plexiform neurofibromas (PNF are benign tumors of the peripheral nerve which mostly develop in patients with neurofibromatosis type 1 (NF1. Surgical interventions are usually not applied to children with small tumors. These are rather restricted to debulking of larger tumors in adults that cause clinical complications or aesthetic disfigurement. In most cases, a total resection of PNF is not possible due to the network-like growth of the tumors. Patients and methods Early surgical intervention was carried out for 9 small PNFs in 7 NF1 children. Tumor resection was performed following the graphical delineation of the affected skin and according the MRI findings. Results Total resection was achieved for all 9 PNF without causing any neurological or organic deficit. Annual magnetic resonance tomography over a period of four years did not reveal any relapse of the tumors. Conclusions Early surgical intervention for small superficial PNFs in NF1 children have various advantages and may especially be considered a strategy to prevent progression.

  1. Use of matrix metalloproteinase-9 (MMP-9 and its tissue inhibitor (TIMP-1 in the pathomorphological diagnosis of carotid pathology: literature review and own observations

    Directory of Open Access Journals (Sweden)

    Yu. I. Kuzyk

    2016-04-01

    Full Text Available Matrix metalloproteinases (MMPs are the degradative enzymes of the extracellular matrix. Currently, the role of MMP-2 and MMP-9 in the progression of atherosclerosis (AS is proved. The question of possible involvement of MMP-9 into elastin degradation in fibromuscular dysplasia (FMD and pathological tortuosity (PT remains open and insufficiently explored. The aim of the study – analysis of the current literature on the role of degradative enzymes in the development of carotid pathology and study of the expression of type I, III, IV collagens, MMP-9 and TIPM-1 in the wall of the carotid arteries in FMD, PT and AS. Materials and methods included literature review and own research. Immunohistochemical study of type I, III and IV collagens, TIMP-1 and MMP-9 was carried out on surgical material of patients with main carotid diseases: three observations with AS, two – with FMD, two – with PT. The level of expression was assessed by semiquantitative method. Results. Own observations showed that in FMD types I and III collagen content in the media and in the adventitia remains unchanged. MMP-9 expression level reached the highest level of intensity in atherosclerotic plaques, particularly in macrophages, constituting the main part of the atheromatous mass. Moderate intensity of expression is noted in FMD and PT. In PT expression prevailed in the lower third of the media on the border with adventitia, including the adventitia, in FMD – mainly in the media. The level of TIMP-1 is weakly positive in PT and FMD, negative in AS. Conclusions. These results demonstrate the possibility of using MMP-9 and TIMP-1 as a morphological marker determining pathological processes in carotid pathology. Data of immunohistochemical study of type I, II, IV collagens indicate moderate expression of collagen type I in FMD and PT, severe expression of collagen III in FMD, moderate in PT. Type IV collagen is highly expressed in atherosclerotic plaques. For AS high

  2. MT71x: Multi-Temperature Library Based on ENDF/B-VII.1

    Energy Technology Data Exchange (ETDEWEB)

    Conlin, Jeremy Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lee, Mary Beth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-16

    The Nuclear Data Team has released a multitemperature transport library, MT71x, based upon ENDF/B-VII.1 with a few modifications as well as additional evaluations for a total of 427 isotope tables. The library was processed using NJOY2012.39 into 23 temperatures. MT71x consists of two sub-libraries; MT71xMG for multigroup energy representation data and MT71xCE for continuous energy representation data. These sub-libraries are suitable for deterministic transport and Monte Carlo transport applications, respectively. The SZAs used are the same for the two sub-libraries; that is, the same SZA can be used for both libraries. This makes comparisons between the two libraries and between deterministic and Monte Carlo codes straightforward. Both the multigroup energy and continuous energy libraries were verified and validated with our checking codes checkmg and checkace (multigroup and continuous energy, respectively) Then an expanded suite of tests was used for additional verification and, finally, verified using an extensive suite of critical benchmark models. We feel that this library is suitable for all calculations and is particularly useful for calculations sensitive to temperature effects.

  3. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells.

    Science.gov (United States)

    Weiler, Julian; Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2018-04-10

    In addition to physiological events such as fertilisation, placentation, osteoclastogenesis, or tissue regeneration/wound healing, cell fusion is involved in pathophysiological conditions such as cancer. Cell fusion, which applies to both the proteins and conditions that induce the merging of two or more cells, is not a fully understood process. Inflammation/pro-inflammatory cytokines might be a positive trigger for cell fusion. Using a Cre-LoxP-based cell fusion assay we demonstrated that the fusion between human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α). The gene expression profile of the cells in the presence of TNF-α and under normoxic and hypoxic conditions was analysed by cDNA microarray analysis. cDNA microarray data were verified by qPCR, PCR, Western blot and zymography. Quantification of cell fusion events was determined by flow cytometry. Proteins of interest were either blocked or knocked-down using a specific inhibitor, siRNA or a blocking antibody. The data showed an up-regulation of various genes, including claudin-1 (CLDN1), ICAM1, CCL2 and MMP9 in M13SV1-Cre and/or MDA-MB-435-pFDR1 cells. Inhibition of these proteins using a blocking ICAM1 antibody, CLDN1 siRNA or an MMP9 inhibitor showed that only the blockage of MMP9 was correlated with a decreased fusion rate of the cells. Likewise, the tetracycline-based antibiotic minocycline, which exhibits anti-inflammatory properties, was also effective in both inhibiting the TNF-α-induced MMP9 expression in M13SV1-Cre cells and blocking the TNF-α-induced fusion frequency of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. The matrix metalloproteinase-9 (MMP9) is most likely involved in the TNF-α-mediated fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Likewise, our data indicate that the tetracycline

  4. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Meena .V

    2016-10-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.

  5. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin β1-ERK1/2 and-MMP2 signaling

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2009-11-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 plays a causative role in tumor metastasis, but the underlying mechanisms are not well understood. In our previous study, we observed that PRL-3 could decrease tyrosine phosphorylation of integrin β1 and enhance activation of ERK1/2 in HEK293 cells. Herein we aim to explore the association of PRL-3 with integrin β1 signaling and its functional implications in motility, invasion, and metastasis of colon cancer cell LoVo. Methods Transwell chamber assay and nude mouse model were used to study motility and invasion, and metastsis of LoVo colon cancer cells, respectively. Knockdown of integrin β1 by siRNA or lentivirus were detected with Western blot and RT-PCR. The effect of PRL-3 on integrin β1, ERK1/2, and MMPs that mediate motility, invasion, and metastasis were measured by Western blot, immunofluorencence, co-immunoprecipitation and zymographic assays. Results We demonstrated that PRL-3 associated with integrin β1 and its expression was positively correlated with ERK1/2 phosphorylation in colon cancer tissues. Depletion of integrin β1 with siRNA, not only abrogated the activation of ERK1/2 stimulated by PRL-3, but also abolished PRL-3-induced motility and invasion of LoVo cells in vitro. Similarly, inhibition of ERK1/2 phosphorylation with U0126 or MMP activity with GM6001 also impaired PRL-3-induced invasion. In addition, PRL-3 promoted gelatinolytic activity of MMP2, and this stimulation correlated with decreased TIMP2 expression. Moreover, PRL-3-stimulated lung metastasis of LoVo cells in a nude mouse model was inhibited when integrin β1 expression was interfered with shRNA. Conclusion Our results suggest that PRL-3's roles in motility, invasion, and metastasis in colon cancer are critically controlled by the integrin β1-ERK1/2-MMP2 signaling.

  6. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vegard Tjomsland

    2016-07-01

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs. PSCs interact with cancer cells through various factors, including transforming growth factor (TGFβ and interleukin (IL-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer–based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.

  7. Molecular characterization and expression profile of the melatonin receptor MT1 in the ovary of Tianzhu white yak (Bos grunniens).

    Science.gov (United States)

    Hu, Jun Jie; Zhang, Xiao Yu; Zhang, Yong; Zhao, Xing Xu; Li, Fa Di; Tao, Jin Zhong

    2017-02-01

    Melatonin plays crucial roles in a wide range of ovarian physiological functions via the melatonin receptors (MRs). Structure and function of MRs have been well studied in sheep, cattle, and humans, but little information exists on the genetic characterization and function of these receptors in the ovary of the white yak. In the present study, the melatonin receptor MT1 was cloned by RT-PCR in the ovary of white yak; the MT1 cDNA fragment obtained (843bp) comprised an open reading frame (827bp) encoding a protein containing 275 residues, characterized by seven transmembrane regions and an NRY motif, two distinct amino acid replacements were found. The white yak MT1 had a 83.9-98.6% protein sequence identity with that of nine other mammals. Using RT-PCR, the expression levels of MT1, MT2, and LHR in the ovary of pregnant and non-pregnant white yaks were compared, revealing higher levels of all genes in pregnant yaks: 3.83-fold increase for MT1 (Pmelatonin and MT1 are associated with the corpus luteum function of pregnancy maintenance and follicular development during oocyte maturation in the white yak. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Clinical significance of determination the changes of serum CGRP, MMP-9 and TIMP-1 levels both before and after treatment in pediatric patients with bronchial asthma

    International Nuclear Information System (INIS)

    Chen Guijin

    2011-01-01

    Objective: To explore the changes of serum CGRP, MMP-9 and TIMP-1 levels after treatment in pediatric patients with bronchial asthma. Methods: Serum CGRP(with RIA), MMP-9, TIMP-1 (with ELISA) levels were measured in 32 patients with bronchial asthma both before and after treatment as well as in 35 controls. Results: Before treatment, the serum CGRP levels was significantly lower in patients than those in controls (P 0.05). Conclusion: Abnormal lower CGRP and high MMP-9, TIMP-1 levels might play an important role in the pathogenesis and development of bronchial asthma in children. (authors)

  9. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma.

    Science.gov (United States)

    Hirahata, Mio; Osaki, Mitsuhiko; Kanda, Yusuke; Sugimoto, Yui; Yoshioka, Yusuke; Kosaka, Nobuyoshi; Takeshita, Fumitaka; Fujiwara, Tomohiro; Kawai, Akira; Ito, Hisao; Ochiya, Takahiro; Okada, Futoshi

    2016-05-01

    Despite recent improvements in the therapy for osteosarcoma, 30-40% of osteosarcoma patients die of this disease, mainly due to its lung metastasis. We have previously reported that intravenous injection of miR-143 significantly suppresses lung metastasis of human osteosarcoma cells (143B) in a mouse model. In this study, we examined the biological role and mechanism of miR-143 in the metastasis of human osteosarcoma cells. We identified plasminogen activator inhibitor-1 (PAI-1) as a direct target gene of miR-143. To determine the role of PAI-1 in human osteosarcoma cells, siRNA was transfected into 143B cells for knockdown of PAI-1 expression. An in vitro study showed that downregulation of PAI-1 suppressed cell invasion activity, but not proliferation. Moreover, injection of PAI-1 siRNA into a primary lesion in the osteosarcoma mouse model inhibited lung metastasis compared to control siRNA-injected mice, without influencing the proliferative activity of the tumor cells. Subsequent examination using 143B cells revealed that knockdown of PAI-1 expression resulted in downregulation of the expression and secretion of matrix metalloproteinase-13 (MMP-13), which is also a target gene of miR-143 and a proteolytic enzyme that regulates tumor-induced osteolysis. Immunohistochemical analysis using clinical samples showed that higher miR-143 expressing cases showed poor expression of PAI-1 in the primary tumor cells. All such cases belonged to the lung metastasis-negative group. Moreover, the frequency of lung metastasis-positive cases was significantly higher in PAI-1 and MMP-13 double-positive cases than in PAI-1 or MMP-13 single-positive or double-negative cases (P target gene of miR-143, regulates invasion and lung metastasis via enhancement of MMP-13 expression and secretion in human osteosarcoma cells, suggesting that these molecules could be potential therapeutic target genes for preventing lung metastasis in osteosarcoma patients. © 2016 The Authors. Cancer

  10. Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and enphysema in rats

    International Nuclear Information System (INIS)

    Kirschvink, Nathalie; Vincke, Gregoire; Fievez, Laurence; Onclinx, Cecile; Wirth, Delphine; Belleflamme, Michele; Louis, Renaud; Cataldo, Didier; Peck, Michael J.; Gustin, Pascal

    2005-01-01

    This study describes induction of pulmonary inflammation, production of matrix metalloprotease of type 2 (MMP-2) and type 9 (MMP-9), and emphysema in cadmium (Cd)-exposed rats. Sprague-Dawley rats were randomly distributed into two groups: one placebo-exposed group undergoing saline (NaCl 0.9%) inhalation (n = 30) and one Cd-exposed group undergoing cadmium (CdCl 2 0.1%) inhalation (n = 30). The animals of the placebo- and Cd-exposed groups were divided in five subgroups (n = 6). Subgroups underwent either a single exposure of 1 h or repeated exposures three times weekly for 1 h during 3 weeks (3W), 5 weeks (5W), 5 weeks followed by 2 weeks without exposure (5W + 2) or 5 weeks followed by 4 weeks without exposure (5W + 4). Each animal underwent determination of enhanced pause (Penh) as index of airflow limitation prior to the first exposure as well as before sacrifice. The animals were sacrificed the day after their last exposure. The left lung was fixed for histomorphometric analysis (determination of median interwall distance (MIWD)), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. BALF was analyzed cytologically, and MMP-2 and MMP-9 levels were determined by gelatine zymography. Twelve rats previously instilled with pancreatic elastase were used as positive emphysema controls and underwent the same investigations. Cd-exposure induced a significant increase of BALF macrophages, neutrophils and MMP-9 up to 5W + 4, whereas MMP-2 gelatinolytic activity returned to baseline levels within 5W. MIWD was significantly increased in all repeatedly Cd-exposed groups and elastase-treated rats. Penh was increased in Cd-exposed rats after a single exposure and after 3W. MMP gelatinolytic activity was significantly correlated with macrophages, neutrophils and Penh. In repeatedly exposed rats, MIWD was positively and significantly correlated with MMP gelatinolytic activity, suggesting that increased MMP-2 and MMP-9 production favours the development

  11. Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Kim, Jeong-Mi; Noh, Eun-Mi; Song, Hyun-Kyung; Lee, Minok; Lee, Soo Ho; Park, Sueng Hyuk; Ahn, Chan-Keun; Lee, Guem-San; Byun, Eui-Baek; Jang, Beom-Su; Kwon, Kang-Beom; Lee, Young-Rae

    2017-09-01

    Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.

  12. Increase in IL-6, TNF-a, and MMP-9, but not sICAM-1, concentrations depends on exercise duration

    DEFF Research Database (Denmark)

    Reihmane, Dace; Jurka, Antra; Tretjakovs, Peteris

    2013-01-01

    ), tumour necrosis factor-α (TNF-α), soluble form of intercellular adhesion molecule-1 (sICAM-1), and matrix metalloproteinase-9 (MMP-9) was studied in 22 half-marathon (HM) and 18 marathon (M) male amateur runners who completed their exercise task in 1.8 ± 0.2 (mean ± standard deviation) and 3.6 ± 0.4 h...

  13. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in canc...

  14. Possible Mechanisms of Di(2-ethylhexyl Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mei-Fen Shih

    2015-12-01

    Full Text Available Proliferation and migration of vascular smooth muscle cells (VSMC are important in the development and/or progression of many cardiovascular diseases, including atherosclerosis. Evidence shows that matrix metalloproteinase (MMP-2 and MMP-9 are related to the pathogenesis of atherosclerosis. The expressions of MMP-2 and MMP-9 in atherosclerosis are regulated via various pathways, such as p38 mitogen activated protein kinase (MAPK, extracellular signal regulated kinase 1 and 2 (ERK1/2, Akt, and nuclear factor kappa (NF-κB. Di(2-ethylhexyl phthalate (DEHP has been shown to induce atherosclerosis by increasing tumor necrosis factor (TNF-α, interleukin (IL-6, and intercellular adhesion molecule (ICAM productions. However, whether DEHP poses any effects on MMP-2 or MMP-9 expression in VSMC has not yet been answered. In our studies, rat aorta VSMC was treated with DEHP (between 2 and 17.5 ppm and p38 MAPK, ERK1/2, Akt, NF-κB, and MMP-2 and MMP-9 proteins and activities were measured. Results showed that the presence of DEHP can induce higher MMP-2 and MMP-9 expression than the controls. Similar results on MMP-regulating proteins, i.e., p38 MAPK, ERK1/2, Akt, and NF-κB, were also observed. In summary, our current results have showed that DEHP can be a potent inducer of atherosclerosis by increasing MMP-2 and MMP-9 expression at least through the regulations of p38 MAPK, ERK1/2, Akt, and NF-κB.

  15. Overexpression of MMP-3 and uPA with Diminished PAI-1 Related to Metastasis in Ductal Breast Cancer Patients Attending a Public Hospital in Mexico City

    Directory of Open Access Journals (Sweden)

    Luis Miguel Barajas-Castañeda

    2016-01-01

    Full Text Available Extracellular matrix metalloproteases and the fibrinolytic system are important protease systems interacting with each other in charge of remodeling and recycling of tissues. Their role in tumor invasion and metastasis is often discussed. In this study several metalloproteases such as MMP-1, MMP-3, MMP-9, and TIMP-1 together with molecules from the fibrinolytic system like uPA, its receptor uPAR, and its inhibitor, PAI-1, were studied by immune-histochemistry to establish a comparison with and without metastasis. From the (118 primary tumors of Mexican patients with ductal breast cancer studied, 56% were grade II and 69% were size T2; the group with metastatic ganglia included 64 samples (54.3%. In patients with metastasis the estimated expression of MMP-3 and uPA (resp., 28% and 45% was higher than that from no metastatic tumors; it means there is higher expression of both markers in metastatic tumors (p<0.05. At the same time, metastatic tumors showed statistically significant lower signal of PAI-1 (24% than tumors without metastasis (p<0.05. We concluded that overexpression of MMP-3 and uPA, altogether with diminished expression of PAI-1 from metastatic tumors, might be a crucial step towards metastasis in ductal breast cancer. Nevertheless, additional studies in different populations are necessary to establish a pattern.

  16. An economical mtDNA SNP assay detecting different mitochondrial haplogroups in identical HVR 1 samples of Caucasian ancestry.

    Science.gov (United States)

    Köhnemann, Stephan; Hohoff, Carsten; Pfeiffer, Heidi

    2009-09-01

    We had sequenced 329 Caucasian samples in Hypervariable Region 1 (HVR 1) and found that they belong to eleven different mitochondrial DNA (mtDNA) haplotypes. The sample set was further analysed by an mtDNA assay examining 32 single nucleotide polymorphisms (SNPs) for haplogroup discrimination. In a validation study on 160 samples of different origin it was shown that these SNPs were able to discriminate between the evolved superhaplogroups worldwide (L, M and N) and between the nine most common Caucasian haplogroups (H, I, J, K, T, U, V, W and X). The 32 mtDNA SNPs comprised 42 different SNP haplotypes instead of only eleven haplotypes after HVR 1 sequencing. The assay provided stable results in a range of 5ng genomic DNA down to virtually no genomic DNA per reaction. It was possible to detect samples of African, Asian and Eurasian ancestry, respectively. The 32 mtDNA SNP assay is a helpful adjunct to further distinguish between identical HVR 1 sequences of Caucasian origin. Our results suggest that haplogroup prediction using HVR 1 sequencing provides instable results. The use of coding region SNPs for haplogroup assignment is more suited than using HVR 1 haplotypes.

  17. Poly(I:C) induces expressions of MMP-1, -2, and -3 through various signaling pathways including IRF3 in human skin fibroblasts.

    Science.gov (United States)

    Yao, Cheng; Lee, Dong Hun; Oh, Jang-Hee; Kim, Min-Kyoung; Kim, Kyu Han; Park, Chi-Hyun; Chung, Jin Ho

    2015-10-01

    Ultraviolet (UV) irradiation can result in premature skin aging (photoaging) which is characterized by decreased expression of collagen and increased expression of matrix metalloproteinases (MMPs). Double-stranded RNAs (dsRNAs) can be generated at various conditions including virally infected cells or UV-damaged skin cells. Recent studies have shown that a synthetic dsRNA, polyinosinic-polycytidylic acid (poly(I:C)), can reduce procollagen expression in human skin fibroblasts. However, little is known about the effect of poly(I:C) on the expression of MMPs in skin fibroblasts and its underlying mechanisms. We examined the effect of poly(I:C) on MMP-1, -2, and -3 expressions in human skin fibroblasts. Then, we further explored the underlying signaling pathways involved in the processes. Human skin fibroblasts were treated with poly(I:C) for the indicated times in the presence or the absence of various chemical inhibitors or small interfering RNAs (siRNAs) at the indicated concentrations. Protein and mRNA levels of various target molecules were examined by Western blotting and quantitative real-time PCR, respectively. Poly(I:C) induced MMP-1, -2, and -3 expressions, which were dependent on TLR3. Poly(I:C) also induced activations of the mitogen-activated protein kinases (MAPKs), the nuclear factor-kappaB (NF-κB) and the interferon regulatory factor 3 (IRF3) pathways. By using specific inhibitors, we found that poly(I:C)-induced expressions of MMP-1, -2, and -3 were differentially regulated by these signaling pathways. In particular, we found that the inhibition of IRF3 signaling pathways attenuated poly(I:C)-induced expressions of all the three MMPs. Our data show that the expressions of MMP-1, -2, and -3 are induced by poly(I:C) through various signaling pathways in human skin fibroblasts and suggest that TLR3 and/or IRF3 may be good targets for regulating the expressions of MMP-1, -2, and -3 induced by dsRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights

  18. The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1 and Mitochondrial Encoded (MT-CO1 Genes in Single Human Oocytes During Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Ghaffari Novin M.

    2015-06-01

    Full Text Available In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA, copied in oocytes, is essential for providing adenosine triphosphate (ATP during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1 and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1 and mitochondrial transcription factor A (TFAM in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR. There was no significant relationship between the relative expression levels in germinal vesicle (GV stage oocytes (p = 0.62. On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI and MII (p = 0.03 and p = 0.002. A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.

  19. Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    M Mumme

    2012-09-01

    Full Text Available Inflammatory cytokines present in the milieu of the fracture site are important modulators of bone healing. Here we investigated the effects of interleukin-1β (IL-1β on the main events of endochondral bone formation by human bone marrow mesenchymal stromal cells (BM-MSC, namely cell proliferation, differentiation and maturation/remodelling of the resulting hypertrophic cartilage. Low doses of IL-1β (50 pg/mL enhanced colony-forming units-fibroblastic (CFU-f and -osteoblastic (CFU-o number (up to 1.5-fold and size (1.2-fold in the absence of further supplements and glycosaminoglycan accumulation (1.4-fold upon BM-MSC chondrogenic induction. In osteogenically cultured BM-MSC, IL-1β enhanced calcium deposition (62.2-fold and BMP-2 mRNA expression by differential activation of NF-κB and ERK signalling. IL-1β-treatment of BM-MSC generated cartilage resulted in higher production of MMP-13 (14.0-fold in vitro, mirrored by an increased accumulation of the cryptic cleaved fragment of aggrecan, and more efficient cartilage remodelling/resorption after 5 weeks in vivo (i.e., more TRAP positive cells and bone marrow, less cartilaginous areas, resulting in the formation of mature bone and bone marrow after 12 weeks. In conclusion, IL-1β finely modulates early and late events of the endochondral bone formation by BM-MSC. Controlling the inflammatory environment could enhance the success of therapeutic approaches for the treatment of fractures by resident MSC and as well as improve the engineering of implantable tissues.

  20. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.

    Science.gov (United States)

    Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro

    2017-05-04

    Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib: A comparative study.

    Directory of Open Access Journals (Sweden)

    Jennifer Vandooren

    Full Text Available Gelatinase B or matrix metalloproteinase-9 (MMP-9 (EC 3.4.24.35 is increased in inflammatory processes and cancer, and is associated with disease progression. In part, this is due to MMP-9-mediated degradation of extracellular matrix, facilitating influx of leukocytes into inflamed tissues and invasion or metastasis of cancer cells. MMP-9 is produced as proMMP-9 and its propeptide is subsequently removed by other proteases to generate proteolytically active MMP-9. The significance of MMP-9 in pathologies triggered the development of specific inhibitors of this protease. However, clinical trials with synthetic inhibitors of MMPs in the fight against cancer were disappointing. Reports on active compounds which inhibit MMP-9 should be carefully examined in this regard. In a considerable set of recent publications, two antibiotics (minocycline and azythromycin and the proteasome inhibitor bortezomib, used in cancers, were reported to inhibit MMP-9 at different stages of its expression, activation or activity. The current study was undertaken to compare and to verify the impact of these compounds on MMP-9. With exception of minocycline at high concentrations (>100 μM, the compounds did not affect processing of proMMP-9 into MMP-9, nor did they affect direct MMP-9 gelatinolytic activity. In contrast, azithromycin specifically reduced MMP-9 mRNA and protein levels without affecting NF-κB in endotoxin-challenged monocytic THP-1 cells. Bortezomib, although being highly toxic, had no MMP-9-specific effects but significantly upregulated cyclooxygenase-2 (COX-2 activity and PGE2 levels. Overall, our study clarified that azithromycin decreased the levels of MMP-9 by reduction of gene and protein expression while minocycline inhibits proteolytic activity at high concentrations.

  2. In vitro effects of infrared A radiation on the synthesis of MMP-1, catalase, superoxide dismutase and GADD45 alpha protein.

    Science.gov (United States)

    Costa, Adilson; Eberlin, Samara; Clerici, Stefano P; Abdalla, Beatrice M Z

    2015-01-01

    Harmful influences in the process of photoaging and skin damage are associated with infrared A (IRA) radiation, such as, disturbance of dermal extracellular matrix by up regulation of matrix metalloproteinase-1 (MMP1). Furthermore, DNA damage, induction of cytotoxicity and oxidative stress by decreasing natural antioxidant ability has been reported after acute exposure to IRA. The present study provides additional evidence that IRA radiation response in human skin fibroblasts produces deleterious effects to the cell, such as accelerating aging and weakening of their antioxidant defense mechanism. Human skin fibroblasts were exposed to a non-cytotoxic dose of IRA radiation and cultured for different periods for further collection of cell-free supernatants and lysates, and quantification of MMP-1, catalase, superoxide dismutase, and GADD45a. Our results corroborate previous published data and strongly indicate a negative impact of IRA radiation on the skin physiological by mechanisms involving reduced endogenous antioxidant enzymatic defense, increased MMP-1 and decreased repair process of DNA by reducing GADD45a protein, in cultured human fibroblasts. From a clinical perspective, IRA radiation acts by mechanisms distinct from those observed in ultraviolet radiation indicating the need for developing and making available cosmetics for skin care with properties beyond protection exerted by traditional sunscreens.

  3. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9.

    Science.gov (United States)

    Ashok, Anushruti; Rai, Nagendra Kumar; Raza, Waseem; Pandey, Rukmani; Bandyopadhyay, Sanghamitra

    2016-11-01

    Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance

  4. Effect of LED irradiation on the expression of MMP-3 and MMP-13 in SW1353 cells in vitro

    Science.gov (United States)

    Zeng, Chang-chun; Guo, Zhou-yi; Zhang, Feng-xue; Deng, Wen-di; Liu, Song-hao

    2007-05-01

    Matrix Metalloproteinase (MMP) plays an active role in remodeling cartilage in osteoarthritic cartilage. To find an effective method of prevention of osteoclasia, this in vitro study focuses on the expression of MMP-3 and MMP-13 in the SW1353 cells by LED irradiation. The human chondrosarcoma cell line SW1353 were stimulated with the proinflammatory cytokine IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and were received the irradiation of LED (632nm, 4mW/cm2). The cell count was assessed over a 96-hour period by using Trypan blue dye exclusion assay, and the cell activity was evaluated with a Cell Counting Kit-8 Assays. The subsequent expression of MMP-3 and MMP-13 was quantified. Results of this experiment showed that the cultural cell activity was decreased, and the expression of MMP-3 and MMP-13 was increased by being stimulated with IL-1beta or TNF-alpha. After received LED irradiation, the death rate of cultural cell was increased and the expression of MMP-3 and MMP-13 was decreased significantly. The present study concluded that particular LED irradiation stimulates SW1353 cell proliferation activity and inhibit the MMP-3 and MMP-13 enzymatic activity. These findings might be clinically relevant, indicating that the low power laser irradiation treatment is likely to achieve the repair of articular cartilage in clinic.

  5. Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1

    Science.gov (United States)

    Ashley, Shanna L.; Pretto, Carla D.; Stier, Matthew T.; Kadiyala, Padma; Castro-Jorge, Luiza; Hsu, Tien-Huei; Doherty, Robert; Carnahan, Kelly E.; Castro, Maria G.; Lowenstein, Pedro R.

    2017-01-01

    ABSTRACT Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro. Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice. IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and

  6. Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Arnason, Knutur; Eysteinsson, Hjalmar; Hersir, Gylfi Pall [ISOR-Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik (Iceland)

    2010-03-15

    An extensive study of the resistivity structure of the Hengill area in SW Iceland was carried out by the combined use of TEM and MT soundings. Joint inversion of the collected data can correct for static shifts in the MT data, which can be severe due to large near-surface resistivity contrasts. Joint 1D inversion of 148 TEM/MT sounding pairs and a 3D inversion of a 60 sounding subset of the MT data were performed. The 3D inversion was based on full MT impedance tensors previously corrected for static shift. Both inversion approaches gave qualitatively similar results, and revealed a shallow resistivity layer reflecting conductive alteration minerals at temperatures of 100-240 C. They also delineated a deep conductor at 3-10 km depth. The reason for this deep-seated high conductivity is not fully understood. The distribution of the deep conductors correlates with a positive residual Bouguer gravity anomaly, and with transform tectonics inferred from seismicity. One model of the Hengill that is consistent with the well temperature data and the deep conductor that does not attenuate S-waves, is a group of hot, solidified, but still ductile magmatic intrusions that are closely associated with the heat source for the geothermal system. (author)

  7. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Pei, Jian; Park, In-Ho; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Wen, Min; Jang, Woo-Youl; Jung, Shin

    2015-01-01

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  8. DNA Methylation of MMP9 Is Associated with High Levels of MMP-9 Messenger RNA in Periapical Inflammatory Lesions.

    Science.gov (United States)

    Campos, Kelma; Gomes, Carolina Cavalieri; Farias, Lucyana Conceição; Silva, Renato Menezes; Letra, Ariadne; Gomez, Ricardo Santiago

    2016-01-01

    Matrix metalloproteinases (MMPs) are the major class of enzymes responsible for degradation of extracellular matrix components and participate in the pathogenesis of periapical inflammatory lesions. MMP expression may be regulated by DNA methylation. The purpose of the present investigation was to analyze the expression of MMP2 and MMP9 in periapical granulomas and radicular cysts and to test the hypothesis that, in these lesions, their transcription may be modulated by DNA methylation. Methylation-specific polymerase chain reaction was used to evaluate the DNA methylation pattern of the MMP2 gene in 13 fresh periapical granuloma samples and 10 fresh radicular cyst samples. Restriction enzyme digestion was used to assess methylation of the MMP9 gene in 12 fresh periapical granuloma samples and 10 fresh radicular cyst samples. MMP2 and MMP9 messenger RNA transcript levels were measured by quantitative real-time polymerase chain reaction. All periapical lesions and healthy mucosa samples showed partial methylation of the MMP2 gene; however, periapical granulomas showed higher MMP2 mRNA expression levels than healthy mucosa (P = .014). A higher unmethylated profile of the MMP9 gene was found in periapical granulomas and radicular cysts compared with healthy mucosa. In addition, higher MMP9 mRNA expression was observed in the periapical lesions compared with healthy tissues. The present study suggests that the unmethylated status of the MMP9 gene in periapical lesions may explain the observed up-regulation of messenger RNA transcription in these lesions. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  10. Regulation of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of MMP, and progesterone secretion in luteinized granulosa cells from normally ovulating women with polycystic ovary disease.

    Science.gov (United States)

    Ben-Shlomo, Izhar; Goldman, Shlomit; Shalev, Eliezer

    2003-03-01

    To investigate the regulation of MMP-9, TIMP-1, and progesterone via three signal transduction pathways in luteinized granulosa cells from normal ovulatory and PCOD women. In vitro study. Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Hospital, Afula, Israel. Ten normal ovulatory and 10 women with polycystic ovary disease (PCOD) treated in an assisted reproduction program. Cultured cells were exposed to phorbol 12-myristate 13-acetate (TPA), acting via protein kinase C (PKC), to epidermal growth factor (EGF), acting via protein tyrosine kinase (PTK), and to forskolin, acting via protein kinase A (PKA). Secretion of MMP-9, TIMP-1, and progesterone. Phorbol 12-myristate 13-acetate elicited an increase in MMP-9 and TIMP-1 secretion in both groups and apparently did not affect progesterone secretion. Epidermal growth factor did not change significantly neither MMP-9 nor TIMP-1 secretion but dose dependently decreased MMP-9-TIMP-1 ratio and increased progesterone secretion in the PCOD group. Forskolin inhibited MMP-9 activity and increased TIMP-1 and progesterone secretion in both groups. Progesterone production was inversely related to the ratio of MMP-9-TIMP-1 regardless of cell origin. In this preliminary study, similar and divergent patterns have emerged in the regulation of MMP-9 and TIMP-1 in human luteinized granulosa cells. Repressing MMP-9-TIMP-1 ratio may have an important modulatory effect on progesterone secretion.

  11. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    International Nuclear Information System (INIS)

    Adachi, Naoki; Kubota, Yoshitaka; Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2015-01-01

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings

  12. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Naoki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kubota, Yoshitaka, E-mail: kubota-cbu@umin.ac.jp [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kuroda, Masayuki [Center for Advanced Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Mitsukawa, Nobuyuki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Bujo, Hideaki [Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, #285-8741 (Japan); Satoh, Kaneshige [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan)

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.

  13. MicroRNA hsa-let-7b suppresses the odonto/osteogenic differentiation capacity of stem cells from apical papilla by targeting MMP1.

    Science.gov (United States)

    Wang, Yanqiu; Pang, Xiyao; Wu, Jintao; Jin, Lin; Yu, Yan; Gobin, Romila; Yu, Jinhua

    2018-01-31

    MicroRNA let-7 family acts as the key regulator of the differentiation of mesenchymal stem cells (MSCs). However, the influence of let-7b on biological characteristics of stem cells from apical papilla (SCAPs) is still controversial. In this study, the expression of hsa-let-7b was obviously downregulated during the osteogenic differentiation of SCAPs. SCAPs were then infected with hsa-let-7b or hsa-let-7b inhibitor lentiviruses. The proliferation ability was determined by CCK-8 and flow cytometry. The odonto/osteogenic differentiation capacity was analyzed by alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay, and real-time RT-PCR. Bioinformatics analysis was used to screen out the target of hsa-let-7b and the target relationship was confirmed by dual luciferase reporter assay. Hsa-let-7b was of no influence on the proliferation of SCAPs. Interferential expression of hsa-let-7b increased the ALP activity as well as the formation of calcified nodules of SCAPs. Moreover, the mRNA levels of osteoblastic markers (ALP, RUNX2, OSX, OPN, and OCN) were upregulated while the protein levels of DSPP, ALP, RUNX2, OSX, OPN, and OCN also increased considerably. Conversely, overexpression of hsa-let-7b inhibited the odonto/osteogenic differentiation capacity of SCAPs. Bioinformatics analysis revealed a putative binding site of hsa-let-7b in the matrix metalloproteinase 1 (MMP1) 3'-untranslated region (3'-UTR). Dual luciferase reporter assay confirmed that hsa-let-7b targets MMP1. The odonto/osteogenic differentiation ability of SCAPs ascended after repression of hsa-let-7b, which was then reversed after co-transfection with siMMP1. Together, hsa-let-7b can suppress the odonto/osteogenic differentiation capacity of SCAPs by targeting MMP1. © 2018 Wiley Periodicals, Inc.

  14. Radiation induced changes in the expression of fibronectin, Pai-1, MMP in rat glomerular epithelial cell

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Kim, Won Dong; Zheng, Ying; Ha, Tae Sun; Kim, Jae Sung; Cho, Moon June

    2006-01-01

    Renal irradiation can lead to the development of radiation nephropathy, and this is characterized by the accumulation of extracellular matrix and final fibrosis. To determine the possible role of the glomerular epithelial cell, the radiation-induced changes in the expression of its genes associated with the extracellular matrix were analyzed. Rat glomerular epithelial cells (GEpC) were irradiated with a single dose of 0, 2, 5, 10 and 20 Gy with using 6 MV LINAC (Siemens, USA), and the samples were collected 6, 24, 48 and 72 hours post-irradiation, respectively. Northern blotting, western blotting and zymography were used to measure the expression level of fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of metalloproteinases-2 (TIMP-2), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Irradiation with a single dose of 10 Gy resulted in a significant increase in Fn mRNA since 24 hours post-irradiation, and a single dose of 5 and 10 Gy significantly increased the Fn immunoreactive protein measured 48 hours post-irradiation. An increase in Pai-mRNA and protein was also observed and especially, a single dose of 10 Gy significantly increased the mRNA measured 24 and 48 hours post-irradiation. The active MMP-2 measured 24 hours post-irradiation slightly increased in a dose dependent manner, but this increase did not reach statistical significance. The levels of MMP-9, TIMP-2, t-PA and u-PA appeared unaltered after irradiation. Irradiation of the glomerular epithelial cells altered the expression of genes associated with the extracellular matrix, implying that the glomerular epithelial cell may be involved in the development of radiation nephropathy

  15. Radiation induced changes in the expression of fibronectin, Pai-1, MMP in rat glomerular epithelial cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Woo Yoon; Kim, Won Dong; Zheng, Ying; Ha, Tae Sun [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Jae Sung [Seoul National University, Seoul (Korea, Republic of); Cho, Moon June [Chungnam National University, Daejeon (Korea, Republic of)

    2006-03-15

    Renal irradiation can lead to the development of radiation nephropathy, and this is characterized by the accumulation of extracellular matrix and final fibrosis. To determine the possible role of the glomerular epithelial cell, the radiation-induced changes in the expression of its genes associated with the extracellular matrix were analyzed. Rat glomerular epithelial cells (GEpC) were irradiated with a single dose of 0, 2, 5, 10 and 20 Gy with using 6 MV LINAC (Siemens, USA), and the samples were collected 6, 24, 48 and 72 hours post-irradiation, respectively. Northern blotting, western blotting and zymography were used to measure the expression level of fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of metalloproteinases-2 (TIMP-2), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Irradiation with a single dose of 10 Gy resulted in a significant increase in Fn mRNA since 24 hours post-irradiation, and a single dose of 5 and 10 Gy significantly increased the Fn immunoreactive protein measured 48 hours post-irradiation. An increase in Pai-mRNA and protein was also observed and especially, a single dose of 10 Gy significantly increased the mRNA measured 24 and 48 hours post-irradiation. The active MMP-2 measured 24 hours post-irradiation slightly increased in a dose dependent manner, but this increase did not reach statistical significance. The levels of MMP-9, TIMP-2, t-PA and u-PA appeared unaltered after irradiation. Irradiation of the glomerular epithelial cells altered the expression of genes associated with the extracellular matrix, implying that the glomerular epithelial cell may be involved in the development of radiation nephropathy.

  16. A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance.

    Directory of Open Access Journals (Sweden)

    Tian-Zuo Wang

    Full Text Available BACKGROUND: Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize genes of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic Arabidopsis seedlings expressing MtCaMP1 exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na(+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress. CONCLUSIONS/SIGNIFICANCE: The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na(+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na(+ under drought and salt stress would protect plants from water default and Na(+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.

  17. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors

    Directory of Open Access Journals (Sweden)

    Heyman Yvan

    2005-11-01

    Full Text Available Abstract Background Recent work has shown that mitochondrial biogenesis and mitochondrial functions are critical determinants of embryonic development. However, the expression of the factors controlling mitochondrial biogenesis in early embryogenesis has received little attention so far. Methods We used real-time quantitative PCR to quantify mitochondrial DNA (mtDNA in bovine oocytes and in various stages of in vitro produced embryos. To investigate the molecular mechanisms responsible for the replication and the transcriptional activation of mtDNA, we quantified the mRNA corresponding to the mtDNA-encoded cytochrome oxidase 1 (COX1, and two nuclear-encoded factors, i.e. the Nuclear Respiratory Factor 1 (NRF1, and the nuclear-encoded Mitochondrial Transcription Factor A (mtTFA. Results Unlike findings reported in mouse embryos, the mtDNA content was not constant during early bovine embryogenesis. We found a sharp, 60% decrease in mtDNA content between the 2-cell and the 4/8-cell stages. COX1 mRNA was constant until the morula stage after which it increased dramatically. mtTFA mRNA was undetectable in oocytes and remained so until the 8/16-cell stage; it began to appear only at the morula stage, suggesting de novo synthesis. In contrast, NRF1 mRNA was detectable in oocytes and the quantity remained constant until the morula stage. Conclusion Our results revealed a reduction of mtDNA content in early bovine embryos suggesting an active process of mitochondrial DNA degradation. In addition, de novo mtTFA expression associated with mitochondrial biogenesis activation and high levels of NRF1 mRNA from the oocyte stage onwards argue for the essential function of these factors during the first steps of bovine embryogenesis.

  18. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  19. Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance through Cu2+-Binding

    Directory of Open Access Journals (Sweden)

    Aya Kojima

    2014-05-01

    Full Text Available Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP from a normal cellular protein (PrPC to a protease-resistant isoform (PrPSc is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS were also tested as control. hPrP61-90, from the octapeptide-repeat region, was cleaved by HS but not by the MMPs tested here. On the other hand, hPrP92-168 from the central region was cleaved by MT1-MMP and MT3-MMP at various sites. These cleavages were inhibited by treatment with Cu2+. The C-terminal peptides had higher resistance than the central region. The data obtained from this study suggest that MT-MMPs expressed in the brain might possess PrPC-degrading activity.

  20. cAMP-response Element-binding Protein (CREB) and NF-κB Transcription Factors Are Activated during Prolonged Hypoxia and Cooperatively Regulate the Induction of Matrix Metalloproteinase MMP1*

    Science.gov (United States)

    Nakayama, Koh

    2013-01-01

    Responses to low levels of oxygen (hypoxia) are essential to maintain homeostasis. During the hypoxic response, gene expression is altered by various transcription factors. The transcription factor, hypoxia-inducible factor (HIF), plays a central role in the hypoxic response. The α subunit of HIF, which is actively degraded during normoxia, becomes stabilized during hypoxia, which leads to HIF activation. A microarray analysis of HeLa cells showed that expression of matrix metalloproteinase 1 (MMP1) was markedly induced during prolonged hypoxia. CREB and NF-κB binding sites were identified in the MMP1 promoter region between 1945 and 1896 nucleotides upstream of the transcription start site. Assays with luciferase reporters demonstrated that HIF activity was induced during the early phase of hypoxia, whereas CREB and NF-κB were activated during the later (prolonged) phase. Depletion of CREB and/or NF-κB reduced MMP1 induction during prolonged hypoxia both at the mRNA and protein levels. A chromatin immunoprecipitation assay demonstrated binding of CREB and NF-κB to the MMP1 promoter. Finally, cell migration and invasion on a collagen matrix and pulmonary metastasis in nude mice were inhibited after depletion of CREB and NF-κB in MDA-MB-231 cells. Taken together, these results suggest that the cooperative action of CREB and NF-κB plays an important role to induce MMP1 expression during prolonged hypoxia and regulates cell migration and invasion in cancer cells. PMID:23775082

  1. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line.

    Science.gov (United States)

    Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M

    2015-02-05

    Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  2. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Seeliger, Jessica C; Holsclaw, Cynthia M; Schelle, Michael W; Botyanszki, Zsofia; Gilmore, Sarah A; Tully, Sarah E; Niederweis, Michael; Cravatt, Benjamin F; Leary, Julie A; Bertozzi, Carolyn R

    2012-03-09

    Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.

  3. Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by β-catenin translocation and MMP7 activation

    International Nuclear Information System (INIS)

    Kimura, Ryota; Tanzawa, Hideki; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Koyama, Tomoyoshi; Fukumoto, Chonji; Kouzu, Yukinao; Higo, Morihiro; Endo-Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi

    2013-01-01

    Glutamate decarboxylase 1 (GAD1), a rate-limiting enzyme in the production of γ-aminobutyric acid (GABA), is found in the GABAergic neurons of the central nervous system. Little is known about the relevance of GAD1 to oral squamous cell carcinoma (OSCC). We investigated the expression status of GAD1 and its functional mechanisms in OSCCs. We evaluated GAD1 mRNA and protein expressions in OSCC-derived cells using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunoblotting analyses. To assess the critical functions of GAD1, i.e., cellular proliferation, invasiveness, and migration, OSCC-derived cells were treated with the shRNA and specific GAD1 inhibitor, 3-mercaptopropionic acid (3-MPA). GAD1 expression in 80 patients with primary OSCCs was analyzed and compared to the clinicopathological behaviors of OSCC. qRT-PCR and immunoblotting analyses detected frequent up-regulation of GAD1 in OSCC-derived cells compared to human normal oral keratinocytes. Suppression of nuclear localization of β-catenin and MMP7 secretion was observed in GAD1 knockdown and 3-MPA-treated cells. We also found low cellular invasiveness and migratory abilities in GAD1 knockdown and 3-MPA-treated cells. In the clinical samples, GAD1 expression in the primary OSCCs was significantly (P < 0.05) higher than in normal counterparts and was correlated significantly (P < 0.05) with regional lymph node metastasis. Our data showed that up-regulation of GAD1 was a characteristic event in OSCCs and that GAD1 was correlated with cellular invasiveness and migration by regulating β-catenin translocation and MMP7 activation. GAD1 might play an important role in controlling tumoral invasiveness and metastasis in oral cancer

  4. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    Science.gov (United States)

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Reporters to monitor cellular MMP12 activity

    Science.gov (United States)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  6. Matrix metalloproteinase (MMP-9 in cancer-associated fibroblasts (CAFs is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ayumi Taguchi

    Full Text Available Cancer associated fibroblasts (CAFs are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.

  7. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1α and ROS in Hypoxic Neuroblastoma Cells.

    Science.gov (United States)

    Kuo, Chung-Wen; Tsai, Meng-Han; Lin, Tsu-Kung; Tiao, Mao-Meng; Wang, Pei-Wen; Chuang, Jiin-Haur; Chen, Shang-Der; Liou, Chia-Wei

    2017-06-07

    Mitochondria consume O₂ to produce ATP and are critical for adaption of hypoxia, but the role of mitochondria in HIF-1α pathway is as yet unclear. In this study, mitochondrial DNA (mtDNA) enriched (SK-N-AS) and depleted (ρ⁰) cells of neuroblastoma were cultured in a hypoxic chamber to simulate a hypoxic condition and then the major components involved in mitochondrial related pathways, hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) were measured. The results showed that hypoxia-stimulated exposure elevated expression of HIF-1α, which was additionally influenced by level of generated ROS within the cytosol. Moreover, elevation of HIF-1α also resulted in increases of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1) in both hypoxic cells. The expression of mitochondrial biogenesis related proteins and metabolic components were noted to increase significantly in hypoxic SK-N-AS cells, indicating that mtDNA was involved in mitochondrial retrograde signaling and metabolic pathways. An analysis of dynamic proteins found elevated levels of HIF-1α causing an increased expression of dynamin-related protein 1 (DRP1) during hypoxia; further, the existence of mtDNA also resulted in higher expression of DRP1 during hypoxia. By using siRNA of HIF-1α or DRP1, expression of DRP1 decreased after suppression of HIF-1α; moreover, the expression of HIF-1α was also affected by the suppression of DRP1. In this study, we demonstrated that mtDNA is a mediator of HIF-1α in eliciting metabolic reprogramming, and mitochondrial biogenesis. Identification of a mutual relationship between HIF-1α and DRP1 may be a critical tool in the future development of clinical applications.

  8. Regulation of invadopodia formation and activity by CD147

    Science.gov (United States)

    Grass, G. Daniel; Bratoeva, Momka; Toole, Bryan P.

    2012-01-01

    A defining feature of malignant tumor progression is cellular penetration through the basement membrane and interstitial matrices that separate various cellular compartments. Accumulating evidence supports the notion that invasive cells employ specialized structures termed invadopodia to breach these structural barriers. Invadopodia are actin-based, lipid-raft-enriched membrane protrusions containing membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase 14; MMP14) and several signaling proteins. CD147 (emmprin, basigin), an immunoglobulin superfamily protein that is associated with tumor invasion and metastasis, induces the synthesis of various matrix metalloproteinases in many systems. In this study we show that upregulation of CD147 is sufficient to induce MT1-MMP expression, invasiveness and formation of invadopodia-like structures in non-transformed, non-invasive, breast epithelial cells. We also demonstrate that CD147 and MT1-MMP are in close proximity within these invadopodia-like structures and co-fractionate in membrane compartments with the properties of lipid rafts. Moreover, manipulation of CD147 levels in invasive breast carcinoma cells causes corresponding changes in MT1-MMP expression, invasiveness and invadopodia formation and activity. These findings indicate that CD147 regulates invadopodia formation and activity, probably through assembly of MT1-MMP-containing complexes within lipid-raft domains of the invadopodia. PMID:22389410

  9. Repression of Lateral Organ Boundary Genes by PENNYWISE and POUND-FOOLISH Is Essential for Meristem Maintenance and Flowering in Arabidopsis.

    Science.gov (United States)

    Khan, Madiha; Ragni, Laura; Tabb, Paul; Salasini, Brenda C; Chatfield, Steven; Datla, Raju; Lock, John; Kuai, Xiahezi; Després, Charles; Proveniers, Marcel; Yongguo, Cao; Xiang, Daoquan; Morin, Halima; Rullière, Jean-Pierre; Citerne, Sylvie; Hepworth, Shelley R; Pautot, Véronique

    2015-11-01

    In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12.

    Directory of Open Access Journals (Sweden)

    Hyeon-Sook Suh

    Full Text Available The essential role of progranulin (PGRN as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia.In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12, as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI, in human CNS cells.Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC, Th1 cytokines (IL-1/IFNγ, or Th2 cytokines (IL-4, IL-13. Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined.Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNγ, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation, with its effect on TNFα being the most conspicuous.Our study is the first detailed examination of PGRN in human microglia. Our results establish microglia as a significant source of PGRN, and MMP-12 and SLPI as modulators of PGRN proteolysis. Negative and positive regulation of microglial PGRN release by the proinflammatory/Th1 and the Th2 stimuli, respectively, suggests a fundamentally different aspect of PGRN regulation compared to other known microglial activation products. Microglial PGRN appears to function as an endogenous

  11. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release.

  12. [Tissue collagenase MMP-14 and endogenous regulators of its activity in the corpus uteri in squamous cell carcinoma of the cervix].

    Science.gov (United States)

    Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V; Zavalishina, L E; Andreeva, Yu Yu; Solovyeva, N I

    to investigate the expression of the membrane-bound matrix metalloproteinase MT1-MMP (MMP-14), its tissue inhibitor TIMP-2, and the proMMP-14 activator furin in the corpus uteri from the vaginal wall to the bottom of the uterine cavity in squamous cell carcinoma of the cervix (SCCC). Hysterectomy material was examined in patients with SCCC. Reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme assays were used. In SCCC, higher levels of MMP-14 expression were established in tumor cells, as evidenced by IHC (+3) and RT-PCR. IHC showed that the expression of MMP-14 was absent or insignificant in the normal uterine endometrial and myometrial tissues. However, that of MMP-14 mRNA was also found in the normal tissues to the bottom of the uterine cavity. Furin activity in the tumor was much higher than that in normal tissues. IHC indicated that TIMP-2 expression was low or absent in both the tumor and normal tissues. The expression of TIMP-2 mRNA was sufficiently obvious in both the tumor and normal tissues to the bottom of the uterine cavity. In SCCC, MMP-14 expression was substantially increased in tumors. The expression of MMP-14 and regulators of its activity is aimed at enhancing the tumor destructive (invasive) potential in the pericellular space and can occur (be induced) in the morphologically normal uterine tissue apparently with involvement of signaling through the epithelial-mesenchymal interaction. Data are important for understanding the role of MMP-14 in the development of a multistage process of carcinogenesis and may have prognostic value and an impact on therapeutic strategy for the patient.

  13. Effect of manual therapy versus proprioceptive neuromuscular facilitation in dynamic balance, mobility and flexibility in field hockey players. A randomized controlled trial.

    Science.gov (United States)

    Espí-López, Gemma V; López-Martínez, Susana; Inglés, Marta; Serra-Añó, Pilar; Aguilar-Rodríguez, Marta

    2018-04-22

    To compare the effectiveness of a specific Manual Therapy (MT) protocol applied to field hockey players (FHP), versus a Proprioceptive Neuromuscular Facilitation (PNF) protocol, in the improvement of dynamic balance, active range of movement and lumbar flexibility one-week and four-weeks after the treatment. Randomized controlled trial. Participants were assigned to 2 groups: MT and PNF. 30 min' sessions were performed once a week for three weeks. Three evaluations were performed: basal, one-week and four-weeks post-treatment. University of Valencia (Spain). 22 in MT group and 20 in PNF group. Dynamic Balance, measured with Star Excursion Balance Test; Active Range of Motion (ROM), using a manual goniometer and Lumbar Flexibility, assessed with Fingertip-to-floor test. Both groups significantly improved in lateral and medial dynamic balance one-week post-treatment (p < 0.05); but the improvement in the MT group lasted until the fourth-week after treatment in both reaches (lateral and medial) (p < 0.05). MT group also obtained significant improvements in dorsal flexion of the ankle in the fourth-week post-treatment (p < 0.05) and in lumbar flexibility one-week post-treatment (p < 0.05). MT and PNF improve dynamic balance one-week post-treatment; however, the improvement obtained through MT is maintained four-weeks later. Only MT improves dorsal flexion of the ankle four-weeks post-treatment and lumbar flexibility one-week post-treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. FGF2 and EGF induce epithelial-mesenchymal transition in malignant pleural mesothelioma cells via a MAPKinase/MMP1 signal.

    Science.gov (United States)

    Schelch, Karin; Wagner, Christina; Hager, Sonja; Pirker, Christine; Siess, Katharina; Lang, Elisabeth; Lin, Ruby; Kirschner, Michaela B; Mohr, Thomas; Brcic, Luka; Marian, Brigitte; Holzmann, Klaus; Grasl-Kraupp, Bettina; Krupitza, Georg; Laszlo, Viktoria; Klikovits, Thomas; Dome, Balazs; Hegedus, Balazs; Garay, Tamas; Reid, Glen; van Zandwijk, Nico; Klepetko, Walter; Berger, Walter; Grusch, Michael; Hoda, Mir Alireza

    2018-04-05

    Malignant pleural mesothelioma (MPM), an aggressive malignancy affecting pleural surfaces, occurs in three main histological subtypes. The epithelioid and sarcomatoid subtypes are characterized by cuboid and fibroblastoid cells, respectively. The biphasic subtype contains a mixture of both. The sarcomatoid subtype expresses markers of epithelial-mesenchymal transition (EMT) and confers the worst prognosis, but the signals and pathways controlling EMT in MPM are not well understood. We demonstrate that treatment with FGF2 or EGF induced a fibroblastoid morphology in several cell lines from biphasic MPM, accompanied by scattering, decreased cell adhesion and increased invasiveness. This depended on the MAP-kinase pathway but was independent of TGFβ or PI3-kinase signaling. In addition to changes in known EMT markers, microarray analysis demonstrated differential expression of MMP1, ESM1, ETV4, PDL1 and BDKR2B in response to both growth factors and in epithelioid versus sarcomatoid MPM. Inhibition of MMP1 prevented FGF2-induced scattering and invasiveness. Moreover, in MPM cells with sarcomatoid morphology, inhibition of FGF/MAP-kinase signaling induced a more epithelioid morphology and gene expression pattern. Our findings suggest a critical role of the MAP-kinase axis in the morphological and behavioral plasticity of mesothelioma.

  15. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Mi-Kyoung; Park, Kyoung Sun; Bae, Yun Hee; Yun, Jeanho; Park, Joo-In; Kwak, Jong-Young; Bae, Yoe-Sik

    2005-01-01

    In the present study, we found that serum amyloid A (SAA) stimulated matrix-metalloproteinase-9 (MMP-9) upregulation at the transcription and translational levels in THP-1 cells. SAA stimulated the activation of nuclear factor κB (NF-κB), which was required for the MMP-9 upregulation by SAA. The signaling events induced by SAA included the activation of ERK and intracellular calcium rise, which were found to be required for MMP-9 upregulation. Formyl peptide receptor like 1 (FPRL1) was found to be involved in the upregulation of MMP-9 by SAA. Among several FPRL1 agonists, including Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), SAA selectively stimulated MMP-9 upregulation. With respect to the molecular mechanisms involved in the differential action of SAA and WKYMVm, we found that SAA could not competitively inhibit the binding of 125 I-labeled WKYMVm to FPRL1. Taken together, we suggest that SAA plays a role in the modulation of inflammatory and immune responses via FPRL1, by inducing MMP-9 upregulation in human monocytic cells

  16. Levels of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 in gastric cancer

    Science.gov (United States)

    Kemik, Ozgur; Kemik, Ahu Sarbay; Sümer, Aziz; Dulger, Ahmet Cumhur; Adas, Mine; Begenik, Huseyin; Hasirci, Ismail; Yilmaz, Ozkan; Purisa, Sevim; Kisli, Erol; Tuzun, Sefa; Kotan, Cetin

    2011-01-01

    AIM: To evaluate the levels of preoperative serum matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in gastric cancer. METHODS: One hundred gastric cancer patients who underwent gastrectomy were enrolled in this study. The serum concentrations of MMP-1 and TIMP-1 in these patients and in fifty healthy controls were determined using an enzyme-linked immunosorbent assay. RESULTS: Higher serum MMP-1 and TIMP-1 levels were observed in patients than in controls (P < 0.001). Serum MMP-1 and TIMP-1 levels were positively associated with morphological appearance, tumor size, depth of wall invasion, lymph node metastasis, liver metastasis, perineural invasion, and pathological stage. They were not significantly associated with age, gender, tumor location, or histological type. CONCLUSION: Increased MMP-1 and TIMP-1 were associated with gastric cancer. Although these markers are not good markers for diagnosis, these markers show in advanced gastric cancer. PMID:21547130

  17. Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy.

    Science.gov (United States)

    Bednarek, Nathalie; Svedin, Pernilla; Garnotel, Roselyne; Favrais, Géraldine; Loron, Gauthier; Schwendiman, Leslie; Hagberg, Henrik; Morville, Patrice; Mallard, Carina; Gressens, Pierre

    2012-01-01

    To implement neuroprotective strategies in newborns, sensitive and specific biomarkers are needed for identifying those who are at risk for brain damage. We evaluated the effectiveness of matrix metalloproteinases (MMPs) and their naturally occurring tissue inhibitors of metalloproteinases (TIMPs) in predicting neonatal encephalopathy (NE) damage in newborns. Plasma MMP-9 and TIMP-1 levels were upregulated as early as 1 h after the HI insult but not did not show such elevations after other types of injury (ibotenate-induced excitotoxicity, hypoxia, lipopolysaccharide-induced inflammation), and brain levels reflected this increase soon thereafter. We confirmed these results by carrying out plasma MMP-9 and TIMP-1 measurements in human newborns with NE. In these infants, protein levels of MMP-9 and TIMP-1 were found to be elevated during a short window up to 6 h after birth. This feature is particularly useful in identifying newborns in need of neuroprotection. A second peak observed 72 h after birth is possibly related to the second phase of energy failure after a HI insult. Our data, although preliminary, support the use of MMP-9 and TIMP-1 as early biomarkers for the presence and extent of perinatal brain injury in human term newborns. We first used a mouse model of neonatal HI injury to explore mechanistic aspects such as the time course of these markers after the hypoxia-ischemia event, and the correlation between the levels of these candidate markers in brain and plasma.

  18. Discovery of Novel, Highly Potent, and Selective Matrix Metalloproteinase (MMP)-13 Inhibitors with a 1,2,4-Triazol-3-yl Moiety as a Zinc Binding Group Using a Structure-Based Design Approach.

    Science.gov (United States)

    Nara, Hiroshi; Kaieda, Akira; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni

    2017-01-26

    On the basis of a superposition study of X-ray crystal structures of complexes of quinazoline derivative 1 and triazole derivative 2 with matrix metalloproteinase (MMP)-13 catalytic domain, a novel series of fused pyrimidine compounds which possess a 1,2,4-triazol-3-yl group as a zinc binding group (ZBG) was designed. Among the herein described and evaluated compounds, 31f exhibited excellent potency for MMP-13 (IC 50 = 0.036 nM) and selectivities (greater than 1,500-fold) over other MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -14) and tumor necrosis factor-α converting enzyme (TACE). Furthermore, the inhibitor was shown to protect bovine nasal cartilage explants against degradation induced by interleukin-1 and oncostatin M. In this article, we report the discovery of extremely potent, highly selective, and orally bioavailable fused pyrimidine derivatives that possess a 1,2,4-triazol-3-yl group as a novel ZBG for selective MMP-13 inhibition.

  19. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer.

    Science.gov (United States)

    Zhang, Gang; Li, Shuwei; Lu, Jiafei; Ge, Yuqiu; Wang, Qiaoyan; Ma, Gaoxiang; Zhao, Qinghong; Wu, Dongdong; Gong, Weida; Du, Mulong; Chu, Haiyan; Wang, Meilin; Zhang, Aihua; Zhang, Zhengdong

    2018-05-02

    Emerging evidence has shown that dysregulation function of long non-coding RNAs (lncRNAs) implicated in gastric cancer (GC). However, the role of the differentially expressed lncRNAs in GC has not fully explained. LncRNA expression profiles were determined by lncRNA microarray in five pairs of normal and GC tissues, further validated in another 75 paired tissues by quantitative real-time PCR (qRT-PCR). Overexpression of lncRNA MT1JP was conducted to assess the effect of MT1JP in vitro and in vivo. The biological functions were demonstrated by luciferase reporter assay, western blotting and rescue experiments. LncRNA MT1JP was significantly lower in GC tissues than adjacent normal tissues, and higher MT1JP was remarkably related to lymph node metastasis and advance stage. Besides, GC patients with higher MT1JP expression had a well survival. Functionally, overexpression of lncRNA MT1JP inhibited cell proliferation, migration, invasion and promoted cell apoptosis in vitro, and inhibited tumor growth and metastasis in vivo. Functional analysis showed that lncRNA MT1JP regulated FBXW7 expression by competitively binding to miR-92a-3p. MiR-92a-3p and down-regulated FBXW7 reversed cell phenotypes caused by lncRNA MT1JP by rescue analysis. MT1JP, a down-regulated lncRNA in GC, was associated with malignant tumor phenotypes and survival of GC. MT1JP regulated the progression of GC by functioning as a competing endogenous RNA (ceRNA) to competitively bind to miR-92a-3p and regulate FBXW7 expression. Our study provided new insight into the post-transcriptional regulation mechanism of lncRNA MT1JP, and suggested that MT1JP may act as a potential therapeutic target and prognosis biomarker for GC.

  20. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  1. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-05-09

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.

  2. Early Elevation of Serum MMP-3 and MMP-12 Predicts Protection from World Trade Center-Lung Injury in New York City Firefighters: A Nested Case-Control Study

    Science.gov (United States)

    Echevarria, Ghislaine C.; Comfort, Ashley L.; Naveed, Bushra; Prezant, David J.; Rom, William N.; Nolan, Anna

    2013-01-01

    Objective After 9/11/2001, some Fire Department of New York (FDNY) workers had excessive lung function decline. We hypothesized that early serum matrix metalloproteinases (MMP) expression predicts World Trade Center-Lung Injury (WTC-LI) years later. Methods This is a nested case-control analysis of never-smoking male firefighters with normal pre-exposure Forced Expiratory Volume in one second (FEV1) who had serum drawn up to 155 days post 9/11/2001. Serum MMP-1, 2,3,7,8, 9, 12 and 13 were measured. Cases of WTC-LI (N = 70) were defined as having an FEV1 one standard deviation below the mean (FEV1≤77%) at subspecialty pulmonary evaluation (SPE) which was performed 32 months (IQR 21–53) post-9/11. Controls (N = 123) were randomly selected. We modeled MMP's ability as a predictor of cases status with logistic regression adjusted for time to blood draw, exposure intensity, weight gain and pre-9/11 FEV1. Results Each log-increase in MMP-3 and MMP-12 showed reduced odds of developing WTC-LI by 73% and 54% respectively. MMP-3 and MMP-12 consistently clustered together in cases, controls, and the cohort. Increasing time to blood draw significantly and independently increased the risk of WTC-LI. Conclusions Elevated serum levels of MMP-3 and MMP-12 reduce the risk of developing WTC-LI. At any level of MMP-3 or 12, increased time to blood draw is associated with a diminished protective effect. PMID:24146820

  3. Early elevation of serum MMP-3 and MMP-12 predicts protection from World Trade Center-lung injury in New York City Firefighters: a nested case-control study.

    Directory of Open Access Journals (Sweden)

    Sophia Kwon

    Full Text Available OBJECTIVE: After 9/11/2001, some Fire Department of New York (FDNY workers had excessive lung function decline. We hypothesized that early serum matrix metalloproteinases (MMP expression predicts World Trade Center-Lung Injury (WTC-LI years later. METHODS: This is a nested case-control analysis of never-smoking male firefighters with normal pre-exposure Forced Expiratory Volume in one second (FEV1 who had serum drawn up to 155 days post 9/11/2001. Serum MMP-1, 2,3,7,8, 9, 12 and 13 were measured. Cases of WTC-LI (N = 70 were defined as having an FEV1 one standard deviation below the mean (FEV1 ≤ 77% at subspecialty pulmonary evaluation (SPE which was performed 32 months (IQR 21-53 post-9/11. Controls (N = 123 were randomly selected. We modeled MMP's ability as a predictor of cases status with logistic regression adjusted for time to blood draw, exposure intensity, weight gain and pre-9/11 FEV1. RESULTS: Each log-increase in MMP-3 and MMP-12 showed reduced odds of developing WTC-LI by 73% and 54% respectively. MMP-3 and MMP-12 consistently clustered together in cases, controls, and the cohort. Increasing time to blood draw significantly and independently increased the risk of WTC-LI. CONCLUSIONS: Elevated serum levels of MMP-3 and MMP-12 reduce the risk of developing WTC-LI. At any level of MMP-3 or 12, increased time to blood draw is associated with a diminished protective effect.

  4. PreliminaryEquatorial Paleomagnetic results from Mt Kenya lavas. Neil D Opdyke, 1, Dennis V Kent, 2, Kainian Huang ,1, J.P. Patel , 3

    Science.gov (United States)

    Opdyke, N. D.; Kent, D. V.; Huang, K.; Patel, J. P.

    2007-12-01

    Field work on this study was carried out in August of 2006 by field parties from the University of Florida and Rutgers University. Mt Kenya is believed to be Plio-Pleistocene in age and an Argon dating survey is underway Ten samples were taken at each site consisting of one exposure in individual lava Flows. These exposures are usually in road cuts, streambeds and in some cases roadbeds. We sampled 100 sites distributed around the Mt Kenya Massif and to the northeast along the Nyambini range. The equator bisex's Mt Kenya and all sites were sampled within 40" north or south of the equator . The samples were returned to the US and processed at the University of Florida paleomagnetic laboratory. Many sites were severely affected by lightning however after demagnetization 68 sites yielded directions with alpha 95's equal to or less than 10°. Normal magnetized sites dominate, with N=58 (Dec=1°,Inc -0.1°,α95=2.6°) whereas only 10 reverse sites(Dec. =181.9,Inc. .6°α 95=8°) were identified. The combined site mean direction is Dec=1.1°, Inc..= -0.2° and α 95=3.2°. This result is not significantly different from what is expected from the geocentric axial dipole. VGP's were calculated from each site and the dispersion is low with the ASD = 11° which is in agreement with model "G" of MacFadden and McElhinny .No transitional directions were identified . Quadrupole components are not resolved. 1 Department of geological Sciences, the University of Florida , 2 Dept of Geology, Rutgers University,3,dept of Physics ,The University of Nairobi

  5. Matrix Metalloproteinase Expression in the Rat Myometrium During Pregnancy, Term Labor, and Postpartum1

    Science.gov (United States)

    Nguyen, Tina Tu-Thu Ngoc; Shynlova, Oksana; Lye, Stephen J.

    2016-01-01

    Pregnancy, spontaneous term labor (TL), and postpartum (PP) involution are associated with changes in the cellular and extracellular matrix composition of the uterus. Both the uterine smooth muscle (myometrium) and the infiltrating peripheral blood leukocytes involved in the activation of labor secrete extracellular matrix-degrading enzymes (matrix metalloproteinases, MMPs) that can modulate cellular behavior and barrier function. MMP expression is induced by mechanical stretch in several tissues. We hypothesized that the expression and activity of myometrial MMPs and their tissue inhibitors (TIMPs) are modulated in preparation for TL and PP involution and are regulated by mechanical stretch of uterine walls imposed by the growing fetus. Myometrial tissues were collected from bilaterally and unilaterally pregnant rats across gestation, TL, and PP. Total RNA and proteins were subjected to real-time PCR and immunoblotting, respectively, and tissue localization and activity was examined by immunohistochemistry and in situ zymography. We found that Mmp7, Mmp11, and Mmp12 mRNA levels were upregulated during TL and PP, while Mmp2, Mmp3, Mmp8, Mmp9, Mmp10, and Mmp13 mRNAs were only upregulated during PP. Timp1–Timp4 were stably expressed throughout gestation with some fluctuations PP. Active MMP2 was induced in the empty uterine horn during gestation and in the gravid PP uterus, suggesting negative regulation by biological mechanical stretch. We conclude that specific subsets of uterine MMPs are differentially regulated in the rat myometrium in preparation for two major events: TL and PP uterine involution. PMID:27251092

  6. Impurity flux collection at the plasma edge of the tokamak MT-1

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Bakos, J.S.; Petravich, G.

    1989-09-01

    Fluxes of intrinsic and injected impurities and background plasma ions were collected using a bidirectional probe at the plasma edge of the tokamak MT-1. The directional and radial dependences of injected impurities and plasma ions were very similar indicating a strong coupling of the impurity transport to the dynamics of the background plasma. The measured intrinsic concentration of about 10 -4 for Mo at the plasma edge is derived. (author) 17 refs.; 5 figs

  7. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  8. [Effect of 50 Hz 1.8 mT sinusoidal electromagnetic fields on bone mineral density in growing rats].

    Science.gov (United States)

    Gao, Yu-Hai; Zhou, Yan-Feng; Li, Shao-Feng; Li, Wen-Yuan; Xi, Hui-Rong; Yang, Fang-Fang; Chen, Ke-Ming

    2017-12-25

    To study effects of 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) on bone mineral density (BMD) in SD rats. Thirty SD rats weighted(110±10) and aged 1 month were randomly divided into control group and electromagnetic field group, 15 in each group. Normal control group of 50 Hz 0 mT density and sinusoidal electromagnetic field group of 50 Hz 1.8 mT were performed respectively with 1.5 h/d and weighted weight once a week, and observed food-intake. Rats were anesthesia by intraperitoneal injection and dual energy X-ray absorptiometry were used to detect bone density of whole body, and detected bone density of femur and vertebral body. Osteocalcin and tartrate-resistant acid phosphatase 5b were detected by ELSA; weighted liver, kidney and uterus to calculate purtenance index, then detected pathologic results by HE. Compared with control group, there was no significant change in weight every week, food-intake every day; no obvious change of bone density of whole body at 2 and 4 weeks, however bone density of whole body, bone density of excised femur and vertebra were increased at 6 weeks. Expression of OC was increased, and TRACP 5b expression was decreased. No change of HE has been observed in liver, kidney and uterus and organic index. 50 Hz 1.8 mT sinusoidal electromagnetic fields could improve bone formation to decrease relevant factors of bone absorbs, to improve peak bone density of young rats, in further provide a basis for clinical research electromagnetic fields preventing osteoporosis foundation.

  9. Simvastatin modulates gingival cytokine and MMP production in a rat model of ligature-induced periodontitis

    Directory of Open Access Journals (Sweden)

    Mouchrek Júnior JCE

    2017-05-01

    Full Text Available José Carlos Elias Mouchrek Júnior,1 Cristina Gomes Macedo,2 Henrique Ballassini Abdalla,2 Ana Karina Saba,1 Lucas Novaes Teixeira,1 Adriana Quinzeiro e Silva Mouchrek,3 Marcelo Henrique Napimoga,1 Juliana Trindade Clemente-Napimoga,1 Alvaro Henrique Borges,4 Mateus Rodrigues Tonetto,4 Shelon Cristina Souza Pinto,5 Matheus Coelho Bandeca,3 Elizabeth Ferreira Martinez1 1Laboratory of Cell and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, 2Physiological Sciences, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, 3Department of Dentistry, CEUMA University, São Luis, Maranhão, 4Department of Integrated Dental Science, University of Cuiaba, Cuiabá, Mato Grosso, 5Department of Dentistry, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil Purpose: The aim of this study was to evaluate the effect of simvastatin on the synthesis of cytokines TNF-α and IL-10 and metalloproteinase (MMPs 2 and 9 in a rat model of ligature-induced periodontitis.Materials and methods: Twenty Wistar rats were used, and a cotton ligature was place in a subgingival position encircling the entire cervix of the first molar of the left (ipsilateral side of the mandible. The right (contralateral side of the mandible had no ligature placed and was used as control. After the ligature placement, animals were randomly assigned to two experimental groups (n=10: 1 rats with ligature + vehicle (saline; 10 mL/kg; orally and 2 rats with ligature + simvastatin (25 mg/kg; orally. After 14 days of treatment, the animals were euthanized by anesthetic overdose and the gingival tissue was removed and homogenized in appropriate buffer. MMP-2 and -9 release as well as the IL-10 and TNF-α levels were detected by enzyme-linked immunosorbent assay. Statistical comparison was performed by unpaired Student’s t-test, with p<0.05 representing significance.Results: No differences were observed for TNF-α production between the

  10. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation.

    Science.gov (United States)

    Lee, Mi-Sook; Kim, Sudong; Kim, Baek Gil; Won, Cheolhee; Nam, Seo Hee; Kang, Suki; Kim, Hye-Jin; Kang, Minkyung; Ryu, Jihye; Song, Haeng Eun; Lee, Doohyung; Ye, Sang-Kyu; Jeon, Noo Li; Kim, Tai Young; Cho, Nam Hoon; Lee, Jung Weon

    2014-09-01

    Although an in vitro 3D environment cannot completely mimic the in vivo tumor site, embedding tumor cells in a 3D extracellular matrix (ECM) allows for the study of cancer cell behaviors and the screening of anti-metastatic reagents with a more in vivo-like context. Here we explored the behaviors of MDA-MB-231 breast cancer cells embedded in 3D collagen I. Diverse tumor environmental conditions (including cell density, extracellular acidity, or hypoxia as mimics for a continuous tumor growth) reduced JNKs, enhanced TGFβ1/Smad signaling activity, induced Snail1, and reduced cortactin expression. The reduced JNKs activity blocked efficient formation of invadopodia labeled with actin, cortactin, or MT1-MMP. JNKs inactivation activated Smad2 and Smad4, which were required for Snail1 expression. Snail1 then repressed cortactin expression, causing reduced invadopodia formation and prominent localization of MT1-MMP at perinuclear regions. MDA-MB-231 cells thus exhibited less efficient collagen I degradation and invasion in 3D collagen I upon JNKs inhibition. These observations support a signaling network among JNKs, Smads, Snail1, and cortactin to regulate the invasion of MDA-MB-231 cells embedded in 3D collagen I, which may be targeted during screening of anti-invasion reagents. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    Science.gov (United States)

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  12. Deafferentation-Induced Redistribution of MMP-2, but Not of MMP-9, Depends on the Emergence of GAP-43 Positive Axons in the Adult Rat Cochlear Nucleus

    Directory of Open Access Journals (Sweden)

    Michaela Fredrich

    2011-01-01

    Full Text Available The matrix metalloproteinases MMP-9 and MMP-2, major modulators of the extracellular matrix (ECM, were changed in amount and distribution in the rat anteroventral cochlear nucleus (AVCN following its sensory deafferentation by cochlear ablation. To determine what causal relationships exist between the redistribution of MMP-9 and MMP-2 and deafferentation-induced reinnervation, kainic acid was stereotaxically injected into the ventral nucleus of the trapezoid body (VNTB prior to cochlear ablation, killing cells that deliver the growth associated protein 43 (GAP-43 into AVCN. Deafferentation-induced changes in the pattern of MMP-9 staining remained unaffected by VNTB lesions. By contrast, changes in the distribution of MMP-2 normally evoked by sensory deafferentation were reversed if GAP-43 positive axons were prevented to grow in AVCN. In conclusion, GAP-43-containing axons emerging in AVCN after cochlear ablation seem to be causal for the maintenance of MMP-2-mediated ECM remodeling.

  13. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  14. Elevated ratio of MMP2/MMP9 activity is associated with poor response to chemotherapy in osteosarcoma

    International Nuclear Information System (INIS)

    Kunz, Pierre; Sähr, Heiner; Lehner, Burkhard; Fischer, Christian; Seebach, Elisabeth; Fellenberg, Jörg

    2016-01-01

    Matrix metalloproteinases (MMPs) are crucially involved in the regulation of multiple stages of cancer progression. Elevated MMP levels have been associated with the development of metastases and poor prognosis in several types of cancer. However, the role of MMPs in osteosarcoma and their prognostic value is still unclear. Available data are conflicting, most likely due to different technical approaches. We hypothesized that in contrast to total mRNA or protein levels frequently analyzed in previous studies the enzymatic activities of MMPs and their inhibitors the tissue inhibitors of matrix metalloproteinases (TIMPs) are closer related to their biological functions. We therefore aimed to evaluate the reliability of different zymography techniques for the quantification of MMP and TIMP activities in osteosarcoma biopsies in order to investigate their distribution, possible regulation and prognostic value. All analyses were done using cryo-conserved osteosarcoma pretreatment biopsies (n = 18). Gene and protein expression of MMPs and TIMPs were analyzed by RT-qPCR and western blot analysis, respectively. Overall MMP activity was analyzed by in situ zymography, individual MMP activities were analyzed by gelatin zymography. Reverse zymography was used to detect and quantify TIMP activities. Strong overall MMP activities could be detected in osteosarcoma pretreatment biopsies with MMP2 and MMP9 as predominant active MMPs. In contrast to total RNA or protein expression MMP2 and MMP9 activities showed significant quantitative differences between good and poor responders. While MMP9 activity was high in the good responder group and significantly decreased in the poor responder group, MMP2 activity showed a reverse distribution. Likewise, significant differences were detected concerning the activity of TIMPs resulting in a negative correlation of TIMP1 activity with MMP2 activity (p = 0.044) and negative correlations of TIMP2 and TIMP3 with MMP9 activity (p = 0.007 and p

  15. Immunohistochemical detection of metalloproteinase-9 (MMP-9, anti-oxidant like 1 protein (AOP-1 and synaptosomal-associated protein (SNAP-25 in the cerebella of dogs naturally infected with spontaneous canine distemper

    Directory of Open Access Journals (Sweden)

    Tereza C. Cardoso

    2011-04-01

    Full Text Available In most viral infections of the central nervous system (CNS, the integrity of brain extracelluar matrix (ECM, oxidative stress and dysfunction in neuronal transmission may contribute to the observed pathology. The purpose of this study was to investigate the role of these factors in demyelinating canine distemper virus (CDV infections. Regardless of ECM integrity, the expression of metalloproteinase-9 (MMP-9 was visualized in microglial-like cells, whereas the expression of anti-oxidant like-1 (AOP-1 and synaptosomal associated protein (SNAP-25 was frequently detected in Purkinje cells (r2 = 0.989; p < 0.05, regardless of whether the lesions were classified as acute or chronic. Increased numbers of immunolabeled microglia-like cells and reactive gliosis were observed in advanced cases of demyelinating CDV, suggesting that the expression of AOP-1 and SNAP-25 is correlated with the ultimate death of affected cells. Our findings bring a new perspective to understanding the role of the AOP-1, MMP-9 and SNAP-25 proteins in mediating chronic leukoencephalitis caused by CDV. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 41–48

  16. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.

    Science.gov (United States)

    Inoue, D; Kitaura, J; Matsui, H; Hou, H-A; Chou, W-C; Nagamachi, A; Kawabata, K C; Togami, K; Nagase, R; Horikawa, S; Saika, M; Micol, J-B; Hayashi, Y; Harada, Y; Harada, H; Inaba, T; Tien, H-F; Abdel-Wahab, O; Kitamura, T

    2015-04-01

    Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.

  17. The NAD-Dependent Deacetylase Sirtuin-1 Regulates the Expression of Osteogenic Transcriptional Activator Runt-Related Transcription Factor 2 (Runx2 and Production of Matrix Metalloproteinase (MMP-13 in Chondrocytes in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Koh Terauchi

    2016-06-01

    Full Text Available Aging is one of the major pathologic factors associated with osteoarthritis (OA. Recently, numerous reports have demonstrated the impact of sirtuin-1 (Sirt1, which is the NAD-dependent deacetylase, on human aging. It has been demonstrated that Sirt1 induces osteogenic and chondrogenic differentiation of mesenchymal stem cells. However, the role of Sirt1 in the OA chondrocytes still remains unknown. We postulated that Sirt1 regulates a hypertrophic chondrocyte lineage and degeneration of articular cartilage through the activation of osteogenic transcriptional activator Runx2 and matrix metalloproteinase (MMP-13 in OA chondrocytes. To verify whether sirtuin-1 (Sirt1 regulates chondrocyte activity in OA, we studied expressions of Sirt1, Runx2 and production of MMP-13, and their associations in human OA chondrocytes. The expression of Sirt1 was ubiquitously observed in osteoarthritic chondrocytes; in contrast, Runx2 expressed in the osteophyte region in patients with OA and OA model mice. OA relating catabolic factor IL-1βincreased the expression of Runx2 in OA chondrocytes. OA chondrocytes, which were pretreated with Sirt1 inhibitor, inhibited the IL-1β-induced expression of Runx2 compared to the control. Since the Runx2 is a promotor of MMP-13 expression, Sirt1 inactivation may inhibit the Runx2 expression and the resultant down-regulation of MMP-13 production in chondrocytes. Our findings suggest thatSirt1 may regulate the expression of Runx2, which is the osteogenic transcription factor, and the production of MMP-13 from chondrocytes in OA. Since Sirt1 activity is known to be affected by several stresses, including inflammation and oxidative stress, as well as aging, SIRT may be involved in the development of OA.

  18. MMP-8 C-799T and MMP-8 C+17G polymorphisms in mild and severe preeclampsia: Association between MMP-8 C-799T with susceptibility to severe preeclampsia.

    Science.gov (United States)

    Rahimi, Ziba; Zangeneh, Maryam; Rezaeyan, Arezoo; Shakiba, Ebrahim; Rahimi, Zohreh

    2018-01-01

    The aim of present study was to determine the role of matrix metalloproteinase-8 (MMP-8) C-799T (rs11225395) and C+17 (rs2155052) polymorphisms in susceptibility to preeclampsia. In a case-control study, 256 pregnant women including 152 women with preeclampsia (86 women with mild preeclampsia and 66 women with severe preeclampsia) and 104 women with normal pregnancy from Western Iran with Kurdish ethnic background were investigated for MMP-8 C-799T and C + 17G polymorphisms using polymerase chain reaction-restriction fragment length polymorphism method. Comparing the MMP-8 TT genotype with the combined genotype of CC+CT (recessive model) indicated a significantly higher frequency of the MMP-8 TT genotype (47%) in severe preeclamptic patients than that in healthy pregnant women (30.8%) that was associated with 1.99-fold increased risk of severe preeclampsia (95% CI = 1.05-3.77, p = 0.034). The frequency of MMP-8 G allele was 27.3% in all preeclamptic patients compared to 30.2% in controls (p = 0.56). Also, no significant difference was detected comparing the frequency of G allele in mild (26.6%, p = 0.46) and severe preeclamptic patients (28.4%, p = 0.75) with controls (30.2%). Our study demonstrated that the MMP-8 C-799T is associated with the risk of developing severe preeclampsia during pregnancy. However, the MMP-8 C + 17G polymorphism might not be a risk factor for susceptibility to preeclampsia.

  19. Type 1,1-operators defined by vanishing frequency modulation

    DEFF Research Database (Denmark)

    Johnsen, Jon

    This paper presents a general definition of pseudo-differential operators of type 1,1; the definition is shown to be the largest one that is both compatible with negligible operators and stable under vanishing frequency modulation. Elaborating counter-examples of Ching andHörmander, type 1...

  20. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    Science.gov (United States)

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  1. Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-κB nuclear translocation.

    Science.gov (United States)

    Zhong, Hui-ming; Ding, Qian-hai; Chen, Wei-ping; Luo, Ru-bin

    2013-10-01

    Overproduction of nitric oxide (NO) and matrix metalloproteinases (MMPs) plays an important role in the pathogenesis of osteoarthritis (OA). In present study, we investigated whether vorinostat can inhibit the catabolic effects of IL-1β in vitro, especially the inhibition of MMPs and inducible nitric oxide synthase (iNOS) through the attenuation of nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase (MAPK) pathways in human chondrocytes. Human OA chondrocytes were either left untreated or treated with various concentrations of vorinostat followed by incubation with IL-1β (5ng/mL). Effects of vorinostat on IL-1β-induced gene and protein expression of iNOS, MMP-1, MMP-13 and tissue inhibitors of metalloproteinase-1 (TIMP-1) were verified by quantitative real time-PCR and Western blot analysis. Production of NO, MMP-1, MMP-13 and TIMP-1 released in culture supernatant was estimated using commercially available kits. The roles of NF-κB and MAPK pathways in the regulation of targeted genes and the mechanism involved in vorinostat mediated modulation of these genes were determined by Western blot using specific antibodies. We found that vorinostat down-regulated iNOS, MMP-1 and MMP-13 expression and up-regulated TIMP-1 expression in human OA chondrocytes. In addition, the release of NO, MMP-1 and MMP-13 secreted from IL-1β stimulated chondrocytes was also suppressed by vorinostat. Interestingly, vorinostat selectively inhibited IL-1β-induced p38 and ERK1/2 activation without affecting JNK activation. Furthermore, we observed that vorinostat inhibited NF-κB pathway by suppressing the degradation of I-κBα and attenuating NF-κB p65 translocation to the nucleus. These results suggest that vorinostat may be a promising therapeutic agent for the prevention and treatment of OA. © 2013.

  2. Recanalization and flow regulate venous thrombus resolution and matrix metalloproteinase expression in vivo.

    Science.gov (United States)

    Chabasse, Christine; Siefert, Suzanne A; Chaudry, Mohammed; Hoofnagle, Mark H; Lal, Brajesh K; Sarkar, Rajabrata

    2015-01-01

    We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. In CD1 mice, we performed surgical inferior vena cava ligation (stasis thrombosis), stenosis (thrombosis with recanalization), or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution and quantified the messenger RNA and protein levels of membrane-type matrix metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at days 4, 8, and 12 after surgery. Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8 and 12.57% at day 12 compared with stasis thrombosis (ligation model). Immunoblot and real-time polymerase chain reaction analysis demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P = .03 and P = .006, respectively) as well as a difference in MT2-MMP gene expression at day 8 (P = .044) and day 12 (P = .03) and MT1-MMP protein expression at day 4 (P = .021). Histologic analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared with the ligation model as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo and are associated with distinct patterns of MT1-MMP and MT3-MMP expression and macrophage localization in areas of intrathrombus recanalization. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Salivary matrix metalloproteinase (MMP-8) levels and gelatinase (MMP-9) activities in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Collin, H L; Sorsa, T; Meurman, J H; Niskanen, L; Salo, T; Rönkä, H; Konttinen, Y T; Koivisto, A M; Uusitupa, M

    2000-10-01

    We studied the salivary levels and activities of the matrix metalloproteinases (MMP) -8 and -9 in 45 type 2 diabetic patients and 77 control subjects. The patients' mean glycosylated haemoglobin (HbA1c) was 8.7%, indicating an unsatisfactory metabolic control of the disease. The MMP levels were further related to the clinical and microbiological periodontal findings as well as to salivary flow rate and other factors. The salivary flow rate, albumin and amylase concentrations were similar in type 2 diabetic patients to those in the control group. The mean gingival and periodontal pocket indexes were higher in the diabetes group. The number of potential periodontopathogenic bacteria was lower, however, in the diabetic than in the control group. Zymography and immunoblotting revealed that the major MMPs in the type 2 diabetic patients' saliva were MMP-8 and MMP-9. Salivary MMP levels and activities in type 2 diabetic patients were in general similar to those in the control group. However, the correlation coefficients using multiple regression analysis revealed that gingival bleeding, pocket depths and HbA1c were associated with increased MMP-8 levels which, in turn, were negatively predicted by elevated plasma lipid peroxide levels in the diabetic group. Our data on salivary MMP-8 and -9 do not support the concept of generalized neutrophil dysfunction in unbalanced diabetes. Moreover, plasma lipid peroxidation levels reflecting the increased oxidative burden, which is generated mainly by triggered neutrophils, do not indicate neutrophil dysfunction due to diabetes, but may rather be related to the increased tissue damage in an uncontrolled disease. However. advanced periodontitis in type 2 diabetes seems to be related to elevated salivary MMP-8 levels which might be useful in monitoring periodontal disease in diabetes.

  4. Lycopene Modulates THP1 and Caco2 Cells Inflammatory State through Transcriptional and Nontranscriptional Processes

    Science.gov (United States)

    Makon-Sébastien, Njock; Francis, Fouchier; Eric, Seree; Henri, Villard Pierre; François, Landrier Jean; Laurent, Pechere; Yves, Barra; Serge, Champion

    2014-01-01

    We revisited the action of a carotenoid, the lycopene, on the expression of proinflammatory genes, reactive oxygen species (ROS) production, and metalloprotease (MMP9) activity. THP1 and Caco2 cell lines were used as in vitro models for the two main cell types found in intestine tissue, that is, monocytes and epithelial cells. Proinflammatory condition was induced using either phorbol ester acetate (PMA), lipopolysaccharide (LPS) or tumor necrosis factor (TNF). In THP1 cells, short term pretreatment (2 h) with a low concentration (2 μM) of lycopene reinforce proinflammatory gene expression. The extent of the effect of lycopene is dependent on the proinflammtory stimulus (PMA, LPS or TNF) used. Lycopene enhanced MMP9 secretion via a c-AMP-dependent process, and reduced ROS production at higher concentrations than 2 μM. Cell culture media, conditioned by PMA-treated monocytes and then transferred on CaCo-2 epithelial cells, induced a proinflammatory state in these cells. The extent of this inflammatory effect was reduced when cells has been pretreated (12 h) with lycopene. At low concentration (2 μM or less), lycopene appeared to promote an inflammatory state not correlated with ROS modulation. At higher concentration (5 μM–20 μM), an anti-inflammatory effect takes place as a decrease of ROS production was detected. So, both concentration and time have to be considered in order to define the exact issue of the effect of carotenoids present in meals. PMID:24891766

  5. Estrogen induced metastatic modulators MMP-2 and MMP-9 are targets of 3,3'-diindolylmethane in thyroid cancer.

    Directory of Open Access Journals (Sweden)

    Shilpi Rajoria

    2011-01-01

    Full Text Available Thyroid cancer is the most common endocrine related cancer with increasing incidences during the past five years. Current treatments for thyroid cancer, such as surgery or radioactive iodine therapy, often require patients to be on lifelong thyroid hormone replacement therapy and given the significant recurrence rates of thyroid cancer, new preventive modalities are needed. The present study investigates the property of a natural dietary compound found in cruciferous vegetables, 3,3'-diindolylmethane (DIM, to target the metastatic phenotype of thyroid cancer cells through a functional estrogen receptor.Thyroid cancer cell lines were treated with estrogen and/or DIM and subjected to in vitro adhesion, migration and invasion assays to investigate the anti-metastatic and anti-estrogenic effects of DIM. We observed that DIM inhibits estrogen mediated increase in thyroid cell migration, adhesion and invasion, which is also supported by ER-α downregulation (siRNA studies. Western blot and zymography analyses provided direct evidence for this DIM mediated inhibition of E(2 enhanced metastasis associated events by virtue of targeting essential proteolytic enzymes, namely MMP-2 and MMP-9.Our data reports for the first time that DIM displays anti-estrogenic like activity by inhibiting estradiol enhanced thyroid cancer cell proliferation and in vitro metastasis associated events, namely adhesion, migration and invasion. Most significantly, MMP-2 and MMP-9, which are known to promote and enhance metastasis, were determined to be targets of DIM. This anti-estrogen like property of DIM may lead to the development of a novel preventive and/or therapeutic dietary supplement for thyroid cancer patients by targeting progression of the disease.

  6. Malignant peripheral nerve sheath tumours in neurofibromatosis type 1: MRI supports the diagnosis of malignant plexiform neurofibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mautner, V.F. [Department of Neurology, Klinikum Nord Hamburg, Langenhorner Chaussee 560, 22419, Hamburg (Germany); Friedrich, R.E. [Department of Maxillofacial Surgery, Universitaetsklinikum Eppendorf, Hamburg (Germany); Deimling, A. von [Department of Neuropathology, Charite, Berlin (Germany); Hagel, C. [Department of Neuropathology, Universitaetsklinikum Eppendorf, Hamburg (Germany); Korf, B. [Center for Human Genetics, Harvard Institutes of Medicine, Boston, MA (United States); Knoefel, M.T. [Department of Surgery, Universitaetsklinikum Eppendorf, Hamburg (Germany); Wenzel, R.; Fuensterer, C. [MRI-Institute Hamburg Othmarschen, Hamburg (Germany)

    2003-09-01

    Plexiform neurofibroma (PNF) is a typical feature of neurofibromatosis 1 (NF1). About 10% of patients with NF1 develop malignant peripheral nerve-sheath tumours (MPNST), usually arising from PNF, and this is the major cause of poor survival. A better prognosis can be achieved if the tumours are diagnosed at an early stage. Our objective was to establish MRI criteria for MPNST and to test their usefulness in detecting early malignant change in PNF. MRI was performed on 50 patients with NF1 and nerve-sheath tumours, of whom seven had atypical pain, tumour growth or neurological deficits indicative of malignancy; the other 43 were asymptomatic. On MRI all seven symptomatic patients had inhomogeneous lesions, due to necrosis and haemorrhage and patchy contrast enhancement. In one patient, the multiplicity of confluent tumours with inhomogeneous areas in addition to central lesions did not allow exclusion of malignancy. Only three of the 43 asymptomatic patients had comparable changes; the other 40 patients had tumours being of relatively homogeneous structure on T1- and T2-weighted images before and after contrast enhancement. All three asymptomatic patients with inhomogeneous lesions were shown to have MPNST. (orig.)

  7. Once-weekly 22microg subcutaneous IFN-beta-1a in secondary progressive MS: a 3-year follow-up study on brain MRI measurements and serum MMP-9 levels

    DEFF Research Database (Denmark)

    Wu, X; Kuusisto, H; Dastidar, P

    2007-01-01

    : There was no obvious effect on the number of contrast medium-enhancing lesions, the volume of T1 or T2 lesions or level of serum MMP-9, nor was any effect detected on the relapse rate and the Expanded Disability Status Scale (EDSS). Brain atrophy progression was not affected by the treatment. CONCLUSION: The lack......OBJECTIVE: To study the effect of weekly injected subcutaneous interferon (IFN)-beta-1a 22 microg on the extent of brain lesions on magnetic resonance imaging (MRI) and the level of serum matrix metalloproteinase (MMP)-9 in patients with secondary progressive multiple sclerosis (SPMS). SUBJECTS...... of effect on MRI, clinical outcomes or the levels of MMP-9 indicates that subcutaneous administration of low-dose low-frequency IFN-beta-1a is insufficient in controlling either the inflammatory constitutes or the neurodegenerative changes of advanced SPMS. Udgivelsesdato: 2007-Jul...

  8. Differential control of MMP and t-PA/PAI-1 expressions by sympathetic and renin-angiotensin systems in rat left ventricle.

    Science.gov (United States)

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2009-10-05

    In the present study, we tested the hypothesis that angiotensin II (Ang II) has both direct (via AT1 receptors) and indirect (via sympathostimulator pathway) actions on the synthesis and activity of the enzymes involved in the extracellular matrix degradation in vivo. For this purpose, sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA of the plasminogen activator (t-PA) and its inhibitor (PAI-1), the mRNA, protein and activity of the matrix metalloproteinases MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymographic methods in the left ventricle. t-PA and PAI-1 mRNA were decreased after sympathectomy and remained unchanged after AT1 receptors blockade. mRNA was increased for t-PA and decreased by similar degree for PAI-1 after double treatment. MMPs mRNA and protein levels were decreased either after sympathectomy or AT1 receptors blockade and an additive effect was acquired after double treatment. MMPs activity was decreased by similar degree in the three treated groups. Deducted interpretations from our experimental approach suggest that Ang II inhibits directly (via AT1 receptors) and indirectly (via sympathostimulator pathway) t-PA mRNA synthesis. It seems unable to influence directly PAI-1 mRNA, but stimulates indirectly PAI-1 mRNA synthesis. Ang II stimulates directly (via AT1 receptors) and indirectly (via sympathostimulator pathway) MMPs synthesis at both transcriptional and protein levels. The enzymatic activity of MMPs does not seem to be influenced directly by Ang II but it could be stimulated indirectly (via sympathostimulator pathway).

  9. Comparison of Human Immunodeficiency Virus Type 1 Tropism Profiles in Clinical Samples by the Trofile and MT-2 Assays▿

    Science.gov (United States)

    Coakley, Eoin; Reeves, Jacqueline D.; Huang, Wei; Mangas-Ruiz, Marga; Maurer, Irma; Harskamp, Agnes M.; Gupta, Soumi; Lie, Yolanda; Petropoulos, Christos J.; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2009-01-01

    The recent availability of CCR5 antagonists as anti-human immunodeficiency virus (anti-HIV) therapeutics has highlighted the need to accurately identify CXCR4-using variants in patient samples when use of this new drug class is considered. The Trofile assay (Monogram Biosciences) has become the method that is the most widely used to define tropism in the clinic prior to the use of a CCR5 antagonist. By comparison, the MT-2 assay has been used since early in the HIV epidemic to define tropism in clinical specimens. Given that there are few data from direct comparisons of these two assays, we evaluated the performance of the plasma-based Trofile assay and the peripheral blood mononuclear cell (PBMC)-based MT-2 assay for the detection of CXCR4 use in defining the tropism of HIV isolates derived from clinical samples. The various samples used for this comparison were derived from participants of the Amsterdam Cohort Studies on HIV infection and AIDS who underwent consecutive MT-2 assay testing of their PBMCs at approximately 3-month intervals. This unique sample set was specifically selected because consecutive MT-2 assays had demonstrated a shift from negative to positive in PBMCs, reflecting the first emergence of CXCR4-using virus in PBMCs above the level of detection of the assay in these individuals. Trofile testing was performed with clonal HIV type 1 (HIV-1) variants (n = 21), MT-2 cell culture-derived cells (n = 20) and supernatants (n = 42), and plasma samples (n = 76). Among the clonal HIV-1 variants and MT-2 cell culture-derived samples, the results of the Trofile and MT-2 assays demonstrated a high degree of concordance (95% to 98%). Among consecutive plasma samples, detection of CXCR4-using virus was at or before the time of first detection by the MT-2 assay in 5/10 patients by the original Trofile assay and in 9/10 patients by the enhanced-sensitivity Trofile assay. Differences in the time to the first detection of CXCR4 use between the MT-2 assay (PBMCs

  10. Comparison of human immunodeficiency virus type 1 tropism profiles in clinical samples by the Trofile and MT-2 assays.

    Science.gov (United States)

    Coakley, Eoin; Reeves, Jacqueline D; Huang, Wei; Mangas-Ruiz, Marga; Maurer, Irma; Harskamp, Agnes M; Gupta, Soumi; Lie, Yolanda; Petropoulos, Christos J; Schuitemaker, Hanneke; van 't Wout, Angélique B

    2009-11-01

    The recent availability of CCR5 antagonists as anti-human immunodeficiency virus (anti-HIV) therapeutics has highlighted the need to accurately identify CXCR4-using variants in patient samples when use of this new drug class is considered. The Trofile assay (Monogram Biosciences) has become the method that is the most widely used to define tropism in the clinic prior to the use of a CCR5 antagonist. By comparison, the MT-2 assay has been used since early in the HIV epidemic to define tropism in clinical specimens. Given that there are few data from direct comparisons of these two assays, we evaluated the performance of the plasma-based Trofile assay and the peripheral blood mononuclear cell (PBMC)-based MT-2 assay for the detection of CXCR4 use in defining the tropism of HIV isolates derived from clinical samples. The various samples used for this comparison were derived from participants of the Amsterdam Cohort Studies on HIV infection and AIDS who underwent consecutive MT-2 assay testing of their PBMCs at approximately 3-month intervals. This unique sample set was specifically selected because consecutive MT-2 assays had demonstrated a shift from negative to positive in PBMCs, reflecting the first emergence of CXCR4-using virus in PBMCs above the level of detection of the assay in these individuals. Trofile testing was performed with clonal HIV type 1 (HIV-1) variants (n = 21), MT-2 cell culture-derived cells (n = 20) and supernatants (n = 42), and plasma samples (n = 76). Among the clonal HIV-1 variants and MT-2 cell culture-derived samples, the results of the Trofile and MT-2 assays demonstrated a high degree of concordance (95% to 98%). Among consecutive plasma samples, detection of CXCR4-using virus was at or before the time of first detection by the MT-2 assay in 5/10 patients by the original Trofile assay and in 9/10 patients by the enhanced-sensitivity Trofile assay. Differences in the time to the first detection of CXCR4 use between the MT-2 assay (PBMCs

  11. Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1.

    Science.gov (United States)

    Maher, Christina M; Thomas, Jeffrey D; Haas, Derick A; Longen, Charles G; Oyer, Halley M; Tong, Jane Y; Kim, Felix J

    2018-02-01

    Emerging evidence suggests that Sigma1 ( SIGMAR1 , also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy. Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This

  12. Evolution of the feruloyl esterase MtFae1a from Myceliophthora thermophila towards improved catalysts for antioxidants synthesis.

    Science.gov (United States)

    Varriale, Simona; Cerullo, Gabriella; Antonopoulou, Io; Christakopoulos, Paul; Rova, Ulrika; Tron, Thierry; Fauré, Régis; Jütten, Peter; Piechot, Alexander; Brás, Joana L A; Fontes, Carlos M G A; Faraco, Vincenza

    2018-04-23

    The chemical syntheses currently employed for industrial purposes, including in the manufacture of cosmetics, present limitations such as unwanted side reactions and the need for harsh chemical reaction conditions. In order to overcome these drawbacks, novel enzymes are developed to catalyze the targeted bioconversions. In the present study, a methodology for the construction and the automated screening of evolved variants library of a Type B feruloyl esterase from Myceliophthora thermophila (MtFae1a) was developed and applied to generation of 30,000 mutants and their screening for selecting the variants with higher activity than the wild-type enzyme. The library was generated by error-prone PCR of mtfae1a cDNA and expressed in Saccharomyces cerevisiae. Screening for extracellular enzymatic activity towards 4-nitrocatechol-1-yl ferulate, a new substrate developed ad hoc for high-throughput assays of feruloyl esterases, led to the selection of 30 improved enzyme variants. The best four variants and the wild-type MtFae1a were investigated in docking experiments with hydroxycinnamic acid esters using a model of 3D structure of MtFae1a. These variants were also used as biocatalysts in transesterification reactions leading to different target products in detergentless microemulsions and showed enhanced synthetic activities, although the screening strategy had been based on improved hydrolytic activity.

  13. Matrix metalloproteinase 1: role in sarcoma biology.

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Jawad

    2010-12-01

    Full Text Available In carcinomas stromal cells participate in cancer progression by producing proteases such as MMPs. The expression MMP1 is a prognostic factor in human chondrosarcoma, however the role in tumor progression is unknown. Laser capture microdissection and In Situ hybridization were used to determine cellular origin of MMP1 in human sarcomas. A xenogenic model of tumor progression was then used and mice were divided in two groups: each harboring either the control or a stably MMP1 silenced cell line. Animals were sacrificed; the neovascularization, primary tumor volumes, and metastatic burden were assessed. LCM and RNA-ISH analysis revealed MMP1 expression was predominantly localized to the tumor cells in all samples of sarcoma (p = 0.05. The percentage lung metastatic volume at 5 weeks (p = 0.08 and number of spontaneous deaths secondary to systemic tumor burden were lower in MMP1 silenced cell bearing mice. Interestingly, this group also demonstrated a larger primary tumor size (p<0.04 and increased angiogenesis (p<0.01. These findings were found to be consistent when experiment was repeated using a second independent MMP1 silencing sequence. Prior clinical trials employing MMP1 inhibitors failed because of a poor understanding of the role of MMPs in tumor progression. The current findings indicating tumor cell production of MMP1 by sarcoma cells is novel and highlights the fundamental differences in MMP biology between carcinomas and sarcomas. The results also emphasize the complex roles of MMP in tumor progression of sarcomas. Not only does metastasis seem to be affected by MMP1 silencing, but also local tumor growth and angiogenesis are affected inversely.

  14. Type 1,1-operators defined by vanishing frequency modulation

    DEFF Research Database (Denmark)

    Johnsen, Jon

    2009-01-01

    This paper presents a general definition of pseudo-differential operators of type 1,1; the definition is shown to be the largest one that is both compatible with negliible operators and stable under vanishing frequency modulation. Elaborating counter-examples of Ching, Hörmander and Parenti...

  15. Melatonin membrane receptor (MT1R) expression and nitro-oxidative stress in testis of golden hamster, Mesocricetus auratus: An age-dependent study.

    Science.gov (United States)

    Mukherjee, Arun; Haldar, Chandana

    2015-09-01

    Age-dependent decline in melatonin level induces nitro-oxidative stress that compromises physiological homeostasis including reproduction. However, less information exist regarding the age-dependent variation in local melatonin (lMel) concentration and MT1R expression in testis and its interaction with testicular steroidogenesis and nitro-oxidative stress in golden hamster, Mesocricetus auratus. Therefore, we evaluated lMel level along with MT1R expression and its possible interaction with steroidogenesis and nitro-oxidative stress in testes of young (6weeks), adult (15weeks) and old (2years) aged hamsters. Further, we injected the old hamsters with melatonin to address whether age-related decline in lMel and MT1R is responsible for the reduction in testicular steroidogenesis and antioxidant status. Increased expression of steroidogenic markers suggests increased testicular steroidogenesis in adult hamsters that declined in old hamsters. An age-dependent elevation in the level of NOX, TBARS, corticosterone and the expression of iNOS and GR with a concomitant decrease in enzyme activities for SOD, CAT, GSH-PX indicate increased nitro-oxidative stress in testes. Data suggest that reproductive senescence in male hamsters might be a consequence of declined lMel concentration with MT1R expression inducing nitro-oxidative stress resulting in diminished testicular steroidogenesis. However, administration of Mel in old-aged hamsters significantly increased steroidogenesis and antioxidant status without a significant variation in lMel concentration and MT1R expression in testes. Therefore, decreased lMel and MT1R might not be the causative factor underlying the age-associated decrease in antioxidant defence and steroidogenesis in testes. In conclusion, Mel induced amelioration of testicular oxidative insult and elevation of steroidogenic activity suggests a potential role of increased nitro-oxidative stress underlying the age-dependent decrease in steroidogenesis. Copyright

  16. MT survey in the Minaminoshiro oil field; Minaminoshiro chiiki ni okeru MT ho ni yoru sekiyu tanko (sanjigen MT ho chosa no kento). 1

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, K; Minegishi, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Preliminary experiment, investigation, and study are conducted prior to an experimental 3-D MT (magnetotelluric) survey planned to be carried out in the Minaminoshiro district, Akita Prefecture. In the preliminary investigation, MT measurements were performed at nine locations. It was anticipated that national highways, waste treatment plants, high-voltage power lines, and railways in presence in the district would act as noise sources. Although the impact of such noise was detected in the single site treatment result, yet it was found that it would be mostly eliminated by use of the remote reference treatment. It was learned that the resistivity structure in this district was quite low in contrast or 1 ohm/m against 30 ohm/m, but the result of 3-D model calculation indicated that a sufficient analysis would be possible even in such a low contrast case. Furthermore, as the result of the study of the density of observation stations in the magnetic field, it was found that changes in the response of magnetic field to the resistivity structure would be approximately 2% at the maximum and that the ill effect on the result of measurement would be of the negligible magnitude even when a single magnetic field observation station is deployed against plural electric field observation stations. 6 refs., 7 figs.

  17. Polymorphisms of the MMP-9 gene and abdominal aortic aneurysm

    Science.gov (United States)

    Smallwood, Linda; Allcock, Richard; van Bockxmeer, Frank; Warrington, Nicole; Palmer, Lyle J; Iacopetta, Barry; Golledge, Jonathan; Norman, Paul E

    2008-01-01

    Background Increased matrix metalloproteinase-9 (MMP-9) activity has been implicated in the formation of abdominal aortic aneurysms (AAAs). The aim of the present study was to explore the association between potentially functional variants of the MMP-9 gene and AAA. Method The −1562C>T and −1811A>T variants of the MMP-9 gene were genotyped in 678 men with AAAs (>30mm in diameter) and 659 controls (aortic diameter 19−22mm) recruited from a population-based trial of screening for AAAs. The levels of MMP-9 were measured in a random subset of 300 cases and 84 controls. The association between genetic variants (including haplotypes) and AAA was assessed using multivariate logistic regression. Results There was no association between the MMP-9 −1562C>T (OR 0.70 95%CI 0.27, 1.82) or −1811A>T (OR 0.71, 95%CI 0.28, 1.85) genotypes, or the most common haplotype (OR 0.81 95%CI 0.62, 1.05), and AAA. The serum MMP-9 concentration (ng/mL) was higher in cases than controls and in minor allele carriers in cases and controls although the differences were not statistically significant. Conclusion The results suggest that a genetic tendency to have higher levels of circulating MMP-9 is not associated with AAAs. PMID:18763261

  18. Supernatants from culture of type I collagen-stimulated PBMC from patients with cutaneous systemic sclerosis versus localized scleroderma demonstrate suppression of MMP-1 by fibroblasts.

    Science.gov (United States)

    Brown, Monica; Postlethwaite, Arnold E; Myers, Linda K; Hasty, Karen A

    2012-06-01

    Systemic sclerosis (SSc) is a chronic fibrosing disease characterized by vasculopathy, autoimmunity, and an accumulation of collagen in tissues. Numerous studies have shown that compared to healthy or diseased controls, the peripheral blood mononuclear cells (PBMC) from patients with SSc produce a variety of cytokines or proliferate when cultured with solubilized type I collagen (CI) or constituent α1(II) and α2(I) polypeptide chains. The purpose of this study was to determine whether PBMC isolated from patients with SSc and cultured in vitro with soluble CI elaborated soluble mediators that inhibit the production of collagenase (i.e., matrix metalloproteinase, MMP-1) by fibroblasts. Supernatants of CI-stimulated PBMC from juvenile and adult diffuse cutaneous (dc)SSc patients significantly reduced MMP-1 production by SSc dermal fibroblasts, while supernatants of CI-stimulated PBMC from patients with localized scleroderma (LS) did not. CI-stimulated PBMC culture supernatants from patients with dcSSc in contrast to patients with LS exhibited increased levels of platelet-derived growth factor (PDGF)-AA, PDGF-BB, TNF-α, IL-13, and EGF. Prolonged culture of SSc dermal fibroblasts with recombinant PDGF-BB or IL-13 inhibited the induction of MMP-1 in response to subsequent TNF-α stimulation. These data suggest that therapies aimed at reducing these cytokines may decrease collagen accumulation in SSc, preventing the development of chronic fibrosis.

  19. Berberine Suppresses Cell Motility Through Downregulation of TGF-β1 in Triple Negative Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sangmin Kim

    2018-01-01

    Full Text Available Background/Aims: Transforming growth factor-beta proteins (TGF-βs are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR on tumor growth and metastasis of triple negative breast cancer (TNBC cells via suppression of TGF-β1 expression. Methods: The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. Results: In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1–induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. Conclusion: BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC.

  20. Metaloproteinases 1 e 7 e câncer colorretal Metalloproteinases 1 and 7 and colorectal cancer

    Directory of Open Access Journals (Sweden)

    Mário Jucá

    2008-09-01

    Full Text Available A metaloproteinase-1 (MMP-1 e a metaloproteinase-7 (MMP-7 são proteinases da matriz extracelular (MEC, zinco-dependentes, envolvidas no processo inicial da carcinogênese por permitirem a invasão tumoral na célula e promover o processo de metastatização. O polimorfismo dessas proteinases tem sido estudado recentemente com o objetivo de validar susa expressão e/ou atividade como marcador prognóstico. Evidências cumulativas revelam importante papel das MMP's 1 e 7 em diferentes fases da carcinogênese. A MMP-1 tem ação direta sobre a principal proteína da MEC, que é o colágeno do tecido intersticial conectivo. Sua expressão aumentada neste tecido pode indicar alto potencial de disseminação tumoral em diferentes tipos de câncer, incluindo o colorretal. A associação deste aumento da expressão também parece ser verdadeira para a MMP-7.The metalloproteinase-1 (MMP-1 and metalloproteinase-7 (MMP-7 are proteinases of the extracellular matrix (MEC, zinc-dependent, involved in the initial process of carcinogenesis, allowing the invasion by the tumor cell and promoting the process of metastasis. The polymorphism of these proteinases has been studied recently in order to validate its expression and / or activity as a marker prognosis. Evidence shows cumulative important role of MMPs 1 and 7 in different stages of carcinogenesis. The MMP-1 is direct action on the main protein of the MEC, which is the collagen of interstitial connective tissue. Its increased expression in this tissue may indicate high potential for spread in different tumor types of cancer, including colorectal. The association of this increase of expression also appears to be true for MMP-7.

  1. Recanalization and flow regulate venous thrombus resolution and Matrix metalloproteinases expression in vivo

    Science.gov (United States)

    Chabasse, Christine; Siefert, Suzanne A.; Chaudry, Mohammed; Hoofnagle, Mark H.; Lal, Brajesh K.; Sarkar, Rajabrata

    2016-01-01

    Objective We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. Design of study In CD1 mice, we performed surgical inferior vena cava (IVC) ligation (stasis thrombosis), stenosis (thrombosis with recanalization) or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution, and quantified the mRNA and protein levels of Membrane-Type Matrix Metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at day 4, 8 and 12 post-surgery. Results Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8, and 12.57% at day 12, as compared with stasis thrombosis (ligation model). Immunoblot and real-time PCR demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P=.03 and P=.006 respectively), as well as a difference in MT2-MMP gene expression at day 8 (P=.044) and day 12 (P=0.03) and MT1-MMP protein expression at day 4 (P=.021). Histological analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared to the ligation model, as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Conclusions Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo, and are associated with distinct patterns of MT1- and MT3-MMP expression and macrophages localization in areas of intra-thrombus recanalization. PMID:26993683

  2. An integrated computational and experimental approach to gaining selectivity for MMP-2 within the gelatinase subfamily.

    Science.gov (United States)

    Fabre, Benjamin; Filipiak, Kamila; Díaz, Natalia; Zapico, José María; Suárez, Dimas; Ramos, Ana; de Pascual-Teresa, Beatriz

    2014-02-10

    Looking for water-soluble inhibitors of matrix metalloproteinase-2 (MMP-2 or gelatinase A), we have previously reported compound 1, a potent MMP-2 inhibitor with a promising selectivity over the structurally homologous MMP-9 (gelatinase B). Here we report the results of Molecular Dynamics (MD) simulations for both gelatinases (MMP-2 and MMP-9), and for the corresponding MMP/1 complexes, in an attempt to shed light on the observed selectivity between the two enzymes. These studies indicated a higher plasticity of MMP-2 at the S1' pocket and suggested an induced-fit effect at the "back door" of this pocket. On the basis of these observations, we designed 11 a-d to aid further discrimination between MMP-2 and MMP-9. Those compounds displayed notably lower inhibitory activities against MMP-9; in particular, 11 b proved to be over 100 times more active against MMP-2 than against MMP-9. MD simulations of the MMP/11 b complexes and thermodynamic integration calculations provided structural insight and relative binding energies consistent with the experimentally observed activity data. These findings demonstrate that structural differences in the S1' pocket bottom permit an improvement in selectivity in the inhibition of MMP-2 over that of MMP-9; this is of great relevance for future structure-based drug design because MMP-2 is a validated target for cancer therapy, whereas MMP-9 plays both detrimental and protective roles in cancer. This study also supports the need to consider the dynamics of the S1' pocket in order to achieve selectivity in the inhibition of MMPs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Effect of Ratio of Contraction to Relaxation Durations in PNF Exercises on the Muscle Strength and Range of Motion of Hip Joint

    Directory of Open Access Journals (Sweden)

    Hossein Rashedi

    2015-09-01

    Full Text Available Objective: The aim of the present study was to compare the effect of ratios of contraction- Relaxation on the muscle strength and range of motion of hip joint in PNF exercises. Methods: Thirty nine nonathletic male students (Mean±SD; age, 13±1.2 years; body mass, 55±9.8 kg were assigned .Three groups designated as I, II and III groups. The ratios of contraction to relaxation periods for groups were 1, 2 and 3 respectively. Training program included three sessions per week (CR-PNF for 6 weeks. Measurements of hip extensors muscles stretch and strength were performed at the beginning and at the end of training using an inclinometer (during leg raise test and dynamometer. Data were analyzed using dependent samples t-test and one-way ANOVA. Results: The results of the present study showed significant increases in hip extensor muscles flexibility and strength for three groups. This increase the in the strength in group I equaled 6 kg, in group II 4 kg and in group III 7 kg. The amount of increase in the hip extensor muscles flexibility in group I, II and II were 15, 8 and 12 degrees, respectively. The increase in these two variables was significant and similar in all three groups. Conclusion: Different contraction to relaxation ratio normally, 0.5, 1 and 2, did not show any meaningful differences on hip extensor muscular strength and hip range of motion.

  4. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment

    Directory of Open Access Journals (Sweden)

    Inge Van Hove

    2016-11-01

    Full Text Available Matrix metalloproteinase-3 (MMP-3 is known to mediate neuroinflammatory processes by activating microglia, disrupting blood–central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE and the blood–retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1, interleukin 6 (Il6, cytokine-inducible nitrogen oxide synthase (Nos2 and tumor necrosis factor α (Tnfα, which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP-1 and (C-X-C motif ligand 1 (CXCL1. These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.

  5. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-01-01

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 μM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 μM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (≥ 5 μM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  6. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    Science.gov (United States)

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  7. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography.

    Science.gov (United States)

    Toth, Marta; Sohail, Anjum; Fridman, Rafael

    2012-01-01

    Gelatin zymography is a simple yet powerful method to detect proteolytic enzymes capable of degrading gelatin from various biological sources. It is particularly useful for the assessment of two key members of the matrix metalloproteinase family, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), due to their potent gelatin-degrading activity. This polyacrylamide gel electrophoresis-based method can provide a reliable assessment of the type of gelatinase, relative amount, and activation status (latent, compared with active enzyme forms) in cultured cells, tissues, and biological fluids. The method can be used to investigate factors that regulate gelatinase expression and modulate zymogen activation in experimental systems. The system provides information on the pattern of gelatinase expression and activation in human cancer tissues and how this relates to cancer progression. Interpretation of the data obtained in gelatin zymography requires a thorough understanding of the principles and pitfalls of the technique; this is particularly important when evaluating enzyme levels and the presence of active gelatinase species. If properly used, gelatin zymography is an excellent tool for the study of gelatinases in biological systems.

  8. MtNF-YA1, a central transcriptional regulator of symbiotic nodule development, is also a determinant of Medicago truncatula susceptibility towards a root pathogen.

    Directory of Open Access Journals (Sweden)

    Thomas Rey

    2016-12-01

    Full Text Available Plant NF-Y transcription factors control a wide array of biological functions enabling appropriate reproductive and developmental processes as well as adaptation to various abiotic and biotic environments. In Medicago truncatula, MtNF-YA1 was previously identified as a key determinant for nodule development and establishment of rhizobial symbiosis. Here we highlight a new role for this protein in compatibility to Aphanomyces euteiches, a root pathogenic oomycete. The Mtnf-ya1-1 mutant plants showed better survival rate, reduced symptoms, and increased development of their root apparatus as compared to their wild type background A17. MtNF-YA-1 was specifically up-regulated by A. euteiches in F83005.5, a highly susceptible natural accession of M. truncatula while transcript level remained stable in A17, which is partially resistant. The role of MtNF-YA1 in F83005.5 susceptibility was further documented by reducing MtNF-YA1 expression either by overexpression of the miR169q, a microRNA targeting MtNF-YA1, or by RNAi approaches leading to a strong enhancement in the resistance of this susceptible line. Comparative analysis of the transcriptome of wild type and Mtnf-ya1-1 led to the identification of 1509 differentially expressed genes. Among those, almost 36 defence-related genes were constitutively expressed in Mtnf-ya1-1, while 20 genes linked to hormonal pathways were repressed. In summary, we revealed an unexpected dual role for this symbiotic transcription factor as a key player in the compatibility mechanisms to a pathogen.

  9. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  10. Association of endothelin-1 expression and cartilaginous endplate degeneration in humans.

    Directory of Open Access Journals (Sweden)

    Wei Yuan

    Full Text Available BACKGROUND: Inflammatory cytokines are involved in intervertebral disc (IVD degeneration. Endothelin-1 (ET-1, a 21-amino-acid cytokine implicated with cartilage degradation, is secreted by vascular endothelial cells and also by many other cell types. The expression of ET-1 in human IVD cartilage endplate (CEP and its role in disc degeneration have not been explored. METHODS AND FINDINGS: The expression of ET-1 in degenerated CEP was analyzed by immunohistochemical staining and Western blotting; ET-1 was demonstrated in cartilaginous endplate cells (CECs by immunofluorescent staining. The ET-1 mRNA expression and protein production by CECs stimulated by tumor necrosis factor alpha (TNF-α, a pro-inflammatory cytokine, were determined by real-time PCR analysis and Western blotting, respectively. The matrix metalloprotease-1 (MMP-1, MMP-13 and tissue inhibitor of metalloproteases-1 (TIMP-1 levels in the supernatant of cultured CECs treated with ET-1 were determined using enzyme-linked immunosorbent assays. Nitric oxide (NO release and nitric oxide synthase (NOS activity were measured using a spectrophotometric assay. The apoptosis of CECs by ET-1 was measured by an Annexin V-FITC detection assay. The production of ET-1 in degenerated cartilage endplate was significantly higher than normal CEP. The results showed that ET-1 was expressed by CECs and modulated by TNF-α in a dose-dependent manner. ET-1 increased production of MMP-1 and MMP-13, decreased TIMP-1 production, and induced NO and NOS release by cultured CECs. The direct stimulation of CECs by ET-1 did not promote cell apoptosis. CONCLUSION: The study results suggest that ET-1 played a pivotal role in human CEP degeneration, and may be a new target for development of therapies for this condition.

  11. HIV-1-infected macrophages induce astrogliosis by SDF-1α and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Okamoto, Mika; Wang, Xin; Baba, Masanori

    2005-01-01

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1α or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1α production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1α was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1α and MMP production, which implies a mechanism of astrogliosis in HAD

  12. Matrix Metalloproteinase-3 (MMP-3) Is an Endogenous Activator of the MMP-9 Secreted by Placental Leukocytes: Implication in Human Labor.

    Science.gov (United States)

    Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe

    2015-01-01

    The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. In this work we confirm that placental leukocytes from human term

  13. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  14. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Science.gov (United States)

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  15. PAI-1 modulates cell migration in a LRP1-dependent manner via β-catenin and ERK1/2

    DEFF Research Database (Denmark)

    Kozlova, Nina; Jensen, Jan Kristian; Chi, Tabughang Franklin

    2015-01-01

    was proposed to modulate the β-catenin pathway. Therefore, we used wild-type mouse embryonic fibroblasts (MEFs), and MEFs deficient of LRP1 to study PAI-1 as modulator of the β-catenin pathway. We found that PAI-1 influences MEF proliferation and motility in a LRP1-dependent manner and that β...

  16. MCP-1, ICAM-1 and VCAM-1 are present in early aneurysmal dilatation in experimental rats

    International Nuclear Information System (INIS)

    Jun Fan; Hao-Tong; Jing Di; Fang Liu; Hai-Hua Zhao; Shu-Ling Bai; Xiang Li; Linlin Zhong

    2010-01-01

    Recent studies have suggested that inflammation actively participates in ascending aortic aneurysm formation. The aim of the present study was to evaluate the expression changes of adhesion molecules and MMPs in an experimental model of ascending aortic aneurysm induced by ascending aorta banding in Wistar rats. Twelve rats developed aortic dilation after ascending aorta banding treatment, while nine normal animals underwent surgery without banding were used as controls. Light microscope and scanning electron microscope showed that the wall of the ascending aorta became disorganized as well as infiltration by inflammatory cells in aneurysmal rats. By using immunohistochemical techniques, a significant increase in the immunostaining of MCP-1 was observed in the aneurysmal wall as compared to the normal aortic wall. Under similar experimental conditions, we also found that the immunostaining of ICAM-1 and VCAM-1 was markedly increased in the aneurysmal wall. In addition, gelatin zymo graphic analysis showed that the expression and activities of MMP-2 and MMP-9 were remarkably enhanced in the ascending aorta of ascending aortic aneurysmal rats as compared to normal rats. These results demonstrate that MCP-1, ICAM-1 and VCAM-1 are involved in the pathogenesis of ascending aortic aneurysm and an increase in the immunostaining and activity of MMP-2 and MMP-9 may promote the progression of ascending aortic aneurysm. (authors)

  17. Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sun Yu-Shu

    2010-11-01

    Full Text Available Abstract Background To assess the effects of Glycine tomentella Hayata (GTH, a traditional herbal medicine for treatment of rheumatic diseases on the expression of the proinflammatory cytokines and on the clearance of apoptotic cells by macrophages. Methods RAW264.7 cells were cultured with lipopolysaccharide (LPS in the presence or absence of ethanol extract of GTH. The expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α, and inducible nitric oxide synthase (iNOS and transglutaminase 2 (TG2 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA. Matrix metalloproteinase (MMP-2 and MMP-9 were assayed by gelatin zymography. For detecting uptake of apoptotic cells, RAW264.7 cells were cultured with carboxyfluorescein diacetate (CFDA-stained apoptotic cells and assayed by flow cytometry. Results The major components of GTH analyzed by high-performance liquid chromatography (HPLC chromatogram were daidzein (42.5%, epicatechin (28.8%, and naringin (9.4%. GTH treatment inhibited the expression of proinflammatory cytokines IL-1β, IL-6 and MMP-9 but did not affect the expression of TNF-α and iNOS. GTH significantly enhanced the expression of TG2 and the clearance of apoptotic cells by RAW264.7 macrophages. Conclusions GTH inhibits proinflammatory cytokine secretion and MMP-9 activity, enhances apoptotic cell uptake and up-regulates TG2 expression. Our data show that GTH might have beneficial effects on rheumatic diseases.

  18. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT2 /Akt/NF-κB pathway.

    Science.gov (United States)

    Onphachanh, Xaykham; Lee, Hyun Jik; Lim, Jae Ryong; Jung, Young Hyun; Kim, Jun Sung; Chae, Chang Woo; Lee, Sei-Jung; Gabr, Amr Ahmed; Han, Ho Jae

    2017-09-01

    Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT 2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT 2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions. © 2017 The Authors. Journal of Pineal Research

  19. Allele-specific MMP-3 transcription under in vivo conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaoyong, Zhu [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Odeberg, Jacob [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm (Sweden); Hamsten, Anders [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Eriksson, Per [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden)

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  20. Morphological changes of cerebral vessels and expression patterns of MMP-2 and MMP-9 on cerebrovascular wall of alcoholic rats.

    Science.gov (United States)

    Qi, Qian; Liu, Xia; Zhang, Guozhong; He, Wenjing; Ma, Rufei; Cong, Bin; Li, Yingmin

    2014-01-01

    Alcohol abuse increases the incidence of cerebral accidents, which correlates with cerebrovascular structural changes. The present study was designed to observe the cerebrovascular remodeling of drinking rats with light microscopy and transmission electron microscopy (TEM). Short-term alcohol administration induced apparent amplification of perivascular spaces around small vessels in brain tissue, while long-term administration caused pathological changes of basilar arteries (BAs), including endothelial exfoliation, inner elastic lamina (IEL) fragmentation and thickening of tunica media and adventitia. In addition, the relationship between cerebrovascular remodeling and MMP-2 and MMP-9 synthesized by endothelial cells and vascular smooth muscle cells was explored by immunohistochemistry. The two protein expression in cerebral vessels changed dynamically, peaking at 1-2 weeks after treatment, and decreasing as treatment continued. These results suggest that MMP-2 and MMP-9 may play a significant role in blood-brain barrier disruption after alcohol abuse. But the chronic changes of cerebral arteries resulted from drinking are not coincident with time course of MMP-2 and MMP-9 expression in situ.

  1. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Bchir, Sarra; Nasr, Hela Ben; Bouchet, Sandrine; Benzarti, Mohamed; Garrouch, Abdelhamid; Tabka, Zouhair; Susin, Santos; Chahed, Karim; Bauvois, Brigitte

    2017-07-01

    A growing body of evidence points towards smoking-related phenotypic differences in chronic obstructive pulmonary disease (COPD). As COPD is associated with systemic inflammation, we determined whether smoking status is related to serum levels of matrix metalloproteinase-9 (pro- and active MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and the proMMP-9/NGAL complex in patients with COPD. Serum samples were collected in 100 stable-phase COPD patients (82 smokers, 18 never-smokers) and 28 healthy adults (21 smokers, 7 never-smokers). Serum levels of studied factors were measured in ELISA. Our data provide the first evidence of simultaneously elevated serum levels of MMP-9, NGAL and proMMP-9/NGAL in COPD smokers. While the triad discriminated between smokers and non-smokers in the COPD group, MMP-9 and proMMP-9/NGAL (but not NGAL) discriminated between smokers with and without COPD. Adjustment for age and smoking pack-years did not alter the findings. Serum MMP-9, NGAL and proMMP-9/NGAL levels were not correlated with the GOLD stage or FEV1 decline. Furthermore, serum levels of neutrophil elastase (NE) and MMP-3 (but not of IL-6 and MMP-12) were also higher in COPD smokers than in healthy smokers before and after adjustment for age and pack-years. Among COPD smokers, levels of MMP-9, NGAL and proMMP-9/NGAL were positively correlated with NE (P < 0.0001) but not with the remaining factors. Gelatin zymography detected proMMP-9 in serum samples of healthy and COPD smoking groups. Our results suggest that associated serum levels of proMMP-9, NGAL, proMMP-9/NGAL and NE may reflect the state of systemic inflammation in COPD related to cigarette smoking. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. WRAP Module 1 waste characterization plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-01-01

    The purpose of this document is to present the characterization methodology for waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing (WRAP) Module 1 facility. The scope of this document includes all solid low level waste (LLW), transuranic (TRU), mixed waste (MW), and dangerous waste. This document is not meant to be all-inclusive of the waste processed or generated within WRAP Module 1, but to present a methodology for characterization. As other streams are identified, the method of characterization will be consistent with the other streams identified in this plan. The WRAP Module 1 facility is located in the 200 West Area of the Hanford Site. The facility's function is two-fold. The first is to verify/characterize, treat and repackage contact handled (CH) waste currently in retrievable storage in the LLW Burial Grounds, Hanford Central Waste Complex, and the Transuranic Storage and Assay Facility (TRUSAF). The second is to verify newly generated CH TRU waste and LLW, including MW. The WRAP Module 1 facility provides NDE and NDA of the waste for both drums and boxes. The NDE is used to identify the physical contents of the waste containers to support waste characterization and processing, verification, or certification. The NDA results determine the radioactive content and distribution of the waste

  3. Immunohistochemical expression of MMP-14 and MMP-2, and MMP-2 activity during human ovarian follicular development

    NARCIS (Netherlands)

    Vos, M.C.; Wurff, A.A. van der; Last, J.T.; Boed, E.A. de; Smeenk, J.M.J.; Kuppevelt, T.H. van; Massuger, L.F.A.G.

    2014-01-01

    BACKGROUND: The aim of this study was to investigate the presence of MMP-14 and MMP-2 during human ovarian follicular development using immunohistochemistry, and the activity of MMP-2 in follicular fluid using zymography. METHODS: Ovarian tissue collected from the archives of the Department of

  4. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  5. MMP-8 Is Critical for Dexamethasone Therapy in Alkali-Burned Corneas Under Dry Eye Conditions

    Science.gov (United States)

    BIAN, FANG; WANG, CHANGJUN; TUKLER-HENRIKSSON, JOHANNA; PFLUGFELDER, STEPHEN C.; CAMODECA, CATERINA; NUTI, ELISA; ROSSELLO, ARMANDO; LI, DE-QUAN; DE PAIVA, CINTIA S.

    2016-01-01

    Our previous studies have shown that Dexamethasone (Dex) reduced the expression of matrix-metalloproteinases (MMPs -1,-3,-9,-13), IL-1β and IL-6, while it significantly increased MMP-8 mRNA transcripts in a concomitant dry eye and corneal alkali burn murine model (CM). To investigate if MMP-8 induction is responsible for some of the protective effects of Dex in CM, MMP-8 knock out mice (MMP-8KO) were subjected to the CM for 2 or 5 days and topically treated either with 2 μl of 0.1% Dexamethasone (Dex), or saline QID. A separate group of C57BL/6 mice were topically treated with Dex or BSS and received either 100 nM CAM12 (MMP-8 inhibitor) or vehicle IP, QD. Here we demonstrate that topical Dex treated MMP-8KO mice subjected to CM showed reduced corneal clarity, increased expression of inflammatory mediators (IL-6, CXCL1, and MMP-1 mRNA) and increased neutrophil infiltration at 2D and 5D compared to Dex treated WT mice. C57BL/6 mice topically treated with Dex and CAM12 IP recapitulated findings seen with MMP-8KO mice. These results suggest that some of the anti-inflammatory effects of Dex are mediated through increased MMP-8 expression. PMID:26923552

  6. Mucosa-Associated Lymphoid Tissue Lymphoma Translocation Protein 1 Positively Modulates Matrix Metalloproteinase-9 Production in Alveolar Macrophages upon Toll-Like Receptor 7 Signaling and Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lee

    2017-09-01

    Full Text Available Influenza A virus (IAV infection causes significant morbidity and mortality worldwide. Matrix metalloproteinase-9 (MMP-9 degrades extracellular matrix and is involved in the pathology of influenza. It has been reported that MMP-9 mediates neutrophil migration in IAV infection. Whether alveolar macrophages, the first immune cells that encounter IAV, produce MMP-9, and the mechanism of its regulation have never been investigated. As Toll-like receptor 7 (TLR7 is one of the receptors in innate immune cells that recognize IAV, we used TLR7 agonists and IAV to stimulate alveolar macrophage MH-S cells, primary macrophages, and bone marrow neutrophils. Results showed that MMP-9 expression in macrophages is inducible by TLR7 agonists and IAV, yet, MMP-9 production by neutrophils is not inducible by either one of them. We hypothesized that MMP-9 production in macrophages is mediated through TLR7-NF-κB pathway and used microarray to analyze TLR7 agonist-induced NF-κB-related genes. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1, a positive regulator of NF-κB, is amongst the top highly induced genes. By use of MALT1 inhibitor (z-VRPR-fmk and alveolar macrophages from MALT1-deficient mice, we found that MMP-9 production is MALT1-dependent. While MALT1 can act as a paracaspase in lymphocytes through degrading various signaling proteins, we discovered that MALT1 functions to reduce a negative regulator of NF-κB, cylindromatosis (CYLD, in alveolar macrophages. IAV-induced MMP-9, TNF, and IL-6 in lungs of MALT1-deficient mice are significantly lower than in wild-type mice after intratracheal infection. MALT1-deficient mice also have less body weight loss and longer survival after infection. Taken together, we demonstrated a novel role of MALT1 in regulating alveolar macrophage MMP-9 production whose presence exacerbates the severity of influenza.

  7. Serum Matrix Metalloproteinase-2, -7 and -9 (MMP-2, MMP-7, MMP-9 levels as Prognostic Markers in Patients with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Elena Kostova

    2012-12-01

    Full Text Available Introduction: Matrix metalloproteinases are produced by tumour cells, hence, they may be associated with tumour progression including invasion, migration, angiogenesis and metastasis. Finding prognostic markers to better identify patients with higher risk for poor survival would be valuable in order to customize pre- and postoperative treatment as well as to enable closer follow-up of these patients. Aim of our study was to examineMMP-2, MMP-7 and MMP-9 serum levels and correlated them with pathological data such as stage of the colorectal cancer (CRC and outcome.Methods: The investigation included 82 patients with operable CRC without distant metastases, who had underwent blood tests in order to determine the MMP-2, MMP-7 and MMP-9 serum levels in the following time periods: preoperatively, 3, 6, 9 and 12 months postoperatively.Results: The values of the investigated MMPs decrease postoperatively and start to increase 6 month later in patients of all stages of the disease, reaching the highest value 12 month postoperatively with statistically important differences of MMP-2, MMP-7 and MMP-7 serum levels in terms of disease staging and defined points of time. Analysis of the results showed that the MMP-2 serum levels obtained 3 and 12 months postoperatively,than MMP-7 serum levels 12 months postoperatively and the MMP-9 serum levels in all analyzed points in time were in significant association with the CRC patients’outcome.Conclusion: The MMP-2, MMP-7 and especially MMP-9 serum values could be important indicators for diagnosis of the patients with CRC and for monitoring of disease progression.

  8. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?

    Directory of Open Access Journals (Sweden)

    Jennifer R Bailey

    Full Text Available BACKGROUND: Fibrosis is a serious consequence of Crohn's disease (CD, often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. METHODS: Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f CD and compared with cancer control (C, ulcerative colitis (UC and uninvolved (u CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. RESULTS: In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R α1 was expressed by intestinal muscle smooth muscle, nerve and KIR(+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR(+CD45(+CD56(+/-CD3(- were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. CONCLUSIONS: The data indicate that in fibrotic intestinal muscle of Crohn's patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1(+, KIR(+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.

  9. Association of MMP-2 and MMP-9 expression with recurrences in primary spontaneous pneumothorax.

    Science.gov (United States)

    Huang, Ying-Fong; Chiu, Wen-Chin; Chou, Shah-Hwa; Su, Yu-Han; Chen, Yu-Wen; Chai, Chee-Yin; Huang, Chih-Jen; Huang, Ming-Yii; Yuan, Shyng-Shiou F; Lee, Yi-Chen

    2017-01-01

    Primary spontaneous pneumothorax (PSP) is a common benign problem. However, PSP recurrence is still a troublesome complication for most patients. This study intended to determine the role of matrix metalloproteinase-2 (MMP-2) and MMP-9 in type II pneumocytes of patients with PSP and its relation with recurrence. Ninety-one patients who had undergone needlescopic video-assisted thoracoscopic surgery wedge resection of lung with identifiable blebs for PSP were included in this study. Immunohistochemical (IHC) staining was used to measure the expression of MMP-2 and MMP-9 in lung tissues of PSP patients. The results were further correlated with clinicopathological parameters and recurrence rates using chi-square or Fisher's exact test. The value of MMP-2 and MMP-9 for overall recurrence was analyzed by univariate and multivariable Cox regression model. IHC data revealed that MMP-2 and MMP-9 staining was predominantly observed in type II pneumocytes of patients with PSP. We found that MMP-2 and MMP-9 expression in PSP, especially male PSP patients, was significantly correlated with recurrence. In the univariate and multivariate analyses, MMP-2 and MMP-9 were statistically significant risk factors for overall recurrence in PSP patients. Therefore, high expression levels of MMP-2 and MMP-9 in type II pneumocytes show a positive correlation with PSP recurrence risk. Further studies are needed to validate whether reduction of MMP-2 and MMP-9 expression may be a promising way for decreasing the risk of PSP recurrence in the future. Copyright © 2016. Published by Elsevier Taiwan.

  10. Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients

    OpenAIRE

    Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi

    2015-01-01

    [Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exe...

  11. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    the absence of RANKL. Taken together, our results suggest that RANKL signals through TRAF6 and that NFATc1 is a downstream effector of RANKL signaling to modulate MMP-9 gene expression during osteoclast differentiation

  12. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway.

    Directory of Open Access Journals (Sweden)

    Irina Gradinaru

    Full Text Available α1a Adrenergic receptors (α1aARs are the predominant AR subtype in human vascular smooth muscle cells (SMCs. α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant, different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype.

  14. Role of MMP-12 on tissue remodeling at early stage of radiation-induced pulmonary injury

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Diao Ruiying; Wang Shaoxia; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To explore the role of MMP-12 on tissue remodeling at early stage of radiation- induced pulmonary injury. Methods: Wistar rats irradiated by 60 Co γ-rays to the whole lungs were sacrificed at 1, 2, 4 weeks. MMP-12 mRNA expression was detected by RT-PCR. MMP-2, MMP-9, MMP-12 activities were determined by zymography. The degradation and collapse of elastin were determined by tissue elastin particular staining; the 'cross talking' phenomenon between alveolar type II cells and mesenchymal cells was observed under electron microscope; the expression of TGF-β1 and TNF-α in BALF was detected by ELISA. The expression of α-SMA was determined by immunohistochemistry. Results: The mRNA expression of MMP-12 displayed a significant elevation at 1, 2, 4 weeks after irradiation. MMP-12 activity increased at 2, 4 weeks after irradiation. Elastin began to degrade and collapse at 1 week, which became worst 4 weeks after irradiation. The cross talking phenomenon was found under electron microscope. The expression of TGF-β1, TNF-α and α-SMA was increased gradually as time elapse after irradiation. Conclusions: 60 Co γ-ray irradiation can promote pulmonary MMP-12 expression, initiate pulmonary tissue remodeling by degradation of elastin, and make the pulmonary injury develop towards pulmonary fibrosis eventually. (authors)

  15. Mmp-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer.

    Science.gov (United States)

    Kulkarni, Prajakta S; Haldar, Manas K; Nahire, Rahul R; Katti, Preeya; Ambre, Avinash H; Muhonen, Wallace W; Shabb, John B; Padi, Sathish K R; Singh, Raushan K; Borowicz, Pawel P; Shrivastava, D K; Katti, Kalpana S; Reindl, Katie; Guo, Bin; Mallik, Sanku

    2014-07-07

    Significant differences in biochemical parameters between normal and tumor tissues offer an opportunity to chemically design drug carriers which respond to these changes and deliver the drugs at the desired site. For example, overexpression of the matrix metalloproteinase-9 (MMP-9) enzyme in the extracellular matrix of tumor tissues can act as a trigger to chemically modulate the drug delivery from the carriers. In this study, we have synthesized an MMP-9-cleavable, collagen mimetic lipopeptide which forms nanosized vesicles with the POPC, POPE-SS-PEG, and cholesteryl-hemisuccinate lipids. The lipopeptide retains the triple-helical conformation when incorporated into these nanovesicles. The PEG groups shield the substrate lipopeptides from hydrolysis by MMP-9. However, in the presence of elevated glutathione levels, the PEG groups are reductively removed, exposing the lipopeptides to MMP-9. The resultant peptide-bond cleavage disturbs the vesicles' lipid bilayer, leading to the release of encapsulated contents. These PEGylated nanovesicles are capable of encapsulating the anticancer drug gemcitabine with 50% efficiency. They were stable in physiological conditions and in human serum. Effective drug release was demonstrated using the pancreatic ductal carcinoma cells (PANC-1 and MIAPaCa-2) in two-dimensional and three-dimensional "tumor-like" spheroid cultures. A reduction in tumor growth was observed after intravenous administration of the gemcitabine-encapsulated nanovesicles in the xenograft model of athymic, female nude mice.

  16. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1.

    Science.gov (United States)

    Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S

    2005-12-15

    Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.

  17. Stimulation of Transforming Growth Factor-β1-Induced Endothelial-To-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1.

    Science.gov (United States)

    Wermuth, Peter J; Li, Zhaodong; Mendoza, Fabian A; Jimenez, Sergio A

    2016-01-01

    TGF-β-induced endothelial-to-mesenchymal transition (EndoMT) is a newly recognized source of profibrotic activated myofibroblasts and has been suggested to play a role in the pathogenesis of various fibrotic processes. Endothelin-1 (ET-1) has been implicated in the development of tissue fibrosis but its participation in TGF-β-induced EndoMT has not been studied. Here we evaluated the role of ET-1 on TGF-β1-induced EndoMT in immunopurified CD31+/CD102+ murine lung microvascular endothelial cells. The expression levels of α-smooth muscle actin (α-SMA), of relevant profibrotic genes, and of various transcription factors involved in the EndoMT process were assessed employing quantitative RT-PCR, immunofluorescence histology and Western blot analysis. TGF-β1 caused potent induction of EndoMT whereas ET-1 alone had a minimal effect. However, ET-1 potentiated TGF-β1-induced EndoMT and TGF-β1-stimulated expression of mesenchymal cell specific and profibrotic genes and proteins. ET-1 also induced expression of the TGF-β receptor 1 and 2 genes, suggesting a plausible autocrine mechanism to potentiate TGF-β-mediated EndoMT and fibrosis. Stimulation of TGF-β1-induced skin and lung fibrosis by ET-1 was confirmed in vivo in an animal model of TGF-β1-induced tissue fibrosis. These results suggest a novel role for ET-1 in the establishment and progression of tissue fibrosis.

  18. Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Binos, Steve; Truong, Thy T; Imin, Nijat; Mariani, Michael; Djordjevic, Michael A

    2015-08-01

    Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    Science.gov (United States)

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  20. Generation of the ECP database (ECP01.DAT) of the cycle 1 of the Unit 1 of Laguna Verde with burnt of 1377 MWD/MT; Generacion de la base ECP (ECP01.DAT) del ciclo 1 de la Unidad 1 de Laguna Verde con quemado de 1377 MWD/MT

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia C, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1992-10-15

    In order to carrying out a comparison among the results provided by the Program of Estimate of the ECP Critical Position and the Shutdown/Startup produced in the Cycle 1 of the Unit 1 of Laguna Verde, it was generated the base of the ECP program, following the outlines settled down in the Procedure 'Generation of ECP Database for Laguna Verde' (IT.SN/DFR-074). Next the data sheets filled when being generated the ECP01.DAT database with a burnt of 1377 MWD/MT are provided. In the report IT.SN/DFR-079 'Adjustment and Preliminary Evaluation of the Predictions of Criticity of the ECP Program with Reported Data of the Cycle 1 of the Unit 1 of Laguna Verde', the results of the comparison among those estimates of the ECP program using the ECP01.DAT database with the real data of the Cycle 1 of the Unit 1 of Laguna Verde are presented. (Author)

  1. Investigation of MMP-2 and MMP-9 activities in canine sera with dilated cardiomyopathy.

    Science.gov (United States)

    Chegeni, S; Khaki, Z; Shirani, D; Vajhi, A; Taheri, M; Tamrchi, Y; Rostami, A

    2015-01-01

    Dilated cardiomyopathy (DCM) is accompanied by myocytes and connective tissue changes. Matrix metalloproteinases (MMPs) play important roles in cardiac remodeling. It seems that the gelatinases (MMP-2 and MMP-9) are effective enzymes in cardiomyopathy. Dilated cardiomyopathy was confirmed in 22 dogs (patient group) including 11 female and 11 male by clinical examination, auscultation, thoracic radiography and echocardiography. 17 healthy dogs (control group) with similar weight and breed to patients were also selected from referred cases to Small Animal Hospital of the Veterinary Faculty of Tehran University and the same diagnostic procedures were performed on them. After that, serum MMP-2 and MMP-9 of control and patient groups were measured by semi-quantitative zymography. Semiquantitative analysis of zymograms from canine serums with DCM showed that total MMP-9 in patients is more than control group, while there was no significant difference in total MMP-2 between the two groups. Pro-MMP-2 was not detected in patient group but its active form was present in both groups, of course MMP-2 activity in patients was significantly more than control. Active form of MMP-9 was detected only in patients. Although pro-MMP-9 was present in both groups, its level in control group was significantly higher than patients. The heart enlargement was observed in the left, right or both parts. Statistically significant differences in active form of MMP-2 and MMP-9 levels were observed between different groups of heart enlargement (right, left and both parts) compared to control but this difference was not significant considering chambers affected and VHS (vertebral heart score) groups. In conclusion, although there are some changes in serum MMP-2 and MMP-9 levels in canine DCM, it seems that increase of MMP-9 is more prominent than MMP-2 and neither of them were affected by heart enlargement or VHS grade.

  2. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Sweeney, Nicholas von Offenberg; Cummins, Philip M.; Birney, Yvonne A.; Redmond, Eileen M.; Cahill, Paul A.

    2004-01-01

    Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38 ± 6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 μM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration

  3. Efeitos do levosimendan sobre TNF-alfa, PNB e MMP-1 em pacientes com insuficiência cardíaca com anemia

    Directory of Open Access Journals (Sweden)

    Mutlu Büyüklü

    2012-07-01

    Full Text Available FUNDAMENTO: O levosimendan é conhecido pelo seu efeito bilateral de fortalecimento contração das miofibrilas sem aumentar a demanda de oxigênio no miocárdio. A anemia é uma deterioração que causa aumento da dosagem de fármacos em pacientes com insuficiência cardíaca. OBJETIVO: No presente estudo comparamos a eficácia do tratamento com levosimendan em pacientes com insuficiência cardíaca descompensada com ou sem anemia. MÉTODOS: Foram incluídos no estudo 23 pacientes anêmicos com insuficiência cardíaca classe 3 ou 4, segundo a New York Heart Association (NYHA e fração de ejeção abaixo de 35%. Outros 23 pacientes com o mesmo diagnóstico cardíaco, mas sem anemia, serviu como grupo controle. Ao tratamento da insuficiência cardíaca tradicional desses pacientes foi acrescido um tratamento de 24 horas de levosimendan. Amostras foram tomadas para dosar os níveis séricos do fator de necrose tumoral alfa sérico (TNF-alfa, peptídeo natriurético cerebral aminoterminal (NT-proPNB e metaloproteinase da matriz 1 (MMP-1, antes e após a administração. RESULTADOS: Não houve diferença significativa entre os níveis séricos de TNF-alfa e MMP-1, antes e depois do tratamento (p > 0,05. Embora o nível de NT-proBNP tenha diminuído em ambos os grupos após o tratamento, não foi estatisticamente significativo (p = 0,531 e p = 0,913 para os grupos de anemia e de controle, respectivamente. Uma restauração significativa da capacidade funcional foi observada em ambos os grupos avaliados, de acordo com a NYHA (p < 0,001 e p = 0,001 para os grupos de anemia e controle, respectivamente. CONCLUSÃO: O tratamento com levosimendan apresenta efeitos semelhantes em pacientes com insuficiência cardíaca, com anemia e sem anemia. No entanto, o efeito precoce desse tratamento sobre os níveis de TNF-alfa, NT-proPNB e MMP-1 não é evidente. Ele oferece uma melhora significativa na capacidade funcional, sem a influência da anemia.

  4. Tumor-derived Matrix Metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer

    International Nuclear Information System (INIS)

    Zhang, Bin; Niu, Yun; Niu, Ruifang; Sun, Baocun; Hao, Xishan; Cao, Xuchen; Liu, Yanxue; Cao, Wenfeng; Zhang, Fei; Zhang, Shiwu; Li, Hongtao; Ning, Liansheng; Fu, Li

    2008-01-01

    Experimental evidence suggests that matrix metalloproteinase-13 (MMP-13) protein may promote breast tumor progression. However, its relevance to the progression of human breast cancer is yet to be established. Furthermore, it is not clear whether MMP-13 can be used as an independent breast cancer biomarker. This study was conducted to assess the expression profile of MMP-13 protein in invasive breast carcinomas to determine its diagnostic and prognostic significance, as well as its correlation with other biomarkers including estrogen receptor (ER), progesterone receptor (PR), Her-2/neu, MMP-2, MMP-9, tissue inhibitor of MMP-1 and -2 (TIMP-1 and TIMP-2). Immunohistochemistry (IHC) was performed on paraffin-embedded tissue microarray containing specimens from 263 breast carcinomas. The intensity and the extent of IHC were scored by pathologists in blind fashion. The correlation of the gene expression profiles with patients' clinicopathological features and clinical outcomes were analyzed for statistical significance. MMP-13 protein was detected in the cytoplasm of the malignant cells and the peritumoral stromal cells. MMP-13 expression by tumor cells (p < 0.001) and stromal fibroblasts (p <0.001) both correlated with carcinoma infiltration of lymph nodes. MMP-13 also correlated with the expression of Her-2/neu (p = 0.015) and TIMP-1 (p < 0.010), respectively in tumor cells. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes. Moreover, high levels of MMP-13 expression were associated with decreased overall survival. In parallel, the prognostic value of MMP-13 expressed by peritumoral fibroblasts seems less significant. Our data suggest that lymph node status, tumor size, Her-2/neu expression, TIMP-1 and MMP-13 expression in cancer cells are independent prognostic factors. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes, and inversely correlated with the

  5. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco.

    Science.gov (United States)

    Charrier, Aurélie; Planchet, Elisabeth; Cerveau, Delphine; Gimeno-Gilles, Christine; Verdu, Isabelle; Limami, Anis M; Lelièvre, Eric

    2012-08-01

    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.

  6. EMMPRIN modulates epithelial barrier function through a MMP-mediated occludin cleavage: implications in dry eye disease.

    Science.gov (United States)

    Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E

    2011-09-01

    Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig.

    Science.gov (United States)

    Wang, Fei; Zhou, Jiaqi; Lu, Yi; Chu, Renyuan

    2011-02-01

    To investigate (i) the effect of monochromatic light on inhibiting induction of light-induced melatonin and (ii) the roles of melanopsin and MT1 receptor in light-induced myopia in the guinea pig. Forty-eight guinea pigs were randomly distributed into three treatment groups: white-light (control), green-light (530 nm), and blue-light (480 nm) groups. Levels of pineal gland melatonin were measured twice daily--10:00 a.m. and 10:00 p.m.--10 days after initial light treatment. Thirty additional guinea pigs were also assigned to these groups and treated similarly. For these latter animals, refractive status, ocular length, and vitreous depth were measured before and after light treatment. Eight weeks after light treatment, retinal and sceral levels of melanopsin, melatonin receptor type (MT) 1, and mRNA protein were determined by Western blotting, real-time polymerase chain reaction (RT-PCR), and immunohistochemistry. The level of pineal gland melatonin in the green-light group was significantly higher than that in the blue-light group. Biometric measurements showed that guinea pigs in the green-light group had a somewhat myopic refractive status. Expressions of retinal melanopsin mRNA and protein were significantly higher in the blue-light group and lower in the green-light group when compared to controls. Conversely, expressions of MT1 receptor mRNA and protein in retina and sclera were significantly higher in the green-light group and lower in the blue-light group when compared to controls. Green light appears to suppress induction of melatonin production. In addition, 530 nm of green light is involved in the development of myopia. In the guinea pig, MT1 receptor and melanopsin appear to play roles in the development of myopia induced by 530 nm of light.

  8. Influence of phase I periodontal therapy on levels of matrix metalloproteinase 1 and tissue inhibitor of metalloproteinase 1

    Directory of Open Access Journals (Sweden)

    Pallavi S. Ghodpage

    2014-10-01

    Conclusions: We observed that as the extent of periodontal destruction increases, MMP-1 concentration increases and TIMP-1 concentration decreases in GCF. When chronic periodontitis patients were treated by scaling and root planing (SRP, the average MMP-1 concentrations decreased and TIMP-1 concentrations increased in GCF.

  9. Bortezomib modulates CHIT1 and YKL40 in monocyte-derived osteoclast and in myeloma cells

    Directory of Open Access Journals (Sweden)

    Tibullo eDaniele

    2015-10-01

    Full Text Available Osteolytic bone disease is a common manifestation of multiple myeloma (MM that leads to progressive skeleton destruction and is the most severe cause of morbidity in MM patients.It results from increased osteolytic activity and decrease osteoblastic function. Activation of mammalian chitinases CHIT1 and YKL40 is associated with osteoclast (OCs differentiation and bone digestion. In the current study, we investigated the effect of two Bortezomib’s concentration (BO (2.5 nM and 5nM on osteoclastogenesis by analyzing regulation of chitinase expression. OCs exposition to BO was able to inhibit the expression of different OCs markers such as RANK, CTSK, TRAP and MMP9. In addition BO-treatment reduced CHIT1 enzymatic activity and both CHIT1 and YKL40 mRNA expression levels and cytoplasmatic and secreted protein. Moreover, immunofluorescence evaluation of mature OCs showed that BO was able to translocate YKL40 into the nucleus, while CHIT1 remained into the cytoplasm. Since MM cell lines such as U266, SKM-M1 and MM1 showed high levels of CHIT1 activity, we analyzed bone resorption ability of U266 using dentin disc assay resorption pits. Silencing chitinase proteins in U266 cell line with specific siRNAs, resulted in pits number reduction on dentine discs. In conclusion, we showed that BO decreases osteoclastogenesis and reduces bone resorption in OCs and U266 cell line by modulating the chitinases CHIT1 and YKL40. These results indicate that chitinases may be a therapeutic target for bone disease in MM patients.

  10. Bortezomib modulates CHIT1 and YKL40 in monocyte-derived osteoclast and in myeloma cells.

    Science.gov (United States)

    Tibullo, Daniele; Di Rosa, Michelino; Giallongo, Cesarina; La Cava, Piera; Parrinello, Nunziatina L; Romano, Alessandra; Conticello, Concetta; Brundo, Maria V; Saccone, Salvatore; Malaguarnera, Lucia; Di Raimondo, Francesco

    2015-01-01

    Osteolytic bone disease is a common manifestation of multiple myeloma (MM) that leads to progressive skeleton destruction and is the most severe cause of morbidity in MM patients. It results from increased osteolytic activity and decrease osteoblastic function. Activation of mammalian chitinases chitotriosidase (CHIT1) and YKL40 is associated with osteoclast (OCs) differentiation and bone digestion. In the current study, we investigated the effect of two Bortezomib's concentration (2.5 and 5 nM) on osteoclastogenesis by analyzing regulation of chitinase expression. OCs exposition to bortezomib (BO) was able to inhibit the expression of different OCs markers such as RANK, CTSK, TRAP, and MMP9. In addition BO-treatment reduced CHIT1 enzymatic activity and both CHIT1 and YKL40 mRNA expression levels and cytoplasmatic and secreted protein. Moreover, immunofluorescence evaluation of mature OCs showed that BO was able to translocate YKL40 into the nucleus, while CHIT1 remained into the cytoplasm. Since MM cell lines such as U266, SKM-M1 and MM1 showed high levels of CHIT1 activity, we analyzed bone resorption ability of U266 using dentin disk assay resorption pits. Silencing chitinase proteins in U266 cell line with specific small interfering RNA, resulted in pits number reduction on dentine disks. In conclusion, we showed that BO decreases osteoclastogenesis and reduces bone resorption in OCs and U266 cell line by modulating the chitinases CHIT1 and YKL40. These results indicate that chitinases may be a therapeutic target for bone disease in MM patients.

  11. RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.

    Directory of Open Access Journals (Sweden)

    Ila Datar

    Full Text Available Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP

  12. Anti-RhoC siRNAs inhibit the proliferation and invasiveness of breast cancer cells via modulating the KAI1, MMP9, and CXCR4 expression

    Directory of Open Access Journals (Sweden)

    Xu X

    2017-03-01

    Full Text Available Xu-Dong Xu,1 Han-Bin Shen,1 Li Zhu,2 Jian-Qin Lu,2 Lin Zhang,3 Zhi-Yong Luo,3 Ya-Qun Wu3 1Department of Thyroid and Breast Surgery, The Fifth Hospital of Wuhan, Hanyang District, 2Department of Oncology, 3Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China Abstract: Overexpression of RhoC in breast cancer cells indicates poor prognosis. In the present study, we aim to investigate the possible antitumor effects of anti-RhoC small-interfering RNA (siRNA in inflammatory breast cancer cells. In this study, a specific anti-RhoC siRNA was used to inhibit RhoC synthesis. Transfection of anti-RhoC siRNA into two IBC cells SUM149 and SUM190 induced extensive degradation of target mRNA and led to significant decrease in the synthesis of protein. Anti-RhoC siRNA inhibited cell proliferation and invasion, increased cell apoptosis, and induced cell cycle arrest in vitro. Moreover, the transfection of siRNA increased the expression of KAI1 and decreased the expression of MMP9 and CXCR4 in both mRNA and protein levels. Furthermore, transplantation tumor experiments in BALB/c-nu mice showed that intratumoral injection of anti-RhoC siRNA inhibited tumor growth and increased survival rate. Our results suggested that RhoC gene silencing with specific anti-RhoC siRNA would be a potential therapeutic method for metastatic breast cancer. Keywords: gene silencing, proliferation, apoptosis, cell cycle arrest

  13. CDP-choline modulates matrix metalloproteinases in rat sciatic injury.

    Science.gov (United States)

    Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet

    2016-02-01

    CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  15. Suppression of MMP-9 by doxycycline in brain arteriovenous malformations

    Directory of Open Access Journals (Sweden)

    Li Jenny F

    2005-01-01

    Full Text Available Abstract Background The primary aim of this study is to demonstrate the feasibility of utilizing doxycycline to suppress matrix metalloproteinase-9 (MMP-9 in brain arteriovenous malformations (AVMs. Methods Ex-vivo treatment of AVM tissues: Intact AVM tissues were treated with doxycycline for 48 hours. Active and total MMP-9 in the medium were measured. Pilot trial: AVM patients received either doxycycline (100 mg or placebo twice a day for one week prior to AVM resection. Active and total MMP-9 in BVM tissues were measured. Results Ex-vivo treatment of AVM tissues: Doxycycline at 10 and 100 μg/ml significantly decreased MMP-9 levels in AVM tissues ex-vivo (total: control vs 10 vs 100 μg/ml = 100 ± 6 vs 60 ± 16 vs 61 ± 9%; active: 100 ± 8 vs 48 ± 16 vs 59 ± 10%. Pilot trial: 10 patients received doxycycline, and 4 patients received placebo. There was a trend for both MMP-9 levels to be lower in the doxycycline group than in the placebo group (total: 2.18 ± 1.94 vs 3.26 ± 3.58, P = .50; active: 0.48 ± 0.48 vs 0.95 ± 1.01 ng/100 μg protein, P = .25. Conclusions A clinically relevant concentration of doxycycline decreased MMP-9 in ex-vivo AVM tissues. Furthermore, there was a trend that oral doxycycline for as short as one week resulted in a decrease in MMP-9 in AVM tissues. Further studies are warranted to justify a clinical trial to test effects of doxycycline on MMP-9 expression in AVM tissues.

  16. MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.

    Directory of Open Access Journals (Sweden)

    Mervi Toriseva

    Full Text Available Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13 in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13(-/- and wild type (WT mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42% at day 21 in Mmp13(-/- mice. Granulation tissue in Mmp13(-/- mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13(-/- mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13(-/- mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13(-/- granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13(-/- mice compared to WT mice. Mmp13(-/- mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis.

  17. [Effect of smokers'sera on Porphyromonas gingivalis internalizing KB cells and the expression of matrix metalloproteinase-1, -9 and tissue inhibitor of metalloproteinase-1].

    Science.gov (United States)

    Wang, Hongyan; Tan, Lisi; Liu, Junchao; Li, Qian; Pan, Yaping; Zhong, Ming

    2014-01-01

    To investigate the effects of serum from smoking individuals or non-smoking individuals with periodontitis on Porphyromonas gingivalis (Pg) internalizing KB cells, and the expression of matrix metalloproteinase(MMP)-1, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) in the culture supernatant of KB cells. The venous blood of 20 periodontitis patients' (10 smoking and 10 non-smoking) was extracted under the informed consent and centrifuged for serum. The smoking-individual serum (Y group) and non-smoking-individual (N group) serum were added to the model of Pg internalizing KB cells for 12 hours, plated on brain-heart infusion (BHI) and incubated anaerobically at 37 °C for 5 days. The colony forming units (CFU) of cell-invasive bacteria were estimated by colony counting. MMP-1, MMP-9 and TIMP-1 protein levels in culture supernatant were determined by enzyme-linked immunosorbent assay(ELISA) in the two groups following co-culture of Pg with KB cells for 12 hours. The CFU were (11.2 ± 1.1)×10(4), (12.6 ± 1.2)×10(4), (44.7 ± 1.3)×10(4) CFU/ml when adding 200, 400, 800 µl Y-group serum to the model of Pg co-culture with KB cells and when the serum was extracted from N group, the CFU were (33.6 ± 1.4)×10(4),(38.9 ± 1.1)×10(4), (11.2 ± 1.2)×10(4) CFU/ml respectively. When 200, 400, 800 µl Y group-serum was added to co-culture fluid of Pg internalizing KB cells, the concentrations of MMP-1 secreted from KB cells were (107.2 ± 21.5), (165.9 ± 20.2), (434.4 ± 48.0) µg/L respectively, the concentrations of MMP-9 were (3.99 ± 0.29), (4.21 ± 0.61), (5.62 ± 0.47) µg/L respectively, the concentrations of TIMP-1 were (401.3 ± 12.7), (418.3 ± 28.5), (637.3 ± 37.3) µg/L. When the serum (200, 400, 800 µl) extracted from N group, the concentration of MMP-1 and MMP-9 secreted by KB cell were (77.6 ± 10.8), (84.7 ± 10.2) and (98.2 ± 9.7) µg/L and (3.84 ± 0.52), (4.02 ± 0.68), (4.25 ± 0.37) µg/L, respectively. The concentration of TIMP-1 were

  18. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity

    Directory of Open Access Journals (Sweden)

    Chao-Bin Yeh

    2012-01-01

    Full Text Available High mortality and morbidity rates for hepatocellular carcinoma (HCC in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9. Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1, as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB and activating protein-1 (AP-1 on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1.

  19. Effects of dihydropyrano coumarins from Ferulago macrocarpa on VEGF, MMP9, MMP2 and study of binding modes using computational methods

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Ferulago macrocarpa of Apiaceae (Umbelliferae is native to the highlands of the west of Iran which contains dihydrocoumarins from phenolic class. Studies have shown that phenolic compounds at physiological concentrations could inhibit two groups of gelatinase matrix metalloproteinases (MMP2, MMP9. Due to the high diversity of coumarins in the plant, the possibility of the compounds to inhibit plant enzymes seem to be mentioned. Methods: Acetone extract of the plant was prepared and then winterized. Afterwards, dihydropyranocoumarins were purified using normal phase column chromatography and preparative HPLC, and their structures were verified. After culturing the cells, at confluence step, supernatants were collected at 24 and 48 h soup and non-proliferation medium containing 2% albumin. The pure substances were applied on cell lines U87MG and WEHI for evaluation of VEGF, MMP-2 and 9 activities. In the computational processing, the structures were docked in the active site of metalloproteinases 9, and significant interactions were determined. Subsequently, ligand-protein complexes were subjected to molecular dynamics simulation in water, and thermodynamic properties were calculated. (MMP9 code= 1L6J, MMP2 code= 1CK7. Results: Regarding cytotoxicity results, IC50 of prantschimgin and grandivitin in WEHI cell line were 521.63, 232. 66, and in U87MG cell line were 575.58, 322.0 lpg/mL, respectively. Conclusion: Two coumarins, prantschimgin and grandivitin with the potential inhibitory effects on the activity of MMP 2,9 and anti-angiogenesis were purified from F. macrocarpa fruits. The application can be expected to have therapeutic efficacy in cancer cell lines U87MG and WEHI.

  20. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling.

    Directory of Open Access Journals (Sweden)

    Marina Beltrami-Moreira

    Full Text Available Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells.Human primary vascular smooth muscle cells (VSMCs and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001 and with IL-1β + areas (R2 = 0.68, P<0.001. MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area.Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis.

  1. Effect of non-surgical periodontal therapy on C-reactive protein, oxidative stress, and matrix metalloproteinase (MMP)-9 and MMP-2 levels in patients with type 2 diabetes: a randomized controlled study.

    Science.gov (United States)

    Koromantzos, Panagiotis A; Makrilakis, Konstantinos; Dereka, Xanthippi; Offenbacher, Steven; Katsilambros, Nicholas; Vrotsos, Ioannis A; Madianos, Phoebus N

    2012-01-01

    It is well accepted that glycemic control in patients with diabetes mellitus (DM) is affected by systemic inflammation and oxidative stress. The effect of periodontal therapy on these systemic factors may be related to improvement on glycemic status. The aim of the present study is to assess over a period of 6 months the effect of non-surgical periodontal therapy on serum levels of high-sensitivity C-reactive protein (hsCRP), d-8-iso prostaglandin F2a (d-8-iso) as a marker of oxidative stress, and matrix metalloproteinase (MMP)-2 and MMP-9 on patients with type 2 DM. Sixty participants with type 2 DM and moderate to severe periodontal disease were randomized into intervention (IG) and control (CG) groups. IG received scaling and root planing, whereas CG received supragingival cleaning at baseline and scaling and root planing at 6 months. Participants of both groups were evaluated at baseline and 1, 3, and 6 months. Periodontal data recorded at each visit included probing depth, clinical attachment loss, bleeding on probing, and gingival index. Blood was collected at each visit for the assay of serum glycated hemoglobin A1c (A1c), hsCRP, d-8-iso, MMP-2, and MMP-9. Although there was a trend to a reduction in hsCRP, d-8-iso and MMP-9 it did not reach statistical significance. MMP-2 levels remained unchanged after periodontal treatment. Effective non-surgical periodontal treatment of participants with type 2 DM and moderate to severe periodontal disease improved significantly A1c levels but did not result in a statistically significant improvement in hsCRP, d-8-iso, MMP-2, and MMP-9 levels.

  2. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  3. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune; Lee, Sujae

    2014-01-01

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis

  4. Overexpression of MMP21 and MMP28 is associated with gastric cancer progression and poor prognosis.

    Science.gov (United States)

    Zhang, Jizhen; Pan, Qi; Yan, Wenhui; Wang, Yiru; He, Xujun; Zhao, Zhongsheng

    2018-05-01

    Matrix metalloproteinase (MMP)-21 and MMP-28, or epilysin, are overexpressed during the invasion and metastasis of solid tumors. The present study investigated MMP-21 and MMP-28 expression levels in human gastric cancer using tissue microarray (TMA) analysis, and determined their association with clinicopathological characteristics and patient prognosis. TMA blocks, including 436 cases of gastric cancer and 92 non-cancerous adjacent gastric tissues, were investigated using immunohistochemistry. Staining results were analyzed statistically in association with various clinicopathological characteristics and overall survival. The MMP-21 and MMP-28 positive detection rate was 31.9% (139/436) and 34.4% (150/436), respectively, in the gastric carcinoma tissue specimens. MMP-21 and MMP-28 expression levels were negative in the 92 normal gastric tissue samples. In patients with gastric cancer, positive expression of MMP-21 and MMP-28 was correlated with tumor diameter, depth of invasion, vessel invasion, lymph node and distant metastases and tumor-node-metastasis stage. The overall survival rate was significantly lower in MMP-21 and MMP-28-positive compared with negative patients. Cox multivariate analysis revealed that MMP-21 and MMP-28 levels were independent predictors of survival in patients with gastric cancer. These findings emphasize the importance of MMP-21 and MMP-28, which may serve as novel and independent prognostic markers for the invasion and metastasis of human gastric cancer.

  5. A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M)

    DEFF Research Database (Denmark)

    Leeming, Diana Julie; He, Y.; Veidal, S. S.

    2011-01-01

    A competitive enzyme-linked immunosorbent assay (ELISA) for detection of a type I collagen fragment generated by matrix metalloproteinases (MMP) -2, -9 and -13, was developed (CO1-764 or C1M). The biomarker was evaluated in two preclinical rat models of liver fibrosis: bile duct ligation (BDL) an...

  6. MMP2-A2M interaction increases ECM accumulation in aged rat kidney and its modulation by calorie restriction

    Science.gov (United States)

    Kim, Kyung Mok; Chung, Ki Wung; Jeong, Hyeong Oh; Lee, Bonggi; Kim, Dae Hyun; Park, June Whoun; Kim, Seong Min; Yu, Byung Pal; Chung, Hae Young

    2018-01-01

    Age-associated renal fibrosis is related with renal function decline during aging. Imbalance between accumulation and degradation of extracellular matrix is key feature of fibrosis. In this study, RNA-sequencing (RNA-Seq) results based on next-generation sequencing (NGS) data were analyzed to identify key proteins that change during aging and calorie restriction (CR). Among the changed genes, A2M and MMP2, which are known to interact, exhibited the highest between centrality (BC) and degree values when analyzed by protein–protein interaction (PPI). Both mRNA and protein levels of MMP2 and A2M were increased during aging. Furthermore, the interaction between MMP2 and A2M was verified by immunoprecipitation and immunohistochemistry. MMP2 activity was further measured under the presence or absence of A2M-MMP2 interaction. MMP2 activity, which was increased under the absence of A2M-MMP2 interaction, was significantly decreased under the presence of interactions in aged kidney. We further hypothesized that the interaction between A2M-MMP2 played a role in the inactivation of MMP2 leading to accumulation of ECM including collagen type I and IV. Aged kidney showed highly accumulated MMP2 substrate proteins despite of increased MMP2 protein expression and CR blunted these accumulation. Additional in vivo analysis revealed that the signal transducer and activator of transcription (STAT) 3 transcriptional factor was significantly increased thus increasing A2M expression during aging. STAT3 activating cytokines were also highly increased in aged kidney. In conclusion, the results of the present study indicate that A2M-MMP2 interaction has a role in age-associated renal ECM accumulation and in the suppression such fibrosis by CR. PMID:29464020

  7. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex.

    Science.gov (United States)

    Hennessy, Morgan L; Corcoran, Andrea E; Brust, Rachael D; Chang, YoonJeung; Nattie, Eugene E; Dymecki, Susan M

    2017-02-15

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 ( Tac1 ) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1 , referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine -N- oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO 2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO 2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using

  8. The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments

    Directory of Open Access Journals (Sweden)

    M. Garbuglia

    1999-10-01

    Full Text Available The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix type, S100A1 and S100B, that have been shown to inhibit microtubule (MT protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF subunits, desmin and glial fibrillary acidic protein (GFAP, with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.

  9. Weaponizing human EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) for 21st century cancer therapeutics.

    Science.gov (United States)

    Zhou, Yi-Hong; Hu, Yuanjie; Yu, Liping; Ke, Chao; Vo, Christopher; Hsu, Hao; Li, Zhenzhi; Di Donato, Anne T; Chaturbedi, Abhishek; Hwang, Ji Won; Siegel, Eric R; Linskey, Mark E

    2016-01-01

    De-regulated EFEMP1 gene expression in solid tumors has been widely reported with conflicting roles. We dissected EFEMP1 to identify domains responsible for its cell context-dependent dual functions, with the goal being to construct an EFEMP1-derived tumor-suppressor protein (ETSP) that lacked tumor-promoting function. Exon/intron boundaries of EFEMP1 were used as boundaries of functional modules in constructing EFEMP1 variants, with removal of various module(s), and/or mutating an amino acid residue to convert a weak integrin binding-site into a strong one. A series of in vitro assays on cancerous features, and subcutaneous and intracranial xenograft-formation assays, were carried out for effects from overexpression of wild-type and variant forms of EFEMP1 in two glioma subpopulations characterized as tumor mass-forming cells (TMCs) or stem-like tumor initiating cells (STICs), where EFEMP1 showed cellcontext- dependent dual functions. One of the EFEMP1 variants was identified as the sought-after ETSP, which had a stronger tumor-suppression function in TMCs by targeting EGFR and angiogenesis, and a new tumor-suppression function in STICs by targeting NOTCH signaling and MMP2-mediated cell invasion. Therefore, ETSP may form the basis for further important research to develop a novel cancer therapy to treat many types of cancer by its tumor suppressor effect in the extracellular matrix compartment.

  10. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells.

    Science.gov (United States)

    Vaziri-Gohar, Ali; Houston, Kevin D

    2016-02-15

    Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Expression of matrix metalloproteinase-1, -2 and -3 in squamous cell carcinoma and actinic keratosis

    Science.gov (United States)

    Tsukifuji, R; Tagawa, K; Hatamochi, A; Shinkai, H

    1999-01-01

    Matrix metalloproteinase (MMP) plays an important role in extracellular matrix degradation associated with cancer invasion. An expression of MMP-1 (interstitial collagenase), MMP-2 (72-kDa type IV collagenase) and MMP-3 (stromelysin-1) was investigated in squamous cell carcinoma (SCC) and its precancerous condition, actinic keratosis (AK), using in situ hybridization techniques. MMP-1 mRNA was detected in tumour cells and/or in stromal cells in all cases of SCC, four of six AKs adjacent to SCC and four of 16 AKs. MMP-2 and MMP-3 mRNAs were detected in SCC but not in AK. The expression of MMP-3 correlated to that of MMP-1 (P = 0.03) localized at the tumour mass and stroma of the invasive area, while MMP-2 mRNA was detected widely throughout the stroma independent of MMP-1 expression. Our results indicated that the expression of MMP-1, -2 and -3 showed different localization patterns, suggesting a unique role of each MMP in tumour progression. Moreover, MMP-1 expression could be an early event in the development of SCC, and AK demonstrating MMP-1 mRNA, might be in a more advanced dysplastic state, progressing to SCC. © 1999 Cancer Research Campaign PMID:10362121

  12. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    Science.gov (United States)

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  13. WRAP module 1 treatment plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-05-01

    This document provides the methodology to treat waste in the Waste Receiving and Processing Module 1 facility to meet the Resource Conservation and Recovery Act (RCRA) land disposal restrictions or the Waste Isolation and Pilot Plant waste acceptance criteria. This includes Low-Level Mixed Waste, Transuranic Waste, and Transuranic Mixed Waste

  14. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages.

    Science.gov (United States)

    Fu, Xiangdong; Zeng, Lihong; Liu, Zhi; Ke, Xue; Lei, Lin; Li, Guobao

    2016-08-19

    Tuberculosis (TB) is a serious disease that is characterized by Mycobacterium tuberculosis (M.tb)-triggered immune system impairment and lung tissue damage shows limited treatment options. MicroRNAs (miRNAs) are regulators of gene expression that play critical roles in many human diseases, and can be up- or downregulated by M.tb infection in macrophage. Recently, tissue inhibitor of matrix metalloproteinase (TIMP) 3 has been found to play roles in regulating macrophage inflammation. Here, we found that TIMP3 expression was regulated by miR-206 in M.tb-infected THP-1 human macrophages. In THP-1 cells infected with M.tb, the miR-206 level was significantly upregulated and the expression of TIMP3 was markedly decreased when the secretion of inflammatory cytokines was increased. Inhibition of miR-206 markedly suppressed inflammatory cytokine secretion and upregulated the expression of TIMP3. In contrast, the upregulation of miR-206 promoted the matrix metalloproteinase (MMP) 9 levels and inhibited TIMP3 levels. Using a dual-luciferase reporter assay, a direct interaction between miR-206 and the 3'-untranslated region (UTR) of TIMP3 was confirmed. SiTIMP3, the small interfering RNA (siRNA) specific for TIMP3, significantly attenuated the suppressive effects of miR-206-inhibitor on inflammatory cytokine secretion and MMP9 expression. Our data suggest that miR-206 may function as an inflammatory regulator and drive the expression of MMP9 in M.tb-infected THP-1 cells by targeting TIMP3, indicating that miR-206 is a potential therapeutic target for patients with TB. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Correlation of matrix metalloproteinases-1 and -3 with patient age and grade of lumbar disc herniation.

    Science.gov (United States)

    Zigouris, Andreas; Batistatou, Anna; Alexiou, George A; Pachatouridis, Dimitrios; Mihos, Evaggelos; Drosos, Dimitrios; Fotakopoulos, George; Doukas, Michail; Voulgaris, Spyridon; Kyritsis, Athanasios P

    2011-02-01

    The authors studied the histological alterations and the expression of matrix metalloproteinase (MMP)-1 and MMP-3 in disc specimens of patients who had undergone operations for lumbar disc herniation. Forty-three lumbar disc specimens were evaluated histopathologically for degenerative changes and immunohistochemical expression of MMP-1 and MMP-3. The observed degenerative changes provided a degenerative score that was applied in each patient. Sections of disc immunostained for MMP-1 and MMP-3 were evaluated semiquantitatively. Patients were categorized in 3 age groups: 60 years of age. The expression of MMP-1 and MMP-3 were correlated to patient's age, degenerative score, and grade of lumbar disc herniation. There was no statistically significant difference in the degenerative score between the age groups. Degenerative changes were more pronounced in greater grades of herniation (p correlation between MMP-1 and MMP-3 expression and both degenerative score and herniation grade. For the group of patients 30-60 years of age, there was no significant difference between MMP-1 expression and degenerative score, but the correlation between MMP-1 expression and grade of herniation was significant. There was a significant correlation between MMP-3 expression and both degenerative score and herniation grade. Regarding the patients > 60 years of age, there was a significant correlation between MMP-1 and MMP-3 expression and both degenerative score and herniation grade. There was a significantly lower expression of both MMP-1 and MMP-3 in the group correlation was found in MMP-1 and MMP-3 expression between the groups of patients who were 30-60 and > 60 years of age. Interestingly, in age groups > 30 years, there were no statistically significant differences between the expression of MMP-1 and MMP-3, whereas in patients correlated to the age of the patients and the grade of herniation. An important finding in this study is the differential expression of MMP-1 and MMP-3

  16. Azilsartan increases levels of IL-10, down-regulates MMP-2, MMP-9, RANKL/RANK, Cathepsin K and up-regulates OPG in an experimental periodontitis model.

    Directory of Open Access Journals (Sweden)

    Aurigena Antunes de Araújo

    Full Text Available AIMS: The aim of this study was to evaluate the effects of azilsartan (AZT on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs, receptor activator of nuclear factor κB ligand (RANKL, receptor activator of nuclear factor κB (RANK, osteoprotegerin (OPG, cyclooxygenase-2 (COX-2, and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. MATERIALS AND METHODS: Male Wistar albino rats were randomly divided into 5 groups of 10 rats each: (1 nonligated, water; (2 ligated, water; (3 ligated, 1 mg/kg AZT; (4 ligated, 5 mg/kg AZT; and (5 ligated, 10 mg/kg AZT. All groups were treated with saline or AZT for 10 days. Periodontal tissues were analyzed by histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1β, IL-10, TNF-α, myeloperoxidase (MPO, and glutathione (GSH were determined by ELISA. RESULTS: Treatment with 5 mg/kg AZT resulted in reduced MPO (p<0.05 and IL-1β (p<0.05, increased levels of IL-10 (p<0.05, and reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and increased expression of OPG. CONCLUSIONS: These findings reveal that AZT increases anti-inflammatory cytokines and GSH and decreases bone loss in ligature-induced periodontitis in rats.

  17. Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: Mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing

    OpenAIRE

    Suo, Zucai; Chen, Huawei; Walsh, Christopher T.

    2000-01-01

    Yersiniabactin (Ybt) synthetase is a three-subunit, 17-domain [7 domains in high molecular weight protein (HMWP)2, 9 in HMWP1, and 1 in YbtE] enzyme producing the virulence-conferring siderophore yersiniabactin in Yersinia pestis. The 350-kDa HMWP1 subunit contains a polyketide synthase module (KS-AT-MT2-KR-ACP) and a nonribosomal peptide synthetase module (Cy3-MT3-PCP3-TE). The full-length HMWP1 was heterologously overexpressed in Escherichia coli and purified...

  18. The Human Tyrosyl-DNA Phosphodiesterase 1 (hTdp1) Inhibitor NSC120686 as an Exploratory Tool to Investigate Plant Tdp1 Genes.

    Science.gov (United States)

    Macovei, Anca; Pagano, Andrea; Sabatini, Maria Elisa; Grandi, Sofia; Balestrazzi, Alma

    2018-03-28

    The hTdp1 (human tyrosyl-DNA phosphodiesterase 1) inhibitor NSC120686 has been used, along with topoisomerase inhibitors, as a pharmacophoric model to restrain the Tdp1 activity as part of a synergistic treatment for cancer. While this compound has an end-point application in medical research, in plants, its application has not been considered so far. The originality of our study consists in the use of hTdp1 inhibitor in Medicago truncatula cells, which, unlike human cells, contain two Tdp1 genes. Hence, the purpose of this study was to test the hTdp1 inhibitor NSC120686 as an exploratory tool to investigate the plant Tdp1 genes, since their characterization is still in incipient phases. To do so, M. truncatula calli were exposed to increasing (75, 150, 300 μM) concentrations of NSC120686. The levels of cell mortality and DNA damage, measured via diffusion assay and comet assay, respectively, were significantly increased when the highest doses were used, indicative of a cytotoxic and genotoxic threshold. In addition, the NSC120686-treated calli and untreated MtTdp1α -depleted calli shared a similar response in terms of programmed cell death (PCD)/necrosis and DNA damage. Interestingly, the expression profiles of MtTdp1α and MtTdp1β genes were differently affected by the NSC120686 treatment, as MtTdp1α was upregulated while MtTdp1β was downregulated. The NSC120686 treatment affected not only the MtTdp1 genes but also other genes with roles in alternative DNA repair pathways. Since the expression patterns of these genes were different than what was observed in the MtTdp1α -depleted plants, it could be hypothesized that the NSC120686 treatment exerts a different influence compared to that resulting from the lack of the MtTdp1α gene function.

  19. The significance of MMP-9 examination in serum from embryo of gastric cancer model

    International Nuclear Information System (INIS)

    Liu Zhan; Zhao Xuejian; Wang Lu; Li Yulin; Zhang Lihong; Zhang Hong

    2003-01-01

    Objective: To investigate the changes matrix metalloproteinase-9 (MMP-9) content from sera of chick embryos during the progression of transformed models of gastric cancer cells on chorioallantoic membrane (CAM). Methods: Morphometric investigation method was used to study the tumor generation on CAM; Enzyme-linked immunosorbent assay (ELISA) method was used to test MMP-9 concentrations in chick embryos'sera transferred by cancer cells at different points of time; the relationship between MMP-9 and cancer biological characteristics was analyzed. Results: In the group of 1 x 10 6 ·ml -1 gastric cancer cells, a single clot which could be seen by naked eyes appeared at 72 hours after inoculation. With the time going on, the volumes of the clot became larger and larger, and the neovessels on CAM accumulated to the clot. In the group of 1 x 10 6 ·ml -1 gastric cancer cells, the MMP-9 content in sera extremely increased at 72 hours after inoculation and increased continuously till the maxim at 7 days after inoculation. Conclusion: The whole progression of cancer development is accompanied with the increase of MMP-9 concentration. This model is feasible to study the characteristics of gastric cancer

  20. [Effects of Biejiajian Pills on Wnt signal pathway signal molecules β-catenin/TCF4 complex activities and downstream proteins cyclin D1 and MMP-2 in hepatocellular carcinoma cells].

    Science.gov (United States)

    Wen, Bin; Sun, Haitao; He, Songqi; Cheng, Yang; Jia, Wenyan; Fan, Eryan; Pang, Jie

    2014-12-01

    To study the effect of Biejiajian Pills on Wnt signal pathway and the mechanisms underlying its action to suppress the invasiveness of hepatocellular carcinoma. HepG2 cells cultured in the serum of rats fed with Biejiajian Pills for 48 h were examined for β-catenin expression using immunofluorescence, β-catenin/TCF4 complex activity with luciferase, and expressions of the downstream proteins cyclin D1 and MMP-2 using qRT-PCR. Biejiajian Pills-treated sera significantly reduced the expressions of cytoplasmic and nuclear β-catenin protein, cyclin D1 and MMP-2 proteins and lowered the activities of β-catenin/TCF4 complex. Biejiajian Pills may serve as a potential anti-tumor agent, whose effect might be mediated by inhibiting the Wnt/β-catenin pathway.

  1. Polyester projects for India, Pakistan

    International Nuclear Information System (INIS)

    Siddiqi, R.

    1993-01-01

    India's Indo Rama Synthetics (Bombay) is planning a $186-million integrated polyester fiber and filament complex at Nagpur, Maharashtra. The complex will have annual capacities for 38,000 m.t. of polyester chips by polycondensation, 25,000 m.t. of polyester staple fiber, and 12,000 m.t. of polyester blended yarn. The company is negotiating with the main world suppliers of polycondensation technology. The first stage of the project is slated to begin production by the end of this year and be fully completed by 1994. In Pakistan, National Fibers Ltd. (PNF; Karachi) has signed a deal with Zimmer (Frankfurt) for technology, procurement, construction, and support work to expand polyester staple fiber capacity from 14,000 m.t./year to 52,000 m.t./year. The technology involves a continuous polymerization process. The project also calls for improvements to PNF's existing batch plant. It is scheduled for completion by the end of 1994. Total cost of the project is estimated at Rs1.745 billion ($70 million), out of which the foreign exchange component is Rs1.05 billion. The Islamic Development Bank (Jeddah; Saudi Arabia) has already approved a $27-million slice of the financing, while the balance of the foreign exchange loan is being arranged through suppliers credit. Local currency loans will be provided by other financial institutions in Pakistan

  2. [Transcranial magnetic therapy in the treatment of psychoautonomous disturbances in children with diabetes mellitus type 1].

    Science.gov (United States)

    Filina, N Iu; Bolotova, N V; Manukian, V Iu; Nikolaeva, N V; Kompaniets, O V

    2009-01-01

    Results of a clinical-physiological study of 80 children with diabetes mellitus type 1 with psychoautonomous disturbances are presented. Forty patients of the main group received transcranial magnetic therapy (TcMT), 40 patients of the control group had placebo sessions of TcMT with magnetic power supply switched off. TcMT was applied using bitemporal method, running regime with modulation frequency 1-10 Hz. Patients received 10 sessions. Positive changes were found in the main group compared to the controls. In the main group, TcMT sessions allowed to normalize the autonomous status in 75% of children and to improve psychoemotional state in 55%. The correction of psychoemotional status of children changed their behavior towards diabetes, improved control and compensation of the disease.

  3. Waste receiving and processing (WRAP) module 1 hazards assessment. Revision 1

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1997-01-01

    This report documents the hazards assessment for the Waste Receiving and Processing Module I (WRAP 1) located on the U.S. Department of Energy (DOE) Hanford Site. Operation of the WRAP 1 is the responsibility of Rust Federal Services Hanford (RFSH). This hazards assessment was conducted to provide the emergency planning technical basis for the WRAP 1. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  4. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  5. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Setya Hemani

    2008-07-01

    Full Text Available Abstract Background Prostate cancer progression to androgen independence is the primary cause of mortality by this tumor type. The IGF-1/IGF-1R axis is well known to contribute to prostate cancer initiation, but its contribution to invasiveness and the downstream signalling mechanisms that are involved are unclear at present. Results We examined the invasive response of androgen independent DU145 prostate carcinoma cells to IGF-1 stimulation using Matrigel assays. We then examined the signaling mechanisms and protease activities that are associated with this response. IGF-1 significantly increased the invasive capacity of DU145 cells in vitro, and this increase was inhibited by blocking IGF-1R. We further demonstrated that specific inhibitors of the MAPK and PI3-K pathways decrease IGF-1-mediated invasion. To determine potential molecular mechanisms for this change in invasive capacity, we examined changes in expression and activity of matrix metalloproteinases. We observed that IGF-1 increases the enzymatic activity of MMP-2 and MMP-9 in DU145 cells. These changes in activity are due to differences in expression in the case of MMP-9 but not in the case of MMP-2. This observation is corroborated by the fact that correlated changes of expression in a regulator of MMP-2, TIMP-2, were also seen. Conclusion This work identifies a specific effect of IGF-1 on the invasive capacity of DU145 prostate cancer cells, and furthermore delineates mechanisms that contribute to this effect.

  6. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  7. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  8. Cardiotoxin III Inhibits Proliferation and Migration of Oral Cancer Cells through MAPK and MMP Signaling

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    2013-01-01

    Full Text Available Cardiotoxin III (CTXIII, isolated from the snake venom of Formosan cobra Naja naja atra, has previously been found to induce apoptosis in many types of cancer. Early metastasis is typical for the progression of oral cancer. To modulate the cell migration behavior of oral cancer is one of the oral cancer therapies. In this study, the possible modulating effect of CTXIII on oral cancer migration is addressed. In the example of oral squamous carcinoma Ca9-22 cells, the cell viability was decreased by CTXIII treatment in a dose-responsive manner. In wound-healing assay, the cell migration of Ca9-22 cells was attenuated by CTXIII in a dose- and time-responsive manner. After CTXIII treatment, the MMP-2 and MMP-9 protein expressions were downregulated, and the phosphorylation of JNK and p38-MAPK was increased independent of ERK phosphorylation. In conclusion, CTXIII has antiproliferative and -migrating effects on oral cancer cells involving the p38-MAPK and MMP-2/-9 pathways.

  9. Clinical importance of serum HE4 and MMP2 levels in endometrial cancer patients

    Directory of Open Access Journals (Sweden)

    Cymbaluk-Ploska A

    2017-06-01

    Full Text Available Aneta Cymbaluk-Płoska,1 Anita Chudecka-Głaz,1 Ewa Pius-Sadowska,2 Agnieszka Sompolska-Rzechuła,3 Bogusław Machaliński,2 Anna Surowiec,1 Janusz Menkiszak1 1Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, 2Department of General Pathology, Pomeranian Medical University, 3Department of Statistics, West Pomeranian University of Technology, Szczecin, Poland Introduction: Endometrial cancer is the one of the most common cancers of the genital organ. HE4 and MMP2 are both proteins whose serum levels increase in endometrial cancer.Aim: To explore the diagnostic potential of the serum levels of HE4 and MMP2 in patients with endometrial cancer and benign endometrial diseases. To assess the relationship between the serum levels of HE4 and MMP2 and the typical prognostic factors in patients with endometrial cancer.Materials and methods: Included in the study was a group of 112 patients presenting with bleeding abnormalities at the Pomeranian Medical University in years 2012–2016. Serum HE4 concentrations were measured using the Elecsys Electrochemiluminescence Immunoassay (ECLIA. MMP2 concentrations were quantified in the serum using multiplex immunoassays.Results: We observed statistically significant differences in mean serum levels of HE4 and MMP2 between the group of endometrial cancer patients and the group of patients with no changes in the endometrium (P=0.002/0.003. The diagnostic potential of HE4 and MMP2 in differentiation of high (International Federation of Gynecology and Obstetrics [FIGO] III and IV vs low (FIGO I and II clinical stage of tumor and prediction of cellular differentiation grade (G1 vs G3 on the basis of the analysis of the area under the curve is, respectively, 0.86 and 0.82 for HE4 and 0.82 and 0.74 for MMP2. The HE4 marker was significantly more specific than MMP2 in every study group and amounted to 93% vs 86% in all patients included in the analysis, 94% vs 84% in pre

  10. Mutation of mtDNA ND1 Gene in 20 Type 2 Diabetes Mellitus Patients of Gorontalonese and Javanese Ethnicity

    Directory of Open Access Journals (Sweden)

    AMIEN RAMADHAN ISHAK

    2014-12-01

    Full Text Available Mitochondrial gene mutation plays a role in the development of type two diabetes mellitus (T2DM. A point mutation in the mitochondrial gene Nicotinamide adenine dinucleotide dehydrogenase 1 (mtDNA ND1 gene mainly reported as the most common mutation related to T2DM. However, several studies have identified another SNP (single-nucleotide polymorphisms in the RNA region of mtDNA from patients from specific ethnic populations in Indonesia. Building on those findings, this study aimed to use PCR and DNA sequencing technology to identify nucleotides in RNA and ND1 fragment from 20 Gorontalonese and 20 Javanese T2DM patients, that may trigger T2DM expression. The results showed successful amplification of RNA along 294 bp for all samples. From these samples, we found two types of point mutation in Javanese patients in the G3316A and T3200C points of the rRNA and ND1 gene. In samples taken from Gorontalonese patients, no mutation were found in the RNA or ND1 region. We conclude that T2DM was triggered differently in our two populations. While genetic mutation is implicated for the 20 Javanese patients, T2DM pathogenesis in the Gorontalonese patients must be traced to other genetic, environmental, or behavioral factors.

  11. ON A GENERALIZATION OF SEMISIMPLE MODULES 1 ...

    Indian Academy of Sciences (India)

    65

    , then it is semiprimitive, ... In this section we study some elementary properties of r-semisimple modules. Definition 2.1. Let M be a right ..... are going to show that, in this case, there is a contradiction. For in- stance, assume M2 ⊊ M3 and M1, ...

  12. Magnetostriction-strain-induced enhancement and modulation of photovoltaic performance in Si-p-n/TbxDy1-xFe2 composite

    International Nuclear Information System (INIS)

    Wu, Zheng; Zhang, Yihe; Fang, Cong; Ma, Ke; Lin, He; Jia, Yanmin; Chen, Jianrong; Wang, Yu; Chan, Helen Lai Wa

    2014-01-01

    High photovoltaic efficiency is a key index in the application of silicon (Si) solar cells. In this study, a composite of a photovoltaic Si p-n junction solar cell and a magnetostrictive Tb x Dy 1-x Fe 2 alloy was fabricated. By utilizing the magnetostrictive strain to modulate the energy bandgap of Si, the open-circuit voltage and the maximum photovoltaic output power of the Si p-n junction solar cell could be enhanced by ∝12% and 9.1% under a dc magnetic field of ∝250 mT, respectively. The significantly enhanced photovoltaic performance and the simple fabrication process make the Si-p-n/Tb x Dy 1-x Fe 2 composite a promising material for high-efficiency solar cell devices. The structure of the proposed Si-p-n/Tb x Dy 1-x Fe 2 laminated composite. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1.

    Science.gov (United States)

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A; Gierisch, Maria E; Schäfer, Beat W; Niggli, Felix K

    2015-10-06

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ~50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (-2239/+67) using various deletion constructs identified two 14 bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition.

  14. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin

    2014-01-01

    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  15. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.

    Science.gov (United States)

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M

    2010-05-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses

  16. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture

    International Nuclear Information System (INIS)

    Bodega, G.; Forcada, I.; Suarez, I.; Fernandez, B.

    2005-01-01

    This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neither were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells

  17. PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation

    Directory of Open Access Journals (Sweden)

    Lee Hyun Jung

    2012-12-01

    Full Text Available Abstract Background Parkinson disease (PD is characterized by a slow, progressive degeneration of dopaminergic neurons in the substantianigra. The cause of neuronal loss in PD is not well understood, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1, have been linked to early-onset autosomal recessive forms of familial PD. Neuroinflammation greatly contributes to PD neuronal degeneration and pathogenesis. IL-1 is one of the principal cytokines that regulates various immune and inflammatory responses via the activation of the transcription factors NF-κB and activating protein-1. Despite the close relationship between PD and neuroinflammation, the functional roles of PD-linked genes during inflammatory processes remain poorly understood. Methods To explore the functional roles of PINK1 in response to IL-1β stimulation, HEK293 cells, mouse embryonic fibroblasts derived from PINK1-null (PINK1−/− and control (PINK1+/+ mice, and 293 IL-1RI cells stably expressing type 1 IL-1 receptor were used. Immunoprecipitation and western blot analysis were performed to detect protein–protein interaction and protein ubiquitination. To confirm the effect of PINK1 on NF-κB activation, NF-κB-dependent firefly luciferase reporter assay was conducted. Results PINK1 specifically binds two components of the IL-1-mediated signaling cascade, Toll-interacting protein (Tollip and IL-1 receptor-associated kinase 1 (IRAK1. The association of PINK1 with Tollip, a negative regulator of IL-1β signaling, increases upon IL-1β stimulation, which then facilitates the dissociation of Tollip from IRAK1 as well as the assembly of the IRAK1–TNF receptor-associated factor 6 (TRAF6 complex. PINK1 also enhances Lys63-linked polyubiquitination of IRAK1, an essential modification of recruitment of NF-κB essential modulator and subsequent IκB kinase activation, and increases formation of the intermediate signalosome including IRAK1, TRAF6, and

  18. 2014-2016 Mt. Etna Ground deformation imaged by SISTEM approach using GPS and SENTINEL-1A/1B TOPSAR data

    Science.gov (United States)

    Bonforte, Alessandro; Guglielmino, Francesco; Puglisi, Giuseppe

    2017-04-01

    In the frame of the EC FP7 MED-SUV project (call FP7 ENV.2012.6.4-2), and thanks to the GEO-GSNL initiative, GPS data and SENTINEL 1A/1B TOPSAR acquired on Mt. Etna between October 2014 and November 2016 were analyzed. The SENTINEL data were used in order to combine and integrate them with GPS, and detail the ground deformation recorded by GPS on Mt. Etna, during the last two-year's volcanic activity. The Sentinel data were processed by GAMMA software, using a spectral diversity method and a procedure able to co-register the SENTINEL pairs with extremely high precision (processing, a new software architecture based on the hypervisor virtualization technology for the x64 versions of Windows has been implemented. The DInSAR results are analysed and successively used as input for the time series analysis using the StaMPS package. On December 28, 2014 eruptive activity resumed at Mt. Etna with a fire fountain activity feeding two lava flows spreading on the eastern and south-western upper flanks of the volcano, producing evident deformation at the summit of the volcano. GPS displacements and Sentinel-1A ascending interferogram were calculated in order to image the ground deformation pattern accompanying the eruption. The ground deformation pattern has been perfectly depicted by the GPS network, mainly affecting the uppermost part of the volcano edifice, with a strong decay of the deformation, according to a very shallow and strong dyke intrusion. The Sentinel 1A SAR data, covering the similar time spanning, confirmed that most of displacements are related to the dike intrusion, and evidenced a local gravity-driven motion of the western wall of the Valle del Bove, probably related to the dike intrusion. To monitor the temporal successive evolution of ground deformation, we performed an A-DInSAR SENTINEL analysis using the Small BAseline Subset (SBAS) approach included with the StaMPS processing package. The April 2015-December 2015, SBAS Time series, shown a volcano

  19. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-01-01

    Full Text Available Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2 overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1, a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9 activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor, can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase, a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation.

  20. The CD147/MMP-2 signaling pathway may regulate early stage cardiac remodelling in spontaneously hypertensive rats.

    Science.gov (United States)

    Li, Bowei; Zhou, Wanxing; Yang, Xiaorong; Zhou, Yuliang; Tan, Yongjing; Yuan, Congcong; Song, Yulan; Chen, Xiao; Zhang, Wei

    2016-11-01

    Previous studies have reported that decreased matrix metalloproteinase-2 (MMP-2) is associated with early stage (age 8-16 weeks) ventricular remodelling in spontaneously hypertensive rats (SHR). We hypothesized that inhibited CD147/MMP-2 signalling might down-regulate MMP-2 expression and augment remodelling in spontaneously hypertensive rats. Twenty-nine male SHR (8 weeks) were randomly assigned to SHR, CD147, and CD147+DOX groups. The control group included eight age-matched WKY rats. CD147 and CD147+DOX groups received recombinant human CD147 (600 ng/kg in 1.5 mL saline, weekly). The SHR and WKY groups received the vehicle. The CD147+DOX group also received doxycycline, an inhibitor of MMPs (daily, 30 mg/kg in 1.5 mL saline, iG). On day 56 echocardiography and left ventricular mass index (LVWI) measurements were collected and histological sections were stained for cell and collagen content. Myocardium MMP-2, TIMP-1, CD147, and collagens types I and III were estimated by western blot. CD147 and the ratio of MMP-2/TIMP-1 were lower in SHR than WKY rats (PCD147 rats showed CD147, MMP-2 and MMP-2/TIMP-1 were increased (PCD147 levels did not differ between CD147+DOX and CD147 groups, CVF, collagens type I and III and partial fiber breaks were more abundant in CD147+DOX (PCD147/MMP-2 pathway was associated with early stage cardiac remodelling, and CD147 supplementation may attenuate this response. © 2016 John Wiley & Sons Australia, Ltd.

  1. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    Science.gov (United States)

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-01-01

    Highlights: → Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. → This process is independent of endogenous ROS production. → Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O 2 ) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  3. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    Science.gov (United States)

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  4. Generation of the ECP database (ECP01.DAT) of the cycle 1 of the Unit 1 of Laguna Verde with burnt of 1377 MWD/MT

    International Nuclear Information System (INIS)

    Perusquia C, R.

    1992-10-01

    In order to carrying out a comparison among the results provided by the Program of Estimate of the ECP Critical Position and the Shutdown/Startup produced in the Cycle 1 of the Unit 1 of Laguna Verde, it was generated the base of the ECP program, following the outlines settled down in the Procedure 'Generation of ECP Database for Laguna Verde' (IT.SN/DFR-074). Next the data sheets filled when being generated the ECP01.DAT database with a burnt of 1377 MWD/MT are provided. In the report IT.SN/DFR-079 'Adjustment and Preliminary Evaluation of the Predictions of Criticity of the ECP Program with Reported Data of the Cycle 1 of the Unit 1 of Laguna Verde', the results of the comparison among those estimates of the ECP program using the ECP01.DAT database with the real data of the Cycle 1 of the Unit 1 of Laguna Verde are presented. (Author)

  5. Non-thermal atmospheric pressure plasma inhibits thyroid papillary cancer cell invasion via cytoskeletal modulation, altered MMP-2/-9/uPA activity.

    Directory of Open Access Journals (Sweden)

    Jae Won Chang

    Full Text Available Plasma, the fourth state of matter, is defined as a partially or completely ionized gas that includes a mixture of electrons and ions. Advances in plasma physics have made it possible to use non-thermal atmospheric pressure plasma (NTP in cancer research. However, previous studies have focused mainly on apoptotic cancer cell death mediated by NTP as a potential cancer therapy. In this study, we investigated the effect of NTP on invasion or metastasis, as well as the mechanism by which plasma induces anti-migration and anti-invasion properties in human thyroid papillary cancer cell lines (BHP10-3 and TPC1. Wound healing, pull-down, and Transwell assays demonstrated that NTP reduced cell migration and invasion. In addition, NTP induced morphological changes and cytoskeletal rearrangements, as detected by scanning electron microscopy and immunocytochemistry. We also examined matrix metalloproteinase (MMP-2/-9 and urokinase-type plasminogen activator (uPA activity using gelatin zymography, uPA assays and RT-PCR. FAK, Src, and paxillin expression was detected using Western blot analyses and immunocytochemistry. NTP decreased FAK, Src, and paxillin expression as well as MMP/uPA activity. In conclusion, NTP inhibited the invasion and metastasis of BHP10-3 and TPC1 cells by decreasing MMP-2/-9 and uPA activities and rearranging the cytoskeleton, which is regulated by the FAK/Src complex. These findings suggest novel actions for NTP and may aid in the development of new therapeutic strategies for locally invasive and metastatic cancers.

  6. MMP1, MMP9, and COX2 Expressions in Promonocytes Are Induced by Breast Cancer Cells and Correlate with Collagen Degradation, Transformation-Like Morphological Changes in MCF-10A Acini, and Tumor Aggressiveness

    Directory of Open Access Journals (Sweden)

    G. K. Chimal-Ramírez

    2013-01-01

    Full Text Available Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.

  7. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa

    Directory of Open Access Journals (Sweden)

    Pennarun Erwan

    2012-12-01

    Full Text Available Abstract Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.

  8. MMP activity in the hybrid layer detected with in situ zymography.

    Science.gov (United States)

    Mazzoni, A; Nascimento, F D; Carrilho, M; Tersariol, I; Papa, V; Tjäderhane, L; Di Lenarda, R; Tay, F R; Pashley, D H; Breschi, L

    2012-05-01

    Dentinal proteases are believed to play an important role in the degradation of hybrid layers (HL). This study investigated the HL gelatinolytic activity by in situ zymography and functional enzyme activity assay. The hypotheses were that HLs created by an etch-and-rinse adhesive exhibit active gelatinolytic activity, and MMP-2 and -9 activities in dentin increase during adhesive procedures. Etched-dentin specimens were bonded with Adper Scotchbond 1XT and restored with composite. Adhesive/dentin interface slices were placed on microscope slides, covered with fluorescein-conjugated gelatin, and observed with a multi-photon confocal microscope after 24 hrs. Human dentin powder aliquots were prepared and assigned to the following treatments: A, untreated; B, etched with 10% phosphoric acid; or C, etched with 10% phosphoric acid and mixed with Scotchbond 1XT. The MMP-2 and -9 activities of extracts of dentin powder were measured with functional enzyme assays. Intense and continuous enzyme activity was detected at the bottom of the HL, while that activity was more irregular in the upper HL. Both acid-etching and subsequent adhesive application significantly increased MMP-2 and -9 activities (p < 0.05). The results demonstrate, for the first time, intrinsic MMP activity in the HL, and intense activation of matrix-bound MMP activity with both etching and adhesive application.

  9. Association of MMP - 12 polymorphisms with severe and very severe COPD: A case control study of MMPs - 1, 9 and 12 in a European population.

    LENUS (Irish Health Repository)

    Haq, Imran

    2010-01-15

    Abstract Background Genetic factors play a role in chronic obstructive pulmonary disease (COPD) but are poorly understood. A number of candidate genes have been proposed on the basis of the pathogenesis of COPD. These include the matrix metalloproteinase (MMP) genes which play a role in tissue remodelling and fit in with the protease - antiprotease imbalance theory for the cause of COPD. Previous genetic studies of MMPs in COPD have had inadequate coverage of the genes, and have reported conflicting associations of both single nucleotide polymorphisms (SNPs) and SNP haplotypes, plausibly due to under-powered studies. Methods To address these issues we genotyped 26 SNPs, providing comprehensive coverage of reported SNP variation, in MMPs- 1, 9 and 12 from 977 COPD patients and 876 non-diseased smokers of European descent and evaluated their association with disease singly and in haplotype combinations. We used logistic regression to adjust for age, gender, centre and smoking history. Results Haplotypes of two SNPs in MMP-12 (rs652438 and rs2276109), showed an association with severe\\/very severe disease, corresponding to GOLD Stages III and IV. Conclusions Those with the common A-A haplotype for these two SNPs were at greater risk of developing severe\\/very severe disease (p = 0.0039) while possession of the minor G variants at either SNP locus had a protective effect (adjusted odds ratio of 0.76; 95% CI 0.61 - 0.94). The A-A haplotype was also associated with significantly lower predicted FEV1 (42.62% versus 44.79%; p = 0.0129). This implicates haplotypes of MMP-12 as modifiers of disease severity.

  10. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    International Nuclear Information System (INIS)

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito; Ooshima, Takashi; Hamada, Shigeyuki; Nakagawa, Ichiro

    2008-01-01

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assay revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis

  11. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    International Nuclear Information System (INIS)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  12. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  13. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.

    Science.gov (United States)

    Cao, Jiatian; Han, Zhihua; Tian, Lei; Chen, Kan; Fan, Yuqi; Ye, Bozhi; Huang, Weijian; Wang, Changqian; Huang, Zhouqing

    2014-09-21

    In coronary arteries, plaque disruption, the major acute clinical manifestations of atherosclerosis, leads to a subsequent cardiac event, such as acute myocardial infarction (AMI) and unstable angina pectoris (UA). Numerous reports have shown that high expression of MMP-9 (matrix metalloproteinase-9), MMP-13 (matrix metalloproteinase-13) and EMMPRIN (extracellular matrix metalloproteinase induce) in monocyte/macrophage results in the plaque progression and destabilization. Curcumin exerts well-known anti-inflammatory and antioxidant effects and probably has a protective role in the atherosclerosis. The purpose of our study was to investigate the molecular mechanisms by which curcumin affects MMP-9, MMP13 and EMMPRIN in PMA (phorbol 12-myristate 13-acetate) induced macrophages. Human monocytic cells (THP-1 cells) were pretreated with curcumin or compound C for 1 h, and then induced by PMA for 48 h. Total RNA and proteins were collected for real-time PCR and Western blot analysis, respectively. In the present study, the exposure to curcumin resulted in attenuated JNK, p38, and ERK activation and decreased expression of MMP-9, MMP-13 and EMMPRIN in PMA induced macrophages. Moreover, we demonstrated that AMPK (AMP-activated protein kinase) and PKC (Protein Kinase C) was activated by PMA during monocyte/macrophage differentiation. Furthermore, curcumin reversed PMA stimulated PKC activation and suppressed the chronic activation of AMPK, which in turn reduced the expression of MMP-9, MMP-13 and EMMPRIN. Therefore, it is suggested that curcumin by inhibiting AMPK-MAPK (mitogen activated protein kinase) and PKC pathway may led to down-regulated EMMPRIN, MMP-9 and MMP-13 expression in PMA-induced THP-1 cells.

  14. Human disc degeneration is associated with increased MMP 7 expression.

    Science.gov (United States)

    Le Maitre, C L; Freemont, A J; Hoyland, J A

    2006-01-01

    During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.

  15. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jehn-Chuan Lee

    2016-08-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO, and deferasirox all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.

  16. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...... bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading...

  17. Label Review Training: Module 1: Label Basics, Page 29

    Science.gov (United States)

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is a quiz on Module 1.

  18. Patent documentation - comparison of two MT strategies

    DEFF Research Database (Denmark)

    Offersgaard, Lene; Povlsen, Claus

    2007-01-01

    This paper focuses on two matters: A comparison of how two different MT strategies manage translating the text type of patent documentation and a survey of what is needed to transform a MT research prototype system to a translation application for patent texts. The two MT strategies is represented....... The distinctive text type of patents pose special demands for machine translation and these aspects are discussed based on linguistic observations with focus on the users point of view. Two main demands are automatic pre processing of the documents and implementation of a module which in a flexible and user......-friendly manner offers the opportunity to extend the lexical coverage of the system. These demands and the comparison of the two MT strategies are discussed on the basis of proofread patents....

  19. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.

    Science.gov (United States)

    Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P

    2018-01-01

    The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.

  20. Analysis of matrix metalloproteinase-1 gene polymorphisms and expression in benign and malignant breast tumors

    Science.gov (United States)

    Zhou, Jing; Brinckerhoff, Constance; Lubert, Susan; Yang, Kui; Saini, Jasmine; Hooke, Jeffrey; Mural, Richard; Shriver, Craig; Somiari, Stella

    2013-01-01

    A guanine insertion polymorphism in matrix metalloproteinase-1 promoter (MMP-1 2G) is linked to early onset and aggressiveness in cancer. We determined the role of MMP-1 2G on the level of MMP-1 expression and breast cancer severity in benign breast disease, atypical hyperplasia, invasive and non invasive (in situ) breast cancer. We observed no significant difference in genotype distribution among the different breast disease groups. However, the level of MMP-1 expression was significantly higher in atypical ductal hyperplasia compared to benign breast disease; and in invasive breast cancer compared to in situ breast cancer. MMP-1 2G insertion polymorphism in the invasive group also correlated significantly with the expression of MMP-1 and breast cancer prognostic markers HER2 and P53. PMID:22011282

  1. Phagocytosis of haemozoin (malarial pigment enhances metalloproteinase-9 activity in human adherent monocytes: Role of IL-1beta and 15-HETE

    Directory of Open Access Journals (Sweden)

    Giribaldi Giuliana

    2008-08-01

    possibly responsible for increase of both IL-1beta production and MMP-9 activity. Conclusion Results indicate that specific lipoperoxide derivatives generated by HZ may play a role in modulating production of IL-1beta and MMP-9 expression and activity in HZ/trophozoite-fed human monocytes. Results may clarify aspects of cerebral malaria pathogenesis, since MMP-9, a metalloproteinase able to disrupt the basal lamina is possibly involved in generation of hallmarks of cerebral malaria, such as blood-brain barrier endothelium dysfunction, localized haemorrhages and extravasation of phagocytic cells and parasitized RBCs into brain tissues.

  2. The Biological Behaviors of Rat Dermal Fibroblasts Can Be Inhibited by High Levels of MMP9

    Directory of Open Access Journals (Sweden)

    Sheng-Neng Xue

    2012-01-01

    Full Text Available Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1, which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.

  3. 44 CFR 15.3 - Access to Mt. Weather.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and areas...

  4. Identification of dihydrogambogic acid as a matrix metalloproteinase 1 inhibitor by high-throughput screening

    Directory of Open Access Journals (Sweden)

    Li Y

    2017-12-01

    Full Text Available Yong Li, John J Voorhees, Gary J FisherDepartment of Dermatology, University of Michigan, Ann Arbor, MI, USAType I collagen (COL1 is the predominant structural protein in the skin. COL1 forms densely packed fibrils which are essential for maintaining skin mechanical properties and youthful appearance.1 The enzyme matrix metalloproteinase-1 (MMP1 cleaves COL1 fibrils at a single site.2 Once cleaved by MMP1, COL1 fibrils can be degraded by other proteases. MMP1 expression is elevated during natural aging and chronic sun exposure, ie, photoaging, leading to excessive degradation of COL1.3 This excessive degradation contributes to COL1 deficiency in the skin of the elderly. COL1 deficiency impairs skin structural integrity and appearance.Given the detrimental role of MMP1 in mediating age-associated fragmentation of COL1 fibrils, it would be beneficial to include MMP1 inhibitors in topical antiaging skin care products. Naturally existing substances that are safe for human use, such as botanical extracts, are often used in skin care products. We have utilized highthroughput screening (HTS to identify naturally existing MMP1 inhibitors that could be used for cosmetic purposes.

  5. The Role of FAK in the Secretion of MMP9 after CD147 Stimulation in Macrophages.

    Science.gov (United States)

    Yu, Chen; Lixia, Yang; Ruiwei, Guo; Yankun, Shi; Jinshan, Ye

    2018-03-30

    To investigate whether focal adhesion kinase (FAK) can participate in the secretion of matrix metalloproteinase 9 (MMP9) after CD147 stimulation in THP-1 induced macrophages; thus, to explore the potential treatment perspectives for acute coronary syndrome (ACS).Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages. To confirm the peak mRNA and protein expression of FAK and MMP9 after the stimulation of CD147, the macrophages were divided into 5 groups (0, 3, 6, 9, and 12 hours), with 0 hours group as control group. To investigate the role of FAK in the secretion of MMP9, with stimulation of CD147 for 9 hours, FAK inhibitor 14 was used to inhibit FAK Y397 phosphorylation. The mRNA and protein expressions were quantified by qRT-PCR and western blotting, respectively. (1) Relative mRNA expression of FAK and MMP9 were both significantly up-regulated (all P CD147, FAK peaked at 9 hours (3.908 ± 0.106 versus 1, P CD147 stimulation (all P CD147 up-regulates FAK, pFAK, and MMP9 mRNA and protein expressions in a dose-dependent manner. (4) FAK inhibitor 14 significantly reduced the relative protein expression level of pFAK (0.077 ± 0.012 versus 1, P CD147 stimulation.The results demonstrated that FAK Y397 phosphorylation was involved in the secretion of MMP9 after CD147 stimulation in macrophages and may play a role in the regulation of ACS.

  6. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence.

    Science.gov (United States)

    Ma, Yonggang; Chiao, Ying Ann; Clark, Ryan; Flynn, Elizabeth R; Yabluchanskiy, Andriy; Ghasemi, Omid; Zouein, Fouad; Lindsey, Merry L; Jin, Yu-Fang

    2015-06-01

    Cardiac ageing involves the progressive development of cardiac fibrosis and diastolic dysfunction coordinated by MMP-9. Here, we report a cardiac ageing signature that encompasses macrophage pro-inflammatory signalling in the left ventricle (LV) and distinguishes biological from chronological ageing. Young (6-9 months), middle-aged (12-15 months), old (18-24 months), and senescent (26-34 months) mice of both C57BL/6J wild type (WT) and MMP-9 null were evaluated. Using an identified inflammatory pattern, we were able to define individual mice based on their biological, rather than chronological, age. Bcl6, Ccl24, and Il4 were the strongest inflammatory markers of the cardiac ageing signature. The decline in early-to-late LV filling ratio was most strongly predicted by Bcl6, Il1r1, Ccl24, Crp, and Cxcl13 patterns, whereas LV wall thickness was most predicted by Abcf1, Tollip, Scye1, and Mif patterns. With age, there was a linear increase in cardiac M1 macrophages and a decrease in cardiac M2 macrophages in WT mice; of which, both were prevented by MMP-9 deletion. In vitro, MMP-9 directly activated young macrophage polarization to an M1/M2 mid-transition state. Our results define the cardiac ageing inflammatory signature and assign MMP-9 roles in mediating the inflammaging profile by indirectly and directly modifying macrophage polarization. Our results explain early mechanisms that stimulate ageing-induced cardiac fibrosis and diastolic dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    Science.gov (United States)

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  8. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    International Nuclear Information System (INIS)

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B 4 (LTB 4 ) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT 1 (cysLT 1 ) receptor antagonist, REV-5901 as well as a BLT 1 receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB 4 and cysLT (LTC 4 and LTD 4 ) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB 4 and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  9. Performance of the modules for layer 1 of the CMS phase 1 pixel detector upgrade

    CERN Document Server

    Meinhard, Maren Tabea; Berger, Pirmin; Starodumov, Andrey

    2017-01-01

    The instantaneous luminosity of the Large Hadron Collider will increase to up to 2x10$^{34}$\\;cm$^{-2}$s$^{-1}$ by 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced in January 2017. The upgraded detector features four sensitive layers in the barrel part. A designated readout chip (PROC600V2) is used for layer 1, which is closest to the interaction point and therefore has to handle larger particle fluxes. An irradiation campaign has been performed with PROC600V2 to verify its radiation tolerance up to the maximum expected dose for 2017 of 0.2\\;MGy. Modules for layer 1 have been built with PROC600V2 for the detector production. The quality of every inserted module was assessed in a number of tests, some of which were performed using X-radiation. The characteristics of the modules used in the detector as well as the main failure modes will be presented.

  10. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Directory of Open Access Journals (Sweden)

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  11. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    Directory of Open Access Journals (Sweden)

    Millward Jason M

    2007-09-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are thought to mediate cellular infiltration in central nervous system (CNS inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (MT-MMPs. Leukocyte infiltration is an integral part of the pathogenesis of autoimmune inflammation in the CNS, as occurs in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE, as well as in the response to brain trauma and injury. We have previously shown that gene expression of the majority of MMPs was upregulated in the spinal cord of SJL mice with severe EAE induced by adoptive transfer of myelin basic protein-reactive T cells, whereas four of the six MT-MMPs (MMP-15, 16, 17 and 24 were downregulated. The two remaining MT-MMPs (MMP-14 and 25 were upregulated in whole tissue. Methods We used in vivo models of CNS inflammation and injury to study expression of MT-MMP and cytokine mRNA by real-time RT-PCR. Expression was also assessed in microglia sorted from CNS by flow cytometry, and in primary microglia cultures following treatment with IFNγ. Results We now confirm the expression pattern of MT-MMPs in the B6 mouse, independent of effects of adjuvant. We further show expression of all the MT-MMPs, except MMP-24, in microglia. Microglia isolated from mice with severe EAE showed statistically significant downregulation of MMP-15, 17 and 25 and lack of increase in levels of other MT-MMPs. Downregulation of MT-MMPs was also apparent following CNS injury. The pattern of regulation of MT-MMPs in neuroinflammation showed no association with expression of the proinflammatory cytokines TNFα, IL-1β, or IFNγ. Conclusion CNS inflammation and injury leads to downregulation in expression of the majority of MT-MMPs. Microglia in EAE showed a general downregulation of MT-MMPs, and our findings suggest that MT-MMP levels may

  12. End user reliability assessment of 1.2-1.7 kV commercial SiC MOSFET power modules

    DEFF Research Database (Denmark)

    Ionita, Claudiu; Nawaz, Muhammad

    2017-01-01

    This paper is a first attempt to offer reliability evaluation of full SiC power modules where several dies are connected in parallel to increase power rating capability. Here, five different power modules with voltage rating from 1.2-1.7 kV and current rating from 120-800 A from three vendors hav......, which is connected in parallel with the MOSFET chip. For another module, there has also been recorded a failure of the gate oxide during H3TRB....

  13. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yan, E-mail: shy35309@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Wei, Shu-Ping, E-mail: weishuping_83@163.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Rui-Cheng, E-mail: xu_rc@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Peng-Xiao, E-mail: xupengxiao1228@sina.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Zhang, Wen-Cheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China)

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  14. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    International Nuclear Information System (INIS)

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-01-01

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  15. Quantitative multi-parameter mapping of R1, PD*, MT and R2* at 3T: a multi-center validation

    Directory of Open Access Journals (Sweden)

    Nikolaus eWeiskopf

    2013-06-01

    Full Text Available Multi-center studies using magnetic resonance imaging facilitate studying small effect sizes, global population variance and rare diseases. The reliability and sensitivity of these multi-center studies crucially depend on the comparability of the data generated at different sites and time points. The level of inter-site comparability is still controversial for conventional anatomical T1-weighted MRI data. Quantitative multi-parameter mapping (MPM was designed to provide MR parameter measures that are comparable across sites and time points, i.e., 1mm high-resolution maps of the longitudinal relaxation rate (R1=1/T1, effective proton density (PD*, magnetization transfer saturation (MT and effective transverse relaxation rate (R2*=1/T2*. MPM was validated at 3T for use in multi-center studies by scanning five volunteers at three different sites. We determined the inter-site bias, inter-site and intra-site coefficient of variation (CoV for typical morphometric measures (i.e., gray matter probability maps used in voxel-based morphometry and the four quantitative parameters. The inter-site bias and CoV were smaller than 3.1% and 8%, respectively, except for the inter-site CoV of R2* (< 20%. The gray matter probability maps based on the MT parameter maps had a 14% higher inter-site reproducibility than maps based on conventional T1-weighted images. The low inter-site bias and variance in the parameters and derived gray matter probability maps confirm the high comparability of the quantitative maps across sites and time points. The reliability, short acquisition time, high resolution and the detailed insights into the brain microstructure provided by MPM makes it an efficient tool for multi-center imaging studies.

  16. Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chandrashekar, Naveenkumar; Selvamani, Asokkumar; Subramanian, Raghunandhakumar; Pandi, Anandakumar; Thiruvengadam, Devaki, E-mail: devakit@yahoo.co.uk

    2012-05-15

    -α, IL-1β, i-NOS and NF-κBp65 at protein levels. ► BE modulates the expressions of MMP-2, MMP-9 and COX-2 at protein and mRNA levels. ► BE decreases LPO levels and enhances antioxidant status.

  17. The Contribution of Matrix Metalloproteinase-1 Promoter Genotypes in Taiwan Lung Cancer Risk.

    Science.gov (United States)

    Shen, Te-Chun; Chang, Wen-Shin; Tsai, Chia-Wen; Chao, Che-Yi; Lin, Yi-Ting; Hsiao, Chieh-Lun; Hsu, Che-Lun; Chen, Wei-Chun; Hsia, Te-Chun; Bau, DA-Tian

    2018-01-01

    Up-regulation of metallo-proteinase (MMP) proteins has been shown in various types of solid cancers and the genotype of MMP1 has been associated with the risk of solid cancers. The contribution of MMP1 genotype to lung cancer has been investigated in various countries, though, to our knowledge, not in Taiwan. Therefore, in this study, we focused on the contribution of a polymorphism in the promoter region of MMP1 to lung cancer risk in Taiwan population. Genomic DNA was isolated from peripheral blood of 358 patients with lung cancer and 716 healthy individuals (non-cancer patients). MMP1 rs1799750 polymorphic genotypes of each sample were determined using the typical methodology of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The percentages of 2G/2G, 1G/2G, and 1G/1G for MMP1 -1607 genotypes were 34.4%, 41.3% and 24.3% in the disease group and 33.9%, 44.0%, and 22.1% in the control group (p trend=0.6298), respectively. The results of carrier comparisons in dominant and recessive models also support the findings that 1G or 2G appears not to be a determinant allelic biomarker for Taiwan lung cancer. The MMP1 -1607 1G allele is a non-significant protective biomarker for lung cancer in Taiwan. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Zymographic patterns of MMP-2 and MMP-9 in the CSF and cerebellum of dogs with subacute distemper leukoencephalitis.

    Science.gov (United States)

    Machado, Gisele F; Melo, Guilherme D; Souza, Milena S; Machado, Andressa A; Migliolo, Daniela S; Moraes, Olívia C; Nunes, Cáris M; Ribeiro, Erica S

    2013-07-15

    Distemper leukoencephalitis is a disease caused by the canine distemper virus (CDV) infection. It is a demyelinating disease affecting mainly the white matter of the cerebellum and areas adjacent to the fourth ventricle; the enzymes of the matrix metalloproteinases (MMPs) group, especially MMP-2 and MMP-9 have a key role in the myelin basic protein fragmentation and in demyelination, as well as in leukocyte traffic into the nervous milieu. To evaluate the involvement of MMPs during subacute distemper leukoencephalitis, we measured the levels of MMP-2 and MMP-9 by zymography in the cerebrospinal fluid (CSF) and in the cerebellum of 14 dogs naturally infected with CDV and 10 uninfected dogs. The infected dogs presented high levels of pro-MMP-2 in the CSF and elevated levels of pro-MMP-2 and pro-MMP-9 in the cerebellar tissue. Active MMP-2 was detected in the CSF of some infected dogs. As active MMP-2 and MMP-9 are required for cellular migration across the blood-brain barrier and any interference between MMPs and their inhibitors may result in an amplification of demyelination, this study gives additional support to the involvement of MMPs during subacute distemper leukoencephalitis and suggests that MMP-2 and MMP-9 may take part in the brain inflammatory changes of this disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Contribution of Matrix Metalloproteinase-1 Genotype to Oral Cancer Susceptibility in Taiwan.

    Science.gov (United States)

    Sun, Kuo-Ting; Tsai, Chia-Wen; Chang, Wen-Shin; Shih, Liang-Chun; Chen, Liang-Yu; Tsai, Ming-Hsiu; Ji, Hong-Xue; Hsiao, Chieh-Lun; Liu, Yu-Cheng; Li, Chi-Yuan; Bau, DA-Tian

    2016-01-01

    Metalloproteinases (MMPs) are a family of multifunctional proteins which have been shown to be up-regulated in various types of cancer. However, the contribution of MMP1 genotype to oral cancer has not been elucidated. This study aimed to evaluate the contribution of MMP1 promoter 1607 genotype to the risk of oral cancer. In this case-control study, MMP1 genotype and its interaction with consumption of areca, cigarettes, and alcohol in determining oral cancer risk were investigated in 788 patients with oral cancer and 956 gender-matched healthy controls. The distribution of 2G/2G, 1G/2G and 1G/1G for MMP1 promoter 1607 genotype was 36.8%, 40.2% and 23.0% in the oral cancer group and 34.3%, 44.9% and 20.8% in the non-cancer control group, respectively (p for trend=0.1454). We also analyzed the allelic frequency distributions and found that the variant 1G allele of MMP1 promoter 1607 conferred similar oral cancer susceptibility as the wild-type 2G allele (odds ratio=0.99, 95% confidence interval=0.87-1.14, p=0.9199). As for the gene-lifestyle interaction, there was an obvious protective effect of MMP1 promoter 1607 1G/2G genotype on the risk of oral cancer among smokers (odds ratio=0.71, 95% confidence interval=0.55-0.91, p=0.0076), but not non-smokers. There was no interaction between MMP1 promoter 1607 genotype and areca chewing or alcohol drinking habits. The 1G/2G genotype of MMP1 promoter 1607 may have a protective effect on oral cancer risk for smokers. The detailed mechanisms involved in this require further investigation. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    2011-01-01

    Full Text Available Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction

  1. Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by extracellular cations

    DEFF Research Database (Denmark)

    Søe, Rikke; Andreasen, Mogens; Klærke, Dan Arne

    2009-01-01

    This work demonstrates that extracellular Na(+) modulates the cloned inwardly rectifying K(+) channels Kir4.1 and Kir4.1-Kir5.1. Whole-cell patch clamp studies on astrocytes have previously indicated that inward potassium currents are regulated by external Na(+). We expressed Kir4.1 and Kir4.1-Kir5.......1 in Xenopus oocytes to disclose if Kir4.1 and/or Kir4.1-Kir5.1 at the molecular level are responsible for the observed effect of [Na(+)](o) and to investigate the regulatory mechanism of external cations further. Our results showed that Na(+) has a biphasic modulatory effect on both Kir4.1 and Kir4.1-Kir5.......1 currents. Depending on the Na(+)-concentration and applied voltage, the inward Kir4.1/Kir4.1-Kir5.1 currents are either enhanced or reduced by extracellular Na(+). The Na(+) activation was voltage-independent, whereas the Na(+)-induced reduction of the Kir4.1 and Kir4.1-Kir5.1 currents was both...

  2. STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)

    Science.gov (United States)

    1991-01-01

    STS-40 Spacelab Life Science 1 (SLS-1) module is documented in the payload bay (PLB) of Columbia, Orbiter Vehicle (OV) 102. Included in the view are: the spacelab (SL) transfer tunnel joggle section and support struts; SLS-1 module forward end cone with the European Space Agency (ESA) SL insignia, SLS-1 payload insignia, and the upper feed through plate (center); the orbiter maneuvering system (OMS) pods; and the vertical stabilizer with the Detailed Test Objective (DTO) 901 Shuttle Infrared Leeside Temperature Sensing (SILTS) at the top 24 inches. The vertical stabilizer points to the Earth's limb and the cloud-covered surface of the Earth below.

  3. MMP-9 immunohistochemical expression is correlated with histologic grade in feline diffuse iris melanoma

    Directory of Open Access Journals (Sweden)

    Laura Nordio

    2018-06-01

    Full Text Available Feline diffuse iris melanoma (FDIM is the most common primary intraocular neoplasm in cats. It is usually a malignant tumor, even if slowly progressive, thus representing an unique spontaneous model of the aggressive, although rare, human iris melanoma. In cats, the extent of the tumor within the eye, expressed as histological grade, is considered a good predictor of survival. In the context of the neoplastic cells-tumor microenvironment interaction, Matrix Metalloproteinase-9 (MMP-9 is an endopeptidase able to digest the extracellular matrix with involvement in tumor invasion . MMP-9 expression has been positively correlated with metastasizing behavior in human posterior uveal melanoma. The present study investigates the expression of MMP-9 in a caseload of formalin-fixed paraffin-embedded FDIMs in relation to the histological grade  and mitotic index (MI (threshold=7/10 hpf. Sixty-one samples of FDIM evaluated on light microscopy (Fig. 1 were selected (grade I n=22, grade II n=20, grade III n=19. Immunohistochemical staining with standard ABC method was performed using a mouse anti-MMP-9 antibody. Results were semi-quantitatively scored and compared by Mann-Whitney U test. MMP-9 was expressed in 59,1% grade I FDIM, 90,0% grade II and 80,0% grade III. Tumors with MMP-9 expression in more than 50% of neoplastic cells were 13,6% in grade I cases, 40,0% in grade II and 36,8% in grade III. MMP-9 was expressed in 71,4% of FDIM with MI≤7 and 92,3% of FDIM with MI>7. MMP-9 expression differed significantly between grade I and the other two grades, and between groups with low and high MI. In conclusion, intense expression of MMP-9 seems to correlate with the histological aggressiveness of FDIM.

  4. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    Directory of Open Access Journals (Sweden)

    Aaron A. Mehus

    2017-10-01

    Full Text Available Metallothioneins (MTs perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER and dietary n-3 polyunsaturated fatty acid (PUFA deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL intake of control rats provided diets consisting of either soybean oil (SO that is α-linolenic acid (ALA; 18:3n-3 sufficient or corn oil (CO; ALA-deficient. Fatty acids (FA and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3 and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2 and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50% and cerebral cortex (23%. In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  5. Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Alexandra Rucavado

    2002-01-01

    Full Text Available Envenomations by the snake Bothrops asper are characterized by prominent local tissue damage (i.e. myonecrosis, blistering, hemorrhage and edema. Various phospholipases A2 and metalloproteinases that induce local pathological alterations have been purified from this venom. Since these toxins induce a conspicuous inflammatory response, it has been hypothesized that inflammatory mediators may contribute to the local pathological alterations described. This study evaluated the local production of cytokines and matrix metalloproteinases (MMPs as a consequence of intramuscular injections of an Asp-49 myotoxic phospholipase A2 (myotoxin III (MT-III and a P-I type hemorrhagic metalloproteinase (BaP1 isolated from B. asper venom. Both enzymes induced prominent tissue alterations and conspicuous increments in interleukin (IL-1β, IL-6 and a number of MMPs, especially gelatinase MMP-9, rapidly after injection. In contrast, no increments in tumor necrosis factor-α (TNF-α and interferon-γ were detected. In agreement, MT-III and BaP1 did not induce the synthesis of TNF-α by resident peritoneal macrophages in vitro. Despite the conspicuous expression of latent forms of MMPs in muscle, evidenced by zymography, there were no increments in activated MMP-2 and only a small increase in activated MMP-9, as detected by a functional enzymatic assay. This suggests that MMP activity was regulated by a highly controlled activation of latent forms and, probably, by a concomitant synthesis of MMP inhibitors. Since no hemorrhage nor dermonecrosis were observed after injection of MT-III, despite a prominent increase in MMP expression, and since inflammatory exudate did not enhance hemorrhage induced by BaP1, it is suggested that endogenous MMPs released in the tissue are not responsible for the dermonecrosis and hemorrhage characteristic of B. asper envenomation. Moreover, pretreatment of mice with the peptidomimetic MMP inhibitor batimastat did not reduce myotoxic nor

  6. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta.

    Science.gov (United States)

    Kim, Youn Jung; Kang, Jenny; Seymen, Figen; Koruyucu, Mine; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Zang Hee; Hu, Jan C-C; Simmer, James P; Kim, Jung-Wook

    2017-01-01

    Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19) and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln) was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180 * and c.389C>T, p.Thr130Ile) were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  7. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Jung-Wook Kim

    2017-04-01

    Full Text Available Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19 and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180* and c.389C>T, p.Thr130Ile were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  8. WRAP Module 1 sampling and analysis plan

    Energy Technology Data Exchange (ETDEWEB)

    Mayancsik, B.A.

    1995-03-24

    This document provides the methodology to sample, screen, and analyze waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing Module 1 facility. This includes Low-Level Waste, Transuranic Waste, Mixed Waste, and Dangerous Waste.

  9. WRAP Module 1 sampling and analysis plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-01-01

    This document provides the methodology to sample, screen, and analyze waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing Module 1 facility. This includes Low-Level Waste, Transuranic Waste, Mixed Waste, and Dangerous Waste

  10. Contributions of ocular surface components to matrix-metalloproteinases (MMP)-2 and MMP-9 in feline tears following corneal epithelial wounding.

    Science.gov (United States)

    Petznick, Andrea; Madigan, Michele C; Garrett, Qian; Sweeney, Deborah F; Evans, Margaret D M

    2013-01-01

    This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding. Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs. The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (pTears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining. Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9 following

  11. Reciprocal Modulation of IK1-INa Extends Excitability in Cardiac Ventricular Cells.

    Science.gov (United States)

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (I K1 ) and the fast inward sodium current (I Na ) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for I K1 -I Na reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, G K1 , of the inwardly rectifying potassium current, and G Na , of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of G K1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal G K1 -G Na modulation and unlike those due to independent modulation of G Na alone, indicating that G K1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent G Na modulation and for tandem changes in G K1 -G Na , suggesting that G Na is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on G K1 -G Na is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both G K1 and the intercellular gap junction conductance, G gj , were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of G K1 rendered cardiac fibers inexcitable at higher levels of G K1 whereas tandem G K1 -G Na

  12. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1, and cancer-protective genes, NAD(PH:quinone oxidoreductase 1 (Nqo1 and glutathione S-transferase a1 (Gsta1, in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  13. Polimorfisme Gen MMP-9, Ekspresi MMP-9, dan Indeks Apoptosis Sel Serviks pada Kehamilan 21–36 Minggu

    Directory of Open Access Journals (Sweden)

    Udin Sabarudin

    2011-12-01

    Full Text Available Over expression and premature activation of matrix metalloproteinase (MMP can lead to degradation of amnion chorionic membrane which clinically called premature rupture of membrane (PROM. Increasing MMP activity caused by matrix metalloproteinase-9 (MMP-9 gene polymorphism (C-1562T will be followed by apoptosis. This study was aimed to find the differences between MMP-9 expression and cervical apoptotic index (AI and also MMP-9 (C-1562T polymorphism on 21–36 weeks of pregnancy with or without PROM. This was case control study and conducted in Dr. Hasan Sadikin Hospital and Bandung Networking Hospitals (May−November 2009. There were no significant correlation between MMP-9 expression and cervical AI in every variable on both groups. Three cases of PROM were found in mothers below 20 years of age. Women with 28−34 weeks of pregnancy had a greater risk for PROM than 21−28 weeks. Pregnant women with body mass index (BMI 19−26, had risk to have PROM. Only one sample that showed a MMP-9 (C-1562T polymorphism in the premature labor with PROM group. It can be concluded that there are no significant correlation between MMP-9 expression and cervical cells AI on both groups as well as MMP-9 (C-1562T polymorphism which can alter MMP-9 expression.

  14. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice.

    Science.gov (United States)

    Zheng, Wenhao; Feng, Zhenhua; You, Shengban; Zhang, Hui; Tao, Zhenyu; Wang, Quan; Chen, Hua; Wu, Yaosen

    2017-04-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Fisetin, a polyphenol extracted from fruits and vegetables, has been reported to have anti-inflammatory effects. Our study aimed to investigate the effect of fisetin on OA both in vitro and in vivo. In vitro, chondrocytes were pretreated with fisetin alone or fisetin combined with sirtinol (an inhibitor of SIRT1) for 2h before IL-1β stimulation. Production of NO, PGE2, TNF-α and IL-6 were evaluated by the Griess reaction and ELISAs. The mRNA (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, Sox-9, aggrecan and collagen-II) and protein expression (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5 and SIRT1) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and SIRT1. SIRT1 activity was quantified with SIRT1 fluorometric assay kit. The in vivo effect of fisetin was evaluated by gavage in mice OA models induced by destabilization of the medial meniscus (DMM). We found that fisetin inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5. Besides, fisetin remarkably decreased IL-1β-induced degradation of Sox-9, aggrecan and collagen-II. Furthermore, fisetin significantly inhibited IL-1β-induced SIRT1 decrease and inactivation. However, the inhibitory effect of fisetin was obvious abolished by sirtinol, suggesting that fisetin exerts anti-inflammatory effects through activating SIRT1. In vivo, fisetin-treated mice exhibited less cartilage destruction and lower OARSI scores. Moreover, fisetin reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that fisetin may be a potential agent in the treatment of OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. NMR structure of the first Ig module of mouse FGFR1

    DEFF Research Database (Denmark)

    Kiselyov, V.V.; Bock, Elisabeth Marianne; Berezin, V.

    2006-01-01

    of this module. We describe here the NMR structure of the Ig1 module of mouse FGFR1. The three-dimensional fold of the module belongs to the intermediate Ig subgroup and can be described as a beta-barrel consisting of two beta-sheets. One sheet is formed by A', G, F, C, and C', and the other by A, B, B', E...

  16. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1

    Directory of Open Access Journals (Sweden)

    Karla L. González-Aguilera

    2016-09-01

    Full Text Available Quantitative real-time RT-PCR (qRT-PCR has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L. cultivar Micro-Tom (MT is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 (FUL1 and APETALA2c (AP2c during fruit development are comparable to previous reports using other tomato cultivars.

  17. Patterns in Seismicity at Mt St Helens and Mt Unzen

    Science.gov (United States)

    Lamb, Oliver; De Angelis, Silvio; Lavallee, Yan

    2014-05-01

    Cyclic behaviour on a range of timescales is a well-documented feature of many dome-forming volcanoes. Previous work on Soufrière Hills volcano (Montserrat) and Volcán de Colima (Mexico) revealed broad-scale similarities in behaviour implying the potential to develop general physical models of sub-surface processes [1]. Using volcano-seismic data from Mt St Helens (USA) and Mt Unzen (Japan) this study explores parallels in long-term behaviour of seismicity at two dome-forming systems. Within the last twenty years both systems underwent extended dome-forming episodes accompanied by large Vulcanian explosions or dome collapses. This study uses a suite of quantitative and analytical techniques which can highlight differences or similarities in volcano seismic behaviour, and compare the behaviour to changes in activity during the eruptive episodes. Seismic events were automatically detected and characterized on a single short-period seismometer station located 1.5km from the 2004-2008 vent at Mt St Helens. A total of 714 826 individual events were identified from continuous recording of seismic data from 22 October 2004 to 28 February 2006 (average 60.2 events per hour) using a short-term/long-term average algorithm. An equivalent count will be produced from seismometer recordings over the later stages of the 1991-1995 eruption at MT Unzen. The event count time-series from Mt St Helens is then analysed using Multi-taper Method and the Short-Term Fourier Transform to explore temporal variations in activity. Preliminary analysis of seismicity from Mt St Helens suggests cyclic behaviour of subannual timescale, similar to that described at Volcán de Colima and Soufrière Hills volcano [1]. Frequency Index and waveform correlation tools will be implemented to analyse changes in the frequency content of the seismicity and to explore their relations to different phases of activity at the volcano. A single station approach is used to gain a fine-scale view of variations in

  18. Matrix metalloproteinases (MMP-2 and MMP-9) activity in corneal ulcer and ocular surface disorders determined by gelatin zymography.

    Science.gov (United States)

    Singh, Arti; Maurya, O P S; Jagannadhan, M V; Patel, Ashok

    2012-01-01

    The purpose of this paper is to determine the active form of matrix metalloproteinases (MMP-2 and MMP-9) in corneal ulcer and ocular surface disorder patients. A total of 35 patients of corneal ulcer, 20 patients of ocular surface disorders and 10 control subjects were included in this study and estimation of active form of MMP-2 and MMP-9 was done by gelatin zymography. Tear samples were collected by capillary tube method. Both pro- and active forms of MMP-9 were detected in 24 out of 35 patients with corneal ulcer and 15 out of 20 patients with ocular surface disorders. None of the patients were showing MMP-2 activity. Neither MMP-2 nor MMP-9 was detected in the control group. Active forms of MMP-9 are present in tears of severe ulcerative and ocular surface disorder patients. Thus, proteinase inhibitors have been recommended for the treatment of corneal ulcer and ocular surface disorders to reduced the progression of stromal ulcer and to minimize corneal scarring.

  19. Superpartner Mass Measurement Technique using 1D Orthogonal Decompositions of the Cambridge Transverse Mass Variable MT2

    Science.gov (United States)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun

    2010-07-01

    We propose a new model-independent technique for mass measurements in missing energy events at hadron colliders. We illustrate our method with the most challenging case of a single-step decay chain. We consider inclusive same-sign chargino pair production in supersymmetry, followed by leptonic decays to sneutrinos χ+χ+→ℓ+ℓ'+ν˜ℓν˜ℓ' and invisible decays ν˜ℓ→νℓχ˜10. We introduce two one-dimensional decompositions of the Cambridge MT2 variable: MT2∥ and MT2⊥, on the direction of the upstream transverse momentum P→T and the direction orthogonal to it, respectively. We show that the sneutrino mass Mc can be measured directly by minimizing the number of events N(M˜c) in which MT2 exceeds a certain threshold, conveniently measured from the end point MT2⊥max⁡(M˜c).

  20. Estimation of Serum Matrix Metalloproteinases-1 Levels in Iraqi Female Patients with Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Vean Sabah Ali

    2018-05-01

    Full Text Available This study was established to investigate the correlation between the expression of matrix metalloproteinases (MMP-1 and the pathogenesis of osteoarthritis (OA. Blood samples were collected from 55 female patients with inflammatory OA and controls for estimation of serum (MMP-1 levels. In the current study, there is significant increase (p<0.001 in the mean of serum MMP-1 levels in osteoarthritis females (4027.73 ± 1345.28 pg/ml than that in control females (798.76 ± 136.79 pg/ml. It was concluded that MMP-1 may be associated with the pathogenesis of osteoarthritis.